
Approximation Algorithms for Finding HighlyConnected Subgraphs�Samir KhullerDept. of Computer ScienceUniversity of MarylandCollege Park, MD 20742samir@cs.umd.edu(301) 405 6765

�This chapter is dedicated to Prof. Richard Karp whose Turing Award Lecture \Combinatorics, Complexity andRandomness" (Communications of the ACM, Feb 1986) inspired this author to start working in the �eld of algorithms.

Contents1 Introduction 21.1 Outline of Chapter : 32 Edge-Connectivity Problems 32.1 Weighted Edge-Connectivity : 32.2 Unweighted Edge-Connectivity : 42.2.1 2 Edge-Connectivity : 42.2.2 � Edge-Connectivity : 83 Vertex-Connectivity Problems 113.1 Weighted Vertex-Connectivity : 113.2 Unweighted Vertex-Connectivity : 123.2.1 2 Vertex-Connectivity : 124 Strong-Connectivity Problems 154.1 Polynomial Time Approximation Algorithms : 164.2 Nearly Linear-Time Implementation : 195 Connectivity Augmentation 215.1 Increasing Edge Connectivity from 1 to 2 : 225.2 Increasing Vertex Connectivity from 1 to 2 : 255.3 Increasing Connectivity to � : 29

1

1 IntroductionLet a graph G = (V;E) denote the feasible links of a (proposed) communications network. Anedge e = (a; b) denotes the feasibility of adding a link between sites a and b. The weight of thisedge, w(e), represents the cost of constructing link e. A minimum spanning tree in G is the lowestweight connected subgraph, i.e., the cheapest network that will allow the sites to communicate.Such a network is highly susceptible to failures, since it cannot even survive a single link or sitefailure. For more reliable communication, one desires spanning subgraphs of higher connectivity.A network of edge-connectivity � continues to allow communication between functioning sites evenafter as many as � � 1 links have failed. A graph is said to be � edge-connected if the deletionof any (� � 1) edges leaves it connected. These de�nitions extend in a straightforward way to �vertex-connectivity. The only requirement is that the graph should have at least �+1 vertices, andthe deletion of any (�� 1) vertices should leave it connected. Given a graph G with non-negativeedge weights, and an integer �, we consider the problem of �nding a minimum-weight �-connectedspanning subgraph. We address the cases of edge connectivity, and vertex connectivity. For mostconnectivity versions, the associated problems are NP -hard. In this case we would like to obtainsub-optimal solutions in polynomial time. From now on we will refer to sites as vertices, and linksas edges.In this chapter, we address only uniform connectivity problems. For results on non-uniform con-nectivity requirements, see Chapter 4 by Goemans and Williamson. The non-uniform connectivityproblems are solved using the \primal-dual" method of linear programming; this usually results inapproximation factors that are not as good as the ones obtained here.Edge connectivity augmentation problems were �rst studied by Eswaran and Tarjan [9]. Theystudied the problem of making a given graph 2-connected (both vertex and edge connectivitieswere considered) and strongly connected with the addition of the least number of edges. Theyshowed that when all potential edges are feasible and have weight 1, the problem can be solvedoptimally in polynomial time, and when the edges have arbitrary weights the problem is NP -hard. Subsequently, a lot of work was done on the problem of \increasing" the connectivity ofa given graph; most of these papers deal with the unweighted case where an edge may be addedbetween any pair of vertices. This problem can be solved optimally in polynomial time, at leastfor the edge-connectivity case. We will not survey this body of research in detail here since weare primarily interested in approximation techniques for NP -hard problems. For more informationon such problems see recent papers by Frank [10], and Naor, Gus�eld and Martel [32]. For thevertex-connectivity case, the problem appears to be signi�cantly harder and no polynomial timealgorithm is known for �nding the optimal solution. In his doctoral thesis, Hsu [22] gives algorithmsfor vertex connectivity for small connectivity values. These algorithms are quite complex. It mustbe pointed out that the problem of constructing a graph with n vertices, and connectivity � withthe least number of edges was �rst addressed by Harary [19].The �rst paper to address the issue of obtaining approximate solutions for the case when edgeshave weights, is by Frederickson and J�aJ�a [11]. They provide approximation algorithms for the casesof 2-connectivity (edge and vertex) as well as strong connectivity problems. Subsequently, theiralgorithm was simpli�ed by Khuller and Thurimella[26, 27]. The unweighted case was explored byKhuller and Vishkin [28], and Garg, Santosh and Singla [16]. For any k, fast algorithms for �ndingsparse certi�cates were given by Nagamochi and Ibaraki [33] and Cheriyan, Kao and Thurimella[5]. The strong connectivity case is addressed by Khuller, Raghavachari and Young [24, 25]. Whenparallel edges are allowed, Goemans and Bertsimas provide an approximation algorithm [17].2

1.1 Outline of ChapterThe problems we deal with are divided broadly into four categories: edge connectivity, vertexconnectivity, strong connectivity and connectivity augmentation. In each case, we study both theweighted and unweighted problems.In Section 2 we discuss the edge-connectivity results. This section surveys known results forboth the weighted case as well as the f1=1g case (where each edge has weight either 1 or 1).In other words, the feasibility network is treated as an undirected graph, and each possible link iseither feasible or infeasible. In this case we are interested in minimizing the total number of edgesin our solution. Section 3 discusses the results on vertex connectivity. In Section 4 we discuss theproblem of �nding strongly connected spanning subgraphs in directed graphs. In Section 5 we studythe problem of increasing the edge-connectivity of a given graph having an arbitrary connectivity,to being � edge-connected.2 Edge-Connectivity ProblemsWe begin this section by describing the algorithm given by Khuller and Vishkin [28] for obtainingan approximation factor of 2 when the edges have weights. In Subsection 2.2 we consider the specialcase when the weights are either 1 or 1; for this special case we can achieve approximation ratiosless than 2.2.1 Weighted Edge-ConnectivityGiven a graph G = (V;E) with weights on the edges and an integer �, consider the problem of�nding a minimum weight spanning subgraph H = (V;EH) that is � edge-connected.An algorithm that achieves an approximation factor of 3 for � = 2 follows by the work ofFrederickson and J�aJ�a [11]. First �nd a minimum spanning tree. Now consider the problem of�nding the least weight set of edges to add to the tree to obtain a 2 edge-connected subgraph. Notsurprisingly, this is NP -hard as well [11]. They give an algorithm with an approximation factor of2 for the problem of augmenting connectivity, yielding an approximation factor of 3 for the leastweight 2 edge-connected spanning subgraph. (In Section 5 we describe a simpli�cation of theiralgorithm due to Khuller and Thurimella [26].)We now brie
y review the method given by Khuller and Vishkin [28] that yields an approxima-tion algorithm for undirected graphs. Take the undirected graph G, and replace each undirectededge e = (u; v) by two directed edges (u; v) and (v; u) with each edge having weight w(e). Callthis graph GD. Now consider the following problem for directed graphs: given a directed graphGD with weights on the edges, and a �xed root r, how does one �nd the minimum weight directedsubgraph HD that has � edge-disjoint paths from a �xed root r to each vertex v? Gabow [13]gives the fastest implementation of a weighted matroid intersection algorithm due to Edmonds [8]to solve this problem optimally in O(�n(m+ n logn) logn) time. Run Gabow's algorithm on thegraph GD, with an arbitrary vertex r chosen as the root. If at least one of the directed edges (u; v)or (v; u) is picked in HD, then we add (u; v) to EH .Lemma 2.1 The graph H = (V;EH) is a � edge-connected spanning subgraph of G.Proof. Suppose (for contradiction) that there is a �� 1 edge cut in H . Assume that it separatesH into pieces C1 and C2. Let r be in C1, now consider a vertex v in C2. It is clear that r cannothave � edge-disjoint directed paths to v. Thus there is no cut set of size �� 1.3

Theorem 2.2 The total weight of EH is at most twice the weight of the optimal solution.Proof. Consider an optimal solution OPT (G) for the minimum weight � edge-connected subgraphproblem. Consider all the anti-parallel edges corresponding to edges in OPT (G). We get a directedsubgraph in GD of weight 2w(OPT (G)) (where w(OPT (G)) is the total weight of the edges inOPT (G)). From r there are � edge-disjoint undirected paths to any vertex v; these also yield �directed paths from r to v that are edge-disjoint. Thus this subgraph has the property of having� directed edge-disjoint paths from r to any vertex v. The optimum solution found by Gabow'salgorithm is only cheaper.2.2 Unweighted Edge-ConnectivityGiven an undirected graph G with n vertices and m edges, we would like to �nd a subgraph H thatis �-edge connected and has as few edges as possible. For the general case, Nagamochi and Ibaraki[33] showed how to �nd a spanning subgraph with at most �n edges (see also Thurimella's doctoralthesis [37]) that has edge-connectivity � if and only if the original graph G has edge connectivity�. Since each vertex is required to have degree at least �, we get �n2 as a lower bound on any �edge-connected spanning subgraph. Thus this yields an approximation algorithm with a ratio of2. In this section we describe a simple algorithm given by Khuller and Vishkin [28] that �nds a 2edge-connected spanning subgraph by using Depth First Search. Moreover, it is shown that thisalgorithm achieves an approximation ratio of 1:5. Combining this the ideas of [33, 34, 37] yields anapproximation ratio of 2� 1� .2.2.1 2 Edge-ConnectivityIn this section we present a linear time algorithm given by Khuller and Vishkin [28] to obtain a 2edge-connected spanning subgraph from a given graph G. This algorithm obtains a solution thatis at most 32 times the optimal solution.High-level Description of the AlgorithmWe traverse G using depth-�rst-search (DFS). A DFS rooted tree T is computed; T has at mostn � 1 edges, and all the non-tree edges are back edges (i.e., one of the endpoints of the edge is anancestor of the other in T). All edges of T are picked for EH . During the depth-�rst search thealgorithm also picks a set of non-tree edges that will increase the edge connectivity by \covering"all the edges in T (since each edge in T is a potential bridge). A back edge may be chosen justbefore withdrawing from a vertex for the last time. Before withdrawing from a vertex v, we checkwhether the edge (v; p(v)), joining v to its parent, is currently a bridge or not. If (v; p(v)) is still abridge, we cover it by adding to EH a back edge from a descendant of v to low[v], where low[v] isthe vertex with the smallest dfs-number that can be reached by following zero or more downgoingtree edges from v, and a single back edge.The Algorithm - a Detailed DescriptionIn this section we give a detailed recursive description of the algorithm. The running time isO(n+m), the algorithm is simple to implement and uses no complicated data structures.Data Structures:dfs[v]: A serial number given to a vertex the �rst time it is visited during DFS. For simplicity, wewill assume that vertices are numbered by their dfs-number (i.e., v = dfs[v]).4

