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ABSTRACT

Title of Dissertation: Redundant-drive Backlash-free
Robotic Mechanisms: mechanisms
Creation, Analysis, and Control

Name of degree candidate: Sun-Lai Chang, Doctor of Philosophy, 1991

Dissertation directed by: Professor Lung-Wen Tsai
Department of Mechanical Engineering
and
Systems Research Center

In this dissertation, the concept of transmission lines for topological syn-
thesis of articulated gear mechanisms is introduced. It is shown that the
structure matrix, which relates input displacements to the joint angles of a
multi-degree-of-freedom articulated gear mechanism, can be derived using the
concept of transmission lines. Applying the characteristics of the structure
matrix, a new methodology for the topological synthesis of articulated gear
mechanisms has been established. All the basic admissible structure matrices
of conventional, three-DOF (degree-of-freedom), geared robotic mechanisms

have been enumerated.

Furthermore, an innovative concept for the control of gear backlash in
robotic mechanisms has been conceived. The concept utilizes redundant uni-
directional drives to assure positive coupling of gear meshes at all times. It
is shown that, through proper arrangement of gear trains, backlash of an
N-DOF robotic mechanism can be completely eliminated by a minimum of
(N+1) unidirectional drives. A methodology for the enumeration of admis-
sible RBR (Redundant-drive Backlash-free Robotic) mechanisms has been

established. This class of mechanisms also has the fajl-safe advantage in



that, unless there is loss of backlash control, the mechanisms can continue to

function whenever any one of its actuators fails.

The actuator sizing has been studied for a general class of N-DOF RBR
mechanisms. The actuator torques are given in term of either the joint
torques or the end-effector dynamical performance requirement. The method-
ology for the determination of actuator size can also be applied to tendon-

driven robotic mechanisms.

Frictional forces in gear-coupled robotic mechanisms can have significant
effects on the manipulator dynamics and control and are therefore also in-
cluded in this study. Gearing efficiency for various gear drives, e.g., two
mating gears, N mating gears with a common carrier, and gear trains, has
been investigated. As an example, the frictional effect has been demonstrated

where it involves the dynamics of a two-DOF RBR arm.

In order to demonstrate this concept, a two-DOF experimental RBR arm
has been constructed. A computed torque with PD control scheme is im-
plemented in the experimental RBR robot. An experiment using a laser
tracking system to verify the improvement of repeatability was conducted.
In order to compare the performance difference, two control algorithms, one
with redundant drives and the other without, were used in this experiment.
The result of this experiment has shown that use of redundant drives greatly

improves the repeatability.



Redundant-Drive Backlash-Free
Robotic Mechanisms:
Mechanisms Creation, Analysis, and Control

by
Sun-Lai Chang

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1991

Advisory Committee:

Professor Lung-Wen Tsai, chairman/advisor
Assistant Professor Muniswamappa Anjanappa
Associate Professor Shapour Azarm

Assistant Professor W.P. Dayawansa

Professor Jackson Yang






ACKNOWLEDGEMENT

I would like to express my sincere thanks to my thesis advisor,
Dr. Lung-Wen Tsai, for his guidance since I entered my Ph.D. program.
Without his encouragement, patience, support, and continuing comments

and criticism, this study might never have been completed.

Many individuals influenced this work directly or indirectly. Special
thanks are to Dr. N. G. Dagalakis, who helped on the experiment with
the laser tracking system at NIST. I am also grateful to Drs. Krishnaprasad,
Loncaric, and Dayawansa for their frequent discussions and reading of this
dissertation. In particular, an appreciation is due to Mr. Joel Plotkin for his

help with the electronic design.

The author also like to thank Drs. M. Anjanappa, S. Azarm, and J. Yang
for serving as the members of the thesis committee, reading this thesis, and

providing informative comments.

The work presented in this dissertation was supported in part by the
U.S. Department of Energy under Grant DEF05-88ER13977, and in part by
the NSF Engineering Research Centers Program NSFD CDR 8803012. The
author likes to acknowledge the Mechanical Engineering Department and the
Engineering Research Center of the University of Maryland in supporting the

fabrication of the experimental prototype arm.

To my parents, my mother-in-law, and my wife goes my deepest gratitude

for their understanding and support.

1






Nomenclature

A: structure matrix which relates joint torques and input torques
At: pseudo inverse of matrix A

A;;+ sub-matrix of A with the i** and 7** column omitted

Ai-j: sub-matrix of A;; with the I** row omitted

A;: sub-matrix of A with the i** column omitted

Aj: the 7' column of matrix A

a;;: the (7, 7) element of matrix A

as: specification on acceleration

B: AT

E;: power consumption of motor j

e: position error vector

o>

;+ a positive unit vector along the axis of relative rotation
F,: normal contact force between two meshing gears

fi+ resultant joint torque ¢ contributed from conservative force
: joint torques contributed from velocity and coriolis force

G: inertia matrix of a robotic system

o — Xi
it =i
hoe = &=%

: s
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I;: moment of inertia of gear ¢ about its axis of rotation

¢j: armature current of motor j

J;: moment of inertia of a carried link ¢ about its joint axis
K: kinetic energy of a system

