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1 Introduction

Let a graph G = (V, E) denote the feasible links of a (proposed) communications network. An
edge e = (a,b) denotes the feasibility of adding a link between sites a and b. The weight of this
edge, w(e), represents the cost of constructing link e. A minimum spanning tree in G is the lowest
weight connected subgraph, i.e., the cheapest network that will allow the sites to communicate.
Such a network is highly susceptible to failures, since it cannot even survive a single link or site
failure. For more reliable communication, one desires spanning subgraphs of higher connectivity.
A network of edge-connectivity A continues to allow communication between functioning sites even
after as many as A — 1 links have failed. A graph is said to be A edge-connected if the deletion
of any (A — 1) edges leaves it connected. These definitions extend in a straightforward way to A
vertex-connectivity. The only requirement is that the graph should have at least A+ 1 vertices, and
the deletion of any (A — 1) vertices should leave it connected. Given a graph G with non-negative
edge weights, and an integer A, we consider the problem of finding a minimum-weight A-connected
spanning subgraph. We address the cases of edge connectivity, and vertex connectivity. For most
connectivity versions, the associated problems are N P-hard. In this case we would like to obtain
sub-optimal solutions in polynomial time. From now on we will refer to sites as vertices, and links
as edges.

In this chapter, we address only uniform connectivity problems. For results on non-uniform con-
nectivity requirements, see Chapter 4 by Goemans and Williamson. The non-uniform connectivity
problems are solved using the “primal-dual” method of linear programming; this usually results in
approximation factors that are not as good as the ones obtained here.

Edge connectivity augmentation problems were first studied by Eswaran and Tarjan [9]. They
studied the problem of making a given graph 2-connected (both vertex and edge connectivities
were considered) and strongly connected with the addition of the least number of edges. They
showed that when all potential edges are feasible and have weight 1, the problem can be solved
optimally in polynomial time, and when the edges have arbitrary weights the problem is N P-
hard. Subsequently, a lot of work was done on the problem of “increasing” the connectivity of
a given graph; most of these papers deal with the unweighted case where an edge may be added
between any pair of vertices. This problem can be solved optimally in polynomial time, at least
for the edge-connectivity case. We will not survey this body of research in detail here since we
are primarily interested in approximation techniques for V P-hard problems. For more information
on such problems see recent papers by Frank [10], and Naor, Gusfield and Martel [32]. For the
vertex-connectivity case, the problem appears to be significantly harder and no polynomial time
algorithm is known for finding the optimal solution. In his doctoral thesis, Hsu [22] gives algorithms
for vertex connectivity for small connectivity values. These algorithms are quite complex. It must
be pointed out that the problem of constructing a graph with n vertices, and connectivity A with
the least number of edges was first addressed by Harary [19].

The first paper to address the issue of obtaining approximate solutions for the case when edges
have weights, is by Frederickson and J4J& [11]. They provide approximation algorithms for the cases
of 2-connectivity (edge and vertex) as well as strong connectivity problems. Subsequently, their
algorithm was simplified by Khuller and Thurimella[26, 27]. The unweighted case was explored by
Khuller and Vishkin [28], and Garg, Santosh and Singla [16]. For any k, fast algorithms for finding
sparse certificates were given by Nagamochi and Ibaraki [33] and Cheriyan, Kao and Thurimella
[5]. The strong connectivity case is addressed by Khuller, Raghavachari and Young [24, 25]. When
parallel edges are allowed, Goemans and Bertsimas provide an approximation algorithm [17].



1.1 Outline of Chapter

The problems we deal with are divided broadly into four categories: edge connectivity, vertex
connectivity, strong connectivity and connectivity augmentation. In each case, we study both the
weighted and unweighted problems.

In Section 2 we discuss the edge-connectivity results. This section surveys known results for
both the weighted case as well as the {1/00} case (where each edge has weight either 1 or o).
In other words, the feasibility network is treated as an undirected graph, and each possible link is
either feasible or infeasible. In this case we are interested in minimizing the total number of edges
in our solution. Section 3 discusses the results on vertex connectivity. In Section 4 we discuss the
problem of finding strongly connected spanning subgraphs in directed graphs. In Section 5 we study
the problem of increasing the edge-connectivity of a given graph having an arbitrary connectivity,
to being A edge-connected.

2 Edge-Connectivity Problems

We begin this section by describing the algorithm given by Khuller and Vishkin [28] for obtaining
an approximation factor of 2 when the edges have weights. In Subsection 2.2 we consider the special
case when the weights are either 1 or oo; for this special case we can achieve approximation ratios
less than 2.

2.1 Weighted Edge-Connectivity

Given a graph G = (V, F) with weights on the edges and an integer A, consider the problem of
finding a minimum weight spanning subgraph H = (V, Ey) that is A edge-connected.

An algorithm that achieves an approximation factor of 3 for A = 2 follows by the work of
Frederickson and JaJa [11]. First find a minimum spanning tree. Now consider the problem of
finding the least weight set of edges to add to the tree to obtain a 2 edge-connected subgraph. Not
surprisingly, this is N P-hard as well [11]. They give an algorithm with an approximation factor of
2 for the problem of augmenting connectivity, yielding an approximation factor of 3 for the least
weight 2 edge-connected spanning subgraph. (In Section 5 we describe a simplification of their
algorithm due to Khuller and Thurimella [26].)

We now briefly review the method given by Khuller and Vishkin [28] that yields an approxima-
tion algorithm for undirected graphs. Take the undirected graph &, and replace each undirected
edge e = (u,v) by two directed edges (u,v) and (v,u) with each edge having weight w(e). Call
this graph GP. Now consider the following problem for directed graphs: given a directed graph
GP with weights on the edges, and a fixed root 7, how does one find the minimum weight directed
subgraph HP that has A edge-disjoint paths from a fixed root r to each vertex v? Gabow [13]
gives the fastest implementation of a weighted matroid intersection algorithm due to Edmonds [8]
to solve this problem optimally in O(An(m + nlogn)logn) time. Run Gabow’s algorithm on the
graph G| with an arbitrary vertex r chosen as the root. If at least one of the directed edges (u,v)
or (v,u)is picked in H”, then we add (u,v) to Ey.

Lemma 2.1 The graph H = (V, Ey) is a X edge-connected spanning subgraph of G.

Proof. Suppose (for contradiction) that there is a A — 1 edge cut in H. Assume that it separates
H into pieces Cy and (5. Let r be in 1, now consider a vertex v in (5. It is clear that r cannot
have A edge-disjoint directed paths to v. Thus there is no cut set of size A — 1. O



Theorem 2.2 The total weight of Fy is at most twice the weight of the optimal solution.

Proof. Consider an optimal solution OP7 (G') for the minimum weight A edge-connected subgraph
problem. Consider all the anti-parallel edges corresponding to edges in OP7(G'). We get a directed
subgraph in GP of weight 2w(OPT(G)) (where w(OPT(G)) is the total weight of the edges in
OPT((G)). From r there are A edge-disjoint undirected paths to any vertex v; these also yield A
directed paths from r to v that are edge-disjoint. Thus this subgraph has the property of having
A directed edge-disjoint paths from r to any vertex v. The optimum solution found by Gabow’s
algorithm is only cheaper. O

2.2 Unweighted Edge-Connectivity

Given an undirected graph G with n vertices and m edges, we would like to find a subgraph H that
is A-edge connected and has as few edges as possible. For the general case, Nagamochi and Ibaraki
[33] showed how to find a spanning subgraph with at most An edges (see also Thurimella’s doctoral
thesis [37]) that has edge-connectivity A if and only if the original graph  has edge connectivity
A. Since each vertex is required to have degree at least A\, we get AT” as a lower bound on any A
edge-connected spanning subgraph. Thus this yields an approximation algorithm with a ratio of
2. In this section we describe a simple algorithm given by Khuller and Vishkin [28] that finds a 2
edge-connected spanning subgraph by using Depth First Search. Moreover, it is shown that this
algorithm achieves an approximation ratio of 1.5. Combining this the ideas of [33, 34, 37] yields an

approximation ratio of 2 — %

2.2.1 2 Edge-Connectivity

In this section we present a linear time algorithm given by Khuller and Vishkin [28] to obtain a 2
edge-connected spanning subgraph from a given graph . This algorithm obtains a solution that
is at most % times the optimal solution.