state of a vertex: Each vertex is initially \unvisited". After the DFS traversal visits it for the �rsttime, it becomes \discovered". When we �nally exit from the vertex it becomes \�nished". (Thisis to be able to tell when we are looking at back edges from the upper end.)low[v]: de�ned earlier.lowH [v]: This is de�ned to be the smallest numbered vertex that can be reached by following zeroor more downgoing tree edges from v, and a single back edge that belongs to EH .savior[v]: This is de�ned to be the descendant end vertex of the back edge that goes to low[v].Initialization Step: The initial call made is DFS(v; nil) where v is an arbitrary vertex. Weassume that G is a 2-edge connected graph (easy to verify this before running the algorithm).Initially, all vertices are \unvisited".Algorithm Find 2-EC Spanning SubgraphInput: Graph G = (V;E).Output: A subgraph H = (V;EH) that is 2-EC.procedure DFS(v; u); (* u is the parent of v in DFS tree. *)mark v discovered;low[v] = v;lowH [v] = v;savior[v] = v;for each w 2 Adj[v] doif w is unvisited then beginEH = EH S f(v; w)g; (* (v; w) is a tree edge *)DFS(w; v);low[v] = min(low[v], low[w]); If low[v] changes, set savior[v] = savior[w];lowH [v] = min(lowH [v], lowH [w]);endelse if w is discovered then beginif w 6= u then (* (v; w) is a back edge *)low[v] = min (low[v], w); If low[v] changes, set savior[v] = v;(* else (v; w) is already a tree edge *)(* else w is �nished and is a descendant of v *)endmark v �nished;If lowH [v] = v and u 6= nil then begin(* edge (u; v) is threatening to be a bridge *)(* add the edge (savior[v], low[v]) to cover the bridge *)EH = EH Sf(savior[v], low[v])g;lowH [v] = low[v];endend DFSIt is quite easy to see that H has edge-connectivity 2, and that the algorithm runs in timeO(n+m).The Approximation AnalysisOur analysis �nds a partition of the vertices, called a tree-carving, which is used to prove a lowerbound on OPT , the number of edges in the optimal solution. The upper bound of 32 on the5

approximation factor is established using this lower bound. After presenting the concept of atree-carving, we apply it to the approximation analysis.De�nition 1 A tree-carving of a graph is a partition of the vertex set V into subsets V1; V2; : : : ; Vkwith the following properties. Each subset constitutes a node of a tree �. For every vertex v 2 Vj,all the neighbours of v in G belong either to Vj itself, or to Vi where Vi is adjacent to Vj in the tree�. The size of the tree-carving is k.We will refer to the vertices of � as nodes, and the edges of � as arcs.Theorem 2.3 (Tree-Carving Theorem)If graph G = (V;E) has a tree-carving of size k, then a lower bound on the number of edges of any2 edge-connected spanning subgraph in G is 2(k � 1).It is interesting to note that the same simple proof implies that the smallest �-connected sub-graph of G must have at least �(k� 1) edges.Proof. There are k � 1 arcs in the tree �. Each such arc e = (Vi; Vj) partitions the vertices in Ginto two sets Se and V �Se. (Deletion of arc e breaks � into two trees �1 and �2, where Vi belongsto �1. Se is de�ned to be the union of the sets Vy that belong to �1.) In any 2 edge-connectedspanning subgraph we have: (1) at least two edges going from Se to V � Se, and (2) both theseedges must have one endpoint in Vi and another in Vj; from the disjointness of Vi's it follows thatfor each arc e, there are two distinct edges in the subgraph. Since � has k � 1 arcs, we get a lowerbound of 2(k � 1).For an example of a tree-carving see Fig. 1.Given T , the DFS spanning tree, we will be interested in the following partition of the verticesof G, called the DFS-tree partition. Some recursive calls DFS(v; u) end by adding the back edge(savior[v], low[v]) to EH , and some do not add any edge. For each call DFS(v; u) where a back edgeis added to EH , \remove" the tree edge (u; v) from T ; the resulting connected components of T(with some tree edges removed) provides the DFS-partition. Furthermore, T induces a rooted treestructure � on the sets in the DFS-tree partition. In fact, it is easy to modify the approximationalgorithm to �nd the tree-carving as well; however this is not essential since it is only used for theanalysis of the algorithm.Theorem 2.4 The DFS-tree partition yields a tree-carving of G.Proof. Let (v1; v2) be any non tree edge in G. Suppose that v1 is in set V1 of the DFS-treepartition and v2 is in set V2. Let us assume that v1 is an ancestor of v2. Clearly low[v2] � v1. Thusby the algorithm there can be at most one bridge between them. Hence, either V1 = V2, or set V1is the parent set of set V2 (in the rooted tree structure �).Corollary 2.5 Since the number of arcs in the tree-carving is exactly the same as the number ofback edges that are added to EH we conclude that OPT � 2(k � 1), where k � 1 is the number ofadded back edges.Theorem 2.6 The algorithm outputs a solution of size no more than 32 OPT.6

(b) Tree-Carving of size 5 for G(a) G
12 3456 7 8 9 1 234 56 78 9V1 V2V3 V4 V5

V5V4V3 V2V1(c) The tree �Figure 1: Example to show 2 edge-connectivity algorithm and a tree-carving.
7

Proof. The number of edges added by the algorithm to H is: (i) (n� 1), for the tree edges, plus(ii) k � 1 back edges, where k is also the size of the tree-carving. Hence, the number of edges inEH is n � 1 + k � 1. Let OPT be the number of edges in an optimal solution. A lower bound onOPT is max(n; 2(k � 1)), since n is the minimum number of edges in a 2-edge connected graphwith n vertices (each vertex should have degree at least 2), and 2(k � 1) follows from Corollary2.5. Hence, the ratio of the algorithm's solution to OPT is� n � 1 + k � 1max(n; 2(k� 1)) :If n � 2(k� 1), then clearly the ratio is < 3=2. If n � 2(k� 1), it is again easy to see that the ratiois < 3=2.2.2.2 � Edge-ConnectivityWe now describe a linear time algorithm given by Nagamochi and Ibaraki [33] that �nds a �-connected spanning subgraph of a given graph G that has connectivity at least �. The algorithm�nds a subgraph with at most �(n � 1) edges; since every vertex has degree at least �, we get alower bound of �n2 for OPT. Hence this is a factor 2 approximation. We then use the previous DFSbased algorithm for 2 edge-connectivity to improve this ratio by 1� .The main idea behind their algorithm is to repeatedly �nd maximal spanning forests in thegraph, and to delete them. After � iterations of this method, we obtain � forests, which form a� edge-connected spanning subgraph assuming that the input graph was � edge-connected. Moreformally, we state the following lemma (also due to [37, 34]).Lemma 2.7 For a graph G = (V;E) that has edge connectivity �, let Fi = (V;Ei) be a maximalspanning forest in G � E1 [: : : [Ei�1, for i = 1 : : :�; then G� = (V;E1 [: : : [E�) has edgeconnectivity �.Proof. Assume (for contradiction) thatG� contains a cut C of size k < � whose removal disconnectsthe graph G� into G0� and G00�. Clearly, at least one forest, say Fj , does not have any edges in C.Since the original graph G was � edge-connected it must be the case that there is at least one edgein G between the two components G0� and G00�. Hence in iteration j when we were picking Fj wewould pick an edge connecting G0� and G00�.It is easy to �nd the set of forests by repeatedly scanning the graph � times [37, 34]. Theamazing fact about Nagamochi and Ibaraki's algorithm is that they can �nd all the forests in asingle scan of the graph. During the search, for each edge e we compute the integer i satisfyinge 2 Ei. In fact, the algorithm assigns each edge to the forest it would have ben assigned if werepeatedly removed spanning forests until the graph was completely exhausted.For each vertex v, we maintain the rank r(v), and r(v) = i if v has been reached by an edge ofthe forest Fi.We now argue that the algorithm in Fig. 2 implements the algorithm that repeatedly �ndsforests and deletes them. Formally, what is shown is that each Fi = (V;Ei) is a maximal spanningforest in G� E1 [: : : [Ei�1.In Fig. 3 we illustrate the execution of the algorithm via a small example.8