K,,: kinetic energy contributed from major links

(K¢);: torque constant of motor j

K': kinetic energy contributed from carried links

K ;: the kinetic energy contributed from the rotation of link ¢ with respect

to link j
k;: feedback gain of the position integration
k,: position feedback gain
k,: velocity feedback gain
L: =K-V
[: link length

N;: number of teeth on gear @

P.: rate of change of internal energy
P;: input power

P,: position vector of a point in the end-effector and expressed in the it

coordinate system
P,: output power

iv



p: coefficient of power loss

@;: generalized active force

g:: generalized coordinate

R;: radius of the base circle of gear ¢
T': matrix of transformation

U,;: a unit vector attached to the end-effector and expressed in the :** coor-

-l

dinate system
V: potential energy
vs: specification on velocity
W,: velocity weighting matrix
Wy acceleration weighting matrix
w;: angular velocity of link j with respect to inertia frame
£t available torque from the %" actuator
X;: particular solution of ¢;
Zi: = '('I%ff';’
z;j: internal impendence of motor j
[;: amplitude of 7;
©;: amplitude of joint ¢
n: gearing efficiency

A: free parameter in the homogenous solution of £



null vector of matrix A

s

p: friction coefficient
w: frequency of a sinusoidal input

column matrix denoting input displacements

-

7: column matrix denoting joint torques

9: column matrix denoting joint displacements

0,: desired joint angles

8;;: relative angular displacement of link 7 with respect to link j
£: column matrix denoting input torques

_{_2.].: column matrix of £ with the :** and j** elements omitted

vi
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Chapter 1

Introduction

1.1 Robots

Under the description of science fiction writers and moviemakers, super-
human seems to fit the description of a robot. A robot is imagined to have all
the capabilities of a human being. In reality, nowadays robots are far from the
expectation. Presently, not even one robot can drive safely around New York
city. Comparing with the popular concept, current robotic technology is still
in its infancy. Probably, a dream robot will be built some day. But in the
near future, research and technology development will be still emphasized on
computer controlled mechanical devices performing useful work in a factory
environment. That is moving an object from one position to another quickly
and accurately, such as parts transfer, material handling, and mechanical

assembly.



However, in the pursuit of high technology, today’s robots need to per-
form tasks far beyond the coarsely controlled welder/assembler. They must
be designed to perform more accurate assembling, welding, as well as other
sophisticated jobs. To satisfy these requirements, a robot with repeatability
better than one half of a minimeter is usually required. Various drive config-
urations such as direct drive manipulators, tendon-drive manipulators, and
closed-loop manipulators have been suggested to improve the performance.
However, each configuration has its own inherited drawbacks. Engineers are
still eagerly studying the configuration and structure of manipulators. In
this research, a novel class of robotic configurations has been introduced to
improve the repeatability of a manipulator. Associated with a control algo-
rithm, backlash in the robotic structure can be eliminated completely. This

has been verified via a prototype design.

1.2 Motivation of This Study

Various robotic mechanisms have been constructed to achieve certain de-
sired functions and performance. The kinematic structure of a robot often
takes the form of an open-loop chain. An open-loop manipulator is mechan-
ically simple and easy to construct. However, it does require its actuators
to be located along the joint axes which, in turn, increases the inertia of
the manipulator. Moreover, torque ripples from the actuators will directly
impose on its joints. These are considered as major disadvantages which
can affect stability and accuracy of a manipulator. For these reasons, cable

and push/pull elements are commonly used to permit the actuators to be



located at the base or as close to the base as possible. However, cable-driven
robot manipulators have limited load handling capability and suffer from

large vibration.

To overcome this difficulty, most of the industrial robots use gear trains
for power transmission to reduce compliance. Gear trains are also used for
torque amplification which, in turn, permits the use of smaller actuators.
Theoretically, gear backlash should be zero. But in practice, some backlash
must be included to prevent jamming of teeth due to manufacturing errors
and thermal expansions. However, gear backlash introduces discontinuity,
uncertainty and impact on mechanical systems. These undersirable proper-
ties also cause the response of a robot to deviate from the input command.
Up to date, backlash cannot be successfully controlled with existing tech-
niques. It is usually minimized by the use of precision gears, spring-loaded
split gear assemblies, and precise mechanical adjustments. Although these
techniques can reduce the effect of backlash, the production cost is relatively
high and the accuracy is also inadequate. This can be illustrated by the
uncertainty estimation of the PUMA 560 robot. Fig. 1.1 shows the trans-
mission system in the first joint of the PUMA 560. According to the AGMA
handbook, the tooth clearance of precision gears ranges from -0.025 mm to
-0.050 mm. Hence, the angular uncertainty due to the pinion and bull gear

in this transmission system is approximately given by

2 % 0.0 \
59 = 220035 mm _ o 00682 rad (1.1)
110 mm

And when the arm is fully extended, the position uncertainty at the end-

effector is



JT1 SERVOMOTOR

SPUR PINION

SPUR GEAR

- &

o)
< B j

IDLER CARTRIDGE

BULL GEAR JT1 AXIS

Figure 1.1: Transmission System Used in the First Joint of PUMA 560 (repro-
duced from the mannual of the Unimate PUMA Robot Operating Systems)



914 mm x 0.000682 = 0.62 mm (1.2)

This position uncertainty is caused by the pinion and bull gear in the
first joint only. From this example, it can be realized that backlash plays
an important role in repeatability and accuracy of a robot manipulator and

further studies on reducing or eliminating its effects are urgently needed.

