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Sudden Cardiac Arrest (SCA) is the leading cause of death in the United States, 

resulting in 350,000 deaths annually.  SCA survival requires immediate medical 

treatment with a defibrillatory shock and cardiopulmonary resuscitation.  The fatality 

rate for out-of-hospital cardiac arrest is 90%, due in part to the reliance on Emergency 

Medical Services (EMS) to provide treatment.  A substantial improvement in survival 

could be realized by applying early defibrillation to cardiac arrest victims.  

Automated External Defibrillators (AEDs) allow lay rescuers to provide early 

defibrillation, before the arrival of EMS.  However, very few out-of-hospital cardiac 

arrests are currently treated with AEDs. 

 

Novel response concepts are being explored to reduce the time to defibrillation.  

These concepts include mobile citizen responders dispatched by a cell phone app to 



  

nearby cardiac arrest locations, and the use of drones to deliver AEDs to a cardiac 

arrest scene.  A small number of pilot studies of these systems are currently in 

progress, however, the effectiveness of these systems remains largely unknown.   

 

This research presents a modeling and simulation approach to predict the 

effectiveness of various response concepts, with comparison to the existing standard 

of EMS response.  The model uses a geospatial Monte Carlo sampling approach to 

simulate the random locations of a cardiac arrest within a geographical region, as well 

as both random and fixed origin locations of responding agents.  The model predicts 

response time of EMS, mobile dispatched responders, or drone AED delivery, based 

on the distance travelled and the mode of transit, while accounting for additional 

system factors such as dispatch time, availability of equipment, and the reliability of 

the responders.  Response times are translated to a likelihood of survival for each 

simulated case using a logistic regression model.  Sensitivity analysis and response 

surface designed experiments were performed to characterize the important factors 

for response time predictions.  Simulations of multiple types of systems in an 

example region are used to compare potential survival improvements.  Finally, a cost 

analysis of the different systems is presented along with a decision analysis approach, 

which demonstrates how the method can be applied based on the needs and budgets 

of a municipality. 
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Chapter 1: Introduction 

 

Sudden cardiac arrest is the leading cause of death in the United States.  350,000 

people die from sudden cardiac arrest outside of the hospital each year [1].  When 

sudden cardiac arrest occurs, the heart ceases to beat in an organized, normally paced 

rhythm, instead, beating in a rapid, chaotic manner, known as fibrillation.  While in 

this condition, the heart is not able to pump blood through the lungs to achieve 

oxygenation and exhalation of carbon dioxide, and is not able to provide perfusion to 

the brain and other vital organs.  Loss of consciousness occurs immediately, 

neurological damage can occur within a few minutes, and the victim rarely survives 

longer than 10 to 15 minutes. 

 

The treatment for sudden cardiac arrest is a defibrillatory shock and cardio pulmonary 

resuscitation (CPR).  CPR is the act of compressing the cardiac arrest victim’s chest 

by exerting repetitive force on the sternum.  This action can compress the heart, 

causing the circulation of blood to occur.  Mouth to mouth resuscitation or the use of 

a bag valve mask provides oxygen to the lungs during CPR.  Defibrillation is the 

application of an electric shock across the torso of the victim, which interrupts the 

electrical activity of the heart muscles, and can restore a normal, organized heart 

rhythm.  Both CPR and defibrillation must be provided within the first few minutes 

after the onset of cardiac arrest to provide a successful resuscitation.  For every 

minute that elapses after the collapse of the victim the chances of survival are reduced 

by 5% to 10% [2][3][4].  Sudden cardiac arrest stands unique from other diseases and 
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conditions in that much of the focus for improvement in survival is not on the clinical 

treatment of the condition, but on methods to reduce the time to get treatment to the 

patient.   

1.1 Background 

 

Sudden cardiac arrest can affect anyone, often occurring without prior indications.  

Although primarily affecting the elderly, sudden cardiac arrest can occur at any age, 

from neonatal, infants, children, teenagers, and through the adult years.  The 

prognosis for cardiac arrest is very poor.  When it occurs outside of the hospital, the 

survival rate in the United States is about 10% [3][1].  Even when it occurs within 

hospitals, where a quick response and professional care is standard, the survival to 

discharge is only 22% [5].  The primary source of treatment for out-of-hospital 

cardiac arrest (OHCA) is provided by Emergency Medical Services (EMS).  This 

consists of paramedics and emergency medical technicians (EMT) dispatched to the 

cardiac arrest location in an ambulance.  The national standard for EMS response 

times is to reach 90% of calls within 8 minutes [6], for the highest priority calls, 

although many municipalities and rural areas have significantly longer average 

response times.  It is evident with these response times that survival from cardiac 

arrest will be very low.   

 

Survival rates from sudden cardiac arrest have not shown significant improvement 

over time [7].  EMS systems have been optimized for quick response, but they are 

expensive to maintain, let alone to grow, in order to keep up with growing 
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populations, congestion, and urban sprawl.  Rural areas pose even greater challenges 

to achieve a fast EMS response time.  Alternative approaches to response and 

treatment are needed to achieve quicker defibrillation in order to improve survival.  

 

The invention of the Automated External Defibrillator (AED) has allowed bystanders 

to quickly and effectively respond to sudden cardiac arrests (Figure 1).  An AED, 

when applied to a patient, will analyze the heart rhythm, algorithmically determine if 

the patient has a shockable arrhythmia, and deliver a defibrillatory shock.  A “lay 

user”, i.e. a person without any medical training, can apply and operate the AED.  

When AEDs are available and used on a cardiac arrest patient, survival is increased to 

25%, about 3 times the odds of survival as from EMS treatment [8].  Appendix B 

provides further description of the operation and function of an AED.  

 

Figure 1. An Automated External Defibrillator (AED) 
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In locations where AEDs have been widely deployed, such as casinos, significant 

improvement in survival has been achieved.  However, AEDs have failed to reach the 

level of dissemination needed to significantly improve overall survival rates for 

sudden cardiac arrest.  Studies have shown only 2% to 5% of all sudden cardiac 

arrests are treated with an AED prior to EMS arrival [3].  Most AEDs are located 

inside buildings, many being private facilities, and unavailable for cardiac arrests in 

outdoor or public areas.  Additionally, about two thirds of sudden cardiac arrests 

occur within homes, where AED adoption is nearly non-existent. 

 

Recent advances in technology have led to the development of novel concepts to 

overcome these barriers to improved cardiac arrest survival.  One such is the advent 

of the GPS equipped smartphone.  Technology has been developed to dispatch 

volunteer responders who happen to be near a cardiac arrest location via a cell phone 

app.  This allows a type of on-demand ”crowdsourcing” of a rescue response.  

Initially these programs have focused primarily on providing CPR until the arrival of 

EMS.  Pilot studies are being explored where volunteers either carry an AED with 

them at all times, or are directed to the nearest AED in a community registry and then 

to the patient by an EMS dispatcher or by the app.  While these programs have had 

sporadic success stories, it is not yet known how effective these programs will be in 

improving survival, nor what conditions would be required (e.g. responder density, 

AED access) to achieve a desired improvement. 
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The future of bringing early defibrillation to sudden cardiac arrest victims may lie in 

another emerging technology – the autonomous aerial drone.  Drones have the 

capability to travel above traffic and buildings, use a straight line of navigation to the 

scene, and travel at speeds much faster than an ambulance on city streets.  

Development of drones for delivery purposes has been widely publicized, with some 

trials being performed by companies like Amazon [9].  Other companies and 

university researchers have directed research toward the development of drones 

specifically designed for AED delivery.  Drones can quickly transport an AED from a 

central location, such as a fire station, to a cardiac arrest scene, to be used by a 

bystander or dispatched responder.  Significant challenges – both technological and 

regulatory -- must be overcome before this type of response system becomes a reality.  

While technology exists for autonomous drone flights and routing, the FAA currently 

restricts drone flights to visual line of sight of the operator.  The public is not yet 

accustomed to autonomous drones, and must have confidence in the reliability and 

safety of their use.  There is currently research in drone AED delivery, and there have 

been a few simulated rescue demonstrations, however there is not yet any 

municipality using drones in actual medical responses. 

 

Sudden cardiac arrest, by its very nature, is a difficult medical condition to study.  Its 

occurrence is nearly impossible to predict, as many patients show no prior symptoms 

of cardiac issues.  Clinical trials are not able to enroll patients with a known 

condition, in the traditional sense, as is typical with most disease studies.  As the 

cardiac arrest victim is unconscious and unresponsive at the time of the arrest, 
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informed consent cannot be obtained.  Most studies of sudden cardiac arrest 

treatments have either employed a community based approach, where a community 

health agency provides the consent, often accompanied with a public notification, and 

a mechanism for citizens to opt out of the study.  Other methods include identifying 

large numbers of high risk patients and monitoring them for a significant period of 

time.  This too is difficult, because the standard of care is to provide implantable 

cardioverters to patients at the highest risk.  Thus, such study approaches target 

patients with elevated risks, but not high enough to receive an implantable 

defibrillator. 

 

The difficulties of studying cardiac arrest extend to the study of the efficacy of 

response systems.  Formal studies of these new systems require several years to 

generate enough cases to assess the performance of the system.  These studies are 

also expensive, particularly when provisioning large numbers of responders with 

AEDs.  Other difficulties have arisen in these studies as well, such as liability for the 

actions of the responder, patient privacy concerns, the ability and authorization of 

responders to enter private residences, and responder safety.  These make clinical 

studies rare, with only a small number having been commenced.   

 

With the diversity of novel response systems proposed, EMS decision-makers will 

need to estimate costs, effectiveness, and reliability as they determine which type of 

enhanced system to implement within a community.  Modeling and simulation is an 

approach that can synthesize information discovered from studies and trials, and 
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provide predictions on system performance under conditions not available or 

achievable during a study or pilot program.  It can also be used to extrapolate 

information obtained from existing systems, to make predictions about new, untested 

system concepts.   

 

Modeling and simulation are widely used to analyze a system’s capability when direct 

experimentation is difficult, costly, unsafe, or infeasible.  A model is an abstraction of 

a real world item or system, which allows for simplified analysis or evaluation of the 

system.  A model may be a physical representation of an item, or a functional 

representation, usually involving a computational or mathematical evaluation of the 

functions of a system.  Modeling and simulation provide an approach to studying 

sudden cardiac arrest response concepts that can be both flexible and comprehensive 

in the analysis of factors that impact system performance.  The benefits of modeling 

and simulation are the ability to predict the performance of a system under many 

different conditions, in order to define an optimal or ideal set of conditions, or most 

cost effective conditions to apply to the real system.  Where direct studies of a 

response system may take several years and cover a single set of operating conditions, 

simulation experiments can be performed in a relatively short time and cover multiple 

conditions to provide a spectrum to system performance potential.  Models can be 

applied prospectively as decision support tools, which inform the decision-makers of 

the most efficient, effective, and cost-effective type of system, and the optimal 

conditions of such a system. 
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1.2 Goals of this Research 

 

The objective of this research is to generate new knowledge that can be used to 

design and realize better cardiac arrest response systems, such that more lives can be 

saved.  The goal is to create a comprehensive approach and decision support tools 

that can help decision-makers predict the effectiveness and evaluate the costs and 

benefits of various novel response systems.  This objective is approached through the 

development of a set of mathematical models which can simulate the cardiac arrest 

response times of different proposed response systems, and provide comparison to 

simulated EMS response times.  The models were developed such that the effects of 

different attributes, or conditions of the system can be evaluated, including the 

reliability of the system, as pertaining to its ability to provide a response.  Together, 

these are used to provide an estimated improvement in survival, i.e. the public health 

benefit of the system.  The benefits of the various systems can be balanced against the 

cost of implementing such a system. 

 

This research is intended to answer the following questions: 

1.  Can alternative cardiac arrest medical response systems provide a 

substantial improvement in survival for out-of-hospital cardiac arrest? 

 

o What system structure and conditions are needed to achieve the 

improvement in survival? 
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o Can alternative response systems provide cost effective improvement 

in the survival rate for cardiac arrest? 

These alternative response systems, by design, can only improve survival, as 

they are an additional response system to augment the traditional EMS 

response system.  The effectiveness of the traditional EMS response is 

assumed unaffected by the addition of an enhanced response system in these 

models, thus the overall survival could be no worse than with an EMS 

response only.  If an adverse impact on EMS response efficacy did exist due 

to the additional response system (for example, EMS response slows because 

they believe help will already be on the scene), it is conceded that only an 

actual human trial could identify the effect.  Hence, the more important 

question is how much of an improvement in survival could be achieved by 

these systems, and what conditions of the system would be necessary to 

realize the improvement.   

 

A series of simulation experiments were used to explore each of the models, 

to understand the effect of each factor.  The research also provides analysis 

of the overall cost of each proposed concept, as well as the costs associated 

with varying different conditions in the system. 

 

2.  How could modeling and simulation methods be used to evaluate the 

benefits of various alternative response systems for specific municipalities or 

EMS organizations? 
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EMS organizations vary greatly in their capabilities, response time 

performance, budgets, priorities, etc.  Some municipalities could benefit 

more from one type of alternative response, while others may find greater 

benefit from entirely different systems.  The culture of a community may 

provide a preferred choice.  A close knit community may find volunteer 

responders easy to recruit.  Other communities may not be comfortable with 

non-commissioned volunteer responders entering private residences, or 

having access to the location of cardiac arrest victims.  Modeling and 

simulation would be a significant asset in decisions around improving 

response systems, and allocating budget.  The predicted effectiveness of 

different options could be balanced against community preferences, values, 

and resources. 

 

1.3 Outline of Dissertation 

This dissertation is organized as follows:  Chapter 2 provides a literature review of 

existing and proposed novel cardiac arrest response concepts, as well as the 

application of modeling and simulation to the area of emergency response systems.  

Chapter 3 provides an overview of the research approach, including the modeling and 

simulation that served as the basis for this dissertation.  Chapter 4 describes the 

model, its inputs, outputs, and execution, as well as an approach for verification and 

validation.  Chapter 5 examines the sensitivity of the model to input factors, as well 

as a response surface design of experiments (DOE) analysis of the response behavior 
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and interactions of significant factors.  Chapter 6 applies the model and simulation to 

compare the effectiveness of a diversity of systems, while Chapter 7 extends the 

comparison to include a cost analysis and cost-benefit decision approach.  Chapter 8 

summarizes the key points of the research, the limitations, and future directions of the 

research. 
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Chapter 2: Literature Review 

 

2.1 Cardiac Arrest Survival 

 

The American Heart Association defines sudden cardiac arrest as “the abrupt loss of 

heart function” where “the time and mode of death are unexpected”.  Cardiac arrest 

results in immediate failure of the circulatory system.  Visible symptoms of cardiac 

arrest include a sudden collapse, loss of consciousness, lack of a pulse, and lack of 

breathing.  The cessation of perfusion to the lungs, brain, and other organs causes 

tissue hypoxia, which if untreated, leads to death within minutes.  The prognosis for 

victims of sudden cardiac arrest is poor, as the fatality rate in the United States is 

nearly 90% [3]. 

 

Cardiac arrest is caused by an irregular electrical rhythm of the heart.  While there are 

many types of arrhythmias, the two that require immediate treatment to prevent death 

are ventricular fibrillation (VF) and ventricular tachycardia (VT).  The treatment for a 

patient in VF or VT is CPR, defibrillation, and Advanced Cardiac Life Support (drug 

delivery, airway intubation, and other treatment provided by a medical professional).  

A detailed discussion of the physiology of cardiac arrest and its treatment is provided 

in Appendix A. 
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The time from patient collapse to defibrillation has a strong correlation to survival.  

An often quoted heuristic is the chances of survival decrease by 10% for each minute 

that passes before defibrillation [10].  More precise studies by Abrams et al. [3]and 

Wik  et al. [11] have produced survival curves such as the one shown in Figure 2.  

Larsen et al. formed a linear regression model on time-to-CPR tCPR, time-to-

defibrillation tdefib, and time-to-Advanced Cardiac Life Support tACLS to produce the 

probability of survival Ps equation [2]: 

 

Ps = 0.67 – 0.23tCPR - 0.11tdefib – 023tACLS    (1) 

 

This model is limited to the first 20 minutes after the arrest.  Valenzuala et al. 

improved by using logistic regression to model survival.  They reported a reduced 

model, consisting of only time to defibrillation and time to CPR, provided equivalent 

predictive accuracy to more complex models [12]: 

 

Ps = 
𝑒𝑙

𝑒𝑙+1
        (2) 

Where: l = 0.26 – 0.106tCPR - 0.139tdefib 

 

Others have reported significantly higher survival possibilities with very short time to 

defibrillation. 
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Figure 2.  Cardiac arrest survival based on response time, whether the collapse was 

witnessed, and the presenting arrhythmia of the patient.  Adapted from [3]. 

 

Treatment and survival of cardiac arrest are measured by both physiological states, as 

well as time or recovery event based.  The most immediate measurement of treatment 

of cardiac arrest is known as Return of Spontaneous Circulation (ROSC).  This is the 

conversion of a cardiac arrhythmia to a rhythm that is capable of providing perfusion 

without the aid of CPR.  A second measurement is survival to hospital admission.  

This metric may be used to evaluate the effectiveness of an EMS response when 

ultimate patient outcome is not known or easily tracked.  One of the most common 

used metrics in response and treatment studies is Survival to Hospital Discharge.  

This metric indicates that a medium term (several days) survival and some amount of 
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recovery has occurred.  Other metrics may track longer survival, such as 1-year 

survival, or the neurological state of the surviving patient.  Often, survival rates are 

classified as pertaining to either witnessed or unwitnessed out-of-hospital cardiac 

arrest, or may be classified according to the presenting arrhythmia.  Survival rates are 

sometimes quoted for the Utstein subgroup, i.e. cases of bystander witnessed out-of-

hospital cardiac arrest with an initial shockable rhythm, as this is considered the most 

“savable” subset of all cardiac arrest cases [13]. 

 

 

2.2 EMS Response to Cardiac Arrest 

 

Most out-of-hospital sudden cardiac arrest patients are treated by EMS.  In response 

to a 911 medical emergency call, ambulances are dispatched to the arrest location.  

Some systems may dispatch ambulances or fire trucks to provide Basic Life Support 

(BLS) first, which consists of CPR and defibrillation, followed by an ambulance with 

paramedics to provide ACLS. 

 

The National Fire Protection Association (NFPA) Standard 1710 requires “the fire 

departments EMS for providing ALS shall be deployed to provide for the arrival of an 

ALS company within an 8-minute response time to 90 percent of incidents” [6].  A 

study of 485 EMS agencies in the United States showed in urban and suburban areas 

median response times of 6 minutes with the 90th percentile responses within 12 and 

14 minutes respectively [14].  However, in rural areas, the median response time 

dropped to 13 minutes with the 90th percentile reaching 26 minutes. 
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Cardiac arrest survival with EMS response is poor.  Cram et al. report a survey of 

studies ranged from 2% to 20% survival, with an average of 10% [8].  A relative few, 

high performing EMS communities, have reached survival rates in excess of 50% 

with EMS treatment [15].  These communities, such as King County, WA, benefit 

from fast ambulance response times as well as a high likelihood of bystander CPR.  

However, the reality is that 95% of all major cities worldwide have survival rates less 

than 5%. 

 

2.2.1 EMS Response Modeling and Simulation 

 

EMS dispatch locations and ambulance resourcing presents a problem driven by 

medical objectives, economic considerations, as well as political influences.  EMS 

policy makers have turned to operations research for decision support tools to find 

optimal solutions to these objectives.  The EMS models may be categorized by two 

purposes:  identification of optimal ambulance station locations to maximize coverage 

of demand points and to minimize response time, and simulation to assess the 

performance of an EMS system and evaluate potential operational strategies. 

 

Optimal EMS location modeling was first introduced by Toregas et al. in 1971[16].  

He proposed the use of a Set Covering Problem to identify the minimum ambulance 

locations nodes such that each demand node is within a certain response time or 

distance radius of an ambulance location node.  Church and ReVelle developed a 

Maximal Covering Location Problem approach to optimize the service locations 
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under a constrained number of location nodes [17]. The objective of their approach is 

to identify location points for a fixed number of facilities that provide the maximum 

coverage of demand points within a desired distance of the facilities (Figure 3).  

These approaches are limited by the fact that each demand node is covered by only 

one ambulance, and if the ambulance is on a call, a significant area of demand nodes 

is uncovered for a period of time. 

 

 

Figure 3.  Maximum Covering Location Problem (from [18]).  Red dots represent 

facility locations.  Blue dots represent demand locations.  Circles show the coverage 

area of each ambulance base facility. 

 

To address this weakness, Gendreau et al. proposed the Double Standard Model, 

which applies two coverage radii, r1 and r2, where r1 < r2 [19].  This approach applies 

double coverage constraints to the optimization, with α proportion of demand points 
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within the distance r1 and all demand points covered within distance r2.  The model 

was later extended to the Dynamic Double Standard Model, where ambulances can be 

redeployed to new locations in real time when an ambulance is out on a call [20].   

 

Another utilization of modeling and simulation for EMS systems is for the assessment 

of system performance.  This enables optimization of EMS system configuration (e.g. 

the number of ambulances at each dispatch location) and operational strategy (e.g. 

when to perform maintenance on an ambulance).  Ambulances are finite resources 

which may either be available or in service at any given time, while emergency calls 

are stochastic events which may be modelled as stationary or non-stationary Poisson 

arrival processes.  As such, Discrete Event Simulation (DES) has been utilized for 

research in EMS system simulation.  Larson describes the problem as a queuing 

system with spatially distributed servers [21].  

 

Early use of computer simulations by Savas analyzed ambulance service 

improvements in New York city [22].  He evaluated the cost-effectiveness of changes 

to the number and location of ambulances, and identified low cost improvements in 

service by redistributing existing ambulances.  More recently, Ingolfssen et al. used 

DES to evaluate a single start system (all ambulances located at the same base) 

against the existing multiple start system (10 existing ambulance base locations) for 

the city of Edmonton, Canada [23].  The simulations concluded that a single start 

system could improve average ambulance availability due to improved efficiency in 

ambulance cleaning and restocking between calls, and that an increase in the 
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percentage of calls reached within a 9-minute target response time could be achieved.  

Wu used DES to create a simulation model for Tainin City, Taiwan [24].  The model 

was used to develop operational strategies to minimize disruption to normal service 

when ambulances are unavailable due to provisional events, such as festivals and 

races. Nogueria et al. used both optimization modeling to locate and allocate 

ambulances for the EMS service in Belo Horizonte, Brazil, together with a DES 

model to analyze the dynamic behavior of the system [25]. 

 

2.3 Public Access Defibrillation 

 

Up until the early 1990s, defibrillation was a treatment which was only performed by 

doctors or other highly trained clinicians.  The advent of the AED, and its ability to 

enable lay-responders, or those without medical training, to provide the lifesaving 

defibrillation therapy, brought new strategies to improve response times for cardiac 

arrests.  The concept of Public Access Defibrillation (PAD) first came from the 

American Heart Association’s “Future of CPR” task force in 1990 [26][27].  The term 

has since come to encompass the many strategies of untrained responders using AEDs 

to provide early defibrillation.  The AHA’s initial recommendations around PAD 

were [28]: 

 1.  AEDs be widely available for appropriately trained people. 

2.  All firefighting units that perform CPR and first aid be equipped with and 

trained to operate AEDs. 

3.  AEDs be placed in gathering places of more than 10,000 people. 
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4.  Legislation be enacted to allow all EMS personnel to perform early 

defibrillation. 

 

In their second public access defibrillation conference in 1997, the AHA defined four 

levels of public access defibrillation [27].   

Level 1 is traditional dispatched first responders (e.g. firefighters, police) 

which would carry AEDs in their vehicles.   

Level 2 is non-traditional first responders (e.g. life guards, security personnel, 

flight attendants) who have a duty to respond.   

Level 3 is civilian laypersons with first aid training (e.g. sport coaches) who 

have a desire to provide emergency care. 

Level 4 is untrained civilian laypersons who may be a bystander to a sudden 

cardiac arrest.   

Level 1 programs rely on transporting an AED to the scene, while Level 2, 3, and 4 

PAD programs all rely on AEDs strategically located where a need may be likely. 

 

Many countries have adopted national PAD systems (e.g. Japan [29], England [30], 

Austria [31]).  In the United States, AED legislation has progressed on the national 

and state level.  In 1998, Congress Passed the Aviation Medical Assistance Act, 

which directed the FAA to determine requirements for AEDs on passenger aircraft, 

and declared that carriers and individuals are not liable for damages when attempting 

to provide medical assistance during flight [32].  In 2000, congress passed the 

Cardiac Arrest Survival Act, providing Good Samaritan protection against civil 
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lawsuits for good faith efforts to purchase or use AEDs in federal buildings, as well as 

providing $25 million in local grants for AED purchase [33].  In 2002, congress 

passed the Community Access to Emergency Devices Act, providing $30 million in 

grants to states and localities to purchase AEDs for public access placement [34].  21 

states have laws requiring AEDs placed in schools, while 18 states require or 

recommend AEDs in health clubs, sports clubs, and gyms [35].  Other requirements 

vary by state, such as dental offices, day care centers, swimming pools, places of 

public assembly, or buildings that exceed a minimum occupancy. 

 

Public Access Defibrillation has shown improved sudden cardiac arrest survival in 

many implementations. Cram et al. performed a survey of several published studies, 

citing a probability of survival to hospital discharge range of 0.20 to 0.50 with use of 

a PAD AED, versus a survival range of 0.02 to 0.20 for treatment by EMS only [8].  

Casinos have been one of the most successful applications of a PAD program.  

Valenzuela et al. performed a prospective study using trained security guards in Las 

Vegas casinos resulting in 53% survival to hospital discharge [36]. Through the use 

of video surveillance systems, strategic AED placement, and thorough training, the 

study found the average time from collapse to CPR was 2.9 minutes, and 4.4 minutes 

to defibrillation.  Another successful PAD implementation has been equipping police 

with AEDs and dispatching to cardiac arrest scenes along with EMS.  One of the 

pioneering communities in this approach is Rochester, Minnesota.  White et al. 

carried out a retrospective observational study of atraumatic cardiac arrest treatments 

over a 5-year period, finding police responded faster than EMS (5.8 versus 6.3 
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minutes) and survival to discharge was higher for the police response (58% versus 

43% for EMS) [37]. 

 

Despite the promising results in many applications of Public Access Defibrillation, 

the overall survival for cardiac arrest remains low and very few victims receive 

treatment prior to EMS arrival.  Agerskov et al. report that in Copenhagen, Denmark, 

only 3.8% of all out-of-hospital cardiac arrests have an AED applied despite 15.1% of 

arrests occurring within 100m of a PAD AED [38].  Similarly, in Denmark, a 

longitudinal study of AED usage found an improvement in public locations from 

1.2% in 2001 to 15.3% in 2012 after nationwide initiatives to increase bystander 

resuscitation [39].  However, the use of AEDs in residential locations remained at 

only 1.3% even after the awareness and training initiatives.  Deakin et al. studied 

PAD efficacy in Hampshire, England, concluding only 4.2% of cardiac arrest calls 

had an AED available in the vicinity of the arrest, and only 1.74% were successfully 

retrieved and used [40].  In the United States, an analysis of the Cardiac Arrest 

Registry to Enhance Survival (CARES), established by the Center for Disease 

Control (CDC), found only 4.4% of out-of-hospital cardiac arrest cases had an AED 

used by a bystander [3].  

