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Gabriel M. Lipsa,Member, IEEEand Nuno C. MartinsFellow, OSA,

Abstract

Consider a first order linear time-invariant discrete tinystesm driven by process noise, a pre-
processor that accepts causal measurements of the stdte sydtem, and a state estimator. The pre-
processor and the state estimator are not co-located, aadey time-step, the pre-processor transmits
either a real number or an erasure symbol to the estimatoseék the pre-processor and the estimator
that jointly minimize a cost that combines two terms; theeotpd squared state estimation error and a
communication cost. In our formulation, the transmissiba ceal number from the pre-processor to the
estimator incurs a positive cost while erasures induce@asb This paper is the first to prove analytically
that a symmetric threshold policy at the pre-processor aldlman-like filter at the estimator, which

updates its estimate linearly in the presence of erasuregoiatly optimal for our problem.

. INTRODUCTION

We address the design of a finite horizon optimal state esbmaystem featuring two causal
operators; a pre-process®y » and a remote estimatd, whereT' denotes the time-horizon.
At each time instant, the pre-processor outputs either asuee symbol or a real number,
based on causal measurements of the state of a first ordar kin@e-invariant system driven
by process noise. The estimator has causal access to thet aftthe pre-processor and its
output is denoted as state estimate. We consider an optianizaroblem characterized by cost
functions that combine the state estimation error and a aamwation cost. In our formulation,
the communication cost depends on the output of the preepsaec, where we ascribe zero cost

to the erasure symbol and a pre-specified positive consthaetwise. The state process, denoted

G. Lipsa and N. Martins are with the Department of Electrimatl Computer Engineering, University of Maryland College
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{Xk}gzo {Vk}gzo {Xk}gzo
Po.r E(Por)

Fig. 1. Schematic representation of the distributed esiimaystem considered in this paper. It depicts the pregssorPy
and the corresponding optimal estimatbfP,,r), which produces the minimum mean squared error estimatbeoptocess
{X:}T_, given in (5).

as Xy, is given and the two causal operatdrs, and £ are to be jointly designed so as to
minimize the given cost function.

Most of this Section is dedicated to precisely formulatingtsan optimal estimation problem.
In subsection I-A we give a description of the informatiorusture of our framework, followed
by subsections I-B and I-C, where we give the problem fortmhaand a comparison with
existing work, respectively. In Section Il, we describe atipalar solution, while in Section V
we prove its optimality. Towards this goal, Section Il prats auxiliary optimality results and
Section IV is dedicated to introducing concepts from magtion theory and preliminary results,
notation and definitions. Section VI presents conclusiam$ ideas for future work, while in
Appendices | and Il we state and prove lemmas that are supgaodsults used throughout the
paper.

Notation: In this paper, we use lower case letters for constants, sach a and d. For
random variables we will use bold upper case letters, sucK,ashile a particular realization
is represented as a constantThe lower case letterg§, g andh are used mainly for probability
density functions, with the exception a6f which can also be used to indicate a general function.
We denote sets by double bared upper case font, su¢h asd B. For sets, we make use of
standard operations such as uni&nwB), intersection £ N\B) and set differenceA(\ B). If A and
B are two subsets of the real lifig we express set difference A§B = {zr ¢ R: z € A,z ¢ B}.
General functions are denoted using calligraphic, uppse d¢ant, such a3’ and 7. Further

notation is described throughout the paper on a need basis.

A. Preliminary definitions and information pattern desctigm

We start by describing the three stochastic processes antivthclasses of causal operators

(pre-processor and estimator) that constitute our proligmulation.
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Definition 1: (State Process) Given a real constant, and a positive real constan,, consider
the state of the following first order, linear time-invariaiscrete-time system driven by process

noise:

de
Xo :f Zo (1)

Xpt1 X, + Wi, k>0 (2)

where {W;}T_ is an independent identically distributed (i.i.d.) Gaasszero mean stochastic
process with variance?, andz is a real number. The filtration generated{; }/_, is denoted
as:

def

X = 0 (X;;0<t <k) (3)

where o (X;;0 <t < k) is the smallest sigma algebra generated{B§;,0 < ¢ < k}, for all
integersk.

Definition 2: (Pre-processor and remote link process) Consider an erasure symbol denoted
as ¢ and a causal pre-processByr : (zo,...,x;) — v, defined fork € {0,...,7} and
v, € RU{€&}. Hence, at each time instaht the preprocessor outputs a real number or the
erasure symbol, based on past observations of the statesgrobNotice that a pre-processor
generates a stochastic procd3é;};_, via the application of the operat@, r to the process
{X,}_, (See Figure 1). The map, r is a valid pre-processor if the following two conditions
hold: (1) The pre-processor transmits the initial stajeat time zero, i.e.py = xo. (2) The
pre-processor is measurable in the sense that the pr¢%83s_, is adapted tot;.

The filtration generated byV,}/_, is denoted agB;}}_, and it is obtained as:

def

B, = o0(V;0<t<k) 4)

where o (V;;0 <t < k) is the smallest sigma algebra generated{;,0 < ¢ < k}, for all
non-negative integers.

Remark 1:Notice that any finite vector of reals can be encoded into glsireal number via
a suitable invertible transformation. Hence, without lo§gienerality, we can also assume that
the pre-processor can transmit either a vector of real ntsntrethe erasure symbol.

Definition 3: (Optimal estimate and optimal estimator) Given a pre-processcP, r, we

consider optimal estimators in the expected squared sehesenoptimal estimate at timeis
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denoted aX,, and is expressed as follows:

. def E [Xk\{vt}fzo] if £>1
e (5)
o if k=0
where E [X;|{v;}}_,] represents the expectation of the st&g conditioned on the observed

current and past outputs of the pre-processotr_, (see Figure 1). We us&(P, ) to denote

the optimal estimator associated with a given pre-processor polRy;.

Notice that from Definition 2 we assume that the pre-proaeas@ays transmits the initial
statexy. Hence, the initial estimate is set to satisfy= vy = z¢. Such an assumption is a key
element that will allow us to prove the optimality of a centacheme, via an inductive method.
This will be discussed later on in Section V.

Remark 2:1t is important to note that all the information availabletaé estimatoi& (P, r)
is also available at the pre-procesgay;. Hence, the pre-processgy  can construct the state

estimateX, by reproducing the estimation algorithm executed at tha@r@testimator.

B. Problem statement

In this subsection, we define the optimal estimation paradigat is central to this paper. We
start by specifying the cost, which is used as a merit catethroughout the paper, followed
by the problem definition.

Definition 4: (Finite time horizon cost function) Given a measurable pre-process@y
(Definition 2), a real constant, a positive integefl’, a positive real numbef less than one and

positive real constantsy, andc, consider the following cost:

T N2
Jor (C% O-XQ/[/? c, PO,T) «f kz:: d"'E (Xk; — Xk:) + C\f/{]ﬁ (6)

communication co
where X, is the state of the system defined in (1)-(X), is the optimal estimate specified in

Definition 3, andR,, is the following indicator function:
der |0 if V,=¢

1 otherwise

Remark 3:(Cost does not depend on X)) Notice that because the plant (1)-(2) is linear, the

fact thatzy = z¢ holds (see Definition 3) implies that the homogenous parhefdtate can be
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reproduced at the estimator. Hence, the optimal estimatbmaorporate such an homogeneous
term, thus subtracting it out from the estimation erdof — X,, for k > 0. This also implies
that the cost (6) does not depend on the homogeneous terrmrtbeanitial conditionX,.

The following is the main problem addressed in this paper.