1.3 Prior Work

Many methods such as backlash compensation (Veitschegger and Wu,
1986), antibacklash gears (Michalec, 1966), adjustable tooth thickness gears
(Michalec, 1966), adjustable center distance (Dagalakis and Myers, 1985),
and harmonic drives (Calson, 1985) have been proposed for the elimination
of gear backlash. Improvement on problems caused from gear backlash has
been made by using these methods, e.g., backlash compensation used in
machine tools. However, these methods become inadequate in for robotic
systems. Presently, none of those methods can eliminate backlash in robotic
system completely. Disadvantages often arise from these methods. For exam-
ple, the method of adjustable center distance has been used for the assembly
of PUMA 560 robot. The backlash control mechanism supplied by the man-
ufacturer for the PUMA robot is an eccentric cartridge-bearing arrangement,
as shown in Fig. 1.2. A small adjustable screw is mounted on the side of car-
tridge. Rotating the cartridge counter-clockwise reduces the center distance
between the two mating gears and, therefore, decreases the gear backlash.
Increasing the center distance has the opposite effect. However, this method

requires a skillful assembler to do the adjustments, and can further increase

5
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Iligure 1.2: Backlash Control Mechanism Using Adjustable Center Distance



the cost of assembling. Furthermore, adjustable centers are subject to mal-
adjustments, and in the field there is no assurance that the quality of a

readjustment will be comparable to the original.

1.4 Outline of the Research

This research consists of three major parts, which are described as follows:

(a) A new methodology for the creation of geared robotic mecha-

nisms

The concept of mechanism enumeration using graph representation has
been studied by Freudenstein (1971), Freudenstein and Maki (1979), Buchs-
baum and Freudenstein (1970), and Tsai (1987), etc. This method requires
the enumeration of all admissible graphs of kinematic chain. Then graphs
satisfying desired mechanism specifications are selected. And, finally, edges
of candidate graphs are labeled and their corresponding mechanisms are
sketched. This procedure is considered to be very thorough and systematic.
However, when the number of links increases, it becomes very complicated

and difficult to deal with.

A new methodology for the creation of mechanism based on the concept
of transmission lines has been developed during the course of this research.
Using this methodology, mechanisms can be enumerated directly from a set
of predetermined mechanical characteristics, such as the number of DOF
(Degrees-of-Freedom), and the form of the structure matrix which relates

the input displacements and joint angles. This method is considered to be



more direct and purpose-oriented. It also leads to the creation of backlash-

free robotic mechanisms.

(b) The creation of redundant-drive backlash-free robotic (RBR)

mechanisms

An innovative concept for the control of gear backlash in robotic mech-
anisms has been conceived. This concept utilizes redundant unidirectional
drives to assure positive coupling of gear meshes at all times. Through proper
arrangement of gear trains, it has been shown that the backlash of an N-
DOF robotic mechanism can be completely eliminated by a minimum of
(N+1) unidirectional drives. A methodology for the enumeration of admis-
sible RBR mechanisms has been established. It is worthy to note that this
class of mechanisms also has the fail-safe advantage in that, except for the
loss of backlash control, it can continue to function when anyone of its ac-
tuators fails. In this research, a two-DOF experimental RBR arm has been

constructed to establish the proof of this concept.
(c) Analysis and control of RBR mechanisms

Since the concept of RBR mechanisms created in this research is totally
new, the analysis and control of this class of mechanisms has also been ex-
plored, which includes actuator sizing, gear friction, dynamical equations of
motion, system parameter estimation, control algorithm, and experimental

verification.



1.5 Contributions

The major concern of this dissertation is to completely eliminate backlash
in the transmission system of a robotic mechanism. However, methodology
for mechanisms creation, analysis and control of geared coupled mechanisms
have also been studied. The major contributions of this research can be

summarized as follows:
1. Creation of an innovative concept for elimination of gear backlash in
robotic mechanisms.

2. Development of a methodology for systematic creation of geared robotic

mechanisms.

3. Development of an atlas of structure matrices for the design of backlash-

free robotic mechanisms.
4. Improved repeatability and stability of a robot manipulator.
5. Friction and efficiency modeling.

6. Derivation of a general theory governing the manipulation and design

of RBR mechanisms.

7. Prototype demonstration of a two-DOF RBR manipulator.



Chapter 2

Topological Synthesis of
Articulated Gear Mechanisms
Having N-DOF and N Articulation

Joints

2.1 Introduction

In recent years, topological synthesis of geared mechanisms has been ac-
complished by the use of graph theory and combinatory analysis. Using
graph representation, the function of a desired mechanism is separated from
structural consideration during the conceptual design stage. First, kinematic
structures of the same type, i.e., the number of links, degrees of freedom, etc.,
are enumerated systematically. Then potentially useful mechanism structures
are selected for the purpose of functional evaluation. The method of graph

representation is very thorough and systematic. However, when the number

10



of links increases, it becomes very complicated and difficult to deal with.