 

2.3.1 Modeling and Simulation of PAD Systems 

 

The locating of AEDs to maximize likelihood of use and geographical coverage has 

received significant research.  Widespread dissemination of AEDs has been limited 

by the cost of the devices and as such AEDs may be considered a finite resource.  
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European Resuscitation Council (ERC) recommends placing an AED where cardiac 

arrest occur every two years [41] while the American Heart Association (AHA) 

recommends placement where a cardiac arrest occurs every five years [42].  Such 

guidelines may be cost prohibitive or may only cover a fraction of cardiac arrests. A 

study of the geographic locations of cardiac arrests in Copenhagen, Denmark, 

between 1994 and 2005 estimated that 19.5% of arrests would be covered under the 

ERC guidelines and 66.8% would be covered under the AHA guidelines [43].  The 

need for strategic placement of AEDs has led to the development of different 

optimization approaches. 

 

Several attempts to identify high risk locations to place AEDs have identified certain 

building types as target locations.  These are primarily facilities with high density of 

people -- transportation hubs, airports, sports venues, malls.  Early work to identify 

such buildings was done by Becker et al. in Seattle, Washington [44].  The study 

classified buildings into 23 categories, with 2 additional categories for automobile 

and outdoors.   The authors identified 10 location categories as high cardiac arrest 

incidence and thirteen as low incidence.  Similar approaches to classifying high risk 

locations followed in Kansas City, Missouri [45], Toronto, Canada [46], and 

Copenhagen, Denmark [43].  These approaches yielded limited results due to the fact 

that only a few facility types had multiple cardiac arrests over the study period, with 

most types having only one arrest.  The predictive power of this approach is limited, 

and beyond the identifications of a few sudden cardiac arrest “hot spots”, the method 

does not address where to place AEDs in lower incidence areas. 
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The locating of AEDs to maximize the spatial coverage of an area has employed 

similar approaches as used in locating ambulance bases.  Two common demand 

measures for coverage problems are population based (i.e. covering the maximum 

proportion of a population within a defined distance of an AED) or historical arrest 

location based (i.e. covering the maximum number of locations of past cardiac 

arrests).  Chan et al. used a model based on the Maximal Covering Location Problem 

to assess optimal locations for additional AED placement in Toronto, Canada [47]. 

They first assessed the coverage of the existing AED network through a location 

registry, determining the number of historical arrests within 100 meters of a 

registered AED (assumed to correspond to a 1.5-minute walk).  They compared a 

population based placement approach, using building floors as a proxy population 

density, to an optimized approach with the MCLP model.  The optimized model 

approach outperformed the population based approach under scenarios of various 

numbers of additional AEDs. 

 

 

2.4 Emerging Concepts for Novel Response Systems 

 

With the lifesaving potential of early defibrillation with an AED established, but the 

low likelihood of an AED being used in out-of-hospital cardiac arrests, researchers 

are proposing new methods to bring early defibrillation and CPR to cardiac arrest 

victims.  Ringh et al. propose changing the definition of PAD from who defibrillates 

the patient to how the AED is brought to the patient [27].  The authors have proposed 

new definitions consisting of three levels of PAD: 
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 Level 1 is dispatched professional first responders.  This includes paramedics, 

fire fighters, and police, who transport an AED to the cardiac arrest location. 

 Level 2 is dispatched lay first responders.  These are civilian responders who 

may or may not transport the AED to the scene (they may be guided by the 

dispatch center to retrieve an on-site AED), and may or may not be trained. 

 Level 3 is non-dispatched lay responders.  These are random bystanders who 

retrieve a nearby AED. 

 

This section summarizes some of the newer response concepts, pilot programs, and 

studies, as well as modeling and simulation research relevant to these systems.  The 

systems are separated into two broad categories:  Sections 2.4.1 through 2.4.4 discuss 

mobile responder systems, which are characterized as systems which rely on 

volunteers or off duty first responders, who are dispatched to the cardiac arrest 

location by phone app, and whose location at the time of dispatch is not 

predetermined nor specifically predictable.  Sections 2.4.5 through 2.4.6 discuss 

Aerial Drone systems, which are characterized by the aerial transport of an AED from 

a fixed base location to the cardiac arrest location. 

 

2.4.1  PulsePoint 

 

PulsePoint is a non-profit organization that provides smartphone apps as well as EMS 

dispatch integration to alert CPR trained volunteers of nearby cardiac arrests [48].  

Enrollment is on a voluntary basis, with no verification of responder training or 

background check, such that members of the system remain ”anonymous”.  As such, 
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the system is only used for cardiac emergencies that occur in public locations.  A 

snapshot of the distribution of enrolled responders in Portland, Oregon, and the 

surrounding suburbs is shown in Figure 4.  Pulse Point creates a network of mobile 

responders, which use a “crowdsourcing” approach to achieve quick CPR to cardiac 

arrest victims.  PulsePoint is active in 3,815 communities around the globe, with most 

being in the United States. 

 

 
Figure 4.  Snapshot of distribution of responders in PulsePoint system approximately 

3260 sq. km region of Portland, Oregon and the surrounding area (from [48]).  The 

orange figures show the locations of all PulsePoint responders within the area at a 

single point in time. 

 



 

27 

 

The system is activated when a 911 call is determined to be for a possible cardiac 

arrest (such as symptoms of collapse, non-responsive, not breathing, etc.).  All 

members within a quarter mile radius of the arrest scene are dispatched to the scene 

with an audible alert on the cell phone as well as a satellite image map showing the 

location of the user and the cardiac arrest location.  An address or description of the 

location is provided as well.   

 

PulsePoint also creates a registry of AED locations within an area.  The registry is 

populated by a crowdsourcing approach, with members of the public uploading the 

geo-location of AEDs through the cell phone app, along with a picture of the AED 

and description of the location.  When an activation occurs, users receiving the 

notification are provided with the location of the nearest AED as well as the cardiac 

arrest location (Figure 5). 
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a) b) 

Figure 5. PulsePoint smartphone app showing a) cardiac arrest activation; and b) 

AED registry on cell phone app (from [48]). 

 

PulsePoint has realized only limited success since its implementation in 2012.  

Although the organization reports over 1.9 million citizen responders, and over 

98,000 activations [48], only a small percentage of these have resulted in actual 

responder treatment to the patient.  A survey provided to responders shortly after an 

activation notice was sent indicated only 23% of activated responders attempted to 
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travel to the cardiac arrest location, with only 11% arriving at the scene [49].  

Reasons cited for not responding included: 

 the cell phone being muted, 

 the responder did not hear the alert due to a noisy environment,  

 the responder was away from their phone,  

 they were unavailable at the time of the call,  

 the arrest location was considered too far away,  

 a belief that EMS would arrive first,  

 unable to get out of a vehicle at the time of a notification (e.g. on a bus),  

 they did not understand how to get to the location. 

 

2.4.2 ALERT Study 

 

The ALERT study is a currently ongoing pilot program sponsored by Philips 

Healthcare, King County Public Health Department, the University of Washington, 

and PulsePoint.  The program uses the PulsePoint system, adding to it the concept of 

a verified responder who carries an AED with or near them at all times (e.g. in a grab 

bag, or in their car).  Verified responders represent a different class of responder 

within the PulsePoint system.  These responders are targeted to be off duty 

professional health care workers or other public safety workers.  This includes off 

duty firefighters, policemen, nurses, doctors, security officers, life guards, search and 

rescue volunteers, etc.  These responders are trained in first aid and typically in AED 
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use as part of their jobs, and are experienced in responding to critical and potentially 

chaotic events. 

 

For the ALERT study, off duty firefighters were recruited from five EMS districts:  

Tualatin Valley Fire and Rescue (suburbs around Portland, Oregon), Sioux Falls Fire 

and Rescue (Sioux Falls, South Dakota), Spokane Fire Department (Spokane, 

Washington), Spokane Valley Fire Department (Spokane Valley, Washington), and 

Madison Fire Department (Madison, Wisconsin) [50].  The study recruited 621 

verified responders across the five districts, with 550 AEDs provided to the 

responders.  A survey taken during the recruitment process indicated that 54% would 

keep the AED in their car, while 38% would carry the AED on their person [51].  The 

verified responders would be dispatched by the same PulsePoint cell phone app as the 

lay responders, but would be dispatched into private residences as well as public 

locations.  The dispatch radius could also be increased for the verified responders. 

 

Interim results from the study indicate that verified responders have been activated to 

a scene 137 times, however 39% were on duty at the time of the activation.  Of those 

that were off duty, 31% attempted to respond to the activation, with 14% making it to 

the scene prior to EMS.  An AED was applied in 3 cases, and there has been one 

resuscitation attributable to the program.   
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2.4.3  Other Mobile Responder Systems 

 

A number of other systems employing the concept of the mobile responder are in 

various stages of trial or implementation throughout the world.  The GoodSAM app 

operates similar to PulsePoint, and has the largest citizen network in the United 

Kingdom [52].  The phone app has the added functionality to stream video back to the 

EMS agency, a feature called “Instant On Scene”, to further aid the response.  

Through the sponsorship of the Singapore Heart Foundation, the “AED on Wheels” 

program has equipped 150 taxi cabs in Singapore with AEDs, fire extinguishers, and 

first aid kits [53].  Dispatched through a phone app, the system has responded to 149 

cardiac arrests since its implementation in 2015.  Hartslagnu (Heartbeat Now) in the 

Netherlands is a phone app dispatch system that will send the closest citizen 

responder to the cardiac arrest location to start CPR, while directing other nearby 

responders to public access AED locations to retrieve an AED before going to the 

cardiac arrest [54].  They have recently partnered with Volvo as a pilot study to have 

AEDs installed in cars and the app integrated with the car’s navigation system. 

 

2.4.4 Modeling and Simulation of Mobile Responder Systems 

 

 

Mobile responder systems incorporate the dispatch of a BLS responders 

simultaneously with the dispatch of an EMS ambulance.  Marshall et al. used a Monte 

Carlo simulation model to predict both volunteer response times and EMS response 

times to sudden cardiac arrest locations in North and West Belfast, Ireland[55].  The 
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simulation accompanied a two year trial in which mobile volunteers and police 

carried AEDs and were dispatched to cardiac arrests scenes by an alphanumeric pager 

[56].   

 

The Belfast study region was divided into seven zones, with each zone having a 

single volunteer responder ”on duty” at any given time.  EMS response times were 

modeled using a log-logistic distribution fit to historic response time data for each of 

the seven zones.  Responder times were pre-calculated using road network 

information (Microsoft MapPoint Europe 2004) for response times between the 

centroid of each of the 7 zones to the centroid of each of 434 Census Output Areas 

within the region.  For the simulations, variation around the expected volunteer 

response times was added using a log-logistic distribution.  Their model also 

accounted for the likelihood of availability of each of the seven responders for each 

cardiac arrest simulations.   

 

The simulation resulted in volunteers arriving ahead of EMS 18.8% of events, with an 

average improvement of 56 seconds over the EMS response.  This compared against 

the actual study results of 15%.  The survival regression model presented by Larsen et 

al. [2] was incorporated into the model to predict survival for witnessed cases with an 

initial rhythm of VF or VT.  The authors used the model to predict an improvement of 

the volunteer arrival first by an additional 18% if the availability doubled, and 32% if 

it is tripled.   

 



 

33 

 

Khalemsky et al. created an Emergency Response Community Effectiveness Model 

(ERCEM) to simulate response times for cell phone app alert systems for 

anaphylaxis, hypoglycemia, and opioid overdose [57].  They estimated the number of 

responders in the systems based on population density and the percentage of the 

population prescribed to carry the medicine for each condition.  They used additional 

factors to account for the fraction of this subpopulation who would participate in the 

community responder program.  They then applied a Monte Carlo simulation for the 

number of responders within a 1km or 2km radius of the patient in need, and 

estimated response times base on the travel distance and some system delay values.  

They compared these response times to actual EMS response times recorded in the 

NEMSIS database for specific events, or to benchmark EMS response times.  Their 

model was limited to walking mode responses only, and considered only the 

Euclidean distance for the transit.  Their simulation found that phone dispatched 

responders a EMS in 13% of cases.  They proposed the ERCEM as a decision support 

tool for communities considering augmentation of their EMS response with these 

citizen network systems. 

 

2.4.5 Aerial Drone Response Systems 

 

A significant drawback of PAD systems is that coverage of low demand areas within 

a quick retrieval distance, i.e. 150 meters, is not cost affective.  Static AED placement 

is most effective in buildings or areas with a high concentration of people.  Even 

when an AED is near the cardiac arrest scene, it is often difficult for bystanders to 

locate and retrieve the nearest AED.  A method to deliver the AED quickly to the 
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scene, which is currently being researched, is the use of Unmanned Aerial Vehicles 

(UAV), also known as drones.   

 

UAV drones have the capability to transport an AED quickly to a cardiac arrest 

scene, flying above traffic, buildings, and other obstacles.  Drones can travel from 50 

km/h to 150 km/h.  AED weight is currently well within the payload capability of 

existing drones, however once the feasibility of a drone response system is 

demonstrated, AEDs could be designed specifically for integration with drones.  

Cameras on the drone could provide situational awareness to en route EMS 

responders, as well as the potential for CPR coaching and AED application feedback 

from the 911 operator.  AED deployment concepts being explored include dropping 

with a small parachute near the arrest scene, landing the drone with the AED 

attached, or lowering the AED by a cable and winch.  The AED can be received and 

applied by a bystander, or potentially the 911 caller.  Such a system could suffer from 

the same apprehension of bystanders or laypersons to apply the AED [58], however 

recent small scale human simulations have produced promising results [59] .  A drone 

system paired with a dispatched mobile responder system has been proposed to 

address this issue [60].  GoodSAM will begin offering an AED Drone Delivery 

service to communities supported by its responder network by the end of 2020 [61]. 

 

Drone medical supply transport systems have currently only been implemented in 

remote, isolated areas.  Zipline uses fixed wing drones to fly blood supplies and 

vaccines to remote areas in Rwanda and Tanzania [62].  In Stockholm, Sweden, 
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researchers obtained temporary permission to perform aerial drone rescue simulations 

over unpopulated areas [63] (Figure 6).  The simulated rescues included three AED 

deployment methods:  parachute; dropping the AED from a 3 to 4-meter height, and 

landing the drone.  The authors concluded dropping the AED was the safest and most 

practical method.  A similar mock rescue study by researchers from the University of 

Toronta, using response beyond line of visual sight navigation, found that drones 

responded 2.1 to 4.4 minutes faster than EMS for distances from 6.6 to 8.8 km  [64].  

Outside of Ottawa, Canada, in Renfrew County, drones are used to deliver medicine, 

and recently the first drone was dispatched to a cardiac arrest scene with an AED  

[65].  In the United States, the city of Reno Nevada was recently selected as one of 10 

designated drone test areas by the Federal Aviation Administration as part of the 

Unmanned Aircraft Systems Integration Pilot Program [66].  The drone startup 

company Flirtey has partnered with the Reno EMS department to pilot an AED 

transport system to cardiac arrest locations [67]. 
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Figure 6. Drone dropping AED in simulated cardiac arrest rescue (adapted from [63]). 

 

Drone delivery of AEDs has garnered much recent attention due to the potential to 

significantly improve access to an AED and time to defibrillation, particularly in rural 

areas or difficult geographic areas where EMS response times are very long.  There 

are, however, significant barriers that need to be overcome to implement a drone 

response system.  Most countries have regulations around the flight of drones, 

including limiting flights to visual line of sight distances, requiring an active pilot, 

airspace restrictions, and nighttime flight restrictions [68].   Commercial drones have 

a maximum flight elevation of 400 ft, and a maximum speed of 100 mph.  There are 

additional concerns for public safety, both with potentially landing drones in crowded 
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public spaces, and in the event of a drone malfunction or loss of power.   Other public 

resistance to drones has come from concerns with noise and privacy [69].  Advances 

in drone technology are addressing some of these concerns, with redundant flight 

systems, autonomous piloting, and collision avoidance sensors.  The early pilot 

programs, as well as the use of simulation to predict the potential benefits of the 

systems, will likely drive regulatory decisions.  It is expected that the public will 

likely view the benefits of such a system as outweighing the risks. 

  

2.4.6 Modeling and Simulation of Drone Response Systems 

 

Modeling of drone response systems has been limited primarily to a few specific 

regions and based on optimizing coverage around historical cardiac arrest locations.  

Similar approaches to those used for optimizing ambulance base locations and AED 

placement locations have been used to model drone responses.  Pulver et al. used an 

MCLP approach to configure a network of drone locations in Salt Lake City, Utah, 

with the objective of providing one minute travel time to all demand locations [70].  

The approach modeled the effect of using existing EMS locations as drone launch 

sites, as well as adding new launch sites to the system.  The analysis found that while 

EMS can reach only 4.3% of demand within one minute, drone responses from 

existing EMS locations increased to 80.1% the locations reached within one minute, 

and 90.3% if new launch sites were added.  
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Boutilier et al. used a two stage approach to modeling drone response systems for 

Toronto, CA and outlying areas [71].  The first stage used a coverage based 

optimization algorithm to determine the minimum candidate drone locations 

(ambulance, fire, and police stations) to provide a 1-minute, 2-minute, and 3-minute 

improvement over EMS response times.  After determining the optimal drone 

locations, the second model used a continuous-state Markov Chain queuing algorithm 

to determine the number of drones required at each location.    The Markov model 

included states of busy and available for drones, based on demand following a 

Poisson process, and busy time based on flight time, treatment time, return time, and 

a drone reset time.  The modeling indicated that 81 drone bases with 100 drones 

would be required for a median improvement of 3 minutes over EMS response time. 

 

Claesson et al. used a modeling approach to identify drone locations in Stockholm, 

Sweden [72].  With use of a GIS tool (ArcGIS), the city was broken into a discrete 

grid, with a raster layer of EMS response time for each area, as well as a raster layer 

of incidence of cardiac arrests for each area.  A 50/50 weighting was used for the two 

layers to find optimal locations in the urban area of Stockholm, while an 80/20 

weighting (80% to EMS response time, 20% to OHCA incidence) was used for 

outlying rural regions.  Using this method, 20 locations were identified which could 

cover 72% of all historic cardiac arrest locations.  The model predicted drone arrival 

before EMS in 32% of urban cases, and 93% of rural cases.  
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2.5 Discussion 

 

Although new concepts for responding to sudden cardiac arrest are being developed, 

previous research on these systems and the related topics of EMS response and AED 

positioning have not yielded useful techniques that estimate the costs and benefits of 

new response systems.  Much of the prior modeling has focused on optimal locations 

for EMS bases and AED placement.  While valuable for maximizing the efficiency of 

limited resources, this optimization is only expected to have a marginal impact on 

survival. There is little research using modeling and simulation to provide 

comparisons of the emerging, novel response systems under similar assumptions.  

Additionally, most modeling approaches neglect the reliability aspects of elements 

within the response system, and their impact on system effectiveness.  This 

dissertation will help to fill that gap by developing and demonstrating models that can 

simulate different types of response systems under various operating conditions. 
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Chapter 3: Research Approach 

 

 

To address the fundamental questions posed by this dissertation, a set of models was 

developed to incorporate both the predictable factors in out-of-hospital cardiac arrest 

response as well as the aleatory uncertainty associated with the location of the arrest 

and responding agents.  The models simulate the response time to a cardiac arrest 

event for different types of responding agents, based on distance travelled, additional 

delay times associated with the logistics of dispatching the responding agent, and the 

reliability and availability of the responding agent or required equipment.  The 

response times for CPR and defibrillation provide the inputs to a logistic regression 

survival model, allowing for a survival likelihood prediction for each simulation.  The 

Monte Carlo method using a large number of simulations was employed to assess the 

variation in response times due to stochastic factors, and develop summary statistics 

to represent the performance of a response system.  Chapter 4 presents the model 

structure, underlying assumptions in the model, input factors to the model, output 

responses, execution, and validation.  The chapter also discusses sources of 

information and analytical methods used to provide the model inputs. 

 

In order to understand the system structure and factors that have the largest impact on 

response time and survival, sensitivity analysis experiments were performed on the 

inputs to the model.  Simulation experiments were performed on each type of 

responding agent, EMS, mobile responders, and drone response, independently, to 

understand the most significant factors in each response time.  Overall system 



 

41 

 

sensitivity experiments were then performed, to characterize the interaction of 

multiple responding agents in the cardiac arrest treatment, as well as the impact of 

reliability and available of responding agents.  Additionally, simulation experiments 

were run to assess the sensitivity of response time predictions to the type of geo-

spatial distribution used to generate both the cardiac arrest location and the mobile 

responder locations.  Chapter 5 presents the results of these experiments, with in-

depth analysis of the most significant factors using a response surface design of 

experiments. 

 

A primary objective of this research is to use the modeling and simulation to predict 

and compare the performance of different types of emerging response systems within 

a specific region, and evaluate the potential improvement over the traditional EMS 

response paradigm.  Chapter 6 discusses results of simulation experiments used to 

compare several systems with a range of system conditions.  The results demonstrate 

that augmentation of EMS with emerging systems, under the right conditions, can 

provide meaningful improvement in the time to defibrillation and survival rate of 

cardiac arrest.  Chapter 7 expands on the analysis from chapter 6, providing a cost 

model for each of the systems, and presents the results in a cost-benefit decision 

analysis format.  Chapter 8 provides a summary of the learnings, and their relevance 

to the primary research questions, as well as a discussion of limitations of the 

research and future work.  Figure 7 shows a flowchart of the steps in this research 

approach, the chapters which provide their description, and the relationship to the 

research questions. 



 

42 

 

Model Development Model Validation Sensitivity Analysis

Response Surface 
Experiments

(interactions and 
non-linearity 

analysis)

Comparison of 
Simulated Response 

Systems

Cost-Benefit 
Analysis of Response 

Systems

How could modeling and simulation methods be used 

to evaluate the benefits of various alternative response 

systems for specific municipalities or EMS 

organizations?

What system structure and conditions are needed to 

achieve the improvement in survival?

Can alternative cardiac 

arrest medical response 

systems provide a 

substantial improvement 

in survival for out-of-

hospital cardiac arrest?

Can alternative response 

systems provide cost 

effective improvement in 

the survival rate for 

cardiac arrest?

Chapter 4:  System Simulation Model Chapter 5:  Sensitivity Analysis Chapter 6:  Comparison
of Systems

Chapter 7:  Application
of Model  

Figure 7.  Steps in research approach. 

 

The modelling approach was to create a geographically flexible model, which could 

be applied to urban, sub-urban, and rural areas, and integrate region specific 

geospatial attributes, such as the location of existing fire stations, ambulance bases, 

and potential drone bases.  Throughout this research, the city of Bellevue, located in 

King County, Washington, was used as the example region for model 

experimentation.  Bellevue is the fifth largest city in the state of Washington, 

consisting of 82.8 sq. km of land, with a population of 147,000 [73].  It is primarily a 

suburban city, with a moderate downtown area with a few high rise buildings.  It is in 

King County, the most populated county in Washington, and lies just east of the city 

of Seattle.  Bellevue was chosen as the example city due to proximity and familiarity, 

as well to leverage my relationships with EMS leaders, cardiac arrest response 

researchers, and access to data from King County EMS.  The modelling approach, 

however, is extendable and customizable to any region. 
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Chapter 4: System Simulation Model 

 

 

The approach to predicting the performance of the emerging cardiac arrest response 

systems utilized the creation of a set of models to simulate the types of response 

systems described in Chapter 2.  Geo-spatial Monte Carlo Simulation models were 

developed to simulate response times and predicted survival likelihood for each 

cardiac arrest response system.  Modeling and simulation approaches can quickly 

generate insights into a system that could take years to learn from studying and 

experimentation with a real world system.  However, models and simulations are only 

a representation, or approximation of a real world system.  As such, the full 

complexity of the system was not intended to be replicated in a model.  The goal was 

to identify the minimal necessary complexity of a system to provide useful, 

actionable insights into the system.  With too little complexity, the model loses the 

capability to provide accurate predictions, while too much complexity results in an 

intractable model. 

 

This chapter begins with an overview of the model in Section 4.1, followed by the 

introduction of the input factors in Section 4.2.  Section 4.3 provides the detailed 

formulas and mathematical calculations used in the model.  Section 4.4 describes the 

implementation and execution of the model.  Section 4.5 provides a discussion of the 

model inputs, the sources of data, and analytical methods used to derive the inputs.  

Finally, Section 4.6 presents approaches to validation of the models. 
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4.1 Model Overview 

 

This modeling and simulation approach relies on the following axioms: 

1. Out-of-Hospital Cardiac arrest occurs at random locations on a geographical 

space that can be represented by a 2-dimensional Cartesian terrestrial surface. 

2. A network of “mobile responders” can be represented by random locations in 

a similar geographical space at the time of a cardiac arrest occurrence. 

3. The time to respond to a cardiac arrest location can be predicted based on a 

distance metric from the origin to destination, the travel speed, and additional 

time components independent of the distance from origin to destination. 

 

The models’ primary simulation responses are the times for various responding 

agents to provide each of the two primary methods of treatment for sudden cardiac 

arrest, i.e. CPR, and defibrillation (either with an AED or by an ALS provider with a 

defibrillator/monitor device).  These response times are strong predictors of survival 

to hospital discharge for out-of-hospital cardiac arrest.  The response may originate 

from a fixed location, such as an EMS ambulance base location or drone base, from a 

random location, such as a mobile responder at the time of the cardiac arrest, or a 

combination of fixed and random locations, such as a bystander from a random 

location retrieving an AED transported by a drone from a fixed location. 

 

The response times for CPR and defibrillation treatment methods are used to predict a 

survival probability for each simulated cardiac arrest event.  The logistic regression 
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equation provided by Valenzuela et al. is used to predict survival.  The survival 

equation provides a probability of survival estimate only for the “Utstein subgroup” 

of all cardiac arrest cases, i.e. adult patients with witnessed collapse of cardiac 

etiology, with an initial shockable rhythm (VF or VT). 

 

As these response systems include actions by both human and machine components 

(e.g. ambulances, AEDs, volunteer responders), the reliability and availability of 

these components are integral to the efficacy of a system.  Ambulances may be out on 

another call or being cleaned and restocked at the time of a cardiac arrest, AEDs may 

have a dead battery or other functional failure, and volunteer responders may not 

notice an alert on a cellphone, or may be unable to respond for various reasons.  The 

nature of these systems provides redundancy for each of these components; however, 

the response time may suffer when a backup is needed.  An unavailable ambulance 

may require an EMS response from a more distant base location, a non-functional 

AED would delay defibrillation until EMS arrives at the scene, or an unreliable 

responder would result in a delay until the next closest responder arrives.  These 

reliability and availability aspects of the modeling of various response systems are 

incorporated as additional stochastic events.   

 

The influence diagram in Figure 8 shows the conceptual relationships of these 

components of the model.  The model simulates several intermediate events in order 

to ultimately predict survival for each simulated cardiac arrest event.  First, the model 

simulates the distance from the origin of the responding agent to the cardiac arrest 
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location.  The distances are influenced by the locations of the responding agents, both 

fixed and random, the number of agents in a system, and the availability of each agent 

within a system at the time of the cardiac arrest.  The distance, along with the velocity 

of the responding agent and some non-transit, system specific time constants (e.g. 

dispatch times), determine the time for the first responder of each type.  The modelled 

therapy capabilities of each response system, i.e. CPR and/or defibrillation, together 

with response time, determine the time-to-defibrillation and the time-to-CPR.  These 

are then used as inputs into the logistic regression model to predict the survival 

likelihood for the simulated cardiac arrest. 

 

There are system design factors such as the number of ambulances and number of 

drones, and the locations of these within the region.  The number of responders within 

the system, which determines responder density, is a design factor as well.  The 

values of these decision factors influence both the response time and survival 

predictions, as well as the cost of operating the system.  The costs of these systems is 

discussed in Chapter 7. 
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Figure 8.  Influence diagram showing the relationship between chance inputs (ovals), 

decision inputs (rectangles), intermediate event calculations (rounded rectangles), and 

the output of survival prediction (diamond).  Additional inputs describing time 

constants (discussed in Section 4.2) are omitted from the diagram. 