High-level Description of the Algorithm

We traverse GG using depth-first-search (DFS). A DFS rooted tree 7" is computed; 7" has at most
n — 1 edges, and all the non-tree edges are back edges (i.e., one of the endpoints of the edge is an
ancestor of the other in 7). All edges of T" are picked for Fp. During the depth-first search the
algorithm also picks a set of non-tree edges that will increase the edge connectivity by “covering”
all the edges in T (since each edge in 7' is a potential bridge). A back edge may be chosen just
before withdrawing from a vertex for the last time. Before withdrawing from a vertex v, we check
whether the edge (v, p(v)), joining v to its parent, is currently a bridge or not. If (v, p(v)) is still a
bridge, we cover it by adding to Fp a back edge from a descendant of v to low[v], where low[v] is
the vertex with the smallest dfs-number that can be reached by following zero or more downgoing
tree edges from v, and a single back edge.

The Algorithm - a Detailed Description

In this section we give a detailed recursive description of the algorithm. The running time is
O(n + m), the algorithm is simple to implement and uses no complicated data structures.

Data Structures:

dfs[v]: A serial number given to a vertex the first time it is visited during DFS. For simplicity, we
will assume that vertices are numbered by their dfs-number (i.e., v = dfs[v]).



state of a vertex: Each vertex is initially “unvisited”. After the DFS traversal visits it for the first
time, it becomes “discovered”. When we finally exit from the vertex it becomes “finished”. (This
is to be able to tell when we are looking at back edges from the upper end.)

low[v]: defined earlier.

low[v]: This is defined to be the smallest numbered vertex that can be reached by following zero
or more downgoing tree edges from v, and a single back edge that belongs to Fyy.

savior[v]: This is defined to be the descendant end vertex of the back edge that goes to low[v].
Initialization Step: The initial call made is DFS(v,nil) where v is an arbitrary vertex. We
assume that G is a 2-edge connected graph (easy to verify this before running the algorithm).
Initially, all vertices are “unvisited”.

Algorithm Find 2-EC Spanning Subgraph

Input: Graph G = (V, F).

Output: A subgraph H = (V, Ey) that is 2-EC.

procedure DFS(v, u); (* w is the parent of v in DFS tree. *)
mark v discovered;
low[v] = v;
lowg[v] = v;
savior[v] = v;
for each w € Adj[v] do
if w is unvisited then begin
Ey=FEgU{(v,w)} (* (v, w) is a tree edge *)
DFS(w,v);
low[v] = min(low[v], low[w]); If low[v] changes, set savior[v] = savior[w];
lowg[v] = min(lowg[v], lowg[w]);
end
else if w is discovered then begin
if w # u then (* (v, w) is a back edge *)
low[v] = min (low[v], w); If low[v] changes, set savior[v] = v;
(* else (v, w) is already a tree edge *)
(* else w is finished and is a descendant of v *)
end
mark v finished;
If lowg[v] = v and w # nil then begin
(* edge (u,v) is threatening to be a bridge *)
(* add the edge ( savior[v], low[v] ) to cover the bridge *)
Epy = Eg U{( savior[v], low[v] )};
lowg[v] = low[v];
end

end DFS

It is quite easy to see that H has edge-connectivity 2, and that the algorithm runs in time
O(n + m).
The Approximation Analysis
Our analysis finds a partition of the vertices, called a tree-carving, which is used to prove a lower
bound on OPT, the number of edges in the optimal solution. The upper bound of % on the



approximation factor is established using this lower bound. After presenting the concept of a
tree-carving, we apply it to the approximation analysis.

Definition 1 A tree-carving of a graph is a partition of the vertex set V into subsets Vi, Vo, ..., V}
with the following properties. Fach subset constitutes a node of a tree I'. For every verter v € V;,
all the neighbours of v in G belong either to V; itself, or to V; where V; is adjacent to V; in the tree
I'. The size of the tree-carving is k.

We will refer to the vertices of I' as nodes, and the edges of I' as ares.

Theorem 2.3 (Tree-Carving Theorem)
If graph G = (V, F) has a tree-carving of size k, then a lower bound on the number of edges of any
2 edge-connected spanning subgraph in G is 2(k —1).

It is interesting to note that the same simple proof implies that the smallest A-connected sub-

graph of G must have at least A(k — 1) edges.
Proof. There are k — 1 arcs in the tree I'. Each such arc e = (V;, V;) partitions the vertices in G
into two sets S, and V' — S.. (Deletion of arc e breaks I' into two trees I'y and I'y, where V; belongs
to I'1. ¢ is defined to be the union of the sets V, that belong to I'y.) In any 2 edge-connected
spanning subgraph we have: (1) at least two edges going from S. to V' — 5., and (2) both these
edges must have one endpoint in V; and another in V;; from the disjointness of V;’s it follows that
for each arc e, there are two distinct edges in the subgraph. Since I has £ — 1 arcs, we get a lower
bound of 2(k — 1). 0

For an example of a tree-carving see Fig. 1.

Given T, the DFS spanning tree, we will be interested in the following partition of the vertices
of G, called the DFS-tree partition. Some recursive calls DFS(v,u) end by adding the back edge
(savior[v], low[v]) to E, and some do not add any edge. For each call DFS(v, u) where a back edge
is added to Ep, “remove” the tree edge (u,v) from T'; the resulting connected components of T
(with some tree edges removed) provides the DFS-partition. Furthermore, T" induces a rooted tree
structure I' on the sets in the DFS-tree partition. In fact, it is easy to modify the approximation
algorithm to find the tree-carving as well; however this is not essential since it is only used for the
analysis of the algorithm.

Theorem 2.4 The DFS-tree partition yields a tree-carving of G.

Proof.  Let (v1,v2) be any non tree edge in . Suppose that vy is in set Vi of the DFS-tree
partition and vy is in set V5. Let us assume that vy is an ancestor of vy. Clearly low[vy] < vy. Thus
by the algorithm there can be at most one bridge between them. Hence, either V3 = V3, or set 1V}
is the parent set of set V5 (in the rooted tree structure I'). O

Corollary 2.5 Since the number of arcs in the tree-carving is exactly the same as the number of
back edges that are added to Ey we conclude that OPT > 2(k — 1), where k — 1 is the number of
added back edges.

Theorem 2.6 The algorithm outputs a solution of size no more than % OPT.
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Figure 1: Example to show 2 edge-connectivity algorithm and a tree-carving.



Proof. The number of edges added by the algorithm to H is: (i) (n — 1), for the tree edges, plus
(ii) £ — 1 back edges, where k is also the size of the tree-carving. Hence, the number of edges in
Frisn—14k—1. Let OPT be the number of edges in an optimal solution. A lower bound on
OPT is max(n,2(k — 1)), since n is the minimum number of edges in a 2-edge connected graph
with n vertices (each vertex should have degree at least 2), and 2(k — 1) follows from Corollary
2.5. Hence, the ratio of the algorithm’s solution to OPT is

n—14+%k-1
~ max(n,2(k—1))

If n > 2(k—1), then clearly the ratio is < 3/2. If n < 2(k —1), it is again easy to see that the ratio
is < 3/2. 0

2.2.2 )\ Edge-Connectivity

We now describe a linear time algorithm given by Nagamochi and Ibaraki [33] that finds a A-
connected spanning subgraph of a given graph ¢ that has connectivity at least A. The algorithm
finds a subgraph with at most A(n — 1) edges; since every vertex has degree at least A\, we get a
lower bound of %” for OPT. Hence this is a factor 2 approximation. We then use the previous DFS
based algorithm for 2 edge-connectivity to improve this ratio by %

The main idea behind their algorithm is to repeatedly find mazimal spanning forests in the
graph, and to delete them. After A iterations of this method, we obtain A forests, which form a
A edge-connected spanning subgraph assuming that the input graph was A edge-connected. More
formally, we state the following lemma (also due to [37, 34]).

Lemma 2.7 For a graph G = (V, E) that has edge connectivity X, let F; = (V, E;) be a mazimal
spanning forest in G — Fqy U ... U E;_q, for i = 1...X; then G\ = (V,F1 U ... U E)) has edge
connectivity A.

Proof. Assume (for contradiction) that G contains a cut C' of size k < A whose removal disconnects
the graph Gy into G\ and G. Clearly, at least one forest, say F};, does not have any edges in C.
Since the original graph G was A edge-connected it must be the case that there is at least one edge
in G between the two components G\ and G. Hence in iteration j when we were picking F; we
would pick an edge connecting G\ and G¥. 0

It is easy to find the set of forests by repeatedly scanning the graph A times [37, 34]. The
amazing fact about Nagamochi and Ibaraki’s algorithm is that they can find all the forests in a
single scan of the graph. During the search, for each edge e we compute the integer ¢ satisfying
e € F;. In fact, the algorithm assigns each edge to the forest it would have ben assigned if we
repeatedly removed spanning forests until the graph was completely exhausted.

