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Chapter 1

Introduction

Recent years have seen a large amount of interest generated on the subject of
smart structures. While there are no rigorous criteria which characterize them,
smart structures are generally constructed of components which have sensors
and/or actuators integrated within the natural structure of the material. This
thesis investigates the aspects of automatic control associated with smart struc-
tures. Specifically, the problem of vibration damping in a flexible aluminum
cantilever beam using piezo-electric ceramic crystals (PZT) mounted to the sur-
face of the beam as both sensors and actuators is addressed.

This thesis can be broken into three distinct parts. The first part, Chapters 2
and 3, deals with the problem of controlling linear systems with input constraints.
The actuators employed in smart structures are generally small in size so that
they can be integrated seamlessly within the material. This often means that
the control effort exerted by the actuator is also small. Hence constraints on the
input need to be considered when designing a controller. The aluminum beam
with PZT actuators is a good example of this. Safety and practical considerations

limit the maximum voltage which can be applied to the PZT. Even at this



maximum voltage, the force applied by the PZT is small compared to the force
required to bend the beam. Linear control theory contains a large number of
tools for designing controllers for linear systems, but a surprisingly small amount
of work has been done on designing controllers for linear systems with input
constraints.

The first step in approaching the constrained input problem is to determine
the controllable set of the system. This is the subject of Chapter 2. The con-
trollable set is the set of all initial conditions for which there exists a control
which drives the system from the initial condition to the origin in finite time
while satisfying the input constraints. The controllable set can be approximated
by applying the maximum principle to the reverse time system. This method
not only provides an approximation of the controllable set, but it also provides
a method of finding an open loop control which will drive any initial condition
to the origin in the shortest time possible.

Chapter 3 discusses some control laws which are designed to stabilize an
unstable linear system while obeying the input constraints. The controllers pre-
sented in Chapter 3 can be broken into two groups: classification controllers and
modified linear controllers. As their name suggests, the first group uses classifica-
tion techniques such as nearest neighbor, look-up tables, and neural networks to
transform the open loop control law derived in Chapter 2 into an implementable
closed loop control law. The modified linear controllers begin with a low gain
linear feedback law which stabilizes the plant in a desired region of the state
space while obeying the input constraint. This low gain controller is then mod-
ified to improve performance of the closed loop system. The Gutman-Hagander

control law [13] is an example of a modified linear controller. The classification



controllers have the advantage that they stabilize every initial condition in the
controllable set while the modified linear controllers are generally more easily
implemented.

The second part, Chapters 4 and 5, describes the development of the tools
necessary to perform the experimental work to follow. Chapter 4 describes the
AC-100, a system that can be used to rapidly design and implement controllers.
The AC-100 was used to help implement the controllers for all of the experimental
work in Chapters 5-8.

Most modern controller design techniques, including those discussed in Chap-
ter 3, require an accurate model of the system to be controlled. Models derived
from physical principles often contain parameters which are difficult to measure
accurately. Hence, an empirical method of determining a model for an arbitrary
plant is sought. Chapter 5 presents two methods of experimentally determining
the transfer function of any stable linear time invariant system. These methods
are recursive least squares (RLS) and matching pursuits (MP). RLS is capable of
estimating a real rational transfer function model online while MP is a wavelet
based method capable of generating accurate low order models. Both methods
are implemented using the AC-100.

The third part, Chapters 6, 7, and 8, discusses the development and imple-
mentation of controllers for the flexible cantilever beam in different configura-
tions. The configuration used in Chapter 6 is a flexible aluminum beam with
PZT sensors and actuators mounted to a fixed base. The control objective is
to actively damp vibrations in the beam using closed loop control. Here, the
constraint satisfying Gutman-Hagander is compared with two controllers which

do not incorporate any input constraints, the linear quadratic regulator (LQR)



and the positive position feedback (PPF) controller.

In Chapter 7, the beam from Chapter 6 is mounted to the hub of a DC motor.
The motivation for this configuration comes from the desire to study and control
vibrations in spinning objects such as the blades of a fan or a helicopter rotor.
The rotation creates an interesting variation of the fixed beam problem because
the parameters of the beam change as the angular velocity of the hub increases.
A model for this system is developed and linear controllers are designed to damp
vibrations in the beam at fixed motor velocities. These controllers are then joined
together to form a gain scheduling controller for the system with varying motor
velocity.

The effect of impact forces on flexible robotic manipulators is the subject
of a great deal of modern research. In chapter 8, a one link flexible robot arm
consisting of an aluminum beam attached to the hub of a DC motor is considered.
A model which can predict the impact forces generated in a collision between
the arm and a fixed aluminum sphere is derived using the Hertz law of impact.
The predictions of this model are then compared with experimental impact data.
Finally, a neural network is trained from experimental data to generate an open
loop motor control signal which will bring the arm into contact with the sphere
to create a specified impact force.

In the final chapter, the main results of the thesis are briefly reviewed. As al-
ways, many interesting problems remain. Some of these are identified as subjects

for future research.



Chapter 2

Finding the Controllable Set

The plant to be considered is a controllable linear time invariant system of di-

mension n, represented as follows:
z(t) = Az(t) + Bu(t) (2.1)

where z € R" and u € R™. In addition, the control inputs are constrained to be

such that

lus| < ki, 1=12,...,m. (2.2)
The goal is to find a control u : [0,00) — R™ that drives the state from some
zo = z(0) to the origin. For controllable linear time invariant systems without
input constraints it is well known that this goal can not only be satisfied, but
that any zo € R™ can be driven to the origin in arbitrarily small time[29]. In the
case with constrained inputs, however, this result does not hold. Given a system
described by Equations 2.1 and 2.2 there may be initial conditions that cannot
be driven to the origin, even when given an infinite amount of time. With this
in mind, the objective of this chapter is to find the set of all initial conditions xg
for which there exists a control which will drive the state of Equation 2.1 from

Tp to the origin.



2.1 Preliminaries
A formal concept of Controllable and Reachable Sets must first be defined:

Definition 2.1 Let ¢(t,zo,u) denote the solution at time t to Equation 2.1
driven by control u with the initial condition x(0) = zo. Given some T > 0,
the Controllable Set at time T, denoted by Cr, is defined to be the set of all
p € R" for which there exists a control u : [0,T] — R™ which satisfies Equation
2.2 such that ¢(T,p,u) = 0. The Controllable Set denoted by C is defined to

be the limit as T — oo of Cr.

Definition 2.2 Given T > 0, the Reachable Set at time T, denoted by R, is
defined to be the set of all p € R"™ for which there exists a control v : [0,T] - R™
which satisfies Equation 2.2 such that ¢(T,0,u) = p. The Reachable Set,
denoted by R, is defined to be the limit as T — oo of Rr.

Theorem 2.1 ([25]) Consider the linear time invariant system in Equation 2.1
with initial condition £(0) = 0 subject to the input constraint given by Equation

2.2. Let T € [0,00). The reachable set Ry is convex and compact.

Note that if the control u : [0,00) — R™ drives the system from zg to 0 in

time 7', then the control u? defined by
uB(t) =uw(T —t), te]0,T]

drives the system

B(t) = —(AzB(t) + BuB(t)) (2.3)

from 0 back to zg in time T. Equation 2.3 can be thought of as the reverse time

system corresponding to Equation 2.1. This leads to the following fact:



Fact 2.1 The controllable set for a given system is equivalent to the reachable

set for the corresponding reverse time system.
Fact 2.1 will be exploited to help compute the controllable set of.

Corollary 2.1 Let T € [0,00). The controllable set Cr of the system given by
Equation 2.1 subject to the input constraint given by Equation 2.2 is conver and

compact.
Corollary 2.1 follows from Theorem 2.1 using Fact 2.1.

Fact 2.2 If the matriz A in Equation 2.1 is Hurwitz, then the controllable set
1s R".

This fact is clear. When A is Hurwitz (i.e. all of the eigenvalues of A have
negative real part), the system with u = 0 is exponentially stable. Solutions
starting from all initial conditions in R" drift to the origin.

In the sequel it will be necessary to identify points on the boundary of Ry

and Cy. This will be done by making use of the following fact:

Fact 2.3 Let Q) be a convez, compact subset of R® which contains the origin.

Let 0 denote the boundary of Q. Then x € 0 if and only if
(h,z) > (h,y)
for ally € 2, some h € R".

The quantity (h,z) can be thought of as the length of the projection of
onto h (see Figure 2.1). This quantity is maximized only if z € 0. To see this,

suppose x maximizes (h,x) such that z € Q. If z € int(Q2), then there exists



<h,x>

\
Figure 2.1: Geometrical Interpretation of (h, z)

€ > 0 such that (z +eh) € Q. Clearly, ((z + €h), k) > (x, h), so by contradiction
z must be on the boundary of Q. Conversely, if x € 02 then by convexity of 2
there exists A € R™ such that (h,z) > (h,y) for all y € Q.

Finally, the maximum principle will be needed to solve for the controllable

set. For the purposes of this paper, it can be stated as follows:

Theorem 2.2 (Maximum Principle [31]) Consider the linear time invari-
ant given by Equation system 2.1 with initial condition £(0) = O subject to the
input constraint given by Equation 2.2. Let T € [0,00). Let p(t) € R™ satisfy

the adjoint equation

p(t) =-AT(@t)p(t), p(T)="h (2.4)



Then u : [0,T] = R™ mazimizes the quantity (h,z(T)) if and only if
p” (t)Bu(t) = sup{pT(t)Bv‘v € R™,|v| < ki,i=1,2,...,m} (2.5)
for allt €10,T).

Letting b; be the ith column of B yields

m
p (t)Bv =Y p" (t)bvi. (2.6)

=1
The value of p” () Bv attains its supremum if and only if every element of the
summation in the right hand side of Equation 2.6 attains its supremum. Hence,

given p(t), the optimal u(t) can be found by maximizing each element of the

sum. This leads to the following formula for u(t):

k; if pT(t)bi >0
uz(t) = —ki if pT(t)bi <0 (27)

don’t care if pT(t)b; =0
2.2 Approximating the Controllable Set

Let Cr denote the controllable set at time 7' of the system given by Equation
2.1 subject to the input constraint given by Equation 2.2. One way of finding a
point on the boundary of Cr is to find the control which drives the state from
the initial condition z(0) = z, to the final condition z(T") = 0 for the initial
condition zo which maximizes the quantity (h,z,) for some h € R". Hence,
one is faced with an optimal control problem on a system with varying initial
conditions, a problem which is not easily solved in general.

The properties of the reverse time system provide for an easier solution to

this problem. Let R denote the reachable set at time T of the reverse time




system with u® subject to the constraint and with the initial condition z(0) = 0.
Since the controllable set of any system is equivalent to the reachable set of the
corresponding reverse time system, Ry = Cr.

To find a point on the the boundary of Rr we need to find u? : [0,T] —» R™
such that the quantity (h,z(T)) is maximized. This control is easily found using

the maximum principle. The reverse time adjoint system is given by
pP(t) = ATp"(t);  pP(T)=h. (2.8)

Let ®4(-,-) denote the transition matrix of A. Then the solution of Equation
2.8 can be written as

pB(t) = T (T, t)h. (2.9)

Substituting into Equation 2.7 shows that the control which maximizes (h, z(T'))

for the reverse time system is given by
u? (t,h) = kjsgn(—hT®_4(T,t)b;), j=1,2,...,m. (2.10)

This is a slightly stonger version of the result given by Pecsvaradi and Narendra
[25].

Clearly, for any h € R™, all points on the trajectory of the reverse time
system under the control given by Equation 2.10 are in R7. Since Ry is convex,
all points in the convex hull of such trajectories are also in Ry. Hence, Ry can
be approximated by taking the convex hull of the union of the trajectories of
the reverse tim system under the control given by Equation 2.10 for a variety of
directions A. An algorithm for approximating the controllable set can now be

written as follows:

Step 1: Choose a suitably large final time T

10




Step 2: Choose k directions h;, i = 1,2,...,k.

Step 3: Leti = 1.

Step 4: Find p®(t),t € [0, T] by numerically integrating the
reverse time adjoint equation (Equation 2.8) backwards

from time T subject to the final condition pB(T) = h,.
Step 5: Find the control u?(t),t € [0, T] using Equation 2.7.
Step 6: Find the i** trajectory, [xB (t), te [O,T]]i, by numeri-

cally integrating the reverse time system (Equation 2.3)
fromt = 0 tot = T subject to the initial condition
zB(0) = 0.

