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Abstract

Consider a first order linear time-invariant discrete time system driven by process noise, a pre-

processor that accepts causal measurements of the state of the system, and a state estimator. The pre-

processor and the state estimator are not co-located, and, at every time-step, the pre-processor transmits

either a real number or an erasure symbol to the estimator. Weseek the pre-processor and the estimator

that jointly minimize a cost that combines two terms; the expected squared state estimation error and a

communication cost. In our formulation, the transmission of a real number from the pre-processor to the

estimator incurs a positive cost while erasures induce zerocost. This paper is the first to prove analytically

that a symmetric threshold policy at the pre-processor and aKalman-like filter at the estimator, which

updates its estimate linearly in the presence of erasures, are jointly optimal for our problem.

I. INTRODUCTION

We address the design of a finite horizon optimal state estimation system featuring two causal

operators; a pre-processorP0,T and a remote estimatorE , whereT denotes the time-horizon.

At each time instant, the pre-processor outputs either an erasure symbol or a real number,

based on causal measurements of the state of a first order linear time-invariant system driven

by process noise. The estimator has causal access to the output of the pre-processor and its

output is denoted as state estimate. We consider an optimization problem characterized by cost

functions that combine the state estimation error and a communication cost. In our formulation,

the communication cost depends on the output of the pre-processor, where we ascribe zero cost

to the erasure symbol and a pre-specified positive constant otherwise. The state process, denoted

G. Lipsa and N. Martins are with the Department of Electricaland Computer Engineering, University of Maryland College

Park, College Park, MD, 20742 USA e-mail: glipsa@umd.edu, nmartins@isr.umd.edu.

November 2, 2009 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

- P0,T
- E(P0,T ) -
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Fig. 1. Schematic representation of the distributed estimation system considered in this paper. It depicts the pre-processorP0,T

and the corresponding optimal estimatorE(P0,T ), which produces the minimum mean squared error estimate of the process

{Xk}
T
k=0 given in (5).

as Xk, is given and the two causal operatorsP0,T and E are to be jointly designed so as to

minimize the given cost function.

Most of this Section is dedicated to precisely formulating such an optimal estimation problem.

In subsection I-A we give a description of the information structure of our framework, followed

by subsections I-B and I-C, where we give the problem formulation and a comparison with

existing work, respectively. In Section II, we describe a particular solution, while in Section V

we prove its optimality. Towards this goal, Section III presents auxiliary optimality results and

Section IV is dedicated to introducing concepts from majorization theory and preliminary results,

notation and definitions. Section VI presents conclusions and ideas for future work, while in

Appendices I and II we state and prove lemmas that are supporting results used throughout the

paper.

Notation: In this paper, we use lower case letters for constants, such as a, c and d. For

random variables we will use bold upper case letters, such asX, while a particular realization

is represented as a constantx. The lower case lettersf , g andh are used mainly for probability

density functions, with the exception ofh, which can also be used to indicate a general function.

We denote sets by double bared upper case font, such asA and B. For sets, we make use of

standard operations such as union (A∪B), intersection (A∩B) and set difference (A\B). If A and

B are two subsets of the real lineR, we express set difference asA\B = {x ∈ R : x ∈ A, x /∈ B}.

General functions are denoted using calligraphic, upper case font, such asV and J . Further

notation is described throughout the paper on a need basis.

A. Preliminary definitions and information pattern description

We start by describing the three stochastic processes and the two classes of causal operators

(pre-processor and estimator) that constitute our problemformulation.
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Definition 1: (State Process) Given a real constanta, and a positive real constantσ2
W , consider

the state of the following first order, linear time-invariant discrete-time system driven by process

noise:

X0
def
= x0 (1)

Xk+1
def
= aXk + Wk, k ≥ 0 (2)

where{Wk}T
k=0 is an independent identically distributed (i.i.d.) Gaussian zero mean stochastic

process with varianceσ2
W andx0 is a real number. The filtration generated by{Xk}T

k=0 is denoted

as:

Xk
def
= σ (Xt; 0 ≤ t ≤ k) (3)

where σ (Xt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Xt, 0 ≤ t ≤ k}, for all

integersk.

Definition 2: (Pre-processor and remote link process) Consider an erasure symbol denoted

as E and a causal pre-processorP0,T : (x0, . . . , xk) 7→ vk, defined fork ∈ {0, . . . , T} and

vk ∈ R ∪ {E}. Hence, at each time instantk, the preprocessor outputs a real number or the

erasure symbol, based on past observations of the state process. Notice that a pre-processor

generates a stochastic process{Vk}T
k=0 via the application of the operatorP0,T to the process

{Xk}T
k=0 (See Figure 1). The mapP0,T is a valid pre-processor if the following two conditions

hold: (1) The pre-processor transmits the initial statex0 at time zero, i.e.,v0 = x0. (2) The

pre-processor is measurable in the sense that the process{Vk}T
k=0 is adapted toXk.

The filtration generated by{Vk}T
k=0 is denoted as{Bk}T

k=0 and it is obtained as:

Bk
def
= σ (Vt; 0 ≤ t ≤ k) (4)

where σ (Vt; 0 ≤ t ≤ k) is the smallest sigma algebra generated by{Vt, 0 ≤ t ≤ k}, for all

non-negative integersk.

Remark 1:Notice that any finite vector of reals can be encoded into a single real number via

a suitable invertible transformation. Hence, without lossof generality, we can also assume that

the pre-processor can transmit either a vector of real numbers or the erasure symbol.

Definition 3: (Optimal estimate and optimal estimator) Given a pre-processorP0,T , we

consider optimal estimators in the expected squared sense whose optimal estimate at timek is
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denoted aŝXk and is expressed as follows:

x̂k
def
=







E
[
Xk|{vt}k

t=0

]
if k ≥ 1

x0 if k = 0
(5)

whereE
[
Xk|{vt}k

t=0

]
represents the expectation of the stateXk conditioned on the observed

current and past outputs of the pre-processor{vt}k
t=0 (see Figure 1). We useE(P0,T ) to denote

the optimal estimator associated with a given pre-processor policyP0,T .

Notice that from Definition 2 we assume that the pre-processor always transmits the initial

statex0. Hence, the initial estimate is set to satisfyx̂0 = v0 = x0. Such an assumption is a key

element that will allow us to prove the optimality of a certain scheme, via an inductive method.

This will be discussed later on in Section V.

Remark 2: It is important to note that all the information available atthe estimatorE(P0,T )

is also available at the pre-processorP0,T . Hence, the pre-processorP0,T can construct the state

estimateX̂k by reproducing the estimation algorithm executed at the optimal estimator.

B. Problem statement

In this subsection, we define the optimal estimation paradigm that is central to this paper. We

start by specifying the cost, which is used as a merit criterion throughout the paper, followed

by the problem definition.

Definition 4: (Finite time horizon cost function) Given a measurable pre-processorP0,T

(Definition 2), a real constanta, a positive integerT , a positive real numberd less than one and

positive real constantsσ2
W and c, consider the following cost:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

dk−1E





(

Xk − X̂k

)2

+ cRk
︸︷︷︸

communication cost



 (6)

whereXk is the state of the system defined in (1)-(2),X̂k is the optimal estimate specified in

Definition 3, andRk is the following indicator function:

Rk
def
=







0 if Vk = E

1 otherwise
, k ≥ 1 (7)

Remark 3: (Cost does not depend on X0) Notice that because the plant (1)-(2) is linear, the

fact thatx̂0 = x0 holds (see Definition 3) implies that the homogenous part of the state can be
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reproduced at the estimator. Hence, the optimal estimator will incorporate such an homogeneous

term, thus subtracting it out from the estimation errorXk − X̂k, for k ≥ 0. This also implies

that the cost (6) does not depend on the homogeneous term nor on the initial conditionX0.

The following is the main problem addressed in this paper.

Problem 1: Let a real constanta, the variance of the process noiseσ2
W and the initial condition

x0 be given. In addition, consider that a positive realc, a positive real numberd less then one

and a positive integerT are given, specifying the cost as in Definition 4. We want to find an

optimal solutionP∗
0,T to the following optimization problem:

P∗
0,T = argmin

P0,T

J0,T (a, σ2
W , c,P0,T ) (8)

C. Comparison with the state of the art

There is a significant body of work in distributed estimationand in filtering in multiple areas.

Of particular interest to this paper is the work in [1], whichexplores the optimization of paging

and registration policies in mobile cellular networks. In [1], motion is modeled as a discrete-

time Markov process, and the optimization is carried out fora discounted cost evaluated over

an infinite horizon.