� Connectivity |1 Label all nodes and edges as \unscanned"2 r(v) = 0 for all v 2 V3 while there exist \unscanned" nodes do4 Choose an \unscanned" node x with the largest r5 for each \unscanned" edge e = (x; y) do6 if r(x) = r(y) then r(x) = r(x) + 17 r(y) = r(y) + 18 Er(y) = Er(y) [e9 Mark e scanned10 Mark x scannedFigure 2: Nagamochi and Ibaraki's Algorithm to �nd a � connected graph.Proposition 2.8 For a vertex v let E(v) denote the edges incident to v. At the start of eachiteration of scanning an unscanned edgeE(v)\ Ei 6= ; for i = 1; : : : ; r(v)E(v) \Ei = ; for i = r(v) + 1; : : : ; �:Proposition 2.8 immediately implies that each subgraph Fi is acyclic, since we add edge e =(x; y) to Ei only when r(y) �rst becomes i, so there is no edge in Ei incident on y when e is added.Before we prove that each forest Fi is maximal in G�E1[: : :[Ei�1, we give some de�nitions.If an edge e = (u; v) with E(u) \ Ei = ; and E(v) \ Ei = ; is added to Ei then the edge e iscalled the root edge of Ei. The vertex u is called the root vertex of Ei if it is scanned before v.(The reader should convince themselves that this edge is unique.) The key intuition is that oncewe create a tree T in Ei, before starting a new tree T 0 in Ei, we will have scanned all the nodes inT . This would guarantee that we do not process an edge between T and T 0 at some later point oftime (and erroneously put that edge in Ei+1).Lemma 2.9 When we add an edge e to Ei there exists a path Pi�1 � Ei�1 connecting u and v.Proof. Suppose there is no path connecting u and v in Ei�1. Then there must be two trees Tuand Tv that contain u and v respectively (observe that the label of u and the label of v is � i� 1).Let u0 and v0 be the roots of these trees. Let the path from u0 to u be P = [u0; u1; : : : ; uk = u].W. l. o. g u0 was scanned before v0. When u0 was scanned r(u0) = i� 2 and r(v0) � i� 2. Afterscanning (u0; u1), r(u1) = i� 1 and is scanned before v0. In a similar manner we can argue that allthe nodes on P are scanned before v0 including v (after we scan the node u). This is a contradictionto the assumption that v0 is the root of Tv.Lemma 2.10 If there is a path Pj � Ej connecting u and v, then there are paths Pi � Ei connectingu and v, for all i < j.Proof. For each edge in Pj , by Lemma 2.9 we know that there is a path in Ej�1 connecting theendpoints of that edge. Taking the union of all the paths for each edge, gives us a path Pj�1 fromu to v in Ej�1. Similarly, we can prove this for i = j � 2; : : : ; 1 etc.9

A CD EF GBEdges in E1Edges in E3Edges in E2
A B C D E F GTable to show r(v) valuesInitial 0 0 0 0 0 0 00 0 00001 1 1 111111 1 12 2 22 2 23 32Scan AScan BScan CScan D 3 3 2 22 3 3 3 3 12 3 3 3 23Scan EScan FScan G 1 2 3 3 3 3 2Figure 3: Example to show the running of the Algorithm.Theorem 2.11 Each graph Fi = (V;Ei) is a maximal spanning forest in G� E1 [: : : [Ei�1.Proof. We argued earlier that Fi is acyclic. If it is not maximal in G�E1 [: : :[Ei�1 then thereis an edge e 2 Ej (with j > i) such that (V;Ei [e) is a forest. By Lemma 2.9 we know that Eimust contain a path Pi from u to v. This would give a contradiction to the fact that (V;Ei[e) isa forest.We now show how to �nd a subgraph of edge connectivity � that is at most 2 � 1� times theoptimal. Find a 2 edge-connected graph by using the DFS based algorithm described earlier. Letthis graph be called H2. Now add � � 2 forests to H2, by repeatedly removing the edges on eachforest (see Fig. 4).� Connectivity |1 Find H2 a 2-edge connected subgraph using the DFS based algorithm.2 for i = 3; :::; �3 Let Ti be a spanning forest in G�Hi�1.4 Let Hi = Hi�1 [Ti.Figure 4: Algorithm to �nd a � connected graph.A simple proof that this yields a � edge-connected graph can be obtained in a manner similarto the proof of Lemma 2.7. The proof is left as an exercise for the reader.Now let us bound the total number of edges added by this procedure. The number of edges inH2 is (i) n� 1, for the tree edges plus (ii) k� 1 back edges, where k is the size of the tree-carving.In Step 4, we add at most (�� 2)n edges to make the graph � connected.An obvious lower bound on the optimal solution is �n2 (by a degree argument); and �(k � 1)10

using the tree-carving lower bound. Putting this together we get(n� 1) + (k � 1) + (�� 2)nmaxf�(k� 1); �n2 gSimplifying, we get the upper bound of (2� 1�).Remark: Recently, Khuller and Raghavachari [23] were able to obtain an algorithm with a per-formance ratio of at most 1:85 for any �. The key idea is to augment the connectivity by two ineach stage by adding 2 edge-connected subgraphs. The proof requires a subtle argument, and usesthe notion of tree-carvings.Open Problem: It seems likely that one should be able to obtain algorithms for which theperformance ratio improves as � increases, at least for the unweighted case. However, we havenot been able to do this as yet. An increased understanding of higher connectivity seems essentialbefore this can be done.3 Vertex-Connectivity Problems3.1 Weighted Vertex-ConnectivityFor the general problem no constant factor approximation algorithms are known. The best knownalgorithm to �nd a �-connected subgraph for the weighted case is the algorithm due to Ravi andWilliamson [35] that achieves a factor of 2H(�), where H(�) = 1 + 12 : : : + 1� . For the case of�nding a 2 vertex-connected graph, an approximation algorithm achieving a factor of 3 was givenby Frederickson and J�aJ�a, through solving the more general graph augmentation problem. It ispossible to obtain an approximation factor of 2+ 1n by using a technique similar to the one used inSubsection 2.1.Frank and Tardos [12] extended Edmonds method [8] to show that the following problem canbe solved in polynomial time: Given a directed graph GD with weights on the edges, and a �xedroot r. Find the cheapest directed subgraph HD that has � internally vertex-disjoint paths from a�xed root r to each vertex v.Using this algorithm as a subroutine it is possible to obtain a factor 2 approximation for theweighted case, when � = 2.The idea is as follows: Create a new graph GD as follows: for each undirected edge e = (u; v)in G create bi-directional edges (u; v) and (v; u) in GD, each of weight w(e). Let e0 = (x; y) be thelowest weight edge in G.We create a new vertex r as the root and add directed edges (r; x) and (r; y) of weight 0. We nowrun Frank and Tardos's algorithm to �nd the minimum weight subgraph HD with � = 2. This willprovide two directed vertex-disjoint paths from r to each vertex v. Let EH be the subset of edgesin G such that one of its copies was chosen in HD. We claim that the graph H = (V;EH [fe0g) is2-vertex connected (observe that r is not in H).Proposition 3.1 For any vertex v in G, there are paths P (x; v) and P (y; v) inH that are internallyvertex disjoint.Lemma 3.2 The graph H = (V;EH [fe0g) is 2 vertex-connected.Proof. Suppose H contains a cut vertex a. Let the deletion of a from H [fe0g breaks the graphinto components C1; : : : ; Ck. Since x and y are adjacent they will be in a[Ci (for some i). W. l. o. g11

assume that x and y belong to a [C1. Consider a vertex v 2 C2. Clearly, there cannot be twovertex disjoint paths from x and y to v.Theorem 3.3 The total weight of EH [fe0g is at most (2 + 1n) times the optimal solution.Proof. Since every 2 vertex-connected graph contains at least n edges, the minimum weightedge in G is at most 1nw(OPT (G)), where w(OPT (G)) is the weight of a minimum weight 2vertex-connected spanning subgraph.Now consider an optimal solution OPT (G) for the problem. Consider all the anti-parallel edgescorresponding to edges in OPT (G). We get a directed subgraph in GD of weight 2w(OPT (G)).From x and y there are 2 vertex-disjoint paths to any vertex v; these also yield 2 directed pathsfrom r to v that are also internally vertex-disjoint. Thus this subgraph has the property of having2 directed vertex-disjoint paths from r to any vertex v. The optimum solution found by Frank andTardos's algorithm can therefore only have lower weight.Remark: For the case when the edge weights satisfy triangle inequality, Khuller and Raghavachari[23] present algorithms using similar techniques that achieve a performance ratio of 2 + 2 (��1)n .3.2 Unweighted Vertex-ConnectivityGiven an undirected graph G with n vertices and m edges, we would like to �nd a subgraph H thatis � vertex-connected and has as few edges as possible. In fact, Nagamochi and Ibaraki's algorithm(described earlier) �nds a spanning subgraph with at most �n edges that has vertex-connectivity �if and only if the original graph G has vertex connectivity �. Since each vertex is required to havedegree at least �, we get that �n2 is a lower bound on any � edge-connected spanning subgraph.This yields an approximation algorithm with a ratio of 2.We now describe the algorithm due to Cheriyan and Thurimella [6]. The idea is to \peel"away maximal spanning forests from G, and to repeat this procedure � times as was done for theedge connectivity case. To obtain a � vertex-connected subgraph Cheriyan and Thurimella suggestthe use of a forest obtained by running Breadth First Search from an arbitrary vertex in eachconnected component. Taking the union of these forests yields a � vertex-connected subgraph.(A more e�cient parallel implementation using a weaker notion of scan-�rst search was given byCheriyan, Kao and Thurimella [5].) The proofs of the fact that this yields a � vertex-connectedsubgraph is a little complicated. The reader is referred to the paper [6, 5].3.2.1 2 Vertex-ConnectivityIn this section we describe a simple method given by Khuller and Vishkin [28] that �nds a 2 vertex-connected spanning subgraph by using Depth First Search. Combined with the edge discardingtechnique of Garg, Santosh and Singla [16] one obtains an approximation ratio of 1:5. Garg,Santosh and Singla [16] simpli�ed and improved the algorithm due to Khuller and Vishkin [28] toyield an approximation factor of 32 . The algorithm is in two phases. The �rst phase is similar to thealgorithm for the 2 edge-connectivity case described earlier. The second phase achieves two goals:(i) an attempt is made to expunge tree edges and (ii) an attempt is made to modify the choice ofback edges so that it will help in expunging tree edges.High-level Description of the AlgorithmThe �rst phase is as follows: In the graph G, do a depth-�rst-search to compute a DFS spanningtree T . The idea is to now pick a set of back edges that will increase the vertex connectivity of the12