Step 7: Increment ¢ and go to step 4 until i > k.

Step 8: Let

Rr=24([2°@), te0,T)], i=12,...,k),

i 2
where /A(-) represents the convex hull.
2.3 Examples

2.3.1 Example 1: 2-D Case With Real Eigenvalues

Consider the system

4 35 1
z(t) = z(t) + u(t) (2.11)
3 —6 2
subject to the constraint |u| < 1. The eigenvalues of the matrix A are A\ = —2

and A\, = 3.

11



Figure 2.2: Approximation of Controllable Set for Example 1

An approximation of the controllable set of this system can be found by
implementing the approximation algorithm using MATLAB. Figure 2.2 shows
this approximation. The solid lines represent the trajectories of the system under
optimal inputs while the dotted lines represent the boundary of the convex hull
of these trajectories, or the boundary of Rr.

For this example, it is possible to solve for controllable set exactly. The PVA
function in MATRIXx can be used to find the (2 X 2) matrix M such that the
matrix M AM ' is the Real Jordan form of A [16].

0.8944 —0.3162

—-0.4472  0.9487

12



Employing the coordinate transformation z = M ™!z yields the new system
-2 0 2.2361

() = 2(t) + u(t). (2.12)
0 3 3.1623

These are two uncoupled first order ODE’s. The first ODE,

21 (t) = —221(t) + 2.2361u(?) (2.13)
is exponentially stable while the second ODE,

z9(t) = 3z9(t) + 3.1623u(t) (2.14)

is unstable. If z, can be driven to 0 in time T, then 2; can be allowed to drift
to the origin by using the control u(t) = 0 for all ¢ > T. Hence, the total
state is controllable if and only if z; can be driven to the origin. Clearly, this is

true if and only if |322(0)| < 3.1623, or |23(0)| < 1.054. Transferring back to x

coordinates, this inequality becomes
| — 0.44722,(0) + 0.9487z5(0)| < 1.054

The plot of the exact controllable set is contained in Figure 2.3. As should

be expected, the approximation C is smaller than the exact controllable set.

2.3.2 Example 2: 2-D Case With Complex Eigenvalue

Consider the system

i(t) = st)+ | |u) (2.15)
6 2 1

subject to the constraint |u| < 1. The matrix A has eigenvalues at 1.5 £ 57.331.
The reachable set for this system was approximated using MATLAB and is plot-

ted in Figure 2.4. The figure shows one trajectory which spirals outward from

13



Figure 2.3: Exact Controllable Set for Example 1

the origin and converges to a periodic orbit which circles the origin. The trajec-
tory converges to the same periodic orbit regardless of the choice of h. Hence,
this periodic orbit is the boundary of the approximation of the controllable set.

The careful study of the reverse time system corresponding to Equation 2.15
yields an interesting observation. The control u(¢) = 1 for all ¢ > 0 does not drive
the system to the boundary of its reachable set. Instead, the system converges
exponentially to a new equilibrium point well inside the reachable set. Figure
2.5 shows this. The solid line in Figure 2.5 is the trajectory of the reverse time
system starting at z(0) = 0 with the constant control u(¢) = 1 for all ¢. The
dashed line marks the boundary of the reachable set. In order to approach the
boundary of the reachable set, u(t) must switch back and forth between +1 and

—1 at a frequency that is approximately equal to the natural frequency of the

14



0.51

0.4r

0.3f

0.2t

0.1

-0.4 -0.2 0 0.2 0.4 0.6

Figure 2.4: Approximate Controllable Set for Example 2

system. If the reverse time system was a physical system, the u which drives
the state to the boundary could be thought of as the u which takes the most

advantage of the transfer of energy in the system.

15
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Figure 2.5: Trajectory of Reverse Time System (Example 2) with Constant Input
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Chapter 3

Saturating Control Laws

This chapter presents some controllers for the constrained input problem. The
controllers to be presented fall into two distinct groups. The first group, classi-
fication controllers, is discussed in Section 3.1. The classification controllers use
a “bang-bang” control law to drive the state of the system to the origin from
any initial condition contained in the controllable set. The second group of con-
trollers, modified linear controllers, is discussed in Section 3.2. These controllers
start with the assumption that there exists a linear feedback law which stabilizes
the system while satisfying the input constraints for the set of states in which the
plant is expected to operate. Then, as the name suggests, this linear feedback

law is modified to improve performance of the closed loop system.

3.1 Classification Controllers
Recall from Section 2.2 that for time 7" > 0, h € R", the control

uP(t,h) = kjsgn(—h"®_4(T,1)b;), j=12,...,m. (3.1)
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drives trajectories of the reverse time system
iB(t) = —(A2B(t) + BuB(t)), 2B(0)=0 (3.2)

to £B(T), which happens to be on the boundary of the controllable set at time
T. The control u : [0,T] — R™ given by

u(t) =uB(T —1t), tel0,T) (3.3)
drives the forward time system
£(t) = Az(t) + Bu(t) (3.4)

from the initial condition z(0) = zB(T) to the origin in time T Hence, given
any zo € C some iterative method can be used to find values for A and T so
that zB(T) will equal z,, and the resulting control v : [0,T] — R™ given by
Equations 3.1 and 3.3 will drive the forward time system from z(0) = z, to the
origin in time T". This provides a method of finding an open loop control to drive
any zo € C to the origin.

A naive way to derive a discrete closed loop control law for a the system would
be to compute the open loop control u at each step using the above method.
This technique would work, but the extremely large number of computations
necessary at each step would prohibit its use for most applications.

A more practical approach comes from formulating the problem as a classi-
fication problem. At any given time, the input given by Equations 3.1 and 3.3
will take one of a finite number of possible values. Specifically, for a system with
m inputs, there are at most 2™ different values which the input vector can take.
Hence each state can be assigned one of a finite number of classes according to

the input vector which should be used to drive the state to the origin.
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In general, complicated switching surfaces separate the states belonging the
different classes. It is usually difficult to represent these surfaces in closed form,
but their effect can be approximated. To do this, a large number of states in C are
selected. The open loop control associated with each state is then computed and
each state is classified according to the input vector which should be used at that
state. This creates a data set consisting of states in C and their corresponding
classes. The controller must then be able to classify arbitrary states in C based
on the information contained in the data set. Three methods of classification

are described below.

3.1.1 Nearest Neighbor

The concept of nearest neighbor classification is straightforward: the class of a
given state is assigned to be the class of the nearest state contained in the data
set. Implementation of nearest neighbor classification is not quite so easy. Since
the data set is generally large, searching through it for the nearest neighbor can
take a long time.

One way to alleviate this problem is to use an efficient storage and retrieval
system such as the k-d tree [11]. The k-d tree is a generalization of the binary
decision tree often used for scalar data searches. If the data set has N elements,
the time necessary to search the list linearly is proportional to N. The time nec-
essary to search the list using the k-d tree algorithm is proportional to log,(N).
For example, if the data set contains 10,000 elements, a k-d tree search runs
about 750 times faster than a linear search.

Nearest neighbor classification provides the most accurate method of classi-

fication available. It’s accuracy is limited only by the resolution of the data set
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and the time allowed for the search.

3.1.2 Look-up Table

Preprocessing the data set to put it in the format of a look-up table can eliminate
the searching time all together. First, a grid is created over C. Then, each point
on the grid is asigned a class using its nearest neighbor. The grid is then stored
in an n-dimensional array or look-up table. Now, classifying an unknown state
can be done by rounding the state to the nearest point on the grid and looking
up its class in the array or look-up table.

The look-up table method of classification runs much faster than the nearest
neighbor approach, but this gain comes at the cost of accuracy. Also, while
this method works well for low dimensional systems, higher dimensional systems

require prohibitively large amounts of memory.

3.1.3 Neural Network

Neural networks have been shown to work well as classification controllers. In
fact, L.G. Kraft and D. Dietz have succesfully applied a CMAC neural network
to solve the time optimal control problem [18], a problem which is actually a
specific case of the constrained input problem. The CMAC neural networks are
easy to train, but here backpropagation neural networks are used due to the
wide availability of information and software on the subject [7], [15] .

A backpropagation neural network for use as a classifying controller for a
system with n states and m inputs must have n inputs and m outputs. Choosing
the number of hidden layers and the number of neurons per layer is a subject of

current research [5]. Here these numbers are found by trial and error. The same
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holds for the transfer function at each layer, however good results can usually
be obtained by using a sigmoid function for elements of the hidden layers and a
linear function for the output layer.

The network is then trained on the data set. The states in the data set are
presented as inputs and the m-vector associated with the class is presented as
the target. Once the network is satisfactorily trained, a second data set should
be created to test the accuracy of the neteork for data different from the training
data.

When the network is used as a controller, each input to the plant should
always be on one of its constraints. Hence, if s; is the ¢th output of the neural

network, then u; is assigned as follows:

-k if s<0

k‘i if S; Z 0
The use of a neural network to solve the constrained input problem has
several advantages over the nearest neighbor approach. First, the neural network
is trained with the data set off line, so the controller does not need access to the
data set while running. Hence the problem of memory space does not present
itself. Also, since the neural network finds it’s answer by making a relatively

small number of simple calculations, it runs much faster than nearest neighbor,

which has to search through the entire data set to obtain each answer.

3.1.4 An Example

Consider the system
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subject to the constraint |u| < 1. A data set was compiled as described above.
The system was then simulated for each of the 3 described classification con-

trollers.

Nearest Neighbor Controller

The system was simulated on a Sparc 20 using the method of nearest neighbor
to determine the stabilizing input in a closed loop manner. The nearest neighbor
algorithm was implemented with the help of the k-d tree. Code for the storage
and retrieval of data from the k-d tree was graciously provided by J. Schneider
[30]. The results are plotted in Figure 3.1. Note that the switching curve plot-
ted in Figure 3.1(a) is the most accurate possible approximation of the actual

switching curve from the given data set.

Look-up Table Controller

To implement a look-up table controller, a 100 by 100 grid with z; and z; evenly
distributed between —0.3 and 0.3 was created. Each point on the grid was then
classified using nearest neighbor implemented with a k-d tree. The resulting

classes are then stored in a 2-dimensional array G such that

o (99(:21 8.((3—0'3)) 41, 99(z, 5.2_0'3)) + 1) = class(z). (3.7)

An z which is not on the grid can be classified by rounding it to the nearest

point on the grid. Hence

class(z) = G (round (99(“ 5_2‘0'3)) + 1) , round (99(“ 5'2"0'3)) + 1)) :
(3.8)
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Figure 3.1: Example using nearest neighbor control.

trajectory of system under nearest neighbor control
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Figure 3.2: Example with data set preprocessed into a 2 dimensional matrix.

(a) approximate switching curve. (b) trajectory under control

The results of the simulation are found in Figure 3.2. Note the compari-
son between the approximate switching curve plotted in Figure 3.2(a) and the

switching curve found using nearest neighbor, Figure 3.1(a).

Neural Network Controller

A 2-input, single output backpropagation neural network was trained using the
MATLAB Neural Network Toolbox [7]. The network was chosen to have 2 hidden
layers with 10 neurons in each hidden layer. A logarithmic sigmoid function was
used for the two hidden layers while a linear transfer function was used to the
output layer. The system was simulated using the resulting neural network for

feedback control. The results of the simulation are plotted in Figure 3.3.
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3.2 Modified Linear Controllers

As the name implies, modified linear controllers start with a linear state feedback
which is then modified to improve its performance. These controllers will not, in
general, stabilize the entire controllable set. It is assumed that the set of possible
initial conditions taken on by the plant is some subset of the controllable set.
Further, it is also assumed that there exists a linear state feedback law which
stabilizes the plant while satisfying the input constraint for all possible initial
conditions. If these conditions are not met then a modified linear controller

cannot be used.

3.2.1 Preliminaries

First, some relevant sets are defined.

Definition 3.1 Define D to be the set containing all possible initial conditions

which can be taken by the plant.

Definition 3.2 Let L be an m X n matriz of constant real numbers. Define
E(L) to be the set of all states such that the m-vector —Lx satisfies the inpui
constraints given by FEquation 2.2. In other words, if l; represents the ith row of
L,

E(L) 2 {z e R

llix | < kz} .
Finally, notions of two different saturation functions are formalized.