The authors of [1] use majorization theory and Riesz’s rearrangement inequality to show

that, for Gaussian random walk models, nearest-location-first paging and distance threshold

registration are jointly optimal. In comparison with the work in [1], which considers random

walks and indicator-type costs, our work addresses the optimal estimation in the expected square

error sense for scalar linear time invariant systems (stable or unstable).

In [7], the authors consider a sequential estimation problem with two decision makers, where

the first observes the state of a stochastic process and decides whether to transmit information to

the second agent, which will act as a state estimator. These agents have the common objective

of minimizing a performance criterion, with the constraintthat the first agent can transmit

information to the estimator only a pre-specified finite number of times. In contrast with [7],

where the authors assume that the decision policies at the estimator are constrained a-priory

to be of the threshold type, here we prove the optimality of symmetric threshold policies. Yet

another difference between this paper and [7] is that we adopt a communication cost, instead of

constraining the number of transmissions. The problem of obtaining optimal estimates subject
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to a finite number of sampling actions, in continuous time, isaddressed in [14], [15] and related

work by the same authors cited therein. Notice that neither the work [7] nor [14], [15] can be

used for Problem 1 because there is no explicit relationshipbetween the cost for communication

in Problem 1 and the constraint on the number of sampling actions, as adopted in [14], [7]. A

general framework for a distinct, yet related, class of problems in continuous time is studied in

[9], which is conducive to establishing existence of solutions and optimality results via quasi-

variational inequalities. The formulation in [9] is statedin terms of the optimal scheduling of

sensors to achieve an optimal estimate of a function of the state at the end of a finite horizon.

The work in [10] is motivated by large-scale sensor networkswhere simultaneous data transfer

to a fusion center is not feasible. In [10], the sensors are part of a networked control system

in which a controller is collocated with the fusion center, who must decide which sensor to

observe and each choice has a cost associated with it. The main paradigm in [10] is similar to

our Problem 1, for which the authors of [10] illustrated numerically that the best policy is of

the threshold type.

The author in [11] investigates an optimal control problem,where measurements can be

collected one sensor at a time and each sensor has an associated cost. In [11] it is shown

that the problem of selecting the optimal strategy can be formulated as a deterministic control

problem. The computation of the measurement policy takes place offline and the optimal strategy

is adopted. In contrast to our result, the policies adopted in [11] are off-line.

The authors of [8] adopt a formulation that is similar to ours. They consider a networked

control problem with transmission costs, where they adopt aKalman-like estimator and show,

using dynamic programming, that, for such a pre-determinedchoice of estimator, the optimal

pre-processor is a memoryless function of the state estimation error. In contrast to our paper,

the problem analyzed in [8] deals also with the multidimensional case, while we handle the

scalar case, but we prove analytically that there exist a Kalman-like filter at the estimator and a

threshold policy at the pre-processor that are jointly optimal.

Notice that the communication link in our framework is not noisy, in the sense that the

pre-processor can predict with certainty what the estimator receives after every transmission.

A significant advance in the understanding of the problem of designing optimal causal pre-

processors and estimators in the presence of noisy transmission, without communication cost,

can be found in [3], [4].
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II. OPTIMAL SOLUTION TO PROBLEM 1

In this section, we start by defining a particular choice of estimator (section II-A) and pre-

processor (section II-C), which we denote as Kalman-like and symmetric threshold policy,

respectively. As we argue later on, in Theorem 1, such estimator and pre-processor are optimal

for Problem 1.

A. A Kalman-like estimator

Definition 5: (Kalman-like estimator) Given the process defined in (1)-(2) and a pre-processor

P0,T , define the mapZ : (v0, . . . , vk) 7→ zk, for k in the set{0, . . . , T}, wherezk is computed

as follows:

z0
def
= x0 (9)

zk
def
=







azk−1 if vk = E

vk otherwise
, with k ≥ 1 (10)

Remark 4:The Kalman-like filter generates the process{Zk}T

k=0 via the operatorZ applied

to the process{Vk}T

k=0. Notice that the pre-processor has access to the estimateZk because it

has access and full control of the input applied toZ.

B. The SetPT - of Admissible Pre-Processors

We proceed by defining a class of pre-processors, which is amenable to the use of recursive

methods for performance analysis. If a pre-processor belongs to such a class then we denote it

as admissible, and we argue in Remark 6 that there always exist an admissible pre-processor

that is an optimal solution to Problem 1. This implies that weincur no loss of generality in

constraining our analysis to admissible pre-processors.

Definition 6: (Admissible pre-processor) Let a horizonT larger than zero and a pre-processor

policyP0,T be given. The pre-processorP0,T is admissible if there exist mapsPm,T : (xm, . . . , xk) 7→
vk, with 0 ≤ m ≤ T andk ≥ m, such thatP0,T can be specified recursively as follows:

Description of the Algorithm for Pm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm.
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• (Step A) Increase the counterk by one. If k > T holds then terminate, otherwise execute

Step B.

• (Step B) Obtain the pre-processor output at timek via vk = Pm,T (xm, . . . , xk). If vk = E

then setrk = 0 and go back to Step A. Ifvk 6= E then execute algorithmPk,T .

End of the description of the Algorithm for Pm,T

The class of all admissiblepre-processors is denoted asPT .

The following Remark provides an equivalent characterization of the class of admissible pre-

processors.

Remark 5:Let a horizonT larger than zero and a pre-processor policyP0,T be given. The

pre-processorP0,T is admissible if and only if for eachm ∈ {0, . . . , T} there exists a map

Pm,T : (xm, . . . , xk) 7→ vk such that the following holds:

rm = 1 =⇒ Pq,T (xq, . . . , xk) = Pm,T (xm, . . . , xk), xq, . . . , xk ∈ R, k ≥ m ≥ q ≥ 0 (11)

Given an admissible pre-processorP0,T , later on we will also refer to the time-restricted pre-

processors{Pm,T}T
m=1 according to Definition 6, or equivalently as implied by (11).

Remark 6:Given a positive time-horizonT , there is no loss of generality in constraining our

search - for optimal an pre-processor - to the setPT . In order to justify this assertion, consider

that an optimal pre-processor policyP∗
0,T is given. If a transmission takes place at some time

m (rm = 1 holds) then the optimal output at the pre-processor isvk = xk. In fact, given that

a real number is transmitted, the choicevk = xk must be optimal because it leads to a perfect

estimatex̂m = xm. Hence, given thatrm = 1, by Markovianity we conclude that the current

and future output produced by the pre-processor{Vk}T
k=m will not depend on the stateXk for

timesk prior to m. Consequently,P∗
0,T satisfies (11), and hence it is admissible.

C. Symmetric threshold pre-processor

Definition 7: In order to simplify our notation, we define the following process:

Yk
def
= Xk − aZk−1 (12)
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Using Definitions 1 and 5, we find that{Yk}T

k=0 can be rewritten as:

Y0 = 0 (13)

Yk+1 =







aYk + Wk if Rk = 0

Wk if Rk = 1
(14)

Remark 7:We notice thatYk has an even probability density function. This fact makes

{Yk}T
k=0 a more convenient process to work with, in comparison to{Xk}T

k=0, which motivates

its use in our analysis hereon, whenever possible. This decision incurs no loss of generality

because{Yk}T
k=0 can be recovered from{Xk}T

k=0, and vice-versa, via the use of{Zk}T
k=0,

which is common information at the pre-processor and estimator (See Remark 4). In addition,

notice that the cost (6) can be re-written in terms of{Yk}T
k=0 as follows:

J0,T

(
a, σ2

W , c,P0,T

) def
=

T∑

k=1

dk−1E

[(

Yk − Ŷk

)2

+ cRk

]

(15)

whereŶk
def
= E

[
Yk|{Vt}k

t=0

]
. A key fact here is that̂Yk = X̂k − aZk−1 holds, leading to the

validity of the identityYk − Ŷk = Xk − X̂k.

Definition 8: Given a positive integer horizonT and an arbitrary sequence of positive real

numbers (thresholds)τ = {τk}T

k=1, for eachm in the set{0, . . . , T}, we define the following

algorithm fork ≥ m, which we denote asSm,T :

Description of Algorithm Sm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or equivalently

setym = 0.

• (Step A) Increase the time counterk by one. If k > T holds then terminate, otherwise

execute Step B.

• (Step B) If |yk| < τk holds then setrk = 0, transmit the erasure symbol, i.e.,vk = E, and

return to Step A. If|yk| ≥ τk holds then setm = k and executeSm,T .