tree to two by \detouring" around each vertex of the tree T . During the Depth First Search allthe tree edges are added to EH , as well as some subset of back edges. The back edges are chosenwhen the DFS traversal is visiting a vertex for the last time. When DFS retreats out of a vertexv for the last time, we check if the vertex u (parent of v) is potentially a cut vertex or not. If yes,we can cover it by adding to EH the highest going back edge from a descendant of v. (This will atleast prevent the separation of v from p(u) under the deletion of u.)Before discussing the second phase, we de�ne the notion of carving of a graph, and point outthe key di�erence between tree-carving and carving.De�nition 2 A carving of a graph is a partitioning of the vertex set V into a collection of subsetsV1; V2; : : : ; Vk with the following properties. Each subset constitutes a node of a rooted tree �. Eachnon-leaf node Vj of � has a special grey vertex denoted by g(Vj) that belongs to p(Vj). For everyvertex v 2 Vi, all the neighbours of v that are in ancestor sets of Vi belong to either1. Vi, or2. Vj, where Vj is the parent of Vi in the tree �, or3. V`, where V` is the grandparent in the tree �. In this case however, the neighbour of v canonly be g(p(Vi)).The neighbour of v is required to be either an ancestor of v or a descendant of v.We will refer to the vertices of � as nodes, and the edges of � as arcs. The root vertex belongsto a special set called the root-set. The key di�erence between the carving and tree-carving is thatin the latter edges are only allowed to go to the parent node. In a carving, edges are allowed to goto a single vertex in the grandparent node as well.Given T , the DFS spanning tree, we will be interested in the following partition of the verticesof G, called the DFS-tree partition. Some recursive calls DFS(v; u) end by adding the back edge(savior[v], low[v]) to EH . For each such call DFS(v; u), \remove" the tree edge (u; v) from T ; theresulting connected components of T (with some tree edges removed) provides the DFS-partition.Furthermore, T induces a rooted tree structure on the sets in the DFS-tree partition.The proof of the following theorem is given in [28].Theorem 3.4 The DFS-tree partition yields a carving of G.In the second phase the carving is processed \top-down" (starting with the root set). At eachstep a modi�cation is made to the choice of the back edge (going upwards) from a carving set.This method is able to delete some of the tree edges as it proceeds (a similar trick was used in [28]but was not powerful enough to give an approximation factor of 32). The deletion of tree edges isjusti�ed by the following lemma [16].Lemma 3.5 Let G0 be a 2 vertex-connected graph; C is a simple cycle in G0, and e = (u; v) is achord in C. Then G0 � feg is also 2 vertex-connected.The parent vertex of a carving-set S is the grey vertex of S. Each carving-set (except for theroot-set) has a unique parent vertex.During the \top-down" phase, each time we process a carving-set we either discard a tree edge,or �nd a new vertex to add to an independent set. Suppose k � 1 back edges were added in the13

uqw xv S0SFigure 5: Figure for Case 1.�rst phase (k is the number of sets in the carving). In the second phase, for each added back edge,we either discard a tree edge (so the back edge does not cost us anything) or we add a new vertexto the independent set. On termination, if we have p back edges remaining, we are able to �nd anindependent set of size p. Clearly, 2p is a lower bound on the optimal solution since an independentset trivially yields a carving of size p + 1 (by making each vertex of the independent set into acarving set, and all the other vertices into a single carving set).We shall now jump into the guts of the second phase. When processing a carving-set we decidethe back edges out of its child blocks. Consider a set S with the back edge out of S being (v; u)with v 2 S. Consider the path in T from v to q = g(S), the parent vertex (or grey vertex) of set S.Let w be the �rst vertex (excluding v) along this path that has no tree edge (other than the edgeson the v � q path) incident on it. If there is no such vertex then w is q.If there is a back edge (x; w) with x 2 S0, a child of S in �. Instead of picking the highest goingback edge from S 0 we pick the back edge (x; w). For all other child blocks we do not modify thechoice of back edges. Picking this back edge allows the deletion of the edge connecting w to itschild in T . There are two cases:Case 1 w = p(v): observe that the edge (v; w) is a chord on the cycle u� v��x�w��q��u andcan be deleted (see Fig. 5).Case 2 w 6= p(v): let (r0; r) and (r; w) be the last two edges on the path in the DFS tree from v tow. We now have two cases: the �rst case is when x is a descendant of r0. By our assumptionon w, there must be a tree edge incident on vertex r other than the ones going to r0 andw. Assume that this tree edge goes to a child S00 of S in �. There must be a back edge(x0; w0) where x0 2 S 00 and w0 is on the path from w to q in the DFS tree. The edge (r; w) isa chord on the cycle r��x�w��w0� x0��r and can be deleted (see Fig. 6). The second14

uqw xv x0r r0w0S S 0 S00
Figure 6: Figure for Case 2.case is when x is not a descendant of r0. In this case the edge (r; w) is a chord on the cyclew ��q � �u� v � �r � �x� w and can be deleted.We can use this tree edge to account for the back edge emanating from the set S, and this backedge is thus paid for. We label the set S as \free".If w has no back edges from any child block, we mark w and label the set S as \marked". Theroot-set has no back edge emanating from it, and is marked \free". In addition each leaf of theDFS tree forms a singleton set, and is marked and the set is labeled \marked". To argue that theset of marked vertices form an independent set, observe that no two marked vertices belong to thesame set in the carving. Further, a marked vertex has no edge from any descendant set of the setthat contains it. Thus no two marked vertices can have an edge between them.Upon termination, if we have p \marked" sets, we have n� 1+ p edges in our solution, and thelower bound on the optimal solution is max(n; 2p). It is easy to see that this is at most 32 .Open Problems: The main open problem is to obtain a constant factor approximation when theedge weights do not satisfy the triangle inequality. Unlike the edge-connectivity case we do notknow how to obtain factors less than 2, even for the unweighted case.4 Strong-Connectivity ProblemsMost of the network design literature addresses the problem of �nding subgraphs having certainconnectivities, in undirected graphs only. We now turn our attention to perhaps the simplestcorresponding problem in directed graphs. Given a strongly connected directed graph, �nd aminimum strongly connected spanning subgraph (SCSS). Not surprisingly, this problem is NP-15

hard by a simple reduction from Hamilton Cycle in directed graphs. This problem was �rst studiedby Frederickson and J�aJ�a [11] for the weighted case, and a algorithm achieving an approximationfactor of 2 was obtained. (This is obtained by taking the union of a minimum weight in-branchingand a minimum weight out-branching, rooted at an arbitrary vertex.) For the unweighted case,Khuller, Raghavachari and Young [24] obtained an approximation algorithm with a performanceratio of about 1:64, which was improved to 1:61 [25]. The algorithms have a relatively high runningtime, albeit polynomial. An almost linear time algorithm that achieves a ratio of 1:75 is alsodescribed.The MEG (minimum equivalent graph) problem is the following: \Given a directed graph, �nda smallest subset of the edges that maintains all reachability relations between nodes." This prob-lem is NP-hard; in fact, the heart of the MEG problem is the minimum SCSS (strongly connectedspanning subgraph) problem | the MEG problem restricted to strongly connected digraphs. TheMEG problem reduces in linear time [7] to a single acyclic problem given by the so-called \strongcomponent graph", together with one minimum SCSS problem for each strong component (given bythe subgraph induced by that component). Furthermore, the reduction preserves approximation,in the sense that c-approximate solutions to the subproblems yield a c-approximate solution to theoriginal problem. Hence an approximation algorithm for the SCSS problem implies an approxi-mation algorithm for the MEG problem. Moyles and Thompson [31] observe this decompositionand give exponential-time algorithms for the restricted problems. Hsu [21] gives a polynomial-timealgorithm for the acyclic MEG problem.First we describe the basic algorithm that achieves a factor of 1:64 in polynomial time. Thealgorithm and its analysis are based on the simple idea of contracting long cycles. After that wewill describe the nearly linear-time algorithm that achieves a ratio of 1:75. To learn about theimprovement to 1:61 the reader is referred to [25].4.1 Polynomial Time Approximation AlgorithmsGiven a strongly connected graph, the basic algorithm �nds as long a cycle as it can, contractsthe cycle, and recurses. The contracted graph remains strongly connected. When the graph �nallycollapses into a single vertex, the algorithm returns the set of edges contracted during the course ofthe algorithm as the desired SCSS. The algorithm achieves a performance guarantee of any constantgreater than �2=6 � 1:645 in polynomial time.A natural improvement to the cycle-contraction algorithm is to modify the algorithm to solvethe problem optimally once the contracted graph has no cycles longer than a given length c.For instance, for c = 3, this modi�cation improves the performance guarantee to �2=6 � 1=36 �1:617. We use SCSSc to denote the minimum SCSS problem restricted to digraphs with no cyclelonger than c. The minimum SCSS2 problem is trivial. The minimum SCSS3 problem can besolved in polynomial time, as shown by Khuller, Raghavachari and Young [25]. However, furtherimprovement in this direction is limited: we show that the minimum SCSS5 problem is NP-hard.Before describing the algorithm we discuss some basic notation used in the rest of the section.To contract a pair of vertices u; v of a digraph is to replace u and v (and each occurrence of u or vin any edge) by a single new vertex, and to delete any subsequent self-loops and multi-edges. Eachedge in the resulting graph is identi�ed with the corresponding edge in the original graph or, inthe case of multi-edges, the single remaining edge is identi�ed with any one of the correspondingedges in the original graph. To contract an edge (u; v) is to contract the pair of vertices u andv. To contract a set S of pairs of vertices in a graph G is to contract the pairs in S in arbitrary16