For each vertex v, we maintain the rank r(v), and r(v) = ¢ if v has been reached by an edge of
the forest F;.

We now argue that the algorithm in Fig. 2 implements the algorithm that repeatedly finds
forests and deletes them. Formally, what is shown is that each F; = (V, E;) is a maximal spanning
forestin G — FHLU...UF;_1.

In Fig. 3 we illustrate the execution of the algorithm via a small example.



A Connectivity —

1 Label all nodes and edges as “unscanned”

2 r(v)=0foralveV

3 while there exist “unscanned” nodes do

4 Choose an “unscanned” node & with the largest r
5 for each “unscanned” edge e = (z,y) do

6 if r(2) = r(y) then r(z) =r(2)+1

7 r(y)=r(y)+1

8 By = Ly Ve

9 Mark e scanned

10 Mark & scanned

Figure 2: Nagamochi and Ibaraki’s Algorithm to find a A connected graph.

Proposition 2.8 For a vertex v let F(v) denote the edges incident to v. At the start of each
iteration of scanning an unscanned edge

E()NE; #0 fori=1,...,r(v)
E(w)NE; =0 fori=r(v)+1,...,\

Proposition 2.8 immediately implies that each subgraph F; is acyclic, since we add edge e =
(z,y) to E; only when r(y) first becomes 1, so there is no edge in E; incident on y when e is added.

Before we prove that each forest F; is maximal in G — Fy U...U F;_1, we give some definitions.
If an edge e = (u,v) with E(u)N E; = 0 and E(v)N E; = 0 is added to F; then the edge e is
called the root edge of F;. The vertex u is called the root vertex of F; if it is scanned before v.
(The reader should convince themselves that this edge is unique.) The key intuition is that once
we create a tree T in F;, before starting a new tree T in F;, we will have scanned all the nodes in
T. This would guarantee that we do not process an edge between 7" and T” at some later point of
time (and erroneously put that edge in F;q1).

Lemma 2.9 When we add an edge e to F; there exists a path P,_1 C F;_1 connecting u and v.

Proof. Suppose there is no path connecting w and v in F;_;. Then there must be two trees T,
and T, that contain u and v respectively (observe that the label of u and the label of v is > i —1).
Let up and vy be the roots of these trees. Let the path from ug to u be P = [ug, uy,...,ur = ul.
W. L. 0. g up was scanned before vg. When g was scanned r(ug) = ¢ — 2 and r(vg) < i — 2. After
scanning (ug, u1), 7(u1) = ¢ — 1 and is scanned before vg. In a similar manner we can argue that all
the nodes on P are scanned before vy including v (after we scan the node ). This is a contradiction
to the assumption that vy is the root of T,. d

Lemma 2.10 Ifthere is a path P; C E; connecting u and v, then there are paths P; C E; connecting
w and v, for all v < j.

Proof. For each edge in P;, by Lemma 2.9 we know that there is a path in F;_; connecting the
endpoints of that edge. Taking the union of all the paths for each edge, gives us a path P;_; from
u to v in F;_y. Similarly, we can prove this for i =7 —2,...,1 etc. O



Table to show r(v) values

A B CDETF G

B E Initial |0 |0 [0 (O |0 [0 |0
Scan A |1 |1 |1 |1 ]01]0 |0

Scan B |1 |2 |2 2|1 |10

Scan C |1 |2 3 (3 ]2 (20

ScanD |1 |2 |3 (3 ]2 (20

Scan E |1 |2 |3 |3 |3 |31

— Edges in Scan ' |1 12|33 3|3 |2
-~ Edgesin Iy Scan G |12 /3 33|32

- Edges in Fj

Figure 3: Example to show the running of the Algorithm.

Theorem 2.11 Fach graph F; = (V, E;) is a mazimal spanning forest in G — E1 U ... U E;_4.

Proof. We argued earlier that F; is acyclic. If it is not maximal in G — Fy U ...U F;_; then there
is an edge e € I; (with j > 7) such that (V, E;Ue) is a forest. By Lemma 2.9 we know that £;
must contain a path P; from » to v. This would give a contradiction to the fact that (V, £; U e) is
a forest. O

We now show how to find a subgraph of edge connectivity A that is at most 2 — % times the
optimal. Find a 2 edge-connected graph by using the DFS based algorithm described earlier. Let
this graph be called Hy;. Now add A — 2 forests to Hy, by repeatedly removing the edges on each
forest (see Fig. 4).

A Connectivity —
1 Find H3 a 2-edge connected subgraph using the DFS based algorithm.

2 fore=3,..,A
3 Let T; be a spanning forest in G — H;_;4.
4 Let H, = H;,_ UT;.

Figure 4: Algorithm to find a A connected graph.

A simple proof that this yields a A edge-connected graph can be obtained in a manner similar
to the proof of Lemma 2.7. The proof is left as an exercise for the reader.

Now let us bound the total number of edges added by this procedure. The number of edges in
Hjyis (i) n — 1, for the tree edges plus (ii) k — 1 back edges, where k is the size of the tree-carving.
In Step 4, we add at most (A — 2)n edges to make the graph A connected.

An obvious lower bound on the optimal solution is 22 (by a degree argument); and A(k — 1)

10



using the tree-carving lower bound. Putting this together we get

(n—1+(k-14+(A=2)n
max{A(k — 1), 22

Simplifying, we get the upper bound of (2 — %)

Remark: Recently, Khuller and Raghavachari [23] were able to obtain an algorithm with a per-
formance ratio of at most 1.85 for any A. The key idea is to augment the connectivity by two in
each stage by adding 2 edge-connected subgraphs. The proof requires a subtle argument, and uses
the notion of tree-carvings.

Open Problem: It seems likely that one should be able to obtain algorithms for which the
performance ratio improves as A increases, at least for the unweighted case. However, we have
not been able to do this as yet. An increased understanding of higher connectivity seems essential
before this can be done.

3 Vertex-Connectivity Problems

3.1 Weighted Vertex-Connectivity

For the general problem no constant factor approximation algorithms are known. The best known
algorithm to find a A-connected subgraph for the weighted case is the algorithm due to Ravi and
Williamson [35] that achieves a factor of 2H(A), where H(A) = 1+ ...+ §. For the case of
finding a 2 vertex-connected graph, an approximation algorithm achieving a factor of 3 was given
by Frederickson and J4aJ4, through solving the more general graph augmentation problem. It is
possible to obtain an approximation factor of 2 + % by using a technique similar to the one used in
Subsection 2.1.

Frank and Tardos [12] extended Edmonds method [8] to show that the following problem can
be solved in polynomial time: Given a directed graph G with weights on the edges, and a fixed
root r. Find the cheapest directed subgraph HP that has A internally vertex-disjoint paths from a
fixed root r to each vertex v.

Using this algorithm as a subroutine it is possible to obtain a factor 2 approximation for the
weighted case, when A = 2.

The idea is as follows: Create a new graph G as follows: for each undirected edge e = (u,v)
in G create bi-directional edges (u,v) and (v,u) in GP, each of weight w(e). Let ¢’ = (z,y) be the
lowest weight edge in G

We create a new vertex r as the root and add directed edges (r, ) and (r, y) of weight 0. We now
run Frank and Tardos’s algorithm to find the minimum weight subgraph H? with A = 2. This will
provide two directed vertex-disjoint paths from r to each vertex v. Let Ep be the subset of edges
in G such that one of its copies was chosen in H”. We claim that the graph H = (V, Eg U {e'}) is
2-vertex connected (observe that r is not in H).

Proposition 3.1 For any vertex v in G, there are paths P(z,v) and P(y,v) in H that are internally
vertex disjoint.

Lemma 3.2 The graph H = (V, Eg U {€'}) is 2 vertex-connected.

Proof. Suppose H contains a cut vertex a. Let the deletion of a from H U {e'} breaks the graph
into components Cy, ..., Cy. Since z and y are adjacent they will be in aUC; (for some 7). W. 1. 0. g

11



assume that z and y belong to a U Cy. Consider a vertex v € (3. Clearly, there cannot be two
vertex disjoint paths from z and y to ». O

Theorem 3.3 The total weight of Ex U {€'} is at most (2 + %) times the optimal solution.

Proof.  Since every 2 vertex-connected graph contains at least n edges, the minimum weight
edge in G is at most Lw(OPT(G)), where w(OPT(G)) is the weight of a minimum weight 2
vertex-connected spanning subgraph.