End of description of Algorithm Sm,T

Definition 9: (Symmetric threshold policy) The algorithmS0,T , as in Definition 8, is denoted

as symmetric threshold pre-processor. The pre-processorS0,T is admissible and the class of

all symmetric threshold policiesis denoted asST .

The following is the main result of this paper.
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Theorem 1:Let the parameters specifying Problem 1 be given, i.e., the variance of the process

noiseσ2
W , the system’s dynamic constanta, the communication costc, the discount factord and

the time horizonT are pre-selected. There exists a sequence of positive real numbersτ ∗ =

{τ ∗
k}T

k=1, such that the corresponding symmetric threshold policyS∗
0,T is an optimal solution to

(8) and the corresponding optimal estimatorE(S∗
0,T ) is Z. HereS∗

0,T andZ follow Definitions 9

and 5, respectively.

Note: The proof of Theorem 1 is given in Section V.

III. A UXILIARY OPTIMALITY RESULTS

We start by defining the following class of path-dependent pre-processor policies, which is an

extension of Definition 9 so as to allow time-varying thresholds that depend on past decisions.

Such a class of admissible pre-processors will be used laterin Section V, where we provide a

proof for Theorem 1.

Definition 10: (Algorithm Dm,T ) Given a horizonT , consider that a sequence of (threshold)

functionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with Tm,k : {0, 1}m−k → R, is given. For every

m in the set{1, . . . , T}, we define the following algorithm, which we denote asDm,T :

Description of Algorithm Dm,T

• (Initial step) Setk = m, rm = 1 and transmit the current state, i.e.,vm = xm or equivalently

setym = 0.

• (Step A) Increase the time counterk by one. If k > T holds then terminate, otherwise

execute Step B.

• (Step B) If |yk| < Tm,k(rm, . . . , rk−1) holds then setrk = 0, transmit the erasure symbol,

i.e., vk = E, and return to Step A. If|yk| ≥ Tm,k(rm, . . . , rk−1) holds then executeDk,T .

End of description of Algorithm Dm,T

Recall thatr0 throughrk−1 represent past decisions by the pre-processor, whererk = 1 indicates

that the state is transmitted to the estimator at timek, while rk = 0 implies that an erasure was

sent.

Definition 11: (Path-dependent symmetric threshold policy) Given a horizonT , consider

that a sequence of (threshold) functionsT def
= {Tm,k|m < k ≤ T, 1 ≤ m ≤ T}, with Tm,k :

{0, 1}m−k → R, is given. The path-dependent symmetric threshold pre-processor associated

with T is implemented via the execution of the algorithmD0,T , as specified in Definition 10.
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Typically, we denote such an admissible pre-processor asD0,T . We useD0,T to denote the

entire classof path-dependent symmetric threshold pre-processors with time horizonT .

The goal of this sectionis to provide the following two results that are crucial in the proof

of Theorem 1: In Proposition 1, we prove that ifD0,T is any given path-dependent symmetric

threshold pre-processor policy then the associated optimal estimatorE(D0,T ) is Z. In Lemma 1

we prove that if we optimize within the class of path-dependent policies then the optimum is

of the path-independent type, as specified in Definition 9. This fact might raise the question of

whether Definition 11 is needed. The answer isyesbecause we adopt a constructive argument

in the proof of Theorem 1 in Section V, which uses Definition 11.

Proposition 1: Let D0,T be a pre-selected path-dependent symmetric threshold policy (Defi-

nition 11), it holds that the optimal estimatorE(D0,T ) is Z, as described in Definition 5.

Remark 8:Proposition 1 could be recast by stating thatX̂k = Zk holds in the presence of

path-dependent symmetric threshold pre-processors.

Proof: (of Proposition 1) In order to simplify the proof, we define{X̃k}T
k=0 as the process

quantifying the error incurred by adopting a Kalman-like estimator Z (See Definition 5), i.e.,

X̃k
def
= Xk − Zk. More specifically,{X̃k}T

k=0 can be equivalently expressed as follows:

X̃0 = 0 (16)

X̃k+1 =







aX̃k + Wk if Rk = 0

0 if Rk = 1
, 0 ≤ k ≤ T − 1 (17)

The proof follows from the symmetry of all probability density functions involvingX̃k andVk.

More specifically, under symmetric path-dependent threshold policies the probability density

function of X̃k, given the past and current observations{Vt}k
t=0, is even. Hence, we conclude

that E[X̃k|{Vt}k
t=0] = 0, which implies thatX̂k

def
= E[Xk|{Vt}k

t=0] = Zk.

A. Optimizing within the classDT

Remark 9: If D0,T is a symmetric path-dependent threshold pre-processor (see Definition 11)

thenŶk = 0 holds, leading to the following equality:

J0,T

(
a, σ2

W , c,D0,T

)
=

T∑

k=1

dk−1E
[
Y

2
k + cRk

]
, D0,T ∈ DT (18)
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The process defined in (14) is a Markov Decision Process (MDP)whose state and control are

Yk andRk, respectively. Hence the minimization of (18) with respectto pre-processor policies

D0,T in the classDT can be cast as a dynamic program [13]. To do so, we define the sequence

of functionsVt,T : R → R, t ∈ {1, . . . , T + 1} which represent the cost-to-go as observed by the

pre-processor. HereT represents the horizon, whilet denotes the time at which the decision was

taken, and the argument of the function is the MDP stateYt. In order to simplify our notation,

we adopt the convention thatVT+1,T (yT+1)
def
= 0, yT+1 ∈ R. Using dynamic programming, we

can find the following recursive equations forVt,T (yt), t ∈ {1, . . . , T}:

Vt,T (yt)
def
= min

rt∈{0,1}
Ct,T (yt, rt), t ∈ {1, . . . , T} (19)

whereCt,T : R × {0, 1} → R is defined as:

Ct,T (yt, rt)
def
=







c + dE [Vt+1,T (Wt)] if rt = 1

y2
t + dE [Vt+1,T (ayt + Wt)] if rt = 0

(20)

From (20) it immediately follows that an optimal decision policy r∗t at any timet is given by:

r∗t =







1 if Ct,T (yt, 1) ≤ Ct,T (yt, 0)

0 if Ct,T (yt, 0) < Ct,T (yt, 1)
(21)

Using the MDP given in Definition 7 and the value functions from equation (19), we prove the

following Lemma, which states that,within the class of symmetric path-dependent pre-processors

DT (Definition 11), there exists an optimal path-independentsymmetric threshold policyS∗
0,T

(Definition 9) for Problem 1.

Lemma 1:Let the parameters specifying Problem 1 be given, i.e., the variance of the process

noiseσ2
W , the system’s dynamic constanta, the communication costc, the discount factord and

the time horizonT are pre-selected. Consider Problem 1 with the additional constraint that the

pre-processor must be of the symmetric path-dependent typeDT specified in Definition 11. There

exists an optimal path-independentsymmetric threshold policyS∗
0,T , as given in Definition 9,

whose associated threshold selection{τ ∗
k}T

k=1 is given by a solution to the following equations:

Ct,T (τ ∗
t , 0) = Ct,T (τ ∗

t , 1), t ∈ {1, . . . , T} (22)
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Fig. 2. Illustration suggesting that Facts A.1 through A.4.imply the existence of thresholds for which (23) holds.

Proof: From (21), we conclude that in order to prove this Lemma we only need to show

that there exist thresholds{τ ∗
k}T

k=1 for which the following equivalences hold:

|yt| ≥ τ ∗
t ⇐⇒ Ct,T (yt, 1) ≤ Ct,T (yt, 0), t ∈ {1, . . . , T} (23)

Indeed, if (23) holds then the optimal strategy in (21) can beimplemented via a threshold

policy. In order to prove that there exist thresholds{τ ∗
k}T

k=1 such that (23) holds, we will use

the following facts (A.1 thorugh A.4):

• (Fact A.1): For everyt in the set{1, . . . , T}, Ct,T (yt, 1) depends only ont, i.e., it is a

time-dependent constant independent ofyt.

• (Fact A.2): It holds thatCt,T (0, 0) < Ct,T (yt, 1) for yt ∈ R.

• (Fact A.3): For everyt in the set{1, . . . , T} there exists a positive constantut such that

Ct,T (yt, 0) > Ct,T (yt, 1) andCt,T (−yt, 0) > Ct,T (−yt, 1) hold for everyyt satisfying|yt| > ut.