Definition 3.3 Let v be an m-vector. Define the sat function to be
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sat(v,)
sat{v
sat(v) 2 (v2) (3.9)
sat(vy,)
where
_kz "'f Yy _<_ _kz
A
sat(vi) =S v if —ki<vi<khi (3.10)
ki if vk
Definition 3.4 Let v be an m-vector. Define the msat function to be
A
msat(v) = av (3.11)
where
ki k k
a=mzn{—1—2——m—1} (3.12)
v1]” [ve] |vm]

The sat function simply clips the elements of v that are out of range. The
msat function reduces all elements of v in proportion so that all of the constraints

are met, hence preserving the direction of control [14].

3.2.2 Gutman-Hagander

P. Gutman and P. Hagander have proposed a modified linear controller which
uses two linear feedback laws which are added together and then saturated using
the sat function [13]. First, an m x n feedback matrix L is computed so that
the feedback law u = —BLx stabilizes the system while satisfying the input
constraints for all initial conditions zo € D. One way of doing this is to solve

the Linear Quadratic Optimal control problem, increasing the penalty on the
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control until the constraints are met. Next, an n X n symmetric positive definite

matrix P is chosen such that
P(A-BL)+(A-BL)"P<0. (3.13)

In order for P to be a valid choice, there must exist ¢ > 0 such that

k2
T . ;
spePr<es g (o 14

An m x m diagonal matrix M is chosen such that all of its elements are greater

than or equal to 0. Finally, the feedback control law becomes
,u=sat((—BL - MBTP)z). (3.15)

The resulting closed loop system is guaranteed to be stable for all initial
conditions z(0) € D. The performance of the closed loop system can be tuned

by adjusting the elements of M during simulations.

3.2.3 Control Using the msat Function

The msat function proves to be very useful for the control of stable linear systems
with constrained inputs [14]. The basis of this usefulness is stated in the following

fact:

Proposition 1 Consider an assymptotically stable linear time invariant system
of the form given in Equation 2.1. Let L be a constant m X n feedback matriz.

Assume that there exists a symmetric, positive definite (n X n) matrizc P such

that
PA+ATP < 0 (3.16)
and
P(A-BL)+(A-BL™P < 0. (3.17)
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Then the closed loop system with msat saturated feedback
z = Az — B msat(Lz) (3.18)
s asymptotically stable.

Proof

Equations 3.16 and 3.17 imply that
P(A—aBL)+(A-aBL)TP <0 (3.19)

for all @ € [0,1]. Let E(L) be the set of all z € R" such that the m-vector —Lz

satisfies the input constraint. Let
V(z) =27 Px (3.20)
be a Lyapunov function candidate for the nonlinear system

&t = Az — B msat(Lx)

= Az - o(z)BLz (3.21)

where a(z) € [0, 1] for all z € R*. Then

V(z) = iTPz+1"Pi (3.22)
= 27 (P(A - a(z)BL) + (A — a(z)BL)'P)x (3.23)
< 0 forallxz € R (3.24)

O
Hence, L can be chosen such that the closed loop system meets design spec-
ifications by using any of the wide variety of available linear controller design

tools (LQR, pole placement, etc.). Then, if there exists a P which satisfies
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E(L)
Figure 3.4: Important sets for the msat controller

Equations 3.16 and 3.17, the closed loop system resulting from Equation 3.18
will perform according to specifications close to the origin and is guaranteed to
be asymtotically stable everywhere in R"™.

Figure 3.4 provides a graphical description of the important sets involved
in the msat controller. F(L) represents the set of states for which the m-vector
— Lz satisfies the input constraint given by Equation 2.2. ) represents the largest

subset of E(M) which is positively invariant under the system
& = (A— BL)z. (3.25)

If the initial condition of the closed loop system is in €2, then the system performs
to the specifications selected when choosing M. If the initial condition is outside

Q then the closed loop system is asymtotically stable.
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3.2.4 Dual Mode Controllers

Dual mode controllers use a“high gain” linear state feedback law close to the
origin and use a “low gain” linear state feedback far away from the origin [13].
The closed loop system then performs according to desired performance criterion
close to the origin, where the high gain controller meets the input constraints.
The low gain feed back is then chosen to satisfy less stringent performance cri-
terion, such as stability, for all initial conditions in D. The analysis of the msat
function presented by P.J. Gyugyi and G. Franklin [14] provides motivation for

the following sufficient condition for dual mode controller stability:

Proposition 2 Consider the system given by Equation 2.1 subject to the input
constraints given by Equation 2.2. Let L an M both be m X n state feedback

matrices such that both systems

i = (A-BL)s (3.26)

& = (A—BM) (3.27)

are asymptotically stable. Let E(M) represent the set of states for which the
m-vector —Mx satisfies the input constraint and let {1y represent the largest
subset of E(M) which is positively invariant under the system give by Equation
3.27. Likewise, let E(L) represent the set of states for which the m-vector —Lx
satisfies the input constraint and let Qy represent the largest subset of E(L) which
is positively invariant under the system. WLOG, let Q; C Qy (See Figure 3.5).
Further, assume that there ezists a symetric, positive definite (n X n) matriz P

such that

P(A-BL)+(A-BL)P < 0 (3.28)
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E(M)

E(L)

Figure 3.5: Important sets for the dual mode controller

and

P(A-BM)+(A-BM)TP < 0. (3.29)

Then the control law
—Mz ifx el
u= ' (3.30)
—Lzx else
will cause the resulting closed loop system to be asymtotically stable for all initial

conditions xg € €)s.

The proof is very similar to the proof of Proposition 1. Conditions 3.28 and
3.29 provide the Lyapunov function V() = 27 Pz with V(z) < 0 for all z in the
invariant set £25.

Proposition 2 provides a straightforward approach to dual mode controller

design. First, choose L to so that the control law u = —Lx stabilizes the
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system while satisfying the input constraint for all initial conditions zo € D.
Then choose M so that the control law v = —Mz causes the resulting closed
loop system to perform according to the design specifications. Finally check to
see if Conditions 3.28 and 3.29 are satisfied. If so, then the control law given
by Equation 3.30 will cause the resulting closed loop system to meet design
specifications for all initial condition zy € €; and stable for all zy € D.

The design process could be made considerably easier if there were some
conditions on A, B, L,and M that would guarantee that Conditions 3.28 and

3.29 hold. This is left for future work.

3.3 Conclusion

Several controllers for use with LTI systems subject to input constraints are pre-
sented here. These controllers can be broken into two distinct groups: classifying
controllers and modified linear controllers.

The classifying controllers transform the open loop stabilizing control found
in Chapter 2 into a closed loop, “bang-bang” control law. The three classifying
controllers presented were nearest neighbor, look-up table, and neural network.
The nearest neighbor controller provides the most accurate method implement-
ing the switching, however it is also the slowest of the three. The look-up table
method is very fast, but it requires large amounts of memory, especially for high
dimensional systems. The neural network controller is not as fast as a look-up
table, but it is much faster than the nearest neighbor controller. Additionally,
the neural network requires very little memory, making it easier to implement

than a look-up table.

33



Currently, the Gutman-Hagander controller is the most useful of the modified
linear controllers. The Gutman-Hagander design algorithm can be applied to any

LTT system is and easily implemented.
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Chapter 4

Rapid Prototyping Using the AC-100

To facilitate the implementation of the experiments that follow in the thesis,
a rapid prototyping station centered around Integrated Systems Inc.’s AC-100
system was constructed. The development of this rapid prototyping station,
or test bed, deserves some mention for a couple reasons. Firstly the author
concentrated a large portion of his efforts towards building the test bed and
learning how to use it. More importantly, the test bed was designed with no
single control application in mind. As a result, the system allows the rapid
development and implementation of control strategies for any given system. It
will undoubtably prove to be a valuable asset to the research efforts of the
Intelligent Servosystems Laboratory (ISL).

This chapter briefly describes the construction and use of the system. It may
be used as a starting point for someone wishing to use the system for his own

experiments.
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4.1 The AC-100

Integrated Systems Inc.’s AC-100 is the heart of this rapid prototyping station.
Software tools contained in AC-100 provide the user with the ability to design
and simulate controllers, select input and output devices, generate C code to run
the controller, download the controller to a digital signal processing (DSP) chip,
and finally execute the controller in real time.

Most aspects of the AC-100 run on a SPARCstation IPX. As of this writing,
the AC-100 software is only licensed to run on the SPARC known as tulip in
the ISL. The controller is designed, 1/O parameters are specified, and C code is
generated on the SPARC. The resulting code is then downloaded via FTP to a
Dell 486 PC (rhea-pc) which houses the DSP chip as well as the various I/O
devices and their drivers. The controller is compiled and executed on the PC,
but the user sends commands to the controller from the SPARC via the FTP
link. A graphical representation of the AC-100 system is given in Figure 4.1.

The various aspects of the AC100 are described below.

4.1.1 MatrixX and SystemBuild

MatrixX is a powerful matrix manipulation program. It contains a wide variety
of matrix functions designed specifically for use by control engineers. When used
as part of the rapid prototyping station, MatrixX can be used to implement a
desired control algorithm (e.g. LQR) and produce a controller for a given plant
model.

SystemBuild, a component of MatrixX, is an interactive block diagram editor

which can be used to graphically construct and simulate complex dynamical
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AC100 Description

SystemBuild

(design and simutation)

!

AutoCode Generator
(generate C code)

Hardware Connection

Editor

(select controller input/
output devices)

\

AC100 System

Compiler
(compiles information
for DSP chip)

!

DSP Chip

(executes controller)

!

Input/Output Devices

6 DAC channels
16 ADC channels
48 digital channels
4 PWM channels
4 encoder channels
2 RS-232 channels
68332 processor

Plant

P ——— e ————

Figure 4.1: AC-100 block diagram
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systems. It has the capability to numerically analyze continuous time dynamics,
discrete time dynamics, and finite state machine descriptions as well as systems
containing any combination of the three. For use with the AC-100, SystemBuild
is used to construct a controller. The controller will, in general, have external
inputs and outputs, all of which can be given mnemonic labels by the user.
These inputs and outputs represent the plant’s sensor signals and control inputs
as well as controller parameters and display outputs. Once a controller which
works satisfactorily in simulation is designed, SystemBuild is used to generate
a real time file, or .rtf file which contains all of the information necessary to

proceed with the prototyping procedure.

4.1.2 Interactive Animation Builder

The Interactive Animation Builder (IAB) allows the user to construct a graphical
instrumentation panel which can be used to send commands to and monitor the
outputs of the controller running on the PC. Numerical inputs can be sent to the
controller via sliders and dials and logical inputs are sent using various types of
switches. Controller information can be displayed using strip charts, dials, and
various other graphical displays.

To use the IAB with the AC-100, the user constructs the desired instru-
ment panel configuration, then uses the information contained in the .rtf file to
connect the inputs and outputs of the elements on the instrument panel to the
appropriate controller inputs and outputs, which still have the mnemonic labels

given in SystemBuild.
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4.1.3 Hardware Connection Editor

As its name implies, the Hardware Connection Editor (HCE) is used to connect
the controller inputs and outputs to the appropriate I/O devices. Like the IAB,
the HCE uses the information contained in the .rif file so that the controller

inputs and outputs still have the mnemonic labels given in SystemBuild.

The ISL’s version of AC-100 has the following I/O capabilities:

e 6 channels digital to analog converter

e 16 channels analog to digital converter

e 72 channels of digital I/O (programmable)
e 2 serial channels (RS-232-C or RS-422)

e 4 channels quadrature position encoder

e 4 channels pulse width modulation

e Motorola 68332 processor

4.1.4 Compiling the Controller

The AutoCode program generates C code from the controller’s .rif file at the
touch of a button. After that, AC-100 provides tools that automatically down-
load the C code to the PC, link it with the appropriate device drivers, compile
the information, and load it onto the DSP chip. Once this is done, the con-
troller can be started, monitored, and manipulated from the SPARC using the

instrumentation panel created with the IAB.

39



4.2 Physical Description

To facilitate use of the AC-100, a special cart has been designed and constructed.
The PC sits on top of the cart. The various I/O devices on the PC have been
connected to a number of easily accessible and appropriately chosen connectors
mounted to a large panel on the front of the cart. Two power supplies and three
general purpose amplifiers also reside on the cart. Hence, it is equipped to serve
as a controller for a wide variety of plants with little or no additional equipment.
The cart has been equipped with a long ethernet cable so it is easily transported

to anywhere in the ISL. A photograph of the cart is shown in Figure 4.2.