To overcome this difficulty, a new methodology for topological synthesis
of geared robotic mechanism is introduced in this chapter. This new method
allows us to perform topological synthesis for a class of geared robotic mech-
anisms from its mechanical coupling point of view, i.e. mechanism synthesis
can be performed to satisfy a desired relationship between input actuator
torques and joint torques. This methodology is considered to be more di-
rect and efficient. Moreover, one of the major objectives of this research is
to create a class of gear mechanisms for which backlash can be completely

controlled.

2.2 Structural Representations

Various methods have been used to represent the topological structure of
a mechanism. In what follows, two such representations that are pertinent

to the development of this work will be reviewed.
(1) Functional Representation:

This refers to the conventional drawing of a mechanism. Shafts, gears,
and other elements are identified as such. For the reason of clarity and
simplicity, only functional elements essential to the kinematic structure are
shown. Different functional representations may represent different designs
of the same topological structure (e.g., planar versus spatial mechanisms,

internal gear mesh versus external gear mesh).

11



For example, the functional representation of Cincinnati Milacron 7%
wrist (Stachhouse, 1979) is shown in Fig. 2.1(a), where three bevel gear pairs,
6-2, 3-5, and 4-5, transmit power to the end-effector through three articu-
lated joint axes, Z;, Z3, and Z3. We note that, in addition to the gear dimen-
sions, the geometry of this mechanism can be defined by the Hartenberg and
Denavit parameters, i.e., the offset distance, twist angle, and translational

distance between two adjacent axes (Hartenberg and Denavit, 1964).
(2) Planar Representation:

In this representation, a positive direction of rotation is assigned to each
joint axis in the mechanism of interest. Then, starting from the second joint
axis, every axis is twisted about the common normal defined by the axis
itself and its preceding joint axis until all the joint axes are parallel to each
other and are pointed toward the same positive Z direction. Finally, all the
bevel gears are replaced by spur gears and, if two adjacent axes intersect
at a point, then an offset distance is added to permit the spatial bevel gear
pair to be replaced by an equivalent planar spur gear pair. The gear mesh,
internal or external, depends on whether a positive rotation of one gear with
respect to its positive joint axis results in a positive or negative rotation of the
mating gear. Fig. 2.1(b) shows the planar representation of the mechanism
shown in Fig. 2.1(a). For the reason of simplicity, sometimes all the gear
meshes will be represented by external gear meshes only. The simplified

planar representation of the Cincinnati Milacron T2 wrist is shown in Fig.

2.1(c).

12



z, 3 5
[ 3
L
End-Effector

77777
0

4
A 1’\2 L 3 r—
/77777
o \w -
(c)

Figure 2.1: Kinematic Representations of the Cincinnati Milacron T® Wrist
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2.3 The Kinematics of Robotic Mechanisms

The kinematic analysis of geared robotic mechanisms can be accomplished
by applying the concept of equivalent open-loop chain and the theory of
fundamental circuits (Tsai, 1988). Generally, the number of articulation
points in a robotic mechanism is equal to the number of degrees of freedom

and this will be assumed to be the case for the study to follow.

According to Tsal’s approach, the analysis of spatial robotic mechanisms
can be performed in two steps. The first step is to derive the relationship
between the position and/or orientation of the end-effector and the joint
angles in the equivalent open-loop chain. The second step is to derive the
relationship between the joint angles and the input actuator displacements.
The first step can be accomplished by the matrix method or vector approach
while the second step can be accomplished by applying the fundamental

circuit equations and coaxiality conditions.

For example, the Cincinnati Milacron T° wrist shown in Fig. 2.1(a) has
an equivalent open-loop chain shown in Fig. 2.2, where a;, oy, and di (k =
1,2,3) are the Hartenberg and Denavit parameters. The relation between
the joint angles and the end-effector position and orientation can be written

as

PO == TP3 (2.1)

and

Uy = TUs, (2.2)

14
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Figure 2.2: The Equivalent Open-loop Chain of the Cincinnati Milacron T3
Wrist
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where T' is the transformation matrix relating the coordinate in the third
coordinate system to that in the 0°* coordinate system and is a function of
the Hartenberg and Denavit parameters, P; is the position vector of a point
in the end-effector and expressed in the ¢** coordinate system, and U; is a
unit vector attached to the end-effector and expressed in the :** coordinate

system.

In the Cincinnati-Milacron T° wrist, there are three fundamental circuits,
(3, 5, 2), (4, 5, 1), and (6, 2, 1), where the first two numbers represent the

gear pair and the third the carrier. The fundamental circuit equations are

given by
033 = — Ns30s9, (2.3)
041 = —Ns4051, (2.4)
and
061 = Nagla. (2.5)

Links 1, 2 and 5 share a common joint axis, Z,. Similarly, links 0, 1, 4 and 6

share a common joint axis, Z;. The coaxiality conditions can be written as:

Osy = 051 — 021, (2.6)

041 = 040 - 9107 (27)

and

16



f61 = B0 — b10, (2.8)

where 0;; denotes the relative angular displacement of link ¢ with respect to
link j, Nji = N;/Ny is the gear ratio for the gear pair attached on links j and

k, and where N; and Nj are number of teeth on gears j and k, respectively.

