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Connectivity is one of the most fundamental properties of wireless ad-hoc net-

works as most network functions are predicated upon the network being connected.

Although increasing node transmission power will improve network connectivity, too

large a power level is not feasible as energy is a scarce resource in wireless ad-hoc

networks. Thus, it is crucial to identify the minimum node transmission power that

will ensure network connectivity with high probability.

It is known that there exists a critical level transmission power such that a

suitably larger power will ensure network connectivity with high probability. A small

variation across this threshold level will lead to a sharp transition of the probability

that the network is connected. Thus, in order to precisely estimate the minimum

node transmission power, not only do we need to identify this critical threshold, but

also how fast this transition takes place. To characterize the sharpness of transition,

we define weak, strong and very strong critical thresholds associated with increasing

transition speeds.

In this dissertation, we seek to estimate the minimum node transmission power



for large scale one-dimensional wireless ad-hoc networks under the Geometric Ran-

dom Graph (GRG) models. Unlike in previous works where nodes are taken to be

uniformly distributed, we assume a more general node distribution. Using the meth-

ods of first and second moments, we theoretically prove the existence of a very strong

critical threshold when the density function is everywhere positive. On the other

hand, only weak thresholds are shown to exist when the density function contains

vanishing densities.

We also study the connectivity of two-dimensional wireless ad-hoc networks

under the random connection model, which accounts for statistical channel varia-

tions. With the help of the Stein-Chen method, we derive a closed form formula for

the limiting probability that there are no isolated nodes under a very general as-

sumption of channel variations. The node transmission power to ensure the absence

of isolated nodes provides a tight lower bound on the transmission power needed to

ensure network connectivity.
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Chapter 1

Introduction

1.1 Motivation and objectives

It is envisioned that we shall soon inhabit a world where myriads of wireless

devices tightly interact with the physical world as well as with human beings [18, 55].

However, current cellular wireless network architectures are not suitable to support

such an exceedingly large number of users because the number of base stations

can not scale accordingly for environmental and regulatory reasons. In addition,

infrastructure deployment is barely feasible in some inhospitable regions such as

battlefields, deserts and disaster areas.

Such constraints on infrastructure deployment make wireless ad-hoc networks

a promising technology. Wireless ad-hoc networks are large-scale infrastructureless

networks. Network nodes are usually randomly deployed and their locations may

evolve in time. Without the help of base stations, two far away nodes communicate

only if some intermediate nodes relay their packets. The basic question for such

networks is whether intermediate relays exist for any pair of nodes, a fact which
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indicates network connectivity.

Connectivity is one of the most fundamental properties of wireless ad-hoc net-

works. As a matter of fact, most network functions are predicated upon the network

being connected. Although increasing node transmission power will improve net-

work connectivity, large power levels are not desirable as energy is a scarce resource

in wireless ad-hoc networks [16]. Thus, it is needed to answer the following question:

What is the minimum transmission power to ensure network connectivity? 1

Because nodes are randomly distributed, this critical transmission power is

a random variable, whose distribution is usually hard to obtain. Fortunately, we

are mainly interested in networks with a large number of nodes (e.g. wireless sensor

networks). In this case, we can instead try to identify a critical scaling (with respect

to the number of nodes), or threshold, for the transmission power. Such a critical

threshold indicates a boundary in the space of scalings with respect to network con-

nectivity: A suitably larger (resp. smaller) power will ensure network connectivity

with probability close to one (resp. zero). For a large-scale network, a small varia-

tion across this critical threshold will lead to a sharp transition in the probability of

network connectivity. In addition, in order to precisely estimate the minimum node

transmission power, not only do we need to identify the critical threshold, but also

how fast the transition takes place. To characterize the sharpness of this transition,

we define weak, strong and very strong critical thresholds associated with increasing

transition speed.

1In this dissertation, we assume homogeneous nodes with equal transmission power.
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Whether a solution could be useful in practice depends on how well the adopted

network model realistically captures the basic characteristics of wireless ad-hoc net-

works. In most existing studies [14, 20, 23, 28, 38, 45], two assumptions are made

which are too simplistic to model wireless ad-hoc networks. The first one assumes

that network nodes are uniformly distributed over a certain geographical area. The

second assumption is the disk connection model [24], where two nodes are assumed

to communicate if and only if their distance is below an artificial transmission range.

The first assumption is not valid if network nodes are mobile, e.g., the stationary

node distribution under the random waypoint mobility model without pause [51].

Moreover, if nodes (e.g., wireless sensors) are scattered from an airplane, their dis-

tribution can not be uniform. The second assumption is questionable because of

shadowing and fading, typical phenomena in wireless communications. Since shad-

owing and fading lead to random channel variations, the existence of a link between

two nodes is a random event. Even if they are very close to each other, the avail-

ability of this link is not guaranteed.

In this dissertation, we focus mostly on identifying the critical threshold of

node transmission power, and on the sharpness of transition under general node

placement distributions under disk connection model. The connectivity of wireless

ad-hoc networks under the random connection model is discussed in Chapter 8.
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1.2 Related work

Many of the papers [14, 20, 23, 28, 38, 45] exploring the connectivity of wireless

ad-hoc networks are based on two simplistic assumptions, namely uniform node

distribution and disk connection model. The exact probability of connectivity of

one-dimensional finite networks is computed in [14, 20, 23]; critical thresholds for

transmission range when the number of nodes in the network tends to infinity are

identified in [28, 38, 45].

Prior works on network connectivity under the assumptions of general node

distribution and disk connection model include: Foh et al. [21] study the connectiv-

ity of one-dimensional MANETs where users follow the random waypoint mobility

model. However, their theoretical analysis (section II) involves some unverified ap-

proximations which need further investigation. Santi [51] investigates the critical

transmission range (CTR) for connectivity of mobile ad-hoc networks, with nonuni-

form stationary user distribution. When the density of user distribution is strictly

positive, their results indicate that the critical transmission range is a constant fac-

tor larger than that obtained in the uniform distribution case. However, when the

user density vanishes, they only obtain the loose result that the CTR is much larger

than that of the uniform case without showing how large it should be. Deheuvels

derives upper and lower bounds on the critical range for the case of one-dimensional

graphs under non-uniform node distribution [13]. However, he does not identify the

strong critical threshold for graph connectivity.

As the deterministic channel assumption is not realistic, many researchers have
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started to investigate the connectivity of ad-hoc networks under a random channel

model. Hekmat and Mieghem analyze the connectivity problem under the lognormal

shadowing channel model through extensive simulations [36]. Their results show

that larger channel variations will improve network connectivity. In [8], Bettstetter

and Hartmann study the network connectivity under the same channel model. They

derive a closed form formula of the minimum node density to ensure that no node

is isolated; this density provides a tight lower bound on the node density required

to ensure network connectivity. In [44], Miorandi and Altman compute the node

isolation probability under a more generic random channel. However, the analysis

in both [8] and [44] are based on an unnecessary approximation that the isolation

of nodes are independent events. Avin studies a model of distance graphs [4], where

nodes are uniformly distributed in a unit disk, and the probability of edge presence

between any pair of nodes is a function of their distance. However, he only considers

a very special type of connection function.

In summary, the existing literature on the connectivity of wireless ad-hoc net-

works is mostly based on the two simplistic assumptions. Although some attempts

have been made to explore generalized models, results to date are either based on

simulation or derived under some arbitrary approximations.

1.3 Main contributions

One of the main contributions of this dissertation is to introduce systematic

approaches to study connectivity of wireless ad-hoc networks. More specifically, all
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our results are rigorously established with the help of three efficient tools: Spacings,

the method of the first and second moments, and the Stein-Chen method.

Assuming the disk connection model, we study the connectivity of one-dimensional

networks under three types of density functions f : [0, 1] → R+: Firstly, the min-

imum density f? = 1, which corresponds to the case of uniform node distribution.

Secondly, 0 < f? < 1, which corresponds to the case of nonuniform node distribu-

tion with non-vanishing density. Lastly, f? = 0, which corresponds to the case of

nonuniform node distribution with vanishing density.

For the first case where nodes are uniformly distributed, we use the method

of the first and second moments to identify τ ?
n = log n

n
as a very strong threshold.

When nodes are placed according to the continuous density function f :

f(x) = c + a|x− x?|r + h(x), 0 ≤ x ≤ 1 (1.1)

for some parameters r > 0, a > 0 and c > 0, and for some function h : [0, 1] → R

such that

lim
x→x?

h(x)

|x− x?|r = 0, (1.2)

it can be shown that c = f? and we identify

τ ?
n =

log n− 1
r
log log n

nf?

(1.3)

as a very strong threshold via a variation of the method of the first and second

moments. It should be noted that when node distribution is nonuniform, the very

strong threshold does not only depend on the minimum density f?, but also the

smoothness of the density function around the minimum density, a feature captured

by r.
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If the density function f is given by

f(x) = (p + 1)xp, x ∈ [0, 1], (1.4)

we prove the existence of a weak threshold function

τ ?
p,n = n−

1
p+1 n = 1, 2, . . . (1.5)

by the method of spacings. We also prove that a strong threshold does not exist

for this case. This implies a much slower transition from network disconnectivity to

network connectivity as the transmission range varies across this weak threshold.

Finally, we user the Stein-Chen method to compute the limiting probability

that there are no isolated nodes for two-dimensional networks under some random

connection models with bounded support. More importantly, we show that this

limiting probability only depends on the expected node degree, and the details of

channel variations do not affect the result.

1.4 Organization

The structure of the dissertation is as follows: Chapter 2 describes models

of wireless ad-hoc network connectivity. In Chapter 3, we introduce some mathe-

matical tools that will be used in this dissertation. From Chapter 4 to Chapter 7,

we study the connectivity of one-dimensional networks under the disk connection

model. The case of uniform node distribution is investigated in Chapter 4. We

prove the existence of strong and very strong thresholds in Chapter 5 and Chap-

ter 6, respectively, for general node distributions with non-vanishing densities. In

7



Chapter 7, we discuss the case of node distributions with vanishing densities. Fi-

nally in Chapter 8, we compute the limiting probability that there are no isolated

nodes in two-dimensional ad-hoc networks under some random connection models

with bounded support.
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Chapter 2

Models of network connectivity

2.1 Model description

First a word on the notation and conventions used throughout this dissertation:

We assume that all the rvs under consideration are defined on the same probability

triple (Ω,F ,P), possibly by enlarging it to accommodate these rvs. All probabilistic

statements are made with respect to this probability measure P. The notation
P→ n

(resp. =⇒n) is used to signify convergence in probability (resp. convergence in

distribution) with n going to infinity.

In our model, we consider wireless ad-hoc networks under the following as-

sumptions: Firstly, the thermal noise power remains the same throughout the net-

work. Secondly, we assume the existence of a highly efficient MAC layer protocol,

which eliminates most packet collisions. Thus, interferences from other users can

be ignored. Thirdly, all nodes have equal transmission power. Finally, for any

transmitter-receiver pair, there exists a mapping that maps the transmission power

and transmitter-receiver distance onto the received power. This mapping is assumed

9



to be fixed for a given network.

Before introducing the network model, we first explain our link model. A

wireless link exists between two users i and j if and only if

P i
r

N i
0 + Ii

≥ β and
P j

r

N j
0 + Ij

≥ β, (2.1)

where β is a certain threshold, N i
0 (resp. N j

0 ) is the thermal noise power at user i

(resp. j), Ii (resp. Ij) is the interference power at user i (resp. j) and P i
r (resp. P j

r )

is the received power at user i (resp. j) assuming that user j (resp. i) transmits

with power P j
t (resp. P i

t ). According to the aforementioned assumptions, we have

N i
0 = N j

0 = N0, (2.2)

Ii = Ij = 0, (2.3)

P i
t = P j

t = Pt, (2.4)

and

P i
r = P j

r = Φ(Pt, dij), (2.5)

where Φ is the aforementioned mapping and dij is the distance between user i and

user j. Therefore, it is clear that (2.1) holds if and only if

Φ(Pt, dij) ≥ N0β. (2.6)

In (2.6), N0β is fixed, dij is random since users i and j are randomly placed, and Φ

is predetermined for a given network, so that the node transmission power Pt is the

key parameter to be computed.
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We thus define the probability that a link exists between users i and j by

gPt(dij) := P[Ψ(Pt, dij) ≥ N0β] (2.7)

where {gPt , Pt > 0} is a family of link probability functions with gPt : R+ → [0, 1] :

r → gPt(r)
1 being a non-increasing function which characterizes the random channel

variations when nodes transmit with power Pt.

The network model is built upon the link model. We model the network as a

geometric graph G(V, E). The vertex set V = {1, . . . , n} consists of n vertices (users)

randomly placed on [0, 1]d, where d = 1 (resp. d = 2) indicates one-dimensional

(resp. two-dimensional) networks. For n = 2, 3, . . ., vertex locations X1, . . . , Xn are

i.i.d. rvs which are distributed in [0, 1]d according to some common distribution

F : [0, 1]d → [0, 1]. Given X1, . . . , Xn, the edge set E is constructed through a link

probability function g as follows. We introduce i.i.d. {0, 1}-valued rvs {Li,j : i, j =

1, 2, . . . , n, i < j} to indicate the existence of edges with nodes i and j linked by

an edge if and only if Li,j = 1. Because interferences are assumed to be zero, the

indicator rvs {Li,j : i, j = 1, 2, . . . , n, i < j} are independent given X1, . . . , Xn. We

postulate that

P[Li,j = 1|X1, . . . , Xn] = g
(||Xi −Xj||

)
,

where ||Xi − Xj|| is the Euclidean distance between Xi and Xj. Finally, network

connectivity is taken to be equivalent to the connectivity of the graph G(V, E), i.e.,

any two vertices in V are linked by a path over edges in E.

1We use Pt as a subscript to emphasize that the link functions depend on the node transmission

power Pt. This notation will be ignored thereafter for simplicity.
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Let G denote the collection of graphs on the vertex set V , i.e., an element of

G is denoted as G with edge set E. Let G be the graph-valued rv G : Ω → G. For

any G = (V, E) in G, we have

P[G = G] = E
[
E

[
1[G = G]

∣∣∣X1, . . . , Xn

]]

= E

[ ∏

(i,j)∈E
i<j

i,j=1,...,n

g
(||Xi −Xj||

) ∏

(i,j)/∈E
i<j

i,j=1,...,n

(
1− g

(||Xi −Xj||
))

]
. (2.8)

If Gcon denotes the collection of connected graphs, then the probability that G

is connected is given by:

P[G ∈ Gcon] =
∑

G∈Gcon

P[G = G]. (2.9)

From (2.8) and (2.9), we observe that the probability of graph connectivity is

determined solely by the user distribution function F and by the link probability

function g. Past work on network connectivity mainly employs the uniform user

distribution model and the disk connection model (see Section 2.2.2), which can

not capture all wireless network scenarios. Thus the network connectivity problem

needs to be investigated under more generalized models.

We assume that F admits a density function f : [0, 1]d → R+ which is contin-

uous on [0, 1]d, and we write

f? = inf
(
f(x), x ∈ [0, 1]d

)
(2.10)

and

f ? = sup (f(x), x ∈ [0, 1]) . (2.11)

The continuity of f on the compact [0, 1]d guarantees that this infimum is achieved

by at least one element x? in [0, 1]d.
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According to the value of f?, F falls in one of the following three classes:

f? = 1, 0 < f? < 1 and f? = 0. Clearly, f? = 1 corresponds to the uniform node

distribution.

Since channel variations are very complicated, no single link model fits all

scenarios. In the next section, we introduce four specific graph models based on

different link probability functions.

2.2 Specific random graph models

2.2.1 The Erdös Rényi graph (ERG) model

The Erdös Rényi graph model was introduced by Erdös and Rényi in their

groundbreaking paper [17]. With 0 < p < 1, its link function is

gER(r) = p r ≥ 0.

In the ERG model, the probability of link presence between two users is independent

of their distance. This assumption ignores the pathloss phenomenon of the wireless

communications.

2.2.2 The geometric random graph (GRG) model

The geometric random graph (GRG) model [46] is a basic model for wireless

ad-hoc networks. Its link function has the form

gG(r) = 1[r ≤ τ ], r ≥ 0 (2.12)
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where τ denotes the transmission range which is determined by the transmission

power Pt. Thus, two vertices are linked by an edge if and only if their distance

is less than τ . Such a link function is also called the disk connection model [28],

based on the fact that a user can only communicate with the neighbors within a

disk of radius τ . This notion of connectivity gives rise to the undirected geometric

random graph Gd(n; τ). We use Pcon,d(n; τ) to denote the probability thatGd(n; τ) is

connected. For notational convenience, the one-dimensional GRG is simply denoted

by G(n; τ), whose probability of connectivity is given by P (n; τ).

The basic assumption of the GRG model is that the received power Pr is

deterministic and decreasing with transmitter-receiver distance r. Thus, there exists

a boundary distance τ at which the received power Pr = N0β, so that Pr ≥ N0β if

and only if r ≤ τ . In the GRG model, the received power is often given by a power

law function [49, p. 107] of the form

Pr = Ar−η, r > 0 (2.13)

where η is the pathloss exponent and A is a constant that is mainly determined by

the transmission power, antenna gains and signal wavelength. According to (2.13)

and (2.6), a link exists between a transmitter-receiver pair with distance d if and

only if

r ≤
(

A

Nβ

) 1
η

. (2.14)

By comparing (2.12) and (2.14), the transmission range τ is equal to
(

A
Nβ

) 1
η
. Any

deterministic channel can be captured by the GRG model; the power law function

(2.13) only provides an example of such a deterministic channel model.
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Examples of connected and disconnected GRGs are shown in Fig. 2.1 and

Fig. 2.2, respectively. In both graphs, there are n = 1000 users with communication

range τ = 0.04924 for the connected graph and τ = 0.04455 for the disconnected

graph.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.1: Example of a connected geometric random graph.

2.2.3 The lognormal connection graph (LCG) model

Hekmat and Mieghem introduce a radio model [36], where the logarithm of

the received signal power follows the normal distribution. The mean value of this

normal distribution is determined by the power law function (2.13). Based on this

lognormal distribution assumption, the edge function of the LCG model is defined
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Figure 2.2: Example of a disconnected geometric random graph.

by

gL(r) =
1

2

[
1− erf

(
α

log(r/τ)

ξ

)]
, r ≥ 0 (2.15)

where α = 10√
2 log 10

, τ is the transmission range defined in the GRG model and the

parameter ξ captures channel variations. In practice, ξ is usually between 0 and 6.

As usual, the error function (erf) used in (2.15) is given by

erf(x) =
2√
π

∫ x

0

e−t2 dt. x ≥ 0

2.2.4 The bounded connection graph (BCG) model

In the bounded connection graph (BCG) model, the probability that two users

are pairwise connected is positive only if their distance is less than the boundary

range ρ which is determined by the transmission power Pt. The edge function of the
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BCG model is given by

gB(r) = 1[r < ρ]hρ(r), r ≥ 0 (2.16)

where hρ : [0, 1] → [0, 1] is a right continuous non-increasing function where

hρ(r)





= 1 r = 0

∈ (0, 1) 0 < r < ρ

= 0 ρ ≤ r ≤ 1

(2.17)

The BCG model gives rise to the undirected graph Gd(n; ρ). We use Pcon,d(n; ρ) to

denote the probability that Gd(n; ρ) is connected.

The form of the function hρ is almost arbitrary with few constraints. In con-

trast to specific link functions (such as (2.15)), this generalized function can be used

to model almost all kinds of wireless channels. One may question the validity of the

link function being bounded, which is the main constraint imposed on this model.

However, due to the fast signal attenuation with distance, two far-away users can

hardly communicate effectively. Even if a link exists, it can hardly be utilized, and

it is therefore reasonable to simply ignore the very long links.

2.3 Discussion

The key parameters for the GRG and BCG models are τ and ρ, respectively.

Each parameter is assumed to be an increasing function of the user transmission
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power Pt. Thus in order to estimated the minimum transmission power to ensure

network connectivity, it is equivalent to estimate the minimum values of these pa-

rameters to ensure graph connectivity. In other words, both parameters act as

proxies for the transmission power.

In this dissertation, we will mainly focus on the GRG and the BCG models,

which are representatives of the deterministic and random channel models, respec-

tively.
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Chapter 3

Approaches

3.1 The basic idea

Graph connectivity is a global property that can not be determined by studying

local properties defined on subsets of nodes. For example, the triangle containment

is a local property. Whether a graph has such a property can be found by checking all

the 3-node subsets. Similarly, the absence of node isolation is also a local property.

A local property is usually much easier to study than a global property.

Fortunately, for the one-dimensional GRG model, the connectivity ofG(n; τ) is

actually a local property. To clarify this point, we introduce the notion of breakpoint

nodes.

Definition 3.1 Fix n = 2, 3, . . . and τ in (0, 1). For each i = 1, . . . , n, node i is

said to be a breakpoint node in G(n; τ) whenever (i) it is not the leftmost node in

[0, 1] and (ii) there is no node in the random interval [Xi − τ,Xi].

It is clear that G(n; τ) is connected if and only if no node is a breakpoint
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node, and the connectivity of G(n; τ) is therefore a local property. If we denote the

number of breakpoint nodes in G(n; τ) by Cn(τ), then we have the representation

P (n; τ) = P[Cn(τ) = 0]. (3.1)

For ease of analysis, we often represent Cn(τ) as a sum of indicator rvs. We first

define spacings as follows:

Definition 3.2 The spacings between consecutive order statistics are given by

Ln,k := Xn,k −Xn,k−1, k = 1, . . . , n + 1 (3.2)

where Xn,1, . . . , Xn,n is the ordered sequence of X1, . . . , Xn such that

Xn,1 ≤ Xn,2 ≤ . . . ≤ Xn,n.

By convention, Xn,0 = 0 and Xn,n+1 = 1.

It is now clear that

Cn(τ) =
n∑

k=2

χn,k(τ),

where the {0, 1}-valued rvs χn,1(τ), . . . , χn,n+1(τ) are given by

χn,k(τ) := 1 [Ln,k > τ ] , k = 1, . . . , n + 1. (3.3)

Since Cn(τ) can be represented as a sum of indicator rvs, the probability

of Cn(τ) being zero can be estimated using the methods of the first and second

moments and the Stein-Chen method. The details are given in Section 3.2.2 and

Section 3.2.3.
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Another way to study the connectivity of G(n; τ) is through the maximal

spacing Mn, which is defined by

Mn := max(Ln,k, k = 2, . . . , n). (3.4)

Clearly we have

P (n; τ) = P[Mn ≤ τ ]. (3.5)

Although the maximal spacing has been extensively studied in the past decades

[13, 39], it has never gained attention in the network community. We will discuss

some existing facts of spacings forG(n; τ) under uniform node distribution in Section

3.2.1. Based on these facts, we obtain some new results for the case of nonuniform

node distribution in Chapters 5 and 7.

Unfortunately, the notions of breakpoint nodes and maximal spacing do not

exist for G2(n; τ), G1(n; ρ) and G2(n; ρ), and new methods are therefore required to

study their connectivity.

Penrose [47] solved the connectivity problem for G2(n; τ) by proving the fol-

lowing asymptotic equality

lim
n→∞

Pcon,2(n; τn) = lim
n→∞

Piso,2(n; τn) = e−e−α

(3.6)

for a range function τ : N→ R+ in the form

τn =

√
log n + α

πn

for some α in R, and Piso,2(n; τn) is the probability of the absence of isolated nodes

in G2(n; τn). According to (3.6), for a two-dimensional GRG G2(n; τn), the absence
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of isolated nodes can be viewed as equivalent to connectivity when n is large enough.

Thus, we can instead study the absence of isolated nodes in G2(n; τ). The detailed

analysis can be found in [47].

Similarly, we will study the connectivity of G2(n; ρ) under the conjecture that

the graph connectivity and the absence of isolated nodes are asymptotically equiv-

alent events. For G1(n; ρ), however, connectivity and the absence of isolated nodes

can not be regarded as equivalent events even if n is very large. Up to now, we have

not found a satisfactory approach to study the connectivity of G1(n; ρ).

In this dissertation, we will mainly investigate the connectivity of G(n; τ) and

G2(n; ρ), using approaches introduced in the rest of this Chapter.