• (Fact A.4): It holds thatCt,T (yt, 0) is a continuous, even, quasi-convex and unbounded

function of yt, for everyt in the set{1, . . . , T}.

Facts A.1 and A.2 follow directly from (20), while Fact A.3 follows from Fact A.4, which

requires a proof that we defer to a later stage. At this point we assume that Fact A.4 is valid,

and we proceed by noticing that continuity ofCt,T (yt, 0) with respect toyt, as well as Facts A.2

and A.3, imply that the equations in (22) have at least one solution {τ ∗
k}T

k=1. Moreover, from

Facts A.1 through A.4 we can conclude that such a solution{τ ∗
k}T

k=1 guarantees that (23) is true

(See Figure 2).

(Proof of Fact 4) Since y2
t is an even, convex, unbounded and continuous function ofyt,

from (20) we conclude that it suffices to prove by induction that Vt,T (yt) is even, quasiconvex,

bounded and continuous for eacht in the set{1, . . . , T}.
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SinceVT+1,T (yT+1) = 0 holds by convention, the following is true:

VT,T (yT ) = min
(
c, y2

T

)
, yT ∈ R

HenceVT,T (yT ) is an even, quasiconvex, bounded and continuous function ofyT . Using Lemma 14

in Appendix II, we conclude thatE [VT,T (ayT−1 + WT−1)] is also an even, quasiconvex, bounded

and continuous function ofyT−1, which implies that so isVT−1,T (yT−1). By induction it follows

that Vt,T (yt) is an even, quasiconvex, bounded and continuous ofyt, for each t in the set

{1, . . . , T}.

IV. NOTATION, DEFINITIONS AND BASIC RESULTS FOR THEPROOF OFTHEOREM 1

This section is dedicated to introducing notation, definitions and basic results in majorization

theory that will streamline our proof of Theorem 1. The proofof Theorem 1 is given in Section V.

In Subsection IV-A, we introduce basic majorization theoryand state a few Lemmas, which

are supporting results for the proof of Theorem 1. In Subsection IV-B, we introduce notation

and we derive recursive equations for the time update of certain conditional probability density

functions of interest.

A. Basic Results, Notation and Definitions from Theory of Majorization

In [1], the authors define what a neat probability mass functions is. We will adapt this definition

for probability density functions onR.

Definition 12: (Neat pdf) Let f : R → R be a probability density function. We say thatf is

neat if f is quasiconcave and there exists a real numberb such thatf is non-decreasing on the

interval (−∞, b] and non-increasing on[b,∞).

Remark 10:Throughout the paper, we will use the useful fact that the convolution of two

neat and even probability density functions is also neat andeven. The complete proof of this

fact is given in Lemma 5 in Appendix I.

Hajek gives in [1] the definition of symmetric non-increasing function onR
n. Since we work

only on the real line, it suffices to notice that a probabilitydensity functionf : R → R is

symmetric non-increasing if and only if it is neat and even. Hence, without loss of generality,

in this paper only usesymmetric non-increasingto qualify certain probability density functions

throughout the paper.
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Let A be a given Borel measurable subset ofR, we denote its Lebesgue measure byL (A).

If the Lebesgue measure ofA is finite then the symmetric rearrangement ofA, denoted byAσ,

is a symmetric closed interval centered around the origin with Lebesgue measureL (A):

A
σ =

{

x ∈ R : |x| ≤ L (A)

2

}

Let f : R → R be a given non-negative function, we definefσ, the symmetric non-decreasing

rearrangement off , as follows:

fσ(x)
def
=

∫ ∞

0

I{z∈R:f(z)>ρ}σ(x)dρ (24)

whereI{z∈R:f(z)>ρ}σ : R → {0, 1} is the following indicator function:

I{z∈R:f(z)>ρ}σ(x)
def
=







1 if x ∈ {z ∈ R : f(z) > ρ}σ

0 otherwise
, x ∈ R

If f andg are two probability density functions onR, then we say thatf majorizesg, which

we denote asf ≻ g, provided that the following holds:
∫

|x|≤ρ

gσ(x)dx ≤
∫

|x|≤ρ

fσ(x)dx, for all ρ ≥ 0 (25)

One interpretation of the inequality in (25) is that,f majorizesg, if and only if for any

Borel setF′ ⊂ R with finite Lebesgue measure, there exists another Borel setF ⊂ R satisfying

L (F′) = L (F) and such that the following holds:
∫

F′

g(x)dx ≤
∫

F

f(x)dx

Given a probability density functionf : R → R and a Borel setK, such that
∫

K
f(x)dx > 0,

we define the restriction off to K as follows:

fK(x)
def
=







f(x)
R

K
f(x)dx

if x ∈ K

0 otherwise
(26)

It is clear thatfK is also a probability density function.

The following Lemma is a supporting result for the proof of Theorem 1 given in Section V.

Lemma 2:Let f, g : R → R be two probability density functions, such thatf is neat and

even andf ≻ g. Let κ be a real number in the intervalκ ∈ (0, 1), and letA = [−τ, τ ] be
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the symmetric closed interval such that
∫ τ

−τ
f(x)dx = 1 − κ. For any functionh : R → [0, 1]

satisfying
∫

R
g(x)h(x)dx = 1 − κ, the following holds:

fA ≻ g · h
1 − κ

(27)

whereg · h : R → R is defined asg · h(x)
def
= g(x)h(x), for x ∈ R.

Proof: From Lemma 10 given in Appendix I, we know that for any function h : R → [0, 1]

satisfying
∫

R
g(x)h(x)dx = 1−κ, there exists a setA′ ⊂ R, satisfying

∫

A′ g(x)dx = 1−κ, such

that the following holds:

gA′ ≻ g · h
1 − κ

(28)

From Lemma 9 given in Appendix I, we know thatfA ≻ gA′. From equation (28) and the fact

that fA ≻ gA′ holds, it follows that:

fA ≻ g · h
1 − κ

The following Lemma, which we state without proof, can be found in [1]:

Lemma 3: [1, Lemma 6.7] Letf and g be two probability density functions onR, with

f symmetric non-increasing andf ≻ g. For a symmetric non-increasing probability density

function h the following holds:

f ∗ h ≻ g ∗ h (29)

Lemma 4:Let f be a neat and even probability density function on the real line. Letg be a

probability density function on the real line satisfyingg ≺ f . The following holds:
∫

R

x2f(x)dx ≤
∫

R

(x − y)2g(x)dx, y ∈ R (30)

Proof: The result follows by selectingh(x) = x2 in Lemma 13 found in Appendix A.

Remark 11:Consider the conditions of Lemma 4. The fact that the probability density function

f is even implies that
∫

R
xf(x)dx = 0. Hence, if we selecty =

∫

R
xg(x)dx then it follows from

equation (30) that the variance off is less than or equal to the variance ofg.

B. Conditional probabilities and conditional probabilitydensity functions

Before proving Theorem 1, in this subsection we need to make afew remarks and introduce

more notation, which will streamline our proof. This subsection contains two parts: We start by
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introducing the notation for certain conditional probability density functions of interest, while

in the second part we will derive recursive equations for thetime update of the conditional

densities, and we will also obtain a recursive expansion forthe cost associated with any given

admissible pre-processor policyP0,T .

Definition 13: Let a pre-processorP0,T , implementing a decision policy as in Definition 2,

be given. We define the following notation for conditional probability densities, which will

streamline our proof of Theorem 1:

1) Define the conditional probability density function ofYk given that only erasure symbols

were transmitted up until timek as follows:

γk|k (y)
def
= fYk|R1=0,...,Rk=0 (y) , y ∈ R

2) Define the conditional probability density function ofYk given that only erasure symbols

were transmitted up until timek − 1 as follows:

γk|k−1 (y)
def
= fYk |R1=0,...,Rk−1=0 (y) , y ∈ R

Definition 14: We define the following streamlined notation for certain conditional probabil-

ities of interest:

1) Define the probability that, under policyP0,T , only erasure symbols have been transmitted

up until timek:

ςk
def
=







P (R1 = 0, . . . ,Rk = 0) if k ≥ 1

1 if k = 0

2) Define the conditional probability that, under policyP0,T , the pre-processor transmits the

erasure symbol at timek, given that only erasure symbols have been transmitted up until

time k − 1.