4.3 Conclusion

The AC-100, facilitated by the cart on which it is mounted, allows for rapid
design and implementation of control strategies for a wide variety of potential
plants. This rapid prototyping capability will greatly reduce the amount of
time and effort required to translate theory into practice, furthering the research

capabilities of the ISL.

40



4 v

e S Rk wg

Figure 4.2: The AC-100 cart

41



Chapter 5

System Identification

Most modern controller design techniques, including those discussed in the pre-
vious chapters, require an accurate model of the system to be controlled. Models
derived from physical principles can provide a great deal of valuable insight into
a given system, but many times these models contain parameters which are
difficult if not impossible to measure accurately. Hence a more experimental
approach is required. We would like to obtain the model of an unknown plant
given a known input and the corresponding measured output. This is the goal
of system identification. This chapter presents two methods of experimentally
determining the transfer function of a stable linear time invariant system. Re-
cursive least squares (RLS), the first method discussed, is an on-line method
of estimating a real rational transfer function. The second method discussed is
matching pursuits (MP), a wavelet based real rational transfer function approx-

imation algorithm. Both methods are implemented using the AC-100.
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5.1 Recursive Least Squares

Recursive least squares estimation (RLS) is an on-line method that can be used
to generate a mathematical model for any stable single input, single output linear
time invariant plant. As the name suggests, the model error will be minimized
in the sense of least squares. If y(t) represents the plant output at time ¢ and

7(t) represents the model output at time ¢, then the quantity

B() = [ 4(0) — §(0) o (5.1

will be minimized for all ¢ > 0.

To implement RLS, an initial guess of a model for the plant is made. The
output of the model is then calculated based on a known input and compared
to the actual plant output to determine the error. The parameters of the model
are then adjusted according to error. The process is repeated until the model
output suitably matches the plant output. A more detailed description of the

above process follows.

5.1.1 The Model Structure

Since the RLS algorithm is usually implemented using a computer, it is natural to
model the plant as a discrete time system using a z-transform. The z-transform

of the output of the model can be written as
Y(z) =T (2)U(2) (5.2)

where
bi2" 4 b2 2 4.+ by b
P4 a2m 4 a1zt a,
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and U(2) is the z-transform of the model input. The model parameters a4, ..., a,
and by,...,b, are real and the integer n is the order of the model.

To choose an initial guess for the model, one must first determine the value
of n. If the physical properties of the plant are well understood, there is usually
an obvious choice for n. In some cases, however, the designer is forced to make
a ”reasonable” guess at n which is then adjusted by trial and error over several
repetitions of the entire RLS process. Once n is chosen, then the initial guess
for the model is obtained by setting the parameters ay,...,a, and b,,...,b, to

Zero.

5.1.2 Calculating the Error

The first step in calculating the model error is to calculate the model output.
Recall that for the system described by Equations 5.2 and 5.3, the current value

of the system output is given by

y(k) = —(ay(k—1)+ay(k—2) +... +any(k —n)) (5.4)
+biu(k — 1) + bou(k — 2) + ... + byu(k — n) (5.5)
where a; and b; for ¢ = 1,2,...,n are the unknown system parameters. Hence,

based on the known plant input and the measured plant output, the model

output is given by

gk) = —(@y(k—1)+ay(k—2) +... +8ny(k —n)) (5.6)
+byu(k — 1) + byu(k — 2) + . .. + byu(k — n) (5.7)
where @; and b; for i = 1,2,...,n are the estimated model parameters. The

model error is then

e(k) = y(k) - 5(k). (5.8)
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5.1.3 Updating the Model Parameters

There are many algorithms available to update the model parameters so that
they will converge to the solution of the least squares problem [1] [20]. Here the
projection algorithm presented by K.J. Astrom and B. Wittenmark [1] is used
due to the simplicity of the required calculations.

First, some notation is necessary. Define

and define

ob) = | ET (5.10)
u(k —1)

u(k — n)

Note that this notation can be used to write the model output as
g(k) = ¢ (k)8(k). (5.11)

Now the parameter update law given by the projection algorithm is

Ok) = Ok — 1) + — Z,fg:))w(k)e(’“ —1) (5.12)

where a > 0and 0 < v < 2.
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5.1.4 Convergence of Model Parameters

A natural question which arises at this point is as follows: Under what conditions
will the projection algorithm cause the model parameters to converge to the
solution of the least squares problem? It turns out that the model parameters will
converge provided that the input signal satisfies a condition known as persistant

excitation. This notion is formally developed below.

Definition 5.1 A square summable discrete time signal u is said to be persis-

tantly exciting of order n if

tl_l)Iglo% (kz: (agpu(k — (n—1)+auk—(n—2))+...+ an_lu(k))> >0
B (5.13)

for all ag, ..., an_1 such that a; # 0 for at least one i € {0,...,n — 1}.

In other words, a signal u which is persistantly exciting of order n cannot be
filtered to 0 by any finite impulse response (FIR) filter of order n — 1 or lower.
This leads to the following theorem, which serves as a sufficient condition for

model parameter convergence.

Theorem 5.1 ([3]) Suppose RLS with the projection algorithm is used to iden-
tify an nth order plant using the model given in equation 5.3. The model param-
eters will converge to the solution of the least squares problem provided that u is

persistantly exciting of order 2n.
This theorem is made more useful with the following facts.

Fact 5.1 ([1]) A signal u that is the sum of k sinusoids is persistently exciting
of order 2k.
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Figure 5.1: Block diagram of Recursive Least Squares estimation

Fact 5.2 ([1]) A signal u that is an independant identically distributed (iid)

process is persistantly exciting of all orders.

In order to identify an nth order plant, an input signal which is persistantly
exciting of order 2n is required. Either an input signal which consists of the sum
of n sinusoids or an input signal consisting of an iid process will guarantee model
parameter convergence.

The block diagram in Figure 5.1 provides a graphical description of the RLS

process.

5.1.5 Example: Identification of a DC Motor

Here RLS with the projection algorithm is used to estimate the model of a DC
motor. The set up used for this identification experiment is shown in Figure 5.2.

Using the power amp input voltage as the system input v and the tachometer

47




U | poweramp -
(gain = -7.2) - motor
AC100
(computer) Y
- y tachometer

Figure 5.2: Experimental set up of DC motor for RLS identification

output voltage as the system output y, the system is well modeled by the transfer

function
b
T(z) = “ta (5.14)
for some real a and b [26]. Employing the notation of Subsection 5.1.3,
~ a(k)
O(k) = (5.15)
b(k)
and
~y(k—1)
o(k) = . (5.16)
u(k —1)
Hence the update law given by Equation 5.12 can be written as
a(k) = a(k—1)+ va(k —1) e(k —1) (5.17)
a+a?(k—-1)+b(k—-1) '
—1
b(k) = b(k—1)+ bk — 1) ek—1).  (5.18)

a+a?(k—1)+b%(k—1)
These equations are easily implemented on a computer using the AC-100. The
motor system is modeled as a discrete time system sampled at 100 Hz using

zero order hold. The input to the power amp u(k) is a 2 Hz sine wave with an

amplitude of 1 volt. It is also sampled at a rate of 100 Hz. Note that a sine
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Figure 5.3: Parameters estimates of DC motor identification

wave is persistantly exciting up to order 2, hence it is sufficient to guarantee
convergence of the first order model.

The results of the experiment with v = o = 1 are plotted in Figure 5.3 and
Figure 5.4. Figure 5.3 shows how the estimated parameters a and b behave over
time. As shown in the plot, a converges to —0.854 and b converges to —0.059.

Hence, the model estimate is

—0.059

T() = ———. (5.19)

Figure 5.4 shows the step response of this estimated model along with the mea-

sured step response of the motor. The two match very well.
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Figure 5.4: Step response of DC motor and estimated model

5.2 Identification Using Wavelets

Here matching pursuits (MP), a wavelet based real rational transfer function fit-
ting algorithm, is used to perform system identification. The matching pursuits
algorithm was developed by S. Mallat and Z. Zhang [21]. Additional work on the
algorithm was done by Y.C. Pati, R. Rezaiifar, P.S. Krishnaprasad, and W.P.
Dayawansa [24]. This work was then implemented in C code by Rezaiifar [28].
The use of the matching pursuits software has been integrated into a seamless

system identification package using the AC-100 system. This is described below.

5.2.1 Using the Matching Pursuits Software

The MP algoritm produces a real rational transfer function model of a given

system from the its experimentally determined complex frequency response. The
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algorithm attempts to match the measured frequency response using a linear
combination of a real rational analyzing wavelet and translations and dilations
of the mother wavelet. The analyzing wavelet (or mother wavelet) [23] used by

Rezaiifar’s code is
1

U(s)= ———. 5.20
S T (5:20)

A wavelet which has been translated and dilated is then given by
U n(s) = af?U(a™s — inby) (5.21)

where ag is the dilation step size, m is the dilation level, by is the translation
step size, and n is the translation level [28]. The parameters ag, by, v, and & must
be chosen wisely so that the algorithm matches the plant closely in the desired
region of the frequency domain. Likewise, the user must choose the maximum
number of translations (7,,4;) as well as the maximum and minimum dilation
levels (Mynqae and M4y, respectively).

The procedure required to use the MP software is as follows:

Step 1: Gather input/output data from plant to be identified.

Step 2: Calculate frequency response of plant from input/output

data.

Step 3: Choose ag, by, 7Y, &, Tmazs Mmaez and My, based on the fre-

quency response of the plant.

Step 4: Run matching pursuits software.

5.2.2 Example: Flexible Beam

Here the system to be identified is the fixed flexible aluminum beam with a PZT

sensor and PZT actuator as described in Section 6.1. PZT #1 is used as an
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Figure 5.5: Flexible frequency response

actuator and PZT #2 is used as a sensor. The block diagram of the experimental
set-up is shown in Figure 6.5. The input voltage to the power amplifier is defined
to be the system input and the output voltage of the inverting amplifier is defined
to be the system output.

The input to the beam is chosen to be the output of a uniformly distributed
random number generator with maximum value 1 and minimum value -1. The
input is updated every 0.01 seconds with a zero order hold between updates.
The PZT voltage is sampled every 0.01 seconds with a zero order hold between
samples. The values of the system input and output are stored over a period of
60 seconds. The data is then processed to generate the frequency response of
the system ranging from 0.1 Hz to 50 Hz. This frequency response is plotted in

Figure 5.5.
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Now it is up to the designer to choose the MP parameters. The resonances
of the flexible beam cause the frequency response to be well localized in the
frequency domain. Since most of the vibrational energy of the beam is contained
in the first few resonances, the rest of the frequency response is of little interest.
In this example, the frequency range of interest lies from .1 Hz to 20 Hz. Hence,
the MP parameters are chosen so that only wavelets localized to within this
frequency range are used. This ensures a good match within the desired range
while keeping the order of the generated model to a minimum. The frequency
response of an 5th order model found using MP is shown along with the measured
frequency response in Figure 5.5. As a point of comparison, RLS performed on
the same system requires a 14th order model to achieve a similar match over the

desired frequency range.

5.2.3 Conclusion

Both recursive least squares and matching pursuits provide methods of quickly
determining an accurate model for SISO linear systems. RLS has the advantage
that it is an on-line process and it is extremely easy to use. The user needs
to know little more than the order of the system to be modeled in order to
successfully employ RLS. These two facts make RLS useful for adaptive methods
such as the self tuning regulator [1]. Matching pursuits, on the other hand, is
more difficult to use. In order to successfully implement MP the user must first
experimentally determine the system’s frequency response. Additionally, MP
has several parameters which must be intelligently chosen by the user in order
to obtain a good model. There is however a reward for this extra effort. Once

the parameters are correctly chosen MP provides an accurate model of much
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lower order than RLS. In addition to system identification, MP can be used to
reduce the order of existing models, making complex models more manageable.
Hence, as is common in engineering, the designer must take these factors into
consideration and choose which method of system identification is best to use
for a given application.