3.2 Mathematical tools

3.2.1 Spacings

In this Section, we consider the one-dimensional graph G(n; τ). We begin with

a useful fact concerning the distributional properties of spacings [12, Eq. (6.4.3), p.

135].

Lemma 3.1 For any fixed subset I ⊆ {1, . . . , n}, we have

P [Ln,k > tk, k ∈ I] =

(
1−

∑

k∈I

tk

)n

+

, tk ∈ [0, 1]

with the notation xn
+ = xn if x ≥ 0 and xn

+ = 0 if x ≤ 0.

From Lemma 3.1, the distribution of the maximal spacing can be derived by

the inclusion-exclusion principle.
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Lemma 3.2 It holds

P[Mn ≤ x] =
n−1∑

k=0

(−1)k

(
n− 1

k

)
(1− kx)n

+. x ∈ [0, 1] (3.7)

This result has been rediscovered by several authors, e.g., Godehardt and Jaworski

[25, Cor. 1, p. 146], and Desai and Manjunath [14] (as Eqn (8) with z = 1 and

r = τ). According to (3.5), we can see that (3.7) actually provides an explicit

expression for P (n; τ). Its usefulness and constraints will be discussed in Chapter

4.

An elegant relationship exists between the spacings and exponential distribu-

tions [48, p. 404]:

Lemma 3.3 Let ξ1, . . . , ξn+1 be i.i.d exponential rvs with unit parameter. We have

the stochastic equivalence

(Ln,1, . . . , Ln,n+1) =st

(
ξ1

Tn+1

, . . . ,
ξn+1

Tn+1

)

where Tn+1 = ξ1 + . . . + ξn+1.

With the help of Lemma 3.3, we are now ready to present some useful prop-

erties of maximal spacings. The following is a variation of a result given by Lévy

[39].

Theorem 3.1 It holds that

nMn

log n

P−→n 1 (3.8)

and

nMn − log n =⇒n Λ (3.9)
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where Λ denotes a Gumbel rv with distribution

P (Λ ≤ x) = e−e−x

, x ∈ R.

Proof. First note that (3.9) implies (3.8) since

nMn − log n

log n
=

(
nMn

log n
− 1

)
, n = 2, 3, . . .

and we need only establish (3.9).

Fix n = 2, 3, . . .. By Lemma 3.3, we have

Mn = max
k=2,...,n

Ln,k

=st max
k=2,...,n

(
ξk

Tn+1

)

=
1

Tn+1

(
max

k=2,...,n
ξk

)
.

Therefore,

nMn − log n =st
n

Tn+1

(
max

k=2,...,n
ξk

)
− log n

=
n

Tn+1

(
max

k=2,...,n
ξk − log n

)
+ δn (3.10)

with

δn :=
n

Tn+1

√
n

(
1− Tn+1

n

)
log n√

n
.

The Strong Law of Large Numbers [19] gives

lim
n→∞

Tn+1

n
= 1 a.s.,
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while the Central Limit Theorem [19] yields

√
n

(
Tn+1

n
− 1

)
=⇒n U

with U =st N(0, 1). It is now easy to check that δn =⇒n 0, whence δn
P−→n 0.

Therefore it follows from (3.10) that in order to prove (3.9), we only need to

prove

max
k=2,...,n

ξk − log n =⇒n Λ.

For each x in R and n = 2, 3, . . ., we have

P
[

max
k=2,...,n

ξk − log n ≤ x

]
= P[ξk ≤ x + log n, k = 2, . . . , n]

=
n∏

k=2

P[ξk ≤ x + log n]

=
(
1− e−(x+log n)

)n−1

=

(
1− 1

n
e−x

)n−1

,

so that

lim
n→∞

P

[
max

k=2,...,n
ξk − log n ≤ x

]
= e−e−x

as needed.

For the case of a general distribution F [13, Theorem 4, p. 1183], we have the

following result on the maximal spacing.

Theorem 3.2 Assume that F admits a continuous probability density function

f : [0, 1] → R+ which satisfies the following conditions:
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(i) There exists an isolated minimum x? of f on [0, 1].

(ii) There exist positive constants r, dr and Dr such that

dr := lim inf
h→0

f(x? + h)− f(x?)

|h|r

and

Dr := lim sup
h→0

f(x? + h)− f(x?)

|h|r .

Then, we have the bounds

−1

r
= lim inf

n→∞
nMnf? − log n

log log n
< lim sup

n→∞

nMnf? − log n

log log n
= 2− 1

r
a.s.

While Theorem 3.2 implies nMnf? − log n = Θ(log log n) a.s., this result does

not establish an exact asymptotic relationship between nMnf?− log n and log log n.

We will return to this issue in Chapter 6.

3.2.2 Methods of the first and second moments

The method of first moment is a special case of Markov’s inequality.

Lemma 3.4 For any N-valued rv Z with E[Z] < ∞, we have

P [Z = 0] ≥ 1− E[Z].

The method of second moment is a simple corollary of the Cauchy-Schwartz

inequality.
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Lemma 3.5 For any N-valued rv Z with 0 < E[Z2] < ∞, we have

P[Z = 0] ≤ 1− E[Z]2

E[Z2]
.

Proof. By the Cauchy-Schwartz inequality,

E[Z]2 = E[1[Z 6= 0]Z]2 ≤ E[1[Z 6= 0]2]E[Z2],

so that

E[Z]2

E[Z2]
≤ P[Z 6= 0].

The following result can be deduced from Lemma 3.4 and Lemma 3.5, and

holds the key to many of the proofs given in the thesis.

Theorem 3.3 Let {Zn, n = 1, 2, . . .} be a sequence of N-valued rvs with E[Z2
n] < ∞

for each n = 1, 2, . . .. Then, the convergence statements

lim
n→∞

P[Zn = 0] = 1 if lim
n→∞

E[Zn] = 0,

and

lim
n→∞

P[Zn = 0] = 0 if lim
n→∞

E[Zn]2

E[Z2
n]

= 1

hold.
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In the forthcoming chapters, we will have the need to evaluate the distri-

bution of the rv Zn, where Zn is the sum of indicator rvs {In,α, α ∈ Γn} with

Γn ⊆ {1, 2, . . . , n} and lim
n→∞

|Γn| = ∞. In particular, we will want to know the

limiting probability of the event Zn = 0. Lemma 3.4 and Lemma 3.5 only pro-

vide lower and upper bounds to P[Zn = 0], respectively, and we can not determine

lim
n→∞

P[Zn = 0] unless the upper (resp. lower) bound tends to zero (resp. one), cases

which are handled by Theorem 3.3. If neither bound approaches its extreme value,

the method of first and second moments can not be used.

If the indicator rvs {In,α, α ∈ Γn} are mutually independent, and

lim
n→∞

sup
α∈Γn

E[In,α] = 0 with lim
n→∞

E[Zn] = λ < +∞,

we can approximate the distribution of Zn by a Poisson distribution with mean

λ, and conclude lim
n→∞

P[Zn = 0] = e−λ. If, however, the indicator rvs are not

independent, we have to resort to the Stein-Chen method [5] described in the next

section.

3.2.3 The Stein-Chen method

Throughout this section, we define Z :=
∑
α∈Γ

Iα for some finite index set Γ,

where {Iα, α ∈ Γ} are {0, 1}-valued rvs, and set λ := E[Z]. We denote by Π(λ) a

Poisson rv with parameter λ.

Essentially, the Stein-Chen method computes upper bounds on the total vari-

ation distance between the rv Z and the Poisson rv Π(λ). The definition of total

variation distance is stated as follows:
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Definition 3.3 Let X and Y be N-valued rvs. The total variation distance between

X and Y is defined by

dTV (X,Y ) :=
1

2

∞∑

k=0

∣∣∣P [X = k]− P [Y = k]
∣∣∣.

The Stein-Chen method is advantageous over other Poisson convergence meth-

ods (e.g., Brun’s sieve [1, p. 119]) for the following reasons:

1. It does not only establish Poisson convergence, but also often leads to a rate

of convergence; and

2. We only need to compute the first two moments of Z.

The following property of the total variation distance is immediate from its

definition.

Lemma 3.6 For N-valued rvs X and Y , we have

∣∣∣P[X = t]− P[Y = t]
∣∣∣ ≤ dTV (X,Y ), t = 0, 1, . . . .

Proof. Indeed, for each t = 0, 1, . . ., we have

dTV (X,Y ) =
1

2

∞∑

k=0

∣∣∣P [X = k]− P [Y = k]
∣∣∣

=
1

2

(∣∣∣P[X = t]− P[Y = t]
∣∣∣ +

∑

k≥0,k 6=t

∣∣∣P [X = k]− P [Y = k]
∣∣∣
)

≥ 1

2

(∣∣∣P[X = t]− P[Y = t]
∣∣∣ +

∣∣∣P[X 6= t]− P[Y 6= t]
∣∣∣
)

=
∣∣∣P[X = t]− P[Y = t]

∣∣∣.
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A general result on the Stein-Chen method is given in Theorem 3.4 [5, Theorem

2. A, p. 23].

Theorem 3.4 Assume that for each α in Γ, the rvs Uα and Vα can be constructed

on a common probability space such that

Uα =st Z and (1 + Vα) =st (Z|Iα = 1).

Then, the bound

dTV (Z, Π(λ)) ≤
(

1− eλ

λ

) ∑
α∈Γ

E[Iα]E[|Uα − Vα|]

holds.

The upper bound of Theorem 3.4 can be greatly simplified if some form of

negative or positive dependence holds amongst the indicator rvs {Iα, α ∈ Γ}. The

definition of negatively (positively) related indicators [5, Definition 2. 1. 1, p. 24]

is given below.

Definition 3.4 The indicator rvs {Iα, α ∈ Γ} are said to be negatively related if

for each α in Γ, there exists rvs {Jβα, β ∈ Γn} defined on the same probability space

as {Iβ, β ∈ Γ} such that

(Jβα, β ∈ Γ\{α}) =st (Iβ, β ∈ Γ\{α}|Iα = 1) (3.11)

and

Jβα ≤ Iβ, β ∈ Γ\{α}. (3.12)
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The rvs {Iα, α ∈ Γ} are positively related when (3.12) is replaced by

Jβα ≥ Iβ, β ∈ Γ\{α}. (3.13)

If we set Uα = Z and Vα =
∑

β∈Γ\{α}
Jβα in Theorem 3.4, the following corollaries

[5, Cor 2. C. 2, Cor 2. C. 4, p. 26] can be derived after some simple algebraic

manipulations.

Corollary 3.1 If the rvs {Iα, α ∈ Γ} are negatively related, then we have

dTV (Z, Π(λ)) ≤ 1− e−λ

λ
(λ− V ar[Z]) .

Corollary 3.2 If rvs {Iα, α ∈ Γ} are positively related, then we have

dTV (Z, Π(λ)) ≤ 1− e−λ

λ

(
V ar[Z]− λ + 2

∑
α∈Γ

E[Iα]2

)
.

It is often difficult to show that the indicator rvs {Iα, α ∈ Γ} are negatively

(resp., positively) related. However, the upper bound of Theorem 3.4 can also be

simplified if there exists neighborhoods of dependence in the following sense.

Definition 3.5 For α in Γ, consider a subset Bα ⊂ Γ such that α is an element of

Bα. We say that Bα is a neighborhood of dependence for α if Iα is independent of

the rvs {Iβ, β ∈ Γ\Bα}.

With this definition, we have the following result [5, Cor 2. C. 5, p. 26]:
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Corollary 3.3 For each α in Γ, let Bα be a neighborhood of dependence for α.

Then, it holds

dTV (Z, Π(λ)) ≤ 1− e−λ

λ
(A1 + A2) (3.14)

where

A1 =
∑
α∈Γ

∑

β∈Bα

E[Iα]E[Iβ]

and

A2 =
∑
α∈Γ

∑

β∈Bα\{α}
E[IαIβ].

In many applications of Corollary 3.3, the size of the neighborhoods {Bα, α ∈

Γ} is much smaller than the size n of the index set Γ, and the upper bound in (3.14)

will go to zero as n tends to infinity. This is not the case, however, if the size of the

neighborhoods is of the same order of n.
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Chapter 4

Network connectivity under the GRG model I :

Uniform user distribution

4.1 Introduction

The GRG model with uniform node placement is the simplest scenario to be

considered in this dissertation. This model, despite its simplicity, deserves attention

for the following reasons: Firstly, it captures the essential feature that the existence

of a link between two users is a random event whose success probability is mainly

determined by their distance. Secondly, the approaches used in this model can be

easily adapted to analyze more complicated models.

In order to find the minimum transmission range to ensure graph connectivity

with high probability, it is desirable to derive a closed form expression of P (n; τ).

Under uniform node placement, such an expression is given by

P (n; τ) =
n−1∑

k=0

(−1)k

(
n− 1

k

)
(1− kτ)n

+, (4.1)

which is immediate from Lemma 3.2 by replacing x with τ in (3.7).
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For any given n and target probability of graph connectivity pcon (e.g. 0.99),

we can numerically calculate the minimum transmission range using (4.1). Such a

numerical result, albeit useful, can not be obtained for the general scenario. When

the graph setting is slightly changed (e.g. from uniform distribution to non-uniform

distribution), it becomes extremely hard to find out a similar closed form expression.

On the other hand, as we will see in the rest of this dissertation, approaches

introduced in Chapter 3 can be more widely used. Rather than simply obtaining nu-

merical results, we will establish an explicit expression for the transmission range as

a function of n and pcon. Moreover, we identify a critical threshold of the transmis-

sion range such that a slightly larger (resp. smaller) value will lead to a connected

(resp. disconnected) graph.

To get some intuitive impression of the relationship between the transmission

range and graph connectivity, we first look at some simulation results in Fig. 4.1.

Fig. 4.1 displays the probability of graph connectivity P (n; τ) as a function of

τ (in base 10 logarithm) for n = 10, 1, 000 and 100, 000. For each n, we have

generated 10, 000 independent topologies of n nodes uniformly and independently

distributed on the interval [0, 1]. The value of P (n; τ) is estimated as the percentage

of topologies that result in a connected graph when the transmission range is τ .

We observe from Fig. 4.1 that there exist sharp transitions from P (n; τ) = 0

to P (n; τ) = 1 as τ varies across some critical threshold. The larger n, the sharper

the transition. If we can identify this critical threshold, then a suitably larger

(resp. smaller) range will lead to graph connectivity (resp. disconnectivity) with

high probability. Thus in order to find the minimum transmission range ensuring
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Figure 4.1: Existence of sharp phase transitions.
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graph connectivity, we need to know both the critical threshold and the sharpness

of the transition. According to the sharpness of the transition around this critical

threshold, we introduce the notion of threshold functions in the next Section.

4.2 Threshold functions for graph connectivity

4.2.1 Definitions

A range function τ is defined as any mapping τ : N0 → R+. A range function

τ ∗ is said to be a weak threshold [42, p. 376] if

lim
n→∞

P (n; τn) =





0 if limn→∞ τn

τ∗n
= 0

1 if limn→∞ τn

τ∗n
= +∞.

(4.2)

A range function τ ∗ is said to be a strong threshold [42, p. 376] if

lim
n→∞

P (n; cτ ∗n) =





0 if 0 < c < 1

1 if 1 < c.

(4.3)

Finally, we say that τ ∗ is a very strong threshold if

lim
n→∞

P (n; τn) =





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞

(4.4)

for any range function τ : N0 → R+ written in the form

τn = τ ∗n +
αn

n
, n = 1, 2, . . . . (4.5)
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for some deviation function α : N0 → R+. Please note that there is no loss of

generality in writing a range function τ : N0 → R+ in the form of (4.5).

4.2.2 Threshold functions and maximal spacings

Let the range function τ ? : N0 → R+ be considered as a candidate threshold

function. We will show in the following two Lemmas that maximal spacings can be

used to check whether the range function τ ? is indeed a weak or a strong threshold.

Lemma 4.1 Under the enforced assumptions, if there exists an R+-valued rv L

such that

Mn

τ ?
n

=⇒n L (4.6)

holds with P [L = 0] = 0, then the range function τ ? : N0 → R+ is a weak threshold.

Proof. Consider a range function τ : N0 → R+ which satisfies

lim
n→∞

τn

τ ?
n

= ∞,

so that for each B > 0, there exists an integer n?(B) such that τn > Bτ ?
n whenever

n ≥ n?(B). Thus we find

P (n; τn) = P(Mn ≤ τn) ≥ P
[
Mn

τ ?
n

≤ B

]
, n ≥ n?(B). (4.7)

Letting n go to infinity in this last inequality yields

lim inf
n→∞

P (n; τn) ≥ lim inf
n→∞

P
[
Mn

τ ?
n

≤ B

]
. (4.8)
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With B a point of continuity for the distribution of L, we can invoke (4.6) in

order to strengthen (4.8) as

lim inf
n→∞

P (n; τn) ≥ P [L ≤ B] .

The points of continuity of the distribution of L form a dense set in R+. Therefore,

letting B go to infinity along such points of continuity, we get

lim inf
n→∞

P (n; τn) ≥ lim
B→∞

P [L ≤ B] = 1

since L is R+-valued, whence limn→∞ P (n; τn) = 1.

Next, consider a range function τ : N0 → R+ such that

lim
n→∞

τn

τ ?
n

= 0.

This time, for each ε > 0, there exists an integer n?(ε) such that τn < ετ ?
n whenever

n ≥ n?(ε), and we conclude to

P (n; τn) = P(Mn ≤ τn) ≤ P
[
Mn

τ ?
n

≤ ε

]
, n ≥ n?(ε). (4.9)

Letting n go to infinity in this last inequality yields

lim sup
n→∞

P (n; τn) ≤ lim sup
n→∞

P
[
Mn

τ ?
n

≤ ε

]
. (4.10)

If we pick ε to be a point of continuity for the distribution of L, we can invoke

(4.6) in order to strengthen (4.10) as

lim sup
n→∞

P (n; τn) ≤ P [L ≤ ε] .

Letting ε go to zero along the points of continuity of the distribution of L, we get

lim sup
n→∞

P (n; τn) ≤ lim
ε→0

P [L ≤ ε] = P[L = 0],
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and we conclude to limn→∞ P (n; τn) = 0 as desired since L > 0 a.s.. This completes

the proof that the range function τ ? is indeed a weak threshold for G(n; τ).

Lemma 4.2 Under the enforced assumptions, the range function τ ? : N0 → R+ is

a strong threshold if and only if

Mn

τ ?
n

P→ n 1. (4.11)

Proof. First, we note that (5.1) is equivalent to

Mn

τ ?
n

=⇒n 1 (4.12)

since the modes of convergence in distribution and in probability are equivalent

when the limit is a constant. However, the convergence (4.12) amounts to

lim
n→∞

P (n; cτ ?
n) =





0 if 0 < c < 1

1 if 1 < c.

(4.13)
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4.2.3 Operational interpretation of threshold functions

For each n = 2, 3, . . ., the critical transmission range for the n node network

is defined as the rv Rn given by

Rn := min (τ > 0 : G(n; τ) is connected) .

In short, Rn is the smallest transmission range that ensures that the node set

X1, . . . , Xn forms a connected network. The obvious identity

Rn = Mn

leads to the following operational interpretation of threshold functions: By Lemma

4.2, the range function τ ? : N0 → R+ is a strong threshold function if and only if

Rn ∼ τ ?
n for n large in some appropriate distributional sense (formalized at (4.11)).

On the other hand, if τ ? is a weak threshold function, then Lemma 4.1 only states

that Rn ∼ τ ?
nL for n large with a non-zero (possibly non-degenerate) rv L. In either

case, but with different degrees of accuracy, the threshold function serves as a proxy

or estimate of the critical transmission range for the many node networks.

4.3 A very strong threshold function for graph

connectivity

4.3.1 The main result and preliminary analysis

Theorem 4.1 Under the assumption that X1, . . . , Xn are i.i.d rvs distributed ac-

cording to U[0,1], the range function τ ? : N0 → R+ given by τ ∗n = log n
n

, n = 1, 2, . . . is
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a very strong threshold for graph connectivity.

The fact that log n
n

is a strong threshold has been discovered by several authors,

e.g., see [2, p. 352, Theorem 1] and [45, Thm. 2.2]. From (4.3), it follows that a

perturbation of (c−1) log n
n

from τ ∗n will yield the one law (resp. zero law) of P (n; τn)

when c > 1 (resp. 0 < c < 1). However, the very strong threshold established by

Theorem 4.1 indicates that “smaller” deviation αn

n
from τ ∗n can have the same effect

on P (n; τn), with the only constraint limn→∞ αn = ∞ (resp. limn→∞ αn = −∞).

For example, Theorem 4.1 implies that the deviation log log n
n

from τ ∗n will lead to

zero-one laws of P (n; τn), a fact which can not be established from (4.3).

We introduce some easy convergence facts to be used in the proof of Theorem

4.1: With 0 ≤ x < 1, it is a simple matter to check that

log(1− x) = −
∫ x

0

1

1− t
dt = −x−Ψ(x) (4.14)

where we have set

Ψ(x) :=

∫ x

0

t

1− t
dt, 0 ≤ x < 1. (4.15)

The mapping x → Ψ(x) is increasing and convex on the interval [0, 1) with

0 < Ψ(x) ≤ x2

2(1− x)
, 0 ≤ x < 1. (4.16)

Now consider a range function τ : N0 → R+ in the form

τn =
1

n
(log n + αn) , n = 1, 2, . . . (4.17)

for some deviation function α : N0 → R. Note that the range function in (4.17) has

the same form as that in (4.5) by replacing τ ∗n with log n
n

.
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For each p > 0, provided pτn < 1, the decomposition (A.1) yields

(1− pτn)n
+ = e−n(pτn+Ψ(pτn))

= e−p(log n+αn)e−nΨ(pτn)

= n−pe−pαne−nΨ(pτn). (4.18)

The next two technical lemmas rely on this observation; they will be useful in a

number of places.

Lemma 4.3 For any range function τ : N0 → R+ in the form (4.17) with limn→∞ αn =

−∞, we have

lim
n→∞

(1− pτn)n
+

n−pe−pαn
= 1, p > 0. (4.19)

Proof. Fix p > 0. From the assumption limn→∞ αn = −∞, we note that αn < 0 for

large enough n and the form (4.17) therefore implies both τn ≤ log n
n

and |αn|
n
≤ log n

n

on that range, whence

lim
n→∞

τn = lim
n→∞

αn

n
= 0

since limn→∞
log n

n
= 0. This already establishes that

pτn < 1 for all sufficiently large n (4.20)

Still on that range, the monotonicity of Ψ yields

nΨ(pτn) ≤ nΨ

(
p
log n

n

)
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so that

nΨ(pτn) ≤ p2

2
·
(

1− p
log n

n

)−1

· (log n)2

n

by invoking the bound (A.2). It is now plain that

lim
n→∞

nΨ(pτn) = 0. (4.21)

To conclude, condition (4.20) ensures the validity of (4.18) for large enough n,

and (4.21) readily implies (4.19) via (4.18).

Lemma 4.4 Consider a range function τ : N0 → R+ in the form (4.17). It holds

that

lim
n→∞

n(1− τn)n
+ =





∞ if limn→∞ αn = −∞

0 if limn→∞ αn = +∞.

(4.22)

Proof. First, we note that

n (1− τn)n
+ = e−αn · (1− τn)n

+

n−1e−αn
, n = 1, 2, . . . (4.23)

and Lemma 4.3 (with p = 1) readily yields the conclusion limn→∞ n(1− τn)n
+ = ∞

when limn→∞ αn = −∞.

We also have n(1− τn)n
+ = 0 if 1 ≤ τn, while when τn ≤ 1, the relation (4.18)

yields n(1 − τn)n
+ ≤ e−αn by the non-negativity of Ψ. It is now immediate that
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limn→∞ n(1− τn)n
+ = 0 when limn→∞ αn = +∞.