Solving Egs. (2.3) through (2.8), yields

AN
Il
o
Sy

o

»

1 —Nsg N35Nsy
B == 1 N26 0
1 0 0
95 = [¢17¢2a¢3]T = [040,960,010]T

= input displacements

and
g = [010, 021, 032]T = joint angles

and where [ ]7 denotes the transpose of [ ].

It can be shown that the equation relating the joint torques to the input

torques is given by

r = B = A (210)
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where 7 = [r1, 7y, 73]7 denotes the resultant torques about joint axes 1, 2,
and 3, and £ = [£,£;,£3]T denotes the input torques applied at links 4, 6,
and 1, respectively. The matrix A, the transpose of B, is determined by the
structural topology of the mechanism and the gear ratios. The matrix A is

called the structure matrix of the mechanism.

2.4 Transmission Lines

Taking the derivative of Eq. (2.10), yields

The (¢, j) element of matrix A can be interpreted as the partial rate of change

of the joint torque 7; with respect to the input torque ¢;, i.e.,
a;; = 872/05] (2.12)

Hence, a;; # 0 implies that torque £; will be transmitted to joint 7 and
amplified by a;; times, and a;; = 0 implies that input torque £; does not
have any influence on the resultant torque at joint ¢. Therefore, the i** row
of the structure matrix A describes how the resultant torque about joint ¢
is affected by the input actuators and, on the other hand, the j** column
of matrix A describes how the torque of an input actuators j is transmitted
to various joints of the mechanism. For the type of mechanisms considered,
removal of all the gears from the mechanism results in an open-loop chain.

Except for the case of a direct drive or an individual joint drive, torques

18



are transmitted by gear train, and the joint torques affected by an actuator
must be consecutive. The gear train which results in a series of non-zero
elements in the k** column is, therefore, called the transmission line for the

input actuator k.

Fig. 2.3 shows a typical transmission line in planar representation where
a series of links, numbered 7, ¢ + 1, ---, ¢ + j, are connected together by
revolute joints to form an open-loop chain, and where gears &k, k + 1, ---,
k+j —1 are pivoted about the s**, (i 4+ 1)* ... and (i +j — 1)* joint axes,
respectively. The last gear, (k + j — 1), is attached to link (¢ + ), and the

rotation of gear k with respect to link ¢ is considered as the input.

For such a transmission line, the fundamental circuit equations can be

written as follows:

G(m--—l)n = :{:Nm(m-—l)amn (213)

where

m=(k+1), (k+2),--, (k+7-1)

n=m-—k+1

and where the sign of Eq. (2.13) depends on whether the gear mesh is internal

or external.

The coaxiality conditions can be written as

Omn = em(n-{-l) + 0(n+l)n (2.14)
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Figure 2.3: A Typical Transmission Line

20



where

me=k k+1,---, k4+j—2

n=m—k+z1.

We note that 0x4;_1 = 0,4;, since the last gear, (k 4+ j — 1), is attached
to link (¢ + j). Using (2.13) and (2.14), it can be shown that

Ori = gbkno(i+n)(i+n—1), (2.15)
where

by =1,

bkn = bk (1) N(ksn-1)(k+n—-2)5 n=23, -7

and where the sign depends on the gear mesh between links (k+n — 1) and
(k+n —2). The angle i; denotes the displacement of the input link & with
respect to its reference link ¢, and the angle O yn)itn-1), 7 = 2, 3,--+, .

denote the joint angles of the open-loop chain in a transmission line.

Following Eq. (2.15), it can be concluded that the coefficient by, is equal
to the train value defined from the gear pivoted about the n'* joint axis to
the input gear k. For example, b3 for the Cincinnati Milacron T wrist is
equal to the train value defined from gear 3 pivoted about the third joint
axis to the input gear 4, and is equal to (+N35/Ns4), where the positive sign
comes from the fact that when the input link makes a positive rotation with

respect to the Zj-axis, gear 3 will also make a positive rotation with respect
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to the Zs-axis. Hence, the coefficient of the structure matrix a,; = bx, can
be determined by writing Eq. (2.15) as many times as the number of inputs.
Note that if the stator of a motor is mounted on the i** link and the rotor is
connected to the (i + 1) link, and there are no other gears connected to the
motor, then we have a direct drive. The coefficient of a matrix for a direct

drive is equal to one, i.e., Ok = 0(;11);.

2.5 Methodology of Synthesis

As discussed in the previous section, the joint torques of a geared robotic
mechanism are related to the input torques by a linear transformation called
the structure matrix. There exists a unique structure matrix corresponding
to a given mechanism. On the other hand, given a structure matrix, we can
construct either planar spur-gear, or spatial bevel-gear mechanisms. The
creation of mechanisms can, therefore, be accomplished by the enumeration

of structure matrices followed by the construction of mechanisms.

2.5.1 Enumeration of structure matrices

For convenience of enumeration, the non-zero elements of a structure
matrix shall be denoted by the ”#” sign and the gear ratio and type of gear
mesh shall be neglected temporarily. Only those n-DOF geared mechanisms
with n articulation points will be considered. From the previous discussions,

it can be concluded that the structure matrix A obeys the following rules:
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(1) The matrix is an n X n square matrix. Its determinant shall not be

zero, otherwise the mechanism is uncontrollable.