Both methods have been integrated into seamless, easy to use sytems in the
Intelligent Servosystems Laboratory using the AC-100. Any stable linear plant

can now be quickly identified with a relatively small amount of effort.
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Chapter 6

Fixed Flexible Beam Experiment

Much work has been done in recent years concerning vibratian damping in a
flexible beam using piezo-electric ceramic (PZT) actuators and sensors [8] [6] [12]
[27]. However, very few have directly addressed the issue of control constraints.
The voltage applied to a PZT actuator is limited by the PZT breakdown voltage
as well as potential safety concerns. It is desirable to obtain the maximum
possible control effort without exceeding this voltage limit. One way to do this
is to use the constrained control feedback laws developed in Chapter 3. This
chapter will discuss the use of the constrained controller presented by Gutman
and Hagander [13] and discussed here in Section 3.2.2. The performance of the
Gutman-Hagander (GH) controller is then compared to the performance of two
popular controllers in frequent use which ignore the control constraints, the linear

quadratic regulator (LQR) and the positive position feedback (PPF) controller

[9].
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6.1 Experimental Set Up

The beam consists of a rectangular piece of aluminum 30 inches long, 1 inch wide
and 0.125 inches thick. One end of the beam is mounted into a solid aluminum
vise, which is in turn mounted to a workbench. The beam is mounted in the vise
so that both longest and shortest edges are parallel to the ground. The distance
from the tip of the beam to the edge of the vise is 26 inches. This is shown
in Figure 6.1. Five PZT pairs are mounted on the beam, each of them can be
used either as a sensor or an actuator. More information about the PZT pairs
is provided in Section 6.1.1. The PZT pairs are distributed along the beam as
shown in Figure 6.1 and are numbered 1-5, with pair #1 being closest to the
vise. An accelerometer (Sundstrand Data Control, Inc. model 2180) is mounted
at the tip of the beam.

For this experiment, only PZT pair #1 and #2 will be used. Pair #1 will be

used as the control actuator and pair #2 will be used as a sensor.

6.1.1 The PZT Pairs

Each PZT pair consists of two individual 1 inch by 2 inch by 0.010 inch PZT
crystals (Matroc part number 6/648). The crystals are mounted on opposite
sides of the beam and wired with opposite polarity so that they work together.
If one of the elements expands, its mate (on the other side of the beam) contracts.
Using the PZT’s in this fashion doubles the maximum possible control authority
and ensures that a bending moment is applied to the beam symmetrically.
Mounting the PZT’s onto the beam with consistent results turns out to be

somewhat of a difficult problem. The most straightforward method of bonding a
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Figure 6.1: Flexible beam diagram (not to scale)
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PZT to the beam is to simply glue it onto the beam flat using a strain gauge glue
such as M-Line’s M-200 epoxy. This method presents some complications. First,
the mechanical coupling between the PZT and beam is inconsistent from trial to
trial. Electrical coupling problems also arise. For most applications it is desirable
to have one side of the PZT electrically connected to the beam. A conductive
epoxy might seem to solve this problem, but commercially available conductive
epoxies do not bond nearly as well as their non-conductive counterparts. Also,
conductive epoxy can seep around one of the edges of the PZT and short the two
sides together, making the PZT useless. Non-conductive epoxies bond well and
present no potential of shorting the PZT, but the electrical connection between
the PZT and the beam is hard to guarantee. In addition, some interesting
PZT control techniques (such as Dosch, Inman and Garcia’s self-sensing PZT
actuators [8]) require that both sides of the PZT be electrically isolated from the
beam. So it would be nice to be able to connect and disconnect the electrical
connection at will. Finally, placing the PZT’s accurately on the beam can be
difficult. The epoxy cures almost immediately, so the PZT will be bonded to the
beam wherever it first makes contact. Hence, the PZT must be placed accurately
on the first try, a difficult task for even the most steady-handed engineer.

All of these problems are solved by the mounting scheme depicted in Figure
6.2. The glue used is M-Line’s M-200 epoxy, which is non-conductive. Since only
the ends of the PZT are close to the beam, only the ends will become bonded.
This provides a consistent, easily repeatable mechanical coupling from beam to
PZT. Another advantage of the small bonding area between the PZT and the
beam is that it is easy to ensure that the epoxy layer will electrically insulate

the PZT from the beam. Sliding a coiled piece of wire in the gap between PZT
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Figure 6.2: PZT mounting scheme

and beam will provide an electrical connection if one is desired. If no connection
is desired, the coil can be removed. Finally, the top of the opening is machined
to fit the PZT precisely, making it easy to place the PZT in the proper position

accurately.

6.1.2 Electrical Description

The control signal is generated by AC-100 and is provided to the system as an
analog voltage via one of the AC-100’s DAC outputs. The DAC output is fed into
the input of a low pass filter with a cut-off frequency of 200 Hz and a DC gain
of 0.61 V/V. The schematic for this filter is shown in Figure 6.3. The purpose
of the filter is to remove the sharp transitions (steps) in the DAC waveform
while preserving the control intent contained in the low frequency components
of the signal. This is needed since the PZT does not respond well to the sharp
transitions of the DAC. The filter output is then fed into a power amplifier with

a gain of 36 V/V. The schematic for the power amplifier is given in Figure 6.4.

99




0.01pF

Figure 6.3: Low pass filter schematic

The output of the power amplifier is then fed into one side of PZT pair #1. The
other side of PZT pair #1 is connected to the beam, which is grounded.

PZT pair #2 is used as a sensor. One end of the pair is connected to the
beam (ground) and the other end is connected to a TL074 op amp configured as
an inverting amplifier with a gain of 0.21. This attenuating amplifier is necessary
so that the signal going into the computer does not exceed the +/- 5 volt range

of the ADC. A block diagram of the entire set up is given in Figure 6.5.

6.2 Modeling the System

An accurate model of the flexible beam system is required in order to implement
the design algorithms mentioned in the beginning of this chapter. The model is
also useful for simulations. Additionally, a physical model can provide insight
which can lead to a thorough understanding of how the system operates. Here, a
model of the flexible beam derived from the physical properties of the system is

considered. The properties of this model are discussed and then compared with
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Figure 6.5: Block diagram of experimental set up

61



the experimental model found using wavelets in Section 5.2.2.

6.2.1 Finite Element Model

The dynamics of a flexible cantilever beam are inherently infinite dimensional.
An infinite dimensional model is not useful for the purposes of this problem,
hence it is necessary to approximate the beam with a finite dimensional system.
One popular method of doing this is to approximate the beam as a finite number
of rigid bodies connected by rotary joints with torsional springs as depicted
in Figure 6.6. This is known as the Galerkin model [2]. The Euler-Lagrange
method can be used to generate finite dimensional nonlinear equations of motion
for the finite element model. Since the vibrations in the flexible beam consist
of relatively small displacements the nonlinear model can be linearized about
0, =0, =0,k =1,..., N where 6; represents the slope of the ith element and
N represents the total number of elements in the model. In his M.S. thesis, R.
Rezaiifar derives and linearizes the equations of motion [28]. PZT pair #1 (the
actuator) can be used to generate a moment about the first joint of the model.
It is assumed that this moment is proportional to the voltage applied to the PZT
pair. Likewise, PZT pair #2 (the sensor) is used to measure the angle of the
first element. It is assumed that the voltage generated by the PZT is directly
proportional to the angle.

This model provides some good intuition about the behavior of the flexible
beam. Stiffening the springs in the model causes the resonances to shift to
the right in the frequency domain. Reduction of the mass or reduction of the
length of the beam has the same effect. Distributing mass unevenly along the

beam will produce non-symmetrical mode shapes since the motion of the heavy
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Figure 6.6: 3 element Galerkin model

elements will dominate the motion of the lighter elements. These observations
are consistent with the behavior of the actual beam.

The model also provides some insight into ways to control the system. Pro-
portional feedback will effectively increase the spring constant at the first joint,
causing the beam to act stiffer. Derivative or velocity feedback will add damping
to the first joint, causing vibrations in the overall beam to become more damped.

These results match previous experimental findings for an actual beam|8].

6.2.2 Experimental Model

The Galerkin model is very useful for understanding the flexible beam, but it
is not accurate enough to be used for controller design. This model relies on
too many assumptions (such as the relationship between the actuator and joint
moment) and too many unmeasureable parameters (such as the spring constants)
to be reliable. Hence, an experimental model is needed.

The transfer function from the input to the filter connected to PZT pair #
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the the output of PZT pair #2 was found experimentally using the wavelet based
matching pursuits algorithm discussed in Section 5.2.2. The experimentally de-

termined transfer function was found to be

T(s) = 0.1(s — 1.46)(s — 7.68)(s — 75.4) (s> + 17.6s + 6.69 x 103)
T (s +75.4)(s% + 0.777s + 802)(s2 + 6.13s5 + 5.66 x 103)

(6.1)

This 5th order model will be used to design the controllers used in the re-
.

mainder of this chapter.

6.3 Controller Design

The three controllers to be considered in this chapter are the Gutman-Hagander
controller (GH), the linear quadratic regulator (LQR), and the positive position
feedback controller (PPF). The GH and LQR design algorithms are based on
a state space model, so the real rational transfer function model given in the
previous section must be translated into its equivalent state equation form. Such
a translation (or realization) is a standard classical control technique and is
discussed in any good book on linear control theory. Additionally, both GH and
LQR require state feedback. Clearly, the states in the state space model are
artificial and cannot be measured. Hence an observer will need to be designed.
This section briefly describes the design of the observer as well as the GH, LQR,

and PPF controllers.

6.3.1 Observer Design

Consider the observable LTI state space system given by

z(t) = Az(t) + Bu(t),z(0) =z
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y(t) = Ca(t) (6.2)
where z € R", u € R™ and y € RP. The classical state space observer for this
system is given by Rugh [29] as

z(t) = AZ(t)+ Bu(t) + H(y(t) - (1)), 2(0) = o

t) = Cz() (6.3)

<)

Where H is known as the observer gain matrix. The error between actual and
estimated states, e(t) = z(t) — Z(t) then obeys the state equation

é(t) = (A— HOVe(t), e(0) = 2 — Fo. (6.4)

Hence, the error of the estimated state can be made to go to zero by choosing H
so that Equation 6.4 is exponentially stable. This is always possible since [A, C]
is observable.

There are many methods of choosing the observer gain matrix, H. Here H

is chosen using standard LQR methods. Note that
o(A— HC) = o((A-HC))
= o(AT - CTHT) (6.5)

where o(-) denotes the spectrum. H7T can then be chosen so that the cost

function
I = [ (o) + o llz()2) dt (66)

is minimized for the system
#(t) = AT2(t) + CTu(t), 2(0) = 2. (6.7)
The input v which minimizes the cost function J{(u) for the above system is

u(t) = Cooz(t) (6.8)
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where [I, is the unique symmetric positive definite solution to the algebraic

Ricatti equation (ARE) [31]
Al + Moo AT — T, CTClly = —al (6.9)
where [ is the (n x n) identity matrix. Hence,
H = (CTL,)T. (6.10)

The parameter o represents the penalty on the observer error. This number
should be chosen to be large so that the observer state will converge quickly to

the actual state. Here, o was chosen to be 10%.

6.3.2 Linear Quadratic Regulator

The linear quadratic regulator (LQR) is a well known algorithm to design a
linear state feedback law for any linear time invariant system. The LQR method
can be summarized as follows: Let I, be the unique symmetric positive definite

solution the the algebraic Ricatti equation
ATTl o + A — I BBTTl, = —L (6.11)

where the (n X n) matrix L is symmetric and positive semi-definite. The linear

state feedback law

u(t) = —BT Tz (t) (6.12)

will stabilize the system given in Equation 6.2 while minimizing the cost function

J(u) = /0 (), u(®)) + (@(t), Lz(t))) dt. (6.13)

L = LT is the state penalty matrix. Since the control objective is to drive

the system output y(¢t) = Cz(t) to zero as quickly as possible, we set L = aCTC
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so that (z(t), Lz(t)) = a (y(t),y(t)). Now the LQR controller can be determined
by choosing one parameter, .. In simulation, a good value for o was found to
be 0.5. The state feedback matrix found using the LQR algorithm with o = 0.5
will hereafter be know as Kjgr. Hence, the control with reference input v(t)

becomes

u(t) = —KLQR(L'(t) + ’U(t) (614)

The system under LQR control implemented using the state observer found

in Section 6.3.1 now becomes

-

(t) | HC A— HC - BKiqr | | 3(t)
vt = | C [0...0]} =0 | (6.15)
- 20

6.3.3 Gutman-Hagander Controller

The constrained input controller design algorithm proposed by P. Gutman and
P. Hagander was described briefly in Section 3.2.2. A more detailed description
of the algorithm was presented by R. Rezaiifar in his M.S. thesis [28] and in
the original paper by Gutman and Hagander [13]. The algorithm as applied to
the flexible beam problem is described here. It is assumed that the input v is

constrained so that |u(t)| < 1 for all ¢ > 0.