4.3.2 A proof of Theorem 4.1

The basic idea of the proof is to leverage the representation (3.1) in order to

provide lower and upper bounds on the probability of graph connectivity through

moments of the counting variable Cn(τ). This is achieved through the method of

first and second moments: According to Theorem 3.3, the one-law and zero-law

follow if we show that

lim
n→∞

E[Cn(τn)] = 0 if lim
n→∞

αn = ∞ (4.24)

and

lim
n→∞

E[Cn(τn)2]

E[Cn(τn)]2
= 1 if lim

n→∞
αn = −∞ (4.25)

where τ is any range function in the form (4.17).

From Lemma 4.4, we readily see that

lim
n→∞

E[Cn(τn)] =





0 if limn→∞ αn = +∞

∞ if limn→∞ αn = −∞,

(4.26)

and (4.24) is established.

Next, from Lemma 3.1, for each n = 2, 3, . . ., it is a simple matter to derive

the closed-form expressions

E[Cn(τ)] = (n− 1)(1− τ)n
+ (4.27)
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and

E[Cn(τ)2] = E[Cn(τ)] + (n− 1)(n− 2)(1− 2τ)n
+. (4.28)

Thus as τ ranges over (0, 1), we conclude that

E[Cn(τn)2]

E[Cn(τn)]2
= E[Cn(τn)]−1 +

(n− 2)

(n− 1)

(1− 2τn)n
+

(1− τn)2n
+

. (4.29)

We have already shown that limn→∞ E[Cn(τn)] = ∞ whenever limn→∞ αn = −∞.

From Lemma 4.3 (first with p = 2 and then p = 1) under this last condition, we

also get

lim
n→∞

(1− 2τn)n
+

n−2e−2αn
= 1 = lim

n→∞
(1− τn)n

+

n−1e−αn
.

It is now a simple matter to check from these facts that

lim
n→∞

(1− 2τn)n
+

(1− τn)2n
+

= lim
n→∞

(1− 2τn)n
+

n−2e−2αn

[
n−1e−αn

(1− τn)n
+

]2

= 1

and (4.25) follows upon letting n go to infinity in (4.29).

4.4 How fast does the transition take place?

4.4.1 Definitions

The threshold function only identifies when the phase transition takes place.

A natural question consists in estimating how quickly this transition takes place. To

address this issue, we introduce the following definitions: For each n = 2, 3, . . ., the

mapping τ → P (n; τ) can be shown to be continuous and strictly monotone increas-

ing. Given fixed a in (0, 1), this property guarantees the existence and uniqueness
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of solutions to the equation

P (n; τ) = a, τ ∈ (0, 1). (4.30)

Let τn(a) denote this unique solution, and whenever a lies in the interval (0, 1
2
), we

set

δn(a) := τn(1− a)− τn(a).

The transition width δn(a) measures how quickly P (n; τ) climbs from level a

to level 1− a, thereby giving an indication of the sharpness of the phase transition.

Given the rather complex dependence of δn(a) on n and a, it is desirable to find

asymptotic bounds (if nothing else) for large n.

4.4.2 The main result

The main result concerning the behavior of τn(a) for large n is given first.

Theorem 4.2 For every a in the interval (0, 1), it holds that

τn(a) =
log n

n
− 1

n
log

(
log

(
1

a

))
+ o

(
n−1

)
. (4.31)

Theorem 4.2 is established in Section 4.4.5. The desired result on the width

of the transition interval flows as an easy corollary.

Corollary 4.1 For every a in the interval (0, 1
2
), we have

δn(a) =
C(a)

n
+ o

(
n−1

)
(4.32)
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with constant C(a) given by

C(a) = log

(
log a

log(1− a)

)
. (4.33)

It is a simple matter to check that a → C(a) is decreasing on the interval

(0, 1
2
) with lima↓0 C(a) = ∞ and lima↑ 1

2
C(a) = 0. These qualitative features are in

line with one’s intuition.

4.4.3 How to guess the result

We now present a plausibility argument which allows us to guess the validity

of Theorem 4.2, and which eventually paves the way to its proof.

For each x in R, define the [0, 1]-valued sequence {σn(x), n = 1, 2, . . .} by

σn(x) = min

(
1,

(
log n + x

n

)

+

)
, n = 1, 2, . . . (4.34)

so that

σn(x) =
log n + x

n
(4.35)

for n large enough. The next result can be easily extracted from (3.5) and Theo-

rem 3.1. A similar result has also been obtained by Godehardt and Jaworski [25,

Theorem. 2, p. 157]

Corollary 4.2 For each x in R, it holds that

lim
n→∞

P (n; σn(x)) = p(x) (4.36)
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with

p(x) = e−e−x

. (4.37)

To see how the convergence (4.36) underpins Theorem 4.2, consider the fol-

lowing heuristic arguments: For each x in R, the convergence (4.36) yields the

approximation

P (n; σn(x)) ' p(x)

for large enough n. The mapping p : R → R+ : x → p(x) is strictly monotone and

continuous with limx→−∞ p(x) = 0 and limx→∞ p(x) = 1. Therefore, for each a in

the interval (0, 1), there exists a unique scalar, denoted xa, such that p(xa) = a. In

fact,

xa = − log (− log a) . (4.38)

Given a in the interval (0, 1), we find that

P (n; σn(xa)) ' a

for large n, whence P (n; σn(xa)) ' P (n; τn(a)). This suggests (but not quite yet

proves) that σn(xa) and τn(a) behave in tandem asymptotically, thereby laying the

grounds for the validity of (4.31) – Just insert (4.38) into (4.35) and (4.37). These

ideas form the basis for the proof of Theorem 4.2 found in Section 4.4.5.

4.4.4 Numerical validation

Below we present some limited numerical results validating the asymptotic

results obtained here. We consider n users which are uniformly and independently
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distributed in the interval [0, 1], with n ranging from n = 1, 000 to n = 9, 000 in

increments of 1, 000.

According to (3.7), for fixed a in (0, 1), the threshold τn(a) is calculated by

solving the following equation

k(τ)∑

k=0

(−1)k

(
n− 1

k

)
(1− kτ)n = a (4.39)

with k(τ) = min(n− 1, b 1
τ
c). In these calculations, some care needs to be exercised

owing to possible buffer overflows associated with the evaluation of combinatorial

coefficients. To avoid computing directly the coefficients
(

n−1
k

)
, k = 0, 1, . . . , k(τ),

we focus instead on evaluating the quantities bk =
(

n−1
k

)
(1−kτ)n, k = 0, 1, . . . , k(τ)

through the simple recursion

b0 = 1; bk+1 =
n− k − 1

k + 1

(
1− τ

1− kτ

)n

· bk

for k = 0, 1, . . . , k(τ)− 1.

The asymptotics (4.31) and (4.32) suggest that we approximate τn(a) and

δn(a) by the quantities

τ ∗n(a) :=
log n

n
− 1

n
log

(
log

(
1

a

))
(4.40)

and

δ∗n(a) :=
C(a)

n
. (4.41)

The accuracy of these approximations is measured by the error variables

ξn(a) := |τn(a)− τ ∗n(a)| and εn(a) := |δn(a)− δ∗n(a)|.

The numerical results are computed for a = 0.1. The quantities τn(a) and

τ ∗n(a) are plotted in Fig. 4.2(a). The results for δn(a) and δ∗n(a) are displayed in Fig.
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4.2(b). The symbols represent the numerical results (as per computations explained

above) and the lines represent the approximations calculated by (4.40) and (4.41).

It is plain that the approximations are highly accurate.

By virtue of Theorem 4.2 and Corollary 4.1, the approximation errors, namely

ξn(a) and εn(a) should be of order o(n−1). This is indeed reflected by Table 4.1

upon noting that nξn(0.1) and nεn(0.1) all go to zero as n grows large.

Table 4.1: The asymptotic behavior of error variables

n 100 1000 10000 100000

nξn(0.1) 0.1022 0.0245 0.0046 0.0007

nεn(0.1) 0.3213 0.0630 0.0106 0.0016

4.4.5 A proof of Theorem 4.2

Fix x in R. We restate (4.36) by noting that for each ε > 0, there exists a

finite integer n?(ε, x) such that

p(x)− ε < P (n; σn(x)) < p(x) + ε, n ≥ n?(ε, x). (4.42)

Now fix a in the interval (0, 1), and pick ε sufficiently small such that 0 < 2ε <

a and a + 2ε < 1. Repeatedly applying (7.9) with x = xa+ε and x = xa−ε, we get

p(xa+ε)− ε < P (n; σn(xa+ε)) < p(xa+ε) + ε (4.43)

whenever n ≥ n?(ε, xa+ε), and

p(xa−ε)− ε < P (n; σn(xa−ε)) < p(xa−ε) + ε (4.44)
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Figure 4.2: Connectivity range and phase transition width when a = 0.1
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whenever n ≥ n?(ε, xa−ε). In the remainder of this proof, all inequalities are now

understood to hold for n ≥ n?(a; ε) where we have set

n?(a; ε) = max (n?(xa), n
?(ε, xa+ε), n

?(ε, xa−ε))

with n?(x) denoting the finite integer beyond which the representation (4.35) holds.

Since p(xa±ε) = a± ε, the two chains of inequalities (4.43) and (4.44) can be

rewritten as

a < P (n; σn(xa+ε)) < a + 2ε

and

a− 2ε < P (n; σn(xa−ε)) < a.

Thus,

P (n; τ(n; a)) < P (n; σn(xa+ε)) < P (n; τn(a + 2ε))

and

P (n; τn(a− 2ε)) < P (n; σn(xa−ε)) < P (n; τ(n; a)),

and the strict monotonicity of τ → P (n; τ) yields

τn(a) < σn(xa+ε) < τn(a + 2ε)

and

τn(a− 2ε) < σn(xa−ε) < τn(a).

Combining these last two inequalities, we conclude that

σn(xa−ε) < τn(a) < σn(xa+ε). (4.45)
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Upon writing

ζn(a) = τn(a)− σn(xa), n = 2, 3, . . . (4.46)

we obtain from (4.45) that

σn(xa−ε)− σn(xa) < ζn(a) < σn(xa+ε)− σn(xa)

with

σn(xa±ε)− σn(xa) = n−1(xa±ε − xa)

As a result, xa−ε − xa ≤ lim infn→∞ (nζn(a)) and lim supn→∞ (nζn(a)) ≤ xa+ε − xa.

Given that ε can be taken to be arbitrary small, it follows that

lim inf
n→∞

(nζn(a)) = lim sup
n→∞

(nζn(a)) = 0

since limε↓0 (xa±ε − xa) = 0 .

Thus, limn→∞ (nξn(a)) = 0, whence ζn(a) = o (n−1). Reporting into (4.46)

leads to

τn(a) = σn(xa) + o(n−1), n = 2, 3, . . .

and the desired result readily follows from (4.34) and (4.38).

4.5 Finite node analysis

Up to now, we have only derived asymptotic results as the number of nodes

tends to infinity. However, since the number of nodes in a network is finite, it is

desirable to estimate P (n; τ) for given n and τ . Although we can compute P (n; τ)

through (4.1), we can not find a similar expression for more general scenarios. Thus
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we resort to the Stein-Chen method introduced in Section 3.2.3. Our results are

presented in Theorem 4.3 and Corollary 4.3. Similar issues have been discussed by

Barbour and Holst [6, Theorem 6.1, p. 83].

We begin with a simple technical fact concerning binary valued rvs. For some

n = 2, 3, . . ., consider a collection of {0, 1}-valued rvs ξ1, . . . , ξn defined on the same

probability space. Next, with P?
n denoting the collection of all non-empty subsets

of {1, . . . , n}, we define

P (K) := P [ξk = 1, k ∈ K] , K ∈ P?
n.

Lemma 4.5 The probabilities {P (K), K ∈ P?
n} collectively determine the joint

pmf of the {0, 1}n-valued rv (ξ1, . . . , ξn).

Proof. Pick an arbitrary non-zero element a = (a1, . . . , an) in {0, 1}n, and write

K(a) = {k = 1, . . . , n : ak = 1} and Kc(a) = {k = 1, . . . , n : ak = 0}. Direct

inspection yields

P [ξk = ak, k = 1, . . . , n] = E


 ∏

k∈K(a)

ξk ·
∏

k∈Kc(a)

(1− ξk)




=
∑

K∈Pn(a)

c(K)P (K) (4.47)

for some appropriate collection Pn(a) of subsets of {1, . . . , n}, and coefficients

{c(K), K ∈ Pn(a)} taking values ±1. We have used the convention
∏

k∈Kc(a)(1−

ξk) = 1 when K(a) is empty. The proof is completed upon noting that

P [ξ1 = . . . = ξn = 0] = 1−
∑

K∈P?
n

P (K).
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Theorem 4.3 For each n = 2, 3, . . . and τ in the interval (0, 1), it holds that

dTV

(
Cn(τ); Π(λn(τ))

)
≤ 1− e−λn(τ)

λn(τ)

(
λn(τ)− ηn(τ)

)
(4.48)

with

λn(τ) = E[Cn(τ)] and ηn(τ) = V ar[Cn(τ)]

Proof. Fix n = 2, 3, . . ., let Γ be the index set {2, 3, . . . , n}. We construct the

indicator rvs

Iα := χn,α(τ) and Jβα := χn,β

(
τ

1− τ

)
, α, β ∈ Γ.

It can be shown that for each α in Γ,

Jβα ≤ Iβ, β ∈ Γ\{α}. (4.49)

Pick α in Γ and let K be a nonempty subset of Γ\{α}. From Lemma 3.1, we

have

P
[
Jβα = 1, β ∈ K

]
=

(
1− |K|τ

1− τ

)n

+

where |K| refers to the cardinality of set K. On the other hand, we also have

P
[
Iβ = 1, β ∈ K

∣∣∣Iα = 1
]

=
P
[
Iβ = 1, β ∈ K, Iα = 1

]

P[Iα = 1]

=

(
1− (|K|+ 1)τ

)n

+

(1− τ)n
+

=

(
1− |K|τ

1− τ

)n

+

.
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Thus

P
[
Iβ = 1, β ∈ K

∣∣∣Iα = 1
]

= P
[
Jβα = 1, β ∈ K

]
(4.50)

and it follows from (4.50) and Lemma 4.5 that

(
Iβ, β ∈ Γ\{α}

∣∣∣Iα = 1
)

=st

(
Jβα, β ∈ Γ\{α}

)
. (4.51)

According to (4.49), (4.51) and Definition 3.4, the rvs {Iα, α ∈ Γ} are neg-

atively related, therefore the rvs {χn,α(τ), α ∈ Γ} are negatively related. Since

Cn(τ) =
∑n

k=2 χn,k(τ), the total variation distance between Cn(τ) and Π(λn(τ)) can

be bounded by Corollary 3.1, and (4.48) follows.

Corollary 4.3 For each n = 2, 3, . . . and x in R, let τ = log n+x
n

. It holds that

∣∣∣P[Cn(τ) = 0]− e−e−x∣∣ ≤ 1− e−λn(τ)

λn(τ)

(
λn(τ)− ηn(τ)

)
+

∣∣∣e−λn(τ) − e−e−x
∣∣∣.

provided τ is in the interval (0, 1).

Proof. By the triangle inequality, we have

∣∣∣P[Cn(τ) = 0]− e−e−x
∣∣∣ ≤

∣∣∣P[Cn(τ) = 0]− P[Π(λn(τ)) = 0]
∣∣∣

+
∣∣∣P[Π(λn(τ)) = 0]− e−e−x

∣∣∣.

The second component on the right hand side of the expression above is simply

equal to |e−λn(τ) − e−e−x|, while the first component satisfies the bounds:

∣∣∣P[Cn(τ) = 0]− P[Π(λn(τ)) = 0]
∣∣∣ ≤ dTV (Cn(τ); Π(λn(τ)))

≤ 1− e−λn(τ)

λn(τ)

(
λn(τ)− ηn(τ)

)
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as can be seen from Theorem 4.3 and Lemma 3.6, respectively.

From (4.27) and (4.28), we immediately find the expression

λn(τ) = (n− 1)(1− τ)n

and

ηn(τ) = (n− 1)(1− τ)n + (n− 1)(n− 2)(1− 2τ)n
+ − (n− 1)2(1− τ)2n.

4.6 Summary

In this Chapter, we have estimated the probability of the event Cn(τ) = 0

with the help of the tools introduced in Chapter 3. By computing the first and

second moments of Cn(τ), we show that lim
n→∞

P[Cn(τ) = 0] = 1 (resp. = 0) if

the connectivity range τ deviates from the critical range τ ∗ = log n
n

by αn

n
where

lim
n→∞

αn = ∞ (resp. lim
n→∞

αn = −∞). Moreover, Cn(τ) is approximately Poisson

distributed if lim
n→∞

αn is finite. Such Poisson approximations explain the sharp phase

transition of the probability of graph connectivity when τ deviates from the critical

range τ ∗. Actually,

P (n; τ) = P[Cn(τ) = 0] ' e−E[Cn(τ)] = e−(n−1)γn

with γn = (1− τ)n. The last equality is due to (4.27). Roughly speaking, when τ is

around τ ∗n = log n
n

, a small change of τ yields a moderate change in γn, the change in

γn is then magnified by n− 1, and as a result, the probability of graph connectivity

varies significantly.
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Chapter 5

Network connectivity under the GRG model II :

A strong threshold for general user distribution

with non-vanishing densities

5.1 The main result

In this Chapter, we prove that the range function τ ? : N0 → R+ given by

τ ?
n =

log n

f?n
, n = 1, 2, . . .

is a strong threshold for graph connectivity.

Theorem 5.1 Under the enforced assumptions, the range function τ ?
n is a strong

threshold for graph connectivity.

According to Lemma 4.2, we readily have

Lemma 5.1 Under the enforced assumptions, the range function τ ?
n is a strong

threshold for graph connectivity if and only if

Mn

τ ?
n

P→ n 1. (5.1)
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5.2 Preliminaries

We introduce some easy facts concerning F and f : Since f? > 0, the mapping

F : [0, 1] → [0, 1] is strictly increasing, hence invertible. Let F−1 : [0, 1] → [0, 1]

denote the inverse mapping of F . This inverse mapping is strictly increasing and

continuous since F is itself strictly increasing and continuous. Also the differentia-

bility of F implies that of F−1. Therefore, differentiating both sides of the identity

F−1(F (t)) = t on [0, 1] and making use of the chain rule, we get

d

dt
F−1(t) =

1

f(F−1(t))

=
1

g(t)
, 0 ≤ t ≤ 1 (5.2)

where the mapping g : [0, 1] → R+ is defined by

g(t) = f(F−1(t)), 0 ≤ t ≤ 1.

As a result, we can write

F−1(x) =

∫ x

0

1

g(t)
dt, 0 ≤ x ≤ 1

since F (0) = 0.

Consider any x? in [0, 1] which achieves the minimum of f . By the strict

monotonicity of F , there exists a unique t? in [0, 1] such that F−1(t?) = x?, namely

F (x?) = t?. Note that x? = 0 (resp. 0 < x? < 1, x? = 1) if and only if t? = 0 (resp.

0 < t? < 1, t? = 1). Moreover, as the composition of two continuous mappings, the
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mapping g is also continuous and we have the bound

g(t) ≥ g(t?) = f(x?) = f?, 0 ≤ t ≤ 1. (5.3)

5.3 An outline of the proof of Theorem 5.1

In addition to the i.i.d. [0, 1]-valued rvs {Xi, i = 1, 2, . . .}, consider a second

collection of i.i.d., rvs {Ui, i = 1, 2, . . .} which are all uniformly distributed on [0, 1].

In analogy with the notation introduced above, for each n = 2, 3, . . ., we introduce

the order statistics Un,1, . . . , Un,n associated with the n i.i.d. rvs U1, . . . , Un and we

again use the convention Un,0 = 0 and Un,n+1 = 1.

Key to our approach is the well-known stochastic equivalence

(X1, . . . , Xn) =st (F−1(U1), . . . , F
−1(Un)) (5.4)

which leads to the representation

(Xn,1, . . . , Xn,n) =st (F−1(Un,1), . . . , F
−1(Un,n)). (5.5)

It is now plain that

Mn = max (Ln,k, k = 2, . . . , n)

=st max

(∫ Un,k

Un,k−1

1

g(t)
dt, k = 2, . . . , n

)

as we note that

F−1(Un,k)− F−1(Un,k−1) =

∫ Un,k

Un,k−1

1

g(t)
dt, k = 1, . . . , n + 1.

These observations suggest that the convergence (5.1) is likely to emerge as

a consequence of limiting properties of the rvs {Un,k, k = 0, . . . , n + 1} and of
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properties of the function f (via g). As we shall see shortly, this is indeed the case.

To help us along down this road, we shall find it convenient to write

Mu
n := max

(
Lu

n,k, k = 2, . . . , n
)

(5.6)

with

Lu
n,k := Un,k − Un,k−1, k = 1, . . . , n + 1. (5.7)

The quantities defined at (5.7) and (5.6) coincide with the quantities defined at (3.2)

and (3.7), respectively, when F is the uniform distribution on [0, 1].

For each n = 1, 2, . . ., define the rv M̃n by

M̃n := max

(
Lu

n,k

g(Un,k−1)
, k = 2, . . . , n

)
.

The next result shows that when establishing (5.1) we can replace Mn by the simpler

quantity M̃n.

Proposition 5.1 Under the enforced assumptions, it holds that

Mn − M̃n

τ ?
n

P→ n 0. (5.8)

Proposition 5.1 is established in Section 5.5. We next show that the conver-

gence (5.1) indeed holds when Mn is replaced by M̃n.

Proposition 5.2 Under the enforced assumptions, it holds that

M̃n

τ ?
n

P→ n 1. (5.9)
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We give a proof of Proposition 5.2 in Section 5.6. Combining Proposition 5.1

and Proposition 5.2 we immediately conclude to the following desired generalization

of Lévy’s result.

Proposition 5.3 Under the enforced assumptions, the convergence statement (5.1)

holds.

Theorem 5.1 is now within easy reach: Just combine Lemma 5.1, and Propo-

sition 5.3.

5.4 A useful representation

The starting point in proving Propositions 5.1 and 5.2 resides in the represen-

tation (5.5). We shall leverage it by relying on a useful representation of the order

statistics {Un,k, k = 0, 1, . . . , n+1} via i.i.d. exponential rvs {ξj, j = 1, 2, . . .} with

unit parameter: Set

T0 = 0, Tk = ξ1 + . . . + ξk, k = 1, 2, . . . .

For all n = 1, 2, . . ., the stochastic equivalence

(Un,1, . . . , Un,n) =st

(
T1

Tn+1

, . . . ,
Tn

Tn+1

)
(5.10)

is immediate from Lemma 3.3.

This representation makes it possible to provide an elementary proof for a

technical fact to be used repeatedly in what follows. For each n = 1, . . ., let Kn

denote a non-empty subset of {1, . . . , n + 1}, and let |Kn| denote its cardinality.
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Also set

M(Kn) := max (ξk, k ∈ Kn) .

Lemma 5.2 The convergence

M(Kn)

log n

P→ n 1 (5.11)

takes place whenever there exists some θ in (0, 1] such that

lim
n→∞

|Kn|
n

= θ. (5.12)

Proof. Fix n = 1, 2, . . . and t ≥ 0. By independence, we get

P [M(Kn) ≤ t] = P [ξk ≤ t, k ∈ Kn]

=
(
1− e−t

)|Kn|

so that

P
[
M(Kn)

log n
≤ t

]
=

(
1− e−t log n

)|Kn|

=

(
1− n1−t

n

)|Kn|
.

With the help of (5.12) it is straightforward to check that

lim
n→∞

P
[
M(Kn)

log n
≤ t

]
=





0 if 0 ≤ t < 1

1 if 1 < t.
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As this last convergence implies

M(Kn)

log n
=⇒n 1,

the convergence (5.11) follows from the equivalence of convergence in distribution

and in probability when the limit is a constant.

Lemma 5.3 Under the assumptions of Lemma 5.2 we also have

1

τ ?
n

(
max

(
Lu

n,k, k ∈ Kn

)) P→ n 1. (5.13)

Proof. By virtue of (5.7) and the stochastic identity (5.10), we need only show

that

1

τ ?
n

(
max
k∈Kn

(
ξk

Tn+1

))
P→ n 1, (5.14)

a convergence statement which is equivalent to

n

Tn+1

M(Kn)

log n

P→ n 1. (5.15)

The validity of this convergence statement follows from Lemma 5.2 and from the

fact that

lim
n→∞

Tn+1

n
= 1 a.s. (5.16)

by the Strong Law of Large Numbers.