Now consider an optimal solution OP7 () for the problem. Consider all the anti-parallel edges
corresponding to edges in OP7T(G). We get a directed subgraph in GP of weight 2w(OPT(G)).
From x and y there are 2 vertex-disjoint paths to any vertex »; these also yield 2 directed paths
from r to v that are also internally vertex-disjoint. Thus this subgraph has the property of having
2 directed vertex-disjoint paths from r to any vertex v. The optimum solution found by Frank and
Tardos’s algorithm can therefore only have lower weight. 0

Remark: For the case when the edge weights satisfy triangle inequality, Khuller and Raghavachari
(A=1)

[23] present algorithms using similar techniques that achieve a performance ratio of 2 + 2°=—=.

3.2 Unweighted Vertex-Connectivity

Given an undirected graph G with n vertices and m edges, we would like to find a subgraph H that
is A vertex-connected and has as few edges as possible. In fact, Nagamochi and Ibaraki’s algorithm
(described earlier) finds a spanning subgraph with at most An edges that has vertex-connectivity A
if and only if the original graph G has vertex connectivity A. Since each vertex is required to have
degree at least A, we get that %” is a lower bound on any A edge-connected spanning subgraph.
This yields an approximation algorithm with a ratio of 2.

We now describe the algorithm due to Cheriyan and Thurimella [6]. The idea is to “peel”
away maximal spanning forests from G, and to repeat this procedure A times as was done for the
edge connectivity case. To obtain a A vertex-connected subgraph Cheriyan and Thurimella suggest
the use of a forest obtained by running Breadth First Search from an arbitrary vertex in each
connected component. Taking the union of these forests yields a A vertex-connected subgraph.
(A more efficient parallel implementation using a weaker notion of scan-first search was given by
Cheriyan, Kao and Thurimella [5].) The proofs of the fact that this yields a A vertex-connected

subgraph is a little complicated. The reader is referred to the paper [6, 5].

3.2.1 2 Vertex-Connectivity

In this section we describe a simple method given by Khuller and Vishkin [28] that finds a 2 vertex-
connected spanning subgraph by using Depth First Search. Combined with the edge discarding
technique of Garg, Santosh and Singla [16] one obtains an approximation ratio of 1.5. Garg,
Santosh and Singla [16] simplified and improved the algorithm due to Khuller and Vishkin [28] to
yield an approximation factor of % The algorithm is in two phases. The first phase is similar to the
algorithm for the 2 edge-connectivity case described earlier. The second phase achieves two goals:
(i) an attempt is made to expunge tree edges and (ii) an attempt is made to modify the choice of
back edges so that it will help in expunging tree edges.

High-level Description of the Algorithm

The first phase is as follows: In the graph G, do a depth-first-search to compute a DFS spanning
tree T'. The idea is to now pick a set of back edges that will increase the vertex connectivity of the
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tree to two by “detouring” around each vertex of the tree T'. During the Depth First Search all
the tree edges are added to Fyr, as well as some subset of back edges. The back edges are chosen
when the DFS traversal is visiting a vertex for the last time. When DFS retreats out of a vertex
v for the last time, we check if the vertex u (parent of v) is potentially a cut vertex or not. If yes,
we can cover it by adding to Fy the highest going back edge from a descendant of v. (This will at
least prevent the separation of v from p(u) under the deletion of u.)

Before discussing the second phase, we define the notion of carving of a graph, and point out
the key difference between tree-carving and carving.

Definition 2 A carving of a graph is a partitioning of the vertex set'V into a collection of subsets
Vi, Vo, ..o, Vi with the following properties. Fach subset constitutes a node of a rooted tree I'. Fach
non-leaf node V; of 1' has a special grey vertex denoted by g(V;) that belongs to p(V;). For every
vertex v € V;, all the neighbours of v that are in ancestor sets of V; belong to either

1. Vi, or
2. V;, where V; is the parent of V; in the tree I', or

3. Vi, where Vi is the grandparent in the tree I'. In this case however, the neighbour of v can

only be g(p(V})).

The neighbour of v is required to be either an ancestor of v or a descendant of v.

We will refer to the vertices of I' as nodes, and the edges of I' as arcs. The root vertex belongs
to a special set called the root-set. The key difference between the carving and tree-carving is that
in the latter edges are only allowed to go to the parent node. In a carving, edges are allowed to go
to a single vertex in the grandparent node as well.

Given T, the DFS spanning tree, we will be interested in the following partition of the vertices
of G, called the DFS-tree partition. Some recursive calls DFS(v,u) end by adding the back edge
(savior[v], low[v]) to Ep. For each such call DFS(v,u), “remove” the tree edge (u,v) from 7’; the
resulting connected components of 7' (with some tree edges removed) provides the DFS-partition.
Furthermore, T induces a rooted tree structure on the sets in the DFS-tree partition.

The proof of the following theorem is given in [28].

Theorem 3.4 The DFS-tree partition yields a carving of G.

In the second phase the carving is processed “top-down” (starting with the root set). At each
step a modification is made to the choice of the back edge (going upwards) from a carving set.
This method is able to delete some of the tree edges as it proceeds (a similar trick was used in [28]
but was not powerful enough to give an approximation factor of %) The deletion of tree edges is
justified by the following lemma [16].

Lemma 3.5 Let G/ be a 2 vertez-connected graph; C' is a simple cycle in G, and e = (u,v) is a
chord in C'. Then G' — {e} is also 2 vertex-connected.

The parent vertex of a carving-set S is the grey vertex of S. Each carving-set (except for the
root-set) has a unique parent vertex.

During the “top-down” phase, each time we process a carving-set we either discard a tree edge,
or find a new vertex to add to an independent set. Suppose k£ — 1 back edges were added in the
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Figure 5: Figure for Case 1.

first phase (k is the number of sets in the carving). In the second phase, for each added back edge,
we either discard a tree edge (so the back edge does not cost us anything) or we add a new vertex
to the independent set. On termination, if we have p back edges remaining, we are able to find an
independent set of size p. Clearly, 2p is a lower bound on the optimal solution since an independent
set trivially yields a carving of size p + 1 (by making each vertex of the independent set into a
carving set, and all the other vertices into a single carving set).

We shall now jump into the guts of the second phase. When processing a carving-set we decide
the back edges out of its child blocks. Consider a set S with the back edge out of S being (v, u)
with v € . Consider the path in 7' from v to ¢ = ¢(.9), the parent vertex (or grey vertex) of set 5.
Let w be the first vertex (excluding v) along this path that has no tree edge (other than the edges
on the v — ¢ path) incident on it. If there is no such vertex then w is q.

If there is a back edge (z,w) with « € 5, a child of 5 in T'. Instead of picking the highest going
back edge from S’ we pick the back edge (z,w). For all other child blocks we do not modify the
choice of back edges. Picking this back edge allows the deletion of the edge connecting w to its
child in 7. There are two cases:

Case 1 w = p(v): observe that the edge (v, w)is a chord on the cycle v —v — —2 —w — —¢ — —u and
can be deleted (see Fig. 5).

Case 2 w # p(v): let (#/,7) and (r,w) be the last two edges on the path in the DFS tree from v to
w. We now have two cases: the first case is when z is a descendant of 7. By our assumption
on w, there must be a tree edge incident on vertex r other than the ones going to r’ and
w. Assume that this tree edge goes to a child S” of S in T'. There must be a back edge
(2',w") where 2’ € §” and w' is on the path from w to ¢ in the DFS tree. The edge (7, w) is

a chord on the cycle r — —2 —w — —w’ — 2’ — —r and can be deleted (see Fig. 6). The second
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Figure 6: Figure for Case 2.

case is when x is not a descendant of 7. In this case the edge (7, w)is a chord on the cycle
w——¢g— —u—v— —r— —x —w and can be deleted.

We can use this tree edge to account for the back edge emanating from the set .5, and this back
edge is thus paid for. We label the set 5" as “free”.

If w has no back edges from any child block, we mark w and label the set 5 as “marked”. The
root-set has no back edge emanating from it, and is marked “free”. In addition each leaf of the
DFS tree forms a singleton set, and is marked and the set is labeled “marked”. To argue that the
set of marked vertices form an independent set, observe that no two marked vertices belong to the
same set in the carving. Further, a marked vertex has no edge from any descendant set of the set
that contains it. Thus no two marked vertices can have an edge between them.

Upon termination, if we have p “marked” sets, we have n — 1 4+ p edges in our solution, and the
lower bound on the optimal solution is max(n,2p). It is easy to see that this is at most %

Open Problems: The main open problem is to obtain a constant factor approximation when the
edge weights do not satisfy the triangle inequality. Unlike the edge-connectivity case we do not
know how to obtain factors less than 2, even for the unweighted case.