Problem 1: Let a real constant, the variance of the process noisg and the initial condition
xo be given. In addition, consider that a positive reah positive real numbef less then one
and a positive integef’ are given, specifying the cost as in Definition 4. We want tal fam

optimal solution?; ;- to the following optimization problem:

Por = argglin Jor(a, o0y, ¢, Por) (8)
0,T

C. Comparison with the state of the art

There is a significant body of work in distributed estimatand in filtering in multiple areas.
Of particular interest to this paper is the work in [1], whiekplores the optimization of paging
and registration policies in mobile cellular networks. [Ij,[motion is modeled as a discrete-
time Markov process, and the optimization is carried outdadiscounted cost evaluated over
an infinite horizon.

The authors of [1] use majorization theory and Riesz’s seggement inequality to show
that, for Gaussian random walk models, nearest-locatrgsh4iaging and distance threshold
registration are jointly optimal. In comparison with the nkan [1], which considers random
walks and indicator-type costs, our work addresses thengpestimation in the expected square
error sense for scalar linear time invariant systems (stablunstable).

In [7], the authors consider a sequential estimation prabAMath two decision makers, where
the first observes the state of a stochastic process andedegltether to transmit information to
the second agent, which will act as a state estimator. Thgsetsa have the common objective
of minimizing a performance criterion, with the constrathat the first agent can transmit
information to the estimator only a pre-specified finite nembf times. In contrast with [7],
where the authors assume that the decision policies at tiraa¢sr are constrained a-priory
to be of the threshold type, here we prove the optimality ehisetric threshold policies. Yet
another difference between this paper and [7] is that we taal@@mmunication cost, instead of

constraining the number of transmissions. The problem ¢dinimg optimal estimates subject
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to a finite number of sampling actions, in continuous timgddressed in [14], [15] and related
work by the same authors cited therein. Notice that neitherwork [7] nor [14], [15] can be
used for Problem 1 because there is no explicit relationséipreen the cost for communication
in Problem 1 and the constraint on the number of samplingm@stias adopted in [14], [7]. A
general framework for a distinct, yet related, class of fois in continuous time is studied in
[9], which is conducive to establishing existence of salng and optimality results via quasi-
variational inequalities. The formulation in [9] is statedterms of the optimal scheduling of
sensors to achieve an optimal estimate of a function of thie stt the end of a finite horizon.

The work in [10] is motivated by large-scale sensor netwavkere simultaneous data transfer
to a fusion center is not feasible. In [10], the sensors are gfaa networked control system
in which a controller is collocated with the fusion centethavmust decide which sensor to
observe and each choice has a cost associated with it. Thepasdigm in [10] is similar to
our Problem 1, for which the authors of [10] illustrated nuitaly that the best policy is of
the threshold type.

The author in [11] investigates an optimal control probleminere measurements can be
collected one sensor at a time and each sensor has an asgooost. In [11] it is shown
that the problem of selecting the optimal strategy can bm@bated as a deterministic control
problem. The computation of the measurement policy takesepbffline and the optimal strategy
is adopted. In contrast to our result, the policies adopteld 1] are off-line.

The authors of [8] adopt a formulation that is similar to ouftey consider a networked
control problem with transmission costs, where they adofabnan-like estimator and show,
using dynamic programming, that, for such a pre-determitealce of estimator, the optimal
pre-processor is a memoryless function of the state esamatror. In contrast to our paper,
the problem analyzed in [8] deals also with the multidimenai case, while we handle the
scalar case, but we prove analytically that there exist anidatlike filter at the estimator and a
threshold policy at the pre-processor that are jointly ropti

Notice that the communication link in our framework is notigyp in the sense that the
pre-processor can predict with certainty what the estimedoeives after every transmission.
A significant advance in the understanding of the problem esighing optimal causal pre-
processors and estimators in the presence of noisy trasismjsvithout communication cost,
can be found in [3], [4].
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[I. OPTIMAL SOLUTION TO PROBLEM 1

In this section, we start by defining a particular choice dfnestor (section 1I-A) and pre-
processor (section 1I-C), which we denote as Kalman-likd agmmetric threshold policy,
respectively. As we argue later on, in Theorem 1, such estingnd pre-processor are optimal

for Problem 1.

A. A Kalman-like estimator

Definition 5: (Kalman-like estimator) Given the process defined in (1)-(2) and a pre-processor
Po.r, define the magg : (vo,...,vx) — 2z, for k in the set{0,...,T}, wherez; is computed
as follows:

20 d;f Zo (9)

azp_; If v, =¢
ST TR ith k> 1 (10)

Vg otherwise

Remark 4:The Kalman-like filter generates the procéﬁg}fzo via the operatorZ applied
to the process{Vk}fzo. Notice that the pre-processor has access to the estifabecause it

has access and full control of the input appliedzo

B. The Seif?; - of Admissible Pre-Processors

We proceed by defining a class of pre-processors, which is\abohe to the use of recursive
methods for performance analysis. If a pre-processor pgslém such a class then we denote it
as admissible, and we argue in Remark 6 that there always axiadmissible pre-processor
that is an optimal solution to Problem 1. This implies that weur no loss of generality in
constraining our analysis to admissible pre-processors.

Definition 6: (Admissible pre-processor) Let a horizorl" larger than zero and a pre-processor
policy Py r be given. The pre-processps 1 is admissible if there exist ma@y, 1 : (2, ..., z%) —

v, With 0 <m < T andk > m, such thatP, » can be specified recursively as follows:

Description of the Algorithm for P, »

o (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e,, = z,,.
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« (Step A) Increase the countédr by one. If £ > T holds then terminate, otherwise execute
Step B.

. (Step B) Obtain the pre-processor output at tihevia vy, = Por(Tm, ..., xk). If v, = €
then setr, = 0 and go back to Step A. If,, # & then execute algorithr®; .

End of the description of the Algorithm for P,

The class of all admissiblpre-processors is denoted Bs .

The following Remark provides an equivalent characteiorabf the class of admissible pre-
processors.

Remark 5:Let a horizonT' larger than zero and a pre-processor poligy, be given. The
pre-processof®, r is admissible if and only if for eachn € {0,...,7} there exists a map

Pt (T, - .., x1) — v Such that the following holds:
'm=1 = Pyr(zq,...,26) = Ponr(@m,. .., 2k), Ty, 2k €RE>m>qg>0 (11)

Given an admissible pre-processBg , later on we will also refer to the time-restricted pre-
processorg P, r}% _, according to Definition 6, or equivalently as implied by (11)

Remark 6:Given a positive time-horizofi’, there is no loss of generality in constraining our
search - for optimal an pre-processor - to theBget In order to justify this assertion, consider
that an optimal pre-processor poli@y;  is given. If a transmission takes place at some time
m (r,, = 1 holds) then the optimal output at the pre-processar,is= x. In fact, given that
a real number is transmitted, the choige= x; must be optimal because it leads to a perfect
estimatez,, = x,,. Hence, given that,, = 1, by Markovianity we conclude that the current
and future output produced by the pre-process@f.}7_  will not depend on the staf¥;, for

timesk prior to m. ConsequentlyP; - satisfies (11), and hence it is admissible.