Step 1: Finding the Initial Condition Set

The first step in the GH control algorithm is to find the set of possible initial
conditions that the plant can take, denoted as D. To do this, the output of the

beam (PZT pair #2) was connected to the observer designed in Section 6.3.1
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and the estimated states were observed while the tip of the beam was manually
deflected by one inch and released. This is considered to be the maximum
possible disturbance input. The maximum absolute value attained by each state
was recorded. These are denoted as z]"**,¢ =1,...,5. The set D is then chosen
tobe {z € R®||z;| < 27,1 =1,...,5}. It should be noted that this estimate for
D is somewhat conservative since all of the states may not reach their maximum

value at the same time. Still, it will suffice for this problem.

Step 2: Find Stabilizing Linear Feedback

The second step of the GH control algorithm is to find a linear state feedback
matrix L which stabilizes the system while satisfying the input constraint for all
z € D. The flexible beam is already a stable system, so this step is not necessary.
Furthermore, since L is not needed, the set £ = {z € R®||u| = ‘LTx| <1}is

equal to all of RS.

Step 3: Find P

Step 3 of the GH algorithm is to find P = PT > 0 so that P solves the Lyapunov
equation

PA+ ATP=-Q (6.16)

for some positive definite (). @ can be though of as a design parameter. Here,
Q is chosen to be the 5 x 5 identity matrix. Equation 6.16 is solved easily using

MatrixX.
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Step 4: Check Validity of P

In order for P to be a valid choice, it must satisfy the inequality

sup 27 Pz < min 27 Pz. (6.17)
z€D z€dE

Since E = RS in this case, this inequality holds.

Step 5: Choose K

Now the control law

u = —sat(K BT Px) (6.18)

is guaranteed to stabilize the flexible beam system for all initial conditions x4 €
D. K can be any (m x m) diagonal matrix with all of its elements greater than
or equal to zero. Since the flexible beam is a single input system (m = 1) K is
a non-negative scalar.

To select K, MatrixX was used to plot the locations of the eigenvalues of the
matrix (A — BKBT P) for various values of K. K was then chosen to be the
value for which these eigenvalues were pushed farthest into the left half plane.

This yielded K = 0.002.

6.3.4 Positive Position Feedback

Here the positive position feedback (PPF) method presented by J. Fanson and
T. Caughey [9] is used to design a controller for the flexible beam. In the PPF
controller, the position signal (i.e. the voltage of PZT pair #2) is passed through
a bank of parallel second order low pass filters. One filter is required for each
frequency that is to be controlled. For the flexible beam, it is only necessary

to control disturbances of the frequencies which correspond to the resonances of
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the beam since all other frequencies are naturally attenuated. Each filter has a

transfer function of the form

T(s) = £ .
(#) 82 + 28w, + w? (6.19)

where w, is the filter’s cut-off frequency in radians per second.

For the flexible beam, it is desirable to control the first two resonances of
the beam. These are at 24.4 rad/s and 75.4 rad/s for the first and second
modes, respectively. Hence, two filters are needed. The cut-off frequency for
each filter is chosen to be 1.1 times the frequency of the mode to be controlled.
The parameters k£ and & for the two filters are adjusted during a preliminary
simulation step. The damping ratio, £, was chosen to be 0.2 for each filter. The
DC gains were chosen to be 0.05 for the first filter and 0.01 for the second. See
Figure 6.7 for a block diagram of the system under PPF control.

It should be noted that in addition to filtering the amplitude of the position
signal, the PPF filters also shift the phase of the cut-off frequency by -90 degrees.
In other words, PPF is equivalent to feeding back the velocity signal (derivative
of position) of each mode to be controlled. According to the Galerkin model,
this introduces a pure damping term at the first link and the system should
be well damped. In fact, PPF feeds back pure damping even when the control
signal is saturated. Hence, the PPF controller should work well under the input

constraints.

6.4 Results

To test these three controllers, the tip of the beam was manually deflected by

exactly one inch and released. The beam response was then measured. The
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Figure 6.7: Block diagram of PPF controller

results of this experiment are plotted for each of the three controllers in Figures
6.8, 6.9, and 6.10. All three controllers improved the ability of the beam to reject
the disturbance. The settling time (10%) of the beam with no controller was
6.42 seconds. The settling time with the LQR controller was 2.89 seconds while
both the PPF and GH controllers had settling times of 2.45 seconds.

The settling time is defined to be the latest time at which the beam response
exceeds ten percent of its maximum value. Because of the oscillatory nature
of the beam response, comparing two responses using this measurement can be
slightly misleading, especially when the two responses are very close. A more
reliable method of comparing beam responses is to compare the plots of the
responses’ envelopes. As Figure 6.11 shows, the response of the GH controlled

beam is slightly better than the response of the PPF controlled beam.
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Recall that the control input was constrained so that |u| < 1. If this con-
straint is removed, the performance of the controllers is significantly increased.
The unconstrained settling times were 1.76 seconds, 1.44 seconds, and 1.37 sec-

onds for the LQR, GH, and PPF respectively. Such an improvement is expected.

6.5 Conclusion

All three controllers improved the beams ability to reject the disturbance. The
LQR controller had the worst performance of the three, but this is to be expected
since the LQR algorithm is not specifically designed for use as a saturating
controller. The GH and PPF controllers performed almost equally well. Overall,
PPF is probably a better choice of controller because it is much simpler to
implement than the LQR and GH, both of which require an observer.

This experiment provides an important lesson. Automated design algorithms
such as LQR and GH are nice to have, but they are no replacement for a thorough
understanding of the physics of the system to be controlled. The PPF controller,
which was designed based on intuition provided by the Galerkin beam model,
performed almost as well as the fancier, automated methods and was much

simpler to implement.
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Chapter 7

Rotating Flexible Beam Experiment

This chapter addresses the problem of active damping of vibrations in a contin-
uously rotating flexible beam. Like the fixed beam experiment of Chapter 6, an
aluminum cantilever beam with PZT sensors and actuators is used. However,
for this experiment the beam is mounted to a hub driven by a DC motor. This
creates one very interesting twist to the fixed beam experiment: the parameters
of the beam vary with the motor rotation rate. In particular, the resonant fre-
quencies of the beam shift to the right in the frequency domain as the motor
velocity increases. Hence, this experiment provides an interesting application for
the design algorithms of robust and adaptive control.

In this chapter, the experimental set-up is described in detail. A model for
the beam is developed from physical principles and compared to models found
using the system identification techniques of Chapter 5. Linear controllers are
designed for the system at two separate, fixed motor velocities. Finally, these two
controllers are united to create a gain scheduling controller capable of providing
active vibration damping to the beam over a range of slowly changing motor

velocities.
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7.1 Experimental Set Up

The beam is identical to the beam described in Section 6.1 with one major
difference: single PZT crystals are mounted along the beam on one side only
as opposed to the PZT pairs mounted along both sides of the fixed beam. The
reasoning behind this is discussed at the end of this section. The PZT’s are
mounted to the beam using the mounting scheme described in Section 6.1.

The flexible arm apparatus designed and constructed by G.H. Frank [10]
was modified to suit the needs of this experiment. Since the beam needs to
rotate continuously, it was necessary to add a slipring to Frank’s set-up so that
electrical contact between the PZT’s and the controller could be maintained
during operation. To facilitate this, a new hub was constructed. The new hub
extends approximately 8 inches upward from the motor housing, providing room
to mount an 8 channel slipring. Mounted to the top of the hub is a removable
circular platform with a 7 inch diameter. The beam is clamped to the platform
with the PZT side facing down such that PZT #1 closest to the hub.

The electrical set-up is identical to the set-up described for the fixed beam
(Section 6.1.2) with the exception that the connections to the PZT’s are made
via the slipring. For the purposes of this discussion, the slipring will be treated
as a perfect short circuit at all times.

Clearly, at equilibrium the beam will bend downward due to the force of
gravity. PZT’s mounted on the top side of the beam would be extended, pro-
viding them with a negative mechanical bias. This is not good for the crystals
and causes them to crack easily. For this reason, all of the PZT’s are mounted

on the bottom side of the beam only.
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7.2 Modeling the System

As discussed in Section 6.2, an accurate model of the flexible beam system is
useful for many reasons. Here, a model of the flexible beam derived from the
physical properties of the system is considered. The properties of this model are

discussed and then compared with models found using experimental methods.

7.2.1 Finite Element Model

The Galerkin model discussed in Section 6.2.1 can be easily applied to this
problem with a couple of modifications. The two major differences between this
problem and that of the fixed beam come from the gravitational and centrifugal
forces. Each link in the model will be subject to a constant downward force
of m;g where m; is the mass of the sth link and ¢ is the acceleration due to
gravity. This accounts for the effect of gravity. Additionally, each link is subject
to a force of wm;z; in a direction radially outward from the hub. Here w is the
angular velocity of the motor and z; is the x position of the center of gravity of
the ith link. This accounts for the centrifugal force due to rotation. Since both
of these forces are applied in a constant direction with respect to the beam, the
rotating beam can be modeled as a fixed beam with these new forces in place.
A diagram of a 3-link version of this model is shown in Figure 7.1.

The equations of motion for this system can be found using the Euler-
Lagrange method. For and n-link beam

Tk — Thel = % (gj%) - % + g—gc, (7.1)

where

0; = the slope of the ith link,
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Figure 7.1: 3 element Galerkin model of continuously rotating flexible beam

E = the kinetic energy of the system,

U = the potential energy, and

7; = the external moment generated at the ith joint.

The kinetic energy can be expressed as a function of the translational and

rotational velocities of each link. Specifically,
n 1 .
E =3 smi( +97) + 3 S 16] (7.2)

where

m; = the mass of the ith link,

I; = the moment of inertia of the ith link about its center of mass, and

(z;, y;) = the cartesian position of the center of mass of the ith link.

Likewise, the potential energy can be expressed as the sum of the energy
stored in the springs, the displacement of the links against gravity, and the
displacement of the links against the centrifugal force. Specifically,

n 1 n n
U= ; 5k,~(0,~ —0;_1)%+ Z m;gy; — ; miwm?, (7.3)

i=1
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where

w = the angular velocity of the motor and

g = the acceleration due to gravity.

This is identical to Rezaiifar’s formulation of the fixed beam model [28] with
the addition of the gravity and centrifugal force terms in the potential energy
equation.

Tedious application of the chain rule yields

d (9T A ; 055\ 0

S (le X E ) o0
L 0y Ovi

]1Haeao,”l+z )aek

: E)xz L 0% ]
(X‘; ) 96,00,

J=

-
1l
—

'M:

s
1l
—

+

+

-
1l
—

. 3.% L Py :
(2131 ) 80@0;01 + 104, (7.4)

J=

+
.M:

-
Il
-

oU
—_— = kk(ek - 0]9—1) - kk+1(9k+1 - 0’9)
00y,
= oy < Oz;
+ zzzzl nga_el: ; 2m;wx; ET (75)
and
OE _ & AN CIAY
- B (B 5) Gaant)
n é)yz : 62% é 1
* ; (Z ) <Z 06,90, ) . (7:0)

Substituting Equations 7.4, 7.5, and 7.6 into equation 7.1 yields
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n ‘L 0P 62:@ oz |
Te — Th+1 = Z m; (g; 86,00 Z ) 39k

=
n [ (G Py ayz Ay |
+ §m1<j§§306009z+2 )
+ Tef + k(O — k1) — krr1(Bei1 — k)
= Oy; = 0z;
+ ;nga—ek - 12:21277%&).1716—9]‘:. (77)

Assuming the mass of each link to be evenly distributed and following a series
of substitutions similar to Rezaiifar [28] yields the following expression for the
equations of motion of the beam. Note that this expression does not contain any

partial derivatives.

n i—1 . .
Tk — Tk+1 = Z m; |:Z lklj (Sin(ok - 01)9;2 + COS(Q[c - 0]')93'):]
i=k+1  |j=1
my k-1 . o v
S DY (sin(8 — 0;)62 + cos(0k — 6;)6;)
j=1

n

+ Y % [lkli (Sin(9k — 6;)67 + cos(0 — 0")5")]

i=k+1
2 ) X
+ mzlk b + Iiby
+  kk(Ok — Ok—1) — kxt1(Bks1 — Ok) + legeos() l > mi+ 2
i=k+1
i—1 L.
—~  lywsin(f) Z 2m; Zl cos(6;) + —cos(6;)
i=k+1 j=1 2
-1
—  lpwsin{f)m (Zl cos(6;) + —cos(ek)) (7.8)
i=

fork=1,2,...,n
Now for the purpose of understanding the characteristics of the model, several

simplifying assumptions are made. They are
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e the number of links is two (n = 2),
e the beam is in a zero gravity environment (g = 0),
e the lengths of the two links are equal (I, =1y = 1),

e the masses of the two links are equal (m; = mg = m), and

the two spring constants are equal (k; = ky = k).