ςk|k−1
def
=







P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0) if k > 1

ς1 if k = 1
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Definition 15: Let P0,T be a decision policy given as in Definition 2. Letk be a positive

integer andy be a real number. For a positive integerk, define the functionρk : R → [0, 1] as

follows:

ρk (y)
def
= P (Rk = 0|Yk = y,R1 = 0, . . . ,Rk−1 = 0) , x ∈ R (31)

which is the probability that, at timek, the erasure symbol is transmitted, given thatYk = y,

wherey is any real number, and the fact that only erasure symbols have been transmitted up

until time k − 1.

Notation: For a random variableY described by a probability density functionf and a real

function h, we denote byEf [h(Y)], the expected value of the random variableh(Y) under the

probability density functionf .

C. Time Evolution

Now, we describe how the conditional probability density functions presented in subsection IV-

B evolve in time, for a given policyP0,T . For a real numbera, below we define the conditional

probability density function ofaYk given that no observation was received up until timek:

γa
k|k(y)

def
= faYk|R1=0,...,Rk=0 (y)

We denote byNσ2
W

the probability density function ofWk, for all k, i.e., the Gaussian zero

mean probability density with varianceσ2
W , or more concretelyNσ2

W
(x) = 1√

2πσ2
W

e
− x2

2σ2
W . Since

the sequence{Wk}T

k=0 is i.i.d., Wk−1 is also independent of{Yl}k−1
l=0 , which implies that the

following holds:

γk|k−1 = γa
k−1|k−1 ∗ Nσ2

w
(32)

Proposition 2: The conditional densitiesγk|k−1 and γk|k are related via the following time-

recursion:

γk|k(y) =
γk|k−1(y)ρk (y)

ςk|k−1

, ςk|k−1 6= 0, k ≥ 1 (33)

Proof: In order to arrive at (33), we use Baye’s rule to write:

fYk |R1=E,...,Rk=E (y) =
P (Rk = 0|Yk = y,R1 = 0, . . . ,Rk−1 = 0)

P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0)
fYk|R1=0,...,Rk−1=0 (y) (34)
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The recursion (33) follows from (34) by rewriting it according to Definitions 13, 14 and 15.

Equation (34) holds only ifP (Rk = 0|R1 = 0, . . . ,Rk−1 = 0) = ςk|k−1 6= 0. If ςk|k−1 = 0 then

the conditional density functionfYk |R1=0,...,Rk=0 (y) is no longer defined.

Definition 16: Given an admissible pre-processorP0,T and an integerm ∈ {0, . . . , T} , we

adopt the following definition for the partial cost computedfor the horizon{m+1, . . . , T} under

the assumption thatrm = 1:

Jm,T

(
a, σ2

W , c,Pm,T

) def
=







∑T

k=m+1 dk−m−1E

[(

Yk − Ŷk

)2

+ cRk

]

if 0 ≤ m < T

0 if m = T

(35)

Remark 12:Given an integerm, we notice that the cost in (35) will not depend on the value

of the state at timem. This is so because, according to Definition 6, sinceP0,T is admissible it

holds that the current and futureoutput of Pm,T will not depend on the current and past state

observations. This Remark is an extension of Remark 3, whichconsidered the case form = 0.

Proposition 3: Given an arbitrarily selected admissible pre-processorP0,T , the finite horizon

cost (6) can be expanded as:

J0,T

(
a, σ2

W , c,P0,T

)

=
T∑

k=1

dk−1

(

Eγk|k

[(

Yk − Ŷk

)2
]

ςk +
(
c + Jk,T

(
a, σ2

W , c,Pk,T

))
ςk−1(1 − ςk|k−1)

)

(36)

Here we use the notationEγk|k

[(

Yk − Ŷk

)2
]

def
= E

[(

Yk − Ŷk

)2

|R1 = 0, . . . ,Rk = 0

]

, where

γk|k is given in Definition 13.

Proof: We start by noticing that, by the total probability law, we can expand the cost as:

J0,T

(
a, σ2

W , c,P0,T

)

=
T∑

k=1

dk−1

(

E

[(

Yk − Ŷk

)2

|R1 = 0, . . . ,Rk = 0

]

P (R1 = 0, . . . ,Rk = 0) +

+
(
c + E

[
Jk,T

(
a, σ2

W , c,Pk,T

)
|Rk = 1,R1 = 0, . . . ,Rk−1 = 0

])
×

P (Rk = 1,R1 = 0, . . . ,Rk−1 = 0)

)

(37)
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We proceed by obtaining the following identities:

P (Rk = 1,R1 = 0, . . . ,Rk−1 = 0) = P (R1 = 0, . . . ,Rk−1 = 0)−

− P (R1 = 0, . . . ,Rk = 0) = P (R1 = 0, . . . ,Rk−1 = 0)−

− P (Rk = 0|R1 = 0, . . . ,Rk−1 = 0)P (R1 = 0, . . . ,Rk−1 = 0) =

= ςk−1(1 − ςk|k−1), k ≥ 1

(38)

Notice that, using standard probability theory, from{ςk}T

k=1 we can compute
{
ςk|k−1

}T

k=1
and

vice versa. Here, equation (38) is still valid fork = 1, since we definedς0 = 1 and ς1|0 = ς1.

Finally, notice that from Remark 12, we conclude the following:

E
[
Jk,T

(
a, σ2

W , c,Pk,T

)
|Rk = 1,R1 = 0, . . . ,Rk−1 = 0

]
= Jk,T

(
a, σ2

W , c,Pk,T

)
(39)

The proof of this Proposition is complete once we substitute(38) and (39) into (37).

Definition 17: The following is a convenient definition for the optimal cost:

J ∗
m,T

(
a, σ2

W , c
) def

=







minPm,T ∈PT−m
Jm,T (a, σ2

W , c,Pm,T ) , T ≥ 1

0, T = 0
(40)

From Proposition 3, we can immediately state the following Corollary:

Corollary 1: The following inequality holds for every admissible pre-processorP0,T :

J0,T

(
a, σ2

W , c,P0,T

)
≥

T∑

k=1

dk−1

(

Eγk|k

[(

Yk − Ŷk

)2
]

ςk +
(
c + J ∗

k,T

(
a, σ2

W , c
))

(1 − ςk|k−1)ςk−1

)

(41)

V. PROOF OFTHEOREM 1

Our strategy to prove Theorem 1 is to show that for every admissible pre-processor policy

P0,T , there exists a path-dependent symmetric threshold policyDo
0,T which does not underperform

P0,T . This fact, which we denote asFact B.1, leads to the following conclusions:

• (Fact B.2): Lemma 1 (Section III-A), in conjunction with Fact B.1, implies that an optimum

S∗
0,T for Problem 1 exists and that it is of the symmetric thresholdtype ST (Definition 9).

• (Fact B.3): From Fact B.2 and Proposition 1 (Section III), we concludethere exists a

symmetric threshold policyS∗
0,T and a Kalman-like estimatorZ (Definition 5) that are

jointly optimal for Problem 1.
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Proof: (of Theorem 1): Facts B.2 and B.3 constitute a proof for Theorem 1. It remains to

prove the validity of Fact B.1.

(Proof of Fact B.1): Here we will use an inductive approach that is analogous tothe one

used in [1, Lemma 6.5]. Our proof for Fact B.1 is organized in two parts. InPart I, we will

prove Fact B.1 for the case when the time-horizonT is one, while inPart II, we prove the

general induction step.

Notation: According to the definitions of Section IV-B , any given pre-processor has associated

with it conditional probability density functions
{
γk|k

}T

k=1
and

{
γk|k−1

}T

k=1
, as well as conditional

probabilities{ςk}T

k=1 and
{
ςk|k−1

}T

k=1
. Hence, we assume that the path-dependent symmetric

threshold policyDo
0,T - to be constructed as part of this proof - defines conditionalprobability

density functions
{

γo
k|k

}T

k=1
and

{

γo
k|k−1

}T

k=1
as well as conditional probabilities{ςo

k}T

k=1 and
{

ςo
k|k−1

}T

k=1
.