C. Symmetric threshold pre-processor

Definition 7: In order to simplify our notation, we define the following pess:

Y, “ X, - aZ,, (12)
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Using Definitions 1 and 5, we find thdfy,,},_, can be rewritten as:
Y, =0 (13)

aYk + Wk if Rk =0
Yip = (14)
W, if R, =1

Remark 7:We notice thatY, has an even probability density function. This fact makes
{Y}{_, @a more convenient process to work with, in comparisodXg.}7_,, which motivates
its use in our analysis hereon, whenever possible. Thissidecincurs no loss of generality
because{Y}}}_, can be recovered fromX;}!_,, and vice-versa, via the use ¢&%;}/_,,
which is common information at the pre-processor and estim@®ee Remark 4). In addition,

notice that the cost (6) can be re-written in terms{df, }/_, as follows:
def &\ 2
Tor (a,0%,¢.Por) 2 Y d* 1B {(Yk — Yk> + ch} (15)
k=1

whereY, @ E (Y1 [{V.}Eo]. A key fact here is thal’, = X, — aZ;_, holds, leading to the
validity of the identityY, — Y, = X, — X.

Definition 8: Given a positive integer horizoi and an arbitrary sequence of positive real
numbers (thresholds) = {r.}._,, for eachm in the set{0,...,T}, we define the following
algorithm fork > m, which we denote as§,,, r:

Description of Algorithm S,

« (Initial step) Setk = m, r,, = 1 and transmit the current state, i.g,, = z,,, or equivalently
sety,, = 0.

« (Step A) Increase the time countdr by one. If £ > T holds then terminate, otherwise
execute Step B.

« (Step B) If |yx| < 7 holds then set, = 0, transmit the erasure symbol, i.e;, = ¢, and

return to Step A. lfly,| > 7, holds then sein = k and executeS,, r.

End of description of Algorithm S,

Definition 9: (Symmetric threshold policy) The algorithmS, r, as in Definition 8, is denoted

as symmetric threshold pre-processdhe pre-processof, is admissible and the class of

all symmetric threshold policieis denoted a$; .

The following is the main result of this paper
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Theorem 1:Let the parameters specifying Problem 1 be given, i.e., #iance of the process
noises?,, the system’s dynamic constamtthe communication cost the discount factod and
the time horizonT' are pre-selected. There exists a sequence of positive vmabersr =
{T,j};f:l, such that the corresponding symmetric threshold pafigy is an optimal solution to
(8) and the corresponding optimal estimafgsS; ;) is Z. HereS; » and Z follow Definitions 9
and 5, respectively.

Note: The proof of Theorem 1 is given in Section V.

[Il. AUXILIARY OPTIMALITY RESULTS

We start by defining the following class of path-dependertgocessor policies, which is an
extension of Definition 9 so as to allow time-varying thrdsisathat depend on past decisions.
Such a class of admissible pre-processors will be used ilat8ection V, where we provide a
proof for Theorem 1.

Definition 10: (Algorithm D,, r) Given a horizorl’, consider that a sequence of (threshold)
functions7 %/ {Thilm <k <T,1 <m < T}, with 7,,,; : {0,1} % — R, is given. For every
m in the set{1,..., T}, we define the following algorithm, which we denoteRg r:

Description of Algorithm D,,

o (Initial step) Setk = m, r,, = 1 and transmit the current state, i.e,, = z,, or equivalently
sety,, = 0.

o (Step A) Increase the time countér by one. If £ > T holds then terminate, otherwise
execute Step B.

« (Step B) If |yx| < Tk (Tm, - .., 71—1) holds then set,, = 0, transmit the erasure symbol,
i.e., v, = €&, and return to Step A. Ifyx| > T,k (7m, - .., 7x—1) holds then execut®, .

End of description of Algorithm D,, »

Recall thatr, throughr,_; represent past decisions by the pre-processor, whetel indicates
that the state is transmitted to the estimator at timevhile r, = 0 implies that an erasure was
sent.

Definition 11: (Path-dependent symmetric threshold policy) Given a horizonI’, consider
that a sequence of (threshold) functiofis™’ {Tnixm < k <T,1 <m < T}, with 7, :
{0,1}™* — R, is given. The path-dependent symmetric threshold pregssor associated
with 7 is implemented via the execution of the algorittipa;,, as specified in Definition 10.
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Typically, we denote such an admissible pre-processoDas. We useD,, to denote the
entire clasof path-dependent symmetric threshold pre-processots tiite horizonT'.

The goal of this sectioms to provide the following two results that are crucial irethroof

of Theorem 1: In Proposition 1, we prove thatZ¥ , is any given path-dependent symmetric
threshold pre-processor policy then the associated opéstanator€ (D, ) is Z. In Lemma 1
we prove that if we optimize within the class of path-deperndmlicies then the optimum is
of the path-independent type, as specified in Definition 9s Tdict might raise the question of
whether Definition 11 is needed. The answeyésbecause we adopt a constructive argument
in the proof of Theorem 1 in Section V, which uses Definition 11

Proposition 1: Let D, » be a pre-selected path-dependent symmetric thresholdyp@efi-
nition 11), it holds that the optimal estimat6(D, 1) is Z, as described in Definition 5.

Remark 8:Proposition 1 could be recast by stating tBgt = Z, holds in the presence of
path-dependent symmetric threshold pre-processors.

Proof: (of Proposition 1) In order to simplify the proof, we defiiX,}7_, as the process

guantifying the error incurred by adopting a Kalman-lik¢ireator Z (See Definition 5), i.e.,

X, = Xy — Z. More spec:ificalIy,{f(k}{:O can be equivalently expressed as follows:

X, =0 (16)
~ an—i-Wk |f RkZO
X1 = , 0<k<T-1 a7
0 if R, =1

The proof follows from the symmetry of all probability detysfunctions involvingX,, and V.
More specifically, under symmetric path-dependent threspolicies the probability density
function of X, given the past and current observatiqig, }~_,, is even. Hence, we conclude
that E[X,|{V,}*_,] = 0, which implies thatX; % E[X,[{V,}r_] = Z. n

A. Optimizing within the clasB

Remark 9:1f D, r is a symmetric path-dependent threshold pre-processer{sénition 11)

then'Y,, = 0 holds, leading to the following equality:

T
Jor (a,0%, ¢, Dox) = d" 'E[Y;+cRi], Doz €Dr (18)

k=1
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The process defined in (14) is a Markov Decision Process (MidR)se state and control are
Y, andRy, respectively. Hence the minimization of (18) with resp@cpre-processor policies
Dy r in the classDy can be cast as a dynamic program [13]. To do so, we define theiseg
of functionsV,r: R — R, t € {1,...,T + 1} which represent the cost-to-go as observed by the
pre-processor. Her€ represents the horizon, whitedenotes the time at which the decision was
taken, and the argument of the function is the MDP s¥ieln order to simplify our notation,
we adopt the convention thad . r(yr41) I, yr+1 € R. Using dynamic programming, we
can find the following recursive equations frr(y:), t € {1,...,T}:

de

Vt,T(yt) :f min Ct,T(yta Tt), t e {1, e ,T} (19)

TtE{O,l}
whereC;r : R x {0,1} — R is defined as:
def c+ dE [Vt—l—l,T(Wt)] if Tt = 1

Ct,T(ym ) = (20)
th + dF [VH—LT (ayt + Wt)] if Tt = 0

From (20) it immediately follows that an optimal decisiornlipp »; at any timet is given by:

1 if Cor(ys, 1) < Cor(y, 0
r:: t,T(yt ) tT(yt ) (21)

0 if Cir(y,0) < Crr(ye, 1)

Using the MDP given in Definition 7 and the value functionsrfirequation (19), we prove the
following Lemma, which states thatjithin the class of symmetric path-dependent pre-proecesso
Dy (Definition 11) there exists an optimal pathdependensymmetric threshold policys; -
(Definition 9) for Problem 1.