4 Strong-Connectivity Problems

Most of the network design literature addresses the problem of finding subgraphs having certain
connectivities, in undirected graphs only. We now turn our attention to perhaps the simplest
corresponding problem in directed graphs. Given a strongly connected directed graph, find a
minimum strongly connected spanning subgraph (SCSS). Not surprisingly, this problem is NP-
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hard by a simple reduction from Hamilton Cycle in directed graphs. This problem was first studied
by Frederickson and JaJ& [11] for the weighted case, and a algorithm achieving an approximation
factor of 2 was obtained. (This is obtained by taking the union of a minimum weight in-branching
and a minimum weight out-branching, rooted at an arbitrary vertex.) For the unweighted case,
Khuller, Raghavachari and Young [24] obtained an approximation algorithm with a performance
ratio of about 1.64, which was improved to 1.61 [25]. The algorithms have a relatively high running
time, albeit polynomial. An almost linear time algorithm that achieves a ratio of 1.75 is also
described.

The MEG (minimum equivalent graph) problem is the following: “Given a directed graph, find
a smallest subset of the edges that maintains all reachability relations between nodes.” This prob-
lem is NP-hard; in fact, the heart of the MEG problem is the minimum SCSS (strongly connected
spanning subgraph) problem — the MEG problem restricted to strongly connected digraphs. The
MEG problem reduces in linear time [7] to a single acyclic problem given by the so-called “strong
component graph”, together with one minimum SCSS problem for each strong component (given by
the subgraph induced by that component). Furthermore, the reduction preserves approximation,
in the sense that c-approximate solutions to the subproblems yield a c-approximate solution to the
original problem. Hence an approximation algorithm for the SCSS problem implies an approxi-
mation algorithm for the MEG problem. Moyles and Thompson [31] observe this decomposition
and give exponential-time algorithms for the restricted problems. Hsu [21] gives a polynomial-time
algorithm for the acyclic MEG problem.

First we describe the basic algorithm that achieves a factor of 1.64 in polynomial time. The
algorithm and its analysis are based on the simple idea of contracting long cycles. After that we
will describe the nearly linear-time algorithm that achieves a ratio of 1.75. To learn about the
improvement to 1.61 the reader is referred to [25].

4.1 Polynomial Time Approximation Algorithms

Given a strongly connected graph, the basic algorithm finds as long a cycle as it can, contracts
the cycle, and recurses. The contracted graph remains strongly connected. When the graph finally
collapses into a single vertex, the algorithm returns the set of edges contracted during the course of
the algorithm as the desired SCSS. The algorithm achieves a performance guarantee of any constant
greater than 72/6 ~ 1.645 in polynomial time.

A natural improvement to the cycle-contraction algorithm is to modify the algorithm to solve
the problem optimally once the contracted graph has no cycles longer than a given length ec.
For instance, for ¢ = 3, this modification improves the performance guarantee to 72/6 — 1/36 ~
1.617. We use SCSS. to denote the minimum SCSS problem restricted to digraphs with no cycle
longer than ¢. The minimum SCSS; problem is trivial. The minimum SCSSs3 problem can be
solved in polynomial time, as shown by Khuller, Raghavachari and Young [25]. However, further
improvement in this direction is limited: we show that the minimum SCSS5 problem is NP-hard.

Before describing the algorithm we discuss some basic notation used in the rest of the section.
To contract a pair of vertices u, v of a digraph is to replace v and v (and each occurrence of u or v
in any edge) by a single new vertex, and to delete any subsequent self-loops and multi-edges. Fach
edge in the resulting graph is identified with the corresponding edge in the original graph or, in
the case of multi-edges, the single remaining edge is identified with any one of the corresponding
edges in the original graph. To contract an edge (u,v) is to contract the pair of vertices u and
v. To contract a set .5 of pairs of vertices in a graph G is to contract the pairs in S in arbitrary
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order. The contracted graph is denoted by G/S. Contracting an edge is also analogously extended
to contracting a set of edges.

Let OPT((G) be the minimum size of any subset of the edges that strongly connects G. In
general, the term “cycle” refers only to simple cycles.

We begin by showing that if a graph has no long cycles, then the size of any SCSS is large.

Lemma 4.1 (Cycle Lemma) For any directed graph G with n vertices, if a longest cycle of G
has length C, then

OPT(G) 2 7 (n=1).

Proof. Starting with a minimum-size subset that strongly connects the graph, repeatedly contract
cycles in the subset until no cycles are left. Observe that the maximum cycle length does not
increase under contractions. Consequently, for each cycle contracted, the ratio of the number of

edges contracted to the decrease in the number of vertices is at least Cfl. Since the total decrease
in the number of vertices is n — 1, at least CCTl(n — 1) edges are contracted. 0

Note that the above lemma gives a lower bound which is existentially tight. For all values of C,
there exist graphs for which the bound given by the lemma is equal to OP7(G). Also note that C
has a trivial upper bound of n and, using this, we get a lower bound of n for OP7 ('), which is
the known trivial lower bound.

Lemma 4.2 (Contraction Lemma) For any directed graph G and set of edges 9,
OPT(G) > OPT(G/S).

Proof.  Any SCSS of GG, contracted around S (treating the edges of S as pairs), is an SCSS of
G/S. 0
The algorithm is the following. Fix & to be any positive integer.

CONTRACT-CYCLESL(G) —

1 fori=Fkk-1,k-2,...2

2 while the graph contains a cycle with at least ¢ edges
3 Contract the edges on such a cycle.

4 return the contracted edges

We will show that the algorithm runs in polynomial time for any fixed value of k. It is clear
that the edge set returned by the algorithm strongly connects the graph. The following theorem
establishes an upper bound on the number of edges returned by the algorithm.

Theorem 4.3 CONTRACT-CYCLESE(G) returns at most ¢y, - OPT(G) edges, where

2 2 1

T ocp< ™y &
== T k- Dk

6

Proof. Initially, let the graph have n vertices. Let n; vertices remain in the contracted graph after
contracting cycles with ¢ or more edges (i = k,k—1,...,2).

How many edges are returned? In contracting cycles with at least k edges, at most %(n — k)

edges are contributed to the solution. For 7 < k, in contracting cycles with 7 edges, ﬁ(nﬂ_l —n;)
edges are contributed. The number of edges returned is thus at most

E )t 3w ) (e ) by me
T e R G T A Y Ry Ty )
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Clearly OP7(G) > n. For 2 <i <k, when n; vertices remain, no cycle has more than ¢ — 1
edges. By Lemmas 4.1 and 4.2, OPT(G) > *=%(n; — 1). Thus the number of edges returned,
divided by OPT(G), is at most

(1 + klﬁ) no & (i—qi)@l—z) (14 g5)n & (i—qi)@l—z) 1 =
SN " 7 < — . — — = .
oPT(C) T Z::S OPT(G) = T ; 1) k-1 ; 2=

A S R
6 = FT 6 Tk-1 &2
72 1 > 1
= % k—1_§i(i+1)
72 1 1
R
B 72 1
RECERT,

0
If desired, standard techniques can yield more accurate estimates of ¢k, e.g., ¢ = % + # +

0 (k%) . If the graph initially has no cycle longer than ¢ (¢ > k), then the analysis can be generalized

to show a performance guarantee of k:;{;l + Zf;ll 1/i2. For instance, in a graph with no cycle

longer than 5, the analysis bounds the performance guarantee (when k = 5) by 1.424.
Table 1 gives lower and upper bounds on the performance guarantee of the algorithm for small
values of k£ and in the limit as & — oco. The lower bounds are shown in [24].

k | Upper Bound | Lower Bound
3 1.750 1.750
4 1.694 1.666
5 1.674 1.625
00 1.645 1.500

Table 1: Bounds on the performance guarantee.