Part I: Here we will prove Fact B.1 forT = 1. We will do so by constructing a policyDo
0,1

as follows:

ro
1

def
=







1 if |y1| > τ1

0 otherwise
(42)

whereτ1 is a threshold that we will select appropriately. Hence, if the absolute value ofy1 is

less than or equal toτ1 then the pre-processor transmits the erasure symbol, otherwise it sends

x1. Consider that a policyP0,1 is given. We start by noticing that forP0,1 andDo
0,1 it holds that

γ1|0 = γo
1|0 = Nσ2

W
, while the cost associated with policyP0,1 is:

J0,1

(
a, σ2

W , c,P0,1

)
= Eγ1|1

[(

Y1 − Ŷ1

)2
]

ς1 + c(1 − ς1) (43)

whereŶ1 = Eγ1|1
[Y1]. We construct a desirableDo

0,1 by selectingτ1 such thatςo
1 = ς1, which

from (42) leads to a probability density functionγo
1|1 that is neat and even. Furthermore, Lemma 2

implies thatγ1|1 ≺ γo
1|1 holds. From Lemma 4 we arrive at the following inequality:

Eγo
1|1

[(

Y1 − Ŷ
o
1

)2
]

≤ Eγ1|1

[(

Y1 − Ŷ1

)2
]

(44)

The cost associated with the policyDo
0,1 is given by:

J0,1

(
a, σ2

W , c,Do
0,1

)
= Eγo

1|1

[(

Y1 − Ŷ
o
1

)2
]

ς1 + c(1 − ς1) (45)
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Finally, we conclude from (43), (44) and (45) that:

J0,1

(
a, σ2

W , c,P0,1

)
≥ J0,1

(
a, σ2

W , c,Do
0,1

)
(46)

which leads to the desired conclusion thatDo
0,1 does not underperformP0,1.

Part II: (General induction step) Let T I be a given horizon that is strictly larger than one.

Assume theinductive hypothesis that Fact B.1 is valid for any horizonT less thanT I .

We start by noticing that the validity of our inductive hypothesis implies the following facts:

• (Fact B.4): The inductive hypothesis in conjunction with Lemma 1 implies that Problem 1

has an optimum for every horizonT less thanT I .

• (Fact B.5): The inductive hypothesis also implies that Problem 1 admits an optimal pre-

processor policy of the symmetric threshold type (Definition 9), for every horizonT less

thanT I .

Hence, Fact B.5 implies that there existS∗
1,T I throughS∗

T I ,T I that satisfy the following:

Jm,T I (a, σ2
W , c,S∗

m,T I ) = min
P̃

m,TI ∈P
TI−m

Jm,T I (a, σ2
W , c, P̃m,T I ) =

(a)
J ∗

m,T I(a, σ2
W , c) 1 ≤ m ≤ T I

(47)

whereS∗
m,T I is of the symmetric threshold typeST I−m and (a) above follows by definition from

(40).

Now we proceed to showing that the general induction step holds. In order to do so, we show

that for any admissible policyP0,T I , we can construct a path-dependent symmetric threshold

policy Do
0,T I that does not underperformP0,T I . Henceforth, assume thatP0,T I is an arbitrarily

chosen admissible policy.

The following is our algorithm forDo
0,T I :

Description of Algorithm for Do
0,T I

• (Initial step) Set k = 0 and transmit the current state, i.e.,v0 = x0 or equivalently set

y0 = 0.

• (Step A) Increase the time counterk by one. If k > T I holds then terminate, otherwise

execute Step B.

• (Step B) If |yk| < τ o
k holds then setrk = 0, transmit the erasure symbol, i.e.,vk = E, and

return to Step A. If|yk| ≥ τ o
k holds then executeS∗

k,T I , as defined in (47).
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where{τ o
k}T I

k=1 are appropriately chosen thresholds, as described next.

End of description of Algorithm for Do
0,T I

Notice thatDo
0,T I is a path-dependent symmetric threshold strategy (Definition 10), for which

we can also conclude thatDo
m,T I = S∗

m,T I holds for1 ≤ m ≤ T I .

In order to complete the specification ofDo
0,T I so that it does not underformP0,T I , we proceed

by appropriately selecting the thresholds{τ o
k}T I

k=1.

(Selection of thresholds {τ o
k}T I

k=1) We proceed to describing how to choose the threshold

sequence{τ o
k}T

k=1 and what this choice implies. Notice thatγo
1|0 = Nσ2

W
and that the Gaussian

probability density function is neat and symmetric. Chooseτ o
1 such thatςo

1 = ς1, it follows that

the probability density functionγo
1|1 is neat and even. From equation (32), which describes how

the conditional probability density functions evolve in time, it holds thatγo
2|1 is neat and even.

By further selectingτ o
2 such thatςo

2|1 = ς2|1, it also follows thatγo
2|2 andγo

3|2 are neat and even.

By repeated execution of this selection process, we can choose all the thresholdsτ o
k such that

ςo
k|k−1 = ςk|k−1 for all k in

{
1, . . . , T I

}
. These choices also imply thatγo

k|k andγo
k|k−1 are neat

and even for allk in
{
1, . . . , T I

}
. Sinceςo

k|k−1 = ςk|k−1 holds for allk in
{
1, . . . , T I

}
, it follows

that ςo
k = ςk is satisfied for allk in

{
1, . . . , T I

}
.

At this point, we know thatγ1|0 = γo
1|0 = Nσ2

W
and that the Gaussian probability density

function Nσ2
W

is neat and even. Hence, then from Lemma 2, we conclude thatγ1|1 ≺ γo
1|1. It

also follows from Lemma 11 in the Appendix I and Lemma 3 thatγ2|1 ≺ γo
2|1 holds. From the

repeated application of this idea, it follows thatγk|k ≺ γo
k|k for all k in

{
1, . . . , T I

}
and, in

addition, sinceγo
k|k is neat and even, it holds that̂Y

o
k = Eγo

k|k
[Yk] = 0 for all k in

{
1, . . . , T I

}
.

Sinceγk|k ≺ γo
k|k holds andγo

k|k is neat and even, Lemma 4 implies that the following is true:

Eγo
k|k

[(

Yk − Ŷ
o
k

)2
]

≤ Eγk|k

[(

Yk − Ŷk

)2
]

, k ∈
{
1, . . . , T I

}
(48)

The cost obtained by applying the pre-processor policyPo can be expressed using (36) as

follows:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
=

T I
∑

k=1

dk−1

(

Eγo
k|k

[(

Yk − Ŷ
o
k

)2
]

ςk+

(
c + Jk,T I

(
a, σ2

W , c,Do
0,T I

))
(1 − ςk|k−1)ςk−1

)

(49)
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Using (47), we can re-write (49) as follows:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
=

T I
∑

k=1

dk−1

(

Eγo
k|k

[(

Yk − Ŷ
o
k

)2
]

ςk+

(
c + J ∗

k,T I

(
a, σ2

W , c
))

(1 − ςk|k−1)ςk−1

)

(50)

From inequality (41), which lower bounds the cost associated with any pre-processor policy,

equation (50) and equation (48), we conclude that:

J0,T I

(
a, σ2

W , c,Do
0,T I

)
≤ J0,T I

(
a, σ2

W , c,P0,T I

)
(51)

That we were able to constructDo
0,T I satisfying (51) for an arbitrarily chosen admissible

pre-processorP0,T I constitutes a proof for Fact B.1.

VI. CONCLUSIONS

This paper addresses the design of a distributed estimationsystem comprising of two blocks

connected in series, via a link that conveys either a real number or an erasure symbol. Transmis-

sion of a real number incurs a positive communication cost, while the erasure symbol features

zero cost. The first block is a pre-processor that accepts causal state measurements of a scalar

linear and time invariant plant driven by process noise, while the second block must produce an

optimal estimate of the state, according to a cost that combines the expected squared estimation

error and the communication cost. This paper is the first to prove that threshold policies at the

pre-processor and a class of kalman-like filters (previously proposed in the literature) at the

estimator are jointly optimal. The problem addressed here is non-convex, implying that standard

arguments based on symmetry will not hold. In order to circumvent this difficulty, we introduce

the use of majorization theory to establish a convenient partial order among candidate solutions.

The proof follows by appropriate use of the partial order viaa constructive argument that exploits

the structure of the cost function.

APPENDIX I

MAJORIZATION THEORY

Lemma 5: If f andh are neat and even probability density functions, thenf ∗ h is also neat

and even, where byf ∗ h we mean the convolution betweenf andh.
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Proof: The proof adopted here is analogous to the one in [1, Lemma 6.2], which deals

with probability mass functions. Sinceh is a probability density function, it implies that is also

measurable. Letg : R → R be defined as:

g(x) =







1, x ∈ [−α, α]

0, x /∈ [−α, α]

whereα is a positive real number. We notice thatg is an indicator function. We claim thatf ∗ g

is neat and even.

(f ∗ g)(x) =

∫ ∞

−∞

f(x − t)g(t)dt =

∫ α

−α

f(x − t)dt =

∫ α+x

−α+x

f(y)dy (52)

Since the functionf is neat and even, it is clear thatf ∗ g is neat and even from equation (52).