 

 

Each simulation results in a different response time for each of the responding agents 

in the simulation (e.g. EMS, mobile responders, drones, etc.), due to the random 

location of the cardiac arrest event as well as random locations of mobile responders.  

Any single simulation does not represent the performance of the system, as chance 

may favor one type of response over another.  The Monte Carlo method is used to 

find the distribution of responses over a large number of simulations.  The 

distribution of responses defines the performance and efficacy of a system, and the 
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impact of changes to components or factors in the system are measured by the effect 

on the response time distributions. 

 

The structural approach to the model was to parameterize all mathematical 

components which may vary among specific systems, such that these parameters are 

independent input factors to the model.  This approach enables flexibility in the 

model to simulate many different systems, as well as to tune the model to known 

attributes of a specific system (e.g. tune the model to match EMS response times for a 

specific region or municipality).   This also facilitates sensitivity analysis on the 

various factors in the model. 

 

 

4.2. Model Factors 

 

The model factors, or model inputs, are the variables within the models that are set to 

define the specific attributes and conditions of a response system.  These factors 

define the geographic region of the simulation, the response characteristics of the 

different agents being modeled, the distance travelled between origin and destination 

points, and the reliability and availability of elements within the systems.  The 

nomenclature for all model input factors is summarized in Table 1, and are briefly 

described in the following sections.   
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Table 1. Nomenclature for model factors. 

 

Factor  Description 

xNW, xSE Longitude points to define region 

 yNW, ySE Latitude points to define region 

p Minkowski distance order 

A Cardiac arrest location 

Ri Location of the ith mobile responder 

Ei Location of the ith EMS base 

tED EMS dispatch delay time 

tEC EMS chute time 

vE Ambulance velocity 

EA Ambulance availability 

tRD Responder dispatch delay time 

tRW Responder walk delay time 

tRDr Responder drive delay time 

vRW Responder walking velocity 

vRD Responder driving velocity 

RR Responder reliability 

RAED AED mission reliability 

Di Location of the ith drone base 

tDD Drone dispatch delay time 

tDV Drone vertical flight time 

vD Drone velocity 

tDDe Drone descent time 

DAO Drone operational availability 

DAW Drone weather availability 
 

 

  

 

4.2.1  Simulation Region Inputs 

 

Geographic region: Let (xNW, yNW) be the longitude and latitude of the northwest 

corner of the simulation region.  Let (xSE, ySE) be the longitude and latitude of the 



 

50 

 

southeast corner of the simulation region.define the Northwest and Southeast 

Longitudes and Latitudes of the simulation region.  The model may be used to define 

any EMS district or region of interest by two pairs of geographic coordinates (latitude 

and longitude).   

 

Minkowski Distance Order (p):  Let pw, pd, and pf be the Minkowski distance orders 

for a walking, driving, and flying route of transit respectively. The Minkowski 

distance order is used to approximate the actual travel distance between the origin of 

the responding agent and the cardiac arrest location.   

 

Cardiac Arrest location and Mobile Responder location distributions:  Let A 

represent the latitude, longitude location of the cardiac arrest victim, and Ri be the 

latitude, longitude location of the ith mobile responder.  

 

4.2.2  EMS System Inputs 

 

EMS Dispatch Locations:  Let Ei be the location of the ith EMS dispatch location 

within the simulation region.  EMS dispatch locations such as fire stations, ambulance 

bases, hospitals, etc. are defined by their latitude, longitude coordinates.  Where 

multiple ambulances are stationed at the same location, each ambulance is treated as 

an independent model entity.   
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EMS Dispatch Delay:  Let tED be the time interval that accounts the short time for 

the 911 operator to identify the call as a medical emergency and dispatch the closest 

ambulance unit.   

 

Chute time:  Let tEC be the time from the sounding of the alarm in the fire station (or 

other ambulance base) until the ambulance begins transit, which is known as “chute 

time”.   

 

Ambulance Speed:  Let vE be the average velocity at which an ambulance can travel 

in a type of region.   

 

Ambulance availability:  Let EA provide the probability that a specific ambulance is 

available for dispatch at the time of a cardiac arrest.   

 

4.2.3  Mobile Responder System Inputs 

 

Mobile Responder dispatch delay time:  Let tRD be the mobile responder dispatch 

delay. Similar to the EMS dispatch delay time, the mobile responder delay is the time 

interval from the 911 call to the receipt of the alert activation on a cell phone. 

 

Walk delay time:  Let tRW be the time that accounts for a potential short delay from 

the alert activation until the responder begins transit by walking to the cardiac arrest 

scene.   
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Drive delay time:  Let tRDr be the time that accounts for a potential short delay from 

the alert activation until the responder begins transit by driving to the cardiac arrest 

scene.     

 

Responder walking speed:  Let vRW be the average speed at which a responder 

would walk to a cardiac arrest location.   

 

Responder driving speed:  Let vRD be the average speed at which a responder can 

drive to a cardiac arrest location.  

 

Responder reliability:  Let RR be the reliability of the responder, which is the 

probability that upon receiving an alert of a nearby potential cardiac arrest victim, the 

responder attempts to travel to the scene and provide medical assistance if needed.   

 

AED reliability:  Let RAED be the reliability of the AED.  The AED reliability factor 

in the models specifically refers to the mission reliability of the AED, i.e. the 

conditional probability, given that an AED is deployed for a patient use, that the AED 

is able to perform its functions for the duration of the use (e.g. analyze the heart 

rhythm and provide a shock if necessary). 

 

 

 



 

53 

 

4.2.4  Drone System Inputs 

 

Drone location:  Let Di be the latitude, longitude location of the ith drone in a drone 

response system.  Similar to EMS, if multiple drones are stationed at the same 

dispatch location, each drone is modeled as a separate entity. 

 

Drone dispatch delay:  Let tDD be the drone dispatch delay. This denotes the time 

interval from the start of the 911 call until the drone takes flight.   

 

Drone vertical takeoff time:  Let tDV  be the time for the drone to ascend to a safe 

flight elevation (e.g. 120 meters).   

 

Drone travel speed:  Let vD be the lateral velocity of the drone.  

 

Drone descent/AED drop time:  Let tDDe be the descent time of the drone.  Similar 

to the drone vertical takeoff time, this time interval accounts for the descent of the 

drone to a safe level to deploy the AED, and the time required to deploy the AED 

(e.g. lower by a cable and winch, land and release, etc.) to a waiting recipient.   

 

Drone operational availability:  Let DAO be the operational availability of the drone. 

This factor accounts for the time a drone may be unavailable due to maintenance, or 

is out on another call. 
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Drone weather availability:  Let DAW be the weather availability of the drone. This 

factor accounts for the proportion of time a drone system would be inoperable due to 

weather conditions.  While operational availability affects individual drones 

independently, weather availability affects all drones in the system. 

 

4.3 Mathematical Formulas and Calculations 

 

This section discusses the mathematical calculations used within the simulation 

model. 

 

4.3.1  Distance calculations 

 

4.3.1.1  Coordinate to distance conversion 

 

Locations of the cardiac arrest event and responding agents (EMS stations, mobile 

responder locations, and drone bases) are defined by geographic coordinates within 

the simulation region.  The model uses geographic coordinates based upon the World 

Geodetic System (WGS84 reference system).  Distances between points (latitude, 

longitude coordinates) are converted from angular degrees in the coordinate system to 

kilometers using the following conversion formulas, where dlat is the distance in 

kilometers per degree latitude, dlong is the distance in kilometers per degree longitude, 

and l is the latitude at the conversion location [74]: 

 

𝑑𝑙𝑎𝑡 = 111.13292 − 0.55982cos (2𝑙
𝜋

180
) + 0.001175𝑐𝑜𝑠 (4𝑙

𝜋

180
) − 0.0000023𝑐𝑜𝑠 (6𝑙

𝜋

180
) (1) 

 



 

55 

 

𝑑𝑙𝑜𝑛𝑔 = 111.41284𝑐𝑜𝑠 (𝑙
𝜋

180
) − 0.0935𝑐𝑜𝑠 (3𝑙

𝜋

180
) + 0.000118𝑐𝑜𝑠 (5𝑙

𝜋

180
)   (2) 

 

4.3.1.2  Calculations of travel distances between locations 

 

The response model for driving modes of transit was developed to use either the 

actual best transit route distance, queried from the Google Maps API, or an 

approximation of the actual route distance.  Although the actual distance is preferred 

for accuracy of the model prediction, there is a high cost (both monetary and in 

computational efficiency) with using the Google Maps API.  Querying distances from 

the Google Maps API resulted in simulation runs of over 1 minute each, which would 

require several days to run a 5000 run Monte Carlo simulation.  Additionally, each 

distance request costs $0.005.  With up to 500 requests per simulation run, the cost of 

a single Monte Carlo simulation of 5000 runs could cost $12,500.  An approximation 

of the actual route distance is used for the large number of simulations required with 

the Monte Carlo method.  The Google Maps generated distance is reserved for 

training the approximation method for a specific region, and for validating the 

accuracy of the approximations. 

 

The shortest distance between two points in a Cartesian space is the Euclidean 

distance, which is the distance of a straight line between the points, or “as the crow 

flies” distance in two dimensions.  However, the actual route distance travelled 

between two geographic points is rarely defined by the Euclidean distance, as 

obstacles must be avoided, and road networks must be traversed.  Many urban and 

suburban areas use a grid type road network, with roads aligned in a North-South and 
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East-West manner.  In such a network, the Manhattan (or rectilinear) distance may 

provide the best transit distance estimate.  However, few regions have a perfect grid 

system of roads.  The Minkowski distance is a generalization of the path between two 

points, where D is the defined distance between points X and Y, each of dimension n, 

and p is the distance order: 

 

𝐷 (𝑋, 𝑌) = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1
𝑝

                                                                                  (3) 

 

 

The formula returns the Euclidean distance for p = 2, and the Manhattan distance for 

p = 1.  The formula can provide distances between the Euclidean and Manhattan for 1 

< p < 2, and distances greater than the Manhattan distance for p < 1 (Figure 9). 
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Figure 9.  Minkowski distances between two points.  The colored lines correspond to 

different values of the Minkowski order value. 

 

 

4.3.2  Response time calculations 

 

4.3.2.1  EMS response time 

 

The model simulates response time for the three basic types of responding agents: 

EMS, mobile responders, and aerial drones.  The response time is divided into distinct 

components for each of these agents.  For the EMS response calculation, the time 

components are shown in Figure 10. 

Minkowski Distance Order (p)

𝑑 =  𝑥1 − 𝑥2
 + |𝑦1 − 𝑦2|

 
 

p = 2 (Euclidean distance)

1 < p < 2

p = 1 (Manhatten distance)

p < 1
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Figure 10.  EMS response time components 

 

All response times begin with the time interval from the collapse of the victim at the 

onset of the cardiac arrest, to the point at which 911 is called (shown in black).  This 

time is difficult to measure in actual cardiac arrest responses, as it must be relied upon 

for the caller to estimate this elapsed time after the rescue has concluded.  Such 

estimations of time when a cardiac arrest witness is undergoing high stress and 

emotion result in unreliable estimates.  Minimizing this time is crucial for survival, as 

this explains the dramatic difference in survival between witnessed and unwitnessed 

cardiac arrests.  However, this time interval is identical for all responding agents, and 

thus not included in the modeled response time.   

 

The EMS response time, after the collapse to 911 call interval, contains the dispatch 

delay time, the chute time, and transit time to the cardiac arrest location.  (This is 

often accounted for as the arrival time at curbside of the cardiac arrest location.  

There may be additional “vertical time”, i.e. time required to climb stairs, if the 

victim is indoors and not on the ground floor, however this time would apply 

equivalently to all types of responders).  These times, which are shown in red in the 

timelines, are simulated within the models with the following formula as a function of 

distance d: 
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 tReE = tED + tEC  + d/vE        (4) 

The final time intervals in the timeline (shown in green) are the time from arrival on 

scene until treatment, which includes the time to assess the patient, setup the 

equipment (e.g. remove clothes, apply defibrillation pads), and finally the treatment 

consisting of alternating applications of defibrillation and CPR.  For model simplicity 

and consistency, the setup time is assumed to be 1 minute, similar to the approach by 

Larson et al. [2].   

 

4.3.2.2  Mobile responder response time 

 

The mobile responder timeline components are shown in Figure 11.  Following the 

time interval to call 911, there is a dispatch delay time, and an additional delay which 

accounts for the time from the responder receiving the alert until the responder begins 

transit. The model incorporates two modes of transit for the mobile responder, 

walking and driving.  The model can be evaluated for either mode of transit, or under 

a scenario where the responder knows the best mode of transit (e.g. if the arrest 

location is within 150 meters, the responder may choose to walk, otherwise they 

would drive).  The following formulas are used to calculate the mobile responder’s 

response time, where tReDi is the driving response time, tReWi is the walking response 

time, and tReBi is the best possible time between the two transit modes for the ith 

closest responder as a function of di: 

 tReDi = tRD + tRDr + di/ vRD        (5) 

 tReWi = tRD + tRW + di/vRW        (6) 

 tReBi = min {tReDi , tReWi}       (7) 
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The treatment times following arrival are identical to those used for EMS. 
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Figure 11.  Mobile responder response time components 

 

4.3.2.3  Drone response time 

 

 

The timeline for the drone transit of an AED to the cardiac arrest location, after the 

911 call, begins with a dispatch delay, followed by the vertical ascent time, the lateral 

flight time interval is the time to reach location of the arrest scene, and the vertical 

descension and AED deployment (Figure 12). The formula for the drone response 

time as a function of the distance for the ith closest drone is: 

 tDi = tDD + tDV + di/vD + tDDe        (8) 

The treatment times are identical for all responding agents. 

 

Collapse 
to 911 call

Dispatch 
delay tDD

Vertical ascension  
time tDV

Lateral flight time
Setup

Defib/CPR

Vertical descension 
time tDDe  

Figure 12.  Drone response time components 
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4.3.3  System response time 

 

The system response time is determined for the two types of cardiac arrest therapy.  

The CPR response time is the minimum of all responding agents capable of providing 

CPR.  This includes mobile responders and EMS. 

 

tCPR = min{tReE, tReBi}         (9) 

 

The time to defibrillation is the minimum time at which there is a defibrillator at the 

scene and a person to operate the defibrillator.  The structure of this is dependent on 

assumptions in the modeled system.  A system with mobile responders carrying 

AEDs, together with the EMS system would follow a similar formula for CPR 

response time: 

 

tdefib = min{tReE, tReBi}                (10) 

 

A system which uses a drone delivered AED, and requires a cell phone dispatched 

mobile responder to operate it, together with the EMS response, would follow the 

equation: 

 

tdefib = min{max{tReBi, tDi}, tReE}              (11) 

 

4.3.4  Simulation survival prediction 
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Cardiac arrest treatment requires both CPR and defibrillation, although CPR may be 

provided before the defibrillation by a different responder.  Each run of a simulation 

provides a survival probability prediction by applying the system response times of 

each type of therapy to the survival logistic regression equation: 

  

 𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 
𝑒𝑙

𝑒𝑙+1
              (12) 

 

where:  𝑙 = 0.26 − 0.106𝑡𝐶𝑃𝑅 − 0.139𝑡𝑑𝑒𝑓𝑖𝑏 

 

 

4.4 Model Implementation and Execution  

 

4.4.1  Model Implementation 

 

The models are implemented using Microsoft Excel 2016 with Oracle Crystal Ball 

add-in[75].  The model uses only native Excel functions and formulas, with the 

exception a Visual Basic macro used in the version that accesses the Google Maps 

API for distances between locations (which was used only for validation purposes).  

Model inputs are stored in spreadsheet cells, with the mathematical operations 

described in Section 4.3 applied as Excel formulas.  The set of system models are 

combined into a single Excel file for efficiency of execution.  Henceforth, the set of 

system models is collectively referred to as the model. 

 

Crystal Ball is used to define the sampling distribution type (e.g. Uniform, Beta, 

Binomial) and provide random sampling for the Monte Carlo simulations.  

Distribution parameters are stored in cells as model inputs.  Crystal Ball controls the 
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execution of simulations, and stores the resulting outputs of each simulation.  

Additionally, Crystal Ball provides basic graphing and summary statistics of the 

stored outputs. 

 

Crystal Ball was used for the generation of all stochastic data within the model, 

including random locations of the cardiac arrest event and mobile responders, as well 

as defining reliability and availability outcomes for each simulation.  A random 

number generator constant seed value of 999 was used for all simulation experiments 

to provide a common sequence of random numbers across different sets of runs to 

reduce variation of the results.   

 

4.4.2  Model Execution 

 

 

The model is executed by running a series of simulated cardiac arrest events in the 

defined region, with response times and predicted survival likelihood calculated for 

each type of response system.  The accumulation of several thousand simulation runs, 

designated and controlled by Crystal Ball, under the same conditions (i.e. input 

factors) generates a distribution of response times and survival predictions. These can 

then be used to evaluate each system and compare the effectiveness of different 

systems. 

 

Execution of simulations are performed with the following sequence of steps. 
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1.  Simulation run initialization.  EMS responders (i.e. ambulances) and 

drones start at their input base locations Ei and Di. 

2. A random location A (latitude, longitude) is assigned for the cardiac arrest 

based on the geo-spatial input distribution within the region defined by 

xNW, yNW, xSE, ySE. 

3. Random locations Ri are assigned for each of N mobile responders 

sampled from the responder geo-spatial distribution.   

4. For each mobile responder, the model stochastically determines if they are 

“able and willing to respond” based on the responder reliability input RR. 

5. Both the walking and driving travel distance di is calculated for each 

available responder.   

6. The response time tReBi is calculated for each of the 3 closest mobile 

responders using Equation 7 

7. The operational state of the AED is stochastically determined based on the 

AED reliability input RAED.  The mobile responder time-to-CPR is defined 

by the first arrival.  The time-to-defibrillation is defined by the first arrival 

with an operational AED. 

8. For each EMS ambulance Ei, the model stochastically determines if it is 

available based on the ambulance availability input EA. 

9. The travel distance di is calculated for each available ambulance.  The 

closest available ambulance is determined. 

10. The response time tReE is calculated for the closest available ambulance 

using Equation 4.. 
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11. For each drone Di, the model stochastically determines if it is available 

based on the drone operational availability input DAO.  For all drones, the 

system availability is stochastically determined based onthe drone weather 

availability input DAW. 

12. The travel distance di is calculated for each available drone.  The closest 

available drone is determined. 

13. The response time tDi is calculated for the closest available drone using 

Equation 8. 

14. Response time to CPR tCPR is calculated using Equation 9. 

15. Response time to defibrillation tdefib is calculated using Equations 10, 11, 

etc. depending on the system being modeled. 

16. The survival probability prediction psurvival is calculated using Equation 12. 

17. The model output values are stored, and the model is returned to 

initialization step 1 for the next simulation, repeating the process until all 

simulations are complete. 

 

The location definition of the cardiac arrest and distance calculations for responding 

agents are depicted in Figure 13.  After completion of a Monte Carlo simulation (i.e. 

execution of many simulation runs under the same input conditions), the stored output 

data can be displayed as histograms, from which additional statistical analysis can be 

applied.  Figure 14 shows example histograms for time to defibrillation from a Monte 

Carlo simulation, with the median time, 5th percentile, and 95th percentile annotated. 
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Figure 13.  Diagram depicting model execution with EMS, mobile responders, and a 

drone response.  Crossed out responders represent those that are stochastically 

determined as unable to respond. 
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a) Example EMS response time to defibrillation distribution 

 

b) Example mobile responder time to defibrillation distribution 

 

c)  Example drone response time to defibrillation 

Figure 14.  Histograms generated by Crystal Ball for the response time-to-

defibrillation distributions.  The results shown are from a 10,000 run Monte Carlo 

simulation in the Bellevue, Washington region.  
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The differences in response time between systems can be calculated for each 

simulation run, and displayed as a distribution of time differences.  In the example 

output in Figure 15, the difference between the EMS response time and the first 

mobile responder arrival time is displayed.  In the distribution shown, a negative time 

difference (salmon colored) indicates simulations where EMS arrived first, while a 

positive time difference (blue) denotes simulations with the mobile responder arriving 

ahead of EMS.  In the example, the responder arrives faster than EMS in about 89% 

of cases, with a median time of 1.5 minutes ahead of EMS, and 5% of the time at 

least 3 minutes ahead. 

 

 

Figure 15.  Example distribution of difference in response times between EMS and 

mobile responders.  Negative times indicate EMS arrived ahead of responders. 

 

  



 

69 

 

4.5  Discussion of Inputs 

 

4.5.1  Simulation region inputs 

 

4.5.1.1  Method for Minkowski Distance Approximation 

 

 

The Minkowski distance order value p is used to approximate the transit distances in 

the model.  This value can vary with modes of transportation as well as among types 

of regions.  A responder travelling by foot to the scene would likely take a very direct 

route, with p close to 2.  A responder who drives to the scene would have a distance 

with p close to 1, as they would navigate a road network.  A drone flying above 

buildings may be best approximated by a Euclidean distance (p = 2).   

 

Different approaches to approximating travel distances have been reported in 

literature.  Nogueira et al. used the Euclidean distances multiplied by a factor of 

1.366 to approximate the actual travel distances of ambulances in Sao Paulo, Brazil 

[25].  Rabe et al. compared approximations to real distances by Euclidean, 

Manhattan, Minkowski (p = 1.15), weighted Euclidean, and exponential Euclidean 

[76].  The authors conclude that “the different distance metrics achieve surprisingly 

good results according to the real distances.”  Shahid et al. use the Minkowski 

distance to model travel distances from patient homes to the nearest hospital [77].  In 

their evaluation, the road network distance data set provided a mean distance of 11.82 

km, with a standard deviation of 5.27, while the Minkowski approximation provided 

a mean of 10.45 km, with a standard deviation of 5.18.  The authors argue “distance 
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metrics typically produce less accurate estimates than actual measurements, but each 

metric provides a single model of travel over a given network. Therefore, distance 

metrics, unlike actual measurements, can be directly used in spatial analytical 

modeling.”  The authors modeled the city of Calgary, Canada, and found that a 

Minkowski order value p of 1.31 best approximated the transit distances from homes 

to the hospitals. 

 

In this model, drone response distances are assumed to be Euclidean unless the region 

has a restricted airspace.  The model approximates driving distances using the 

Minkowski distance.  For a driving response (by EMS ambulance or mobile 

responder), depending on the nature of the road network, the Minkowski order may 

range from 0.5 to 1.5.   For any particular trip, there is a specific value of p that yields 

an accurate estimate.  For example, Figure 16 shows the Minkowski distance (shown 

in red) to approximate the actual street network distance between two points in 

Baltimore, Maryland.  The actual road network distance (shown in blue), as provided 

by Google Maps [78], is 3.1 km.  The Euclidean distance (green) is 2.6 km, the 

Manhattan distance (purple) is 3.4 km, while the best Minkowski distance, with p = 

1.21, is 3.1 km, matching the road network distance. 
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Figure 16.  Google Maps street network route (blue), Euclidean distance (green), 

Manhattan distance (purple), and Minkowski distance p = 1.21 (red) 

 

 

The model uses a single value of p for all driving distances in a region, however.  

Different values of p were used for different regions.  For each of eight regions I 

determined the best value of p by conducting a calibration study.  Table 2 lists the 

regions that were examined; these regions represent diverse geographies within the 

United States. The regions were classified as urban, suburban, and rural. Within each 



 

72 

 

of these regions, a geographic rectangle was defined from which 30 location pairs 

(origin and destination locations) were randomly sampled; I then used the Google 

Maps API to determine the actual driving distance for each location pair. Areas with 

large geographic obstacles such as lakes, rivers, etc. were excluded.  For sixteen 

values of p from 0.5 to 2.0, I estimated the driving distances for the 30 location pairs 

using the Minkowski distance with that value of p, calculated the difference from the 

actual driving distances, and determined the Root Mean Squared Error (RMSE) for 

that value of p for that region based on this training dataset.  Figure 17 shows the 

training results, from which I chose, for each region, the value of p that had the 

smallest RMSE (these are shown in Table 2).  For example, for Bellevue, 

Washington, p equals 0.8. 

Table 2. Best identified Minkowski distance order p and validation results for eight 

regions. 

 

City Region type p Bias  MSE RMSE 

Bellevue WA Suburban 0.8 0.35 1.53 1.24 

Baltimore MD Urban 1.0 0.28 0.70 0.84 

College Park MD Suburban 0.9 0.54 1.38 1.18 

Spokane WA Urban 0.8 0.28 6.63 2.58 

Ellensburg WA Rural 0.7 0.03 4.24 2.06 

Tualatin Or Suburban 0.7 -0.90 3.29 1.82 

Sioux Falls SD Suburban 0.7 0.04 6.08 2.47 

Seattle  Urban 0.9 0.30 0.50 0.71 
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Figure 17. Plots of RMSE versus Minkowski order p for training data from eight 

regions. 

 

Then, for each region, 30 additional validation location pairs were sampled. The bias 

and root mean squared error were calculated for each region using that region’s p 

value.  The results with the validation dataset are shown in Table 2 and Figure 18.  

The results indicate the accuracy of the approximation and show that the RMSE for 
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the validation dataset is close to the RMSE for the training dataset.  For example, for 

Bellevue, Washington, with p = 0.8, the RMSE for the training dataset was 

approximately 1.4 (as shown in Figure 17), and the RMSE for the validation dataset is 

1.24.  The validation results provide evidence that the approximation was not 

overfitted to the training dataset. 

To assess the sufficiency of the sample size of the training data, one region, Seattle, 

had the Minkowski order trained with 30, 100, and 300 sample location pairs.  The 

trained order p was then validated against the same validation sample set of 30 

location pairs.  The results are shown in Table 3. 

 

Table 3. Sample size sensitivity of training method. 

City 
Region 
type p Bias  MSE RMSE 

Seattle 30 samples Urban 0.9 0.30 0.50 0.71 

Seattle 100 samples Urban 0.8 0.08 0.49 0.70 

Seattle 300 samples Urban 0.9 0.30 0.50 0.71 
 

 

The different sample sizes in the training data produce very consistent Root Mean 

Squared Error values.  The bias shows no directional trend with increased sample 

size.  It is thus concluded that 30 samples is sufficient a training data set 
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Figure 18. Plots of validation data showing the Minkowski approximated distance 

versus the Google Maps distance. 
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4.5.1.2  Cardiac Arrest and Mobile Responder location distributions 

 

 

The Monte Carlo simulations randomly sample a cardiac arrest location A and a 

defined number of mobile responder locations Ri from 2-dimensional spatial 

distributions.  The model can accommodate any bivariate distribution with finite 

support.  Four types of distributions are described in Table 4, along with an example 

application.  The first three types of spatial distributions are defined by a latitude 

generating distribution, and a longitude generating distribution.  The latitude and 

longitude locations are randomly sampled from their respective generating 

distributions to create the two dimensional spatial distribution. The uniform, 

triangular, and beta distributions are chosen due to their finite support interval and 

ease of defining the mode.  An example of 100 random sample locations and the 

pictured generating distribution are shown in Figure 19. 

 

Table 4. .  Location sampling distribution descriptions. 

Distribution 

type 

Example Application Generating 

distribution 

Uniform  Rural or suburban area, or small model regions 

with a uniform population density 

Uniform 

Concentrated Large areas that have a densely populated central 

location 

Beta 

Diffuse 

centered 

Rural or suburban areas that have a gradient of 

population density emanating from a central 

location 

Triangular 

Custom Prior known or complex clustering of population or 

historic cardiac arrest locations 

Heat map / 

density map 
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a) Uniform     b) Beta 

 

 

(c) Triangular 

Figure 19.  Example random spatial sampling and sample generating distributions for 

(a) Uniform, (b) Beta, (c) Triangular. 