order. The contracted graph is denoted by G=S. Contracting an edge is also analogously extendedto contracting a set of edges.Let OPT (G) be the minimum size of any subset of the edges that strongly connects G. Ingeneral, the term \cycle" refers only to simple cycles.We begin by showing that if a graph has no long cycles, then the size of any SCSS is large.Lemma 4.1 (Cycle Lemma) For any directed graph G with n vertices, if a longest cycle of Ghas length C, then OPT (G) � CC � 1(n� 1):Proof. Starting with a minimum-size subset that strongly connects the graph, repeatedly contractcycles in the subset until no cycles are left. Observe that the maximum cycle length does notincrease under contractions. Consequently, for each cycle contracted, the ratio of the number ofedges contracted to the decrease in the number of vertices is at least CC�1 . Since the total decreasein the number of vertices is n� 1, at least CC�1(n� 1) edges are contracted.Note that the above lemma gives a lower bound which is existentially tight. For all values of C,there exist graphs for which the bound given by the lemma is equal to OPT (G). Also note that Chas a trivial upper bound of n and, using this, we get a lower bound of n for OPT (G), which isthe known trivial lower bound.Lemma 4.2 (Contraction Lemma) For any directed graph G and set of edges S,OPT (G) � OPT (G=S):Proof. Any SCSS of G, contracted around S (treating the edges of S as pairs), is an SCSS ofG=S.The algorithm is the following. Fix k to be any positive integer.Contract-Cyclesk(G) |1 for i = k; k� 1; k � 2; :::; 22 while the graph contains a cycle with at least i edges3 Contract the edges on such a cycle.4 return the contracted edgesWe will show that the algorithm runs in polynomial time for any �xed value of k. It is clearthat the edge set returned by the algorithm strongly connects the graph. The following theoremestablishes an upper bound on the number of edges returned by the algorithm.Theorem 4.3 Contract-Cyclesk(G) returns at most ck � OPT (G) edges, where�26 � ck � �26 + 1(k � 1)k :Proof. Initially, let the graph have n vertices. Let ni vertices remain in the contracted graph aftercontracting cycles with i or more edges (i = k; k � 1; :::; 2).How many edges are returned? In contracting cycles with at least k edges, at most kk�1 (n�nk)edges are contributed to the solution. For i < k, in contracting cycles with i edges, ii�1(ni+1 � ni)edges are contributed. The number of edges returned is thus at mostkk � 1(n� nk) + k�1Xi=2 ii� 1(ni+1 � ni) � �1 + 1k � 1�n+ kXi=3 ni � 1(i� 1)(i� 2) :17

Clearly OPT (G) � n. For 2 � i � k, when ni vertices remain, no cycle has more than i � 1edges. By Lemmas 4.1 and 4.2, OPT (G) � i�1i�2(ni � 1). Thus the number of edges returned,divided by OPT (G), is at most�1 + 1k�1�nOPT (G) + kXi=3 ni�1(i�1)(i�2)OPT (G) � (1 + 1k�1)nn + kXi=3 ni�1(i�1)(i�2)i�1i�2(ni � 1) = 1k � 1 + k�1Xi=1 1i2 = ck:Using the identity (from [30, p.75])P1i=1 1i2 = �26 , we get�26 � ck = �26 + 1k � 1 � 1Xi=k 1i2� �26 + 1k � 1 � 1Xi=k 1i (i+ 1)= �26 + 1k � 1 � 1k= �26 + 1(k � 1)k :If desired, standard techniques can yield more accurate estimates of ck, e.g., ck = �26 + 12k2 +O � 1k3 � : If the graph initially has no cycle longer than ` (` � k), then the analysis can be generalizedto show a performance guarantee of k�1�`�11�k�1 +Pk�1i=1 1=i2. For instance, in a graph with no cyclelonger than 5, the analysis bounds the performance guarantee (when k = 5) by 1:424.Table 1 gives lower and upper bounds on the performance guarantee of the algorithm for smallvalues of k and in the limit as k !1. The lower bounds are shown in [24].k Upper Bound Lower Bound3 1.750 1.7504 1.694 1.6665 1.674 1.6251 1.645 1.500Table 1: Bounds on the performance guarantee.For any �xed k, Contract-Cyclesk can be implemented in polynomial time using exhaustivesearch to �nd long cycles. For instance, if a cycle of size at least k exists, one can be found inpolynomial time as follows. For each simple path P of k� 1 edges, check whether a path from thehead of P to the tail exists after P 's internal vertices are removed from the graph. If k is even,there are at most mk=2 such paths; if k is odd, the number is at most nm(k�1)=2. It takes O(m)time to decide if there is a path from the head of P to the tail of P . For the �rst iteration of thefor loop, we may have O(n) iterations of the while loop. Since the �rst iteration is the most timeconsuming, the algorithm can be implemented in O(nm1+k=2) time for even k and O(n2 m(k+1)=2)time for odd k. 18

4.2 Nearly Linear-Time ImplementationWe now describe a practical, near linear-time implementation of Contract-Cycles3. The perfor-mance guarantee achieved is c3 = 1:75. Contract-Cycles3 consists of two phases: (1) repeatedly�nding and contracting cycles of three or more edges (called long cycles), until no such cycles exist,and then (2) contracting the remaining 2-cycles.High-level description of the algorithmTo perform Phase (1), the algorithm does a depth-�rst search (DFS) of the graph from an arbitraryroot. During the search, the algorithm identi�es edges for contraction by adding them to a set S.At any point in the search, G0 denotes the subgraph of edges and vertices traversed so far. Therule for adding edges to S is as follows: when a new edge is traversed, if the new edge creates along cycle in G0=S, the algorithm adds the edges of the cycle to S. The algorithm thus maintainsthat G0=S has no long cycles. When the DFS �nishes, G0=S has only 2-cycles. The edges on these2-cycles, together with S, are the desired SCSS.Because G0=S has no long cycles and the fact that the original graph is strongly connected,G0=S maintains a simple structure:Lemma 4.4 After the addition of any edge to G0 and the possible contraction of a cycle by addingit to S: (i) The graph G0=S consists of an outward branching and some of its reverse edges. (ii) Theonly reverse edges that might not be present are those on the \active" path: from the super-vertexcontaining the root to the super-vertex in G0=S containing the current vertex of the DFS.Proof. Clearly the invariant is initially true. We show that each given step of the algorithmmaintains the invariant. In each case, if u and w denote vertices in the graph, then let U and Wdenote the vertices in G0=S containing u and w, respectively.When the DFS traverses an edge (u; w) to visit a new vertex w:Vertex w and edge (u; w) are added to G0. Vertex w becomes the current vertex. In G0=S, theoutward branching is extended to the new vertex W by the addition of edge (U;W). No other edgeis added, and no cycle is created. Thus, part (i) of the invariant is maintained. The super-vertexcontaining the current vertex is now W , and the new \active path" contains the old \active path".Thus, part (ii) of the invariant is also maintained.When the DFS traverses an edge (u; w) and w is already visited:If U = W or the edge (U;W) already exists in G0=S, then no cycle is created, G0=S is unchanged,and the invariant is clearly maintained. Otherwise, the edge (u; w) is added to G0 and a cycle withthe simple structure illustrated in Fig. 7 is created in G0=S. The cycle consists of the edge (U;W),followed by the (possibly empty) path of reverse edges from W to the lowest-common-ancestor(lca) of U and W , followed by the (possibly empty) path of branching edges from lca(U;W) to U .Addition of (U;W) to G0=S and contraction of this cycle (in case it is a long cycle) maintains part(i) of the invariant. If the \active path" is changed, it is only because part of it is contracted, sopart (ii) of the invariant is maintained.When the DFS �nishes visiting a vertex w:No edge is added and no cycle is contracted, so part (i) is clearly maintained. Let u be the newcurrent vertex, i.e., w's parent in the DFS tree. If U = W , then part (ii) is clearly maintained.Otherwise, consider the set D of descendants of w in the DFS tree. Since the original graph isstrongly connected, some edge (x; y) in the original graph goes from the set D to its complementV �D. All vertices in D have been visited, so (x; y) is in G0. By part (i) of the invariant, the vertex19