(2) The matrix can always be arranged in a sequence such that the ele-
ments in the 7** row represent the influence coefficients for the ¢** joint. The
joints shall be renumbered in sequence and the one fixed to the reference

frame shall be defined as the first joint.

(3) Since the joints influenced by an actuator are consecutive, non-zero
elements in a column of the structure matrix must also be consecutive, i.e.,
there cannot exist one or more zero elements between any two non-zero ele-

ments in a column.

(4) Switching any two columns of the matrix results in renumbering of
the two corresponding actuators. Hence, two kinematic structures are said
to be isomorphic if their corresponding structure matrices become identical

after one or repeated operations of column exchange.

Applying the above rules, the structure matrices can be synthesized in
a systematic manner. For example, all the structure matrices for 3-DOF
geared mechanisms with three articulation points have been enumerated and
listed in Table 2.1. In this table, the matices are arranged according to the
distribution of the actuators. It is assumed that each actuator is to be located
on the joint axis nearest to the ground of the corresponding transmission line.
The letters 7¢g”, ”s”, and ”e” denote the location of the actuators are located
on the first, second, and third joint axes, respectively, which correspond to
the ground, shoulder, and elbow joints of a robot arm, and the power stands

for the number of actuators to be installed on that joint axis.
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Table 2.1: A List of Admissible 3R Structure Matrices
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2.5.2 Construction of mechanisms

Once the structure matrix has been enumerated, the corresponding mech-

anisms can be constructed as follows:
(1) Construction of transmission lines:

A transmission line can be constructed for each column of a structure
matrix. For example, the transmission lines corresponding to the structure
matrix g2s — 8 are sketched in Fig. 2.4(a). Note that there are n transmission
lines corresponding to an n x n structure matrix. All of these transmission
lines share a common open-loop chain. The common open-loop chain always
starts from the base link and ends at the end-effector link. Spur gears are
then added on to the open-loop chain according to the existence of non-zero
elements in the corresponding column of the structure matrix. The first gear
of the k** transmission line is to be pivoted about the joint axis corresponding
to the row number of the first non-zero element in the k** column and is
considered as the input link. The last gear of the k** transmission line is to
be pivoted about the joint axis corresponding to the row number of the last
non-zero element in the k* column, and is to be attached to the link which
pivotes about the same joint axis and belongs to the far end of the open-loop
chain. In the g%s — 8 example, the first column is (# # 0)7. Hence, the
open-loop chain consists of links 0, 1, 2, and 3, where link 0 is the base link
and link 3 is the end-effector link. The first gear is pivoted about the first
joint axis and is considered to be the input link. The second, which is also
the last gear, is pivoted about the second joint axis and is attached to link

2. For the purpose of convenience only external gear meshes are used.
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Figure 2.4: Construction of the g%¢8 Robotic Mechanism
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(2) Construction of planar mechanisms:

All the transmission lines constructed above can be combined, using the
common open-loop chain, to form a planar mechanism. For example, the
three transmission lines shown in Fig. 2.4(a) have been combined into a

planar mechanism shown in Fig. 2.4(b).
(3) Addition of idler gears:

The mechanisms derived from the above two steps shall be called the basic
mechanisms. In order to change the direction of rotation, to achieve greater
gear reduction, and/or to extend the center distance between two adjacent
articulation points, idler gears may be added to the basic mechanisms. For
example, Fig. 2.5(a) shows a transmission line with two meshing gears, while
Fig. 2.5(b) shows the addition of an idler gear, gear j. Those mechanisms
with the addition of one or more idler gears are called the derived mechanisms

as opposed to the basic mechanisms.
(4) Construction of spatial or spherical mechanisms:

Spatial and/or spherical mechanisms can be constructed by replacing the
spur gears with bevel gears and the parallel joint axes with intersecting or
skew joint axes. Fig. 2.5(c) shows a spatial transmission line derived from
the planar schematic shown in Fig. 2.5(b). Note that idler gears are required

for the construction of two nonintersecting joint axes.
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2.6 The Creation of 3R Robotic Mechanisms

2.6.1 3R robot arms

All the structure matrices listed in Table 2.1 can be used to construct
spatial 3R robot arms. For example, using the structure matrix g%s — 8,
three transmission lines and its planar basic mechanism have been sketched
in Fig. 2.4(a) and (b), as discussed in the previous section. In order to
convert the planar mechanism to a spatial one, the joint axes are rearranged
such that the first two intersect perpendicularly, and the third is parallel to
the second. Then, spur gears are replaced by bevel gears and, in addition,
an idler gear is added to the third transmission line to accommodate for the
large offset distance between the second and third joint axes. The resulting

mechanism is shown in Fig. 2.6.

The transformation between input displacements and the joint angles for
the 3R arm shown in Fig. 2.6 can be obtained by writing Eq. (2.15) three

times, once for each transmission line

040 1 N24 0 010
010 = 1 0 0 021 . (216)
05, 0 1 —N3Ngs 032

Hence, the structure matrix is

1 1 0
A= | Ny 0 1 (2.17)
0 0 —N3sNes

which is in complete agreement with the g%s — 8 matrix given in Table 2.1.