Lemma 1:Let the parameters specifying Problem 1 be given, i.e., #8t@nce of the process
noises?,, the system’s dynamic constamtthe communication cost the discount factod and
the time horizonl" are pre-selected. Consider Problem 1 with the additionastraint that the
pre-processor must be of the symmetric path-dependentiyspecified in Definition 11. There
exists an optimal patmdependensymmetric threshold policys; -, as given in Definition 9,

whose associated threshold select{efi}?_, is given by a solution to the following equations:

C@T(Ti, O) = CnT(Ti, 1), t e {1, . ,T} (22)
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Ct,T(yt, 0)

_x * Yt
T, 0 T

Fig. 2. lllustration suggesting that Facts A.1 through Amply the existence of thresholds for which (23) holds.

Proof: From (21), we conclude that in order to prove this Lemma we orded to show

that there exist thresholds;}7_, for which the following equivalences hold:
\yt\ > Tt* <:>Ct7T(yt,1) < Ct,T(yt,O), t e {1,,T} (23)

Indeed, if (23) holds then the optimal strategy in (21) canilbplemented via a threshold
policy. In order to prove that there exist thresholds }_, such that (23) holds, we will use
the following facts (A.1 thorugh A.4):

« (Fact A.1): For everyt in the set{1,...,T}, C.r(y:, 1) depends only ont, i.e., it is a
time-dependent constant independenyof
(Fact A.2): It holds thatC; r(0,0) < C;r(y:, 1) for y, € R.
(Fact A.3): For everyt in the set{1,...,T} there exists a positive constamt such that

Cer(ye,0) > Cop(yr, 1) andCyr(—y:, 0) > Cer(—uyt, 1) hold for everyy, satisfying|y,| > ..

(Fact A.4): It holds thatC.r(y:,0) is a continuous, even, quasi-convex and unbounded

function of y;, for everyt in the set{1,...,T}.

Facts A.1 and A.2 follow directly from (20), while Fact A.3llimvs from Fact A.4, which
requires a proof that we defer to a later stage. At this poiatassume that Fact A.4 is valid,
and we proceed by noticing that continuity @fr(v;, 0) with respect tay,, as well as Facts A.2
and A.3, imply that the equations in (22) have at least onatiswl {7;}/_,. Moreover, from
Facts A.1 through A.4 we can conclude that such a soldtign’_, guarantees that (23) is true
(See Figure 2).

(Proof of Fact 4) Sincey? is an even, convex, unbounded and continuous functiop;,of
from (20) we conclude that it suffices to prove by inductioatth, r(y;) is even, quasiconvex,

bounded and continuous for eatln the set{1,...,T}.
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SinceVr. r(yr+1) = 0 holds by convention, the following is true:

Vrr(yr) = min (¢,y7), yr € R

HenceVrr(yr) is an even, quasiconvex, bounded and continuous functign.d¥sing Lemma 14
in Appendix I, we conclude that [V r(ayr—1 + Wr_1)] is also an even, quasiconvex, bounded
and continuous function afr_,, which implies that so i8’r_; r(yr_1). By induction it follows
that V, r(y:) is an even, quasiconvex, bounded and continuoug;ofor eacht in the set
{1,...,T}. u

V. NOTATION, DEFINITIONS AND BASIC RESULTS FOR THEPROOF OFTHEOREM 1

This section is dedicated to introducing notation, defam$ and basic results in majorization
theory that will streamline our proof of Theorem 1. The probTheorem 1 is given in Section V.

In Subsection IV-A, we introduce basic majorization theand state a few Lemmas, which
are supporting results for the proof of Theorem 1. In Subsed/-B, we introduce notation
and we derive recursive equations for the time update oficedonditional probability density

functions of interest.

A. Basic Results, Notation and Definitions from Theory ofdviaation

In [1], the authors define what a neat probability mass fanstis. We will adapt this definition
for probability density functions oiR.

Definition 12: (Neat pdf) Let f : R — R be a probability density function. We say thais
neat if f is quasiconcave and there exists a real nundb®rch thatf is non-decreasing on the
interval (—oo, b] and non-increasing ofb, oo).

Remark 10:Throughout the paper, we will use the useful fact that thevalution of two
neat and even probability density functions is also neat@areh. The complete proof of this
fact is given in Lemma 5 in Appendix |.

Hajek gives in [1] the definition of symmetric non-increasgifiunction onR™. Since we work
only on the real line, it suffices to notice that a probabilitynsity functionf : R — R is
symmetric non-increasing if and only if it is neat and eveenkk, without loss of generality,
in this paper only useymmetric non-increasing qualify certain probability density functions

throughout the paper.
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Let A be a given Borel measurable subsetfRofwe denote its Lebesgue measure HyA).
If the Lebesgue measure df is finite then the symmetric rearrangementAgfdenoted byA“,
is a symmetric closed interval centered around the origith Webesgue measure(A):

= fremin < £0)

Let f : R — R be a given non-negative function, we defiffg the symmetric non-decreasing
rearrangement of, as follows:

- def o
O / Tpcn ooy (@)dp (24)
0

whereZy.cr.r(2)>p- : R — {0, 1} is the following indicator function:

1 ifze{zeR: f(z)>p}°
def
Tierf(z)>pye (T) = , reR
0 otherwise

If f andg are two probability density functions dR, then we say thaf majorizesg, which

we denote a¥ > g, provided that the following holds:

/ g°(x)dx < fo(x)dx, forall p >0 (25)
lz|<p |lz|<p

One interpretation of the inequality in (25) is thgt,majorizesg, if and only if for any
Borel setF’ C R with finite Lebesgue measure, there exists another Bordl sefR satisfying
L (F") = £ (F) and such that the following holds:

/ g(x)dx < /f(a:)da:
F’ F
Given a probability density functiori : R — R and a Borel seK, such that[, f(z)dz > 0,

we define the restriction of to K as follows:

/(@) if 2 €K
fK(x) d:f Jx fx)dx (26)

0 otherwise

It is clear thatfxk is also a probability density function.
The following Lemma is a supporting result for the proof ofebnem 1 given in Section V.
Lemma 2:Let f,g : R — R be two probability density functions, such thatis neat and

even andf > g. Let x be a real number in the interval € (0,1), and letA = [—7, 7| be
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the symmetric closed interval such that_f(z)dx = 1 — x. For any functionz : R — [0, 1]
satisfying [, g(z)h(z)dz = 1 — &, the following holds:
fur 20 @7)
whereg - h: R — R is defined agy - h(z) 2 g(x)h(z), for = € R.
Proof: From Lemma 10 given in Appendix I, we know that for any funotfo: R — [0, 1]
satisfying [, g()h(z)dz = 1 — k, there exists a set’ C R, satisfying [,, g(z)dz = 1 — &, such

that the following holds:

h
g = T 28)

From Lemma 9 given in Appendix |, we know th#t >~ g,.. From equation (28) and the fact
that f, > ga- holds, it follows that:

-h
fA>—g
11—k

The following Lemma, which we state without proof, can berfdun [1]:
Lemma 3:[1, Lemma 6.7] Letf and g be two probability density functions oR, with
f symmetric non-increasing anfl = ¢g. For a symmetric non-increasing probability density

function i the following holds:

fxh>=gxh (29)
Lemma 4:Let f be a neat and even probability density function on the real. lLetg be a

probability density function on the real line satisfyipg< f. The following holds:

2’ f(x)dz < /(:r —y)g(z)dz,  yeR (30)

Proof: The result foﬁows by selectiRhg(x) = 22 in Lemma 13 found in Appendix A. m
Remark 11:Consider the conditions of Lemma 4. The fact that the prdibabiensity function

f is even implies tha{/, = f(z)dxz = 0. Hence, if we selecy = [, zg(z)dz then it follows from

equation (30) that the variance ¢fis less than or equal to the variance gof

B. Conditional probabilities and conditional probabiligensity functions

Before proving Theorem 1, in this subsection we need to malesvaemarks and introduce

more notation, which will streamline our proof. This sulig@t contains two parts: We start by
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introducing the notation for certain conditional probdapildensity functions of interest, while
in the second part we will derive recursive equations for tinee update of the conditional
densities, and we will also obtain a recursive expansiortHercost associated with any given
admissible pre-processor poli@ .