For any fixed k, CONTRACT-CYCLES, can be implemented in polynomial time using exhaustive
search to find long cycles. For instance, if a cycle of size at least k exists, one can be found in
polynomial time as follows. For each simple path P of k — 1 edges, check whether a path from the
head of P to the tail exists after P’s internal vertices are removed from the graph. If £ is even,
there are at most m*/2 such paths; if k is odd, the number is at most nm*=1/2, Tt takes O(m)
time to decide if there is a path from the head of P to the tail of P. For the first iteration of the
for loop, we may have O(n) iterations of the while loop. Since the first iteration is the most time
consuming, the algorithm can be implemented in O(n m!'*t%/2) time for even k and O(n? m+1)/2)
time for odd k.
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4.2 Nearly Linear-Time Implementation

We now describe a practical, near linear-time implementation of CONTRACT-CYCLES3. The perfor-
mance guarantee achieved is ¢s = 1.75. CONTRACT-CYCLES3 consists of two phases: (1) repeatedly
finding and contracting cycles of three or more edges (called long cycles), until no such cycles exist,
and then (2) contracting the remaining 2-cycles.
High-level description of the algorithm
To perform Phase (1), the algorithm does a depth-first search (DFS) of the graph from an arbitrary
root. During the search, the algorithm identifies edges for contraction by adding them to a set 5.
At any point in the search, G’ denotes the subgraph of edges and vertices traversed so far. The
rule for adding edges to S is as follows: when a new edge is traversed, if the new edge creates a
long cycle in G/, the algorithm adds the edges of the cycle to 5. The algorithm thus maintains
that G’/.S has no long cycles. When the DF'S finishes, G'/S has only 2-cycles. The edges on these
2-cycles, together with S, are the desired SCSS.

Because G’/S has no long cycles and the fact that the original graph is strongly connected,
G'/S maintains a simple structure:

Lemma 4.4 After the addition of any edge to G' and the possible contraction of a cycle by adding
itto S: (i) The graph G']S consists of an outward branching and some of its reverse edges. (ii) The
only reverse edges that might not be present are those on the “active” path: from the super-vertex
containing the root to the super-vertex in G'/S containing the current vertex of the DFS.

Proof.  Clearly the invariant is initially true. We show that each given step of the algorithm
maintains the invariant. In each case, if v and w denote vertices in the graph, then let U/ and W
denote the vertices in G'/S containing u and w, respectively.

When the DFS traverses an edge (u,w) to visit a new vertex w:

Vertex w and edge (u,w) are added to G’. Vertex w becomes the current vertex. In G'/S, the
outward branching is extended to the new vertex W by the addition of edge (U, W). No other edge
is added, and no cycle is created. Thus, part (i) of the invariant is maintained. The super-vertex
containing the current vertex is now W, and the new “active path” contains the old “active path”.
Thus, part (ii) of the invariant is also maintained.

When the DFS traverses an edge (u,w) and w is already visited:

If U = W or the edge (U, W) already exists in G'/.5, then no cycle is created, G'/S is unchanged,
and the invariant is clearly maintained. Otherwise, the edge (u,w) is added to G’ and a cycle with
the simple structure illustrated in Fig. 7 is created in G'/S. The cycle consists of the edge (U, W),
followed by the (possibly empty) path of reverse edges from W to the lowest-common-ancestor
(Ica) of U and W, followed by the (possibly empty) path of branching edges from lca(U, W) to U.
Addition of (U, W) to G'/S and contraction of this cycle (in case it is a long cycle) maintains part
(i) of the invariant. If the “active path” is changed, it is only because part of it is contracted, so
part (ii) of the invariant is maintained.

When the DFYS finishes visiting a vertex w:

No edge is added and no cycle is contracted, so part (i) is clearly maintained. Let u be the new
current vertex, i.e., w’s parent in the DFS tree. If U = W, then part (ii) is clearly maintained.
Otherwise, consider the set I of descendants of w in the DFS tree. Since the original graph is
strongly connected, some edge (z,y) in the original graph goes from the set D to its complement
V —D. All vertices in D have been visited, so (z,y) is in G’. By part (i) of the invariant, the vertex
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Figure 7: Contracted graph G'/S.

in G'/S containing & must be W, while the vertex in G’/ containing y must be U. Otherwise the
edge corresponding to (z,y) in G'/S would create a long cycle. 0
The algorithm maintains the contracted graph G’/S using a union-find data structure [36]
to represent the vertices in the standard way and using three data structures to maintain the
branching, the reverse edges discovered so far, and the “active path”. When a cycle arises in G'/S,
it must be of the form described in the proof of Lemma 4.4 and illustrated in Fig. 7. Using these
data structures, the algorithm discovers it and, if it is long, contracts it in a number of union-find
operations proportional to the length of the cycle. This yields an O(ma(m,n))-time algorithm.
The vertices of G'/S are represented in union-find sets as follows:

MAKE-SET(v): Adds the set {v} corresponding to the new vertex of G/S.
FIND(v): Returns the set in G'/S that contains vertex v.

UNION(u, v): Joins into a single set the two sets corresponding to the vertices in G'/S containing
G"’s vertices u and ».

The data structures representing the branching, reverse edges, and the active paths, respectively
are:

from-root[WW]: For each branching edge (U, W) in G'/S5, from-root[W] = (u, w) for some (u,w) €
(UxW)NnE.

to-root[U]: For each reverse edge (U, W) in G'/S, to-root[U] = (u,w) for some (u,w) € (U X
W)nE.

to-active[U]: For each vertex U on the “active path” in G’/ S5, to-active[U] = (u, w) where (u, w) €
(UxW)nE and W is the child of U for which the recursive DF'S call is currently executing,
unless no recursive DIF'S is executing, in which case to-active[U] = current.

For all other vertices, to-active[U] = nil.
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CoNTrRACT-CYCLES3(G = (V, F)) —  Pseudo-code.
51}

Choose r € V.

DFS(r)

Add 2-cycles remaining in G'/S to S.

return S

U = W N~

DFS(u) —
1 to-active[FIND(u)] < current
2 for each vertex w adjacent to u  — traverse edge (u,w) —
3 if (w is not yet visited) — new vertex —
MAKE-SET(w)
to-active[FIND(u)] < from-root[FIND(w)] — (u,w)
DFS(w)
to-active[FIND(u)] < current
else — edge creates cycle in G’/ S —
9 if (FIND(u) # FIND(w))  — cycle length at least 2 —
10 (z,y) — from-root[FIND(u)]
11 if (FIND(2z) = FIND(w))  — length two cycle through parent, U — W — U —
12 to-root[FIND(u)] — (u,w) — record edge to parent —
13 else
14 (z,y) — from-root[ FIND(w)]
15 if (FinDp(z) # FIND(u))  — not a forward edge to child; length of cycle > 3 —
16 CoNTRACT-CYCLE(w)
17 S —SuU{(u,w)}
18 to-active[ FIND(u)] < nil

0 ~1 O Ot i~

Figure 8: Practical implementation of CONTRACT-CYCLESs3.

Pseudo-code for the algorithm is given in Figures 8 and 9.
By the preceding discussion, the algorithm implements CONTRACT-CYCLES3. It is straightfor-
ward to show that it runs in O(ma(m,n)) time. Hence, we have the following theorem.

Theorem 4.5 There is an O(ma(m,n))-time approximation algorithm for the minimum SCSS
problem achieving a performance guarantee of 1.75 on an m-edge, n-vertex graph.

Here a(m, n) is the inverse-Ackermann function associated with the union-find data structure [36].
Open Problems: The main open problem is to obtain a performance ratio better than 2 for the
weighted strong connectivity problem.

5 Connectivity Augmentation

Let G = (V, E) be a graph with a non-negative weight function w on the edges. Let Gy = (V, Eyp)
be a subgraph of G. The goal is to add a minimum weight set of edges Aug, to Gy, such that the
resulting graph is A-connected for a given A\. We are permitted to only add edges from the graph
G. For A > 1, the problem is N P-hard. For A = 2, an approximation algorithm that achieved a
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COoNTRACT-CYCLE(w) —

1 while (to-active[F'IND(w)] # current) do
2 if (to-active[FIND(w)] = nil) then  — Go up towards l. c. a. along reverse edges. —
3 (¢,p) < to-root[FIND(w)]
4 a — to-active[F'IND(p)]
5 else — Go down from l. c. a. along active path. —
6 (p, ) — to-active[ FIND(w)]
7 a — to-active[F'IND(¢)]
— Contract parent p and child ¢. —
8 f — from-root[FIND(p)]
9 t — to-root[FIND(p)]
10 UNION(p, ¢)
11 to-active[ FIND(w)] —
12 from- root[FIND(w)]
13 to-root[ FIND(w)] —

Figure 9: Subroutine CONTRACT-CYCLE.

factor of 2 was given by Frederickson and JaJa [11] when Gy is a connected graph. (If Gy is not
connected initially, we may add a minimum spanning tree to connect its connected components.)
Here we present a simplification of the algorithm developed by Khuller and Thurimella [27]. We
describe algorithms for both the edge and vertex connectivity problems. We also show that an
approximation factor of 2 can be achieved in polynomial time for any A. This is done by an
extension of the algorithm described in Subsection 2.1.