Specializing this last result to Kn = {2, . . . , n}, we get

Mu
n

τ ?
n

P→ n 1. (5.17)
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This result was already obtained in Theorem 3.1, and establishes Theorem 5.1 when

F is the uniform distribution (since then f? = 1).

5.5 A proof of Proposition 5.1

Fix n = 2, 3, . . . and pick k = 2, . . . , n. Upon writing

∆n,k :=

∫ Un,k

Un,k−1

1

g(t)
dt− Un,k − Un,k−1

g(Un,k−1)

=

∫ Un,k

Un,k−1

(
1

g(t)
− 1

g(Un,k−1)

)
dt,

we find

|∆n,k| ≤ f−2
?

∫ Un,k

Un,k−1

|g(t)− g(Un,k−1)| dt.

Recalling the definition (5.7), we then get

|∆n,k| ≤ f−2
? Gn,k · Lu

n,k

where we have set

Gn,k := max (|g(t)− g(Un,k−1)| , Un,k−1 ≤ t ≤ Un,k) .

These facts lead to

|M̃n −Mn| ≤ max (|∆n,k|, k = 2, . . . , n)

≤ f−2
? max

(
Gn,k · Lu

n,k, k = 2, . . . , n
)

≤ f−2
? Gn ·Mu

n

where Mu
n is defined at (5.6) and

Gn := max (Gn,k, k = 2, . . . , n) .
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The bound

|M̃n −Mn|
τ ?
n

≤ f−2
? Gn · Mu

n

τ ?
n

is now immediate. Thus, from (5.17) we see that (5.8) holds if we show that

Gn
P→ n 0. In other words, for arbitrary ε > 0, we need to show that

lim
n→∞

P [Gn > ε] = 0. (5.18)

To do so, we recall that the mapping g is continuous on the compact [0, 1],

hence uniformly continuous on [0, 1]. Thus, for every ε > 0, there exists δ = δ(ε) > 0

such that with x and y in [0, 1],

|g(x)− g(y)| ≤ ε (5.19)

whenever |x− y| ≤ δ.

Fix ε > 0 and consider an arbitrary integer n = 2, 3, . . .. Obviously, Gn ≤ ε

if and only if Gn,k ≤ ε for all k = 2, . . . , n. In view of the comments at (5.19),

this will occur if Lu
n,k ≤ δ for all k = 2, . . . , n, a condition equivalent to Mu

n ≤ δ.

Consequently,

P [Gn ≤ ε] ≥ P [Mu
n ≤ δ] .

In other words,

P [Gn > ε] ≤ P [Mu
n > δ] , n = 1, 2, . . . (5.20)

Now observe that Mu
n

P→ n 0 by virtue of (5.17) since limn→∞ τ ?
n = 0, whence

limn→∞ P [Mu
n > δ] = 0. We readily get (5.18) upon letting n go to infinity in

the inequality (5.20). This completes the proof of Proposition 5.1.
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5.6 A proof of Proposition 5.2

Fix n = 2, 3, . . .. By virtue of (5.10), we have the representation

M̃n =st max

(
ξk

Tn+1 · g(Tk−1

Tn+1
)
, k = 2, . . . , n

)

so that

M̃n

τ ?
n

=st
n

Tn+1

· f?
M̂n

log n

where we have used the notation

M̂n := max

(
ξk

g(Tk−1

Tn+1
)
, k = 2, . . . , n

)
.

By the Strong Law of Large Numbers (5.16), the convergence (5.9) will be

established if we show that

f?
M̂n

log n

P→ n 1. (5.21)

Thus, we need to show that for every ε > 0, we have

lim
n→∞

P

[∣∣∣∣∣f?
M̂n

log n
− 1

∣∣∣∣∣ ≥ ε

]
= 0 (5.22)

and this is equivalent to establishing the simultaneous validity of the two convergence

statements

lim
n→∞

P

[
1 + ε ≤ f?

M̂n

log n

]
= 0 (5.23)

and

lim
n→∞

P

[
f?

M̂n

log n
≤ 1− ε

]
= 0. (5.24)

To do so, we start with the easy upper bound

f?
M̂n

log n
≤ M({2, . . . , n})

log n
, n = 2, 3, . . . (5.25)
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so that the convergence (5.23) now follows readily from (5.11) (specialized to Kn =

{2, . . . , n}).

The proof of (5.24), given next, is somewhat more involved. It will require

the introduction of a family of lower bounds (in contrast with the proof of (5.23)

which relied on the single upper bound (5.25)): Pick any element x? in [0, 1] which

achieves the minimum of g. It will be easier to structure the forthcoming discussion

according to whether x? = 0, 0 < x? < 1 and x? = 1. Here, we give a complete

discussion for the case 0 < x? < 1, as the two other cases can be handled mutatis

mutandi.

Thus, with 0 < x? < 1, let t? = F (x?) and note that 0 < t? < 1. Now pick θ

such that

0 < θ < min(t?, 1− t?). (5.26)

For each n = 2, 3, . . ., we introduce Kn(θ) as the subset of {1, . . . , n + 1} defined by

Kn(θ) := {dn(t? − θ)e, . . . , dn(t? + θ)e}.

Since we are interested in limiting results, we need only consider n ≥ n?(θ)

with n?(θ) = 2(t?− θ)−1 (as we do from now on), in which case dn(t?− θ)e ≥ 2 and

Kn(θ) ⊆ {2, . . . , n}. The lower bound

M̂n(θ) ≤ M̂n (5.27)

is then immediate where we have set

M̂n(θ) := max

(
ξk

g(Tk−1

Tn+1
)
, k ∈ Kn(θ)

)
.
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To proceed, we observe the following elementary facts: For each a = 0,±1, it

is plain that

lim
n→∞

dn(t? + aθ)e
n

= t? + aθ,

so that

lim
n→∞

Tdn(t?+aθ)e−1

Tn+1

= t? + aθ a.s. (5.28)

by the Strong Law of Large Numbers. Building on this observation, with η > 0, we

introduce for each n ≥ n?(θ), the events

Ωa
n(θ; η) :=

[∣∣∣∣
Tdn(t?+aθ)e−1

Tn+1

− (t? + aθ)

∣∣∣∣ ≤ η

]
, a = 0,±1.

If we set

Ωn(θ; η) := ∩a=0,±1 Ωa
n(θ; η),

then the convergence (5.28) implies

lim
n→∞

P [Ωn(θ; η)] = 1, η > 0. (5.29)

Fix n ≥ n?(θ) and pick η > 0 such that θ + η < t? < 1− (θ + η). Such a choice

of η is possible under (5.26), in which case on the event Ωn(θ; η), the inequalities

∣∣∣∣
Tk−1

Tn+1

− t?

∣∣∣∣ ≤ (θ + η), k ∈ Kn(θ) (5.30)

all hold.

We are now in position to complete the proof: Fix ζ > 0 and set δ = δ(ζ)

where δ(ζ) insures (5.19) (with ε replaced by ζ) as a result of the uniform continuity

of g. Pick θ in (0, 1) and η > 0 such that θ + η ≤ δ, By selecting θ and η sufficiently
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small, the constraints (5.26) and θ + η < t? < 1 − (θ + η) can also be satisfied

simultaneously. With this choice, it follows from (5.30) that the inequalities

∣∣∣∣g
(

Tk−1

Tn+1

)
− g(t?)

∣∣∣∣ ≤ ζ, k ∈ Kn(θ)

all hold on the event Ωn(θ; η). Therefore,

f? ≤ g

(
Tk−1

Tn+1

)
≤ f? + ζ, k ∈ Kn(θ)

since g(t?) = f(x?) = f?, and we obtain the inequality

(f? + ζ)−1 ·M(Kn(θ)) ≤ M̂n(θ). (5.31)

We now return to the lower bound (5.27). On the event Ωn(θ; η), for a given

ε > 0, the inequality f?
M̂n

log n
≤ 1− ε, when coupled with (5.31), readily implies

M(Kn(θ))

log n
≤ a(ε; ζ) (5.32)

with

a(ε; ζ) := (1− ε) · f? + ζ

f?

.

As a result, by standard bounding and decomposition arguments, we get

P

[
f?

M̂n

log n
≤ 1− ε

]
≤ P

[[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
∩ Ωn(θ; η)

]
+ P [Ωn(θ; η)c]

≤ P
[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
+ 1− P [Ωn(θ; η)] . (5.33)

Note that (5.24) needs to be established only for 0 < ε < 1 for otherwise

the convergence is trivially true. Thus, pick 0 < ε < 1 and note that ζ > 0 can

be selected sufficiently small such that a(ε; ζ) < 1. Indeed this last condition is

equivalent to

ζ <
ε

1− ε
· f?.
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With such a selection of ζ, Lemma 5.2 (with Kn = Kn(θ)) implies

lim
n→∞

P
[
M(Kn(θ))

log n
≤ a(ε; ζ)

]
= 0. (5.34)

Let n go to infinity in (5.33). The desired result (5.24) follows from (5.29) and

(5.34).

The cases x? = 0 and x? = 1 can be analyzed in a similar way: Now, still

with t? = F (x?), we have t? = 0 and t? = 1, respectively. As a result we need only

change the definition of Kn(θ) to read {2, . . . , dn(t? + θ)e} and {dn(t?− θ)e, . . . , n},

respectively, for n large enough in order to ensure Kn(θ) ⊂ {2, . . . , n}. This com-

pletes the proof of Proposition 5.2.

5.7 Discussion

5.7.1 Strong versions of Lévy’s result

The convergence (5.1) is compatible with a multi-dimensional result obtained

by Penrose [47]: Formally setting d = 1 in Theorem 1.1 [47, p. 247] (discussed under

the dimensional assumption d ≥ 2), we obtain (5.1) in its a.s. form.

Slud [52, Thm. 2.1, p. 343] has shown that

nMu
n − log n = O(log log n) a.s. (5.35)

so that the convergence (5.17) also holds in the a.s. sense.
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5.7.2 Connections with earlier results

In principle, Proposition 5.3 would follow from Theorem 3.2. However, such a

sharper result is given under additional stronger conditions than the one used here.

As a result of this trade-off, we are able to give a simple and direct proof of the

convergence (5.1).
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Chapter 6

Network connectivity under the GRG model III :

A very strong threshold for general user

distribution with non-vanishing densities

6.1 Model and assumptions

In this Chapter, we consider a fairly general representation for the density f :

f(x) = c + a|x− x?|r + h(x), 0 ≤ x ≤ 1 (6.1)

for some parameters r > 0, a > 0 and c > 0, and for some function h : [0, 1] → R

such that

lim
x→x?

h(x)

|x− x?|r = 0. (6.2)

We have limx→x? h(x) = 0 by virtue of (6.2), whence h(x?) = 0 since the

continuity of f implies that of h. As a result, we necessarily have c = f?.

A particularly useful special case occurs when the density f has the form

f(x) = c + a|x− x?|r, 0 ≤ x ≤ 1 (6.3)
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for some parameters r > 0, a > 0 and c > 0 with x? in [0, 1]. There obviously exists

a relationship between the four parameters x?, r, a and c, namely

c +
a

r + 1

[
xr+1

? + (1− x?)
r+1

]
= 1

by virtue of the requirement
∫ 1

0
f(t)dt = 1.

The conditions (6.1) and (6.2) are not overly restrictive, For instance, they do

hold when the density function f admits 2` + 1 bounded derivatives f (1), . . . f (2`+1) :

[0, 1] → R such that

f (1)(x?) = . . . = f (2`−1)(x?) = 0, f (2`)(x?) > 0

for some positive integer ` when x? a unique global minimum for f in the open

interval (0, 1). In that case, the existence of a Taylor series expansion at x = x?

leads to taking r = 2` and

a =
1

(2`)!
f (2`)(x?)

so that

h(x) = f(x)− f(x?)− a(x− x?)
2`, 0 ≤ x ≤ 1,

and (6.2) holds.

6.2 The main results

The results take a more symmetric form if we write any range function τ :

N0 → R+ in the form

τn =
1

f?

· 1

n

(
log n− 1

r
log log n + αn

)
(6.4)
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for all n = 1, 2, . . ., for some function α : N0 → R . We refer to such a function α

as a deviation function.1 There is no loss of generality in using the representation

(6.4).

Theorem 6.1 Under the enforced assumptions, for any range function τ : N0 → R+

written in the form (6.4) with deviation function α : N0 → R, it holds that

lim
n→∞

P (n; τn) =





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

Assumptions weaker than (6.1) and (6.2) can be handled at the cost of some tech-

nicalities. The reader is referred to Section 6.9 for comments and pointers on some

of the possibilities.

The proof of Theorem 6.1 is divided in two parts with the one law and the

zero law being given in Sections 6.6 and 6.7, respectively. To simplify the exposition

we shall present the arguments only when x? is an interior point, i.e., x? belongs to

the open interval (0, 1). The boundary cases x? = 0, 1 are outlined in Section 6.9.

At this point the reader may wonder as to the appropriate version of Theorem

6.1 when the density f achieves its minimum value f? at non-isolated points. This

situation is formalized next.

Theorem 6.2 Under the enforced assumptions, assume also that there exists a

non-empty open interval I ⊆ (0, 1) such that f(x) = f? for all x in I. Then, (6.9.5)

1By convention we use log log n = 0 for n = 1, 2.
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still holds for any range function τ : N0 → R+ written in the form

τn =
1

f?

· 1

n
(log n + αn) , n = 1, 2, . . . . (6.5)

with deviation function α : N0 → R.

In other words, we need only set r = ∞ in Theorem 6.1, as expected. The

proof of Theorem 6.2 follows the same pattern as the one used in the proof of

Theorem 6.1; details are available in Section 6.9.3.

6.3 Breakpoint users, connectivity and zero-one

laws

Fix n = 2, 3, . . . and τ > 0. For each k = 1, . . . , n, we say that node k is a

breakpoint node 2 in the random graph G(n; τ) if the interval [Xk, Xk + τ ] does not

contain any other node of the graph. The event En,k(τ) that node k is a breakpoint

node in G(n; τ) can be expressed as

En,k(τ) = ∩n
j=1,` 6=k[Xj /∈ [Xk, Xk + τ ]]

and its indicator rv χn,k(τ) is the {0, 1}-valued rv given by

χn,k(τ) = 1 [En,k(τ)]

=
n∏

j=1,j 6=k

1 [Xj /∈ [Xk, Xk + τ ]] . (6.6)

2This definition of breakpoint node is different from the definition in Chapter 3.
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The number of breakpoint nodes in G(n; τ) is given by

Cn(τ) =
n∑

k=1

χn,k(τ). (6.7)

Interest in this quantity arises from the following observations: First we note that

Cn(τ) ≥ 1 since the right-most node is always a breakpoint node. Moreover, the

graph G(n; τ) is connected if and only if that right-most node is the only breakpoint

node. Therefore, G(n; τ) is connected if and only if Cn(τ) = 1, so that

P (n; τ) = P [Cn(τ) = 1] . (6.8)

For a given range function τ : N0 → R+, we now give conditions for the validity

of either limn→∞ P (n; τn) = 1 or limn→∞ P (n; τn) = 0 in terms of the limiting

behavior of the first moment of the sequence {Cn(τn), n = 2, 3, . . .}. We begin with

conditions for the one law.

Lemma 6.1 For any range function τ : N0 → R+, we have limn→∞ P (n; τn) = 1

whenever limn→∞ E [Cn(τn)] = 1.

Proof. Fix n = 2, 3, . . . and τ > 0. Since Cn(τ) ≥ 1, it is plain that

E [Cn(τ)] =
∞∑

k=0

P [Cn(τ) > k]

= 1 +
∞∑

k=2

P [Cn(τ) ≥ k]

≥ 1 + P [Cn(τ) ≥ 2] . (6.9)

Thus, for any range function τ : N0 → R+, we find

P [Cn(τn) ≥ 2] ≤ E [Cn(τn)]− 1, n = 2, 3, . . .
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We now let n go to infinity in this last inequality. Because we assume limn→∞ E [Cn(τn)] =

1, we get limn→∞ P [Cn(τn) ≥ 2] = 0, hence the desired conclusion limn→∞ P [Cn(τn) = 1] =

1.

Conditions for the zero law are given next.

Lemma 6.2 For any range function τ : N0 → R+ such that limn→∞ E [Cn(τn)] = ∞,

we have limn→∞ P (n; τn) = 0 whenever

Cn(τn)

E [Cn(τn)]

P→ n 1. (6.10)

Proof. Pick ε in the interval (0, 1). Under the condition limn→∞ E [Cn(τn)] = ∞,

there exists a positive integer n?(ε) such that

2(1− ε)−1 ≤ E [Cn(τn)] , n ≥ n?(ε).

On that range, we then find

P
[∣∣∣∣

Cn(τ)

E [Cn(τ)]
− 1

∣∣∣∣ ≤ ε

]
≤ P [2 ≤ Cn(τn) ≤ (1 + ε)E [Cn(τn)]]

≤ P [2 ≤ Cn(τn)] . (6.11)

We now let n go to infinity in this last inequality. The convergence (6.10) yields

limn→∞ P [Cn(τn) ≥ 2] = 1, and the desired conclusion limn→∞ P [Cn(τn) = 1] = 0

follows.
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We complement Lemma 6.2 with a sufficient condition for (6.10) to hold.

Lemma 6.3 For any range function τ : N0 → R+ such that limn→∞ E [Cn(τn)] = ∞,

we have (6.10) whenever

lim sup
n→∞

Cov[χn,1(τn), χn,2(τn)]

E [χn,1(τn)]E [χn,2(τn)]
≤ 0. (6.12)

Proof. Fix n = 2, 3, . . . and τ in the interval (0, 1). For arbitrary ε > 0, Cheby-

shev’s inequality yields

P
[∣∣∣∣

Cn(τ)

E [Cn(τ)]
− 1

∣∣∣∣ > ε

]
≤ ε−2 Var[Cn(τ)]

E [Cn(τ)]2
(6.13)

where

Var[Cn(τ)] =
n∑

k,`=1,k 6=`

Cov[χn,k(τ), χn,`(τ)]

+
n∑

k=1

Var[χn,k(τ)].

Upon exploiting the binary nature of the rvs χn,1(τ), . . . , χn,n(τ), we obtain

Var[χn,k(τ)] = E [χn,k(τ)]− E [χn,k(τ)]2

≤ E [χn,k(τ)] (6.14)

for each k = 1, . . . , n. Therefore,

n∑

k=1

Var[χn,k(τ)] ≤
n∑

k=1

E [χn,k(τ)]

= E [Cn(τ)] ,
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so that

Var[Cn(τ)] ≤
n∑

k,`=1,k 6=`

Cov[χn,k(τ), χn,`(τ)] + E [Cn(τ)] . (6.15)

The exchangeability of the rvs χn,1(τ), . . . , χn,n(τ) implies the relations

E [Cn(τ)] = nE [χn,k(τ)] , k = 1, . . . , n

and

n∑

k,`=1,k 6=`

Cov[χn,k(τ), χn,`(τ)] = n(n− 1) · Cov[χn,1(τ), χn,2(τ)].

Reporting this information into the bound (6.15) yields

Var[Cn(τ)]

E [Cn(τ)]2
≤ n− 1

n
· Cov[χn,1(τ), χn,2(τ)]

E [χn,1(τ)]E [χn,2(τ)]
+ E [Cn(τ)]−1 . (6.16)

Now consider a range function τ : N0 → R+ such that limn→∞ E [Cn(τn)] = ∞.

Substitute in (6.16) the free variable τ by τn, and let n go to infinity in the resulting

inequality. The condition (6.12) and the fact limn→∞ E [Cn(τn)] = ∞ together imply

lim
n→∞

Var[Cn(τn)]

E [Cn(τn)]2
= 0

via a standard limsup argument coupled with the non-negativity of the variance.

From (6.13), the conclusion

lim
n→∞

P
[∣∣∣∣

Cn(τn)

E [Cn(τn)]
− 1

∣∣∣∣ > ε

]
= 0

is now immediate and this establishes (6.10).
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6.4 An outline of the proof of Theorem 6.1

Together Lemmas 6.1, 6.2 and 6.3 provide the basic ingredients for manufactur-

ing a proof of Theorem 6.1. These results naturally point to the importance of deter-

mining conditions that ensure either limn→∞ E [Cn(τn)] = 1 or limn→∞ E [Cn(τn)] =

∞. This issue is taken on in the next two results below, namely Propositions 6.1

and 6.2, respectively.

Proposition 6.1, which paves the way for the one law, is proved in Section 6.6.

Proposition 6.1 For any range function τ : N0 → R+ written in the form (6.4)

with deviation function α : N0 → R, we have

lim
n→∞

E [Cn(τn)] = 1 (6.17)

whenever

lim
n→∞

αn = ∞. (6.18)

Establishing the zero law will make use of Proposition 6.2, a proof of which

can be found in Section 6.7.

Proposition 6.2 For any range function τ : N0 → R+ written in the form (6.4)

with deviation function α : N0 → R, we have

lim
n→∞

E [Cn(τn)] = ∞ (6.19)

whenever

lim
n→∞

αn = −∞. (6.20)
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The next technical result shows that (6.20) already implies the condition

(6.12). A proof is available in Section 6.8.

Proposition 6.3 Consider any range function τ : N0 → R+ written in the form

(6.4) with deviation function α : N0 → R satisfying (6.20). The condition (6.12)

holds under the additional condition

lim
n→∞

|αn|
log n

= 0. (6.21)

A proof of Theorem 6.1 is now within easy reach. Consider a range function

τ : N0 → R+ written in the form (6.4) with deviation function α : N0 → R:

If (6.18) holds, then limn→∞ E [Cn(τn)] = 1 by Proposition 6.1, and the one

law in Theorem 6.1 follows from Lemma 6.1.

If (6.20) holds, then limn→∞ E [Cn(τn)] = ∞ by Proposition 6.2. Two cases are

possible: If the condition (6.21) is in place, then (6.12) is seen to hold by Proposition

6.3 and the validity of (6.10) follows from Lemma 6.3. We conclude to the zero law

by making use of Lemma 6.2.

Consider now the case when (6.21) fails to hold. With the given range function

τ : N0 → R+, we associate another range function τ ′ : N0 → R+, also written in the

form (6.4) but with deviation function α′ : N0 → R given by

α′n = max
(
αn,−

√
log n

)
, n = 3, 4, . . .
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Obviously, limn→∞ α′n = −∞ under (6.20) and

lim
n→∞

|α′n|
log n

= 0.

The first part of the proof shows that limn→∞ P (n; τ ′n) = 0, and the desired conclu-

sion limn→∞ P (n; τn) = 0 is now immediate upon noting that

P (n; τn) ≤ P (n; τ ′n), n = 2, 3, . . .

by monotonicity since τn ≤ τ ′n by construction.

The remainder of the paper is devoted to establishing Propositions 6.1, 6.2

and 6.3. in Sections 6.6, 6.7 and 6.8, respectively.

6.5 Some basic bounds

The basic idea behind the proof of Propositions 6.1 and 6.2 is quite sim-

ple: Lower and upper bounds on E [Cn(τ)] are introduced in terms of an auxiliary

quantity (defined at (6.28) below). The form of this auxiliary quantity allows for

an easier analysis of its asymptotic behavior, in the process leading to (6.17) and

(6.19), respectively, under the appropriate conditions.

The first step consists in obtaining expressions for the first moments involved:

Fix τ > 0 and set

b(x; τ) :=

∫ x+τ

x

f(t)dt, x ≥ 0. (6.22)

In this last expression we have conveniently extended the definition of the density

function f to the entire positive line, namely f : R+ → R+ with f(x) = 0 when-
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ever x > 1. The boundary effects are automatically taken into account with this

convention on f .