activeactiveroot
inactiveW activeUinactiveinactive inactiveFigure 7: Contracted graph G0=S.in G0=S containing x must be W , while the vertex in G0=S containing y must be U . Otherwise theedge corresponding to (x; y) in G0=S would create a long cycle.The algorithm maintains the contracted graph G0=S using a union-�nd data structure [36]to represent the vertices in the standard way and using three data structures to maintain thebranching, the reverse edges discovered so far, and the \active path". When a cycle arises in G0=S,it must be of the form described in the proof of Lemma 4.4 and illustrated in Fig. 7. Using thesedata structures, the algorithm discovers it and, if it is long, contracts it in a number of union-�ndoperations proportional to the length of the cycle. This yields an O(m�(m;n))-time algorithm.The vertices of G0=S are represented in union-�nd sets as follows:Make-Set(v): Adds the set fvg corresponding to the new vertex of G0=S.Find(v): Returns the set in G0=S that contains vertex v.Union(u; v): Joins into a single set the two sets corresponding to the vertices in G0=S containingG0's vertices u and v.The data structures representing the branching, reverse edges, and the active paths, respectivelyare:from-root[W]: For each branching edge (U;W) in G0=S, from-root[W] = (u; w) for some (u; w) 2(U �W) \E.to-root[U]: For each reverse edge (U;W) in G0=S, to-root[U] = (u; w) for some (u; w) 2 (U �W) \E.to-active[U]: For each vertex U on the \active path" in G0=S, to-active[U] = (u; w) where (u; w) 2(U �W)\E and W is the child of U for which the recursive DFS call is currently executing,unless no recursive DFS is executing, in which case to-active[U] = current.For all other vertices, to-active[U] = nil. 20

Contract-Cycles3(G = (V;E)) | Pseudo-code.1 S fg2 Choose r 2 V .3 DFS(r)4 Add 2-cycles remaining in G0=S to S.5 return SDFS(u) |1 to-active[Find(u)] current2 for each vertex w adjacent to u | traverse edge (u; w) |3 if (w is not yet visited) | new vertex |4 Make-Set(w)5 to-active[Find(u)] from-root[Find(w)] (u; w)6 DFS(w)7 to-active[Find(u)] current8 else | edge creates cycle in G0=S |9 if (Find(u) 6= Find(w)) | cycle length at least 2 |10 (x; y) from-root[Find(u)]11 if (Find(x) = Find(w)) | length two cycle through parent, U �W � U |12 to-root[Find(u)] (u; w) | record edge to parent |13 else14 (x; y) from-root[Find(w)]15 if (Find(x) 6= Find(u)) | not a forward edge to child; length of cycle � 3 |16 Contract-Cycle(w)17 S S [f(u; w)g18 to-active[Find(u)] nilFigure 8: Practical implementation of Contract-Cycles3.Pseudo-code for the algorithm is given in Figures 8 and 9.By the preceding discussion, the algorithm implements Contract-Cycles3. It is straightfor-ward to show that it runs in O(m�(m;n)) time. Hence, we have the following theorem.Theorem 4.5 There is an O(m�(m;n))-time approximation algorithm for the minimum SCSSproblem achieving a performance guarantee of 1:75 on an m-edge, n-vertex graph.Here �(m;n) is the inverse-Ackermann function associated with the union-�nd data structure [36].Open Problems: The main open problem is to obtain a performance ratio better than 2 for theweighted strong connectivity problem.5 Connectivity AugmentationLet G = (V;E) be a graph with a non-negative weight function w on the edges. Let G0 = (V;E0)be a subgraph of G. The goal is to add a minimum weight set of edges Aug, to G0, such that theresulting graph is �-connected for a given �. We are permitted to only add edges from the graphG. For � > 1, the problem is NP -hard. For � = 2, an approximation algorithm that achieved a21

Contract-Cycle(w) |1 while (to-active[Find(w)] 6= current) do2 if (to-active[Find(w)] = nil) then | Go up towards l. c. a. along reverse edges. |3 (c; p) to-root[Find(w)]4 a to-active[Find(p)]5 else | Go down from l. c. a. along active path. |6 (p; c) to-active[Find(w)]7 a to-active[Find(c)]| Contract parent p and child c. |8 f from-root[Find(p)]9 t to-root[Find(p)]10 Union(p; c)11 to-active[Find(w)] a12 from-root[Find(w)] f13 to-root[Find(w)] tFigure 9: Subroutine Contract-Cycle.factor of 2 was given by Frederickson and J�aJ�a [11] when G0 is a connected graph. (If G0 is notconnected initially, we may add a minimum spanning tree to connect its connected components.)Here we present a simpli�cation of the algorithm developed by Khuller and Thurimella [27]. Wedescribe algorithms for both the edge and vertex connectivity problems. We also show that anapproximation factor of 2 can be achieved in polynomial time for any �. This is done by anextension of the algorithm described in Subsection 2.1.We �rst describe some notation used in this section. The 2 vertex-connected components of agraph are also referred to as blocks. For a vertex v in a rooted tree �, let the components formedby the deletion of v be called C1(v); C2(v); : : : ; Cd(v)(v), where d(v) is the degree of v in �. If vis not the root, we will assume that C1(v) is the component that contains the root, and the othercomponents correspond to subtrees rooted at the children of vertex v. In a rooted tree, for a vertexu we denote its parent by p(u).Notation: we refer to an undirected edge between two vertices x and y as (x; y). On the otherhand, a directed edge from x to y is denoted by x! y.5.1 Increasing Edge Connectivity from 1 to 2Notice that we only need to show how to increase the edge connectivity of a tree due to the followingobservation. If we are given G0 with nontrivial 2 edge-connected components, then we can shrinkthe vertex sets of these components into single vertices, resulting in a tree whose edges are thebridges of G0. The edges to be retained from Feasible are the minimum weight edges that connectvertices in di�erent 2 edge-connected components of G0. (Observe that the edges of Feasible thatconnect vertices of the same 2 edge-connected component are of no use in augmenting G0. Similarly,among the edges that connect two distinct 2 edge-connected components only the minimum weightedge is of interest.)From G0, we will construct a directed graph GD and �nd a minimum weight branching from avertex r. (If there is no branching that spans all the vertices, we can show that there is no way to22

increase the connectivity of the network.) Using a minimum weight branching of GD, we can �nda set of edges of G � G0 whose addition will increase the connectivity of G0. We can also showthat the total weight of the edges added by this technique is no more than twice the weight of anoptimal augmentation.The algorithm is as follows:(1) (Construct GD = (V;ED))(a) Pick an arbitrary leaf r and root the tree G0 at r by directing all the edges towards theroot. Denote the resulting tree by �.(b) Add to ED the directed tree edges of � and set their weight to zero.(c) Consider the edges that belong to G = (V;E) but do not belong to G0 (edges in E�E0).For each such edge (u; v), if (u; v) is a back edge (i.e., it connects a vertex to one of itsancestors), we add one directed edge to ED (shown below); otherwise, we add two directededges to ED. (We will refer to these directed edges as images of (u; v), and we say thesedirected edges are generated by (u; v).)Suppose that the edge e with weight w(e), joins vertices u and v belonging to the tree �.There are two cases depending on the relative locations of u and v in the tree � (see Fig 10).(i) If u is an ancestor of v (the converse is symmetric): then add an edge u! v in GD withweight w(e).(ii) If neither u nor v is an ancestor of the other: let t = l:c:a(u; v) (least common ancestorin the rooted tree �). Add edges t! u and t! v in GD, each with weight w(e).(2) Find a minimum weight branching in GD rooted at r. For each directed edge e that ispicked as part of the branching, and that does not belong to the directed tree �, add thecorresponding edge in E �E0 that generated e. The set of edges added is Aug.Observe that all edges of GD � � are such that they connect a vertex to one of its descendants in�.Lemma 5.1 If G is 2 edge-connected, then the directed graph GD is strongly connected.Proof. Clearly, all the vertices of GD can reach the root r using edges from the tree �. Further,let us assume that GD is not strongly connected. Of all the vertices that cannot be reached fromthe root, let u be the vertex that is closest to the root in �. Clearly, the entire subtree rooted at umust consist of unreachable vertices. Since the image of the edge (u; p(u)) in G is not a bridge inG, there must be another edge (v; s) in G going from a vertex v that is in the subtree rooted at u,to vertex s that is not in this subtree.Such an edge would have generated a directed edge from a vertex w to v in GD where w is anancestor of v (speci�cally the least-common-ancestor of v and s). Since w is a proper ancestor ofu, it is reachable from r in GD. Therefore v is reachable from r, and hence u as well. Thus weobtain a contradiction.Lemma 5.2 If G is 2 edge-connected, then the edge connectivity of the graph G0 together with theedges in Aug is at least 2. 23