In a similar manner, 3R robot arms can be constructed for each of the
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structure matrices listed in Table 2.1. We note that the ¢® family permits
all the motors to be ground-connected, the g%s family permits two motors to
ground-connected and the third on the shoulder joint, the g?e family permits
two motors to be ground-connected and the third on the elbow joint, the gs®
family permits only one motor to be ground-connected and the remaining
two on the shoulder joint, and finally, the gse family requires the motors to
be distributed one on each joint axis. The selection of the type of family is a
compromise between mechanical complexity, inertia load, and the coupling,
and is not the subject of this investigation. However, suggestion can be
made for the selection of designs among the structure matrices within each
family. From mechanical complexity and coupling points of view, we believe
the g% -5, g2s — T and ¢%s —8, g2e— 5, gs* — 6, as well as gse — 6 are the least
complex and least coupled structure matrices for the ¢3, ¢%s, g%e, gs?, and
gse families, respectively. For this reason, a 3R arm corresponding to each
of the aforementioned structure matrices has been constructed and listed in
Table 2.2. The joint axes for each of the 3R arms listed in Table 2.2 have
been arranged in a configuration similar to that of the PUMA arm. We note
that the mechanism configurations ¢ — 5 and gs* — 6 shown in Table 2.2

were recently revealed by Tsai and Freudenstein (1989).

2.6.2 3R wrists

In practice, in order to reduce the inertia load of a manipulator, the
wrist design must be compact and lightweight. The actuators of a wrist
mechanism are generally preferred to be located on the base link of the

wrist. The ¢® family listed in Table 2.1 permits all the actuators to be
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located on the base link and is recommended for the wrist design. For the
purpose of demonstration, the mechanism corresponding to the structure
matrix g° — 5 is constructed as an example. Three transmission lines can
be constructed. The combination of these three transmission lines forms a
planar basic mechanism as shown in Fig. 2.7(a). After the three joint axes are
made to intersect at a point and the spur gears are replaced with bevel gears,
a spherical wrist mechanism can be constructed as shown in Fig. 2.7(b). Note
that the mechanism structure is identical to that of the Cincinnati Milacron

T wrist (Stackhouse, 1979).

As noted earlier, idler gears can be added to modify the gear ratio or to
change the direction of rotation. Fig. 2.7(c) shows the addition of an idler
gear 7 between the gear mesh 3-5 of the mechanism shown in Fig. 2.7(b).
Note that this becomes the structure of PUMA wrist.

Following the same procedure, all the recommended basic spherical wrist
mechanisms have been constructed and listed in Table 2.3. It is interesting

to note that the ¢ — 3 mechanism is structurally the same as the Bendix

wrist (Anonymous, 1982).

2.7 Summary

The concept of transmission lines has been introduced for the kinematic
analysis of geared robotic mechanisms. Using the concept, a set of rules for
the enumeration of structure matrices has been derived, and a procedure for

the construction of basic mechanisms, planar or spatial, has been developed.
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It is also shown that idler gears can be added to these basic mechanisms
to form additional mechanisms. The theorem has been demonstrated by
the enumeration of 3-DOF robotic arms and wrists. Some of the mechanism
configurations presented are believed to be new and novel, and deserve further

studies.

We believe this method of enumeration is more straightforward and more
efficient than that of graph representation. The design can be started from
a desired structure matrix, i.e., a desired mechanical coupling, instead of

searching for all the admissible mechanisms as is the case of graph theory.

Although we have used the enumeration of 3-DOF mechanisms as an
example, the methodology presented in this work is completely general and

can be applied to the enumeration of 6-DOF mechanisms as well.
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Chapter 3

The Creation of Redundant-Drive

Backlash-Free Robotic (RBR)
Mechanisms

Most industrial robots use gear trains for power transmission to allow
actuators to be located in some desirable positions. Gear trains are also used
for torque amplification. Backlash is provided for prevention of jamming
of gear teeth due to manufacturing errors or thermal expansion. However,
backlash can cause momentary loss of coupling between two mating gears
whenever there is a torque reversal. It can result in motion discontinuity,
position uncertainty and impact in mechanical systems which, in turn, makes
accurate control of a manipulator difficult. End-effector positioning accuracy
is also compromised due to backlash. Precision gears, spring-loaded split gear
assemblies, and precise mechanical adjustment are often used to overcome

these difficulties. However, these techniques do not completely eliminate
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the backlash and can increase the cost of manufacturing and assembling.
Therefore, further study on reducing or eliminating the backlash problem is

urgently needed.

In this chapter, an innovative concept for the control of gear backlash
in robotic mechanisms will be introduced. Fundamental rules governing the
function of RBR mechanisms will be presented. Based on these fundamental

rules, a number of RBR mechanisms will be enumerated.

3.1 The Concept

Fig. 3.1 shows a simple one-DOF gear train with two unidirectional drives,
where Dy and D, are the driving gears and F' is the follower. The backlash
in this mechanism can be controlled by applying torques to D; in a clockwise
sense and D, in a counter-clockwise sense at all times. The resultant torque
acting on F' will be in the counter-clockwise or clockwise sense depending on
whether torque contributed by D is greater or less than that contributed
by D,. Since no torque reversal is required to drive F, the effects of gear

backlash are completely eliminated.