Fix n = 2, 3, . . .. Under the enforced assumptions, the rvs χn,1(τ), . . . , χn,n(τ)

are exchangeable. Moreover, for each k = 1, . . . , n, the definition (6.6) readily yields

E [χn,k(τ)] = E

[
n∏

j=1,j 6=k

1 [Xj /∈ [Xk, Xk + τ ]]

]

= E
[
(1− b(X1; τ))n−1]

=

∫ 1

0

(1− b(x; τ))n−1 f(x) dx. (6.23)

This expression follows by first preconditioning with respect to X1, and then using

the fact that the rvs X1, . . . , Xn are i.i.d. rvs. The expression

E [Cn(τ)] := n

∫ 1

0

(1− b(x; τ))n−1 f(x) dx (6.24)

is now immediate.

The easy calculations given next will help us identify the appropriate bounds:

Fix n = 1, 2, . . . and τ > 0. If 1 ≤ τ , then

b(x; τ) =

∫ 1

x

f(t)dt = 1− F (x), x ∈ [0, 1]

since 1 ≤ x + τ for all x in [0, 1], and a straightforward integration yields

E [Cn(τ)] =

∫ 1

0

nF (x)n−1f(x)dx = 1 (6.25)

as we make use of the conditions F (1) = 1 and F (0) = 0. On the other hand, if

0 < τ < 1, then we still have

b(x; τ) =

∫ 1

x

f(t)dt = 1− F (x), 1− τ ≤ x ≤ 1
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but now we find

E [Cn(τ)] =

∫ 1−τ

0

n(1− b(x; τ))n−1f(x)dx +

∫ 1

1−τ

nF (x)n−1f(x)dx

= K̃(n; τ) + 1− F (1− τ)n (6.26)

where we have set

K̃(n; τ) :=

∫ 1−τ

0

n(1− b(x; τ))n−1f(x)dx (6.27)

for all τ in the interval [0, 1] and all n = 1, 2, . . ..

For any range function τ : N0 → R+ such that τn < 1 for large n, the

asymptotic behavior of E [Cn(τn)] is determined by that of the terms K̃(n; τn) and

1− F (1− τn)n. As will become apparent shortly, the asymptotics for the first term

are best studied through those of the integral expression

K(n; τ) :=

∫ 1−τ

0

ne−nb(x;τ)dx (6.28)

defined for all τ in the interval [0, 1] and all n = 1, 2, . . .. This is clarified by the

following basic bounds, and the discussion that follows.

Proposition 6.4 Consider any range function τ : N0 → R+ which satisfies the

condition

lim
n→∞

τn = 0. (6.29)

(i) There exists a positive integer n? such that for all n ≥ n?, we have τn < 1

and

K̃(n; τn) ≤ f ?ef?

K(n; τn); (6.30)
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(ii) Assume the additional condition

lim
n→∞

n(τn)2 = 0. (6.31)

For every ε in the unit interval (0, 1), there exists a finite integer n?(ε) such that

f?(1− ε)K(n; τn) ≤ K̃(n; τn), n ≥ n?(ε). (6.32)

Proposition 6.4 is proved in Appendix A. Its usefulness lies in pointing out

that under appropriate conditions on the range function τ : N0 → R+, we will

have limn→∞ K̃(n; τn) = 0 (resp. limn→∞ K̃(n; τn) = ∞) if limn→∞ K(n; τn) = 0

(resp. limn→∞ K(n; τn) = ∞). To pursue this idea further, we shall make use of

the following observation which shows that the special case (6.3) is in some sense

generic.

Lemma 6.4 For any continuous density function f which satisfies Assumptions

??-??, there always exist positive constants a− and a+ such that

f−(x) ≤ f(x) ≤ f+(x), 0 ≤ x ≤ 1 (6.33)

where

f±(x) = c + a±|x− x?|r, 0 ≤ x ≤ 1. (6.34)

A proof of Lemma 6.4 is available in Appendix B. The specific values of a±

are not important. While f is a probability density function, there is no guarantee

that f− and f+ are themseleves probability density functions.
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We close this section with an easy byproduct of Lemma 6.4: Fix τ > 0 and

with the function f± appearing at (6.34), write

b±(x; τ) :=

∫ x+τ

x

f±(t)dt, x ≥ 0. (6.35)

As in the definition (6.22), we have conveniently extended the definition of the

functions f± to the entire positive line, namely f± : R+ → R+ with f±(x) = 0

whenever x > 1. Next, in analogy with (6.28) we introduce the quantities

K±(n; τ) :=

∫ 1−τ

0

ne−nb±(x;τ)dx (6.36)

defined for all τ in the interval [0, 1] and all n = 1, 2, . . .. In view of (6.33) it is plain

that the bounds

K+(n; τ) ≤ K(n; τ) ≤ K−(n; τ) (6.37)

hold for all n = 1, 2, . . ..

The advantage of working with (6.36), instead of (6.28), is purely analytical

as should be apparent from the calculations below: Indeed, for all τ in [0, 1], we get

b±(x; τ) = cτ + a±

∫ x+τ

x

|t− x?|rdt

= cτ + a±

∫ τ

0

|x + t− x?|rdt (6.38)

on the range 0 ≤ x ≤ 1− τ , whence

K±(n; τ) = ne−ncτ

∫ 1−τ

0

e−na±
∫ τ
0 |x+t−x?|rdtdx (6.39)

for all n = 1, 2, . . ..
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6.6 A proof of Proposition 6.1

In the following proof of Proposition 6.1, we make an additional assumption

on the parameter r: r ≥ 1. In Section 6.9.2, we will show that Proposition 6.1 can

be similarly proved when 0 < r < 1.

Pick a range function τ : N0 → R+ written in the form (6.4). We need to show

that

lim
n→∞

E [Cn(τn)] = 1 (6.40)

whenever its deviation function α : N0 → R satisfies the condition (6.18). To that

end, we note from the upper bound in Proposition 6.4, with the help of (6.26), that

(6.40) will hold provided both convergence statements

lim
n→∞

K(n; τn) = 0 (6.41)

and

lim
n→∞

F (1− τn)n = 0 (6.42)

hold.

We address these issues in turn, sometimes with additional assumptions on

the range function τ , notably (6.29) and (6.51). This is done mostly for technical

reasons in that it leads to simpler proofs. In due course these additional conditions

will be removed to ensure the desired final result. We begin by discussing (6.42).

Lemma 6.5 For any range function τ : N0 → R+ which satisfies the condition

(6.29), we always have (6.42).
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Proof. Fix n = 2, 3, . . . and τ in the interval (0, 1). The bound (A.3) gives

F (1− τ)n ≤ e−n(1−F (1−τ)) (6.43)

where the exponent can be written as

n(1− F (1− τ)) = nτ · 1

τ

∫ 1

1−τ

f(x)dx. (6.44)

Condition (6.18) ensures limn→∞ nτn = ∞ while (6.29) leads to

lim
n→∞

1

τn

∫ 1

1−τn

f(x)dx = f(1) > 0.

Therefore, we get limn→∞ n(1 − F (1 − τn)) = ∞ via (6.44), and (6.42) holds by

virtue of (6.43).

As we return to establishing (6.41) under (6.18) (with the additional condition

(6.29)), we observe from the inequalities (6.37) that it suffices to establish

lim
n→∞

K−(n; τn) = 0. (6.45)

Here, and in other places later in the paper, we find it convenient to write the

range function τ : N0 → R+ in the more compact form

τn =
1

f?

· 1

n
(log n + βn) , n = 1, 2, . . . (6.46)

for some deviation function β : N0 → R. The two representations (6.4) and (6.46)

are related by

βn = −1

r
log log n + αn, n = 2, 3, . . . . (6.47)

In establishing (6.45) we shall rely on the following lemma.
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Lemma 6.6 Consider a range function τ : N0 → R+ written in the form (6.46)

with deviation function β : N0 → R. Under the additional condition (6.29), we have

K−(n; τn) ≤ e−∆n ·
∫ ∞

−∞
e−a−|z|rdz (6.48)

for all n sufficiently large where we have set

∆n = βn +
1

r
log (nτn) (6.49)

for each n = 1, 2, . . ..

Proof. Fix τ in (0, 1). For each x ≥ 0, Jensen’s inequality yields

1

τ

∫ τ

0

|x− x? + t|rdt ≥
∣∣∣∣
1

τ

∫ τ

0

(x− x? + t)dt

∣∣∣∣
r

=
∣∣∣x− x? +

τ

2

∣∣∣
r

. (6.50)

Now pick a range function τ : N0 → R+ written in the form (6.46) with

deviation function β : N0 → R. Under (6.29), we have τn < 1 for all n large enough

and on that range the expression for K−(n; τn) at (6.39) becomes

K−(n; τn) = e−βn

∫ 1−τn

0

e−na−
∫ τn
0 |x−x?+t|rdtdx

≤ e−βn ·
∫ 1−τn

0

e−na−τn|x−x?+ τn
2 |rdx

=
e−βn

(nτn)
1
r

·
∫ (nτn)

1
r (1−x?− τn

2
)

(nτn)
1
r (−x?+ τn

2
)

e−a−|z|rdz

where the last step follows from the change of variable

z = (nτn)
1
r

(
x− x? +

τn

2

)
.
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The desired conclusion (6.48)–(6.49) follows by direct inspection.

The first factor in the lower bound at (6.48) is discussed next.

Lemma 6.7 Consider a range function τ : N0 → R+ written in the form (6.4) with

deviation function α : N0 → R satisfying (6.18). Under the additional condition

lim
n→∞

αn

log n
= 0, (6.51)

we have

lim
n→∞

∆n = ∞. (6.52)

Proof. Pick a range function τ : N0 → R+ written in the form (6.4) with deviation

function α : N0 → R. We write the range function in the more compact form (6.46)

with deviation function β : N0 → R given at (6.47). With this change of notation,

set γ? = −1
r
log f?, and note by direct inspection that

∆n = βn +
1

r
log(f?nτn) + γ?

= βn +
1

r
log(log n + βn) + γ?

= βn +
1

r
log log n +

1

r
log

(
1 +

βn

log n

)
+ γ?

= αn +
1

r
log

(
1 +

βn

log n

)
+ γ?

for all n = 2, 3, . . .. While βn < 0 possibly for some n = 2, 3, . . ., it is still the case

that log n + βn ≥ 0 for all n = 2, 3, . . ..
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Under (6.51), we obviously have

lim
n→∞

βn

log n
= lim

n→∞
αn − 1

r
log log n

log n
= 0,

and the conclusion (6.52) follows under the condition (6.18).

We now complete the proof of Proposition 6.1: Consider a range function

τ : N0 → R+ written in the form (6.4) where the deviation function α : N0 → R

satisfies the condition (6.18).

If (6.51) holds, then so does (6.29) automatically. We then get (6.42) by

Lemma 6.5, while Lemmas 6.6 and 6.7 readily lead to (6.45), hence (6.41), by the

finiteness of the integral
∫ ∞

−∞
e−a−|z|rdz.

As argued earlier this suffices to establish (6.40).

Consider now the situation where (6.51) fails to hold. In that case, with

the given range function τ : N0 → R+, we associate an auxiliary range function

τ ′ : N0 → R+, also written in the form (6.4) but with deviation function α′ : N0 → R

given by

α′n = min
(
αn,

√
log n

)
, n = 3, 4, . . .

Obviously, limn→∞ α′n = ∞ under (6.18) and

lim
n→∞

α′n
log n

= 0.

Therefore, by the first part of the proof we already have limn→∞ E [Cn(τ ′n)] = 1. The
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desired conclusion limn→∞ E [Cn(τn)] = 1 is now immediate once we note that

1 ≤ E [Cn(τn)] ≤ E [Cn(τ ′n)] , n = 2, 3, . . .

by monotonicity since τ ′n ≤ τn by construction.

6.7 A proof of Proposition 6.2

Again, we assume r ≥ 1 in this Section. In Section 6.9.2, we will prove

Proposition 6.2 in a similar manner when 0 < r < 1.

Pick a range function τ : N0 → R+ written in the form (6.4). We need to show

that

lim
n→∞

E [Cn(τn)] = ∞ (6.53)

whenever its deviation function α : N0 → R satisfies the condition (6.20). The point

of departure is the observation, derived from the lower bound in Proposition 6.4

with the help of (6.26), that (6.53) will hold provided we can show that

lim
n→∞

K(n; τn) = ∞.

In view of the inequalities (6.37), this will be achieved if we show that

lim
n→∞

K+(n; τn) = ∞. (6.54)

As in Section 6.6, we find it convenient to view the range function τ : N0 → R+

in the more compact form (6.46) for some appropriate deviation function β : N0 → R

given at (6.47). Note that (6.20) automatically implies

lim
n→∞

βn = −∞. (6.55)
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Under (6.55), we see that βn < 0 for large enough n (whence βn = −|βn|) and (6.46)

therefore implies 0 ≤ τn ≤ 1
f?

log n
n

and |βn| ≤ log n on that range, whence

lim
n→∞

τn = lim
n→∞

βn

n
= 0. (6.56)

Furthermore, for each p > 0 it holds that

lim
n→∞

n(τn)1+p = 0 (6.57)

since

n(τn)1+p ≤ f−(p+1)
? · (log n)1+p

np

for n sufficiently large. In short, both conditions (6.29) and (6.31) are satisfied under

(6.55).

Our first step towards establishing (6.54) is contained in the next technical

lemma. For each τ > 0 we introduce the quantities

B(τ) = 2r−1τ and C(τ) =
2r−1

r + 1
τ r+1

and for each λ > 0, we set

zn(λ) = λ (nB(τn))
1
r , n = 1, 2, . . . .

Lemma 6.8 Consider a range function τ : N0 → R+ written in the form (6.46)

with deviation function β : N0 → R satisfying the condition (6.55). For any λ > 0

such that (x? − λ, x? + λ) ⊆ (0, 1), we have

K+(n; τn) ≥ eΓn ·
∫ zn(λ)

−zn(λ)

e−a+|z|rdz (6.58)
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for all n sufficiently large where we have set

Γn = −βn − na+C(τn)− 1

r
log (nB(τn))

for each n = 1, 2, . . ..

Lemma 6.8 is predicated on x? being an element of the open interval (0, 1).

The appropriate versions for the boundary cases x? = 0, 1 are given in Section 6.9.

Proof. Pick a range function τ : N0 → R+ written in the form (6.46) with deviation

function β : N0 → R. The expression at (6.39) specializes to

K+(n; τn) = e−βn

∫ 1−τn

0

e−na+

∫ τn
0 |x−x?+t|rdtdx

whenever τn < 1. For any λ > 0 as in the statement of Lemma 6.8, there exists

a finite integer n?(λ) such that x? + λ < 1 − τn for all n ≥ n?(λ) (since here

limn→∞ τn = 0 as pointed out at (6.56)). Consequently, on that range we find

K+(n; τn) ≥ e−βn

∫ x?+λ

x?−λ

e−na+

∫ τn
0 |x+t−x?|rdtdx

= e−βn

∫ λ

−λ

e−na+

∫ τn
0 |y+t|rdtdy (6.59)

upon making the change of variable y = x− x?.

Next, a standard convexity argument gives

|y + t|r ≤ 2r−1 (|y|r + |t|r) , y, t ∈ R (6.60)

and for each y in R, we get the upper bound

∫ τn

0

|y + t|rdt ≤ 2r−1

(
τn|y|r +

∫ τn

0

trdt

)

= B(τn)|y|r + C(τn).
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Reporting this last fact into (6.59) yields

∫ λ

−λ

e−na+

∫ τn
0 |y+t|rdtdy ≥ e−na+C(τn)

∫ λ

−λ

e−na+B(τn)|y|rdy

=
e−na+C(τn)

(nB(τn))
1
r

·
∫ zn(λ)

−zn(λ)

e−a+|z|rdz (6.61)

where the last equality follows from the change of variable

z = (nB(τn))
1
r y.

The proof is completed by noting that the first factor in (6.61) can be written as

eΓn .

Next, we focus on the first factor in the lower bound at (6.58).

Lemma 6.9 Consider a range function τ : N0 → R+ written in the form (6.4) with

deviation function α : N0 → R satisfying (6.20). Then, we have

lim
n→∞

Γn = ∞. (6.62)

Proof. Pick a range function τ : N0 → R+ written in the form (6.4) with deviation

function α : N0 → R. We write the range function in the more compact form (6.46)

for some appropriate deviation function β : N0 → R given at (6.47). With this

change of notation, we check by direct substitution that

Γn = −βn − a+2r−1

r + 1
· nτ r+1

n − 1

r
log(2r−1nτn)

= −βn − 1

r
log(f?nτn)− γn (6.63)
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for each n = 1, 2, . . . where

γn =
a+2r−1

r + 1
· nτ r+1

n +
r − 1

r
log 2− 1

r
log f?.

As pointed out earlier, (6.20) automatically implies limn→∞ βn = −∞. Thus,

from (6.57) (with p = r) we get

lim
n→∞

γn =
r − 1

r
log 2− 1

r
log f? =: γ?

The discussion leading to (6.57) also shows that βn = −|βn| and |βn| ≤ log n for n

sufficiently large. On that range, we then have

Γn = −βn − 1

r
log(log n + βn)− γ? + o(1)

= |βn| − 1

r
log(log n− |βn|)− γ? + o(1)

with

log(log n− |βn|) = log log n + log

(
1− |βn|

log n

)

≤ log log n.

Therefore,

Γn ≥ −βn − 1

r
log log n− γ? + o(1),

or equivalently, Γn ≥ −αn − γ? + o(1), and the condition limn→∞ αn = −∞ readily

yields (6.62).

We are now poised to complete the proof of Proposition 6.2: Consider a range

function τ : N0 → R+ written in the form (6.4) with deviation function α : N0 → R
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satisfying (6.20). Two cases naturally emerge depending on the value of

T := lim inf
n→∞

(nτn) ,

namely T = 0 or T > 0.

If T > 0 (with T possibly infinite), then

z(λ) := lim inf
n→∞

zn(λ) = 2
r−1

r λT
1
r > 0

with λ > 0 as specified in Lemma 6.8. By Fatou’s Lemma it is plain that

lim inf
n→∞

∫ zn(λ)

−zn(λ)

e−a+|z|rdz ≥
∫ z(λ)

−z(λ)

e−a+|z|rdz > 0.

Let n go to infinity in (6.58). Combining this last observation with Lemma 6.9

implies lim infn→∞ K+(n; τn) = ∞ and the desired conclusion (6.54) is obtained.

This establishes (6.53).

Next, consider the case T = 0. With b > 0, define the auxiliary range function

τb : N0 → R+ given by

τb,n =
1

f?

· 1

n

(
log n− 1

r
log log n + αn + b

)

for all n = 2, 3, . . .. By monotonicity, it is plain that

E [Cn(τb,n)] ≤ E [Cn(τn)] , n = 2, 3, . . .

since τn ≤ τb,n by construction. Now, observe that the deviation function of τb

satisfies (6.20) since that of τ does. Moreover,

lim inf
n→∞

(nτb,n) = T +
b

f?

=
b

f?

> 0,

so that limn→∞ E [Cn(τb,n)] = ∞ by the arguments given earlier, whence limn→∞ E [Cn(τn)] =

∞ as well.
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6.8 A proof of Proposition 6.3

Pick a range function τ : N0 → R+. We need to show under the appropriate

conditions that (6.12) holds, or equivalently,

lim sup
n→∞

E [χn,1(τn)χn,2(τn)]

E [χn,1(τn)]E [χn,2(τn)]
≤ 1. (6.64)

Our first step is to provide expressions for the quantities involved. Thus, fix

τ in (0, 1) and n = 3, 4, . . ., and write

gn(x; τ) := (1− b(x1; τ))n−1 (1− b(x2; τ))n−1

and

hn(x; τ) := (1− b(x1; τ)− b(x2; τ))n−2

with x = (x1, x2) ranging over the unit square [0, 1]2.

As discussed in Section 6.5, we already have

E [χn,1(τ)]E [χn,2(τ)] =

(∫ 1

0

(1− b(x1, τ))n−1f(x1)dx1

)2

=

∫ 1

0

∫ 1

0

gn(x; τ)f(x1)f(x2)dx1dx2. (6.65)

Next, with (6.6) in mind, we note that the simultaneous validity of the condi-

tions X2 /∈ [X1, X1 + τ ] and X1 /∈ [X2, X2 + τ ] is equivalent to either X1 < X2 + τ

or X2 < X1 + τ , in which case for each j = 3, . . . , n, we get

1 [Xj /∈ [X1, X1 + τ ]]1 [Xj /∈ [X2, X2 + τ ]]

= 1− 1 [Xj ∈ [X1, X1 + τ ]]− 1 [Xj ∈ [X2, X2 + τ ]] .

These observations and simple conditioning arguments yield

E [χn,1(τ)χn,2(τ)] = E [1 [|X1 −X2| > τ ] hn(X1, X2; τ)]
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under the enforced independence assumptions. Therefore, with the triangles R+(τ)

and R−(τ) defined by

R+(τ) =





x ∈ [0, 1]2 :
0 ≤ x1 ≤ 1− τ

x1 + τ ≤ x2 ≤ 1





and

R−(τ) =





x ∈ [0, 1]2 :
τ ≤ x1 ≤ 1

0 ≤ x2 ≤ x1 − τ





,

we conclude that

E [χn,k(τ)χn,2(τ)] = J−n (τ) + J+
n (τ) (6.66)

where

J±n (τ) =

∫

R±(τ)

hn(x; τ)f(x1)f(x2)dx1dx2. (6.67)

A straightforward probabilistic interpretation yields the bounds

0 ≤ b(x1; τ) + b(x2; τ) ≤ 1, x ∈ R±(τ). (6.68)

The desired result (6.64) would be easily established if the inequalities

hn(x; τ) ≤ gn(x; τ), x ∈ R±(τ) (6.69)

were to hold since then a pointwise comparison of the integrands at (6.65) and (6.67)

would lead to

E [χn,1(τ)χn,2(τ)] ≤ E [χn,1(τ)]E [χn,2(τ)]

in a straightforward manner. Unfortunately, the pointwise inequalities (6.69) do

not hold on the entire range R±(τ). However, not all is lost due to the fact that

the inequalities in question can be made to hold on increasingly larger portions of
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R±(τn) as n increases when τn is scaled according to (6.4) under (6.20). This is a

consequence of Lemma C.1 to be found in Appendix C.

0 1

1

x
1

x
2

t

t

d

d

(t, d)A+

(t, d)A-

(t, d)B-

(t, d)C-

(t, d)B+

(t, d)C+

Figure 6.1: Partition of triangle R±(τ) into three regions.

To exploit this observation, we partition the triangle R±(τ) into three regions

as described in Figure 6.1: An auxiliary parameter δ is first selected in the interval

(0, 1) under the constraints

0 < δ < min(τ, 1− τ) with 0 < τ <
1

2
. (6.70)

Later on both parameters τ and δ will be scaled with n.

The three regions associated with R+(τ) are defined by

A+(τ, δ) =





x ∈ R+(τ) :
0 ≤ x1 ≤ 1− τ − δ

x1 + τ ≤ x2 ≤ 1− δ





,

B+(τ, δ) =





x ∈ R+(τ) :
0 ≤ x1 ≤ 1− τ − δ

1− δ ≤ x2 ≤ 1





101



and

C+(τ, δ) =





x ∈ R+(τ) :
1− τ − δ ≤ x1 ≤ 1− τ

x1 + τ ≤ x2 ≤ 1





.

In a symmetric manner, the three regions associated with R−(τ) are defined by

A−(τ, δ) =





x ∈ R−(τ) :
τ + δ ≤ x1 ≤ 1

0 ≤ x2 ≤ x1 − τ





,

B−(τ, δ) =





x ∈ R−(τ) :
τ + δ ≤ x1 ≤ 1

0 ≤ x2 ≤ δ





and

C−(τ, δ) =





x ∈ R−(τ) :
τ ≤ x1 ≤ τ + δ

x1 − δ ≤ x2 ≤ 1





.

The basic idea for establishing (6.64) consists in showing that δ can be suitably

scaled with n, say δn, so that (6.69) holds on A±(τn, δn) while the contributions

from B±(τn, δn) and C±(τn, δn) become negligible as n becomes large. The next two

lemmas will help address this technical point.