uvv u
(b)(a)
tr r

Figure 10: Construction of GD.Proof. Assume G is 2 edge-connected. Then by the previous lemma, we can �nd a minimumweight branching in GD. Next, assume that despite the addition of the edges in Aug to G0, theresulting graph has bridges. All such bridges are the tree edges in �. Let (u; p(u)) be one such edgeof � that is closest to the root (it does not have to be unique). Since vertices in the subtree rootedat u, are reached from r in the branching it must be the case that there is a directed edge w ! v,from a vertex w (ancestor of u) to v in the minimum weight branching. Such an edge would havebeen generated by an edge connecting v to a vertex not in the subtree rooted at u. This edge wouldbelong to Aug and hence the edge (u; p(u)) is not a bridge.Lemma 5.3 The weight of Aug is less than twice the optimal augmentation.Proof. We prove the lemma by exhibiting a branching whose weight is at most twice the weightof the optimal augmentation. Consider the minimum weight set of edges Aug� that would increasethe connectivity from 1 to 2. Consider all the directed edges that are \generated" by edges thatbelong to Aug�. These directed edges together with the tree edges yield a strongly connected graphwith total weight on the edges at most 2C� (each edge of weight w generated at most two directededges, each of weight w). Hence the branching that we �nd has total weight at most 2C�.Theorem 5.4 There is an approximation algorithm to �nd an augmentation to increase the edgeconnectivity of a connected graph to 2 with weight less than twice the optimal augmentation thatruns in O(m+ n logn) time.Proof. The correctness of the algorithm follows from Lemma 2 and Lemma 3. Since the bridge-connected components can be found in O(m+n) time [3] and a minimum weight branching can befound in O(m+ n logn) time [14]. Since the least common ancestors for the m pairs can be foundin O(m+ n) time by using the algorithm of Harel and Tarjan [20], the theorem follows.24

f4gf3gf7gf8g| cut vertex| block vertexfg (b)5
b1 b2b3b4b5 f1; 2gfgf5; 6gf9; 10gB5 B4 B3B2 B1109 8 7 6 43

21
(a)Figure 11: Construction of block cut vertex tree �.5.2 Increasing Vertex Connectivity from 1 to 2We can assume w.l.o.g. that G0 is a connected graph just as in the case of edge connectivity. Ouroverall strategy is similar to the one used in the previous section. That is, we �rst obtain a treestructure � of the blocks of G0, construct a weighted, directed graph GD using � and G. Then �nda minimum weight branching in GD which will indicate the edges of E � E0 that are to be addedto increase the connectivity of G0. We remark that �, in the case of vertex connectivity, is quitedi�erent from that of the previous section.We �rst describe an algorithm to construct the block cut tree.(1) Let a1; a2; ::: and B1; B2; ::: be the articulation points and blocks of G0 = (V;E0), respectively.The vertex set V (�) is a union of Va and Vb where Va = fa1; a2; :::g and Vb = fbi j Bi is ablock of G0g. Associated with each vertex in V (�), is a set. For ai 2 Va, Xi = faig. Forbi 2 Vb, Yi = fvj j vj 2 V and vj is not a cut vertex in G0g.(2) The edge set E(�) consists of edges (ai; bj) where ai is an articulation point that belongs toblock Bj.Fig. 11 illustrates the above construction via an example.Observation: In the block cut tree �, each edge is between a vertex in Va and a vertex in Vb.Observation: Consider the sets associated with the vertices of �. Each vertex of G0 belongs toexactly one such set.In the rest of the section, for a vertex u of V , the vertex of � that corresponds to u is u if u isan articulation point, and bi otherwise where Bi is the unique block containing u. In the following,25

by superimposing an edge (x; y) 2 G on �, we mean adding an edge between a; b 2 V (�) where theassociated sets X and Y contain x and y respectively.The algorithm is as follows:(1) Superimpose all the edges of E � E0 on �. Discard all the self-loops. Among the multipleedges retain the cheapest edge, discarding the rest.(2) (Construct GD = (V;ED))(a) Pick an arbitrary leaf of � to be the root r, and direct all the edges of � towards r.Continue to denote the resulting tree by �.(b) Add to ED the directed tree edges of � and set their weight to zero.(c) Consider the superimposed edges of E � E0 on �. Let (u; v) be one such superimposededge. If (u; v) is a back edge (i.e. it connects a vertex to one of its ancestors), we add onedirected edge to ED (shown below); otherwise, we add four directed edges to ED. (We willrefer to these directed edges as images of (u; v), and we say these directed edges are generatedby (u; v).)Suppose that the edge e with weight w(e), joins vertices u and v belonging to the tree �.There are two cases depending on the relative locations of u and v in the tree � (see Fig. 12).(i) If u is an ancestor of v (the other case is symmetric): then add an edge u ! v in GDwith weight w(e).(ii) If neither u nor v is an ancestor of the other: let t = l:c:a(u; v) (least common ancestorin the rooted tree �). Add edges t ! u and t ! v in GD, each with weight w(e). Alsoadd edges u! v and v ! u, each with weight w(e).(d) Modify ED as follows. For every u 2 Va, if there is an outgoing edge from u to a descendantv, then replace that edge with uv ! v where where uv is the child of u on the tree path fromu to v.(3) Find a minimum weight branching in GD rooted at r. For each directed edge e that is pickedas part of the branching, and does not belong to the directed tree �, add the correspondingedge in E � E0 that generated e. The set of edges added is Aug.In the directed graph GD there are no outgoing edges from a cut vertex to any of its descendantsin �.Observation: Consider the components formed on the deletion of a vertex u 2 Va from �. Theedges of G when superimposed on �� u connect all these components.Lemma 5.5 If G is 2 vertex-connected, then the directed graph GD is strongly connected.Proof. Clearly all the vertices of GD can reach the root r using edges of the tree �. Let us assumethat GD is not strongly connected. Of all the vertices that cannot be reached from the root, letu be a vertex that is closest to the root in �. Clearly, the entire subtree rooted at u must consistof unreachable vertices and every proper ancestor of u is reachable from r. The proof is a littleinvolved and we break it into cases. 26

edges of E � E0(a) Rooted tree � and (c) GD after step 2(d)(b) GD after step 2(c)
r r r

Figure 12: Construction of GD in the case of vertex connectivity.Case 1: u 2 Va.Since u is not a cut vertex in G, there must be at least one edge connecting a vertex in C1(u)to some vertex in Ci(u) by the Observation. Let this edge be (v; s) where s 2 C1(u) andv 2 Ci(u). Now there are two subcases to consider:(a) s is an ancestor of v.(i) s 2 Va.Corresponding to edge (s; v) we added an edge in GD, from the child sv of s (on thepath from s to v) to v. Since sv is a block vertex, it is distinct from u. Clearly svis an ancestor of u, and hence reachable from r. Thus v is reachable from r and sois u, yielding a contradiction.(ii) s 2 Vb.We add an edge in GD from s to v. Since s is reachable from r (because it is anancestor of u), so is v and hence u, yielding a contradiction.(b) s is not an ancestor of v. Let t = l:c:a(s; v).(i) t 2 Va.Corresponding to edge (s; v) we added an edge in GD, from the child tv of t (on thepath from t to v) to v. Since tv 2 Vb, it is distinct from u. It is reachable from rand hence v is reachable fromr, and so is u, yielding a contradiction.(ii) t 2 Vb.Clearly t is an ancestor of u, hence reachable from r. We added an edge in GD from27

t to v, hence v is reachable and u as well, yielding a contradiction.Case 2: u 2 Vb.Consider the cut vertex p(u). Notice that p(u) 6= r since r 2 Vb. Let the roots of thesubtrees C1(p(u)); C2(p(u)); : : :Ck(p(u)) be r1(= r); r2; : : :rk, where k is the degree of p(u).Assume that C2(p(u)) refers to the component containing u (hence r2 = u). Partition thecomponents into two groups as follows. The �rst group contains all the components whoseroots are reachable from r, and the second group contains the rest. (Notice that both thegroups are non-empty.) Since G is biconnected there must exist an edge (s; v) where s belongsto a vertex in Ci(p(u)) and v belongs to a vertex in Cj(p(u)), such that Ci(p(u)) and Cj(p(u))belong to the �rst and second groups respectively.(a) s is an ancestor of v.(i) s 2 Va.We added an edge from the child sv of s to v in GD. Since sv is a block vertex, it isdistinct from p(u) and reachable from r. Hence v is reachable from r, and so is rjgiving a contradiction.(ii) s 2 Vb.We added an edge in GD from s to v. Since s is an ancestor of p(u) it is reachablefrom r. Hence v is reachable from r, and so is rj , giving a contradiction.(b) s is not an ancestor of v. Let t = l:c:a(s; v).(i) t 6= p(u).There is an edge in GD from either t or tv, to v. Since both t and tv are reachablefrom r, so is v and hence rj, giving a contradiction.(ii) t = p(u).Note that ri is reachable from r. Because of edge (s; v) we generate the followingedges in GD: ri ! s; rj ! v; s ! v; v ! s. Hence v is reachable from r, and so isrj, yielding a contradiction.Lemma 5.6 If G is 2 vertex-connected, then the vertex connectivity of the graph G0 together withthe edges in Aug is at least 2.Proof. Assume that despite the addition of the edges in Aug to G0, the resulting graph has acut vertex u. We will now show that u is destroyed as a cut vertex in the tree �, and hence inG0. Consider the components C1(u); : : : ; Cd(u)(u) in �. Partition the components into two groupsas follows. The �rst group contains all the components that get connected to C1(u) (by an edgeor a path) when the edges of Aug are superimposed on �. The second group contains the rest.Notice that both the groups are non-empty. Since GD is strongly connected all the vertices arereachable from the root in the minimum weight branching. Since there are no outgoing edges fromu to its descendants by the previous observation, there must be an edge s ! v in the branchingthat satis�es the following. This edge has the property that s 2 Ci(u) and v 2 Cj(u), where Ci(u)and Cj(u) belong to the �rst and second groups respectively. The edge that generated s ! v inAug would connect Ci(u) to Cj(u) in G0 + Aug, yielding a contradiction.Lemma 5.7 The weight of Aug is less than twice the optimal augmentation.28