 

The fourth type of distribution, the Custom distribution, is generated from a heat map 

or density map.  The map could be based on population density, historic cardiac arrest 
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density, or responder location density.  The 2 dimensional sampling distributon is 

generated by first dividing the density map into a grid of discrete cells, each 

representing a single latitude, longitude location for the model and a value (e.g. a 

count, probability, frequency).  A probability is calculated for each cell in the grid 

which is proportional to the value of the cell.  Latitude, longitude locations are then 

sampled from the discrete number of grid cells based on the probability of each cell.  

Figure 20 shows an example density map, and an example of 100 spatial samples. 

 

 

Figure 20.  Example Custom random spatial sampling, sample generating density 

map. 

 

4.5.2  EMS System Inputs 

 

 

EMS inputs were obtained from both literature sources and empirical analysis of 

available response data.  The dispatch delay tED, i.e. the time required to identify a 

911 call as a medical emergency requiring EMS response, is assumed to be between 



 

79 

 

0.25 and 1 minute.  Ingolfsson et al. used an average chute time tEC, i.e. the time from 

dispatch alarm to “wheels rolling”, of 2.5 minutes with standard deviation of 1 

minute, and an average ambulance speed of 69.4 kn/h in the DES modeling of 

Edmonton, Canada EMS response [23].  King County EMS reports that the dispatch 

time is less than 90 seconds for 93% of calls [79].  The chute time typically ranges 

from 30 seconds to 2 minutes. 

 

Regression analysis of actual EMS response time and distance data was also be used 

to calculate travel speed vE, as well chute time tEC.  The data plotted below was 

provided by King County Public Health Department.  The data set includes response 

times to cardiac arrest events over a 1-year period in the city of Bellevue, 

Washington, along with the Manhattan (rectilinear) distance from the dispatch station 

to the patient location.  After outlier removal, a least squares linear regression line 

was fitted to the data (Figure 21).  The regression equation for response time t 

(minutes) with respect to distance d (meters) is: 

  

t = 3.537 + 0.000869d               (13) 

 

The y-intercept of 3.537 minutes may be interpreted as the combination of dispatch 

delay time tED and chute time tEC.  The slope is the inverse of ambulance velocity, 

which when converted to km/hour is 69 km/h, which is nearly identical to the speed 

cited by Ingolfsson. 
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Figure 21. Regression analysis of Bellevue, Washington EMS response time to 

cardiac arrest events. 

 

The ambulance availability EA input includes unavailability due to the ambulance 

being out on another call, the ambulance being cleaned or restocked after a call, or 

longer-term issues such as vehicle maintenance.  Ambulance availability is typically 

high, even in busy districts with high call rates. Ambulance availability is the 

mathematical complement of commitment factor, a measure of the proportion of time 

an ambulance is on a call.  This can range from 0.16 (ideal) to 0.3 (unsustainable) 

[80], translating to an availability range of 0.7 to 0.84.   
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4.5.3  Mobile responder inputs 

 

The mobile responder dispatch delay tRD may differ from the EMS dispatch delay, as 

an ambulance dispatch is initiated once the call is determined to be any medical 

emergency, while the responder activation may require additional time for the 

operator to determine that the call is likely a cardiac event.  The input range for this 

constant is estimated to range from 0.5 to 2 minutes.  This delay time may be 

significantly reduced in the near future with the employment of voice recognition and 

artificial intelligence into the 911 dispatch system.  The Danish startup company 

Cordi has tested its artificial intelligence technology in Copenhagen on 161,000 

emergency calls, finding it was 93% accurate in identifying cardiac arrests, where 

human dispatchers were only 73% accurate [81].   

 

Additional mobile responder delays account for the time between receipt of the alert 

via a cell phone app, and the start of transit to the cardiac arrest location.  This may be 

time to grab the AED or a gear bag, or inform their present company that they are 

leaving.  When the mode of transit is walking, this delay, tRW, is estimated to be from 

0.5 to 1 minute.  When driving, the delay tRDr it is estimated at 0.5 to 2 minutes, as 

additional time may be needed to get to the responder’s vehicle. 

 

The speed of the responding agent is also dependent on the mode of transit.  The 

Center for Disease Control (CDC) defines a brisk walking pace from 3 to 4.5 mph 

(4.8 to 7.25 km/h) [82].  It is assumed that a healthy responder travelling to a medical 

emergency would typically achieve the upper end of this range.  Driving speed vRD is 
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dependent on many factors.  The type of road network, traffic conditions, and time of 

day all affect the speed of vehicle transit.  A study of estimated travel speeds in 50 US 

cities using the Google Maps distance and duration between sampled origin and 

destinations resulted in an grand average of 48 km/h (30 mph) with a standard 

deviation of the average speeds of 9 km/h (5.6 mph) [83]. 

 

The mobile responder reliability RR is the probability that upon receiving an alert of a 

nearby potential cardiac arrest victim, the responder attempts to travel to the scene 

and provide medical assistance if needed.  Prior research on task acceptance for on-

demand mobile crowdsourcing (e.g. citizen journalism, citizen science) has identified 

situational factors, such as weather, and convenience of location, as well as temporal 

factors, such as time of day, and immediacy of the task [84][85].  Brooks et al. found 

only 23% of PulsePoint responders attempted to travel to the location of the cardiac 

arrest [49].  The authors identified primarily technological barriers, such as muted 

phones, or lack of cell reception, as impediments to response rate.  Early results from 

the ALERT study indicate only about 31% of verified responders (off duty 

firefighters) actually responded to alert activations.  Other communities with similar 

systems under trial have achieved marginally better responder reliability.  A trial 

system on the small island of Langeland, Denmark, found that at least one of 9 

dispatched verified first responders arrived to the cardiac arrest scene in 96% of the 

cases [86]. 
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There are barriers to responding that are unique to volunteer treatment of cardiac 

arrest victims.  Ozcan et al. performed a mobile volunteer responder simulation study, 

in which human study volunteers were asked to carry an AED with them for a week, 

and were notified at random times of a simulated cardiac arrest nearby [87].  Four 

types of barriers were identified which could prevent successful response to an alert 

(Figure 22).  Barriers to commitment include issues that prevent a responder’s ability 

to respond (e.g. sickness) or their willingness to respond (e.g. the phone is placed in 

mute due to an important meeting, or spending time with family)  Barriers to 

notification include technical issues such as cell reception, being in a loud 

environment, and not waking when notified while sleeping.  Barriers to leave involve 

either situational reasons (the responder is in an important meeting, or at a doctor 

appointment), or judgement reasons, such as believing it would be unsafe to travel to 

certain neighborhoods at night.  Finally, barriers to perform include concerns about 

credibility (e.g. fear of entering a chaotic, crowded setting), liability, or lack of mental 

preparation (e.g. fear of removing a victim’s clothes, or delivering a shock).  The 

study found a 49% response rate from the simulation; however, the authors noted that 

the study was designed more around understanding barriers to response than 

accurately quantifying a response rate. 
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Figure 22. Barriers for a mobile responder to respond to a cardiac arrest scene (from 

[87]) 

 

The AED reliability factor RAED in the model specifically refers to the mission 

reliability of the AED, which is the conditional probability, given that an AED is 

deployed for a patient use, that the AED is able to perform its functions for the 

duration of the use (e.g. analyze the heart rhythm and provide a shock if necessary). 

 

AEDs are inherently highly reliable devices.  Their relatively narrow scope of 

intended functions allows for a design that is highly customized to a single purpose.  

Additionally, AEDs perform automated self-diagnostic tests daily, which verify their 

readiness for use, further increasing the mission reliability.  Most AED hardware 

failures are detected by the self-test and the device is repaired or replaced without 

impacting any patient use. 

 

AEDs require only minimal maintenance – the battery must be replaced every 3 to 4 

years, and the electrode pads must be replaced every 2 to 3 years.  Overdue 

maintenance, particularly devices with depleted or low batteries at the time of a 

therapy need, is one of the leading drivers of reduced AED mission reliability.  
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Deluca et al. discuss a review of AED patient use failures in the FDA MAUDE 

database, reporting that battery and power problems are the “most likely cause” in 

23% of cases and a “possible contributor” in 53% of cases [88].  A University of 

Louisville study tested 322 AEDs at 190 different sites and found that 5% had 

depleted batteries [89]. 

 

Maintenance related AED mission failures are primarily applicable to static located 

public access AEDs.  These AEDs may be in remote locations (relative to the 

responsible maintenance manager), and inspected infrequently.  It is unlikely that a 

responder carrying an AED with them would have this issue, as the AED emits 

audible and visible alerts for several days when it reaches a low battery state or 

requires other maintenance.  Hence, the reliability model input can be very specific to 

the type of response system being simulated.  As AED manufacturers are exploring 

designs for very low cost AEDs, one attribute that may be reduced is the mission 

reliability (e.g. an AED with no self diagnostic functionality would have reduced 

mission reliability due to lack of failure detection).  The impact of AED reliability on 

different response systems can be explored with this factor, as it can range from 95% 

to greater than 99.9%. 

 

4.5.4  Drone Inputs 

 

The drone dispatch delay tDD is similar to the EMS dispatch delay and mobile 

responder dispatch delay, denoting the time interval from the start of the 911 call until 
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the drone takes flight.  This delay time could, in theory, not exist, as the drone could 

be dispatched automatically upon receipt of a medical 911 call, and returned to the 

base at any point if it is determined not to be needed.  There may however be physical 

constraints to an immediate takeoff, such as opening storage garage doors, time for an 

on duty pilot to man the flight controls (if required by regulations), etc.  The expected 

range for this factor is thus 0 to 2 minutes [90]. 

 

The time for the drone to ascend vertically to a safe flight elevation (e.g. 120 meters), 

tDV, can be modeled as a constant, as it is assumed there would be a standard 

minimum elevation requirement based on regulations and the regions topography, 

bounded by the current maximum legal flight elevation of 400 ft.  The time required 

to reach this elevation would be based on the vertical ascension speed of the drone, 

but would remain constant across flights.  This factor can be determined from drone 

performance specifications, and ranges from 0.25 minutes to 1 minute [91].  Rotary-

wing drones have typical lateral flight speeds of 50 to 100 km/h, although custom 

designed drones could reach speeds up to 150 km/h [90].  Similar to the drone vertical 

takeoff time, the drone descent time interval, tDDe, accounts for the descent of the 

drone to a safe level to deploy the AED, and the time required to deploy the AED 

(e.g. lower by a cable and winch, land and release, etc.) to a waiting recipient.  This 

too is assumed constant within a system, and is expected to range from 0.5 to 1 

minute. 

 

Like all complex equipment that perform a critical function and must operate safely, 

drones will require periodic maintenance, both preventive and corrective.  The 
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downtime is minimal relative to the operational time; however, this operational 

availability DAO is incorporated into the model to assess the impact, as it could drive 

decisions on redundant drone capability.  The availability of a drone is a fraction 

between 0% and 100%, and is applied stochastically and independently to each drone 

within the system for each simulation.  Typical drone availability is estimated at 95% 

[90].   

 

The model accounts for the occurrences when a drone would not be able to respond to 

a cardiac arrest scene due to weather conditions.  Drone flight may be restricted 

during periods of high winds, heavy rain, heavy snow, or poor visibility.  This factor, 

DAW, would be unique for the geographic region being modeled.  An nominal weather 

availability estimate is 90% [90].  The weather availability factor is a fraction 

between 0% and 100%, and is applied stochastically and equivalently to all drones 

within the system for each simulation (i.e. if the weather is not permitting, no drones 

in the system model are able to respond in the particular simulation). 

 

4.5.5  Excluded Factors 

Modeling and simulation relies upon the simplification of the complexities of real 

world systems.  Many factors which could influence the response time were not 

included in the model.  Some of these factors provide additional stochastic variance to 

response times and survival, but were applied as constants representing average 

values.  Others represent uncommon events or situations, with little impact on the 
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macro-scale evaluation of system performance (i.e. the mean response time).  These 

factors are noted here: 

 Driving velocity variation over time of day.  The velocity inputs used 

represent the average velocity, across all times of day and driving conditions.  

Specific responses may result in faster or slower driving speeds, depending 

on time of day, traffic, and weather. 

 Simultaneous cardiac arrest events.  The model does not explicitly simulate 

multiple cardiac arrest responses occurring at the same time.  Based upon 

the frequency of cardiac arrests, it is very unlikely more than one concurrent 

response would be required within the same geographical vicinity.  The 

ambulance availability factor accounts for the possibility that some 

ambulance are unavailable due to response to other medical emergencies, 

and likewise the drone operational availability considers time deployed for 

other calls. 

 Restricted air space.  The model assumes a Euclidean distance for drone 

flight.  There may be restricted airspace within a region of simulation.  This 

could be compensated by a reduction in the Minkowski order value, below 

the value of 2.  A training approach similar to that described for the driving 

distance approximation could be applied to determine the value of p. 

 AED use related errors.  AED use errors are rare, occurring in about 4% of all 

cases, with about 72% of errors caused by the operator [92].  Not all errors 

result in the patient being deprived of therapy, some may result in delaying 
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the time to defibrillation.  This factor could be combined with the AED 

reliability factor to include all causes for AED mission failures. 

 Additional geo-spatial distributions.  Section 4.5.1 discussed the models 

requirement for distributions with finite coverage intervals, to provide 

boundaries for the distribution.  Uniform, triangular, beta, and heat-map 

distributions were discussed.  This could be extended to include the use of 

truncated distributions. 

 

4.6  Model Verification and Validation 

 

 

Model validation is the “substantiation that a computerized model within its domain 

of applicability possesses a satisfactory range of accuracy consistent with the 

intended application of the model”[93].  Model validation is necessary to provide 

credibility to the predictions and insights gained from simulation experiments, and to 

build confidence in conclusions and decisions made from simulation analysis.  The 

state of implementation of the cardiac response systems modelled in this research 

range from concepts, to small pilot studies and experimental trials, to fully 

implemented but still in their infancy.  In the context of validation, these can be 

considered non-existent systems, as there is a lack of available real system data.  As 

such, the validation approach relies heavily on rationalism and only minimally on 

empiricism (employing it when real system data is available). 
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The goal of the model validation is to support the credibility of the results of the 

virtual system experimentation and application performed as part of this research.  

Carson notes that a model cannot be completely verified or validated.  “When we 

(loosely) say that a model has been verified or validated, we mean that we have 

explicitly carried out a series of tasks to verify and validate our model to the degree 

necessary for our purpose.  Such V&V is always a matter of judgment to a large 

extent”[94].  The degree of accuracy sought in this project is the sufficiency to 

understand the effect of system factors on the system behavior, and to predict the 

potential improvement in response time and survival that different response systems 

may provide. 

 

The model validation consisted of four aspects, as described by Sargent [93], each 

employing a number of techniques.  The four aspects -- conceptual model validation, 

data validation, computerized model verification, and operational validation, are 

summarized in the following sections. 

 

4.6.1  Conceptual Model Validation 

 

A conceptual model is an abstraction and simplification of a real world system or 

problem into a set of assumptions and logical relationships.  The conceptual model 

provides the foundations for the logic and mathematical algorithms that are 

implemented in the computerized model.  Sections 4.1 through 4.4 provide the 

conceptual model for the cardiac arrest response system simulation model.   
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Validation of the conceptual model was performed using the technique of face 

validity.  Face validity is a review of the conceptual model with experts 

knowledgeable with the system or system concept.  The experts review assumptions, 

input-output relationships, and model logic to assess whether the models behavior is 

reasonable.  This was performed on both the individual event level, i.e. the response 

time prediction of a specific agent, as well as at the global model response level. 

 

I selected experts in the EMS domain who have significant knowledge and experience 

in both the clinical aspects of cardiac arrest resuscitation, as well as the operational 

details of out of hospital cardiac arrest response systems, such as EMS and PAD 

systems.  These are the type of positions that could ultimately be consumers of 

analysis generated by the model, as they are decision-makers in the deployment of 

EMS systems as well as augmentation with additional cardiac response systems.  The 

following sections summarize my review with the experts. 

 

4.6.1.1  Dr. Mickey Eisenberg review 

 

 

One expert reviewer was Dr. Mickey Eisenberg, MD, MPH, PhD.  Dr. Eisenberg is a 

professor of Emergency Medicine at the University of Washington, and the former 

Medical Director for King County EMS.  His perception following our review of the 

conceptual model is that the logical foundation of the response time predictions is 

sound, and the model produced response time outputs that were consistent with his 

personal experience and expectations for the novel systems.   
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One notable comment was the apparent discrepancy in the simulated Bellevue 

survival predictions (a city within King County, Washington) with actual King 

County survival rates for witness VF cardiac arrest.  Further discussion resulted in 

possible explanations: (1) the logistic regression model used to predict survival was 

based on data from 1976 to 1993.  Although time to defibrillation and time to CPR 

are still considered the predominant factors in survival, there have been many 

advances in the quality of CPR, advanced life support treatment, and hospital care 

which increase the overall survival for all systems.  Additionally, this data predates 

the widespread adoption of AEDs for public access.  (2)  The model does not include 

the potential for bystander CPR, which typically results in very short times from 

collapse to the initiation of CPR.  Bystander CPR is a random event which would 

apply to all cardiac arrest response systems equivalently.  The occurrence of 

bystander CPR is significantly higher in King County than in most cities or 

communities. 

 

4.6.1.2  Dr. Greg Ayers review 

 

 

A second face validity review was performed with Dr. Greg Ayers, MD, PhD.  Dr. 

Ayers is a cardiologist, the Head of Clinical Affairs for Philips Healthcare, and also a 

trained firefighter, EMT, and ALS responder, serving as a volunteer with Orcas 

Island Fire and Rescue.   

 

Similar to Dr. Eisenberg, Dr. Ayers found the model and simulation approach to be 

logical and produce believable results.  We had a discussion about the delays in 
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mobile responder sequence of response actions.  The drive mode of response, in 

particular, would expect delays both upon receipt of the cell phone app alert, as well 

as a potential delay upon arrival at the location to find parking.  The average of these 

delay times, which is used in the model, may vary amongst the type of responder of 

the system modeled.  As an example, an off duty firefighter, as a verified responder, 

would likely have a shorter delay, as they would be authorized to park at any safe 

location.  A citizen responder system may have a longer average delay, as they would 

likely be inclined to find legal parking close to the scene.  Dr. Ayers believed that the 

range of drive delay time proposed for the simulations was valid, however he 

believed it would commonly be toward the upper end of the range (i.e. 1.5 minutes).  

He also commented that the drone dispatch delay time should be no greater than the 

mobile responder dispatch delay. However, it could be much shorter, similar to the 

EMS dispatch delay, if the drone is launched immediately upon determination of a 

medical 911 call.  The drone would be recalled if the dispatcher subsequently learned 

that the call is not a cardiac arrest and the AED is not needed. 

 

Dr. Ayers also had similar comments to Dr. Eisenberg’s on the survival prediction for 

EMS response in Bellevue.  While this prediction would be typical of average 

survival in the United States, certain communities, such as King County, Washington, 

have achieved significantly high survival based on high bystander CPR likelihood, 

advancements in Advanced Cardiac Life Support and post arrest hospital care.  He 

agreed that an updated survival model would be beneficial, but it would need to factor 

in these region specific variables.  These would result in a unique intercept in the 
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model for different regions, although the effect of time to CPR and time to 

defibrillations would likely be similar to the model published by Valenzuela et al. 

 

4.6.1.3  Dr. Tom Rea review 

 

 

A third face validity review was performed with Dr. Tom Rea, MD, MPH.  Dr. Rea is 

a Professor of Internal Medicine at the University of Washington, a Section Head at 

Harborview Medical Center in Seattle, Washington, the Medical Director of King 

County Emergency Medical Services, and the Director of the Center for Progress in 

Resuscitation.  He is one of the thought leaders behind the ALERT study, the concept 

of a verified mobile responder (i.e. off duty medical professional or first responder), 

and is active in the oversight of the study. 

 

Dr. Rea’s overall impression of the model and simulation approach was that the 

method provided credible predictions, and would be valid for the comparison of 

different response systems.  Like the other reviewers, Dr. Rea noted that the predicted 

survival from the Bellevue simulations was lower than that currently observed.  He 

believed similar factors result in the higher survival, particularly the large percentage 

of cardiac arrests with bystander CPR in King County.  As King County is one of the 

highest regions for bystander CPR in the United States, with approximately 65% of 

cardiac arrest cases having CPR prior to EMS arrival, he believed the survival 

prediction, while understating the King County survival, would be fairly accurate for 

a typical region.  Further, he agreed that the effect of bystander CPR would result in 
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an equivalent increase of survival for all systems, and thus the relative differences in 

survival predicted by the model and simulations would remain valid. 

 

Dr. Rea also had a few comments on estimated nominal values used for some of the 

model factors.  He believed that the time between responder arrival and starting the 

patient treatment is about 90 seconds, compared to the nominal 1 minute used in the 

model.  He did not believe this would have a large effect on accuracy of the survival 

prediction, and would have no effect on relative comparisons.  He commented that 

chute times for EMS and delay times for mobile responders are longer at night than in 

daytime hours.  However, the velocity of a driving responder (ambulance or mobile 

responder) is higher at night, and these two effects would likely offset each other.  He 

noted that in King County, ambulance availability was typically 80% to 90%, 

however he believed that King County was higher than a typical EMS system, and the 

70% nominal value seemed reasonable. 

 

When reviewing the results of comparison of system response times and survival, he 

noted that the Pulse Point system only responds to public location cardiac arrests.  As 

70% of arrests occur in private residences, the Pulse Point response is only available 

for a minority of occurrences.  The model does not account for this limitation of the 

Pulse Point system, and thus would overstate the benefit of Pulse Point when 

compared to systems that provide a response to all cardiac arrest locations.  He stated 

the overall, the predicted improvements in survival from these response systems 

appeared “grounded and likely conservative”.  He noted that in using Bellevue, 
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Washington, as the base level for survival comparison, I was using one of the best 

performing regions in the country.  If the comparisons were against a region of much 

lower average survival, the improvements would be more dramatic. 

 

 

4.6.2  Data Validity 

 

Data validity is the assurance that the model input values reasonably reflect actual 

real world system values.  A fully valid model may produce unrealistic or inaccurate 

predictions if the inputs are not realistic values or distributions.  This research 

leveraged published data to the extent available for model inputs.  Sourced model 

inputs are considered valid data without further proof.  Sources of input data are 

discussed in Section 4.5.   

 

Where available, empirical data was used to confirm or supplement published 

sources.  A source of empirical data is the Bellevue EMS response times and 

distances, which through regression analysis provides an estimated ambulance 

velocity and delay time (the sum of EMS dispatch delay and chute time).  The 

Minkowski distance order input and bias correction used a cross validation with 

Google Maps determined distance, as described in Section 4.5.1.1.  The velocity 

ranges for walking and driving by cellphone dispatched responders are reported by 

Auricchio [95] from a pilot study in Switzerland.  Data from these validations is 

provided in Appendix D. 
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Where neither reference data nor empirical data was available, face validity was used.  

Knowledgeable experts reviewed the range of values considered reasonable for the 

mdel.  Table 5 provides the method of validation used for each model input. 

 

Table 5. Data validity source for model inputs. 

Factor  Description Publication Empirical Data Face Validity 

tDD Drone dispatch delay time (minutes)   x 

Rd Responder density per sq km   x1 

vRD Responder driving velocity (km/h) x   

vD Drone velocity (km/h) x   

tDDe Drone descent time (minutes)   x 

tRD Responder dispatch delay time (minutes)   x 

tRDr Responder drive delay time (minutes)   x 

Mdbc Minkowski distance bias correction  x  

RR Responder reliability x x  

tDV Drone vertical flight time (minutes)  x x 

tEC EMS chute time (minutes)  x  

pd Minkowski drive distance order (p)  x  

vE Ambulance velocity (km/h) x x  

DAW Drone weather availability   x2 

EA Ambulance availability x   

pa Minkowski drone distance order (p)   x 

DAO Drone operational availability x  x 

pw Minkowski walk distance order (p)   x 

tRW Responder walk delay time (minutes)   x 

vRW Responder walking velocity (km/h) x   

1.  Responder density can take any value.   

2. The weather availability factor is specific to the region under simulation. 
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4.6.3  Computerized Model Verification 

 

The computerized model verification provides assurance that the conceptual model is 

correctly coded and implemented into computer software or programming language.  

The model used in this research was implemented in Microsoft Excel, using entirely 

native functions within the spreadsheet.  The verification of the model relied upon 

three facets: peer review of implementation, operational graphics and formula 

auditing tools, and tests with extreme scenarios. 

 

The process of creation of the Excel model from the conceptual involved the creation 

of a pseudocode description.  The pseudo code provides mathematical formulations 

and logic operations in an algorithmic format, which is not specific to a programming 

language or simulation software.  The pseudo code is an intermediate step in the 

process of constructing the computer model, which allows easy review of the model 

algorithms without the need to read detailed code syntax.  The pseudocode also 

accommodates the translation into the Excel coding.  This two stage process 

facilitates the peer review of the model mathematics, logic, as well as the coding of 

the algorithm.  Peer review of both the model pseudo code and the Excel 

implementation was performed by Professor Jeffrey Herrmann, the author’s academic 

advisor.  The pseudo code for the model can be found in Appendix C. 

 

To trace the flow of data from model inputs to outputs in the spreadsheet cells, I used 

Excel formula auditing tools.  The Trace Precedents function was used to verify the 

source cell of each formula variable, and to verify against the pseudo code.  The 
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Trace Dependents function was used to verify that each cell value or calculation was 

used in the subsequent operation of the algorithm.  I used Operational graphics, the 

real time charting of model data as simulations are executed, to verify the geospatial 

sampling function implementation.  I used a graph showing the latitude and longitude 

location of each agent within each simulation run to verify implementation of both 

the random located agents (e.g. mobile responders, the cardiac arrest location) as well 

as static located agents (e.g. EMS stations, drone bases). 

 

Extreme value and degenerate cases of model inputs were used to verify the model 

provided the expected behavior as inputs were set to their physical limits or extremely 

high values.  Examples of degenerate case verification include setting responder 

reliability to zero or responder density to zero and verifying the response time 

distribution became identical to an EMS only response.  Similarly, setting drone 

operational availability to zero or weather availability to zero produces the same 

response as a system without drones, whereas setting these values to one negates the 

effect of these factors.  Setting the responder density to increasingly high values 

results in the response time asymptotically approaching the walk delay time, which is 

the minimum possible response time.  These tests verify that the model was 

implemented sufficiently to perform over the entire applicable range of inputs. 
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4.6.4  Operational Validation 

 

The operational validity of a model is the ability of the model to provide sufficient 

accuracy for its intended purpose.  In this research, most of the described systems are 

classified as non-observable systems, particularly in terms of a lack of data available 

to perform empirical validation.  In cases such as this, a thorough analysis of the 

behavior of the model, as well as comparison to other models, can be used for 

validation. 

 

The operational validation of the response system model used face validity, event 

validity, and sensitivity analysis.  Face validity, as in the conceptual model validation, 

was accomplished through expert review of the model outputs.  While the experts 

could not quantify the precision of the model predictions, they were able to support 

the output behaviors as reasonable and of the expected magnitude.   

 

Event validity is the validation of intermediate calculations, or “events” within the 

model, that together provide the global model response.  While no empirical data is 

available for validation of the global modal responses of time to CPR, time to 

defibrillation, or survival, limited published data was used for empirical validation of 

events within the model.  Events such as response time for individual responding 

agents, percentage of mobile responders which walk versus drive, were explored with 

sensitivity analysis and comparison to available empirical data in literature.  

Auricchio et al published results from a pilot study of cell phone app dispatched 

mobile responders in southern Switzerland.  While many of the model factors are not 
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reported in the publication, applying a responder density of 2 per sq. km, and using 

the average responder velocity from the distribution reported, provides a response 

transit time distribution which is very similar to the distribution reported from the 

study.  The model also closely predicted the percent of responders which walked to 

the cardiac location versus those which drove. 