The functionf ∗ g is neat and even also for the case wheng(x) = 1 on a symmetric open

interval (−α, α) andg(x) = 0 for x ∈ (−∞,−α] ∪ [α,∞).

We need to prove the main claim of Lemma 5. We do this by approximating the functionh

with a sum of indicator functions like the functiong. Sinceh is neat and even it follows that

h(0) ≥ h(x), for any real numberx. For a positive integer numbern, define the functionhn as

follows:

hn(x) = h(0)
k

n
, x ∈

{

x ∈ R : h(0)
k

n
≤ h(x) < h(0)

k + 1

n

}

, k ∈ {0, . . . , n − 1} (53)

It follows that hn(x) ≤ hn+1(x) for every real numberx and thathn → h. Moreover, from the

monotone convergence Theorem, it follows thatf ∗ hn → f ∗ h.

Sinceh is neat and even it follows that for every integern and integerk ≤ n, there exists

a positiveαn
k such thath(x) ≥ h(0) k

n
for x ∈ I

n
k = [−αn

k , αn
k ] or x ∈ I

n
k = (−αn

k , αn
k) and

h(x) < h(0) k
n

outsideI
n
k , and moreoverIn

k ⊂ I
n
k+1 for all positive integersk < n. The function

hn can be written as follows:

hn(x) = h(0)
1

n

n∑

k=0

IIn
k
(x)

where byIIn
k

we denote the indicator function of the intervalI
n
k .

f ∗ hn = h(0)
1

n

n∑

k=0

f ∗ IIn
k

It follows that f ∗ hn is neat and even, hence taking the limit asn goes to infinity, it implies

that f ∗ h is neat and even.
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Remark 13:From the proof of Lemma 5, it follows that the claim of Lemma 5 holds if f

andh are any non-negative, even, quasiconcave and integrable functions.

We will state now two important inequalities, which are useful for this paper. The first one is

the Riesz’s rearrangement inequality:

Lemma 6 (Riesz’s Rearrangement inequality [2]):If f, g and h are non-negative functions on

R
n, then:

∫

Rn

f(x) (g ∗ h) (x)dx ≤
∫

Rn

fσ(x) (gσ ∗ hσ) (x)dx (54)

The second important inequality, which we need is the Hardy-Littlewood inequality [5].

Lemma 7 (Hardy-Littlewood inequality [5]):If f andg are two non-negative measurable func-

tions defined on the real line, which vanish at infinity, then the following holds:
∫

R

f(x)g(x)dx ≤
∫

R

fσ(x)gσ(x)dx (55)

We state and prove the following Lemmas, which are a supporting results for Lemma 2 in

Subsection IV-A.

Lemma 8:Let f : R → R be a symmetric and non-increasing probability density function.

For any positiveκ ≤ 1, there exists a symmetric intervalI centered around zero such that the

following holds 1:

fI ≻ fI′ (56)
∫

I

f(x)dx = 1 − κ (57)

for any Borel set (not necessarily interval)I
′ ⊂ R

n, satisfying
∫

I′
f(x)dx = 1 − κ.

Proof: Case I: Assume that there existsρ such that
∫

{x∈R:f(x)>ρ}
f(x)dx = 1 − κ, then

let I = {x ∈ R : f(x) > ρ}. Since,f is symmetric and non-increasing, it follows thatI is a

symmetric interval. Let any other setI
′ such that

∫

I′
f(x)dx = 1− κ. Choose any setF′ ⊂ I

′, if

L(F′) ≥ L (I), let F ⊂ R be any Borel set, such thatL(F) = L(F′) and I ⊂ F, it follows that :
∫

F

fI(x)dx = 1 ≥
∫

F′

fI′(x)dx

since bothfI and fI′ are probability density functions. IfL(F′) ≤ L(I), then choose any set

F ⊂ I, such thatL(F) = L(F′). Let F1 = F ∩ F
′, then, for any real numberx ∈ F

′ \ F1 it holds

1HerefI andfI′ follow the definition in (26)
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that f(x) ≤ ρ, while on the setF \ F1, f(x) ≥ ρ.
∫

F

fI(x)dx =
1

1 − κ

∫

F

f(x)dx =
1

1 − κ

(∫

F1

f(x)dx +

∫

F\F1

f(x)dx

)

≥ 1

1 − κ

(∫

F1

f(x)dx +

∫

F\F1

ρdx

)

≥ 1

1 − κ

(∫

F1

f(x)dx +

∫

F′\F1

f(x)dx

)

=
1

1 − κ

∫

F′

f(x)dx =

∫

F′

fI′(x)dx

The second inequality is due to the fact thatF \F1 andF
′ \F1 have the same Lebegue measure.

Case II: Assume that, there is no suchρ, such that
∫

{x∈R:f(x)>ρ}
f(x)dx = 1 − κ. The

integral
∫

{x∈R:f(x)>ρ}
f(x)dx is decreasing as a function ofρ and is also bounded. It follows

than that, there exist aρ such that
∫

{x∈R:f(x)>ρ}
f(x)dx < 1 − κ and

∫

{x∈R:f(x)≥ρ}
f(x)dx ≥

1 − κ. Both the sets{x ∈ R
n : f(x) > ρ} and{x ∈ R : f(x) ≥ ρ} are symmetric intervals and

{x ∈ R : f(x) > ρ} ⊂ {x ∈ R : f(x) ≥ ρ}. Then we can find an intervalI ⊂ {f(x) ≥ ρ}
symmetric around the origin such that

∫

I
f(x)dx = 1 − κ. Using the same type of arguments

like in the first case we get thatfI ≻ fI′ for any I
′ ⊂ R such that

∫

I′
f(x)dx = 1 − κ.

Lemma 9:Let f, g : R → R be two probability density functions, such thatf is neat and even

andf ≻ g. Let κ be a real number such that0 < κ < 1. Let I be the symmetric interval given

by Lemma 8 for the probability density functionf and the numberκ. If I
′ ⊂ R is a set such

that
∫

I′
g(x)dx = 1− κ is satisfied thenfI ≻ gI′ holds, wherefI andgI′ follow the definition in

(26).

Proof: Fix a Borel setI′ ∈ R such that
∫

I′
g(x)dx = 1 − κ and choose a Borel set

F
′ ∈ I

′ with strictly positive Lebesgue measure. IfL(F′) ≥ L(I), chooseF any Borel set with

L(F) = L(F′), such thatI ⊂ F. It is clear in this case that
∫

F
fI(x)dx = 1 ≥

∫

F′ gI′(x)dx.

If L(F′) ≤ L(I), then becausef ≻ g, there exists a setF′′ ∈ R, such thatL(F′′) = L(F′)

and
∫

F′′ f(x)dx ≥
∫

F′ g(x)dx. ChooseI
′′ a set which containsF′′ and

∫

I′′
f(x)dx = 1 − κ. By

Lemma 8,fI′′ ≺ fI, so it follows that there exists a setF ⊂ I, with the same Lebesgue measure

asF
′′ such that

∫

F
f(x)dx ≥

∫

F′′ f(x)dx ≥
∫

F′ g(x)dx

Lemma 10:Let f : R → R be a probability density function and letκ be a positive

real number, less than one. Leth : R → [0, 1] be a measurable positive function such that
∫

R
h(x)f(x)dx = 1− κ. There exists a Borel setA such that

∫

A
f(x)dx = 1− κ andfA ≻ h·f

1−κ
.
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Proof: If existsρ such that
∫

{x∈R:f(x)>ρ}
f(x)dx = 1−κ, then letA = {x ∈ R : f(x) > ρ}.

If no suchρ exists, just like in the proof of Lemma 8, there exists aρ such that:
∫

{x∈R:f(x)>ρ}

f(x)dx < 1 − κ, and
∫

{x∈R:f(x)≥ρ}

f(x)dx ≥ 1 − κ

i.e., there exists a set of Lebesgue measure strictly positive, such thatf(x) = ρ. Choose a

setA′ = {x ∈ R : f(x) > ρ}. From the set{x ∈ R : f(x) = ρ}, choose a subsetA′′ of measure
1−κ−

R

{x∈R:f(x)>ρ} f(x)dx

ρ
. Let A = A

′∪A
′′, it follows then that

∫

A
f(x)dx = 1−κ and thatf(x) ≥ ρ,

for all x ∈ A.

Let F
′ be a Borel set inR, if L(F′) ≥ L(A), chooseF such thatL(F′) = L(F) and A ⊂ F.