Lemma 6.10 Assume the constraints (6.70) on τ and δ to hold. Whenever f ?τ < 1,

the bounds

∣∣B±
n (τ, δ)

∣∣ ≤ δ

1− f ?τ
· E [χn,1(τ)] (6.71)

hold where we have set

B±
n (τ, δ) :=

∫

B±(τ,δ)

hn(x; τ)f(x1)f(x2)dx1dx2.
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Proof. We establish (6.71) only for the region B+(τ, δ) as the arguments for the

region B−(τ, δ) are identical, and therefore omitted.

As we recall (6.68), we see that the easy bound

0 ≤ hn(x; τ) ≤ (1− b(x1; τ))n−2 , x ∈ R±(τ)

implies the inequality

∣∣∣∣
∫

B+(τ,δ)

hn(x; τ)f(x1)f(x2)dx1dx2

∣∣∣∣ ≤
∫

B+(τ,δ)

(1− b(x1; τ))n−2 f(x1)f(x2)dx1dx2.

Since the region B+(τ, δ) coincides with the rectangle [0, 1 − (τ + δ)] × [1 − δ, 1],

this last integral can be rewritten as the product of two one-dimensional integrals,

namely
∫ 1−(τ+δ)

0

(1− b(x1; τ))n−2 f(x1)dx1 (6.72)

and
∫ 1

1−δ

f(x2)dx2. (6.73)

Obviously,
∫ 1

1−δ

f(x2)dx2 ≤ f ?δ. (6.74)

Next, upon making use of (6.23), we find

∫ 1−(τ+δ)

0

(1− b(x1; τ))n−2 f(x1)dx1 ≤
∫ 1

0

(1− b(x1; τ))n−1

1− f ?τ
f(x1)dx1

=
E [χn,1(τ)]

1− f ?τ
. (6.75)

We readily get (6.71) if we apply the bounds (6.74) and (6.75) on the appropriate

factors (6.72) and (6.73) in the aforementionned product form bound.
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Lemma 6.11 Under the constraints (6.70) on τ and δ, the bounds

∣∣C±
n (τ, δ)

∣∣ ≤ (f ?δ)2

2

hold where we have set

C±
n (τ, δ) :=

∫

C±(τ,δ)

hn(x; τ)f(x1)f(x2)dx1dx2.

Proof. The bounds (6.68) yield

∣∣∣∣
∫

C±(τ,δ)

hn(x; τ)f(x1)f(x2)dx1dx2

∣∣∣∣ ≤
∫

C±(τ,δ)

f(x1)f(x2)dx1dx2

≤ (f ?)2 · |C±(τ, δ)| (6.76)

with |C±(τ, δ)| denoting the area of C±(τ, δ). The region C±(τ, δ) being a right

isoceles triangle with identical sides of length δ, we have |C±(τ, δ)| = 1
2
δ2 and the

desired inequality is now immediate.

Next, we give conditions on δ and τ that ensure the pointwise comparison

(6.69) on the triangles A±(τ, δ).

Lemma 6.12 Assume that τ and δ satisfy the constraints (6.70). The comparison

hn(x; τ) ≤ gn(x; τ), x ∈ A±(τ, δ) (6.77)
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holds under the additional condition

1

f?

· 2

n− 2
≤ δ. (6.78)

Proof. From Lemma C.1 in Appendix C we see that (6.77) holds if the condition

(6.78) garantees that

2

n− 2
≤ min (b(x1; τ), b(x2; τ)) (6.79)

for all x in A±(τ, δ).

It is plain that

f? min (τ, 1− x) ≤ b(x; τ), x ∈ [0, 1].

Therefore, for any x in A+(τ, δ), (6.79) holds provided

1

f?

· 2

n− 2
≤ min (τ, 1− x1, 1− x2) . (6.80)

Membership of x in A+(τ, δ) amounts to 0 ≤ x1 ≤ 1−τ−δ and x1 +τ ≤ x2 ≤ 1−δ.

This in turn implies τ + δ ≤ 1− x1 and δ ≤ 1− x2, so that (6.80) will hold if

1

f?

· 2

n− 2
≤ min (τ, τ + δ, δ) . (6.81)

That this is the case is a simple consequence of the conditions (6.70) and (6.77).

This establishes (6.77) for the region A+(τ, δ). The arguments for the region

A−(τ, δ) are identical, and are therefore omitted.
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By now the cumulative effect of Lemmas 6.10, 6.11 and 6.12 should have

become clear: Assume that n, τ and δ satisfy the conditions of all three lemmas

simultaneously. Then, upon writing

A±
n (τ, δ) :=

∫

A±(τ,δ)

hn(x; τ)f(x1)f(x2)dx1dx2,

we first get from Lemma 6.12 that

A±
n (τ, δ) ≤

∫

A±(τ,δ)

gn(x; τ)f(x1)f(x2)dx1dx2

≤ E [χn,1(τ)]E [χn,2(τ)] . (6.82)

Next, Lemma 6.10 yields

|B±
n (τ, δ)|

E [χn,1(τ)]E [χn,2(τ)]
≤ δ

1− f ?τ
· E [χn,1(τ)]−1

=
1

1− f ?τ
· nδ

E [Cn(τ)]
, (6.83)

while Lemma 6.11 leads to

|C±
n (τ, δ)|

E [χn,1(τ)]E [χn,2(τ)]
≤ (f ?δ)2

2E [χn,1(τ)]E [χn,2(τ)]

=
(f ?)2

2
·
(

nδ

E [Cn(τ)]

)2

. (6.84)

In both cases, we used the fact that E [Cn(τ)] = nE [χn,k(τ)] for all k = 1, . . . , n.

Finally, a straightforward decomposition argument gives

E [χn,1(τ)χn,2(τ)]

E [χn,1(τ)]E [χn,2(τ)]
≤ 1 +

2

1− f ?τ
· nδ

E [Cn(τ)]

+ (f ?)2 ·
(

nδ

E [Cn(τ)]

)2

(6.85)

upon combining the inequalities (6.82), (6.83) and (6.84).
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We are now ready to complete the proof of Proposition 6.3: Consider a range

function τ : N0 → R+ written in the form (6.4) whose deviation function α : N0 → R

satisfies (6.20). Then, limn→∞ τn = 0 as pointed out already at (6.56), whence τn < 1
2

and τnf
? < 1 for all n sufficiently large. Next, we scale δ with n according to

δn =
1

f?

· 2

n− 2
, n = 3, 4, . . .

With this choice, the constraint δn < τn is equivalent to

2n

n− 2
< log n− 1

r
log log n− |αn|,

a condition which is clearly satisfied under (6.21) for all n sufficiently large. In short,

for all n sufficiently large, it is appropriate in the inequality (6.85) to replace the

parameters τ and δ by τn and δn as specified earlier. Finally, let n go to infinity in

the resulting inequality: We readily get limn→∞ E [Cn(τn)] = ∞ by Proposition 6.2,

while limn→∞ nδn = 2
f?

.. Combining these facts yields

lim
n→∞

nδn

E [χn,k(τn)]
= 0, k = 1, . . . , n

and the desired convergence (6.64) is established.

6.9 Discussion

6.9.1 The boundary cases x? = 0, 1

Some extra needs to be exercised when dealing with the boundary cases x? =

0, 1. The discussion of Sections 6.6 and 6.7 indicates that only Lemma 6.8 needs to be
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modified. We review the needed changes for a range function τ : N0 → R+ written in

the form (6.46) with deviation function β : N0 → R satisfying the condition (6.55):

For the case x? = 0, the bound (6.58) cannot be given anymore in a symmetric

form. However, the arguments leading to (6.58) can be easily modified to show that

for any λ in (0, 1), we now have

K+(n; τn) ≥ eΓn ·
∫ zn(λ)

0

e−a+|z|rdz (6.86)

for all n sufficiently large.

The case x? = 1 is slightly more involved: For any λ in (0, 1), we have now

K+(n; τn) ≥ eΓn ·
∫ zn(1)

zn(λ)

e−a+|z|rdz (6.87)

for all n sufficiently large. Indeed, for such λ there exists a finite integer n?(λ) such

that τn < λ for all n ≥ n?(λ) (since here limn→∞ τn = 0). On that range, the

expression at (6.39) yields

K+(n; τn) ≥ e−βn

∫ 0

1−λ

e−na+

∫ τn
0 |x+t−1|rdtdx

= e−βn

∫ 1

λ

e−na+

∫ τn
0 |t−y|rdtdy

upon making the change of variable y = 1− x. The subsequent convexity argument

and change of variable remain unchanged as in the derivation of the bound (6.58),

ultimately yielding (6.87).

We conclude by observing that in their respective cases, the bounds (6.86) and

(6.87) are sufficient to allow the concluding arguments of Section 6.6 to proceed.
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6.9.2 From r ≥ 1 to 0 < r < 1

We first prove Proposition 6.1 under the assumption that 0 < r < 1. The key

idea is to replace (6.50) by the following inequality

1

τ

∫ τ

0

|x− x? + t|rdt >
1

2r(r + 1)

∣∣∣x− x? +
τ

2

∣∣∣
r

. (6.88)

This inequality holds due to the following facts:

When x− x? > τ
2

or x− x? < −3τ
2
, we have

1

τ

∫ τ

0

|x− x? + t|rdt > |x− x?|r >
1

2r(r + 1)

∣∣∣x− x? +
τ

2

∣∣∣
r

;

while when −3τ
2
≤ x− x? ≤ τ

2
, we see that

1

τ

∫ τ

0

|x− x? + t|rdt ≥ τ r

2r(r + 1)
≥ 1

2r(r + 1)

∣∣∣x− x? +
τ

2

∣∣∣
r

where the two equalities hold when x − x? = − τ
2

and when x − x? = τ
2
,−3τ

2
,

respectively.

The only difference between (6.50) and (6.88) is the constant factor 1
2r(r+1)

.

Furthermore, (6.50) is the only expression in Section 6.6 whose establishment re-

quires r ≥ 1. As a result, Proposition 6.1 can be shown for the case 0 < r < 1 in a

very similar way as the case r ≥ 1.

The basic idea to prove Proposition 6.2 under the assumption 0 < r < 1 is

similar as we can replace (6.60) by the following inequality

|y + t|r ≤ |y|r + |t|r, y, t ∈ R. (6.89)

Note that (6.89) is not valid for r > 1.
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6.9.3 Non-isolated minima

A proof of Theorem 6.2 can easily be cobbled from the discussion of Theorem

6.1. Going back to to the relation (6.26) we need only show that limn→∞ K̃(n; τn) = 0

(resp. limn→∞ K̃(n; τn) = ∞) under appropriate conditions on the range function

τ : N0 → R+. This is easily done by noting the following bounds: First, it is always

the case that

K̃(n; τ) ≤ nf ?(1− τf?)
n−1, n = 1, 2, . . .

for all τ in (0, 1) (as we observe that f?τ < 1 since f? < 1). Next, since I is non-

empty, there always exists a non-empty interval J ⊆ I such that J + τ ⊆ I for all τ

in (0, 1) small enough. For such values, we find that

b(x; τ) = f?τ, x ∈ J

and the lower bound

K̃(n; τ) ≥ n|J |(1− τf?)
n−1f?, n = 1, 2, . . .

follows where |J | denotes the length of the interval J .

It is now a simple matter to check that limn→∞ n(1 − τnf?)
n−1 = 0 (resp.

limn→∞ n(1 − τnf?)
n−1 = ∞) for any range function τ : N0 → R+ written in the

form (6.5) with deviation function α : N0 → R satisfying limn→∞ αn = ∞ (resp.

limn→∞ αn = −∞).
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6.9.4 Extensions

It can be shown that the results obtained in this Chapter still hold if the

density function f represented in the form

f(x) =





c + b−|x− x?|r + h−(x) if 0 ≤ x ≤ x?

c + b+|x− x?|r + h+(x) if x? ≤ x ≤ 1

for some parameters r > 0, b− > 0, b+ > 0 and c > 0, and for some functions

h± : [0, 1] → R such that

lim
x↑x?

h−(x)

|x− x?|r = 0 (6.90)

and

lim
x↓x?

h+(x)

|x− x?|r = 0. (6.91)

6.9.5 Earlier results of Deheuvels

According to Theorem 3.2, Deheuvels identifies the following asymptotic bounds:

−1

r
= lim inf

n→∞
nMnf? − log n

log log n
< lim sup

n→∞

nMnf? − log n

log log n
= 2− 1

r
a.s.. (6.92)

On the other hand, our results indicate that for any range function τ : N0 → R+

written in the form (6.4) with deviation function α : N0 → R, it holds that

lim
n→∞

P (Mn ≤ τn) =





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.
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After simple algebraic manipulations, we get

lim
n→∞

P

(
nMnf(x?)− log n

log log n
+

1

r
≤ αn

log log n

)
=





0 if limn→∞ αn = −∞

1 if limn→∞ αn = +∞.

Choosing αn = o(log log n), the one-law indicates that

nMnf? − log n

log log n

P→ n − 1

r
. (6.93)

Although the convergence in (6.93) is not almost sure convergence, it suggests

that the lower bound in (6.92) is a tighter bound than the upper bound. We expect

lim
n→∞

nMnf(x?)− log n

log log n
= −1

r
a.s.,

but it is not clear how to establish this result.
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Chapter 7

Network connectivity under the GRG model IV :

A weak threshold for general user distribution

with vanishing densities

7.1 The main result

When f? = 0, a blind application of Theorem 5.1 yields τ ?
n = ∞ for all

n = 1, 2, . . .. This begs the question as to what is the appropriate analog of Theorem

5.1 when the density f vanishes. We explore this issue through the following simple

example: With p > 0, consider the probability distribution F given by

F (x) = xp+1, x ∈ [0, 1] (7.1)

so that

f(x) = (p + 1)xp, x ∈ [0, 1]. (7.2)

Theorem 5.1 needs to be replaced by the following result.

Theorem 7.1 Under (7.1), the property of graph connectivity admits only weak
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critical threshold functions, and the range function τ ? : N0 → R+ given by

τ ?
n = n−

1
p+1 , n = 1, 2, . . . (7.3)

is such a weak threshold function.

The random graph G(n; τ) under (7.1) provides yet another situation where

a strong critical threshold does not exist for a monotone graph property [42, Thm.

5.1, p. 382]. The remainder of this Chapter is devoted to establishing Theorem 7.1.

7.2 A representation of the maximal spacing

Consider the order statistics Un,1, . . . , Un,n associated with the n i.i.d. rvs

U1, . . . , Un which are all uniformly distributed on [0, 1]. Since F−1(t) = t
1

p+1 , 0 ≤

t ≤ 1, it is plain from (5.5) that

(Ln,k, k = 2, . . . , n) =st

(
F−1(Un,k)− F−1(Un,k−1), k = 2, . . . , n

)

=
(
(Un,k)

1
p+1 − (Un,k−1)

1
p+1 , k = 2, . . . , n

)
.

In order to take advantage of this last equivalence, we introduce a collection

of {ξj, j = 1, 2, . . .} of i.i.d. rvs which are exponentially distributed with unit

parameter, and set

T0 = 0, Tk = ξ1 + . . . + ξk, k = 1, 2, . . . .

Upon defining

Vk := (Tk)
1

p+1 − (Tk−1)
1

p+1 , k = 1, 2, . . . ,
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we get

(
F−1(Un,k)− F−1(Un,k−1), k = 2, . . . , n

)
=st

(
Vk

(Tn+1)
1

p+1

, k = 2, . . . , n

)

according to the stochastic equivalence established in (5.10).

Consequently, the distributional equivalence

Mn =st
M?

n

(Tn+1)
1

p+1

(7.4)

holds where we have defined

M?
n := max (Vk, k = 2, . . . , n) . (7.5)

7.3 A proof of Theorem 7.1

Throughout this section the range function τ ? : N0 → R+ is the one given by

(7.3). We start with the following key representation that flows from (7.4)–(7.5),

namely

Mn

τ ?
n

=st

(
n

Tn+1

) 1
p+1

·M?
n (7.6)

for all n = 1, 2 . . .. The proof proceeds according to three distinct steps.

7.3.1 The range function τ ? is a weak threshold

In view of Lemma 4.1, the range function τ ? : N0 → R+ is a weak threshold if

we show that (4.6) holds for some R+-valued rv L with L > 0 a.s. By the Strong

Law of Large Numbers, we already have

lim
n→∞

Tn+1

n
= 1 a.s. (7.7)
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Moreover, the sequence {M?
n, n = 2, 3, . . .} being monotone, we have the a.s. con-

vergence

lim
n→∞

M?
n = sup (Vk, k = 2, . . .) =: M?. (7.8)

We shall show that M? is a.s. finite with M? > 0 a.s.

First, we note that M? ≥ V2. But V2 = 0 if and only if T2 = T1, which occurs

if and only if ξ2 = 0, this last event occuring with zero probability. Consequently

V2 > 0 a.s. and M? > 0 a.s., as needed.

Next, fix k = 2, 3, . . . and for notational convenience, set q = p
p+1

and r =

p+1
p

= q−1. It is plain that

Vk = (Tk)
1

p+1 − (Tk−1)
1

p+1

=
1

p + 1

∫ Tk

Tk−1

t−qdt

≤ 1

p + 1

∫ Tk

Tk−1

(Tk−1)
−q dt

=
1

p + 1
· (Tk−1)

−q · ξk (7.9)

with

(Tk−1)
−q · ξk =

(
k

Tk−1

· ξr
k

k

)q

.

The Strong Law of Large Numbers immediately implies

lim
k→∞

k

Tk−1

= 1 a.s.

as pointed out earlier. Applying again the Strong Law of Large Numbers, this time

to the sequence of i.i.d. rvs {ξr
k, k = 1, 2, . . .}, we find

lim
k→∞

1

k

k∑

`=1

ξr
` = E [ξr

1] a.s.
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The exponential distribution having finite moments of all orders, we obviously have

E [ξr
1] finite, whence

lim
k→∞

ξr
k

k
= 0 a.s.

according to a standard argument.

With the help of these observations, we conclude that

lim
k→∞

(Tk−1)
−q · ξk = 0 a.s.

whence limk→∞ Vk = 0 a.s. Therefore, there exists a positive integer (sample depen-

dent) ν which is a.s. finite such that M? = Vν and M? is a.s. finite.

Making use of the convergence statements (7.7) and (7.8), we readily see from

(7.6) that

Mn

τ ?
n

=⇒n M? (7.10)

and (4.6) therefore holds with L =st M? as desired.

7.3.2 The range function τ ? is not a strong threshold

Pick ε in (0, 1) and n = 2, 3, . . .. Obviously, M?
n ≥ V2, so that

P [M?
n > 1 + ε] ≥ P [V2 > 1 + ε] > 0

and M? > 1 with positive probability! Thus, (4.11) fails and by Lemma 4.2 the

range function τ ? : N0 → R+ is not a strong threshold for the property of graph

connectivity in G(n; τ).
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7.3.3 There exists no strong threshold

The argument proceeds by contradiction: Assume that a strong threshold

function does exist, say σ : N0 → R+, in which case we have Mn

σn

P→ n1 by Lemma

4.2. Using (7.10), we readily conclude

σn

τ ?
n

=⇒n M? (7.11)

as we note

σn

τ ?
n

=
σn

Mn

· Mn

τ ?
n

, n = 2, 3, . . .

The limit limn→∞ σn

τ?
n

being deterministic we have a contradiction since M? is not a

degenerate rv. Consequently, there cannot be any strong threshold function for the

property of graph connectivity.

7.4 Discussion

It is easy to check from Theorem 5.1 that the threshold function n → log n
n

is

a weak threshold function, a robust, albeit weak, conclusion which holds across all

distributions F with non-vanishing density. However, with F given by (7.1), the

critical threshold given by (7.3) is now of a much larger order since

log n

n
= o

(
n−

1
p+1

)
.

Implications for resource dimensioning in two-dimensional ad-hoc networks were

already discussed in the references [50, 51], and take here the following form: As

will become apparent from the comments following Lemma 4.2, critical thresholds
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serve as proxy for the critical transmission range when n is large. Thus, under

a node placement with a vanishing density such as (7.1), we see that the critical

transmission range is orders of magnitude larger than would otherwise have been the

case when the density function does not vanish, resulting in higher minimum power

levels to ensure connectivity. Similar qualitative conclusions were already pointed

out by Santi [51, Thm. 4] for two-dimensional networks under the random waypoint

mobility model without pause. In one dimension, the corresponding stationary

spatial node density is given by

fRWP(x) = 6 x(1− x), 0 ≤ x ≤ 1. (7.12)

Here, under (7.1) we can go beyond qualitative statements and give precise infor-

mation on the order of the asymptotics for the critical transmission range.

Although the distribution (7.1) was selected because its simpler form facili-

tated the analysis, it is nevertheless representative of vanishing densities such as

(7.12). Indeed, both Theorems 5.1 and 7.1 derive from limiting properties of the

maximal spacing under F . Such properties are influenced by the behavior of the

density in the vicinity of its minimum point [37, p. 519.]: The densities (7.2) (with

p = 1) and (7.12) have similar behavior near x = 0 since fRWP(x) ∼ 6x as x ' 0.

Thus, the results obtained here suggest that this model requires a much larger crit-

ical transmission range function given by

τ ?
RWP,n =

1√
n

, n = 1, 2, . . . .

According to Theorem 4.3, the number of breakpoint users under uniform node

placement will converge to a Poisson rv under the appropriate critical scaling. This
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property crisply captures the fact that the phase transition usually associated with

strong zero-one laws is a very sharp one indeed. However, the absence of strong

critical thresholds under (7.1) precludes such Poisson convergence, and essentially

rules out the possibility that the corresponding phase transition will be sharp in this

case.

These conclusions are already apparent from the limited simulation results

presented above where nodes are placed according to Fp with p = 0, 1, 2; the case

p = 0 corresponds to the uniform distribution. For each p = 0, 1, 2, the figure

displays the corresponding plot of P (n, τ) as a function of τ (in base 10 log-scale)

for n = 1, 000. In each case we generated K = 10, 000 mutually independent

configurations of n points on the interval [0, 1] drawn independently according to Fp.

We compute the value P (n, τ) as the ratio XK(n, τ)/K where XK(n, τ) records the

number of configurations among these K configurations which result in a connected

graph when the transmission range is τ . As expected, the phase transition is much

sharper for p = 0 than for positive p. These displays also suggest that the sharpness

of the phase transition decreases with increasing p. However, at the time of this
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writing, we are not in a position to offer precise quantitative results along these

lines.
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Chapter 8

Network connectivity under the BCG model

In this final Chapter, we study network connectivity in the context of the

bounded connection graph (BCG) model. In contrast with the GRG model, the

BCG model takes into account random radio signal variations, which are unavoidable

in wireless communication networks. Moreover, as discussed in Chapter 2, the BCG

model could capture a broad range of radio propagation models. Although the BCG

model covered here does not include the lognormal case, such a generalization is a

big advantage over the lognormal connection graph (LCG) model.

Our main contribution in this Chapter is to identify the critical scaling (with

respect to the number of nodes) of the boundary communication range for the

absence of isolated nodes. We prove that if the boundary communication range is

around the critical scaling, the distribution of the number of isolated nodes converges

to a Poisson distribution as the number of nodes tends to infinity.

Our proof is composed of two steps: Our main efforts are devoted to prove

Proposition 8.1 under the assumption that nodes are placed according to a homo-

geneous Poisson point process on [0, 1]2. In Theorem 8.1, we extend this result to
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the case that nodes are uniformly and independently distributed on [0, 1]2.

8.1 Notation and definitions

We will introduce some of the notation and definitions to be used throughout

Chapter 8. We want to emphasize that all these notation and definitions are based

on two assumptions, namely that nodes follow a homogeneous Poisson point process

with density n and that the probability that a link exists between a pair of nodes

(i.e. the two nodes are connected) is computed by the BCG model with parameter ρ.

We use G2,P (n; ρ) to denote the two-dimensional bounded connection graph formed

under these two assumptions.

Fix ρ > 0. With the definition of hρ in (2.17), we define

sρ := 2π

∫ ρ

0

hρ(r)r dr (8.1)

and

κρ :=
2π

∫ ρ

0
h2

ρ(r)r dr

sρ

. (8.2)

Assuming that the boundary effects are ignored, it can be shown that sρ is the

probability that a node with given coordinates is connected with another node that

is uniformly distributed on [0, 1]2. Moreover, according to (2.17), hρ(r) < 1 when

r > 0, whence κρ < 1 as can be easily derived.