Definition 13: Let a pre-processoP, r, implementing a decision policy as in Definition 2,
be given. We define the following notation for conditionablpability densities, which will
streamline our proof of Theorem 1:

1) Define the conditional probability density function Wi, given that only erasure symbols

were transmitted up until timé as follows:

def
Yk (W) = S Ri=0,. Re—0 (¥) yeR

2) Define the conditional probability density function Wi, given that only erasure symbols

were transmitted up until timé — 1 as follows:

def
’Yk\k—1(y) = fYk\R1:0 ..... Ry_1=0 (y), yeR

Definition 14: We define the following streamlined notation for certain ditional probabil-
ities of interest:
1) Define the probability that, under polidy, -, only erasure symbols have been transmitted
up until time &:
g |PR1=0,... ., R,=0) ifk>1

Sk =
1 if k=0

2) Define the conditional probability that, under poli®y r, the pre-processor transmits the
erasure symbol at timg, given that only erasure symbols have been transmitted tip un
time k£ — 1.

Sklk—1 =
S1 if k=1
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Definition 15: Let P, be a decision policy given as in Definition 2. Letbe a positive
integer andy be a real number. For a positive intederdefine the functiorp, : R — [0, 1] as
follows:

) E PRy=0[Y, =y, R =0,....,Rp1=0), 2€R (31)

which is the probability that, at timé, the erasure symbol is transmitted, given that = v,
wherey is any real number, and the fact that only erasure symbole baen transmitted up
until time £ — 1.

Notation: For a random variabl& described by a probability density functighand a real
function h, we denote byE,[h(Y)], the expected value of the random variab(&') under the

probability density functiory.

C. Time Evolution

Now, we describe how the conditional probability densitydtions presented in subsection IV-
B evolve in time, for a given policy?, r. For a real numbet, below we define the conditional

probability density function ofY,, given that no observation was received up until time

a def
”Yk|k:(y) -

We denote byNaév the probability density function oWy, for all %, i.e., the Gaussian zero

22

mean probability density with varianes,, or more concretely\/'c,av (x) = —L_¢ ¥ . Since

A/ 27ra‘2/v

the sequeanWk}fzo is i.i.d., W,_; is also independent o{hﬁ}f;ol, which implies that the

following holds:

Vik—1 = Vh—1jp—1 * Noz (32)

Proposition 2: The conditional densities;;,_; and -, are related via the following time-

recursion:

(y) — Vk"“;k(i’)”’“ W A0k (33)
1

Proof: In order to arrive at (33), we use Baye’s rule to write:

P(Rk:0|Yk:y,R1:0,...,Rk_1:0)
= = = - - 34
Iy ri=¢,. . Re=¢ (V) PRy = 0[R, =0, Ry 1 = 0) Y Ri=0,... Ry_1=0 (¥) (34)
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The recursion (33) follows from (34) by rewriting it accandi to Definitions 13, 14 and 15.
Equation (34) holds only i (R, = 0|R; =0,...,Ri_1 = 0) = Gp—1 # 0. If Gp—1 = 0 then
the conditional density functiotfy, jr,-o,...r,—o0 (¥) is no longer defined. [ |

Definition 16: Given an admissible pre-processBs, and an integern <€ {0,...,7} , we
adopt the following definition for the partial cost computedthe horizon{m+1, ..., 7'} under
the assumption that,, = 1:

N2
def Zfzmﬂ di-m-lp |:<Yk - Yk:) + CRk} fo<m<T

jm,T ((l, 012/1/7 ¢, 7Dm,T) = (35)

0 ifm=T
Remark 12:Given an integern, we notice that the cost in (35) will not depend on the value

of the state at timen. This is so because, according to Definition 6, sifge- is admissible it

holds that the current and futumutputof 7, » will not depend on the current and past state

observations. This Remark is an extension of Remark 3, wticisidered the case for = 0.
Proposition 3: Given an arbitrarily selected admissible pre-procedagr, the finite horizon

cost (6) can be expanded as:
jO,T (CL, U‘%V? ¢, PO,T)

r N2
= Z drt (E%k |:<Yk: - Yk) } s+ (¢ + Tur (a, 09, ¢, Prr)) se-1(1 — Ckk—l)) (36)

k=1

N2 N2
Here we use the notatia,, , |:<Yk: _ Yk) } ef o {(Yk — Yk) R;=0,...,R, = 0} , Where
Ykl 1S given in Definition 13.

Proof: We start by noticing that, by the total probability law, wenaaxpand the cost as:
jO,T (&7 0{2/[17 Gy PO,T)
T ~ 2
=3 ! (E {(Yk—Yk) R, :0,...,Rk:0} PR, =0,...,R,=0) +
k=1
+ (C+ E [jk:,T (&7 O-XQ/V7C7 Pk,T) |Rk’ = 17R1 = Oa . '7Rk’71 = O}) X

PR, = 1,R1:0,...,Rk_1:0)> (37)
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We proceed by obtaining the following identities:
P(R,=1,R;1=0,....R,.1=0=PR;=0,...,R,_1=0)—
—P(R;=0,...,R,=0)=P(R;=0,...,R;_1=0) —

(38)
—P(Rk:0|R1 :0,...,Rk,1 :O)P(Rl :0,...,Rk,1 :0) -
= o1 (1 — Skjr—1), k>1
Notice that, using standard probability theory, frc{m}le we can compute{gk,‘k,l}f:1 and
vice versa. Here, equation (38) is still valid fér= 1, since we defined, = 1 and¢;p = ;.

Finally, notice that from Remark 12, we conclude the follogi
E [jk,T ((l, 012/1/7 C, 7)k,T) ‘Rk - 17 Rl - 07 L 7Rk—1 - 0] - jk,T (CL, 0-{2/[/7 C, 7)k,T) (39)

The proof of this Proposition is complete once we substi(@8 and (39) into (37). [ |

Definition 17: The following is a convenient definition for the optimal cost

) dif minpm_’TEIP’T,m jm,T (CL, O-XQ/[/? c, Pm,T) ) T Z 1
0, T=0
From Proposition 3, we can immediately state the followirgydllary:

(40)

2
jn*%T (&, Ty, C

Corollary 1: The following inequality holds for every admissible prespessorP, :
Jo,r (@7 O €, PO,T) >
T ~ 2
de_l (E%k |:<Yk — Yk:) } &+ (c+ Tir (a,08,¢)) (1 - §kk-1)§k—1) (41)
k=1
V. PROOF OFTHEOREM 1

Our strategy to prove Theorem 1 is to show that for every admissible posgssor policy
Po,r, there exists a path-dependent symmetric threshold pbligywhich does not underperform
Po,r. This fact, which we denote dsact B.1, leads to the following conclusions:

« (Fact B.2): Lemma 1 (Section IlI-A), in conjunction with Fact B.1, iigs that an optimum

Sy for Problem 1 exists and that it is of the symmetric threshgfie S (Definition 9).

« (Fact B.3): From Fact B.2 and Proposition 1 (Section Ill), we conclutlere exists a

symmetric threshold policyS;, and a Kalman-like estimatog (Definition 5) that are

jointly optimal for Problem 1.
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Proof: (of Theorem 1): Facts B.2 and B.3 constitute a proof for Theod. It remains to
prove the validity of Fact B.1.