The equations of motion of the simplified two link beam can now be expressed

as
9 4 .. 1 i 1. "
n—T = ml [501 + ECOS(HQ - 01)02 - 5811’1(02 — 91)02]
+ 2mi2wsin(6,) lE’COZ(el) + Coséez)} Y EQ0—6)  (7.9)
and

3 2
cos(62)
2

, .1 .
T, = mi? B—cos(@z —601)6, + l92 + —sin(fy — 01)9f]
+  mlPwsin(f,) [003(91) + ] + k(6 — 61) (7.10)

Finally, these equations can be linearized and put into state-space form to

get
-91- - 0 0 1 0- -qu
d | 62 0 0 01 0,
g | | (wr ) () ool
| 6 | | (w+ ) (M) 00|06
0 0

3 0 0 T1

(7.11)

T2
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Now the eigenvalues of this system can be calculated. They are

/ k
)\1,2 = :tj 6w+——6
mi?

. (144w 66k
Mo = EE S

(7.12)

Clearly, as w increases, the magnitudes of all four eigenvalues also increase. Since
the eigenvalue magnitudes correspond to the resonant frequencies of the system,
this means that the resonances of the system also increase with w. Hence, the
rotating flexible beam can be though of as an uncertain linear system with its
uncertainties parameterized by w.

Note that the eigenvalues also increase as k increases and decrease as either
m or | decrease. These facts concur with the intuition gained for the fixed beam

in Chapter 6.

7.2.2 Experimental Model

The model derived in the previous section contains many parameters that are
difficult if not impossible to measure. For this reason, it is necessary to exper-
imentally determine a model for the system. Clearly, if the motor velocity w,,
is allowed to vary, the system cannot be modeled as being linear time invariant
(LTT). It would be nice to model the system as LTI since there are a wide vari-
ety of control tools and algorithms which address LTI systems. One method of
solving this problem would be to obtain several models of the system at differ-
ent fixed motor velocities. Once the motor velocity is fixed, the system is well
modeled as LTI and a controller for each motor velocity can be designed using
existing techniques. Then, when the motor velocity is allowed to vary slowly,

some sort of gain scheduling algorithm can be employed to choose the correct
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Figure 7.2: Frequency response of rotating beam, wy, =0

controller for the system at any point in time. This is the strategy attempted
here. Hence, instead of trying to find one model to describe the action of the
system over all motor velocities, different models will be found for different fixed
motor velocities.

The frequency responses of the system with w,, = 0 and w,, = 4 rad/sec are
plotted in Figures 7.2 and 7.3. For simplicity, only the first mode of vibration will
be addressed here. From the figures, it is clear that the first resonant frequency
of the system increases as the motor velocity increases, as predicted by the
finite element model. The beam’s natural damping also increases with motor
velocity. The finite element model does not account for any damping terms so
this behavior is not predicted.

At this point, the wavelet based matching pursuits (Section 5.2) or recursive
least squares (Section 5.1) could be used to obtain a model for these systems.

However, since only one resonance is being considered here models are easily
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obtained by hand. The model for w,, =0 is

0.2s2
Toh(s) = 1
o(s) $242-0.02- 27 - 3.4s + (27 - 3.4)2 (7.13)
and the model for w,, = 4 is
0.3552
Ty(s) (7.14)

T s2+2-015-27-4.35+ (21 - 4.3)%
The frequency response of each model is plotted with its corresponding ex-

perimetnally determined frequency response in Figures 7.2 and 7.3.

7.3 Controller Design

Here the positive position feedback (PPF) controller presented by J. Fanson and
T. Caughey [9] is used to design a controller for each motor velocity. Since only

one the first mode is being considered, the PPF controller for each motor velocity
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will consist of one second order low pass filter. The PPF controller for w,, = 0

is

(3.7-2m)?
H, = .
o(s) $2+2-0.2:27-3.7s+ (27 - 3.7)2 (7.15)
and the PPF controller for w,, = 4 is
4.9 - 27)?
Hi(s) (49 2m) (7.16)

T $2+2-02-21-4.9s+ (21 - 4.9)%°

The switching point for the gain scheduling controller will be found by trial

and error on the actual system.

7.4 Results

To test these controllers, PZT #3 will be used to generate a disturbance, PZT
#2 will be used as a sensor, and PZT #1 will be used as the control actuator.
A block diagram of the experimental set-up is shown in Figure 7.4. Before
the controllers can be tested, however, some measure of system performance
must be defined. This performance measure should express the ability of the
system to attenuate vibrations of various frequencies at various motor velocities.
Hence, the 3 dimensional plot of the absolute value of the output signal versus
the disturbance signal frequency and motor velocity will provide a good visual
display of controller performance. Further, integrating this surface will provide a
scalar measure of performance for the controller. Specifically, disturbance signals
will be sine waves ranging in frequency from 1 to 10 Hz in increments of 1 Hz.

The motor velocities will range from 0 to 4 rad/sec in increments of 1 rad/sec.
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Figure 7.4: Block diagram of experimental set-up

7.4.1 Performance at Fixed Motor Velocities

First, each controller is tested at the fixed motor velocity for which is was de-
signed. These results are plotted in Figures 7.5 and 7.6. The horizontal axis
of each plot represents the frequency in Hertz of the 5 volt sine wave sent to
PZT #3. The vertical axis represents the magnitude of the resulting signal at
the sensor PZT #2 in decibels. Both controllers reject the disturbance signal
significantly around the resonance of the system, but do little away from the res-
onance. This makes sense since PZT actuator is relatively weak and the beam

naturally rejects frequencies away from its resonances.

7.4.2 Slowly Varying Motor Velocities

The objective here is to build one controller which can control the system well
at all velocities. The first step in doing this is to investigate the performance
of the individual controllers over a variety of motor velocities. Figure 7.7 shows

the response of the uncontrolled beam over a variety of motor velocities and
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disturbance frequencies. Figures 7.8 and 7.9 depict the performance of the two
controllers over the same variety of motor velocities and disturbance frequencies.
The X axis represents the motor velocity, wy, in rad/sec, the Y axis represents
the disturbance frequency in Hertz, and the Z axis represents the corresponding
magnitude of the sensor voltage in volts. As expected, each controller performs
well when operating near its intended motor velocity, but does not perform well
away from this velocity. The controller designed for w,, = 4 is unstable at
wy = 0 and does a poor job of rejecting disturbance frequencies near 3 Hz at
low motor velocities. Likewise, the controller designed for w,, = 0 does not
reject disturbance frequencies near 5 Hz at high motor velocities. As these
experiments show, the uncontrolled beam actually responds better over a range
of motor velocities than either of the two controllers.

Given these results, the most straightforward way to build one controller to

control the system at all motor velocities is to switch between the two individual
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controllers depending on the motor velocity. That is use Hp(s) when w,, < 2

and use Hy(s) when wy,, > 2. This approach is a simple form of gain scheduling,.

The performance of this gain scheduling controller is depicted in Figure 7.10.
To obtain a scalar performance measure, the surfaces depicted in Figures 7.8,

7.9, and 7.10 can be integrated. These values turn out to be
J(mbozuncontrolled) = 74.4
J(Ho(s)) = 784

J(Hy(s)) oo(unstable at w,, = 0)

J(gain sched) = 66.3. (7.17)

7.5 Conclusion

The continuously rotating flexible beam changes characteristics as the motor

velocity increases. Specifically, the resonant frequencies of the beam increase
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with the motor velocity. This presents an interesting control problem. Here
standard linear control techniques have been applied to control the system at
fixed motor velocities. Then a simple gain scheduling controller was devised to
switch between the linear controllers. For slowly varying motor velocity, the gain
scheduling controller worked better over the range of possible motor velocities
than any one linear controller, hence can be called a success.

The gain scheduling is the simplest method of adressing this problem. Many
of the tools that have been developed recently in adaptive and robust control

can be applied directly to this problem. This is left for future work.
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Chapter 8

Impact of a Flexible Robotic Arm

Many applications of modern robotic technology involve mechanical interaction
between a robotic manipulator and some object in the manipulator’s workspace.
Naturally, this interaction always involves physical contact between the object
and the manipulator. In some cases, particularly those involving a manipulator
composed of flexible links, the collision between the object and the manipulator
can excite an undesirable response, sometimes leading to catastrophic failure.
For this reason, a great deal of effort has been concentrated on the problem of
modeling the impact forces involved in collisions between flexible objects [33],
[34], [4], [19]. Such models can be used to predict the behavior of the system
due to impact.

In this chapter, the characteristics of a collision between a single link flexible
robotic arm and a fixed object are investigated. The experimental set up is
described and a model for the impact is developed using the Hertz law of impact.
Finally, an open loop controller composed of a neural network is employed to
control the peak magnitude of the impact force between the arm and the fixed

object.
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8.1 Experimental Set Up

As in Chapter 7, a modified version of the flexible arm apparatus designed and
constructed by G.H. Frank [10] is used for this experiment. The new hub de-
scribed in Section 7.1 is not actually necessary to this experiment, however it is
used since it is already in place. An aluminum beam measuring 30” x 2” x 0.125”
is mounted in a vise centered on the vertical axis of the hub. The beam is
mounted so that the flat side of the beam (the 30” x 2” side) is parallel to the
jaws of the vise and the long skinny side (the 2” x 0.125” side) is parallel to the
floor and 26” stick out of the vise on one side. A force sensitive resistor (FSR) is
mounted on the flat side of the beam with as shown in Figure 8.1. A photograph
of the entire set up is shown in Figure 8.2.

The object which the beam collides with consists of a 1” radius aluminum
sphere mounted to an adjustable stand. The stand is placed so that the sphere
contacts the center of the FSR when the beam collides with the sphere.

The electrical set up is straight forward. The FSR is used as part of a voltage
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Figure 8.2: Flexible arm set-up
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Figure 8.3: Electrical set up of FSR (force sensitive resistor)

divider, the output of which is connected to one of the analog inputs of the AC-
100 as shown in Figure 8.3. The translation from the divider voltage to its
corresponding force is accomplished using software. The motor control signal is

generated by the AC-100 and passed through a power amplifier to the motor.

8.2 Modeling the System

Here a model of the response of the flexible arm apparatus due to impact is
developed. First, the finite element model of the fixed beam system is briefly
reviewed. This model is then modified to accommodate the rotating hub and an
impact force at the tip of the beam. Then, this model is used in combination

with Hertz law of impact to determine the impact force between the moving
beam and a the fixed aluminum sphere. Finally, the impact force predicted by

the model is compared to experimental impact data.
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8.2.1 The Finite Element Model

As discussed in Chapters 6 and 7, one popular method of modeling the flexible

beam is to approximate the beam as a finite number of rigid bodies connected

by rotary joints with torsional springs as depicted in Figure 6.6. This is known

as the Galerkin model [2]. The equations of motion for Galerkin model of the

cantilever beam derived using the Euler-Lagrange method are

n i—1
Te — Tk+1 = Z my; |:Z lklj (sin(Hk - 0])0? -+ cos(Ok — 0])01)]

i=k+1 j=1
Mk k-1 . o v

+ 7 Z lklj (sm(ﬂk — Hj)Bj + COS(0k - HJ)GJ)

j=1

+ 3 -"21 [144i (sin(6x — 6:)6 + cos(6) — 6:)6)]
i=k+1
mal .

+ 4 0k + Ikok + kk(Ok - Ok_l) - kk+1(9k+1 - Hk) (81)

for k=1,2,...,n where

e n = the number of links,

e (; = the slope of the ith link,

e 7; = the external moment generated at the ith joint,

[ m; =

the mass of the ith link,

e I, = the moment of inertia of the ith link about its center

of mass,

e |; = the length of the ith link, and

e k;, = the spring constant at the ith joint.

These equations were derived by Rezaiifar [28]. It should also be noted that

these equations are identical to the equations of motion derived in Chapter 7 for
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the continuously rotating beam (Equation 7.8) with both the motor velocity, w,
and the acceleration due to gravity, g, set equal to zero.