Fix n = 2, 3, . . .. With mn = n2, we define the squarelets

Σn,ij =
[ i− 1

mn

,
i

mn

]
×

[j − 1

mn

,
j

mn

]
, i, j = 1, . . . , mn.

The length of the squarelet’s side is denoted by `n = 1
mn

. Set tn = d ρ
`n
e.
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In order to facilitate the forthcoming analysis, we divide these m2
n squares

into 9 groups according to their locations. Specifically, we have 4 groups at the

corner, 4 groups on the edge, and 1 group in the center. Two division patterns

are demonstrated in Fig. 8.1 and Fig. 8.2. In Fig. 8.1, the m2
n(n4) squarelets are

divided into 9 groups. The group R1 in the center contains (mn − 2tn)2 squarelets.

Each of the groups {R2i, i = 1, . . . , 4} located in the corners contains t2n squarelets.

Each of the groups {R3i, i = 1, . . . , 4} located in the edges contains tn(mn − 2tn)

squarelets. We define R2 = ∪4
i=1R2i and R3 = ∪4

i=1R3i. In Fig. 8.2, the m2
n(n4)

squarelets are divided into 9 groups. The group R4 in the center contains (mn−4tn)2

squarelets. Each of the groups {R5i, i = 1, . . . , 4} located in the corners contains

4t2n squarelets. Each of the groups {R6i, i = 1, . . . , 4} located in the edges contains

2tn(mn − 4tn) squarelets. We define R5 = ∪4
i=1R5i and R6 = ∪4

i=1R6i .

Fix ρ > 0. With i, j = 1, . . . , mn, we use the symbols Nij(n) and Jij(n; ρ) to

denote the number of users, and the number of isolated users in the squarelet Σn,ij,

respectively. We also write

J ′ij(n; ρ) := 1[Nij(n) = 1]Jij(n; ρ), i, j = 1, . . . , mn

and

J ′′ij(n; ρ) := 1[Nij(n) > 1]Jij(n; ρ), i, j = 1, . . . , mn.

Their corresponding sums are given by

C ′(n; ρ) :=
∑

(i,j)∈Γn

J ′ij(n; ρ) and C ′′(n; ρ) :=
∑

(i,j)∈Γn

J ′′ij(n; ρ)

where Γn = {1, . . . , n} × {1, . . . , n}. We denote the total number of isolated nodes
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by C(n; ρ). We clearly have

Jij(n; ρ) = J ′ij(n; ρ) + J ′′ij(n; ρ), i, j = 1, . . . , mn

and

C(n; ρ) = C ′(n; ρ) + C ′′(n; ρ).

The probability Piso,2,P (n; ρ) that G2,P (n; ρ) contains no isolated users is given by

Piso,2,P (n; ρ) = P[C(n; ρ) = 0]. (8.3)

Another frequently used notation is D(A,B), a rv that represents the Eu-

clidean distance between users A and B that are randomly placed. We also use

d(A,B) to denote the Euclidean distance between users A and B with given coor-

dinates.
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Figure 8.1: Squarelet division pattern one.
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Figure 8.2: Squarelet division pattern two.

8.2 Preliminary results

Lemma 8.1 For any boundary range function ρ : N0 → R+, we have

lim
n→∞

P[C ′′(n; ρn) > 0] = 0. (8.4)

Proof. Using the union bound, it is plain that

P[C ′′(n; ρn) > 0] ≤
∑

(i,j)∈Γn

P[J ′′ij(n; ρn) > 0]

<
∑

(i,j)∈Γn

P[Nij(n) ≥ 2].

Recall that

lim
λ↓0

λ−2

( ∞∑

l=2

λk

k!
e−λ

)
= 2,
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thus we have

∑

(i,j)∈Γn

P[Nij(n) ≥ 2] = n4Θ((n`2
n)2)

= Θ(n−2).

Finally

lim
n→∞

P[C ′′(n; ρn) > 0] = 0.

Lemma 8.2 For any (i, j) in Γn, Bn,ij = {(k, l) : |k−i| ≤ 2tn and |l−j| ≤ 2tn, k, l =

1, . . . , mn} is a neighborhood of dependence for (i, j) with respect to the indicator

rvs {J ′ij(n; ρ), (i, j) ∈ Γn}.

Proof. Based on its definition, the indicator rv J ′ij(n; ρ) is determined by the

Poisson point process in

Ln,ij = ∪|k−i|≤tn
|l−j|≤tn
(k,l)∈Γn

Σn,kl.

On the other hand, for any (i′, j′) outside Bn,ij, the indicator rv J ′i′j′(n; ρ) is

determined by the Poisson point process in

Ln,i′j′ = ∪|k−i′|≤tn
|l−j′|≤tn
(k,l)∈Γn

Σn,kl.

Based on the definition of Bn,ij, it is clear that Ln,ij and Ln,i′j′ are non-

overlapping. Since nodes are placed according to a homogeneous Poisson point

process, the point processes in Ln,ij and Ln,i′j′ are mutually independent, whence
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the rvs J ′ij(n; ρ) and J ′i′j′(n; ρ) are mutually independent, and this establishes the

desired result.

Lemma 8.3 Assume user A with coordinates (xA, yA) is the only user in Σn,ij, and

user B is uniformly distributed in [0, 1]2 − Σn,ij. Under these assumptions, if Tn,ij

be the indicator rv that users A and B are not connected, then

E[Tn,ij]





∈ (1− sρ, 1− sρ + `2
n] if (i, j) ∈ R1

≤ 1− 0.25sρ + `2
n if (i, j) ∈ R2

≤ 1− 0.5sρ − (wn,ij−1)`n

ρπ
sρ + `2

n if (i, j) ∈ R3

(8.5)

where wn,ij = min(i, j, mn − i,mn − j).

Lemma 8.3 is proved in Appendix D. Note that (8.5) holds irrespective of the

specific coordinates of user A.

Lemma 8.4 Fix k = 1, 2, . . .. Assume user A and users B1, . . . , Bk are indepen-

dently and uniformly distributed on [0, 1]2. We construct a graph on these k + 1

users based on the BCG model with parameter ρ. If piso,k(ρ) denotes the probability

that user A is isolated, then the bounds

(
1− sρ

)k

≤ piso,k(ρ) ≤ (mn − 2tn)2

m2
n

(
1− sρ

)k

+
4t2n
m2

n

(
1− 0.25sρ

)k

+
4(mn − 2tn)

m2
n

tn∑
wn,ij=1

(
1− 0.5sρ − (wn,ij − 1)`n

ρπ
sρ

)k

(8.6)
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hold, and the expected degree Dk(ρ) of user A satisfies

k(1− 2ρ)2sρ < Dk(ρ) < ksρ. (8.7)

Proof. Conditioning on the event En,ij that user A is located in the squarelet

Σn,ij, we have

piso,k(ρ) = E
[ k∏

i=1

(
1− hρ

(
D(A,Bi)

))]

=
∑

(i,j)∈Γn

E
[ k∏

i=1

(
1− hρ

(
D(A,Bi)

))∣∣∣En,ij

]
P[En,ij]

=
∑

(i,j)∈IR1

E
[ k∏

i=1

(
1− hρ

(
D(A,Bi)

))∣∣∣En,ij

]
P[En,ij]

+
∑

(i,j)∈IR2

E
[ k∏

i=1

(
1− hρ

(
D(A,Bi)

))∣∣∣En,ij

]
P[En,ij]

+
∑

(i,j)∈IR3

E
[ k∏

i=1

(
1− hρ

(
D(A,Bi)

))∣∣∣En,ij

]
P[En,ij].

Then it can be shown that (8.6) is a simple corollary from Lemma 8.3.

Similarly, (8.7) follows because Conditioning on the event C(ρ) that user A is

located in [ρ, 1− ρ]× [ρ, 1− ρ], we have

Dk = kE
[
hρ

(
D(A,B1)

)]

= kE
[
hρ

(
D(A,B1)

)∣∣∣C(ρ)

]
P[C(ρ)] + kE

[
hρ

(
D(A,B1)

)∣∣∣C(ρ)

]
(1− P[C(ρ)]),

and

E
[
hρ

(
D(A,B1)

)∣∣∣C(ρ)

]
≤ E

[
hρ

(
D(A,B1)

)∣∣∣C(ρ)

]
= sρ.
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Lemma 8.5 Assume user A with coordinates (xA, yA) is the only user in Σn,i1j1 ,

and user B with coordinates (xB, yB) is the only user in Σn,i2j2 with (i2, j2) 6=

(i1, j1). Assume (i2, j2) belongs to Bn,i1,j1 , the neighborhood of dependence for

(i1, j1). Assume user C is uniformly distributed in [0, 1]2 − Σn,i1j1 − Σn,i2j2 . Let

Tn,i1j1i2j2 be the indicator rv that neither user A nor user B is connected with user

C. We have

E[Tn,i1j1i2j2 ] ≤





1− (2− κρ)sρ + 4`2
n if (i1, j1) ∈ R4

1− 0.25sρ + 2`2
n if (i1, j1) ∈ R5

1− (1− 0.5κρ)sρ + 4`2
n if (i1, j1) ∈ R6.

(8.8)

Lemma 8.5 is established in Appendix E. Note that (8.8) holds irrespective of

the specific coordinates of users A and B.

8.3 The main results

First a word on the notation used in this Section: We write an ∼ bn to indicate

an is asymptotically equal to bn, i.e.

lim sup
n→∞

an

bn

= 1.

130



Throughout this Section, we assume that the boundary function ρ : N0 → R+

is chosen such that the function sρ : N0 → R+ is of the form

sρn =
log n + α + o(1)

n

with α in R. We first establish some asymptotic equivalences to facilitate the proof

of our main results.

1) According to the definition of hρ in (2.17), hρ(r) > 0 when r < ρ and hρ(r) < 1

when r > 0. Also, hρ(r) being non-increasing with r, we get

sρn = 2π

∫ ρn

0

hρn(r)r dr > 2π

∫ 0.5ρn

0

hρn(0.5ρn)r dr =
hρn(0.5ρn)

4
πρ2

n = Θ(ρ2
n),

and

sρn = 2π

∫ ρn

0

hρn(r)r dr < 2π

∫ ρn

0

r dr = πρ2
n = Θ(ρ2

n).

It follows that

ρn = Θ(
√

sρn) = Θ

(√
log n

n

)
.

2) We immediately have

tn = dρn

`n

e = Θ(
√

n3 log n).

3) The number of squarelets in R1 is (mn − 2tn)2 = Θ(n4). The number of

squarelets in R2 is 4t2n = Θ(n3 log n). The number of squarelets in R3 is

4(mn − 2tn)tn = Θ(n3
√

n log n).

4) Similarly, the number of squarelets in R4, R5 and R6 are Θ(n4), Θ(n3 log n)

and Θ(n3
√

n log n), respectively.
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5) For any (i, j) in Γn, the cardinality of its neighborhood of dependence Bn,ij is

Θ(t2n) = Θ(n3 log n).

Proposition 8.1 Under the enforces assumptions, it holds that

lim
n→∞

Piso,2,P (n; ρn) = e−e−α

(8.9)

Proposition 8.1 is established in Section 8.4 under the assumption that network

nodes are placed according to a homogeneous Poisson point process in [0, 1]2 with

density n. Next, we prove a similar result assuming that the n network nodes are

uniformly and independently distributed in [0, 1]2.

Theorem 8.1 Under the enforced assumptions, it holds that

lim
n→∞

Piso,2(n; ρn) = e−e−α

. (8.10)

Proof. Let Mn be the number of nodes located in [0, 1]2. Since nodes follow Poisson

point process with parameter n, Mn is a Poisson random variable with parameter

n. Conditioning on Mn, we have

Piso,2,P (n; ρn) =
∞∑

k=0

Piso,2(k; ρn)P[Mn = k], (8.11)
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and Chebyshev’s inequality thus yields

P[|Mn − n| ≥ √
n log n] ≤ n

n log2 n
=

1

log2 n
.

According to Proposition 8.1, with sρn = log n+α+o(1)
n

, we have lim
n→∞

Piso,2,P (n; ρn) =

e−e−α
, which is strictly larger than zero. Thus

e−e−α

= lim
n→∞

Piso,2,P (n; ρn) = lim
n→∞

∞∑

k=0

Piso,2(k; ρn)P[Mn = k]

= lim
n→∞

∑

k∈An

Piso,2(k; ρn)P[Mn = k] (8.12)

where An = {0, 1, . . . , : n−√n log n ≤ k ≤ n +
√

n log n}.

The basic idea in the following proof is to show that for different k belong

to An, Piso,2(k; ρn) almost remains unchanged as n tends to infinity. This fact will

immediately lead to our desired result.

Consider the scenario where users numbered 1, 2, . . ., are uniformly and in-

dependently deployed in [0, 1]2. Fix n = 2, 3, . . .. The probability of connectivity

between a pair of users is computed by the BCG model with parameter ρn. Let k

be an integer, and denote by Zn,k the number of isolated users in the graph formed

by the first k users. Clearly P[Zk = 0] = Piso,2(k; ρn). With i = 1, . . . , k, we define

Ii,k := 1[The ith user is isolated in the graph formed by the first k users].

For any k in An, we have

Piso,2(k + 1; ρn) = Piso,2(k; ρn)
(
1− P[Ik+1,k+1 = 1|Zk = 0]

)

+
(
1− Piso,2(k; ρn)

)
P[Zk+1 = 0|Zk > 0]. (8.13)
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The conditional event [Zk+1 = 0|Zk > 0] indicates that the (k + 1)rst user has to

connect to at least one isolated user among the first k users. The probability of this

event is at most sρn = Θ( log n
n

).

Moreover,

P[Ik+1,k+1 = 1|Zk = 0] =
P[Ik+1,k+1 = 1, Zk = 0]

P[Zk = 0]

<
P[Ik+1,k+1 = 1]

P[Zk = 0]

=
P[I1,k+1 = 1]

Piso,2(k; ρn)
.

From (8.6), it can be shown that for any k belongs to An,

P[I1,k+1 = 1] = Θ

(
1

n

)
,

because

P[I1,k+1 = 1] ≥ (1− sρn)k ≥ (1− sρn)n+
√

n log n = Θ

(
1

n

)
,

and

P[I1,k+1 = 1] ≤ (mn − 2tn)2

m2
n

(
1− sρn

)k

+
4t2n
m2

n

(
1− 0.25sρn

)k

+
4(mn − 2tn)

m2
n

tn∑
wn,ij=1

(
1− 0.5sρn −

(wn,ij − 1)`n

ρnπ
sρn

)k

≤ (mn − 2tn)2

m2
n

(
1− sρn

)n−√n log n

+
4t2n
m2

n

(
1− 0.25sρn

)n−√n log n

+
4(mn − 2tn)

m2
n

tn∑
wn,ij=1

(
1− 0.5sρn −

(wn,ij − 1)`n

ρnπ
sρn

)n−√n log n

where

(mn − 2tn)2

m2
n

(
1− sρn

)n−√n log n

= Θ

(
1

n

)
,

4t2n
m2

n

(
1− 0.25sρn

)n−√n log n

= o

(
1

n

)
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and

4(mn − 2tn)

m2
n

tn∑
wn,ij=1

(
1− 0.5sρn −

(wn,ij − 1)`n

ρnπ
sρn

)n−√n log n

<
4(mn − 2tn)

m2
n

e−0.5sρn (n−√n log n)

tn∑
wn,ij=1

e−
(n−√n log n)(wn,ij−1)`n

ρnπ
sρn = o

(
1

n

)
.

(8.14)

The expression (8.14) follows from the following fact: With fn ∼ n,

`n

tn∑
wn,ij=1

e−
fn(wn,ij−1)`n

ρnπ
sρn <

∫ ρn

0

e−
fnsρn

ρnπ
x dx + `n

=
ρnπ

fnsρn

(1− e−
fnsρn

π ) + `n

=
ρnπ

fnsρn

−Θ

(√
1

n log n

1

n
1
π

)
+

1

n2

= O

(
1√

n log n

)
. (8.15)

Thus from (8.13),

|Piso,2(k + 1; ρn)− Piso,2(k; ρn)| < P[I1,k+1 = 1] + P[Zk+1 = 0|Zk > 0] = O

(
log n

n

)
.

Since the cardinality of An is Θ(
√

n log n), it follows that

max
k∈An

Piso,2(k; ρn)− min
k∈An

Piso,2(k; ρn) = O

(
log2 n√

n

)
,

and

lim
n→∞

(
max
k∈An

Piso,2(k; ρn)− min
k∈An

Piso,2(k; ρn)
) ∑

k∈An

P[Mn = k] = 0. (8.16)

Finally for any given n, we have

max
k∈An

Piso,2(k; ρn)
∑

k∈An

P[Mn = k] ≥
∑

k∈An

Piso,2(k; ρn)P[Mn = k], (8.17)
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and

min
k∈An

Piso,2(k; ρn)
∑

k∈An

P[Mn = k] ≤
∑

k∈An

Piso,2(k; ρn)P[Mn = k]. (8.18)

According to (8.16), (8.17) (8.18) and (8.12), we get

e−e−α

= lim
n→∞

max
k∈An

Piso,2(k + 1; ρn)
∑

k∈An

P[Mn = k]

= lim
n→∞

min
k∈An

Piso,2(k; ρn)
∑

k∈An

P[Mn = k]

Thus for any k in An, we have

lim
n→∞

Piso,2(k; ρn)
∑

k∈An

P[Mn = k] = e−e−α

, (8.19)

and taking k = n− 1, we conclude that

lim
n→∞

Piso,2(n; ρn) = e−e−α

. (8.20)

8.4 A proof of Proposition 8.1

First a word on the notation used in this Section: We write an . bn to indicate

an is asymptotically smaller than bn, i.e.

lim sup
n→∞

an

bn

≤ 1.

The main effort in establishing Proposition 8.1 consists in using Corollary 3.3

in order to show that the distribution of

C ′(n; ρn) =
∑

(i,j)∈Γn

J ′ij(n; ρn)
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converges to a Poisson distribution with parameter e−α. Our proof is composed of

two steps: First, we prove that

lim
n→∞

E[C ′(n; ρn)] = e−α. (8.21)

Next we will show that the upper bound in (3.14) converges to zero, i.e., we prove

that

lim
n→∞

∑

(i1,j1)∈Γn

∑

(i2,j2)∈Bi1j1

E[J ′i1j1(n; ρn)]E[J ′i2j2(n; ρn)] = 0, (8.22)

and

lim
n→∞

∑

(i1,j1)∈Γn

∑

(i2,j2)∈Bi1j1\(i1,j1)

E[J ′i1j1(n; ρn)J ′i2j2(n; ρn)] = 0. (8.23)

Step 1 In order to prove (8.21), we need to evaluate E[J ′ij(n; ρn)], i, j = 1, . . . , mn.

Note that J ′ij(n; ρn) = 1 if and only if Jij(n; ρn) = 1 and Nij(n) = 1, which

indicates that there is only one node in Σn,ij and it is isolated. Thus

E[J ′ij(n; ρn)] = E[Jij(n; ρn)Nij(n)]

= P[The squarelet Σn,ij only contains one isolated node ].

Conditioning on the coordinates (X,Y ) of this only node in Σn,ij and the

137



number of nodes Kij(n) outside Σn,ij, we have

E[J ′ij(n; ρn)]

= E[Jij(n; ρn)Nij(n)]

= E
[
E[Jij(n; ρn)Nij(n)|X,Y,Kij(n)]

]

= P[Nij(n) = 1]E
[
E[J ′ij(n; ρn)|Nij(n) = 1, X, Y, Kij(n)]

]

= P[Nij(n) = 1]
∞∑

kij=0

(
P[Kij(n) = kij] ∗

E
[
E[J ′ij(n; ρn)|Nij(n) = 1, X, Y, Kij(n) = kij]

])
(8.24)

where

P[Nij(n) = 1] = n`2
ne
−n`2n ,

and

P[Kij(n) = kij] =
e−n(1−`2n)(n(1− `2

n))kij

kij!
.

Since nodes are placed according to a homogeneous Poisson point process,

given the number of nodes kij located outside Σn,ij, these nodes are uniformly

and independently distributed in [0, 1]2−Σn,ij. Thus for any given coordinates

(x, y) in Σn,ij, it is not difficult to see that

E[J ′ij(n; ρn)|Nij(n) = 1, X = x, Y = y, Kij(n) = kij]

=
(
E[J ′ij(n; ρn)|Nij(n) = 1, X = x, Y = y, Kij(n) = 1]

)kij

. (8.25)

Moreover,

E[J ′ij(n; ρn)|Nij(n) = 1, X = x, Y = y, Kij(n) = 1] = E[Tn,ij]
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introduced in Lemma 8.3. Thus for any (x, y) in Σn,ij,

E[J ′ij(n; ρn)|Nij(n) = 1, X = x, Y = y, Kij(n) = 1] = E[Tn,ij]





∈ (1− sρn , 1− sρn + `2
n] if (i, j) ∈ R1

≤ 1− 0.25sρn + `2
n if (i, j) ∈ R2

≤ 1− 0.5sρn − (wn,ij−1)`n

ρnπ
sρn + `2

n if (i, j) ∈ R3.

Since the above inequalities are independent of the specific coordinates (x, y),

we have

E[E[J ′ij(n; ρn)|Nij(n) = 1, X, Y, Kij(n) = 1]]





∈ (1− sρn , 1− sρn + `2
n] if (i, j) ∈ R1

≤ 1− 0.25sρn + `2
n if (i, j) ∈ R2

≤ 1− 0.5sρn − (wn,ij−1)`n

ρnπ
sρn + `2

n if (i, j) ∈ R3.

(8.26)
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According to (8.24), (8.25) and (8.26), we can get

E[J ′ij(n; ρn)]





∼ e−α

n4 if (i, j) ∈ R1

. e−0.25α

n3.25 if (i, j) ∈ R2

. n−3e
−nsρn

2 e−
nsρn (wn,ij−1)`n

ρnπ if (i, j) ∈ R3.

(8.27)

We immediately have

lim
n→∞

∑

(i,j)∈R1

E[J ′ij(n; ρn)] = lim
n→∞

(mn − 2tn)2 e−α

n4
= e−α, (8.28)

and

lim
n→∞

∑

(i,j)∈R2

E[J ′ij(n; ρn)] = 0 (8.29)

since

∑

(i,j)∈R2

E[J ′ij(n; ρn)] . Θ
(
n3 log n

) e−0.25α

n3.25
.

It is little bit tricky to evaluate
∑

(i,j)∈R3

E[J ′ij(n; ρn)]. We divide R3 into 4(mn−

2tn) groups. Each of them contains tn squarelets whose wn,ij ranging from 1

to tn. According to (8.27),

∑

(i,j)∈R3

E[J ′ij(n; ρn)] . 4(mn − 2tn)n−1e−n
sρn
2 ∗ `n

tn∑
wn,ij=1

e−
n(wn,ij−1)`n

ρnπ
sρn

< 4ne−n
sρn
2

ρnπ

nsρn

= Θ

(
1√
n

)
Θ

(√
n

log n

)

= Θ

(
1√

log n

)
(8.30)

where the second inequality holds due to (8.15).

140



Finally

lim
n→∞

∑

(i,j)∈R3

E[J ′ij(n; ρn)] = 0 (8.31)

From (8.28), (8.29) and (8.31), we prove that

lim
n→∞

E[C ′(n; ρn)] = e−α. (8.32)

Step 2 First a word on the notation used in Step 2: To simplify expressions, we will

write J ′i1j1
J ′i2j2

, Ni1j1 and Ni2j2 instead of J ′i1j1
(n; ρn) J ′i2j2

(n; ρn), Ni1j1(n) and

Ni2j2(n).

The main target in step 2 is to evaluate

E[J ′i1j1
]E[J ′i2j2

] with(i1, j1) ∈ Γn and (i2, j2) ∈ Bn,i1j1

and

E[J ′i1j1
J ′i2j2

] with(i1, j1) ∈ Γn and (i2, j2) ∈ Bn,i1j1\(i1, j1).