Proof. We prove the lemma by exhibiting a branching whose weight is at most twice the weightof the optimal augmentation. Consider the minimum weight set of edges Aug� that would increasethe connectivity from 1 to 2. Consider all the directed edges that are \generated" by edges thatbelong to Aug�.These directed edges together with the tree edges yield a strongly connected graph with totalweight on the edges at most 4C� (each edge of weight wi generated at most four directed edges,each of weight wi). Now pick a minimum weight branching in this graph. Notice that for eachcross edge (u; v) (when neither u nor v is an ancestor of the other) even though we generate fourdirected edges in GD, no minimum weight branching will use more than two of these four edges.(Otherwise, it will not be a valid branching.) Hence the branching that we �nd has total weight atmost 2C�.Theorem 5.8 There is an approximation algorithm to �nd an augmentation to increase the vertexconnectivity of a connected graph to 2 with weight less than twice the optimal augmentation thatruns in O(m+ n logn) time.Proof. The correctness of the algorithm follows from Lemma 5 and Lemma 6. Since the biconnectedcomponents can be found in O(m + n) time [3] and a minimum weight branching can be foundin O(m + n logn) time [14]. Since the least common ancestors for the m pairs can be found inO(m+ n) time by using the algorithm of Harel and Tarjan [20], the theorem follows.5.3 Increasing Connectivity to �We argue that it is possible to obtain an approximation factor of 2 for increasing the edge con-nectivity of a graph to any �. The algorithm takes as input an undirected graph G0(V;E0) on nvertices and a set Feasible of m weighted edges on V , and �nds a subset Aug of edges which whenadded to G0 make it �-edge connected. The weight of Aug, is no more than twice the weight ofthe least weight subset of edges of Feasible that increases the connectivity. We also observe thatthe problem is NP -hard (for any �) by extending the proof that was given by [11] for incrementing1-connected graphs to 2-connected optimally.Consider a directed graph G with weights on the edges, and a �xed root r. How does one �ndthe minimum weight directed subgraph HD that has �-edge disjoint paths from a �xed root r toeach vertex v ? Gabow [13] gives the fastest implementation of a weighted matroid intersectionalgorithm to solve this problem in O(�n(m+ n logn) logn) time.To solve our problem (approximation algorithm), in the undirected graph G0 replace eachundirected edge (u; v) by two directed edges u! v and v ! u with each edge having weight 0. Foreach edge in the set Feasible (u; v) we replace it by two directed edges u! v and v ! u with weightw(u; v) (the weight of the undirected edge). Call this graph GD. Now run Gabow's algorithm onthe graph GD, asking for �-edge disjoint paths from each vertex to the root. If the directed edgeu ! v is picked in HD and w(u; v) > 0 (we can assume all edges of set Feasible have weight > 0else we can always include it in Aug) we add (u; v) to Feasible. (This is a generalization of thescheme for the case when E0 is empty.)Open Problems: The main open problem is to obtain factors better than 2 for the unweightedaugmentation problem. Even simple greedy algorithms appear to have a performance ratio of 1:5.Acknowledgements: I am grateful to Dorit Hochbaum and Balaji Raghavachari for useful com-ments. Support by NSF grant CCR-9307462 is gratefully acknowledged.29

References[1] A. Agrawal, P. Klein and R. Ravi, When trees collide: An approximation algorithm forthe generalized Steiner problem on networks, Proc. 23rd ACM Symposium on Theory ofComputing, pp. 134{144, (1991).[2] A. V. Aho, M. R. Garey and J. D. Ullman, The transitive reduction of a directed graph,SIAM Journal on Computing, 1 (2), pp. 131{137, (1972).[3] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of computer algorithms,Addison-Wesley, (1974).[4] S. Arnborg, J. Lagergren and D. Seese, Easy problems for tree-decomposable graphs, Journalof Algorithms, 12 (2), pp. 308{340, (1991).[5] J. Cheriyan, M. Y. Kao and R. Thurimella, Algorithms for parallel k-vertex connectivity andsparse certi�cates, SIAM Journal on Computing, 22 (1), pp. 157{174, (1993).[6] J. Cheriyan and R. Thurimella, Algorithms for parallel k-vertex connectivity and sparsecerti�cates, Proc. 23rd Annual Symposium on Theory of Computing, pp. 391{401, (1991).[7] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms, The MIT Press,(1989).[8] J. Edmonds, Matroid intersection, Annals of Discrete Mathematics, 4, pp. 185{204, (1979).[9] K. P. Eswaran and R. E. Tarjan, Augmentation problems, SIAM Journal on Computing, 5(4), pp. 653{665, (1976).[10] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal on Dis-crete Mathematics, 5(1), pp. 25{53, (1992).[11] G. N. Frederickson and J. J�aJ�a, Approximation algorithms for several graph augmentationproblems, SIAM Journal on Computing, 10 (2), pp. 270{283, (1981).[12] A. Frank and E. Tardos, An application of submodular
ows, Linear Algebra and its Appli-cations, 114/115, pp. 320{348, (1989).[13] H. N. Gabow, A matroid approach to �nding edge connectivity and packing arborescences,Proc. 23rd Annual Symposium on Theory of Computing, pp. 112{122, (1991).[14] H. N. Gabow, Z. Galil, T. Spencer and R. E. Tarjan, E�cient algorithms for �nding min-imum spanning trees in undirected and directed graphs, Combinatorica, 6 (2), pp. 109{122,(1986).[15] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory ofNP-completeness, Freeman, San Francisco, (1979).[16] N. Garg, V. Santosh and A. Singla, Improved approximation algorithms for biconnectedsubgraphs via better lower bounding techniques, Proc. 4th Annual ACM-SIAM Symposiumon Discrete Algorithms, pp. 103{111, (1993).30

[17] M. Goemans and D. Bertsimas, Survivable Networks, Linear Programming Relaxations andthe Parsimonious Property, Mathematical Programming, 60, pp. 145{166, (1993).[18] M. Goemans and D. Williamson, A general approximation technique for constrained forestproblems, Proc. 3rd Annual ACM-SIAM Symp. on Discrete Algorithms, pp. 307{316, (1992).[19] F. Harary, The maximum connectivity of a graph, Proc. Nat. Acad. Sci., 48, pp. 1142{1146,(1962).[20] D. Harel and R. E. Tarjan, Fast algorithms for �nding nearest common ancestors, SIAMJournal on Computing, 13(2), pp. 338{355, (1984).[21] H. T. Hsu, An algorithm for �nding a minimal equivalent graph of a digraph, Journal of theACM, 22 (1), pp. 11{16, (1975).[22] T. S. Hsu, Graph Augmentation and Related Problems: Theory and Practice, Ph. D thesis,Dept. of Computer Science, University of Texas, Austin, TX (1993).[23] S. Khuller and B. Raghavachari, Improved Approximation Algorithms for Uniform Connec-tivity Problems, manuscript (1994).[24] S. Khuller, B. Raghavachari and N. Young, Approximating the minimum equivalent digraph,Proc. 5th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 177{186, (1994). Toappear in SIAM Journal on Computing.[25] S. Khuller, B. Raghavachari and N. Young, On strongly connected digraphs with boundedcycle length, UMIACS-TR-94-10/CS-TR-3212, (1994).[26] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation, Proc. 19thInternational Colloquium on Automata, Languages and Programming Conference, pp. 330{341, (1992).[27] S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation, Journalof Algorithms, 14 (2), pp. 214{225, (1993).[28] S. Khuller and U. Vishkin, Biconnectivity approximations and graph carvings, Journal of theACM, 41 (2) pp. 214{235, (1994).[29] P. N. Klein and R. Ravi, When cycles collapse: A general approximation technique forconstrained two-connectivity problems, Proc. 3rd Integer Programming and CombinatorialOptimization Conference, pp. 39{56, (1993).[30] D. E. Knuth, Fundamental Algorithms, Addison-Wesley, Menlo Park, CA, (1973).[31] D. M. Moyles and G. L. Thompson, An algorithm for �nding the minimum equivalent graphof a digraph, Journal of the ACM, 16 (3), pp. 455{460, (1969).[32] D. Naor, D. Gus�eld and C. Martel, A fast algorithm for optimally increasing the edge-connectivity, Proc. 31st IEEE Symposium on Foundations of Computer Science, pp. 698{707,(1990). 31

[33] H. Nagamochi and T. Ibaraki, Linear time algorithms for �nding sparse k-connected span-ning subgraph of a k-connected graph, Algorithmica, 7 (5/6), pp. 583{596, (1992).[34] T. Nishizeki and S. Poljak, Highly connected factors with a small number of edges, to appearin Discrete Applied Mathematics.[35] R. Ravi and D. Williamson, An approximation algorithm for minimum-cost vertex-connectivity problems, to appear in Proc. 6th Annual ACM-SIAM Symposium on DiscreteAlgorithms, (1995).[36] R. E. Tarjan, Data structures and network algorithms, Society for Industrial and AppliedMathematics, (1983).[37] R. Thurimella, Techniques for the design of parallel graph algorithms, Ph. D thesis, Dept. ofComputer Science, University of Texas, Austin, TX (1989).

32