 

The EMS system is the only system in the model which had sufficient empirical data 

to provide a comparison.  While the model provided good response time simulation of 

the Bellevue EMS system, the survival prediction underestimated observed survival.  

The EMS response time predicted by the model for Bellevue, Washington was 

compared to mean and median response times provided by King County EMS.  The 

mean and median simulated response times were 5.8 minutes and 5.6 minutes 

respectively, while the King County EMS provided response times for cardiac arrest 

cases in 2014 was 4.9 minutes (mean) and 4.7 minutes (median).  The reasons for the 

underestimate of survival are discussed in Section 4.6.1, and are likely somewhat 

specific to King County, due to the high likelihood of bystander CPR.  Inclusion of 

this factor would provide a similar magnitude of survival increase for all systems, and 

does not affect response time prediction. 

 

Sensitivity analysis was performed at both the event level and global response level.  

This analysis confirmed intuitive predictions about the direction of change of a 

response as a model input was changed.  Examples include increasing responder 

velocity results in decreased response time.  Decreasing delay times results in 
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decreased response times.  Increasing drone operational availability increases the 

percentage of drone arrivals before EMS. 

 

 

 

4.7.  Summary of Research Model 

 

This chapter has described the creation and execution of a model designed to simulate 

the response times of different out-of-hospital cardiac arrest response systems.  The 

model incorporates the stochastic nature of the cardiac arrest location with respect to 

responding agents.  As such, the output of the model is best analyzed using the Monte 

Carlo method, with the system efficacy being described by summary statistics of a 

distribution of thousands of simulated responses.   

 

As one of the goals of this research is to understand the contribution of various 

factors in different response systems to the effectiveness of the system, the model was 

structured in such a manner that these factors could readily be explored through 

model experimentation.  Each factor in the model was presented, with a following 

discussion of how a realistic range of values can be obtained for the factor.  Chapter 5 

follows this with an analysis of the sensitivity of model predictions to each factor in 

these systems.  

 

The model was verified and validated through multiple methods, with reviews and 

tests directed at the conceptual level, the input data, the computer implementation, 

and the operational outputs.  This included comparisons to empirical data when 
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available, as well as face validity reviews with experts in the cardiac arrest response 

system operations and research, as well as drone operations.  The results of the 

validation exercises suggest that the model is capable of producing credible 

predictions of response time and the effect on survival.  These predictions enable the 

analysis of the potential response time and survival improvements provided by these 

systems. 
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Chapter 5: Sensitivity Analysis 

 

 

A primary objective of this research is to utilize modeling and simulation to better 

understand factors that affect response time and survival in the various emerging 

cardiac arrest response systems.  Understanding the magnitude of influence that each 

model input has on the model response provides the following two benefits.  First, 

when improving the descriptive or predictive precision of the model and simulations, 

tha accuracy of highly sensitive inputs can be prioritized over insensitive factors.  

Minimizing the uncertainty to these inputs will reduce the uncertainty in the model 

predictions.  Second, to improve existing response systems, or when planning the 

deployment of new systems, resources can be applied toward improving factors that 

have the greatest impact on the response time. 

 

Sensitivity analysis is the practice of executing a complex model with one input 

varied among the executions, while all other inputs are held constant, typically at 

their nominal values.  This chapter presents the results from a series of sensitivity 

analysis simulation experiments.  Section 5.1 focuses on the sensitivity of the 

response time to defibrillation of each type of primary responding agent, i.e. EMS, 

mobile responders, and drone transport of an AED.  Section 5.2 then applies 

sensitivity analysis to the global response time at the system level model, which 

incorporates the effects of multiple agents responding to a cardiac arrest, as well as 

reliability and availability factors that affect each agent’s ability to respond.  The 

sensitivity of the response times to the types of geo-spatial distributions used to 



 

105 

 

simulate random cardiac arrest locations and mobile responder locations are presented 

in Section 5.3.  With the identification of the most important factors in the model, 

Response Surface Methodology experiments were run to provide an in depth 

understanding of interactions between factors and non-linearity of the response.  The 

results of these simulation experiments are presented in Section 5.4.  Finally, a 

discussion and conclusions from the sensitivity analysis are provided in Section 5.5. 

 

5.1  Response Time Sensitivity 

 

Sensitivity analysis experiments were generated to specifically evaluate the response 

time of each type of agent in the model, independent of system level factors. 

Bellevue, Washington was used as an example region for the sensitivity analysis.  

Factors specific to the region, such as the Minkowski distance order and the 

Minkowski distance bias correction were identified through the process described in 

Section 4.5.1.2.  Only factors that directly influence the responders time to 

defibrillation were assessed in these experiments.  Factors that dictate the ability of an 

agent to respond, such as reliability or availability factors, as well as the effect of 

multiple responding agents vying for the best response time, were excluded from this 

analysis. 

 

The experimental range for which each factor was varied was based on either a 

reasonable range of variation around a nominal value, or a reasonable uncertainty in 

the estimate of the nominal value.  The experimental points do not represent 
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necessarily the extreme of possibility for each factor, but a reasonable range that may 

exist within a single region.  Factors were symmetrically varied around the nominal 

value, with each factor evaluated at five set points.  5000 simulations were run at each 

experimental setting, with the mean of the response time to defibrillation distribution 

used to characterize the sensitivity.  Tornado diagrams were used to graphically 

interpret the results.  Each experiment was automated using Crystal Ball software 

[75].   

 

5.1.1  EMS Response Time Sensitivity 

 

The factors evaluated for the sensitivity of the EMS response time, along with the 

low, center (nominal), and high settings, are shown in Table 6.  The results of the 

sensitivity analysis are shown as a Tornado Diagram in Figure 23.  

 

 

Table 6. EMS sensitivity analysis factors and ranges. 

Factor  Description Low Center High 

pd Minkowski drive distance order (p) 0.7 0.8 0.9 

Mdbc Minkowski distance bias correction 0.15 0.35 0.55 

tEC / tED EMS chute time / dispatch delay (minutes) 2 3 4 

vE Ambulance velocity (km/h) 60 70 80 
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Figure 23. Tornado diagram of EMS sensitivity.  The blue mark is the response with 

all factors at nominal values.  The grey bars show the range of the response across the 

range of factor input values. 

 

 

5.1.2  Mobile Responder Response Time Sensitivity 

 

The factors evaluated for the sensitivity of the mobile responders’ response time, 

along with the low, center (nominal), and high settings, are shown in Table 7.  The 

results of the sensitivity analysis are shown as a Tornado Diagram in Figure 24.  
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Table 7. Mobile responder sensitivity analysis factors and ranges. 

Factor  Description Low Center High 

pw Minkowski walk distance order (p) 1.5 1.7 1.9 

pd Minkowski drive distance order (p) 0.7 0.8 0.9 

Mdbc Minkowski distance bias correction (km) 0.15 0.35 0.55 

Rd Responder density per sq km 2 5 8 

tRD Responder dispatch delay time (minutes) 0.5 1 1.5 

tRW Responder walk delay time (minutes) 0.5 0.75 1 

tRDr Responder drive delay time (minutes) 0.5 1 1.5 

vRW Responder walking velocity (km/h) 6 7 8 

vRD Responder driving velocity (km/h) 24 32 40 

 

 

 
Figure 24. Tornado diagram of mobile responder sensitivity.  The blue mark is the 

response with all factors at nominal values.  The grey bars show the range of the 

response across the range of factor input values. 



 

109 

 

5.1.3  Drone Response Time Sensitivity 

 

The factors evaluated for the sensitivity of the drone response time, along with the 

low, center (nominal), and high settings, are shown in Table 8.  The results of the 

sensitivity analysis are shown as a Tornado Diagram in Figure 25.  

 

Table 8. Drone response time sensitivity analysis factors and ranges. 

Factor  Description Low Center High 

pa Minkowski drone distance order (p) 1.8 1.9 2 

tDD Drone dispatch delay time (minutes) 0.5 1 2 

tDV Drone vertical flight time (minutes) 0.25 0.5 0.75 

vD Drone velocity (km/h) 64 80 96 

tDDe Drone descent time (minutes) 0.5 1 1.5 

 

 

 

 
Figure 25. Tornado diagram of drone response time sensitivity.  The blue mark is the 

response with all factors at nominal values.  The grey bars show the range of the 

response across the range of factor input values. 
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5.1.4  Discussion of Response Time Sensitivity 

 

The response time sensitivity of all responding agents in the model is dominated by 

the various “delay” factors, which are modeled as constant values, and added to the 

distance based time calculation.  In reality, these delays would have some small 

stochastic variance in each cardiac arrest response; however, this variance is likely 

small relative to the variance in response distances.  Some delay factors may vary 

significantly based on system protocols and strategies, even between similar types of 

response systems.  As the sum of the EMS Dispatch Delay and Chute time was 

increased from 2 to 4 minutes, the mean response time increased from 3.9 to 5.9 

minutes. While EMS dispatch delay is likely similar across agencies, chute time can 

vary, based on station readiness protocols.  Increasing the mobile responder Dispatch 

Delay from 0.5 to 1.5 minutes resulted in a response time increase from 2.7 to 3.7 

minutes. Responder dispatch delay could take an aggressive approach by activating a 

mobile responder network at first indication of a possible cardiac event, or a more 

conservative approach, waiting until the 911 operator is highly confident that the call 

is a cardiac arrest.  An aggressive approach would result in some false activations, 

while a conservative approach would result in a slower response time.  This 

emphasizes the importance of minimizing these delays to achieve the best system 

performance. 

 

The velocity of the responding agents was the next strongest factor; reducing 

ambulance velocity form 80 to 60 km/h increased the average response time by 0.6 

minutes.  When distances from origin of the responding agent to the cardiac arrest are 
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not great, such as in an urban or suburban region, the velocity of the response has less 

of an impact than the delay factors.  In a real system, the largest impact on velocity 

would likely be traffic conditions.  Ambulances have the benefit of using lights and 

sirens, which reduces the impact of traffic, and thus variance in the velocity.  As 

mobile responders have a choice of walking or driving to the cardiac arrest location, a 

dispatch app that could provide guidance to the responder on the best mode of travel, 

accounting for traffic conditions and distance, would reduce the impact of traffic on 

response time and provide improved system performance.   

 

The density of mobile responders in the region was also influential on the response 

time.  Increasing the density of responders from 2/sq. km to 8/sq. km provided an 

improvement of the mean response time from 3.6 minutes to 3.0 minutes.  High 

densities of responders increases the likelihood of responders being close to the 

cardiac arrest location. 

 

The distance approximation factors, i.e. the Minkowski distance order and the 

Minkowski bias correction, had the least impact on response times.  Varying the 

Minkowski drive order by 0.2 only resulted in a 0.07 minute change in mean response 

time, and varying the Minkowski walk order by 0.4 resulted in a change of 0.02 

minutes.  This suggests that the model is robust to some imprecision in the estimates 

of these values and the difference between the approximated distance and the actual 

distance. 
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5.2  System Response Time Sensitivity 

 

When multiple types of responding agents are incorporated into the system response 

for a region, additional calculations occur in the model.  The model is essentially 

finding the minimum response time to provide therapy to the cardiac arrest victim 

amongst the different responding agents.  However, in some manifestations of a 

system, multiple agents are needed to provide therapy.  For example, a system that 

has a drone AED delivery but requires a dispatched mobile responder to operate the 

AED involves the interaction of these agents, with EMS providing a parallel response 

effort.  Additional factors affect the availability of responding agents, including 

reliability of human responders, as well as that of the drone and AED, and the 

availability of an ambulance, or weather prevention of drone flight. 

 

To assess this additional system complexity, a series of system sensitivity analysis 

experiments were conducted using a hypothetical system in which the three types of 

responding agents all participate.  Bellevue, Washington was again used as the 

example region.  The hypothetical system used a drone delivery of the AED from a 

single drone stationed at the most centrally located fire station in the region, along 

with a network of dispatched mobile responders who retrieve the AED and apply it to 

the patient.  The responders do not carry AEDs, and thus rely on the drone delivery.  

This is backed up by the standard EMS response for the region.   

 

The sensitivity analysis included all model factors, with five set points for each factor 

(Low, Center, High, and the midpoints between Low-Center and Center-High).  Each 



 

113 

 

experimental condition had 5000 simulations run. The response analyzed was the 

mean of the time to defibrillation distribution over the 5000 simulations.  ANOVA 

was used to identify statistically significant factors, using a p-value of 0.05.  The R-

squared value from the ANOVA provides a quantitative measure of the effect of each 

factor on the response time to defibrillation.  The ANOVA was performed using 

Minitab statistical analysis software [96].  The experimental conditions, along with 

the ANOVA p-value and R-squared, are provided in Table 9, sorted by highest to 

lowest R-squared value. 
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Table 9. System sensitivity analysis set points, along with ANOVA p-value and R-

squared value. 

Factor  Description Low Center High p-value R sq (%) 

tDD Drone dispatch delay time (minutes) 0 1 2 0 14.36 

Rd Responder density per sq km 2 5 8 0 11.61 

vRD Responder driving velocity (km/h) 24 32 40 0 7.67 

vD Drone velocity (km/h) 64 80 96 0 4.3 

tDDe Drone descent time (minutes) 0.5 1 1.5 0 4.1 

tRD Responder dispatch delay time (minutes) 0.5 1 1.5 0 3.4 

tRDr Responder drive delay time (minutes) 0.5 1 1.5 0 3.39 

Mdbc Minkowski distance bias correction 0.15 0.35 0.55 0 2.53 

RR Responder reliability 0.2 0.3 0.4 0 2.32 

tDV Drone vertical flight time (minutes) 0.25 0.5 0.75 0 1.41 

tEC EMS chute time (minutes) 2 3 4 0 1.26 

pd Minkowski drive distance order (p) 0.7 0.8 0.9 0 0.77 

vE Ambulance velocity (km/h) 60 70 80 0 0.15 

DAW Drone weather availability 0.8 0.9 0.99 0 0.14 

EA Ambulance availability 0.7 0.76 0.84 0.035 0.04 

pa Minkowski drone distance order (p) 1.8 1.9 2 0.397 0.02 

DAO Drone operational availability 0.9 0.96 0.98 0.437 0.02 

pw Minkowski walk distance order (p) 1.5 1.7 1.9 1 0 

tRW Responder walk delay time (minutes) 0.5 0.75 1 1 0 

vRW Responder walking velocity (km/h) 6 7 8 1 0 

 

 

 

An example ANOVA results for the factor EMS chute time are shown in Table 10.  

The analysis provides the means and 95% confidence intervals for each level of the 

factor setting.  Additionally, the statistical significance (p-value) of the difference in 

mean values of the settings shown.  The R-squared is a measure of the percentage of 

variation in the response time that is explained by the factor setting.  Higher R-square 

values indicate a stronger impact on response time relative to factors with lower R-
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square values.  A graph of the mean and 95% confidence intervals for each factor 

setting, as well as box and whisker plots of the entire distribution of simulation 

responses, is shown in Figure 26.  The statistical significance is sensitive to the 

number of simulations run at each factor level, as this directly dictates the error 

degrees of freedom in the analysis.  Thus, the p-value merely indicates which factors 

are significant to the response for a given number of simulation runs.  The R-squared 

value, however, is not sensitive to the number of simulations, and is thus a strong 

indicator of the relative importance of each factor. 

 

Table 10. ANOVA results for EMS Chute time. 

Factor Information 

Factor Levels Values (minutes) 

EMS Chute time 5 2, 2.5, 3, 3.5, 4 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

EMS chute time 4 212.6 53.1380 80.04 0.000 

Error 24995 16593.0 0.6639       

Total 24999 16805.6          

 

Model Summary 

S R-sq R-sq(adj) R-sq(pred) 

0.814772 1.26% 1.25% 1.23% 

Means 

Factor N Mean StDev 95% CI 

2 5000 5.7759 0.7876 (5.7533, 5.7985) 

2.5 5000 5.8411 0.7651 (5.8185, 5.8637) 

3 5000 5.9063 0.7792 (5.8837, 5.9289) 

3.5 5000 5.9715 0.8280 (5.9489, 5.9941) 

4 5000 6.0367 0.9060 (6.0141, 6.0593) 

Pooled StDev = 0.814772 
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(a) 

 
(b) 

Figure 26. (a) Chart of means and confidence intervals, and (b) boxplot of 

distribution, for each setting value for EMS Chute time. 

 

The tornado diagram in Figure 27 shows a graphical comparison of the relative 

impact of each model input across a reasonable range of settings.  The relative range 
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of the each factor in the tornado diagram correlates to the R-square value from the 

ANOVA. 

 

 
Figure 27. Tornado diagram of system sensitivity analysis results.  The blue mark is 

the response with all factors at nominal values.  The grey bars show the range of the 

response across the range of factor input values. 
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5.2.1  Discussion of System Sensitivity 

 

The specific system on which the sensitivity analysis was evaluated relied on two 

agents, both a mobile responder and a drone, arriving at the cardiac arrest location in 

order to provide defibrillation ahead of the arrival of EMS.  The drone dispatch delay 

time, tdd, remains as the most sensitive factor for response time, by virtue of the wide 

range of potential values.  This time may contribute from zero to two minutes to the 

response time of the drone.  Other delay times, such as mobile responder dispatch 

delay tRD, which constitute a smaller range of potential values (0.5 to 1.5 minutes), are 

less sensitive, only resulting in a change of 0.5 minutes.  This is because both the 

drone and mobile responder experience a delay time before beginning transit to the 

cardiac arrest location, while the longest response time of the two agents determines 

the effective time to defibrillation.  Even complete elimination of the delay time of 

one type of agent would have a minimal impact if the other agent’s response time 

were unchanged.  The analysis indicates efforts would be best placed on minimizing 

the delay in the drone taking flight.  This would favor a strategy such as an automated 

drone launch on the first determination of any medical call, with the drone being 

recalled to the base if not needed for a cardiac arrest emergency. 

 

Mobile responder density has nearly as strong of an effect as the drone dispatch delay 

time, with the mean response time decreasing from 6.6 to 5.7 minutes as the density 

increased from 2/sq. km to 8/sq. km.  A high density of responders provides a high 

likelihood that an available responder will be within close vicinity of the cardiac 

arrest.  The transit time of mobile responders, even when driving to the location, is 
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generally longer than that of the drone, due to the slower velocity and need to use the 

road network.  Ensuring a mobile responder is near the arrest location, when both are 

random events, is achieved by having a large number of responders. 

 

Compensating for the mobile responder proximity to the cardiac arrest is the velocity 

at which the responder can travel to the arrest.  Driving velocity, vRD, is the third most 

sensitive factor. As velocity was increased from 24 to 40 km/h, the mean response 

time decreased from 6.2 to 5.7 minutes.  This factor would be dictated by the road 

conditions of the region (e.g. traffic, stop lights, etc.), and would be difficult to 

improve upon without adversely affecting the responder and general public safety.   

 

5.3  Sensitivity to Geo-spatial Distributions 

 

The sensitivity analysis in the prior sections was performed using a bivariate uniform 

distribution to generate both the random cardiac arrest location as well as the location 

of each mobile responder.  The assumption of uniform dispersion may not be valid in 

real world systems.  The distribution could take on infinite forms in reality.  To 

evaluate the influence of the assumed geo-spatial distribution, sensitivity analysis was 

conducted by varying the alpha and beta parameters of a bivariate Beta distribution.  

Three forms of a Beta distribution were used; Beta(1, 1), which is equivalent to the 

uniform distribution, Beta(2, 2), a symmetric, somewhat bell shaped distribution, and 

Beta(2, 4), a skewed distribution.  The three distributions are shown in Figure 28.  

The bivariate location generating distributions used the same Beta parameters for 
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both the latitude and longitude locations, e.g. when the latitude was generated with 

Beta(1, 1) the longitude was also generated with Beta(1, 1). 

 

 

 
(a) Beta(1, 1) 

 
(b) Beta(2, 2) 

 
(c) Beta(2, 4) 

Figure 28. Three Beta distributions used in sensitivity analysis. 
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Sensitivity experiments were conducted using the same hypothetical system in the 

Bellevue, WA region as the analysis described in Section 5.2.  First, the cardiac arrest 

generating distribution was held constant at Beta(1, 1) while the mobile responder 

generating distribution was varied over the three Beta distributions.  Next, the mobile 

responder distribution was held constant at Beta(1, 1) while the cardiac arrest 

distribution was varied.  Finally, both distributions were varied across the three 

distributions.  ANOVA was used to analyze the statistical significance of the 

difference in distribution, with a p-value of 0.05 used as the threshold.  Equal 

variance across the distribution settings was not assumed for the ANOVA.  Graphical 

analysis was used to assess the practical implication on model sensitivity. 

 

The ANOVA results for holding the cardiac arrest location distribution constant at 

Beta(1, 1) while changing the mobile responder distribution are shown in Table 11.  

Graphs of the mean response time and boxplots of the distribution are shown in 

Figure 29.  While the change in distribution was statistically significant to the mean 

of the time to defibrillation, the R-squared value indicated that these changes only 

accounted for 6.46% of the variation across the simulations.  This variation amounted 

to about 0.8 minutes in the mean response times. 
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Table 11. ANOVA results for the mobile responder geo-spatial distributions. 

Factor Information 

Factor Levels Values 

Mobile responder distribution 3 MR Beta 1 1, MR Beta 2 2, MR Beta 2 4 

 

Welch’s Test 

Source 

DF 

Num DF Den F-Value P-Value 

Mobile responder distribution 2 9202.77 349.78 0.000 

 

Model Summary 

R-sq R-sq(adj) R-sq(pred) 

6.46% 6.44% 6.42% 

 

Means 

Factor N Mean StDev 95% CI 

MR Beta 1 1 5000 5.9065 0.7793 (5.8849, 5.9281) 

MR Beta 2 2 5000 5.9845 1.0065 (5.9566, 6.0124) 

MR Beta 2 4 5000 6.6960 1.9658 (6.6415, 6.7505) 
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(a)  

 
(b) 

Figure 29. Plot of changes in (a) mean and (b) distribution of response time to 

defibrillation as a result of changing in the mobile responder distribution. 
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The results for holding the mobile responder location distribution constant at Beta(1, 

1) while changing the cardiac arrest distribution are shown in Table 12.  Graphs of the 

mean response time and boxplots of the distribution are shown in Figure 30.  Similar 

to the results of varying the mobile responder distribution, changing the cardiac arrest 

distribution was statistically significant, but did not have a strong effect on mean 

response time giving a range of about 0.4 minutes. 

 

Table 12. ANOVA results for cardiac arrest geo-spatial distribution. 

Factor Information 

Factor Levels Values 

Cardiac arrest distribution 3 CA Beta 1 1, CA Beta 2 2, CA Beta 2 4 

 

Welch’s Test 

Source 

DF 

Num DF Den F-Value P-Value 

Cardiac arrest distribution 2 9953.14 355.56 0.000 

 

Model Summary 

R-sq R-sq(adj) R-sq(pred) 

4.88% 4.87% 4.85% 

Means 

Factor N Mean StDev 95% CI 

CA Beta 1 1 5000 5.9072 0.7799 (5.8856, 5.9289) 

CA Beta 2 2 5000 5.63964 0.67100 (5.62104, 5.65825) 

CA Beta 2 4 5000 5.52356 0.67072 (5.50496, 5.54216) 
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(a) 

 
(b) 

Figure 30. Plot of changes in (a) mean and (b) distribution of response time to 

defibrillation as a result of changing in the cardiac arrest location distribution. 
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The final location distribution sensitivity experiment measured the effect of both the 

cardiac arrest generating distribution and the mobile responder distribution changing.  

Three experimental conditions were evaluated; first with both distributions using the 

Beta(1, 1), second, with both using Beta(2, 2), and third, with both using Beta(2, 4).  

The effect of the distribution was statistically significant, with about a 0.7 minute 

impact on the mean response time.  The ANOVA results are shown in Table 13 and 

graphs of the mean response time and boxplots of the distribution are shown in Figure 

31.    

 

Table 13. ANOVA results for changes in both cardiac arrest location and mobile 

responder location distributions. 

Factor Information 

Factor Levels Values 

All location distributions 3 Beta 1 1, Both 2 2, Both 4 4 

 

Welch’s Test 

Source 

DF 

Num DF Den F-Value P-Value 

All location distributions 2 9997.55 961.59 0.000 

 

Model Summary 

R-sq R-sq(adj) R-sq(pred) 

11.46% 11.44% 11.42% 

 

Means 

Factor N Mean StDev 95% CI 

Beta 1 1 5000 5.9065 0.7793 (5.8849, 5.9281) 

Both 2 2 5000 5.5244 0.7666 (5.5031, 5.5456) 

Both 4 4 5000 5.2272 0.7733 (5.2058, 5.2486) 
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(a) 

 
(b) 

Figure 31. Plot of changes in (a) mean and (b) distribution of response time to 

defibrillation as a result of changing both the cardiac arrest location distribution and 

the mobile responder distribution. 
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5.3.1  Discussion of Sensitivity to Geo-spatial Distributions 

 

The sensitivity analysis to the geo-spatial distribution showed minimal sensitivity to 

for the mean response time to defibrillation within the system.  In all cases, changing 

from a uniform distribution, to a symmetric bivariate peaked distribution, to a skewed 

bivariate distribution, resulted in less than a one minute difference in the mean 

response time.  When varying the mobile responder distribution, the mean response 

times changed from 5.9 to 6.7 minutes.  When varying the  cardiac arrest distribution, 

the mean response times changed from 5.9 to 5.5 minutes.  When changing both 

distribution together, the mean response time changed from 5.9 to 5.2 minutes.  This 

supports the model robustness to imperfect replication of real world distributions of 

both the cardiac arrest location and mobile responders. 

 

The largest effect of the location distributions is found in the upper tail of the 

response time distribution.  This is noticeable when the cardiac arrest distribution is 

Uniform, i.e. Beta(1, 1), and the mobile responder distribution is skewed, i.e. Beta(2, 

4).  In such a case, the number of very long response times (> 10 minutes) is much 

larger, than when the distributions are identical or even both symmetric.  However, 

this effect is not observed when the mobile responder distribution is uniform and 

cardiac arrest distribution is skewed.  The effect of the mobile responder distribution 

is asymmetric with respect to the effect of the cardiac arrest distribution.  This is 

because the cardiac arrest distribution generates a single location for each simulation, 

while the mobile responder distribution generates many locations; however, the 
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response time depends only on the responder location with the minimum distance to 

the cardiac arrest.  This suggests a system using mobile responders would be best 

served by recruiting responders who naturally spread themselves uniformly over a 

region.  This could be achieved through occupational targeting, such as postal 

carriers, Uber drivers, or other recruitment strategies. 

 

5.4  Response Surface Analysis 

 

 

The sensitivity analysis identified the factors with the greatest effect on the model 

response of average time to defibrillation, while all other factors were held constant at 

nominal values.  The strongest factors were further explored for interactions and non-

linearity of the output using response surface methodology.  A central composite 

design of experiments (DOE) was used to assess five significant model factors, 

distributed over the three types of responding agents.  The factors were tdd drone 

dispatch delay, Rd density of mobile responders, Vrd velocity of mobile responders 

when driving, Vd drone velocity, and Tec EMS chute time.   

 

An experimental design that utilized a half fraction factorial cube with a center point 

and ten axial points was chosen such to provide an efficient number of experimental 

runs (27 total runs).  1000 simulations were performed for each experimental run.  

The responses analyzed were the mean of the time to defibrillation distribution and 

the 95th percentile.  The points in the upper tail of the response time distribution were 
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analyzed to understand how these factors affect not only the average time to 

defibrillation, but also the longest times. 