Note that J ′i1j1
J ′i2j2

= 1 if and only if Ji1j1 , Ji2j2 , Ni1j1 and Ni2j2 are all equal

to 1, which indicates that Σn,i1j1 and Σn,i2j2 each contains only one node and

both nodes are isolated. Thus

E[J ′i1j1
J ′i2j2

] = E[Ji1j1Ni1j1Ji2j2Ni2j2 ]

= P[Squarelets Σn,i1j1 and Σn,i2j2 each contains one isolate node].
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Conditioning on the coordinates (X1, Y1) of the only node in Σn,i1j1 , the coor-

dinates (X2, Y2) of the only node in Σn,i2j2 and the number of nodes Ki1j1i2j2

outside Σn,i1j1 and Σn,i2j2 , we have

E[J ′i1j1
J ′i2j2

]

= E[Ji1j1Ji2j2Ni1j1Ni2j2 ]

= E[E[Ji1j1Ji2j2Ni1j1Ni2j2 |X1, Y1, X2, Y2, Ki1j1i2j2 ]]

= P[Ni1j1 = 1]P[Ni2j2 = 1]

E
[
E[J ′i1j1

J ′i2j2
|Ni1j1 = 1, Ni2j2 = 1, X1, Y1, X2, Y2, Ki1j1i2j2 ]

]

= P[Ni1j1 = 1]P[Ni2j2 = 1]
∞∑

ki1j1i2j2
=0

(
P[Ki1j1i2j2 = ki1j1i2j2 ]

E
[
E[J ′i1j1

J ′i2j2
|Ni1j1 = 1, Ni2j2 = 1, X1, Y1, X2, Y2, Ki1j1i2j2 = ki1j1i2j2 ]

])
,

(8.33)

where

P[Ni1j1 = 1] = P[Ni2j2 = 1] = n`2
ne
−n`2n

and

P[Ki1j1i2j2 = ki1j1i2j2 ] =
e−n(1−2`2n)(n(1− 2`2

n))ki1j1i2j2

ki1j1i2j2 !
.

Since nodes are placed according to a homogeneous Poisson point process,

given the number of nodes ki1j1i2j2 located outside Σn,i1j1 and Σn,i2j2 , these

nodes are uniformly and independently distributed in [0, 1]2−Σn,i1j1 −Σn,i2j2 .
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Thus for any given coordinates (x1, y1) and (x2, y2) in Σn,i1j1 and Σn,i2j12 re-

spectively, it is not difficult to see that

E[J ′i1j1
J ′i2j2

|Ni1j1 = Ni2j2 = 1, (X1, Y1, X2, Y2) = (x1, y1, x2, y2), Ki1j1i2j2 = ki1j1i2j2 ] =

(
E[J ′i1j1

J ′i2j2
|Ni1j1 = Ni2j2 = 1, (X1, Y1, X2, Y2) = (x1, y1, x2, y2), Ki1j1i2j2 = 1]

)ki1j1i2j2

.

(8.34)

Moreover, according to Lemma 8.5, we have

E[E[J ′i1j1
J ′i2j2

|Ni1j1 = 1, Ni2j2 = 1, X1, Y1, X2, Y2, Ki1j1i2j2 = 1]] = E[Tn,i1j1i2j2 ]

<





1− (2− κρn)sρn + 4`2
n if (i1, j1) ∈ R4 and (i2, j2) ∈ Bn,i1j1\(i1, j1)

1− 0.25sρn + 2`2
n if (i1, j1) ∈ R5 and (i2, j2) ∈ Bn,i1j1\(i1, j1)

1− (1− 0.5κρn)sρn + 4`2
n if (i1, j1) ∈ R6 and (i2, j2) ∈ Bn,i1j1\(i1, j1).

(8.35)

According to (8.33), (8.34) and (8.35), we can get

E[J ′i1j1
J ′i2j2

] =





O (nκρn−8) if (i1, j1) ∈ R4 and (i2, j2) ∈ Bn,i1j1\(i1, j1)

O (n−6.25) if (i1, j1) ∈ R5 and (i2, j2) ∈ Bn,i1j1\(i1, j1)

O (n0.5κρn−7) if (i1, j1) ∈ R6 and (i2, j2) ∈ Bn,i1j1\(i1, j1).

(8.36)
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According to the asymptotic equivalences established in Section 8.3, it is plain

to obtain the following results:

lim
n→∞

∑

(i1,j1)∈R4

∑

(i2,j2)∈Bn,i1j1
\(i1,j1)

E[J ′i1j1
J ′i2j2

] = 0, (8.37)

lim
n→∞

∑

(i1,j1)∈R5

∑

(i2,j2)∈Bn,i1j1
\(i1,j1)

E[J ′i1j1
J ′i2j2

] = 0, (8.38)

and

lim
n→∞

∑

(i1,j1)∈R6

∑

(i2,j2)∈Bn,i1j1
\(i1,j1)

E[J ′i1j1
J ′i2j2

] = 0. (8.39)

Next we are going to evaluate E[J ′i1j1
]E[J ′i2j2

] when (i1, j1) belongs to R4, R5

and R6, respectively.

1) Assume that (i1, j1) is in R4 and (i2, j2) is in Bn,i1j1 .

According to the definitions of R4, R1 and Bn,i1j1 , both (i1, j1) and (i2, j2)

belong to R1, it is then clear that

E[J ′i1j1
]E[J ′i2j2

] = Θ(n−8).

It follows that

∑

(i1,j1)∈R4

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] < Θ(n4)Θ(n3 log n)Θ
(
n−8

)

= Θ

(
log n

n

)
.

Thus

lim
n→∞

∑

(i1,j1)∈R4

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = 0. (8.40)
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2) Assume that (i1, j1) is in R5 and (i2, j2) is in Bn,i1j1 .

According to our analysis in Step 1, E[J ′ij] = O(n−3.25) for any (i, j)

belongs to Γn, it is clear that

E[J ′i1j1
]E[J ′i2j2

] = O(n−6.5).

It follows that

∑

(i1,j1)∈R5

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = Θ(n3 log n)Θ(t2n)O
(
n−6.5

)

= O

(
log n√

n

)
.

Thus

lim
n→∞

∑

(i1,j1)∈R5

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = 0. (8.41)

3) Assume that (i1, j1) is in R6 and (i2, j2) is in Bn,i1j1 .

Since neither (i1, j1) nor (i2, j2) belongs to R2, and according to our

analysis in Step 1, E[J ′ij] = O(n−3.5) for any (i, j) not belong to R2, it is

then clear that

E[J ′i1j1
]E[J ′i2j2

] = O(n−7).

It follows that

∑

(i1,j1)∈R6

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = Θ(n3
√

n log n)Θ(n3 log n)O
(
n−7

)

= Θ

(
log n

√
log n

n1.5

)
.

Thus

lim
n→∞

∑

(i1,j1)∈R6

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = 0. (8.42)
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Finally we have

lim
n→∞

∑

(i1,j1)∈Γn

∑

(i2,j2)∈Bn,i1j1
\(i1,j1)

E[J ′i1j1
J ′i2j2

] = 0 (8.43)

and

lim
n→∞

∑

(i1,j1)∈Γn

∑

(i2,j2)∈Bn,i1j1

E[J ′i1j1
]E[J ′i2j2

] = 0. (8.44)

It is well-known [40, p. 58] that

dTV (Π(E[C ′(n; ρn)]), Π(e−α)) ≤ |E[C ′(n; ρn)]− e−α|

Thus, according to (8.32) obtained in Step 1, we conclude that

lim
n→∞

dTV (Π(E[C ′(n; ρn)]), Π(e−α)) = 0.

Moreover, by Corollary 3.3, we find

lim
n→∞

dTV (C ′(n; ρn), Π(E[C ′(n; ρn)])) = 0

upon using (8.43) and (8.44) obtained in Step 2, and (8.32) obtained in Step 1.

Finally the triangular inequality yields

lim
n→∞

dTV (C ′(n; ρn), Π(e−α)) = 0.

Thus, C ′(n; ρn) converges to a Poisson distribution with parameter e−α, and we have

lim
n→∞

P[C ′(n; ρn) = 0] = e−e−α

.

Finally, the desired result (8.9) follows upon combining (8.3), (8.4) and the

two inequalities

P[C(n; ρn) = 0] ≤ P[C ′(n; ρn) = 0]
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and

P[C ′(n; ρn) = 0] ≤ P[C(n; ρn) = 0] + P[C ′′(n; ρn) = 0].

8.5 Discussion

According to (8.7) established in Lemma 8.4, for each node in G2(n; ρn), its

expected degree Dn satisfies the following inequality

(n− 1)(1− 2ρn)2sρn < Dn < (n− 1)sρn .

It is then plain that Dn = log n + α + o(1) if and only if nsρn = log n + α + o(1).

Thus we establish the following result

Corollary 8.1 The boundary function ρ : N0 → R+ is selected such that the

expected node degree function D : N0 → R+ admits a form

Dn = log n + α + o(1)

with α in R, then it holds that

lim
n→∞

Piso,2(n; ρn) = e−e−α

. (8.45)

We learn from Corollary 8.1 that log n is a critical scaling for the expected

node degree: G2(n; ρn) is very unlikely (resp. likely) to contain isolated nodes if Dn

is suitably larger (resp. smaller) than log n. Indeed, if the link probability function

hρ has bounded support, we really do not need to care about its specific form, the
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only useful information is the expected node degree, which is related to hρ through

(8.1).

Please note that we only estimate Piso,2(n; ρn) rather than Pcon,2(n; ρn) in this

Chapter. We conjecture the following asymptotic equivalence

lim
n→∞

Piso,2(n; ρn) = lim
n→∞

Pcon,2(n; ρn).

This asymptotic equivalence suggests that when there are a large number of nodes

in the network, the absence of isolated nodes is not only a necessary condition, but

also an almost sufficient condition for network connectivity. Similar results exist

for the Erdös Rényi graph (ERG) model and the geometric random graph (GRG)

model.
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Appendix A

A proof of Proposition 6.4

We begin with some easy bounds to be used repeatedly in the proofs. With

0 ≤ x < 1, it is a simple matter to check that

log(1− x) = −
∫ x

0

1

1− t
dt = −x−Ψ(x) (A.1)

where we have set

Ψ(x) :=

∫ x

0

t

1− t
dt, 0 ≤ x < 1.

The mapping x → Ψ(x) is increasing and convex on the interval [0, 1) with

0 < Ψ(x) ≤ x2

2(1− x)
, 0 ≤ x < 1. (A.2)

The standard bound

1− x ≤ e−x, x ∈ [0, 1] (A.3)

is now a simple consequence of the decomposition (A.1) and of the non-negativity

of Ψ.

A proof of (6.30) – Fix n = 1, 2, . . . and τ in (0, 1). The bound (A.3) readily
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yields

K̃(n; τ) ≤
∫ 1−τ

0

ne−nb(x;τ)eb(x;τ)f(x)dx

≤ f ?ef?τK(n; τ). (A.4)

The assumption limn→∞ τn = 0 on the range function τ : N0 → R+ implies the

existence of a positive integer n? such that τn < 1 for all n ≥ n?. Reporting this fact

into (A.4) (with τ replaced by τn for n ≥ n?) gives the desired conclusion (6.30).

A proof of (6.32) – Fix n = 1, 2, . . . and τ in the unit interval (0, 1). Since

0 ≤ b(x; τ) < 1 for all x on the interval (0, 1− τ), we find from (6.27) that

K̃(n; τ) ≥ n

∫ 1−τ

0

(1− b(x; τ))nf(x)dx

≥ f?n

∫ 1−τ

0

(1− b(x; τ))ndx

= f?n

∫ 1−τ

0

e−nb(x;τ)e−nΨ(b(x;τ))dx

with the help of the decomposition (A.1). Next, the bound (A.2) gives

Ψ(b(x; τ)) ≤ b(x; τ)2

2 (1− b(x; τ))
, x ∈ (0, 1)

with 0 < b(x; τ) ≤ f ?τ . Therefore, whenever f ?τ < 1, the uniform bound

sup
x∈(0,1)

Ψ(b(x; τ)) ≤ (f ?τ)2

2 (1− f ?τ)
(A.5)

holds.

Now pick a range function τ : N0 → R+ which satisfies (6.31) (hence also

(6.29)). The latter convergence implies both τn < 1 and f ?τn < 1 for large enough
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n, while the former yields

lim
n→∞

sup
x∈(0,1)

(nΨ(b(x; τn))) = 0

as we make use of (A.5) (where τn is substituted to τ). By continuity of the ex-

ponential mapping, for each ε in (0, 1), there exists a positive integer n?(ε) such

that

inf
x∈(0,1)

e−nΨ(b(x;τn)) ≥ 1− ε, n ≥ n?(ε)

and the bound (6.32) follows.
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Appendix B

A proof of Lemma 6.4

Pick ε in the interval (0, a). Under (6.2), there exists δ = δ(ε) > 0 such that

−ε|x− x?|r ≤ h(x) ≤ ε|x− x?|r

whenever |x− x?| ≤ δ in [0, 1]. On this range, the representation (6.1) yields

c + (a− ε)|x− x?|r ≤ f(x) ≤ c + (a + ε)|x− x?|r. (B.1)

The minimum x? being unique, it follows that

inf {f(x) : x ∈ [0, 1], |x− x?| ≥ δ} = c + r (B.2)

for some r > 0. Therefore, whenever |x− x?| ≥ δ in [0, 1],

f(x) ≥ c + r

≥ c + r|x− x?|r (B.3)

since 0 ≤ |x− x?| ≤ 1 on that range. On the other hand, it is also the case that

f(x) ≤ c + (f ? − c)

≤ c +
f ? − c

δr
· |x− x?|r (B.4)
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whenever |x − x?| ≥ δ in [0, 1]. The desired conclusion follows by combining (B.1)

with (B.3) and (B.4), in which case we can take a− = min (r, a− ε) and

a+ = max

{
f ? − c

δr
, a + ε

}
.
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Appendix C

A proof of Lemma C.1

Throughout this appendix let p ≥ 3 denote a constant. The proof of Proposi-

tion 6.3 relies on our ability to determine the validity of the inequality

(1− (u + v))p ≤ ((1− u)(1− v))p+1 (C.1)

on the range 0 ≤ u, v ≤ 1 under the constraint u+v ≤ 1. The next technical lemma

provides a simple characterization of a large region where this inequality holds.

Lemma C.1 Fix p ≥ 3. For 0 ≤ u, v ≤ 1 with u+v ≤ 1, the inequality (C.1) holds

provided

2

p
≤ min(u, v). (C.2)

Proof. Fix u, v in the interval [0, 1] such that u+v ≤ 1. If this pair satisfies (C.1),

then it also satisfies

1

(1− u)(1− v)
≤

(
1 +

uv

1− (u + v)

)p

. (C.3)
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Since 1− (u + v) ≤ (1− u)(1− v), we see that (C.1) holds if we can show that

1

1− (u + v)
≤ 1 + p

uv

1− (u + v)
(C.4)

as we make use of the standard inequality (1 + t)p ≥ 1 + pt valid for all t ≥ 0. The

inequality (C.4) is equivalent to

1− puv

1− (u + v)
≤ 1, (C.5)

which can be rewritten as

u + v ≤ puv. (C.6)

In short, the pair u, v satisfies (C.1) if

1

u
+

1

v
≤ p. (C.7)

This last inequality is clearly satisfied if we select u and v according to (C.2).

155



Appendix D

A proof of Lemma 8.3

Since the expectation of Tn,ij is the probability that users A and B are not

connected, we can write

E[Tn,ij] = 1−
∫∫

Sn,ij

hρ

(
d(A,B)

)
dxB dyB,

where Sn,ij = Dρ(A)∩(
[0, 1]2−Σij

)
with Dρ(A) being a closed radius-ρ disk around

user A. Note that Σij is completely contained in Dρ(A), thus Sn,ij = Dρ(A) ∩

[0, 1]2 − Σij. Moreover, based on the definition of sρ in (8.1), we can see that

sρ =

∫∫

Dρ(A)

hρ

(
d(A,B)

)
dxB dyB.

1) When (i, j) belongs to R1, Dρ(A) is completely contained in [0, 1]2, thus

Sn,ij = Dρ(A) ∩ [0, 1]2 − Σn,ij = Dρ(A)− Σn,ij.

It then follows that

E[Tn,ij] = 1−
∫∫

Sn,ij

hρ

(
d(A,B)

)
dxB dyB

= 1−
∫∫

Dρ(A)

hρ

(
d(A,B)

)
dxB dyB +

∫∫

Σn,ij

hρ

(
d(A,B)

)
dxB dyB

= 1− sρ +

∫∫

Σn,ij

hρ

(
d(A,B)

)
dxB dyB.
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Since

0 <

∫∫

Σn,ij

hρ

(
d(A,B)

)
dxB dyB < `2

n,

it is plain that

1− sρ < E[Tn,ij] < 1− sρ + `2
n.

2) When (i, j) belongs to R2, it is without loss of generality to only consider the

case that (i, j) belongs to R21. We have

E[Tn,ij] = 1−
∫∫

Sn,ij

hρ

(
d(A,B)

)
dxB dyB

≤ 1−
∫∫

Sn,ij∩
(
[xA,1]×[yA,1]

) hρ

(
d(A,B)

)
dxB dyB (D.1)

The equality in (D.1) holds if and only if xA = yA = 0. The integration

region Sn,ij ∩
(
[xA, 1]× [yA, 1]

)
is displayed as the shaded region in Fig. D.1.

According to Fig. D.1, we have

∫∫

Sn,ij∩
(
[xA,1]×[yA,1]

) hρ

(
d(A,B)

)
dxB dyB ≥ 0.25sρ − l2,

where the equality holds if and only if xA = i−1
mn

and yA = j−1
mn

.

Thus

E[Tn,ij] ≤ 1− 0.25sρ + `2
n.

3) When (i, j) belongs to R3, we similarly have

E[Tn,ij] = 1−
∫∫

Sn,ij

hρ

(
d(A,B)

)
dxB dyB

≤ 1−
∫∫

S∗
hρ

(
d(A,B)

)
dxB dyB, (D.2)
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A

sij

0
1

1

D (A)
r

Figure D.1: Integration region when user A belongs to R21.

where S∗ is the shaded region displayed in Fig. D.2. In Fig. D.2, we denote

the minimum distance of user A to the border of [0, 1]2 by d, which is equal

q

d

border

A

r

S*

Figure D.2: Integration region when user A belongs to R3.
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to min(xA, yA, 1− xA, 1− yA). According to Fig. D.2, we have

E[Tn,ij] ≤ 1−
∫∫

S∗
hρ

(
d(A,B)

)
dxB dyB

< 1− sρ

2
− θ

π
sρ + `2

n

= 1− sρ

2
−

arcsin(d
ρ
)

π
sρ + `2

n

≤ 1− sρ

2
− d

ρπ
sρ + `2

n

≤ 1− sρ

2
− (wn,ij − 1)l

ρπ
sρ + `2

n,

where wn,ij = d d
`n
e. It is clear that w is determined by i, j and n, thus

wn,ij = min(i, j, mn − i,mn − j).
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Appendix E

A proof of Lemma 8.5

It is plain that

E[Tn,i1j1i2j2 ] =

∫∫

Σ′n,i1j1i2j2

(
1− hρ

(
d(A,C)

)) (
1− hρ

(
d(B, C)

))
dxC dyC ,

where Σ′
n,i1j1i2j2

= [0, 1]2 − Σn,i1j1 − Σn,i2j2 .

Since user C is uniformly distributed in Σ′
n,i1j1i2j2

,

E[Tn,i1j1i2j2 ] = 1−
∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
dxC dyC

−
∫∫

Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(B, C)

)
dxC dyC

+

∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC

(E.1)

1) When (i1, j1) belongs to R4, both Dρ(A) and Dρ(B) are completely contained

in [0, 1]2, thus we have

∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
dxC dyC =

∫∫

Dρ(A)−Σn,i1j1
−Σn,i2j2

hρ

(
d(A,C)

)
dxC dyC

≥ sρ − 2`2
n,
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and similarly

∫∫

Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(B, C)

)
dxC dyC ≥ sρ − 2`2

n.

Moreover,

∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC

≤ max
{∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

h2
ρ

(
d(A,C)

)
dxC dyC ,

∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

h2
ρ

(
d(B, C)

)
dxC dyC

}

< max
{∫∫

Dρ(A)

h2
ρ

(
d(A,C)

)
dxC dyC ,

∫∫

Dρ(B)

h2
ρ

(
d(B, C)

)
dxC dyC

}

= κρsρ,

where the last equality holds according to the definitions of sρ and κρ in (8.1)

and (8.2), respectively.

Thus the desired result when (i1, j1) belongs to R4 follows from (E.1).

2) When (i1, j1) belongs to R5, we have

∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
dxC dyC ≥ 0.25sρ − 2`2

n.

Also it is clear that

∫∫

Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(B, C)

)
dxC dyC

≥
∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(B, C)

)
dxC dyC

≥
∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC .

Thus the desired result follows from (E.1).
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3) When (i1, j1) belongs to R6, it is without loss of generality to only consider

the case that (i1, j1) belongs to R61. According to Fig. E.11, since yB ≥ 0, we

have
∫∫

Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(B, C)

)
dxC dyC ≥ 0.5sρ − 2`2

n,

and

∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
dxC dyC

−
∫∫

Dρ(A)∩Dρ(B)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC

≥
∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
dxC dyC

−
∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC

=

∫∫

Dρ(A)∩Σ′n,i1j1i2j2

hρ

(
d(A,C)

) (
1− hρ

(
d(B, C)

))
dxC dyC

≥
∫∫

Dρ(A)∩Σ′n,i1j1i2j2
∩([0,1]×[yA,1])

hρ

(
d(A,C)

) (
1− hρ

(
d(B, C)

))
dxC dyC

The integration region Dρ(A)∩Σ′
n,i1j1i2j2

∩ ([0, 1]× [yA, 1]) is displayed as the

shaded region in Fig. E.1. It is plain from the figure that

∫∫

Dρ(A)∩Σ′n,i1j1i2j2
∩([0,1]×[yA,1])

hρ

(
d(A,C)

)
dxC dyC

≥
∫∫

Dρ(A)∩([0,1]×[yA,1])

hρ

(
d(A,C)

)
dxC dyC

−
∫∫

Σn,i1j1
∪Σn,i2j2

hρ

(
d(A,C)

)
dxC dyC

≥ 0.5sρ − 2`2
n

1Our analysis is based on the assumption that yA ≥ yB , the case that yA < yB can be similarly

analyzed.
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and

∫∫

Dρ(A)∩Σ′n,i1j1i2j2
∩([0,1]×[yA,1])

hρ

(
d(A,C)

)
hρ

(
d(B, C)

)
dxC dyC

≤ max
{∫∫

Dρ(A)∩Σ′n,i1j1i2j2
∩([0,1]×[yA,1])

h2
ρ

(
d(A,C)

)
dxC dyC ,

∫∫

Dρ(A)∩Σ′n,i1j1i2j2
∩([0,1]×[yA,1])

h2
ρ

(
d(B, C)

)
dxC dyC

}

≤ max
{∫∫

Dρ(A)∩([0,1]×[yA,1])

h2
ρ

(
d(A,C)

)
dxC dyC ,

∫∫

Dρ(A)∩([0,1]×[yA,1])

h2
ρ

(
d(B, C)

)
dxC dyC

}

≤ 0.5κρsρ

Thus the desired result follows from (E.1).

A s
i1j1

0 1

1

s
i2j2

B

D (A)
r D (B)

r

Figure E.1: Integration region when user A belongs to R61.
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[37] J. Hüsler, “Maximal, non-uniform spacings and the covering problem,” Journal

of Applied Probability 25 (1988), pp. 519-528.

[38] B. Krishnamachari, S. Wicker, R. Bejar, and M. Pearlman, “Critical Density

Thresholds in Distributed Wireless Networks,” book chapter in Communica-

tions, Information and Network Security, Eds. H. Bhargava, H.V. Poor, V.

Tarokh, and S. Yoon, Kluwer Publishers, December 2002.

168
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