(Proof of Fact B.1): Here we will use an inductive approach that is analogouth&one
used in [1, Lemma 6.5]. Our proof for Fact B.1 is organizedviio fparts. InPart |, we will
prove Fact B.1 for the case when the time-horizons one, while inPart 11, we prove the
general induction step.

Notation: According to the definitions of Section IV-B , any given pmapessor has associated
with it conditional probability density 1‘unction§yk|k}fz1 and{ykw,l}le, as well as conditional
probabilities{gk}f:1 and {<k|k,,1}z:1. Hence, we assume that the path-dependent symmetric

threshold policyDg ;. - to be constructed as part of this proof - defines conditigmabability
T
density functlons{fyg‘k}k:

T
o
{gklk—l}kzl'

Part |: Here we will prove Fact B.1 fofl" = 1. We will do so by constructing a policg ,

T
X and {Vg\kfl}k ,as well as conditional probabilitieg},_, and

as follows:

or |1 0y > 7
ro = (42)

0 otherwise

where; is a threshold that we will select appropriately. Hencehié aibsolute value of; is
less than or equal tg, then the pre-processor transmits the erasure symbol,vadeeit sends
z;. Consider that a policfP, ; is given. We start by noticing that fdp, ; andDg, it holds that

Yijo = 7} = Noz,, While the cost associated with polid,; is:
~ 2
.70,1 (@7 012/V> C, 730,1) = E’ml [<Y1 - Y1> } S+ 0(1 - §1) (43)

whereY, = E

7|1

from (42) leads to a probability density functiqu1 that is neat and even. Furthermore, Lemma 2

[Y1]. We construct a desirablBg , by selectingr; such thats? = ¢;, which

implies thaty;); < Y holds. From Lemma 4 we arrive at the following inequality:

~ 2 ~ 2
Ey. {(Yl - Y7) } <E,, [(Yl -v) } (44)
The cost associated with the poligy; , is given by:

~ 2
Joi (a, 0%y, ¢, D5 1) = Enp {(Yl - Y;’) } s+ c(l—gq) (45)
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Finally, we conclude from (43), (44) and (45) that:
\70,1 (au 012/1/7 c, 7)0,1) Z \70,1 (CL, 0-{2/[/7 ¢, D&l) (46)

which leads to the desired conclusion tfizf, does not underperfori; ;.
Part |1: (General induction step) Let 77 be a given horizon that is strictly larger than one.
Assume thenductive hypothesis that Fact B.1 is valid for any horizof less thanl.

We start by noticing that the validity of our inductive hypesis implies the following facts:

« (Fact B.4): The inductive hypothesis in conjunction with Lemma 1 imeplthat Problem 1
has an optimum for every horizdf less thanl™.

« (Fact B.5): The inductive hypothesis also implies that Problem 1 aslan optimal pre-
processor policy of the symmetric threshold type (Defimit®®), for every horizonl’ less
than7T”.

Hence, Fact B.5 implies that there ex&‘gT[ throughS; that satisfy the following:

TI 1!

TImri(a, 05y, ¢,8% i) = min T, pi(a, o9y, ¢, 75m,T1) = J* i(a, oy, c) 1<m<T!
’ P €P1I_,, (@) 7
(47)
whereS; ., is of the symmetric threshold tyg#:_,,, and (a) above follows by definition from
(40).

Now we proceed to showing that the general induction stegshah order to do so, we show
that for any admissible policf, ;:, we can construct a path-dependent symmetric threshold
policy DG pr that does not underperforf, .. Henceforth, assume th#, : is an arbitrarily
chosen admissible policy.

The following is our algorithm forDg .;:

Description of Algorithm for Df .,

« (Initial step) Setk = 0 and transmit the current state, i.e,, = x, Or equivalently set
Yo = 0.

« (Step A) Increase the time countdr by one. If & > T holds then terminate, otherwise
execute Step B.

. (Step B) If |yx| < 72 holds then set;, = 0, transmit the erasure symbol, i.e;, = &, and

return to Step A. Ifly,| > 7 holds then executs; ;,, as defined in (47).
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where {2}’ are appropriately chosen thresholds, as described next.

End of description of Algorithm for Dg .,

Notice thatDf ;, is a path-dependent symmetric threshold strategy (Defmit0), for which
we can also conclude th@; ,, = S, ;, holds for1 <m < T".

In order to complete the specificatioanTI so that it does not underfor®, ,, we proceed
by appropriately selecting the thresholﬁg}{il.

(Selection of thresholds {217’ ) We proceed to describing how to choose the threshold
sequence7},_, and what this choice implies. Notice that, = N,z and that the Gaussian
probability density function is neat and symmetric. Choogeuch thatky = ¢, it follows that
the probability density functiom’|1 is neat and even. From equation (32), which describes how
the conditional probability density functions evolve img, it holds thatyg‘1 is neat and even.
By further selectingry such thats, = <1, it also follows thaty;, and~;, are neat and even.
By repeated execution of this selection process, we cansehal the thresholds? such that
Skik—1 = Skik—1 for all & in {1,...,T"}. These choices also imply thaf,, and~;),_, are neat
and even for alk in {1,...,7"}. Sincesp,_; = syx—1 holds for allk in {1,..., 7"}, it follows
thatcp = g, is satisfied for allt in {1,...,77}.

At this point, we know thaty,, = Yo = Nggv and that the Gaussian probability density
function NU€V is neat and even. Hence, then from Lemma 2, we concludeytha Yip- It
also follows from Lemma 11 in the Appendix | and Lemma 3 that < 75, holds. From the
repeated application of this idea, it follows thgt;, < Vil for all £ in {1,...,TI} and, in
(Y] =0forall kin {1,...,7"}.
Sincevyk < 7y, holds andy;,, is neat and even, Lemma 4 implies that the following is true:

addition, sincey;,, is neat and even, it holds that) = E

o
Ve |k

N2 N2
g, [(Yk—Y;;) } <E,, {(Yk 20 } . ke{1,...,T" (48)
The cost obtained by applying the pre-processor pal¢ycan be expressed using (36) as
follows:
T’ 2
Toiri (0,0, . D) = 3 (E [(Yk - ¥7) } i+
k=1

(C + Tt (% Ty €, D(O),TI)) (1- §k|k—1)§k1> (49)
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Using (47), we can re-write (49) as follows:

TI
A N2
j07T1 (a,aa/,ca DS,TI) - de_l (E”gk {<Yk B YZ) } e
k=1

(c+ Tipi (0,05, ¢)) (1 - cmk_l)ck_l) (50)

From inequality (41), which lower bounds the cost assodiatgh any pre-processor policy,

equation (50) and equation (48), we conclude that:
\70,TI <&7 012/[17 &) D(O)yTI) < \70,TI <&7 012/[17 Cy pO,TI) (51)

That we were able to constru@; ., satisfying (51) for an arbitrarily chosen admissible

pre-processoP, ;1 constitutes a proof for Fact B.1. [ |

VI. CONCLUSIONS

This paper addresses the design of a distributed estimsystem comprising of two blocks
connected in series, via a link that conveys either a realbaurar an erasure symbol. Transmis-
sion of a real number incurs a positive communication cosilerthe erasure symbol features
zero cost. The first block is a pre-processor that acceptsatatate measurements of a scalar
linear and time invariant plant driven by process noise |Jevtlie second block must produce an
optimal estimate of the state, according to a cost that coesbihe expected squared estimation
error and the communication cost. This paper is the first twgthat threshold policies at the
pre-processor and a class of kalman-like filters (previoysbposed in the literature) at the
estimator are jointly optimal. The problem addressed heren-convex, implying that standard
arguments based on symmetry will not hold. In order to circeim this difficulty, we introduce
the use of majorization theory to establish a convenierntigdarder among candidate solutions.
The proof follows by appropriate use of the partial orderavigonstructive argument that exploits

the structure of the cost function.