Then the following holds:
∫

F

fA(x)dx = 1 ≥
∫

F′

f(x)

1 − κ
h(x)dx

If L(F′) ≤ L(A), let F1 = F
′ ∩A and letF2 ⊂ A \ F1 such thatL(F1 ∪ F2) = L(F′). If x ∈ F1,

f(x) ≥ h(x)f(x), and if x ∈ F2, f(x) ≥ ρ, and if x ∈ F
′ \F1, h(x)f(x) ≤ f(x) ≤ ρ. It follows

then:
∫

F1∪F2

fA(x)dx ≥
∫

F′

h(x)
f(x)

1 − κ
dx

Lemma 11:Let f, g : R → R be two probability density functions such thatf ≻ g. For any

non- zero constanta, define the following probability density functions:

f̃(x)
def
=

1

|a|f
(x

a

)

g̃(x)
def
=

1

|a|g
(x

a

)

Under the definitions above,̃f ≻ g̃ holds.

Remark 14:We notice that Lemma 11 is well posed sincef̃ andg̃ are also probability density

functions. Iff is the probability density function of a random variableX, thenf̃ is the probability

density function of the random variableaX.

Proof: For a setA ⊂ R and for a strictly positive constantα, define the setαA =
{
x ∈ R : 1

α
x ∈ A

}
. Assumea to be positive and letF′ be a set of positive and finite Lebesgue
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measure.
∫

F′

g̃(x)dx =

∫

1
a

F′

g(x)adx

sincef ≻ g, there exists a setF′′ with the same Lebesgue measure as1
a
F
′ such that:

∫

1
a

F′

g(x)adx ≤
∫

F′′

f(x)adx =

∫

aF′′

f̃(x)dx

ChooseF = aF
′′, clearly,F andF

′ have the same Lebesgue measure, then it follows that:
∫

F′

g̃(x)dx ≤
∫

F

f̃(x)dx

which implies that̃g ≺ f̃ . Similar arguments hold fora negative.

From the Riesz’s rearrangement inequality, Hajek states and proves in [1] the following result:

Lemma 12:[1, Page 619] Letf andg be probability density functions defined on the real line,

such that,f is neat and even, andf ≻ g. Let h be a non-negative, symmetric and non-increasing

function. The following holds:
∫

R

h(x)g(x)dx ≤
∫

R

h(x)f(x)dx (58)

In order to prove Lemma 4, we state the following Lemma.

Lemma 13:Let f be a neat and even probability density function on the real line, Letg, be

a probability density function on the real line, such thatg ≺ f . Let h be a positive, even and

quasiconvex function. Then the following holds:
∫

R

h(x)f(x)dx ≤
∫

R

h(x − y)g(x)dx (59)

wherey is any real number.

Proof: Let c be a positive real number and define the functions:

hc(x) = c − min (c, h(x))

hc(x, y) = c − min (c, h(x − y))

for any real numbery. We notice that the functionhc is symmetric and non-increasing, it is then

immediate, thathc = hσ
c andhc = hσ

c (·, y) for all real numbersy. The following inequalities are

true:
∫

R

hc(x, y)g(x)dx ≤
∫

R

hc(x)gσ(x)dx ≤
∫

R

hc(x)f(x)dx
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for any y ∈ R. The first inequality follows from the Hardy-Littlewood inequality (7), while the

second inequality follows from Lemma 12. It follows that:
∫

R

hc(x, y)g(x)dx ≤
∫

R

hc(x)f(x)dx ⇒
∫

R

(c − min (c, h(x − y))) g(x)dx ≤
∫

R

(c − min (c, h(x))) f(x)dx ⇒
∫

R

min (c, h(x − y)) g(x)dx ≥
∫

R

min (c, h(x)) f(x)dx

Taking the limit asc goes to infinity and using the monotone convergence theorem the result

follows.

APPENDIX II

QUASICONVEX LEMMA

Lemma 14:Let h : R → R, be a measurable, bounded, even and quasiconvex function. Let

W be a random variable with an even and quasiconcave probability density function. Define

h̄ : R → R, such that̄h
def
= E [h(x + W)], thenh̄ is a bounded, even and quasiconvex function.

If the functionh is also continuous then̄h is also continuous.

Proof: Define g : R × R → R as g(x, c)
def
= E [c − min (c, h(x + W))]. We will show

that the functiong(x, c) is continuous inc for every fixed real numberx, and for everyc the

function g(x, c) is even and quasiconcave inx. The functionh is even and quasiconvex then,

it follows that zero is a global minimizer ofh. For any real numberc and any real numberx

define the setD(x, c)
def
= {w ∈ R : h(x + w) ≤ c} Sinceh is even and quasiconvex thenD(0, c)

is a symmetric interval around zero or the empty set. Note that for h(0) ≤ c < supx h(x), the

setD(0, c) is a symmetric interval, which can be either closed or open. Hence it follows that:

D(x, c) =







∅, c < h(0)

[−α(c) − x, α(c) − x] or (−α(c) − x, α(c) − x), h(0) ≤ c < supx h(x)

(−∞,∞), supx h(x) ≤ c

where by∅ we denote the empty set andα(c) is the real number such thath(x) ≤ c if and only

if 0 ≤ x ≤ α(c) (0 ≤ x < α(c)). We will show that the functiong(x, c) is even and quasiconvex
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in x for any real numberc. Let f : R → R, be the probability density function ofW. We can

write g(x, c):

g(x, c) = E [c − min(c, h(x + W))] = c

∫ α(c)−x

−α(c)−x

f(w)dw −
∫ α(c)−x

−α(c)−x

h(x + w)f(w)dw

For any positive real numberδ, any real numbersc andx, it holds that:

|E [g(x + W, c + δ)] − E [g(x + W, c)] | ≤

E [|δ + min(c + δ, h(x + W)) − min(c, h(x + W))|] ≤ 2δ

It follows that for any real numberx and any real numberc, for any positive real number

ǫ, chooseδ = ǫ
2
, then for any real number̄c ∈ (c − δ, c + δ), |g(x, c̄) − g(x, c)| < ǫ, hence the

function g(x, c) is a continuous function inc for every real numberx.

Since the functionh is even and quasiconvex, it follows that the functionc−min(c, h(x)) is

even and quasiconcave, i.e. is neat and even. Moreover, fromthe definition of the setD(0, c),

we notice that the functionc − min(c, h(x)) is non-negative, bounded and takes the value zero

outside the setD(0, c). If c < supx h(x), then the setD(0, c) is the empty set or a finite interval

(open or closed), it follows that, ifc < supx h(x) the functionc − min(c, h(x)) is integrable.

Hence, it holds that:

g(x, c) = E [c − min(h(x + W, c)] =

∫ ∞

−∞

(c − min(h(x + w, c))f(w)dw

=

∫ ∞

−∞

(c − min(h(x + w, c))f(−w)dw =

∫ ∞

−∞

(c − min(h(x − η, c))f(η)dη

The second equality comes from the fact thatf is even, while the third equality comes from the

change of variableη = −w. It follows from Lemma 5 and Remark 13 thatg(x, c) is a neat and

even function for everyc < supx h(x). Sinceg(x, c) is continuous inc it implies thatg(x, c)

is neat and even for every realc and moreover the functionE [min(c, h(x + W))] is even and

quasiconvex. From the monotone convergence theorem, it holds that:

h̄(x) = lim
c→∞

E [min(h(x + W), c)]

and the properties ofE [min(h(x + W), c)] in x are kept forh̄, i.e. h̄ is even and quasiconvex.

Sinceh is bounded, it follows that̄h is bounded and we only need to prove the continuity ofh̄.

We are given thath is even and quasiconvex, which implies thath is non-decreasing on[0,∞)

and non-increasing on(−∞, 0]. We are also given thath is bounded and continuous, which
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implies thath is uniform continuous on the interval[0,∞) and is also uniform continuous on

the interval(−∞, 0]. It follows that the entire functionh is uniform continuous, i.e. for any real

numberx, for any positive real numberǫ, there exists a positive real numberδ, which does not

depend onx, such that for any real numbery ∈ (x − δ, x + δ), it holds that|h(x) − h(y)| < ǫ.

It follows that, for any real numberx and for any real numbery ∈ (x− δ, x + δ), it holds that:

|E [h(x + W)] − E [h(y + W)] | = |
∫ ∞

−∞

h(x + w)f(w)dw −
∫ ∞

−∞

h(y + w)f(w)dw|

≤
∫ ∞

−∞

|h(x + w) − h(y + w)|f(w)dw ≤ ǫ

This implies that̄h is continuous.
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