 

The results of the DOE were analyzed using ANOVA and Stepwise Linear 

Regression.  The stepwise regression used backward elimination with an alpha-to-

remove value of 0.05.  The final model contained only terms with a p-value less than 

0.05 after including all removed terms in the error estimate.  The results of each 

analyzed response are provided in Sections 5.4.1 and 5.4.2. 

 

 

5.4.1  RSM Results for Mean of Time to Defibrillation 

 

The final reduced model for the mean of the system time to defibrillation included 

four significant main effect terms, one quadratic term, and one interaction term.  The 

final ANOVA results and the regression equation are shown in Table 14.  Figure 32 

shows the plots of the four main effect factors, with the slope indicating their relative 

impact on the response time, as well as showing the non-linearity of the response to 

the responder density Rd input.  Figure 33 shows the interaction of the drone dispatch 

delay time tdd and the driving velocity of the mobile responder Vrd. 
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Table 14. ANOVA and Regression results for mean value response surface. 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 6 2.91891 0.48648 65.52 0.000 

  Linear 4 2.76333 0.69083 93.04 0.000 

    tdd 1 0.37500 0.37500 50.51 0.000 

    Rd 1 1.12667 1.12667 151.74 0.000 

    vrd 1 1.12667 1.12667 151.74 0.000 

    tec 1 0.13500 0.13500 18.18 0.000 

  Square 1 0.11557 0.11557 15.57 0.001 

    Rd*Rd 1 0.11557 0.11557 15.57 0.001 

  2-Way Interaction 1 0.04000 0.04000 5.39 0.031 

    tdd*vrd 1 0.04000 0.04000 5.39 0.031 

Error 20 0.14850 0.00743       

Total 26 3.06741          

 

Regression Equation 

 

Mean = 8.880 - 0.550 tdd - 0.4370 Rd - 0.0792 vrd + 0.1500 tec + 0.02926 Rd
2  

+ 0.0250 tddvrd 
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Figure 32. Plot of main effects of significant factors for the mean of the distribution 

of time to defibrillation.  The experimental space is defined by the range of 

uncertainty or variability for each factor. tDD = drone dispatch delay time; Rd = 

responder density; vRD = responder driving velocity; tEC = EMS chute time. 

 

 

 
Figure 33. Plot showing the interaction between drone dispatch delay and responder 

driving velocity on the mean of the time to defibrillation. 
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5.4.2  RSM Results for 95th Percentile of Time to Defibrillation Distribution 

 

The 95th percentile of the distribution was analyzed to assess not only the sensitivity 

of the mean response time, but also the sensitivity of very long response times.  The 

final reduced model for the 95th percentile of the system time to defibrillation 

included three significant main effect terms, one quadratic term, and one interaction 

term.  The interaction term is different from the interaction identified as significant in 

the mean response time.  The final ANOVA results and the regression equation are 

shown in Table 15.  Figure 34 shows the plots of the three main effect factors, with 

the slope indicating their relative impact on the response time, as well as showing the 

non-linearity of the response to the responder density Rd input.  Figure 35 shows the 

interaction of the mobile responder density Rd and the driving velocity of the mobile 

responder Vrd. 
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Table 15. ANOVA and Regression results for 95th percentile response surface. 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 5 6.6785 1.33571 62.18 0.000 

  Linear 3 6.0079 2.00264 93.23 0.000 

    Rd 1 3.1537 3.15375 146.82 0.000 

    vrd 1 2.2204 2.22042 103.37 0.000 

    tec 1 0.6338 0.63375 29.50 0.000 

  Square 1 0.3400 0.34000 15.83 0.001 

    Rd*Rd 1 0.3400 0.34000 15.83 0.001 

  2-Way Interaction 1 0.3306 0.33062 15.39 0.001 

    Rd*vrd 1 0.3306 0.33062 15.39 0.001 

Error 21 0.4511 0.02148       

Total 26 7.1296          

 

Regression Equation 

 

95th percentile = 14.56 - 1.510 Rd - 0.1958 vrd + 0.3250 tec + 0.0502 Rd
2 + 0.02396 Rdvrd 

 

 

 
Figure 34. Plot of significant main effects for the 95th percentile of response time 

distribution.  The experimental space is defined by the range of uncertainty or 

variability for each factor.  Rd = responder density; vRD = responder driving velocity; 

tEC = EMS chute time. 
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Figure 35. Interaction plot of 95th percentile of response time distribution. 

5.4.3  Discussion of Response Surface Analysis 

 

Conducting a response surface DOE on a stochastic simulation model results in a 

“model of a model” of a real system.  Montgomery discusses the application of 

Design of Experiments (DOE) to computer simulation models [97].  He describes the 

approach as “the data from the experimental design is used to build a model of the 

system being modeled by the computer simulation – a meta model – and optimization 

is carried out on the meta model.  The assumption is that if the computer simulation 

model is a faithful representation of the real system, then optimization of the model 

will result in adequate determination of the optimum conditions for the real system”.  

The meta model provides some analytical advantages over the full simulation model.  

The meta model, being a regression model with quadratic and interaction terms, is 
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much more computationally efficient than running Monte Carlo simulations on the 

full model.  An estimated mean response time to defibrillation, or 95th percentile time, 

can be directly calculated with only knowing a few of the model inputs.  Additionally, 

the full simulation model is intended to be a predictive model, and not an 

optimization model.  However, the field of Design of Experiments has established 

tools for optimizing the factors in the RSM experiment to achieve specific outputs.  

Optimization can be performed on the meta model and verified on the full simulation 

model. 

 

In this analysis, the response surface identified a non-linear response as the density of 

mobile responders increased.  As more mobile responders are added to a system, the 

minimum distance from the randomly located responders to the arrest location 

decreases, but with diminishing returns.  The RSM indicated that beyond 7 to 8 

responders per square kilometer, additional improvement in response time is not 

expected.  Once this density is achieved, resources would be better spent improving 

other factors in the system. 

 

The analysis also identified important interactions in factors.  In regions where the 

mobile responder is able to drive fast e.g. rural locations, the drone dispatch delay 

becomes more impactful to the response time.  Where driving speeds are lower, this 

has less of an impact, as the drone will still arrive ahead of the mobile responder even 

with long dispatch delays. 
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For the 95th percentile of the time to defibrillation distribution, i.e. the longer 

response time, the responder density and responder driving speed have a significant 

interaction.  At low densities of responders, the driving speed has a much larger 

impact than with a high density of responders.  This is because with fewer responders, 

the driving distances can become significantly longer. 

 

5.5  Sensitivity to Independence of Factors 

 

The modelling approach assumes each of the input factors is independent of other 

factors.  This allows for model simplification of factors that have only modest 

stochastic variance (relative to the variance of response distance) by using an average 

value for these factors.  This approach is applied to the constant time components of 

each response system, as well as the velocity of the responding agents.  However, the 

variation of these values may be correlated in a real world system. 

 

A likely correlation is the velocity of driving responders, i.e. EMS and mobile 

responders, to the weather conditions, which also impact the availability of the drone 

system to provide a response.  Poor weather, e.g. snow or heavy rain, would result in 

no drone response, and would also likely result in slower driving speeds by both EMS 

and mobile responders. 

 

A sensitivity experiment was used to evaluate the effect of the assumption of 

independence of these factors.  A stochastic factor, “weather effect”, w, was added to 
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the model for this experiment.  This factor value was sampled from a Beta (4, 4) 

distribution ranging from zero to one.  This factor was used to determine the drone 

availability outcome for each simulation, based on the weather availability factor 

DAW.  This factor was set to the nominal value of 90% weather availability, with the 

result determined by any sampled value of w below 0.2786 (the 10th percentile of the 

Beta distribution) resulting in the drone system being unavailable.   

 

The driving velocity of both EMS and mobile responders were defined as a function 

of the factor w. Both factors applied a scaling and location shift of the Beta 

distribution to produce a velocity between 70% and 130% of the nominal value, 

maintaining the nominal value as the average speed. 

 

vE = 40w + 50         (14) 

 

vRD = 19.2w + 22.4        (15) 

 

These functions resulted in a perfect correlation (i.e. correlation coefficient of 1) of 

driving velocities between EMS and mobile responders, as well as a perfect 

correlation between drone system unavailability and the slowest driving velocities. 

 

To compare the correlated factors to uncorrelated factors, the model was separately 

modified to create stochastic inputs for EMS and mobile responder driving velocities.  
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These inputs used the same Beta (4, 4) distribution, with EMS vE ranging from 50 to 

90 km/h, and mobile responder velocity vRD ranging from 22.4 to 41.6 km/h. 

 

The experiment considered two types of systems; the drone delivery system with the 

mobile responder application of the AED; and the drone delivery with bystander use. 

Each system was evaluated under two conditions; first with 1 drone in the system, 

and then with 5 drones. The drones were located at the most central fire station (1 

drone) and all fire stations (5 drones) in the Bellevue region.  The experiments 

consisted for 5000 simulations runs with the correlated and uncorrelated factors. 

 

 

5.5.1  Results and Discussion 

 

The results of the experiment are shown in Figure 36.  The boxplots show the 

distribution of time-to-defibrillation for 5000 simulations.  Table 16 shows the 

comparison of mean, 5th percentile, and 95th percentile between the model using 

uncorrelated inputs and the model with correlated inputs.  The effect of the correlated 

inputs is minimal on the overall distribution.  The difference is most notable in the 

longest few simulations, with the range of the data extended up to 2.8 minutes.  

However, even at the 95th percentile, the change is minimal, with the most extreme 

difference of 0.3 minutes.  These results suggest that the model is not sensitive to an 

assumption of independence in inputs, and the use of average values to simplify small 

stochastic variations has a minimal effect on the predictive capability. 
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(a)                                                                             (b) 

  
                              (c)                                                                 (d) 

Figure 36:  Boxplots of time-to-defibrillation distributions using uncorrelated and 

correlated factors for (a) drone mobile responder system with 1 drone; (b) drone 

mobile responder system with 5 drones; (c) drone bystander use system with 1 drone; 

and (d) drone bystander use with 5 drones. 

Table 16.  Comparison of time-to-defibrillation (minutes) distribution statistics 

between uncorrelated and correlated inputs. 
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System Mean 5th Percentile 95th Percentile Mean 5th Percentile 95th Percentile

Drone Mobile Responder, 1 drone 5.5 4.6 6.8 5.5 4.6 6.9

Drone Mobile Responder, 5 drones 5.4 4.5 6.7 5.5 4.5 6.8

Drone Bystander Use, 1 drone 5 3.9 6.3 5 3.9 6.5

Drone Bystander Use, 5 drones 4.6 3.8 5.9 4.6 3.8 6.2

Uncorrelated Inputs Correlated Inputs
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5.6  Summary and Conclusions of Sensitivity Analysis 

 

The sensitivity analysis described in this chapter has generated valuable insights into 

the model and simulation approach to predicting the efficacy of different cardiac 

arrest response systems.  When assessing the fidelity of the model to the real world 

system, and minimizing the error in predictions, the analysis has shown that the 

model is tolerant to some error in the regional and geospatial characteristics of a 

system.  The Minkowski distance metric is robust to small errors in the selection of 

the optimum p value for a region.  Additionally, assuming a uniform distribution of 

both the cardiac arrest locations and the mobile responder distribution will result in 

only small predictive errors in the mean and 95th percentile response times if the 

actual distributions depart from uniformity.  The exception to this is that the model 

may underestimate the magnitude of the longest response times (i.e. upper tail of the 

distribution) in cases where the true mobile responder distribution is highly skewed or 

clustered. 

 

The analysis highlighted the importance of the delay time prior to the transit of 

responding agents to the cardiac arrest location.  Accurately assessing these times, 

including both the delay due to the dispatching process, and other delays post 

dispatch, is important to the predictive accuracy of the modeling.  Additionally, when 

improving or optimizing such systems as a drone AED transport, or cellphone 

dispatched responders, the focus should be on technological or operational methods to 

reduce and minimize these delay times. 
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Chapter 6: Comparison of Systems 

 

A powerful benefit of modeling and simulation of systems is the ability to predict the 

performance of different cardiac arrest response systems, as well to estimate the 

performance of systems operating under varying operating conditions.  A goal of this 

research is to use the developed modeling approach to compare the performance of 

different new and emerging cardiac arrest response systems, hypothetically operating 

in the same region, to gain an understanding of the potential impact on survival from 

the different response concepts.   

 

This chapter presents simulation experiments comparing several different cardiac 

arrest response systems modeled in the region of Bellevue, Washington.  Four of the 

emerging systems that were discussed in Chapter 2 are compared through simulation, 

with both the time to defibrillation and the survival probability evaluated as system 

responses.  The systems modeled were: 

1. Pulse Point:  cellphone dispatched citizen responders providing CPR only  

2. ALERT:  cellphone dispatched verified responders providing AED and CPR 

(similar to the ALERT study) 

3. Drone – BU:  drone AED delivery with bystander use, similar to the Flirty and 

Reno, Nevada drone pilot program.  

4. Drone – MR: combination of drone AED delivery with cellphone dispatched 

responders to apply AED, proposed by GoodSAM.   
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These systems range in their implementation maturity from fully established, to 

moderate scale trial, to small pilot study, to concept only.  The systems were 

compared to the baseline simulated response of EMS in the region.  Section 6.1 

describes the conditions of each system that were evaluated, including those that were 

tested under multiple settings.  The results of the simulation experiment are shown in 

Section 6.2.  Section 6.3 provides a discussion of the experiment results. 

 

6.1  Experimental Conditions  

 

The conditions for each of the systems being compared are described in the following 

sections.  Global conditions used for the Bellevue, Washington simulations were a 

Minkowski drive distance of 0.8, with a bias correction distance of 0.35 km. 

 

6.1.1  EMS System Conditions 

 

The Bellevue, Washington region of the simulations is supported by ambulances in 

five fire stations distributed over the region shown in Figure 37.  The region extends 

from latitude 47.58 to 47.64, and from longitude -122.14 to -122.22, covering an area 

of approximately 40 square kilometers.  The EMS specific model parameters are 3.5 

minutes for the combined dispatch delay and chute time, and an ambulance velocity 

of 70 km/h, which has been empirically determined for Bellevue as discussed in 

Section 4.5.2.  The ambulance availability was set at the nominal 0.76.  These 
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conditions were used both to provide time to defibrillation and survival predictions 

for EMS response alone, as well as for EMS operating in conjunction with the other 

modeled systems. 

 

 
Figure 37.  Fire station and drone base locations in Bellevue, Washington 

simulations. 

 

6.1.2  Pulse Point Conditions 

 

The Pulse Point system was modeled with three different densities of mobile 

responders.  The simulation experiments were run with 80, 200, and 320 mobile 
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from responder density, factors that are specific the mobile responder were set at 

nominal conditions shown in Table 17.   

 

Table 17.  Conditions used for the Pulse Point simulation. 

Factor  Description Setting 

pw Minkowski walk distance order (p) 1.7 

tRD Responder dispatch delay time (minutes) 1 

tRW Responder walk delay time (minutes) 0.75 

tRDr Responder drive delay time (minutes) 1 

vRW Responder walking velocity (km/h) 7 

vRD Responder driving velocity (km/h) 32 

 

 

The Pulse Point mobile responders provide only CPR.  Thus the experiment 

responses of time-to-defibrillation is unchanged by the Pulse Point, as EMS is relied 

upon to provide defibrillation.  The Pulse Point response affects the survival 

likelihood by providing early CPR, which has been shown to increase survival.  This 

system is included in the comparison study because it is the most established and 

widely implemented of the emerging response systems.  It currently represents the 

“state of the art” of augmentation to EMS response. 

 

6.1.3  ALERT Study Conditions 

 

 

The ALERT study is a large-scale study of enhancing the Pulse Point system with the 

concept of a verified responder.  In the case of the study, these responders are off-

duty fire fighters.  However, the verified responder concept can be extended to other 

off-duty healthcare workers and first responders (nurses, doctors, police, security 
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guards).  The primary improvement in this system over the standard Pulse Point 

application is that the mobile responders carry AEDs with them at all times.  Thus, in 

this system the mobile responder provides both CPR and defibrillation, in contrast to 

the Pulse Point system above which only provides CPR.   

 

The conditions of the ALERT simulation are identical to the Pulse Point conditions 

above.  Similarly, the system is evaluated at three responder densities; 2/km2, 5/km2, 

and 8/km2.   

 

6.1.4  Drone with Bystander Use System Conditions 

 

The drone with bystander AED use system emulates a FAA approved pilot program 

involving the drone delivery company Flirty and the city of Reno, Nevada.  This type 

of system is generically characterized by a drone delivery of an AED, while relying 

on bystander retrieval of the AED and application to the cardiac arrest victim.  The 

simulation experiment included the conditions of one, two, and five drones.  The 

drone stations were located at existing fire stations within the Bellevue region.  For 

simulations with a single drone, the drone was located at the most central fire station, 

annotated as A in Figure 36 in Section 6.1.1.  When two drones were modeled, the 

base locations were set at fire stations annotated as B and C, as these locations 

minimize the average response distance over the region.  Drones were located at each 

fire station when five drones were simulated. 
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Additional drone specific factors settings are shown in Table 18. 

 

Table 18. Drone factor settings. 

Factor  Description Setting 

pa Minkowski drone distance order (p) 1.9 

tDD Drone dispatch delay time (minutes) 1 

tDV Drone vertical flight time (minutes) 0.5 

vD Drone velocity (km/h) 80 

tDDe Drone descent time (minutes) 1 

 

 

6.1.5  Drone with Dispatched Mobile Responder System Conditions 

 

A system using a drone AED delivery together with mobile responders dispatched to 

the cardiac arrest scene has not yet tested, but has been proposed in literature as well 

as by GoodSAM.  In this system, both CPR and defibrillation are applied by the 

mobile responder; however, the responder may arrive before or after the drone 

delivery of the AED.  It is thus assumed that the time to both CPR and defibrillation 

treatment is the maximum of the response time for both the drone and the mobile 

responder.   

 

For the system comparison study, the mobile responder system conditions were 

identical to those described in the Pulse Point simulation, and the drone conditions 

were identical to those described in the drone with bystander use.  Similar to the 

experimental conditions for Pulse Point and the drone response, the mobile responder 

density was varied as well as the number of drones in the system. 

 



 

148 

 

6.2  Results of System Comparison Experiments 

 

The results of the system comparison are presented in Figure 38 for time to 

defibrillation and Figure 39 for survival prediction.  The notation on the x-axis of the 

charts describes the system, with the specific conditions (number of mobile 

responders and the number of drones) in brackets.  The graphs show the median of 

the response distribution, with the bars showing the range of the 5th percentile to the 

95th percentile of the distribution. 

 

 
Figure 38. Comparison of systems for time to defibrillation.  The blue marker 

indicates the mean response time.  The interval bar indicates the 5th and 95th 

percentiles of the response time distribution. 
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Figure 39. Comparison of systems for survival.  The blue marker indicates the mean 

predicted survival probability.  The interval bar indicates the 5th and 95th percentiles 

of the predicted survival distribution. 

 

6.3  Discussion of System Comparison Results 

 

The study provided comparisons of each system to a baseline performance of EMS, 

as well as for performance comparisons between the different types of systems.  

Trends in experiment responses are identifiable from the changes in conditions within 

each system.  All systems provided an improvement in survival over the baseline 

EMS, with the mean survival improvement ranging from 2%, for a low responder 

density Pulse Point system, up to 10%, for both a high density ALERT type system 

and a drone delivery – bystander use system .  This improvement is expected, as all 

systems have the existing EMS operating in parallel, and it is presumed that the 
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systems have no detrimental impact on the EMS response.  The results also confirm 

that adding more resources to a system, whether they be additional responders or 

additional drones, will improve the performance of the system.  However, as 

discussed in Section 5.4, the effect of these additional resources is non-linear, and 

thus provide diminishing returns as they are increased. 

 

The best performing systems were the ALERT system and the drone AED delivery 

with bystander use.  The ALERT system performs best with a relatively high density 

of mobile responders.  Achieving this density may be challenging for some 

communities, as the pool of potential verified responders to recruit from may be 

limited.  Further, this type of system requires a high level of commitment by the 

responder to constantly carry an AED.  While this has been achieved in the study, the 

long term compliance is unknown.  The drone transport with bystander use relies 

upon a willing and capable bystander providing CPR and applying the AED.  The 

success rate of this is largely unknown, although some inference can be gathered from 

studies of the willingness of bystanders to use public access AEDs.  This system also 

assumes the bystander will provide CPR until the drone arrives with the AED, 

resulting in an earlier time to CPR treatment and the associated survival benefit. 

 

The drone AED transport with application by a dispatched mobile responder solves 

these potential issues.  The mobile responder does not need to carry the AED with 

them at all times, as it is now delivered by the drone.  The application of CPR and the 

use of the AED for defibrillation is assured with this system, and will be performed 
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by a trained professional, which could produce better results (independent of response 

time).   

 

This system suffers in response time relative to the other systems because the 

responder may have to wait for the AED arrival, or the AED may arrive well before a 

responder.  Figure 40 shows an analysis of this wait time for the nine conditions 

under which this system was modeled.  The histograms of 1000 simulations show the 

difference in response time between the mobile responder and the drone.  The blue 

colored bins indicate simulations where the mobile responder had to wait for the AED 

to arrive (i.e. a positive time difference).  The orange colored bins are simulations 

where the drone arrived before the mobile responder (i.e. a negative time difference).  

Conditions resulting in symmetric wait times (where the mean wait time is near zero) 

indicate the most efficient resourcing of the system.  Asymmetric distributions around 

zero wait time indicate either the mobile responder or the number of drones is under 

resourced, resulting in either the drone or the mobile responder frequently waiting for 

the other to arrive.  Under these experimental conditions, the most symmetric 

distributions around zero fall on the diagonal.  These are the conditions that result in 

the drone and the mobile responder arriving at about the same time most often, 

suggesting that balancing drone and mobile responder resources is needed for optimal 

performance. 
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Figure 40. Time difference between arrival of mobile responder and arrival of drone.  

Mean time difference is annotated with the black bar. 

 

The drone response systems do not always provide an AED to the cardiac arrest 

scene.  In such cases, the mobile responder can perform CPR but the defibrillation is 

delayed until EMS arrives.  The chances of the drone being unable to respond are 

dictated by the operational availability of the drones, and the weather in the region.  

Under the conditions of this simulation, ( 96% operational availability and 90% 

weather availability), a drone was available to respond in 84.5% of simulations with 1 

drone, 89.0% of simulations with 2 drones, and 89.3% of simulations with 5 drones.  

Thus, there is a benefit to having redundant drones in the system, however additional 

redundancy beyond two provides very little improvement on capability to respond 

(however, it does improve response time). 

 



 

153 

 

As both the time to defibrillation and survival performance of these systems are 

strongly dependent on the resources of the system, i.e. density of mobile responders 

and number of drones, the cost of these resources must be considered when 

evaluating the potential options to improve cardiac arrest survival in a community.  

The performance versus cost of these systems is discussed in Chapter 7. 
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Chapter 7:  Application of Model 

The ultimate utility of predictive modelling and simulation is to inform decisions, 

such to maximize the likelihood of the best outcome.  A primary question which this 

research proposed to answer is how the application of the predictive model can be 

used to evaluate the benefits and costs of various alternative response systems.  

Chapter 5 discussed an experimental determination of the important factors within 

each type of responder system, as well as the interaction of these factors and how they 

might be optimized for the maximum increase in survival.  Chapter 6 discussed usage 

of the model to compare survival improvements of several currently active or 

proposed alternative systems, under varying conditions within each system.  This 

chapter expands upon the results of Chapter 6 to demonstrate how these system 

comparisons can inform decisions faced by communities and EMS systems 

throughout the world. 

 

Communities around the globe are faced with the challenge of improving the 

currently poor survival for sudden cardiac arrest.  As discussed in Chapter 2, 

numerous novel response systems are being conceptualized, researched, and piloted.  

Communities looking to improve cardiac arrest survival rates would likely choose 

amongst these emerging systems.  The modelling and simulation approach in this 

research dissertation can be used to provide insights on which system, and under 

which conditions, the highest survival improvement could be realized.  However, the 

decision would not be based upon the survival improvement alone, as the cost of 

implementing and operating such systems would also need consideration.  The Value 
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of a Statistical Life (VSL) is frequently used as a benchmark by government agencies 

when performing a cost-benefit analysis of policy or program decisions [98][99].  The 

VSL allows for the comparison of the mortality reduction benefit and program cost to 

the monetary value which a society at large is willing to pay to reduce health risks. 

 

This chapter provides a method of cost estimation for each of the systems compared 

in Chapter 6, which used Bellevue, Washington as an example community.  Section 

7.1 provides a general cost structure for citizen mobile responder systems, with 

consideration of systems which provide only CPR (Pulse Point) and systems which 

equip responders with AEDs (e.g. ALERT study).  Section 7.2 provides a general cost 

model for a drone AED delivery systems.  Section 7.3 discusses costs of a system 

with both drone AED deliver and dispatched mobile responders.  Section 7.4 

estimates the costs of an alternative choice to these novel systems, which is the 

provision of an additional BLS Ambulance to an EMS system.  Finally, section 7.5 

provides a cost benefit analysis and comparison of a hypothetical set of system 

options, with a discussion of the application in Section 7.6. 

 

This analysis evaluates the marginal cost of the additional response system, and does 

not include the cost of the existing EMS system.  A 10 year timeframe was selected 

for the cost analysis, which roughly represents the service life of the capital assets 

required by the systems (e.g. ambulances, defibrillators/AEDs, and drones).  The Net 

Present Value method is used to account for the time value of costs over the 10 year 

timeframe, such that a single 10 year cost is calculated for each option.  A standard 



 

156 

 

discount rate of 5% is used for the analysis.  The analysis assumes 100 cardiac arrest 

responses per year in the city of Bellevue (in 2014 there were 79 cardiac arrests). 

 

Unless specifically cited, cost estimates were gathered from discussions with subject 

matter experts, including cell phone app system developers, King County EMS, and 

University of Maryland Unmanned Aircraft Systems Test Site. 

 

7.1  Cost analysis of mobile responder systems 

 

 

Mobile responder systems are those in which non-EMS responders are dispatched to 

cardiac arrests which occur nearby by a cell phone app.  The responders may be 

citizen volunteers, as in the Pulse Point system, off duty first responders or medical 

professionals, e.g. the verified responders in the ALERT study, or taxi cab drivers, 

such as with the AED on Wheels system.  Other variations on these concepts, such as 

the use of Uber drivers, have been proposed as well.  Mobile responders may be 

provided with AEDs (e.g. ALERT system), or may be dispatched to provide CPR 

only (e.g. Pulse Point system).   

 

The primary costs of these types of systems are the app dispatch system integration 

with the 911 system, and the AEDs, if provided to the responders.  Additional lesser 

costs include the cost of recruiting volunteer responders, training costs (if provided), 

and potentially small compensation when a response occurs.  Although once 
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implemented, the systems are operated by existing 911 dispatch personnel, it is also 

expected that a small administrative cost exists. 

 

The dispatch software and cell phone app are provided as turnkey solutions by a few 

existing companies or non-profits.  Pulse Point is the most widely implemented 

system in the United States, while Good Sam system is the most widely used in 

Europe.  The approximate costs of these systems in the United States are $25,000 for 

the initial software integration with the 911 dispatch system, with $10,000 per each 

year after for ongoing support.   

 

The Pulse Point volunteer citizen responder system provides CPR therapy only as the 

standard response.  There is no training or compensation provided, with the only costs 

being the system integration and ongoing support costs.  Table 19 provides the 10 

year cost estimate for the Pulse Point system.  The number of responders is 

essentially an uncontrolled factor in this system, as it is determined by the number of 

citizens who choose to enroll.  Thus, there is no incremental cost for each responder.  

The 10 year NPV estimated cost of the Pulse Point system is $91,503. 

 

Table 19. 10 year cost of Pulse Point system. 