We first describe some notation used in this section. The 2 vertex-connected components of a
graph are also referred to as blocks. For a vertex » in a rooted tree I', let the components formed
by the deletion of v be called Cy(v), C2(v),. .., Cgey(v), where d(v) is the degree of v in I'. If v
is not the root, we will assume that Cy(v) is the component that contains the root, and the other
components correspond to subtrees rooted at the children of vertex v. In a rooted tree, for a vertex
u we denote its parent by p(u).

Notation: we refer to an undirected edge between two vertices & and y as (x,y). On the other
hand, a directed edge from z to y is denoted by & — y.

5.1 Increasing Edge Connectivity from 1 to 2

Notice that we only need to show how to increase the edge connectivity of a tree due to the following
observation. If we are given Gy with nontrivial 2 edge-connected components, then we can shrink
the vertex sets of these components into single vertices, resulting in a tree whose edges are the
bridges of Giy. The edges to be retained from Feasible are the minimum weight edges that connect
vertices in different 2 edge-connected components of Gy. (Observe that the edges of Feasible that
connect vertices of the same 2 edge-connected component are of no use in augmenting Gy. Similarly,
among the edges that connect two distinct 2 edge-connected components only the minimum weight
edge is of interest.)

From (o, we will construct a directed graph G and find a minimum weight branching from a
vertex 7. (If there is no branching that spans all the vertices, we can show that there is no way to
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increase the connectivity of the network.) Using a minimum weight branching of G, we can find
a set of edges of G — Gy whose addition will increase the connectivity of Go. We can also show
that the total weight of the edges added by this technique is no more than twice the weight of an
optimal augmentation.

The algorithm is as follows:

(1) (Construct GP = (V, Ep))
(a) Pick an arbitrary leaf r and root the tree Gy at r by directing all the edges towards the
root. Denote the resulting tree by T'.

(b) Add to Ep the directed tree edges of I' and set their weight to zero.

(c) Consider the edges that belong to G = (V, E) but do not belong to G (edges in I — Fy).
For each such edge (u,v), if (u,v) is a back edge (i.e., it connects a vertex to one of its
ancestors), we add one directed edge to E¥ (shown below); otherwise, we add two directed
edges to EP. (We will refer to these directed edges as images of (u,v), and we say these
directed edges are generated by (u,v).)

Suppose that the edge e with weight w(e), joins vertices w and v belonging to the tree I.
There are two cases depending on the relative locations of u and v in the tree I' (see Fig 10).

(i) If u is an ancestor of v (the converse is symmetric): then add an edge u — v in G with
weight w(e).

(ii) If neither w nor v is an ancestor of the other: let ¢ = l.c.a(u, v) (least common ancestor
in the rooted tree I'). Add edges ¢t — u and t — v in G, each with weight w(e).

(2) Find a minimum weight branching in G* rooted at r. For each directed edge e that is
picked as part of the branching, and that does not belong to the directed tree I', add the
corresponding edge in F — Fg that generated e. The set of edges added is Aug.

Observe that all edges of G — T are such that they connect a vertex to one of its descendants in

I.
Lemma 5.1 If G is 2 edge-connected, then the directed graph GP is strongly connected.

Proof. Clearly, all the vertices of GP can reach the root r using edges from the tree I'. Further,
let us assume that GP is not strongly connected. Of all the vertices that cannot be reached from
the root, let u be the vertex that is closest to the root in I'. Clearly, the entire subtree rooted at u
must consist of unreachable vertices. Since the image of the edge (u,p(u))in G is not a bridge in
(7, there must be another edge (v,s) in GG going from a vertex v that is in the subtree rooted at u,
to vertex s that is not in this subtree.

Such an edge would have generated a directed edge from a vertex w to v in G where w is an
ancestor of v (specifically the least-common-ancestor of v and s). Since w is a proper ancestor of
u, it is reachable from 7 in GP. Therefore v is reachable from 7, and hence u as well. Thus we
obtain a contradiction. 0

Lemma 5.2 If G is 2 edge-connected, then the edge connectivity of the graph Gg together with the
edges in Aug is at least 2.
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(a) (b)

Figure 10: Construction of G,

Proof. Assume G is 2 edge-connected. Then by the previous lemma, we can find a minimum
weight branching in G”. Next, assume that despite the addition of the edges in Aug to Gy, the
resulting graph has bridges. All such bridges are the tree edges in I'. Let (u, p(u)) be one such edge
of I' that is closest to the root (it does not have to be unique). Since vertices in the subtree rooted
at u, are reached from r in the branching it must be the case that there is a directed edge w — v,
from a vertex w (ancestor of ) to v in the minimum weight branching. Such an edge would have
been generated by an edge connecting » to a vertex not in the subtree rooted at w. This edge would
belong to Aug and hence the edge (u,p(u)) is not a bridge. 0

Lemma 5.3 The weight of Aug is less than twice the optimal augmentation.

Proof. We prove the lemma by exhibiting a branching whose weight is at most twice the weight
of the optimal augmentation. Consider the minimum weight set of edges Aug™ that would increase
the connectivity from 1 to 2. Consider all the directed edges that are “generated” by edges that
belong to Aug*. These directed edges together with the tree edges yield a strongly connected graph
with total weight on the edges at most 2C™* (each edge of weight w generated at most two directed
edges, each of weight w). Hence the branching that we find has total weight at most 2C™*. 0

Theorem 5.4 There is an approximation algorithm to find an augmentation to increase the edge
connectivity of a connected graph to 2 with weight less than twice the optimal augmentation that
runs in O(m + nlogn) time.

Proof. The correctness of the algorithm follows from Lemma 2 and Lemma 3. Since the bridge-
connected components can be found in O(m + n) time [3] and a minimum weight branching can be
found in O(m + nlogn) time [14]. Since the least common ancestors for the m pairs can be found
in O(m + n) time by using the algorithm of Harel and Tarjan [20], the theorem follows. 0
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Figure 11: Construction of block cut vertex tree I'.

5.2 Increasing Vertex Connectivity from 1 to 2

We can assume w.l.o.g. that GGy is a connected graph just as in the case of edge connectivity. Our
overall strategy is similar to the one used in the previous section. That is, we first obtain a tree
structure I' of the blocks of G, construct a weighted, directed graph G using T and . Then find
a minimum weight branching in G which will indicate the edges of E — Ey that are to be added
to increase the connectivity of Go. We remark that I', in the case of vertex connectivity, is quite
different from that of the previous section.

We first describe an algorithm to construct the block cut tree.

(1) Let ay,aq,... and By, By, ... be the articulation points and blocks of Gy = (V, Ep), respectively.
The vertex set V(I') is a union of V, and V; where V, = {ay,az,...} and V;, = {b; | B; is a
block of Gp}. Associated with each vertex in V/(I'), is a set. For a; € V,, X; = {a;}. For
by € Vi, Y; = {v; | v; € V and v; is not a cut vertex in Go}.

(2) The edge set I(I') consists of edges (a;,b;) where ¢; is an articulation point that belongs to
block B;.

Fig. 11 illustrates the above construction via an example.
Observation: In the block cut tree I', each edge is between a vertex in V, and a vertex in V5.
Observation: Consider the sets associated with the vertices of I'. Each vertex of Gy belongs to
exactly one such set.

In the rest of the section, for a vertex u of V', the vertex of I' that corresponds to u is w if u is
an articulation point, and b; otherwise where B; is the unique block containing w. In the following,
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by superimposing an edge (z,y) € G on I', we mean adding an edge between a,b € V(I') where the
associated sets X and Y contain x and y respectively.
The algorithm is as follows:

(1) Superimpose all the edges of ¥ — Eg on I'. Discard all the self-loops. Among the multiple
edges retain the cheapest edge, discarding the rest.

(2) (Construct GP = (V, Ep))
(a) Pick an arbitrary leaf of I' to be the root r, and direct all the edges of I' towards r.
Continue to denote the resulting tree by I'.

(b) Add to Ep the directed tree edges of I' and set their weight to zero.

(c¢) Consider the superimposed edges of E' — Fy on I'. Let (u,v) be one such superimposed
edge. If (u,v)is a back edge (i.e. it connects a vertex to one of its ancestors), we add one
directed edge to EP (shown below); otherwise, we add four directed edges to EP. (We will
refer to these directed edges as images of (u,v), and we say these directed edges are generated

by (u,v).)
Suppose that the edge e with weight w(e), joins vertices w and v belonging to the tree I.
There are two cases depending on the relative locations of v and v in the tree I' (see Fig. 12).