The model given by Equation 8.1 can be slightly modified to provide an
accurate representation of the flexible arm aparatus with a force applied to the
tip. In the flexible arm, the first link of the beam is attached via a spring to the
hub of the motor. The hub is free to rotate and is subject to an input torque 7,
from the motor. This adds another degree of freedom to the system, hence the

following equation of motion must be added to the model:
To— T = Ioé() - k1(01 - 90) (82)

where I is the moment of inertia of the hub and 6, is the angle of the hub.
6y = 0 when the undeflected beam is in line with the positive z axis.

A force applied to the tip of the beam generates a moment about the nth
joint equal to Fl,cos(f,). Since the system has already been linearized, it has
already been assumed that 6, is small so the effective moment applied to the
nth joint by the force F' can be approximated as Fl,,. Since there are no PZTs
on this beam, the moments applied to all other joints are zero.

Finally, the y position of the tip of the beam will be necessary for the Hertz

analysis. Simple trigonometry yields

n
ytip = Z lisin(Go + 01) (83)

i=1
As stated before, it has already been assumed that 6;,7 = 1,2,...,n are small.
Furthermore, it is assumed that the impact will occur on the x axis, hence it

can be assumed that 6, is small for the duration of the impact. Hence, the y

position of the tip can be approximated as

Ytip = D_ (6o + 65). (8.4)
i=1
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motor hub

Figure 8.4: Galerkin model of flexible arm

This completes the modifications necessary to the fixed flexible beam model.

A diagram of a 2-link version of this model is shown in Figure 8.4. To summarize,

the equations of motion for the flexible arm subject to motor torque 75 and a

force F' at the tip are:

TIoflg — k1(61 — )

To
n i—1 . .
Tk — Tk+1 = Z m; [Z lklj (sin(@k — 91)0? + COS(ok — 0])0])]
1=k+1 j=1
myg k-1 . ‘2 .
—2— 2 lklj (51n(0k - 9]')0]- + COS(ek — 91)9])
]:
3 —"-;’— [14t: (sin (8 — 0:)62 + cos(6; — 6:)65) ]

i=k+1

12 .
m: b + Iby
kk(Ok — Ok—1) — kxt1(Ok+1 — Ok)

Ytip > 180+ 6;) (8.5)
i=1
where ; =0for:=1,2,...,n—1and 7, = Fl,.
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In his masters thesis, Rezaiifar [28] developed a Mathematica script file called
EqOfMotion.m which is capable of linearizing the system of equations listed in
Equation 8.1 and placing them in state space form. This script file is easily
modified to translate the equations of motion for the flexible arm with tip force.

The state space equation for the system can then be written as
& = Az + Bu, Yip = Cx (8.6)

where

and

8.2.2 Hertz Law of Impact

Hertz provided the first satisfactory analysis of the stresses at the contact of two
elastic bodies by posing the problem as a similar problem in elastostatics [33].

Hertz law of impact is

a(t) = K [FO)I° (8.9)
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where «(t) is the relative displacement between the bodies at time ¢, F'(t) is the

impact force between the bodies, and K is the Hertz constant [32]

4 ¢ -2/3
(lasabera) " o
The constants ¢q, A, B, @, and (), depend on the local geometry of the region
of impact. In this case, a plane (the beam) is colliding with a sphere and the

constants become

g = 73
1
A= —
2R,
1
B = —
2R,
Q = (1-ui)/Erm
Q = (- 1)/Exr (8.11)

where R; is the radius of the sphere, pu;, po is the Poisson ratio of the sphere
and the beam, respectively, and E,, E, is the Young’s modulus of the sphere
and the beam, respectively [17].

Figure 8.5 provides a sketch of the relative displacement between the beam
the the sphere during impact. Since the sphere is fixed, the relative displace-
ment at) = _ytip(t)- Naturally, gy, is dependent on the unknown impact
force, F. Using Hertz law of impact yields the relationship —y(t) = K [F(t)]z/ 3

Substituting the solution of Equation 8.6 results in the integral equation

To(G)

t
— C |eMz(0) + / edt=)p
’ F(o)

do| = K[F(t)]*3. (8.12)

Hence, if the state of the beam at the moment just before impact and the

motor input 7, are known, then the model derived in the previous section can
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oft)

Figure 8.5: Relative displacement between beam and sphere during impact

be used in an iterative approach to numerically solve for the impact force F' as

a function of time. The algorithm to do this is as follows:

Step 1: Choose a suitably small time increment T' and a suitably

large final time t;.

Step 2: Let Fy(t) = 0 for all time steps from 0 to t;.

Step 3: Leti = 1.

Step 4: Solve Equation 8.6 numerically using F(t) = F;_1)(t) to
obtain y;(t) for all time steps from 0 to t;.

Step 5: Let F;(t) = (—y;(t)/K)32.

Step 6: Increment i and repeat step 4 until F;(t) is sufficiently

close to Fi;_q)(t).

This method is known as the method of Picard iteration. If it converges, it will

converge to the solution of Equation 8.12, which is the impact force between the
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beam and the sphere.

8.2.3 Computing the Impact Force Numerically

The above algorithm can be implemented using MATLAB. First it is necessary

to define the model parameters. These are [22]

e [ =10.6604 m (length of beam)

e p=0.438 kg/m (beam mass per unit length)

e FEI =9.62 Nm (Youngs modulus x moment of cross sec-
tion)

o Iy=1.89x 1073 kg/m® (moment of inertia of hub)

e FE, = E, =179 x 10° Pa (Young’s modulus of beam and
sphere)
e 1y = pg = 0.33 (Poisson ratio of beam and sphere)

e R; =0.0254 m (radius of sphere)

The procedure for performing the Picard iterations is straight forward. First
the modified EqOfMotion.m is used to obtain a state space model for the rotating
beam. At the moment of impact, the beam is relaxed, the motor hub is at zero,
and the motor hub is moving in a negative direction. This corresponds to the

initial condition

0(0) = wn (8.13)
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where wy, is the angular velocity of the hub at the moment of impact. Using this
information, the above algorithm can be implemented using MATLAB. Specif-
ically, the script file picard.m was created for this purpose. For this case, the
algorithm converges. The solution after five iterations is sufficiently accurate
for the purposes of this discussion. A plot showing the numerically solved im-
pact forces for various hub velocities is shown in Figure 8.6. A plot showing the
experimentally measured impact forces for the same hub velocities is shown in
Figure 8.7.

As the figures show, the impact force predicted from the model has a much
greater peak magnitude and a much shorter duration than the experimentally
measured impact forces. Many factors could cause this error. First, the model
assumes the impact occurs between an aluminum beam and an aluminum sphere.
In the experiment, an FSR is actually placeé between the colliding bodies. The
FSR is made up of material which is much softer than aluminum, so this is
probably a large source of error in the model. Another possible source of error
lies in the assumption that the aluminum sphere is fixed. In fact, the aluminum
sphere was mounted to a stand. The stand was as solid as such a device can be
expected to be, but still the forces during impact are capable of exciting vibra-
tions in the stand. This phenomenon is not considered in the model. Finally,
since the duration of the impact is so short, the time response of the electrical
circuit probably distorts the impact signal.

In spite of these problems, the model still predicts the general behavior of
the impact reasonably well. The basic shape of the impact curve is the same.
Additionally, a smaller motor velocity results in an impact force of smaller peak

magnitude and longer duration. This is exactly what the model predicts.
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Figure 8.6: Model generated impact force as a function of time
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Figure 8.7: Measured impact force as a function of time
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8.3 A Neural Network Impact Controller

For some robotic applications, it is desirable to control the peak magnitude of
the impact force between the manipulator and some object. Using a robot to
hammer a nail into a board, hit a ball, or stamp some design onto a piece of metal
are examples of such tasks. Here, a neural network is trained from experimental
data to generate an open loop motor control signal which will bring the arm into

contact with the sphere to create a specified impact force.

8.3.1 The Input Signal

In order to simplify the problem, a one dimensional input signal will be used.

The input signal to the motor will be defined as

1 if t<T
up(t) = (8.14)
0 if t>T

where T' > 0. Hence, the input signal ur(t) is parameterized by a single param-
eter, the switching time 7. Figure 8.8 shows a graph of ur(t).
Now a neural network can be trained to generate the switching time T from

the desired impact force magnitude.

8.3.2 Collecting Data

The aluminum sphere is placed so that the undeflected beam will collide with
the sphere when 8, = 0. The starting position of the motor hub is §, = —180°.
The signal ur(t) is generated by the AC-100, amplified by a power amp, and fed
to the motor. The impact is measured with the FSR mounted to the beam as

discussed in Section 8.1.
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Figure 8.8: Motor control signal parameterized by T'

To generate the data necessary to train the neural network, the magnitude
of the impact force is measured and recorded for a series of different switching
times. The first switching time was arbitrarily chosen to be T' = 0.10 seconds.
The switching time was then incremented by 0.02 seconds until the impact force
became large enough to saturate the FSR, about 800 g. TiliS happened at
T = 0.7 seconds. A plot of impact magnitude versus switching time is shown in
Figure 8.9. As shown in the plot, the first non-zero impact magnitude occurred

at T = 0.39 seconds.

8.3.3 Training the Neural Network

The data obtained in the previous section is used to train a single input, single
output backpropagation neural network which will ultimately serve as the con-
troller. The network is chosen to be two layers with ten nodes in each layer. The
first layer uses sigmoid transfer functions and the second layer uses linear trans-

fer functions. This structure is capable of approximating any practical function
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Figure 8.9: Training data for neural network

arbitrarily well [7].

Since the controller will need to specify the switching time as a function of
desired impact, the impact forces measured in the previous section are presented
to the neural network as inputs and the corresponding switching times are pre-
sented as target outputs. The network is trained using the tools available in the
MATLAB Neural Network Toolbox. A plot of the input of the trained neural
network to its output is shown in Figure 8.10. This compares quite well with

the actual data shown in Figure 8.9.

8.3.4 Implementation

The neural network controller is implemented using the AC-100 as shown in the
block diagram of Figure 8.11. The system takes a desired impact magnitude
as input, then uses the neural network to generate an open loop control signal

which moves the arm to impact with the sphere at the desired magnitude. Figure
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Figure 8.10: Performance of trained neural network

8.12 shows a plot of actual impact versus desired input. If the controller worked
perfectly, this would be a straight 45° line. As the graph shows, this controller is
not perfect, but it performs reasonably well, particulaly for impact forces above

350 g.

8.4 Conclusion

Models which can predict the general behaviour of the impact forces involved in
the collision between flexible bodies have been developed. The next step is to
use these models to generate good schemes for controlling the impact dynamics
of flexible systems. This topic is the subject of much recent work and will
undoubtably be the subject of much future work as well. Here experimental
data has been used to create a controller which is capable of controlling the

magnitude of impact between a flexible arm and a fixed sphere. This controller
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Figure 8.11: Block diagram of neural network controller
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Figure 8.12: Performance of neural network controller
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is open loop and its performance is easily diminished by disturbances to the

system. Closing the loop is left as a subject for future work.
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Chapter 9

Conclusion

This thesis investigates some of the issues involved in controlling systems com-
posed of smart materials. Some theoretical concepts are discussed and some are
put into practice. As always, there is much room for future work.

A method of finding a closed loop control law capable of stabilizing an un-
stable linear plant for every initial condition in its controllable set is developed
in Chapters 2 and 3. The availability of such a control law is important, but its
implementation is clumsy. An elegant solution to this problem would be a useful
tool in the design of controllers for smart structures.

The work presented in Chapters 4 and 5 results in a general purpose test
bed for controllers. The AC-100 along with the automatic system identification
software provides a means by which new control concepts can be rapidly verified
in a real world application. This test bed may not be the subject of future work,
but it will almost certainly be used as a research tool for future projects.

The experimental work done in Chapters 6 and 7 validates the use of PZTs as
actuators in smart materials as well as providing a demonstration of the test bed

developed in the previous chapters. The controllers developed here successfully
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damped the vibrations in the flexible beam using one sensor and one actuator.
Distributed control using multiple sensors and actuators is the logical next step.

Chapter 8 presents the problem of controlling a flexible robotic manipulator
subject to impact forces. A model to predict the impact forces caused in a colli-
sion was generated. The general behavior of its predictions compared favorably
with experimental results. An open loop controller was developed to control the
magnitude of impact. The subject of impact leaves a many unanswered ques-
tions. Closing the loop on the impact magnitude controller developed here would
be a nice result. Another interesting problem which follows directly from this

work is to use PZTs to control vibrations generated in the arm due to impact.
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