 
 

1 2 3 4 5 6 7 8 9 10

Capital costs

Dispatch software integration 25,000$   

Recurring costs

System support -$          10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   

Total annual cost 25,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   10,000$   

Discount rate 5%

10 year NPV cost ($91,503)

Year
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The ALERT system uses the PulsePoint app and dispatch system, however it recruits 

off-duty first responders, and provides them with an AED to carry nearby at all times.  

In addition to the cost of the Pulse Point system integration and support, the system 

also has the cost of providing an AED to each responder.  The Philips HS1 is a low 

cost AED which is well suited for this type of responder.  The retail cost of the AED 

is $1275.00 [100].  Along with the AED is consumable costs of replacing the pads 

($70) every 2 years or upon use, and the battery ($170) every 4 years.  It is assumed 

the ALERT type system would also require local administration support, separate 

from Pulse Point support, estimated at $25,000 per year (25% full time employee).  It 

is also assumed a small training cost of $50 per year would apply to each responder.  

Table 20 shows the 10 year cost estimate for an ALERT system with 80, 200, and 320 

responders.  The NPV cost is estimated at $448,814 for 80 responders, $695,215 for 

200 responders, and $941,616 for 320 responders. 
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Table 20. 10 year cost of ALERT system with (a) 80 responders, (b) 200 responders, 

and (c) 320 responders. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 

Number of Responders 80

1 2 3 4 5 6 7 8 9 10

Capital costs

Dispatch software integration 25,000$    

AEDs 102,000$  

Consumables costs

Pads -$           -$           5,600$       -$           5,600$       -$           5,600$       -$           5,600$       -$           

Battery -$           -$           -$           -$           13,600$    -$           -$           -$           13,600$    -$           

Recurring costs

System support -$           10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    

Administrative costs 25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    

Training 4,000$       4,000$       4,000$       4,000$       4,000$       4,000$       4,000$       4,000$       4,000$       4,000$       

Total annual cost 156,000$ 39,000$    44,600$    39,000$    58,200$    39,000$    44,600$    39,000$    58,200$    39,000$    

Discount rate 5%

10 year NPV cost ($448,814)

Year

Number of Responders 200

1 2 3 4 5 6 7 8 9 10

Capital costs

Dispatch software integration 25,000$    

AEDs 255,000$  

Consumables costs

Pads -$           -$           14,000$    -$           14,000$    -$           14,000$    -$           14,000$    -$           

Battery -$           -$           -$           -$           34,000$    -$           -$           -$           34,000$    -$           

Recurring costs

System support -$           10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    

Administrative costs 25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    

Training 10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    

Total annual cost 315,000$ 45,000$    59,000$    45,000$    93,000$    45,000$    59,000$    45,000$    93,000$    45,000$    

Discount rate 5%

10 year NPV cost ($695,215)

Year

Number of Responders 320

1 2 3 4 5 6 7 8 9 10

Capital costs

Dispatch software integration 25,000$    

AEDs 408,000$  

Consumables costs

Pads -$           -$           22,400$    -$           22,400$    -$           22,400$    -$           22,400$    -$           

Battery -$           -$           -$           -$           54,400$    -$           -$           -$           54,400$    -$           

Recurring costs

System support -$           10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    10,000$    

Administrative costs 25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    25,000$    

Training 16,000$    16,000$    16,000$    16,000$    16,000$    16,000$    16,000$    16,000$    16,000$    16,000$    

Total annual cost 474,000$ 51,000$    73,400$    51,000$    127,800$ 51,000$    73,400$    51,000$    127,800$ 51,000$    

Discount rate 5%

10 year NPV cost ($941,616)

Year
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7.2  Cost Analysis of Drone AED Delivery System  

 

A drone AED delivery system which relies on bystanders to apply and operate the 

AED requires several system components.  The drones in the system must be high 

reliability, able to fly autonomously or by remote piloting, and carry a payload of at 

least 5 kg.  Example drones that meet this criteria are the Freefly Alta 8 [101] and the 

xFold Cinema X8 U7 [102].  These drones, when fully equipped, cost about $25,000.  

The drone system would require a ground control station, with software that 

integrates with the EMS dispatch system, to activate the drone response.  A single 

ground control station can support a system of multiple drones.  The cost of the 

ground control station is estimated at $15,000.  Additionally, telemetry hardware is 

required for communication with the drone while deployed, via radio communication 

or integrated with a 4G or 5G cellular network.  The cost of this hardware is 

estimated at $5000 to cover a city the size of Bellevue, Washington.  Each drone in 

the system requires a drone nest, which is an enclosure that protects the drone while 

in standby, provides charging to the drone battery, and has automated doors that open 

for deployment.  The nest could be located on the roof of a fire station, or other 

location within the region.  The cost of the nest is estimated at $10,000 per drone. 

 

Each drone carries an AED and a drop mechanism as its payload.  The AED should 

be one that is both simple to use, designed for bystander use, as well as rugged 

enough to survive flight in the weather elements and the drop from the drone.  The 

Philips FRx device meets these criteria, at a retail price of $1600 [103].  Each drone 

would require an AED, and the system would also require a spare AED for every 5 
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drones in the system.  After deployment, the AED would be unavailable for a period 

of time while event data are recovered, and the AED is cleaned, tested, and new pads 

are installed.   

 

The consumable costs in the system are the AED drop mechanism, the drone battery, 

the AED pads, and AED battery.  The drop mechanism, likely a winch with a light 

weight cable, is estimated to cost $100 and have a service life of 100 deployments.  

The drone battery is estimated to cost $500, with a service life of 300 deployments.  

The AED pads replacement would occur with each deployment, as the pads are single 

use accessories to the AED.  Each pad replacement for the FRx AED costs $60.  With 

a few drones responding to many cardiac arrest events each year, the pads would not 

be expected to reach the 2 year shelf life expiration before use.  With the significant 

amount of AED applications, it is expected that the battery would be replaced about 

every 6 months, at a cost of $170 per battery. 

 

The recurring costs within the system are the drone pilot, drone and nest maintenance 

costs, and system administration costs.  A proposed concept for piloting the drone is 

the use of a subscription pilot service [104].  With such a service, the pilot is not part 

of the local EMS system, but a remote located pilot that may support many 

geographically distant drone systems.  Such a service is estimated to cost around 

$3000 each year per ground station.  Maintenance costs are estimated at $1500 each 

year per drone/nest for semi-monthly servicing.  Administrative costs for a system 

supporting a city the size of Bellevue is $25,000 per year (25% full time employee). 
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Table 21 provides the 10 year cost analysis for a system consisting of 1, 2, and 5 

drones.  The 10 year NPV cost is estimated at $337,368 for 1 drone, $386,528 for 2 

drones, and $534,009 for 5 drones. 

 

 

Table 21. 10 year cost analysis for drone AED system with (a) 1 drone, (b) 2 drones, 

and (c) 5 drones. 

 
(a) 

 

 
(b) 

 

Number of Drones/nests in system 1

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 25,000$            

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 10,000$            

AED 3,400$              

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 680$                 680$               680$           680$           680$           680$           680$           680$           680$           680$           

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 1,500$              1,500$           1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 95,180$           36,447$        36,447$     36,447$     36,447$     36,447$     36,447$     36,447$     36,447$     36,447$     

Discount rate 5%

10 year NPV cost ($337,368)

Year

Number of Drones/nests in system 2

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 50,000$            

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 20,000$            

AED 5,100$              

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 1,020$              1,020$           1,020$        1,020$        1,020$        1,020$        1,020$        1,020$        1,020$        1,020$        

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 133,720$         38,287$        38,287$     38,287$     38,287$     38,287$     38,287$     38,287$     38,287$     38,287$     

Discount rate 5%

10 year NPV cost ($386,528)

Year
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(c) 

 

 

7.3  Cost Analysis of Drone AED Delivery with Mobile Responder System 

 

A system which incorporates the delivery of the AED by drone, with the application 

of the AED by a mobile responder, has a cost structure that combines the elements of 

the drone delivery with bystander use, and the ALERT system of trained mobile 

responders.  However, in such a system the mobile responders are not provided 

AEDs, as these are delivered to the location by drone. 

 

As there are 9 combinations of number of drones (1, 2, 5) and number of responders 

(80, 200, 320) under evaluation, only a sample of 3 cost analysis is shown in Table 

22.  The three examples demonstrate the changes in the cost model as the number of 

drones is increased from 1 to 5, and as the number of responders are increased from 

80 to 320.  A full summary of the 10 year NPV costs for all system combinations is 

shown in Table 23.   

Number of Drones/nests in system 5

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 125,000$         

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 50,000$            

AED 10,200$            

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 2,040$              2,040$           2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 7,500$              7,500$           7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 249,340$         43,807$        43,807$     43,807$     43,807$     43,807$     43,807$     43,807$     43,807$     43,807$     

Discount rate 5%

10 year NPV cost ($534,009)

Year
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Table 22. 10 year cost analysis for system with (a) 1 drone and 80 mobile responders, 

(b) 1 drone and 320 mobile responders, and (c) 5 drones and 80 mobile responders. 

 
(a) 

 
(b) 

Number of Drones/nests in system 1

Number of responders in system 80

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 25,000$            

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 10,000$            

AEDs 3,400$              

Dispatch software integration 25,000$            

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 680$                 680$               680$           680$           680$           680$           680$           680$           680$           680$           

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 1,500$              1,500$           1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        

App dispatch system support -$                  10,000$         10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     

Training 4,000$              4,000$           4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 124,180$         50,447$        50,447$     50,447$     50,447$     50,447$     50,447$     50,447$     50,447$     50,447$     

Discount rate 5%

10 year NPV cost ($459,758)

Year

Number of Drones/nests in system 1

Number of responders in system 320

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 25,000$            

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 10,000$            

AEDs 3,400$              

Dispatch software integration 25,000$            

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 680$                 680$               680$           680$           680$           680$           680$           680$           680$           680$           

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 1,500$              1,500$           1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        1,500$        

App dispatch system support -$                  10,000$         10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     

Training 16,000$            16,000$         16,000$     16,000$     16,000$     16,000$     16,000$     16,000$     16,000$     16,000$     

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 136,180$         62,447$        62,447$     62,447$     62,447$     62,447$     62,447$     62,447$     62,447$     62,447$     

Discount rate 5%

10 year NPV cost ($552,419)

Year
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(c) 

 

 

Table 23. 10 year NPV cost for combinations of drones and responders in system. 

 
 

7.4  Cost Analysis of Additional BLS Ambulance for Cardiac Arrest Response 

 

An alternative approach that an EMS system could take to improving cardiac arrest 

survival is increasing the number of ambulances in its fleet.  The greatest impact on 

response time would be to locate the ambulance at a new base location, which would 

be geometrically optimal, where the response distance from existing bases is the 

greatest.  The most economical ambulance solution is a BLS Response Ambulance, as 

this can provide both the CPR and defibrillation therapy where response time is 

critical.  Many EMS systems, including King County EMS, use a two tier response 

Number of Drones/nests in system 5

Number of responders in system 80

Annual deployments 100

1 2 3 4 5 6 7 8 9 10

Capital costs

Drone 125,000$         

Telemetry hardware 5,000$              

Ground control station/EMS dispatch 15,000$            

Drone nest 50,000$            

AEDs 10,200$            

Dispatch software integration 25,000$            

Consumables costs

Payload drop mechanism 100$                 100$               100$           100$           100$           100$           100$           100$           100$           100$           

Drone Battery 500$                 167$               167$           167$           167$           167$           167$           167$           167$           167$           

AED Pads 6,000$              6,000$           6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        6,000$        

AED Battery 2,040$              2,040$           2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        2,040$        

Recurring costs

Drone pilot (subscription) 3,000$              3,000$           3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        3,000$        

Drone/Nest Maintenance 7,500$              7,500$           7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        7,500$        

App dispatch system support -$                  10,000$         10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     10,000$     

Training 4,000$              4,000$           4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        4,000$        

Administration 25,000$            25,000$         25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     25,000$     

Total annual cost 278,340$         57,807$        57,807$     57,807$     57,807$     57,807$     57,807$     57,807$     57,807$     57,807$     

Discount rate 5%

10 year NPV cost ($656,400)

Year

80 200 320

1 $459,758 $506,088 $552,419

2 $508,918 $555,249 $601,579

5 $656,400 $702,730 $749,060D
ro

ne
s

Mobile Responders
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strategy, dispatching a BLS Ambulance and an ALS Ambulance to all cardiac related 

calls as a matter of protocol. 

 

As a comparison point to the implementation of the novel response systems in 

Sections 7.1 -7.4, a cost benefit analysis of a single additional BLS ambulance in the 

Bellevue region was estimated.  Estimating the marginal cost of operating an 

additional ambulance in an existing EMS system is complex and subject to wide 

variation.  Lerner et al. describe a framework for estimating the cost of an EMS 

system [105].  The components of the cost framework include vehicles, equipment, 

training, medical oversight, administration, communications, ambulance crew, and 

the physical plant.  The authors note “Although throughout the United States most 

calls to 911 will result in a response, the staff and equipment that are sent to the scene 

will vary according to chief complaint and geographic location.”  Many of the costs 

of the EMS system would not apply to the marginal cost of an additional ambulance.  

The primary marginal costs are vehicle, crew, equipment, maintenance, insurance, 

and fuel.  A physical base location may exist, or may need to be procured. 

 

The cost of a new ambulance vehicle can range from $100,000 to $200,000 [106] 

[107].  This analysis used the midpoint of this range, $150,000.  Equipment in a BLS 

ambulance is an additional $40,000 [108].  The median salary of an emergency 

medical technician (EMT) in the United States is $34,320 per year [109].  An 

ambulance operating 24 hours a day requires 4 crews of 2 EMTs.  Maintenance and 

insurance costs are estimated to add another $5000 per year, and fuel another $7500 
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per year.  While an additional ambulance would provide BLS response to cardiac 

arrest events, it would also respond to other medical emergencies as well, providing 

an additional benefit to the EMS system beyond the cardiac arrest survival 

improvement.  In King County, 24% of BLS responses were for life threatening 

emergencies (cardiovascular, respiratory, and neurological), with the remaining 76% 

distributed over a variety of medical needs [110].  To create an equivalent comparison 

to other cardiac arrest response systems, the BLS ambulance capital and recurring 

costs are multiplied by a factor of 0.24, while the defibrillation specific consumables 

are accounted at full cost.  The 10 year NPV cost, shown in Table 24, is $589,003. 

 

Table 24. 10 year NPV marginal cost analysis for adding 1 additional BLS ambulance 

to EMS system, with 24% allocation to cardiac arrest response. 

 
 

 

To analyze the survival improvement, the additional ambulance was simulated with 

the existing Bellevue EMS response system. The new ambulance was based at the 

location of maximum distance from existing fire stations and the region boundary, 

such to maximize locational impact.  This location was identified by finding the 

Ambulances 1

Cardiac Arrest Response allocation 0.24

Annual deployments 18

1 2 3 4 5 6 7 8 9 10

Capital costs

Ambulance 36,000$            

Equipment 9,600$              

Consumables costs

AED Pads 1,080$              1,080$           1,080$        1,080$        1,080$        1,080$        1,080$        1,080$        1,080$        1,080$        

AED Battery 680$                 680$               680$           680$           680$           680$           680$           680$           680$           680$           

Recurring costs

Crew 65,894$            65,894$         65,894$     65,894$     65,894$     65,894$     65,894$     65,894$     65,894$     65,894$     

Maintenance/Insurance 1,200$              1,200$           1,200$        1,200$        1,200$        1,200$        1,200$        1,200$        1,200$        1,200$        

Fuel 1,800$              1,800$           1,800$        1,800$        1,800$        1,800$        1,800$        1,800$        1,800$        1,800$        

Total annual cost 116,254$         70,654$        70,654$     70,654$     70,654$     70,654$     70,654$     70,654$     70,654$     70,654$     

Discount rate 5%

10 year NPV cost ($589,003)

Year



 

168 

 

centroid of the 3 most distant fire stations, and the region boundary.  I used an online 

geographic location calculator, Geo Midpoint [111], to obtain the centroid 

coordinates.  Figure 41 shows the location of the additional ambulance base (latitude 

47.604794, longitude -122.153048).  The result of the simulation (5000 trials) was a 

mean survival probability of 0.21, with the 5th percentile at 0.15, and the 95th 

percentile at 0.26.  This represents an increase in the mean survival probability of 

0.01 over the existing 5 ambulance EMS system. 

 

 
Figure 40. Location of additional ambulance base (shown circled). 
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7.5  Cost-benefit Comparison of Response System Alternatives 

 

The predicted survival of each of the response system options was plotted against the 

10 year NPV cost of implementing and operating the system.  The results are shown 

in Figure 42.  The red dashed line represents the Pareto frontier of the solution set.  

All systems not on this line are preferentially dominated by another system.  The 

Pareto optimal solutions include the Pulse Point responder system, and the drone 

delivery systems in which a bystander applies and operates the AED.   

 

It is noted that the Pulse Point system limits responses to cardiac arrest in public 

locations.  The accounts for about 30% of all cardiac arrests, as the other 70% occur 

in private residences.  The benefit in survival of the PulsePoint system determined in 

Chapter 6 has been reduced by 70% for this analysis.  The survival improvement 

prediction is shown for the Pulse Point system with 320 responders (8 per sq. km) in 

the Bellevue region.  With the current Pulse Point system, this amount is readily 

achievable, however it is not controlled.  The Pulse Point system relies on community 

oriented volunteers to download the app in order to become a member of the system. 

 

The drone AED delivery with bystander use system represents the most cost effective 

opportunity for improvement in survival.  This advantage is primarily driven by the 

cost of the AEDs.  The drone system requires only 6 AEDs, while a similarly 

performing ALERT system requires 320 AEDs.  The drone system, however, is also 

the least mature of all options.  It is only beginning to be piloted in limited locations.  

Some decision-makers may opt to pay a premium for a more mature system. 
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Figure 41. Decision chart of predicted mean survival against 10 year NPV cost.  The 

red dotted line represents the Pareto frontier.  The bracketed numbers indicate the 

mobile responders in the system (80, 200, or 320) or the number of drones in the 

system (1, 2, 5) or both in the drone – mobile responder system.  Abbreviated system 

names are Drone – BU (Drone with bystander use of AED) and Drone – MR (Drone 

with mobile responder providing AED). 

 

 

 

The costs associated with these systems are subject to significant variation and 

dynamic market conditions.  For example, a large quantity purchase of AEDs could 

receive a significant discount over the retail price.  As commercial drone package 

deliveries become more common, the cost of a drone’s hardware and operations will 

likely decrease.  Mobile responder networks which are organically grown, such as 



 

171 

 

through non-profits, may be operationally less expensive than government funded 

systems.  With such variation in these factors, the uncertainty of the costs is difficult 

to estimate.  However, many of these systems share similar costs in their structure, 

and thus the system costs would scale equivalently with component cost variation.  

Figure 43 shows a stacked bar chart of each system 10 year NPV cost broken out by 

component 10 year NPV costs.   

 

 
Figure 42. Stacked bar chart of response systems 10 year NPV costs. 

7.6  Discussion of Model Application 

 

 

This chapter described an approach to using the predictive survival model together 

with a cost analysis to determine the most efficient alternative to improve survival in 
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a region.  Above the current 20% survival rate, the marginal survival improvements 

from the Pareto optimal system choices range from 0.01 for a 10 year cost of 

$91,503(Pulse Point) to 0.1 with a cost of $534,009 (5 drones with bystander use).  

Budget availability, local drone regulations, and community preferences would 

dictate the choice of system from the Pareto optimal solutions.  With an assumed 100 

cardiac arrests per year within the Bellevue area, a marginal survival improvement of 

1% (Pulse Point) would save an additional 1 life per year, while the maximum 

marginal improvement of 10% (5 drone system) would save 10 lives per year.  With 

current United States VSL estimates ranging from $7 million to $12 million [99], all 

systems provide a strong benefit for the associated cost based on societal preferences.  

For the non-dominated alternatives, the expected cost (NPV) per life saved should be 

less than $100,000, which is much less than these values, which suggests that the 

benefits of these alternatives are worth the additional cost. 

 

The use of Bellevue, Washington, as the example case region, essentially defines the 

low end of marginal survival improvement, as it has one of the top performing EMS 

systems in the United States.  Regions with longer EMS response times, and lower 

survival, would realize significantly higher survival improvements.  This would also 

apply to regions with low rates of bystander CPR, or minimal Public Access 

defibrillators.  A study of 132 counties in the United States from the Resuscitation 

Outcomes Consortium found 50% had survival rates of 9.7% or less [112].  The 

greatest benefits of these types of systems could eventually be realized in developing 

countries, where EMS services are very limited.  Hauswald, et al. estimated the cost 
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of operating an EMS system in Kuala Lumpur, Malaysia, at approximately $2.5 

million USD per year [113], and concluded “developing countries would do well to 

consider alternatives to a North American EMS model.”  
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Chapter 8:  Summary and Conclusions 

 

 

Sudden cardiac arrest survival rates have remained stubbornly low despite decades of 

improvements in clinical therapy, along with the advent of the AED and public access 

defibrillation.  While the treatment has been proven effective, the challenge remains 

providing the treatment in very short time to the cardiac arrest victim.  It is widely 

recognized that EMS systems alone cannot provide this rapid treatment consistently 

and cost effectively.  Public health and emergency medicine researchers, as well as 

operations research and systems engineering research, are now collaborating to 

develop systems that bring an AED to the cardiac arrest location quickly. 

 

8.1  Summary of Research 

 

The primary objective of this research was to develop a modelling and simulation 

approach to predict the response times and the corresponding survival likelihood.  

This work developed a geospatial model which was used to simulate the random 

locations of cardiac arrest events, which then predicted response times from nearby 

ambulance bases, drone bases, and randomly located mobile responders.  The 

modelling approach included stochastic factors such as human reliability, AED 

reliability, ambulance availability, and drone availability to improve the fidelity to 

real world system operation.  The approach applied Monte Carlo simulations to 

obtain distributions of simulated response times under stated system conditions.  The 

model used the response time for CPR and defibrillation therapy as inputs into a 
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logistic regression survival prediction model.  The modelling and simulation 

approach was validated through event validity comparisons to published data, as well 

as face validity with subject matter experts in the emergency medicine domain. 

 

I then used the validated model to both explore the conditions that most impacted 

response times, as well as compare the response times and predicted survival, both 

within a system, as conditions are varied, and between types of systems.  Sensitivity 

analysis experiments revealed the most influential factors both at the event level of 

response times for the various responding agents, as well as at the system level, for 

the global response time to CPR and time to defibrillation predictions.  With the 

strongest factors identified through the sensitivity analysis, an in-depth response 

surface method (RSM) design of experiments (DOE) was performed to identify 

interactions among factors, as well as characterize non-linear responses.   

 

The objective of modelling and simulation is to provide insight for decisions where 

real world system data is not available.  This research demonstrated that the 

modelling and simulation approach could be used to compare the effectiveness and 

potential improvement in survival of different types of response systems operating in 

a specific region.  Several currently implemented or proposed system concepts were 

compared using the city of Bellevue, Washington as an example region, with their 

EMS response time and survival as a baseline.  I estimated the implementation and 

operating costs of these various systems over a 10 year period.  This thesis then 

presented a cost benefit analysis of the simulated response systems in a format which 
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would aid decision-makers seeking to improve cardiac arrest survival within a 

community. 

 

 

8.2  Conclusions 

 

The motivation for this research was to answer the question:  Can alternative cardiac 

arrest medical response systems provide a substantial improvement in survival for 

out-of-hospital cardiac arrest?  The over-arching conclusion from this research is that 

the novel response systems, when operated synergistically with EMS, have the 

potential to take a significant step in improving cardiac arrest survival.  Even further, 

they have the potential to do so in a very cost effective manner.  The comparison of 

simulated systems in Bellevue, Washington, predicted an increase in probability of 

survival up to 10%.  When compared to the current state of 20% survival, this 

represents an improvement ratio of 50%.  As this simulation was compared against 

the baseline survival of a high performing EMS system, most communities could 

realize even greater survival improvement.  As these response systems are 

implemented and mature, additional lifesaving treatments could be easily added, such 

as epinephrine auto-injectors to respond to anaphylactic shock, or naloxone (Narcan) 

nasal spray for rapid treatment of opioid overdoses [114][115].  These will even 

further magnify the life-saving potential of these systems. 
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Experimental exploration of the simulation model provided valuable information on 

how system attributes affect response time and survival.  The significant conclusions 

are highlighted for each general type of response system. 

 

Mobile Responder Systems 

 Responder density in these types of systems intuitively affects response time, 

and such was demonstrated in model experiments.  However, the response 

time is non-linear with responder density, and densities above 7 responders 

per square kilometer provide little additional improvement. 

 Responder reliability essentially decreases responder density.  Innovative or 

technological methods to improve responder reliability may be more efficient 

and effective than recruiting additional responders. 

 Predictions of the mean response time of such systems is rather insensitive to 

the assumed geo-spatial distributions of cardiac arrest events and responder 

location.  However, if the focus is on analyzing the longest of response time, 

the simulation will gain accuracy with better replication of the responder 

geospatial distribution.  Further, to minimize the number of long response 

times, a system is best served by a responder location distribution that is 

similar to the cardiac arrest location distribution. 

 

Drone AED Delivery Systems 

 The time between the 911 call and the drone takeoff has a significant effect on 

the drone response time, particularly where the distances are relatively short 
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(less than 5km).  System operational strategies which minimize this time, such 

as initiating takeoff at the earliest identification of the medical call location, 

would optimize response times. 

 Drone systems with multiple drones, even when based at different locations, 

provides redundancy benefit for the operational unavailability of the drones.  

However, the overall reliability of drones to respond is limited by the weather 

factor.  The benefit of drone systems would be reduced in regions with low 

weather availability. 

 

Drone AED delivery with Mobile Responder Systems 

 Response systems which use drones to deliver an AED and dispatch mobile 

responders to the scene to apply the AED offer many operational advantages.  

The mobile responders are not required to carry an AED with them.  The 

drone is always met by a trained responder who is experienced in applying the 

AED and CPR.  However, this type of systems suffers in response time, as 

treatment is not started until both the drone and the responder have arrived at 

the location. 

 Optimal use of this type of system requires balancing the number and location 

of drones with the density of mobile responders.  An imbalance of either 

resource results in one agent arriving significantly faster, only to wait for the 

other to start treatment.  The simulation model can be used to determine the 

appropriate balance between the number of drones and the mobile responder 

density. 
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This research additionally demonstrated that these novel response system concepts 

can deliver a cost efficient survival improvement, when evaluated with respect to the 

Value of Statistical Life (VSL).  The comparison study indicated that both an ALERT 

type system and a drone AED delivery system with bystander AED use can deliver 

similar survival improvements, up to 10% incremental improvement.  The drone 

system can provide this at a significantly lower lifecycle cost, which is primarily 

driven by the cost to provide each mobile responder with an AED in the ALERT 

system, while the drone system requires only a few AEDs.   

 

8.3  Contributions 

 

Significant prior work in the application of modelling and simulations to EMS 

response is reported in the literature, however, there is a dearth of published 

modelling applications to the alternative cardiac arrest response systems addressed in 

this dissertation.  This research approach is the first to provide simulation capabilities 

of a diversity of types of response systems (drone, mobile responder, and 

combinations of each), such that comparisons of the performance and effectiveness of 

systems can be made.  Further, this approach provides greater flexibility in tailoring 

the simulation to specific regional attributes (e.g. specific ambulance base locations 

and drone base location, weather patterns which affect drone availability), and system 

attributes (e.g. dispatch times, mobile responder reliability, ambulance availability) 

than existing simulation approaches. 
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The most consequential contribution of this research is likely the adaptability of the 

modeling approach to simulate a diverse variety of both existing and emerging 

response systems working together, as well as the integration of a cost model.  