(i) If u is an ancestor of v (the other case is symmetric): then add an edge u — v in G
with weight w(e).
(ii) If neither w nor v is an ancestor of the other: let ¢ = l.c.a(u, v) (least common ancestor

in the rooted tree I'). Add edges ¢t — u and t — v in G, each with weight w(e). Also
add edges u — v and v — u, each with weight w(e).

(d) Modify Ep as follows. Forevery u € V,, if there is an outgoing edge from u to a descendant
v, then replace that edge with u, — v where where u, is the child of « on the tree path from
u to v.

(3) Find a minimum weight branching in G rooted at 7. For each directed edge e that is picked
as part of the branching, and does not belong to the directed tree I', add the corresponding
edge in I/ — Fy that generated e. The set of edges added is Aug.

In the directed graph G’ there are no outgoing edges from a cut vertex to any of its descendants
in T'.
Observation: Consider the components formed on the deletion of a vertex u € V,, from I'. The
edges of G when superimposed on I' — u connect all these components.

Lemma 5.5 If G is 2 vertex-connected, then the directed graph GP is strongly connected.

Proof. Clearly all the vertices of G can reach the root r using edges of the tree I'. Let us assume
that GP is not strongly connected. Of all the vertices that cannot be reached from the root, let
u be a vertex that is closest to the root in I'. Clearly, the entire subtree rooted at u must consist
of unreachable vertices and every proper ancestor of u is reachable from r. The proof is a little
involved and we break it into cases.
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(a) Rooted tree I' and (b) GP after step 2(c) (c) GP after step 2(d)
edges of F — E

Case 1: u € V,.

Figure 12: Construction of G in the case of vertex connectivity.

Since w is not a cut vertex in G, there must be at least one edge connecting a vertex in Cq(u)

to some vertex in C;(u) by the Observation. Let this edge be (v,s) where s € Cy(u) and

v € C(u). Now there are two subcases to consider:

(a) sis an ancestor of v.

(i)

(i)

s eV,

Corresponding to edge (s,v) we added an edge in G, from the child s, of s (on the
path from s to v) to v. Since s, is a block vertex, it is distinct from u. Clearly s,
is an ancestor of u, and hence reachable from r. Thus v is reachable from r and so
is u, yielding a contradiction.

s €W

We add an edge in GP from s to v. Since s is reachable from r (because it is an
ancestor of u), so is v and hence u, yielding a contradiction.

(b) s is not an ancestor of v. Let t = [.c.a(s,v).

(i)

(i)

teV,.

Corresponding to edge (s, v) we added an edge in G, from the child ¢, of ¢ (on the
path from ¢ to v) to v. Since t, € V4, it is distinct from w. It is reachable from r
and hence v is reachable from

r, and so is u, yielding a contradiction.

t e V.

Clearly t is an ancestor of u, hence reachable from r. We added an edge in G from
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t to v, hence v is reachable and u as well, yielding a contradiction.

Case 2: u € V.

Consider the cut vertex p(u). Notice that p(u) # r since r € Vj. Let the roots of the
subtrees Cy(p(u)), Cao(p(n)),...Cr(p(u)) be r1(= r),re,...75, where k is the degree of p(u).
Assume that Cy(p(u)) refers to the component containing u (hence ry = w). Partition the
components into two groups as follows. The first group contains all the components whose
roots are reachable from 7, and the second group contains the rest. (Notice that both the
groups are non-empty.) Since G is biconnected there must exist an edge (s, v) where s belongs
to a vertex in C;(p(u)) and v belongs to a vertex in C;(p(u)), such that C;(p(u)) and C;(p(u))
belong to the first and second groups respectively.

(a) sis an ancestor of v.

(i) s € V,.
We added an edge from the child s, of s to v in GP. Since s, is a block vertex, it is
distinct from p(u) and reachable from r. Hence v is reachable from r, and so is r;
giving a contradiction.

(ii) s € V.
We added an edge in GP from s to v. Since s is an ancestor of p(u) it is reachable
from 7. Hence v is reachable from 7, and so is r;, giving a contradiction.

(b) s is not an ancestor of v. Let t = [.c.a(s,v).

(i) ¢ # p(u).
There is an edge in GP from either t or t,, to v. Since both ¢ and ¢, are reachable
from 7, so is v and hence r;, giving a contradiction.

(i) ¢ = p(u).
Note that r; is reachable from r. Because of edge (s,v) we generate the following
edges in GP: r; — s,r; — v,8 — v,v — 5. Hence v is reachable from r, and so is
r;, yielding a contradiction.

0

Lemma 5.6 If G is 2 vertex-connected, then the vertex connectivity of the graph Go together with
the edges in Aug is at least 2.

Proof. Assume that despite the addition of the edges in Aug to Gy, the resulting graph has a
cut vertex u. We will now show that u is destroyed as a cut vertex in the tree I', and hence in
Go. Consider the components C'y(u), ..., Cgy(u) in T'. Partition the components into two groups
as follows. The first group contains all the components that get connected to Cq(u) (by an edge
or a path) when the edges of Aug are superimposed on I'. The second group contains the rest.
Notice that both the groups are non-empty. Since GP is strongly connected all the vertices are
reachable from the root in the minimum weight branching. Since there are no outgoing edges from
u to its descendants by the previous observation, there must be an edge s — » in the branching
that satisfies the following. This edge has the property that s € C;(u) and v € Cj(u), where C;(u)
and C;(u) belong to the first and second groups respectively. The edge that generated s — v in
Aug would connect Ci(u) to Cj(u) in Go + Aug, yielding a contradiction. 0

Lemma 5.7 The weight of Aug is less than twice the optimal augmentation.
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Proof. We prove the lemma by exhibiting a branching whose weight is at most twice the weight
of the optimal augmentation. Consider the minimum weight set of edges Aug™ that would increase
the connectivity from 1 to 2. Consider all the directed edges that are “generated” by edges that
belong to Aug*.

These directed edges together with the tree edges yield a strongly connected graph with total
weight on the edges at most 4C* (each edge of weight w; generated at most four directed edges,
each of weight w;). Now pick a minimum weight branching in this graph. Notice that for each
cross edge (u,v) (when neither u nor v is an ancestor of the other) even though we generate four
directed edges in P, no minimum weight branching will use more than two of these four edges.
(Otherwise, it will not be a valid branching.) Hence the branching that we find has total weight at
most 2C™. 0

Theorem 5.8 There is an approzimation algorithm to find an augmentation to increase the vertex
connectivity of a connected graph to 2 with weight less than twice the optimal augmentation that
runs in O(m + nlogn) time.

Proof. The correctness of the algorithm follows from Lemma 5 and Lemma 6. Since the biconnected
components can be found in O(m + n) time [3] and a minimum weight branching can be found
in O(m + nlogn) time [14]. Since the least common ancestors for the m pairs can be found in
O(m + n) time by using the algorithm of Harel and Tarjan [20], the theorem follows. 0

5.3 Increasing Connectivity to A

We argue that it is possible to obtain an approximation factor of 2 for increasing the edge con-
nectivity of a graph to any A. The algorithm takes as input an undirected graph Go(V, Fy) on n
vertices and a set Feasible of m weighted edges on V', and finds a subset Aug of edges which when
added to Gy make it A-edge connected. The weight of Aug, is no more than twice the weight of
the least weight subset of edges of Feasible that increases the connectivity. We also observe that
the problem is N P-hard (for any A) by extending the proof that was given by [11] for incrementing
1-connected graphs to 2-connected optimally.

Consider a directed graph G with weights on the edges, and a fixed root r. How does one find
the minimum weight directed subgraph HP that has A-edge disjoint paths from a fixed root 7 to
each vertex v 7 Gabow [13] gives the fastest implementation of a weighted matroid intersection
algorithm to solve this problem in O(An(m + nlogn)logn) time.

To solve our problem (approximation algorithm), in the undirected graph Gy replace each
undirected edge (u,v) by two directed edges u — v and v — u with each edge having weight 0. For
each edge in the set Feasible (u,v) we replace it by two directed edges u — v and v — u with weight
w(u,v) (the weight of the undirected edge). Call this graph GP. Now run Gabow’s algorithm on
the graph GV, asking for A-edge disjoint paths from each vertex to the root. If the directed edge
u — v is picked in HP and w(u,v) > 0 (we can assume all edges of set Feasible have weight > 0
else we can always include it in Aug) we add (u,v) to Feasible. (This is a generalization of the
scheme for the case when Fj is empty.)

Open Problems: The main open problem is to obtain factors better than 2 for the unweighted
augmentation problem. Even simple greedy algorithms appear to have a performance ratio of 1.5.
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