APPENDIX |

MAJORIZATION THEORY

Lemma 5:1f f andh are neat and even probability density functions, tifiem: is also neat

and even, where by x h we mean the convolution betweghand h.

November 2, 2009 DRAFT



JUURNAL UF CIEA CLLAOSOS FILES, VUL, O, NU. 1, JANUARY ZUU/

Proof: The proof adopted here is analogous to the one in [1, Lemmja Wt#ch deals
with probability mass functions. Sindeis a probability density function, it implies that is also

measurable. Ley : R — R be defined as:

1,z € [—a,q
g(x) =
0,z ¢ [—a,q]
whereq is a positive real number. We notice thats an indicator function. We claim thgtx g

is neat and even.

a+x

(e = [ " o — gyt = / i tydt = [ rwiy (52)

—a+x

Since the functiory is neat and even, it is clear th#t« g is neat and even from equation (52).
The function f * g is neat and even also for the case whgm) = 1 on a symmetric open
interval (—«, ) andg(x) = 0 for z € (—o0, —a] U [a, 00).

We need to prove the main claim of Lemma 5. We do this by apprating the functiom
with a sum of indicator functions like the function Sinceh is neat and even it follows that
h(0) > h(zx), for any real numbeg. For a positive integer number, define the functiorh,, as
follows:

() = h(O)%, ve {x ER: h(O)% < hiz) < h(O)%} ke{0,...n—1) (53

It follows that h,,(x) < h,.1(z) for every real number and thath,, — h. Moreover, from the
monotone convergence Theorem, it follows tifat h,, — f * h.

Sinceh is neat and even it follows that for every integerand integerk < n, there exists
a positivea] such thath(z) > h(0)% for z € Iy = [—a},af] or z € I} = (—af,a}) and
h(z) < h(0)% outsidely}, and moreovei; C I, for all positive integers: < n. The function

h,, can be written as follows:

() = B(0) - 3 Ty ()

where byIHZ we denote the indicator function of the intenigl

1 n
fxh, = h(O)EZf x Typ
k=0

It follows that f * h,, is neat and even, hence taking the limitragoes to infinity, it implies

that f % h is neat and even. [ |
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Remark 13:From the proof of Lemma 5, it follows that the claim of Lemma &ds if f
andh are any non-negative, even, quasiconcave and integrahdidas.

We will state now two important inequalities, which are uddbr this paper. The first one is
the Riesz’s rearrangement inequality:

Lemma 6 (Riesz’s Rearrangement inequality [2)f, g and h are non-negative functions on
R", then:

fa) g h) @) < [ fo(@) (67 4 1) (@) (54)
The second importaRr?t inequality, which WeRﬁeed is the Havitlewood inequality [5].
Lemma 7 (Hardy-Littlewood inequality [5])If f andg are two non-negative measurable func-
tions defined on the real line, which vanish at infinity, thee following holds:

[ 1@stais < [ ;@) (55)
We state and prove the fo]IRiowing LemmasiRwhich are a supppresults for Lemma 2 in
Subsection IV-A.
Lemma 8:Let f : R — R be a symmetric and non-increasing probability density fionc
For any positivex < 1, there exists a symmetric intervlcentered around zero such that the

following holds:

Ji = fr (56)
/f(a:)da: =1-x (57)

I
for any Borel set (not necessarily interval)c R”, satisfying [, f(z)dz =1 — .

Proof: Case I: Assume that there exisis such thatf{xeR:f(;r)>p} f(z)dz = 1 — k, then
letI = {z € R: f(x) > p}. Since, f is symmetric and non-increasing, it follows thais a
symmetric interval. Let any other sEtsuch thatf, f(z)dz = 1 — x. Choose any séf’ C I, if
L(F) > L£(I), letF C R be any Borel set, such thay(F) = £(F') andI C F, it follows that :

/fﬂ(fﬂ)dfﬂ =1> [ fr(x)dzx
F B

since bothf; and fi are probability density functions. I£(F") < £(I), then choose any set
F C I, such thatl(F) = L(F'). LetF; = FNF, then, for any real number € '\ I, it holds

IHere f; and f; follow the definition in (26)
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that f(z) < p, while on the seff \ Iy, f(x) > p.

/Ffﬂ($)dx 1 —,Q/f ( S [ f(x)dx)
1 i - < 5 f(f)der/F\F1 pdx)

1
T < 5 f(x)dx + . f(x)da:)

= [ @ = [ ey

1—k

v

v

The second inequality is due to the fact tfidtF, andF’ \ F; have the same Lebegue measure.
Case II: Assume that, there is no sugh such thatf{ggesz(Ibp}f(x)dx = 1— k. The
integral f{xeR:f(x)>p}f(x)dx is decreasing as a function gfand is also bounded. It follows

than that, there exist @ such that [,z ;. f(2)dz < 1 —rand [, g s, f(2)de =
1 — k. Both the setx € R" : f(z) > p} and{z € R: f(z) > p} are symmetric intervals and
{reR: f(x)>p} C {xeR: f(x) > p}. Then we can find an intervdl C {f(z) > p}
symmetric around the origin such thtf(z)dz = 1 — . Using the same type of arguments
like in the first case we get that > f for anyl’ C R such thatf, f(z)dz =1 — . [ |

Lemma 9:Let f, g : R — R be two probability density functions, such thats neat and even
and f > g. Let x be a real number such that< x < 1. Let I be the symmetric interval given
by Lemma 8 for the probability density functiofand the numbek. If ' C R is a set such
that fﬂ g(x)dx = 1 — k is satisfied thery; > g holds, wheref; and g follow the definition in
(26).

Proof: Fix a Borel setl’ € R such that[, g(z)dc = 1 — x and choose a Borel set

F" € ' with strictly positive Lebesgue measure.4{F’) > L(I), chooseF any Borel set with
L(F) = L(F'), such thatl C F. It is clear in this case thaf, fi(z)dz = 1 > [, gv(z)dz.
If L(F') < L(I), then becausg¢ - g, there exists a sdf” € R, such thatC(F") = L(F)
and [, f(z)dx > [5, g(x)dz. Choosel” a set which containg” and [, f(z)dz = 1 — . By
Lemma 8,f» < fi, so it follows that there exists a s&tC I, with the same Lebesgue measure
asF” such thatf, f(z)dz > [o, f(x)dz > [;, g(z)dx [ |

Lemma 10:Let f : R — R be a probability density function and let be a positive
real number, less than one. Let: R — [0,1] be a measurable positive function such that
[o h(z)f(z)dx = 1 — k. There exists a Borel sét such that[, f(z)dz =1 -« and fs = 7-L,
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Proof: If existsp such thatf,, . ..., f(z)dz =1—k, thenletA = {z € R: f(z) > p}.
If no suchp exists, just like in the proof of Lemma 8, there existgs auch that:

/ f(z)dr <1—k, and flz)de >1—k
{z€eR: f(z)>p} {z€R: f(z)>p}

i.e., there exists a set of Lebesgue measure strictly pesisuch thatf(z) = p. Choose a
setA’ = {z e R: f(z) > p}. From the sef{z € R : f(x) = p}, choose a subset” of measure
17&4‘”6“’”;“”)”} T@% | et A = A’UA”, it follows then that/, f(z)dz = 1—x and thatf(z) > p,
for all z € A.