Existing literature generally provides analysis to characterize the potential response 

time improvement that specific alternative response system approaches may provide.  

This research expands upon this, by applying the simulation of multiple alternative 

systems to a specific region, to predict which system, and under what conditions, 

would provide the best survival improvement.  This is further expanded to include not 

only the survival improvement, but a cost benefit analysis of the improvement, in a 

decision analysis framework.  It is this capability that will enable public health 

decision-makers to make better informed decisions around the allocation of resources, 

and ultimately increase the number of lives saved from cardiac arrest in their 

communities. 

 

Prior modeling work has used finite, predetermined cardiac arrest locations in the 

models, either based on historic locations, or the centroid of small divisions of a 

region (e.g. census tracts).  While such simplifications perform adequately for 

simulating response from fixed locations, the method does not extend well to 

modeling the location of randomly roaming responders.  This modelling approach is 

unique in the replication of the aleatory uncertainty of cardiac arrest locations and the 

locations of cell phone dispatched mobile responders.  The geospatial location 

sampling approach, from flexible spatial distributions generated by the Beta 

distribution, is not found in prior approaches.  This approach enables greater accuracy 



 

181 

 

to actual transit distance replication, both through the integration with the Google 

Maps routing API, and the use of the Minkowski distance approximation.  These 

approaches support both the flexibility and fidelity of the model predictions. 

 

The focus of much prior research has been on determining the optimal location for 

EMS dispatch bases, AEDs, and drone bases.  Limited work has been published on 

the performance of these emerging systems, specifically when accounting for 

additional factors other than simply origin and destination locations.  Some models 

incorporate the time of the day into the response equation, but very little work has 

been done around the reliability of both the human and machine elements within the 

system.  These factors impact system performance, and neglecting these effects could 

result in overly optimistic predictions of system efficacy.  This research addressed 

this gap by incorporating the effects of ambulance availability, responder reliability, 

drone operational availability, and drone weather availability into the distance based 

response time simulation. 

 

8.4  Limitations 

 

8.4.1  Model Limitations 

 

The developed model makes a number of assumptions which simplify the logic and 

algorithms.  One such assumption is the choice of a mobile responder to walk or drive 

to the cardiac arrest location.  This aligns with the operation of most current real 
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world citizen responder systems.  The model applies the minimum of the walking and 

driving response times, implying the responder has perfect knowledge of the best 

mode of transit.  While with most actual cases the best transit mode would be 

intuitive to the responder based on distance to the cardiac arrest location, there would 

be some cases where the responder chooses the non-optimal transit mode. 

 

A simplifying assumption applied is that all events occur on a two dimensional 

surface, i.e. the “ground floor”.  In the real world, cardiac arrests may occur in 

buildings above the first floor.  Additionally, mobile responders my originate in 

locations above the first floor at the time of the cell phone app alert.  This would 

result in additional vertical transit time, which is not accounted for in the model.  

Thus, the actual response time, and corresponding survival likelihood, would be 

optimistically predicted in such cases.  However, this simplification applies to all 

types of responding agents, including EMS, and thus has little effect on relative 

comparisons of response times and survival probability. 

 

Assumptions around the drone response factors assume some exemptions are granted 

to current FAA drone regulations.  This includes flying beyond the visual line of site, 

flying at night, and autonomous or remote piloting.  Thus the model assumes 

anticipated drone system conditions, but not necessarily current drone conditions.   

 

In the simulation of a system with drone AED delivery and bystander application of 

the AED, it is assumed that there is always a bystander available and willing, and that 
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this person immediately retrieves the AED upon drone arrival.  Real world test 

programs will reveal the prevalence of these conditions, and any potential additional 

delay times that should be included. 

 

The Minkowski distance approximation method is computationally efficient, but 

works best in regions with a fairly uniform road network, and with no significant 

geographical obstacles (e.g. lakes, rivers, mountains) that must be circumnavigated.  

Application of this modeling and simulation approach to regions with such features 

should use an actual street network routing algorithm (e.g. Google Maps API).  This 

research demonstrated this capability, but only applied this for validation purposes.   

 

The logistic regression survival prediction model was published in 1997.  It is based 

on data collected between 1976 and 1993.  Improvements in Advanced Cardiac Life 

Support (e.g. high quality CPR) and post cardiac arrest hospital care have resulted in 

a modest survival improvement.  Thus the logistic model marginally underestimates 

current survival rates.  The possibility of bystander CPR and a nearby PAD AED are 

not accounted for in this research approach, as these are uncontrolled, random events, 

which would occur with all systems.  The survival improvement from these effects 

can range from negligible to very significant, based on regional characteristics.  This 

represents another source of underestimation of the actual survival rate in a region, 

however it has little effect on relative comparisons of systems (i.e. the marginal 

survival improvement). 
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8.4.2  Research Approach Limitations 

 

The validation approach to the model was to assume these are non-existent system 

concepts.  While accurate in some cases, e.g. the drone-mobile responder system, 

other systems have been implemented (PulsePoint) or are in trial studies (ALERT).  

For those systems which are implemented, very limited data is available to use for 

empirical model validation.  This was limited a small number of “events”, or 

intermediate calculations.  The global responses could not be empirically validated, 

and thus there is no measure of precision of the predictions.  Face validation provided 

a subjective support for the credibility of the model predictions. 

 

Sensitivity analysis experiments were performed with all factors at “nominal”, or best 

estimate settings for the city of Bellevue, Washington.  The range of factor variation 

in the experiments were based on reasonable ranges for the system and region.  Thus 

the sensitivity analysis evaluated both factor uncertainty, as well as the mathematical 

functions in the model, and should be interpreted accordingly.  Reducing uncertainty 

in some factors, such as drone dispatch delay, would likely result in the factor being 

less influential on response time, with other factors rising on the tornado diagram.  

Further, as sensitivity analysis is a one-factor-at-a-time type experiment, important 

interactions would not be apparent in the analysis. 

 

Factor interactions were analyzed in the Response Surface Method Design of 

Experiments.  However, even when choosing efficient experimental designs, the 

number of experimental runs increases exponentially with the number of factors 
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evaluated.  This resulted in limiting the DOE to 5 factors, with some factor 

interactions and non-linear responses potentially unidentified. 

 

The use of Bellevue, Washington as the example region for the model 

experimentation and application analysis could lead to conclusions that are not 

extendable to all regions.  The most significant regional differences are the locations, 

and quantity, of EMS ambulance bases, as well as road network variations.  

Additional system specific variations, such as dispatch delay times, and chute times, 

likely exist as well. 

 

Many of the components in the cost analysis have significant variation.  For example, 

an ambulance vehicle cost may range from $100,000 to $200,000, depending on the 

type of ambulance.  Drone costs have a broad range as well, depending on level of 

autonomy, redundancy, and durability, as well as payload and flight range 

specifications.  This research used general estimates from published sources or 

discussions with subject matter experts. 
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8.5  Future Work 

 

8.5.1  Model Enhancements 

 

This research demonstrated the capability to incorporate road network routing 

algorithms (e.g. Google Maps API) into the simulation.  The limitations of this 

approach, both in relatively high cost and computational efficiency, led to the 

development of the Minkowski distance approximation approach.  The approximation 

approach is not adequate for regions with large geographical barriers, such as rivers, 

lakes, and hills.  The road network route approach may become more economically 

and computationally feasible as new cloud based routing services are available, such 

as Mapbox [116] and the Open Source Routing Machine [117], which both provide 

APIs utilizing the Open Street Map [118]. 

 

Although Public Access Defibrillation (PAD) was not incorporated into the 

simulation model for this dissertation, due to the focus of this research on new, 

emerging systems, there is still significant interest and research on improving PAD 

systems.  This includes optimizing the location of publically available AEDs [119] 

[120], and using cell phone apps to dispatch citizen responders to retrieve PAD AEDs 

[54].  The simulation model could be enhanced to provide predictions for such a 

system, and this system in conjunction with other types of response systems. 

 

Real world studies and piloting of these novel systems may uncover additional 

stochastic factors, which could be added to improve the precision of the model 
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predictions.  This would include the likelihood of bystander CPR, and the time 

reduction in CPR therapy it would provide.  It may also include additional human 

reliability factors, such as the likelihood that a bystander is capable and willing to 

retrieve and use a drone delivered AED. 

 

8.5.2  Model Validation 

 

This research approach relied upon face validation with some support from empirical 

event validation.  As data is collected from studies of these novel systems, an 

empirical validation of the global responses could be performed.  “Breadcrumb” data 

(GPS tracks) from actual mobile responder transits, along with timestamps of 911 

call, EMS dispatch, and cell phone app alert activation, and arrival times, can be 

collected by systems such as PulsePoint.  This data can be used to perform an 

empirical validation for the response times.  
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Appendices 

 

Appendix A:  Physiology and Treatment of Cardiac Arrests 

 

The human heart may be described by a mechanical analog as two side by side two-

stage pumps.  The right atrium and right ventricle act as a two-stage pump to draw 

oxygen depleted, carbon dioxide rich blood that has circulated to organs within the 

body, and provide high pressure to circulate the blood through the lungs.  The left 

atrium and ventricle draw freshly oxygenated blood from the lungs to circulate 

throughout the body.  The pumps share an electrical control system called the 

Sinoatrial node, which are cells that spontaneously produce an electrical impulse.  

The electrical pulse travels first across the right and left atria, causing the muscle to 

contract and force the blood content of the atria into the ventricle.  After passing over 

the atria, the electrical pulse flows through the Atrioventricular node, briefly delaying 

the signal before it conducts across the ventricles, causing contraction of the muscle 

cells forcing the blood to the lungs and bodily organs.  It is the precise timing and 

coordination of the contractions that allow for efficient generation of sufficient 

systolic pressure to circulate blood throughout the body.  The electrical potentials 

created by the impulse propagating around the heart can be measured with an 

electrocardiogram (ECG). 
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Normal, healthy functioning electrical conduction of the heart is known as a Sinus 

rhythm.  An irregular electrical rhythm of the heart is known as a cardiac arrhythmia.  

Arrhythmias fall into four categories: 

1. Premature heart beats, where extra or early atrial or ventricular contractions 

occur 

2. Supraventricular tachycardia, an abnormally fast rhythm in the atria e.g. atrial 

fibrillation 

3. Bradyarrhythmias, an abnormally slow heartrate e.g. bradycardia 

4. Ventricular arrhythmias, which include ventricular fibrillation and ventricular 

tachycardia. 

Most arrhythmias are treatable conditions through medication or the use of a 

pacemaker, and do not represent an acute medical risk, however the ventricular 

arrhythmias are the most common cause of cardiac arrest and require immediate 

medical treatment. In ventricular fibrillation (VF), the heart muscles are quivering 

rapidly and chaotically, preventing them from fully contracting and moving blood.  

Ventricular tachycardia (VT) is another arrhythmia in which the heart beats very 

rapidly, with a heart rate greater than 120 beats per minute.  Both VF and VT require 

a defibrillatory shock to return the heart to a normal sinus rhythm.   
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a)  Normal Sinus Rhythm 

 

b)  Ventricular Fibrillation (VF) 

 

c)  Ventricular Tachycardia (VT) 

Figure 44. ECG strips of a) normal sinus rhythm; b) VF; and c) VT. 

 

The arrhythmias are identified through the use of an ECG.  The lack of a heart rhythm 

is known as asystole, and is commonly called a “flat line” due to its appearance on an 

ECG.  A patient in asystole will have receive no benefit from a defibrillatory shock. 

 

Modern day treatment for patients with out-of-hospital occurrences of cardiac arrest 

can be described by the “Chain of Survival”.  In 1991, the American Heart 
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Association published a state of the art review titled Improving Survival From Sudden 

Cardiac Arrest:  The “Chain of Survival” Concept [121].  It describes a sequence of 

actions that need to occur as quickly as possible after the onset of the cardiac arrest in 

order to maximize the likelihood of survival.  The sequence of actions, depicted as 

links of a chain, are 1) Early recognition of the arrest and activation of the emergency 

response system; 2) immediate application of Cardiopulmonary Resuscitation (CPR); 

3) early defibrillation; 4) and early Advanced Cardiac Life Support services. 

 

The first action requires the cardiac arrest to be witnessed.  Unwitnessed arrests have 

little to no chance for survival, as the victim is unconscious and unable to call for 

help.  Unless the victim is quickly discovered, the prognosis for survival likelihood is 

essentially zero.   

 

The second action is the application of high quality CPR.  The act of compressing a 

patient’s chest forcefully with the palm of the rescuers hands can induce blood flow 

from the heart through the lungs and from the heart to the brain, even while the heart 

is incapable of pumping blood on its own.  The artificial ventilation provides 

oxygenation of the blood through the lungs.  CPR can delay neurological damage due 

to hypoxia and can extend the brief time period for effective defibrillation. 

 

The third action, early defibrillation, is critical to the chances of survival.  

Defibrillation is the application of an electrical shock across the torso, with the intent 

of disrupting the arrhythmia and restarting a normal sinus rhythm.  Modern 
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defibrillators administer the shock through the discharge of a high voltage capacitor 

through electrode pads coupled to the patient’s skin with a conductive gel.  

Defibrillation dosage is measured by the energy of the shock delivered.  Early 

defibrillators delivered a monophasic shock waveform, typically in the 200 to 300 

Joule energy dosage.  More recently, defibrillators have used a biphasic shock 

waveform, in which the discharged current direction is reversed midway through the 

shock.  Biphasic shocks provide improved defibrillation efficacy at a lower energy 

(150 Joules), with reduced potential for burns to the skin or damage to heart tissue.   

 

The fourth action is the early administration of Advanced Cardia Life Support 

(ACLS) by EMS.  ACLS is a collective term for a range of clinical interventions for 

cardiac arrest by providers with advanced training in cardiac care.  This includes the 

ability to read and interpret an ECG and a patient’s vital signs, the intravenous 

delivery of pharmacological drugs, and endotracheal intubation.  Drugs used on 

cardiac arrest patients include epinephrine, atropine, and antiarrhythmic drugs.  In the 

United States, ACLS for out-of-hospital cardiac arrest is primarily provided by 

paramedics, while other countries may use nurses, or physician manned ambulances. 
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Appendix B:  AED Function and Operation 

 

 

The invention of the Automated External Defibrillator (AED) created a potential 

breakthrough in treatment and survival for sudden cardiac arrest.  AEDs allow 

untrained “lay responders” to provide the same medical defibrillation shock treatment 

that previously was only provided by clinically trained professionals.  The devices are 

relatively inexpensive ($800 to $2500), easy to use with minimal or no training, and 

extremely safe to operate.  AEDs offer a simple user interface, often with guidance by 

voice prompts and visual icons.  Many AEDs will provide CPR coaching through 

voice prompts and metronome tones in addition to providing a defibrillatory shock. 

One study showed that sixth grade students could operate an AED as well as adults 

[122]. 

 

At its basic functional level, an AED will acquire an ECG from the patient, 

algorithmically analyze the ECG to determine if the patient has a “shockable rhythm” 

(ventricular fibrillation or ventricular tachycardia), and deliver an electrical shock to 

the patient’s heart if needed.  The ECG is acquired through the placement of adhesive 

electrode pads on the patient’s torso (upper right chest and left ribcage).  An 

impedance measurement across the pads ensures that the pads are properly adhered to 

a human body.  An analog micro-voltage signal detected by the pads is converted into 

a digital signal, upon which filtering and signal processing can remove signal artifacts 

due to patient’s muscular movements, capacitive coupling of the device to other 

electrical potentials, and implantable pacemaker signal.   A shock decision algorithm 
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then analyzes the ECG signal for a shockable rhythm, and if found readies the device 

to deliver a shock.  A capacitor is charged to around 2000 V.  The device will prompt 

the user to clear hands from the patient and press a button to deliver the shock.  After 

shock delivery, the device will either resume ECG analysis, to determine if the shock 

successfully restored a normal sinus rhythm or if additional shocks are needed.  If 

configured, the device may pause the analysis for 2 minutes to provide CPR to the 

patient.  Recent advances in algorithms and have allowed the analysis of the ECG 

during the provision of CPR, resulting in faster shock delivery when required, and 

less “hands off time”, i.e. time without CPR performed. 

 

AEDs are designed with features that enable safe and reliable operation.  They 

operate off low voltage battery sources, and while in standby, do not store any high 

voltage energy.  They only charge the capacitor to high voltage seconds before the 

shock is delivered, and if the shock is not delivered or the algorithm detects a change 

to a non-shockable rhythm, the device will discharge the capacitor into an internal 

load.  The algorithm provides high specificity in its shock decision, while sacrificing 

some sensitivity, such as to prevent the possibility of delivering a shock when not 

needed.  The devices run periodic self diagnostic tests when stored in standby, which 

exercise and verify the essential functions of the device, including the charging of the 

capacitor and delivery of a shock into an internal load.  The high frequency of self 

tests relative to the low frequency of clinical therapy uses ensures that rare failures 

are detected and addressed without impacting a therapy use. 
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AEDs are designed to minimize user required maintenance.  The device itself is 

maintenance free, with the exception of the periodic replacement of the pads and 

batteries.  These must be replaced every two to four years.  The pads contain a 

hydrogel adhesive that will lose conductivity and adhesion as it dries over time.  Even 

stored in a sealed package, the useful life the pads ranges from 2 to 4 years.  The pads 

must also be replaced after a patient use.  The battery will deplete over a period of 

about 4 years, due primarily to energy consumption to run the periodic self 

diagnostics. 
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Appendix C:  Pseudocode for Model 

 

Program Uniform Random Responder 

//Define simulation region 

READ nwLatitude, nwLongitude, seLatitude, seLongitude 

//Calculate conversion of degrees latitude and longitude to km 

COMPUTE convertLat=111.13292-

0.55982*Cosine(2*nwLatitude*Pi/180)+0.001175* 

Cosine(4*nwLatitude*Pi/180)-0.0000023* Cosine(6*nwLatitude*Pi/180) 

COMPUTE convertLon=111.41284* Cosine(1*nwLatitude*Pi/180)-0.0935* 

Cosine(3*nwLatitude*Pi/180)+0.000118* Cosine(5*nwLatitude*Pi/180) 

 

//Assign cardiac arrest location 

READ alpha, beta 

GENERATE random number cardiacArrestLat=Beta distribution [nwLatitude, 

seLatitude, alpha, beta] 

GENERATE random number cardiacArrestLon=Beta distribution [nwLongitude, 

seLongitude, alpha, beta] 

 

//Assign responder locations, compute distance to cardiac arrest location and travel 

time 

READ numberResponders, MinkdistWalk, MinkdistDrive, MinkBias, walkSpeed, 

driveSpeed, dispatchDelayTime, walkDelayTime, driveDelayTime, 

responderReliability, alpha, beta 

Set i=1 

WHILE numberResponders<=i 

 GENERATE random number respLat(i)=Beta distribution [nwLatitude, 

seLatitude, alpha, beta] 

GENERATE random number respLon(i)=Beta distribution [nwLongitude, 

seLongitude, alpha, beta] 

GENERATE random number respReliability(i)=Uniform distribution[0,1] 

//Calculate the walk distance between responder i and cardiac arrest location 

COMPUTE walkdist(i)=[|(cardiacArrestLat- respLat(i))* convertLat|^ 

MinkdistWalk +|(cardiacArrestLon- respLon(i))* convertLon|^ 

MinkdistWalk]^(1/ MinkdistWalk) 

//Calculate the walk time for responder i to cardiac arrest 

COMPUTE walkTime(i)= dispatchDelayTime+ 

walkDelayTime+walkdist(i)*60/walkSpeed 

IF respReliability(i)>responderReliability 

THEN “N/A”← walkTime(i) 

ELSE walkTime(i) 

// Calculate the drive distance between responder i and cardiac arrest location 

COMPUTE drivedist(i)=MinkBias*[|(cardiacArrestLat- respLat(i))* 

convertLat|^ MinkdistDrive +|(cardiacArrestLon- respLon(i))* convertLon|^ 

MinkdistDrive]^(1/ MinkdistDrive) 
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//Calculate the drive time for responder i to cardiac arrest 

COMPUTE driveTime(i)= dispatchDelayTime+ 

driveDelayTime+walkdist(i)*60/driveSpeed 

IF respReliability(i)>responderReliability 

THEN “N/A”← driveTime(i) 

ELSE driveTime(i) 

 

i ← i+1 

END WHILE 

 

//Find fastest responder and assign AED functionality 

READ aedReliability 

COMPUTE firstArriveWalk= min {walkTime(i): i=1, …, numberResponders} 

COMPUTE firstArriveDrive= min {driveTime(i): i=1, …, numberResponders} 

COMPUTE firstArriveBest= min {firstArriveWalk, firstArriveDrive} 

GENERATE random number aedReliabilityFirst=Uniform distribution[0,1] 

IF aedReliabilityFirst<aedReliability,  

THEN WRITE “YES” 

ELSE WRITE “NO” 

 

//Find second fastest responder and assign AED functionality 

DEFINE function SMALL(m) to return the mth smallest value in set of i values 

COMPUTE secondArriveWalk= SMALL(2) {walkTime(i): i=1, …, 

numberResponders} 

COMPUTE secondArriveDrive= SMALL(2)  {driveTime(i): i=1, …, 

numberResponders} 

COMPUTE secondArriveBest= min {secondArriveWalk, secondArriveDrive} 

GENERATE random number aedReliabilitySecond=Uniform distribution[0,1] 

IF aedReliabilitySecond<aedReliability,  

THEN WRITE “YES” 

ELSE WRITE “NO” 

//Find third fastest responder and assign AED functionality 

COMPUTE thirdArriveWalk= SMALL(2) {walkTime(i): i=1, …, 

numberResponders} 

COMPUTE thirdArriveDrive= SMALL(2)  {driveTime(i): i=1, …, 

numberResponders} 

COMPUTE thirdArriveBest= min {thirdArriveWalk, thirdArriveDrive} 

GENERATE random number aedReliabilityThird=Uniform distribution[0,1] 

IF aedReliabilityThird<aedReliability,  

THEN WRITE “YES” 

ELSE WRITE “NO” 

 

//Calculate number or responders within 1 km walk distance 

k=0 

i=1 

WHILE i<=numberResponders 
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IF walkDist(i)<1 THEN k←k+1 

ELSE k=k 

i←i+1 

END WHILE 

 

//Calculate number or responders within 1 km drive distance 

m=0 

i=1 

WHILE i<=numberResponders 

IF driveDist(i)<1 THEN m←m+1 

ELSE m=m 

i←i+1 

END WHILE 

 

//Compute distance from EMS dispatch stations to cardiac arrest and compute 

response time 

READ numberEMS, emsLat(j), emsLon(j), chuteTime, emsDriveSpeed, 

ambulanceAvail 

Set j=1 

WHILE numberEMS<=j 

// Calculate the distance between EMS location j and cardiac arrest location 

COMPUTE emsDist(j)=[|(cardiacArrestLat- emsLat(j))* convertLat|^ 

MinkdistDrive +|(cardiacArrestLon- emsLon(j))* convertLon|^ 

MinkdistDrive]^(1/ MinkdistDrive) 

 

//Calculate the drive time for EMS location j to cardiac arrest 

COMPUTE emsDriveTime(j)= chuteTime+emsDist(j)*60/ emsDriveSpeed 

GENERATE random number ambAvail=Uniform distribution[0,1] 

IF ambAvail(i)>ambulanceAvail 

THEN “N/A”← emsDriveTime(j) 

ELSE emsDriveTime(j) 

 

j ← j+1 

END WHILE 

//Find fastest EMS response time 

COMPUTE emsArrive= min{emsDriveTime(j): j=1,…, numberEMS} 

 

//Calculate difference between EMS arrival time and first responder arrival time 

COMPUTE deltaArriveTime=emsArrive- firstArriveBest 

WRITE deltaArriveTime 

 

//Calculate probability of survival with responder system 

COMPUTE timeToCPR=minimum[emsArrive,firstArriveBest] 

COMPUTE timeToDefib=minimum[emsArrive, lowest rank[firstArriveBest, 

secondArriveBest, thirdArriveBest, where AED reliability =”YES”]] 

COMPUTE systemL=0.26-0.106*timeToCPR-0.139*timeToDefib 
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COMPUTE probSurvival=(e^systemL)/(e^systemL+1) 

WRITE probSurvival 

 

//Calculate probability of survival of EMS only system 

COMPUTE emsL=0.26-0.106*emsArrive-0.139*emsArrive 

COMPUTE emsSurvival=(e^emsL)/(e^emsL+1) 

 

WRITE emsSurvival 
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Appendix D:  Select model verification and validation results 

 

 

This appendix provides graphs that show the data from select validation tests.  This 

includes representative results from extreme value tests, degenerative tests, and event 

validity tests used for the verification and operational validation of the model.    

 

Extreme value tests were used to demonstrate the model provides stability and 

predictable results at the limiting values of model inputs.  Figure 45 shows the effect 

of setting delay time to the limit of zero, i.e. no delay, on the time to defibrillation for 

EMS.  Changing this delay (the sum of the EMS dispatch delay and the chute time) 

from 3.5 to 0 minutes results in an identical distribution of response times, shifted 

downward by 3.5 minutes.  This same effect was observed when evaluating the 

response times of mobile responders and drones, when changing the various delay 

constants to 0. 
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(a) 

 
(b) 

Figure 43. Extreme value verification test results showing EMS delay of (a) 3.5 

minutes and (b) 0 minutes. 

 

Degenerative tests are used to verify that as certain inputs to the model move toward 

extreme values, the model degenerates into a simpler system.  In a system with 

mobile responders and EMS, as the number of mobile responders approaches zero, 

the system degenerates to a response system with only EMS.  Figure 46 shows the 
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test data that demonstrates this behavior.  The time to defibrillation distribution with 0 

mobile responders (the frontward, blue histogram) is identical to the model results for 

EMS alone. Similar results were obtained when reducing the number of drones to 

zero in a drone and EMS system, or when reduction the drone operational availability 

or weather availability to zero. 

 

 

 
(a) 

 
(b) 

Figure 44. Data from degenerative test showing the effect of (a) reducing number of 

mobile responders from 50 to 0, with the distribution converging to (b) the EMS 

response distribution. 
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Event validity is the empirical validation of intermediate functions of the model when 

the global outputs cannot be empirically validated.  Event validation consisted of 

comparison of simulated Bellevue EMS response times with response time statistics 

provided by King County EMS.  Figure 47 shows simulated response time 

distribution for Bellevue, Washington, with the mean time of 5.8 minutes and the 

median time of 5.6 minutes.  This compares closely with the actual response time of 

4.9 minutes (mean) and 4.8 minutes (median). 

 

 
Figure 45. Distribution of simulated EMS response times in Bellevue, Washington. 

 

 

Data published by Auricchio et al. [95] from a mobile responder study in Switzerland 

provided event validity comparisons for a couple of model functions.  Although the 

article did not provide all the sufficient information to replicate the region with the 

model, some factor information was available, such as the distribution of response 

velocity, including both walking and driving responses. The distribution of response 
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times after receiving the cell phone alert was also provided.  Using reasonable 

assumptions for factors not discussed in the article, such as 2 responders per square 

km, and nominal delay times, the model predictions of cases where the mobile 

responder walked to the scene, versus cases where the responder drove, was 

compared to the data from the study.  The study found 4.4% of cases resulted in the 

responder walking to the cardiac arrest location, with 95.6% choosing to drive.  The 

simulation predicted 7% of the responses would be by walking, with 93% being by 

driving.  A comparison of the distribution of response times reported in the article to 

the distribution of simulated response times is shown in Figure 48.  The results show 

similar distributions. 
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(a) 

 
(b) 

Figure 46. Event data from the mobile responder study in Switzerland.  (a) Data 

published by Auricchio et al. [95] response time distribution, with comparison to (b) 

simulated response time distribution. 
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