Let ' be a Borel set irR, if £L(F') > L(A), chooseF such thatC(F') = £(F) and A C F.

Then the following holds:

— KR

[ =1z [ 4 () 2y

If L(F') < L(A), letF;, =F NA and letF, ¢ A\ F, such thatl(F, UF,) = L(F). If xz € Fy,
f(z) > h(z)f(x), and ifx € Fy, f(z) > p, and ifx € F'\ Fy, h(x)f(z) < f(x) < p. It follows

then:
f(x)
/]FIUIF2 fa(z)dx > /, h(I)l — de

Lemma 11:Let f,¢g : R — R be two probability density functions such that- ¢g. For any

non- zero constant, define the following probability density functions:

fo)? r ()

~ al

)< ﬁg (g)

Under the definitions above, - § holds.

Remark 14:We notice that Lemma 11 is well posed sintandg are also probability density
functions. If f is the probability density function of a random variablethenf is the probability
density function of the random variabdeX .

Proof: For a setA C R and for a strictly positive constant, define the setA =
{x cR:1lxc A}. Assumea to be positive and leF’ be a set of positive and finite Lebesgue

[0
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measure.

//g(a:)da: - /llFlg(x)adx

a

since f > g, there exists a sét” with the same Lebesgue measureiﬁ% such that:

ﬁF/ g(x)adr < y (x)adx = f(x)dzx

a]F//

a

ChooseF = aF”, clearly,F andF’ have the same Lebesgue measure, then it follows that:

/]F, g(x)dx < /Ff(x)dx

which implies thatj < f. Similar arguments hold fox negative. [ |
From the Riesz’s rearrangement inequality, Hajek statdgpaoves in [1] the following result:
Lemma 12:[1, Page 619] Leff andg be probability density functions defined on the real line,

such that,f is neat and even, anfl>- ¢. Let h be a non-negative, symmetric and non-increasing

function. The following holds:

[ n@(yiz < [ norsa)da (58)
In order to prove Lemma 4,Rwe state the folﬁ)wing Lemma.
Lemma 13:Let f be a neat and even probability density function on the rea, ILetg, be
a probability density function on the real line, such thak f. Let h be a positive, even and
guasiconvex function. Then the following holds:

Ah@ﬁ@ng/h@—yqux (59)

R

wherey is any real number.

Proof: Let ¢ be a positive real number and define the functions:
he(x) = ¢ — min (¢, h(x))
hc(‘rv y) = ¢ —min (Cu h(I - y))

for any real numbey. We notice that the functioh, is symmetric and non-increasing, it is then
immediate, thak,. = h7 andh. = hJ(-,y) for all real numbersg,. The following inequalities are

true:

[ netangteris < [ o) @ds < [ @)

R
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for any y € R. The first inequality follows from the Hardy-Littlewood igeality (7), while the
second inequality follows from Lemma 12. It follows that:

/Rhc(:v,y)g(w)dxﬁ/hc(x)f(x)dxﬁ

R

/]R (¢ — min (¢, h(x — y))) g(z)dx < / (¢ —min (¢, h(x))) f(x)dz =

/Rmin (¢, h(z —y))g(x)dx > /Rmin (¢, h(z)) f(x)dx

Taking the limit asc goes to infinity and using the monotone convergence theohenrdsult

follows. u

APPENDIX I

QUASICONVEX LEMMA

Lemma 14:Let h : R — R, be a measurable, bounded, even and quasiconvex functbn. L
W be a random variable with an even and quasiconcave protyadénsity function. Define
h:R — R, such thath “ E [h(z + W)], then’ is a bounded, even and quasiconvex function.
If the functionh is also continuous theh is also continuous.

Proof: Defineg : R x R — R asg(z,c) «f E [¢ — min (¢, h(x + W))]. We will show
that the functiong(z, ¢) is continuous inc for every fixed real number, and for everyc the
function ¢(z, ¢) is even and quasiconcave in The functionh is even and quasiconvex then,
it follows that zero is a global minimizer di. For any real number and any real number
define the seD(z, ¢) =) {w e R : h(z + w) < ¢} Sinceh is even and quasiconvex thén0, c)
is a symmetric interval around zero or the empty set. Noté ftvai(0) < ¢ < sup, h(z), the

setD(0, ¢) is a symmetric interval, which can be either closed or opesnde it follows that:

0, c < h(0)
D(z,c) = [—a(c) —x,a(c) — z] or (—a(c) —x,a(c) —x), h(0) <c<sup,h(x)
(—00, 00), sup, h(z) <c

where byf) we denote the empty set andc) is the real number such thatz) < ¢ if and only

if 0 <z <a(e) (0<z<a(c). We will show that the functiog(z, ¢) is even and quasiconvex
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in x for any real number. Let f : R — R, be the probability density function aiV. We can
write g(z, ¢):

a(e)- a(e)-
g(x,c¢) = E[c —min(c, h(x + W))] = c/ fw)dw — / h(x +w) f(w)dw

—afc)—x —afc)—x

For any positive real numbe, any real numbers and z, it holds that:

|E[g(x+W,c+0)]— Elglx+ W,c)]| <
E |0 +min(c+ d, h(z + W)) —min(c, h(z + W))|] < 20

It follows that for any real number and any real numbet, for any positive real number
€, choosed = £, then for any real number € (c — 4,c+9), |g(x,¢) — g(z,c)| < ¢, hence the
function g(z, ¢) is a continuous function im for every real numbex.

Since the functiorh is even and quasiconvey, it follows that the functior min(c, h(z)) is
even and quasiconcave, i.e. is neat and even. Moreover, tierdefinition of the seD(0, ¢),
we notice that the function — min(c, h(z)) is non-negative, bounded and takes the value zero
outside the seD(0, ¢). If ¢ < sup, h(z), then the seD(0, ¢) is the empty set or a finite interval
(open or closed), it follows that, i# < sup, h(z) the functionc — min(c, h(z)) is integrable.

Hence, it holds that:

[e.e]

g(z,c¢) = E[c —min(h(x + W, ¢)] = / (¢ — min(h(z + w, c)) f(w)dw

— 00
[e.e]

= /_00 (¢ — min(h(z + w,c)) f(—w)dw = / (¢ —min(h(z —n,¢))f(n)dn

o0 —o0
The second equality comes from the fact tlias even, while the third equality comes from the
change of variableg = —w. It follows from Lemma 5 and Remark 13 thatz, ¢) is a neat and
even function for every: < sup, h(z). Sinceg(x,c) is continuous inc it implies thatg(z, ¢)

is neat and even for every realand moreover the functiof’ [min(c, h(z + W))| is even and

guasiconvex. From the monotone convergence theorem,dshbht:

h(z) = lim E [min(h(z + W), c)]

and the properties of [min(h(z + W), c)] in = are kept forh, i.e. h is even and quasiconvex.
Sinceh is bounded, it follows that is bounded and we only need to prove the continuity..of
We are given thab is even and quasiconvex, which implies thais non-decreasing oft), o)

and non-increasing ofr-oco,0]. We are also given that is bounded and continuous, which
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implies thath is uniform continuous on the intervéd, co) and is also uniform continuous on
the interval(—oo, 0]. It follows that the entire functior is uniform continuous, i.e. for any real
numberz, for any positive real numbes, there exists a positive real numbgrwhich does not
depend onr, such that for any real numbere (x — §,z + §), it holds that|h(z) — h(y)| < e.

It follows that, for any real number and for any real numbey € (z — §,z + ¢), it holds that:

oo

B+ W)= Elbty+ Wl | =] [ e +u)fwid— [ hly+w)f(w)du

< [ I+ w) — by + )l () <

This implies thath is continuous. |
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