The controllability can be analyzed from kinematic and static points of
view. The kinematic equation for the mechanism shown in Fig. 3.1 can be

written as:

o ]= 1 ] 6.

where ¢, ¢, and 0 denote the angular displacements of gears Dy, Dy and F,
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Figure 3.1: One-DOF Mechanism with Redundant Unidirectional Drives
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respectively, and, Ny, Ny and Ny represent their tooth numbers. Note that

the negative sign stands for an external gear mesh.

For such a mechanical system, it can be shown that the input and output

torques are related by the following equation:

7p=[ ~(Ny/N) —(N;/Ny) | [ g ] , (3.2)

where & and ¢ are the torques applied to D; and D, respectively, and,
75 is the output torque on the follower F. Thus, given the input torques &
and &, the resultant joint torque 74 is uniquely determined. However, for a
desired output torque 7y, the required input torques are indeterminate. For

example, the input torques can be expressed as:

Ny N2

& ~ N;(NZAND) Ny
- A , (3.3)

N2ZN.
& —— -N,
Ny (N{+N3)

where A is an arbitrary real number. The first term on the right-hand-side
of Eq. (3.3) is referred to as the particular solution and the second term the
homogenuous solution. From Eq. (3.3), it is clear that by selecting a proper
positive A, the sense of input torques [ & €& |¥ can be maintained in the
[ + —]¥ direction at all times regardless of the value of 7;. Similarly, the
sense of input torques can also be maintained in the [ — 4+ ]7 direction
by selecting a proper negative A\. Hence, the mechanism can be controlled
by two unidirectional drives designed either in the [ + — ]7 direction or

in the [ — + ]7 direction. Since the input torques can be maintained in

predetermined unidirection senses at all times, backlash will never occur.

The principle illustrated in the above simple example can be extended to
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the general n-DOF gear-coupled robotic mechanisms with k-unidirectional
drives. For an n-DOF articulated mechanism, it can be shown that the
input angular displacements and joint angles are related by the following

linear transformation:

¢=DB9, (3.4)
where 0 =1[0,,02,---,0,]" is the joint angular displacement vector,
¢ = [¢1, 02, -, d]7 is the input angular displacement vector,
and B = [b;;] is a k by n matrix.

Note that the word ”joint” refers to the joint in the equivalent open-loop
chain of a gear-coupled robotic mechanism. See Tsai (1988) for the definition

of an equivalent open-loop chain.

It can also be shown that the equation relating the resultant joint torques

to the input torques for an n-DOF system is given by:

1=BT¢=A¢, (3.5)
where 7 = [ 7,79, --,7, |7 denotes the resultant joint torques, and { =
[ &,&2, -+, &]T denotes the input actuator torques, and where the matrix,

A, known as the structure matrix, is a function of the structural topology

and gear ratios.

For a given set of desired joint torques, Eq. (3.5) constitutes n linear
equations in k unknowns. In order to maintain unidirectional torques in
the actuators, k should be greater than n. Thus, the solution for the ac-

tuator torques consists of a particular solution plus a (k — n)-dimensional
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homogenous solution. The homogenous solution corresponds to certain sets
of actuator torques that result in no net joint torques. It can be expressed
as a sum of (k — n) basis vectors, each of them being multiplied by an ar-
bitrary constant. Hence, by adjusting the constants, unidirectional actuator
torques can be maintained. Furthermore, if £ = n + 1, then every element
in the null vector should be non-zero, and the direction of input torques can
be controlled either in the direction of the null vector or in the opposite

direction.

For the case of k£ = n + 1, let the direction of input torques be in the
direction of the null vector, then the parameter, A, has to be positive. The-

oretically, the minimum value of ) is

Amin = Max (—@) (3.6)
i
where (;), is the particular solution of ¢; and p; the :** element of the null
vector. Under this condition, one of the input torques is zero, i.e. only n
actuators drive the system at a time. The energy consumption of this system
will be equal to the energy consumption of a conventional robot plus the
energy loss in the additional transmission line. However, to assure positive
coupling at all times, A is usually chosen to be the above minimum number
plus a small positive number. The energy consumption will then increase

slightly because of the increased friction in the system.
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3.2 Creation of RBR Mechanisms

3.2.1 Enumeration of Structure Matrices

In the previous chapter, it has been shown that the topology of a gear-
coupled robotic mechanism can be represented by a structure matrix. It
has also been shown that gear-coupled robotic mechanisms can be created
systematically in two steps: (1) the enumeration of admissible structure ma-
trices, followed by (2) the construction of mechanisms from the structure
matrices (Chang and Tsai, 1990). The methodology can also be used for the
creation of RBR mechanisms. The enumeration of admissible structure ma-
trices will be discussed in this subsection and the construction of mechanisms
will be discussed in the following subsection. From mechanical simplicity and
coupling points of view, only those mechanisms with the number of trans-
mission lines greater than the number of DOF by one, i.e. £ =n + 1, will
be considered. Hence, the structure matrix obeys the following fundamental

rules:

R1. The structure matrix is an n X (n+1) matrix and each row must contain

at least two non-zero elements.

R2. The sub-matrix obtained by removing any column from a structure

matrix is non-singular.

R3. Since actuator torque is transmitted to various joints in a consecutive
manner, non-zero elements in a column of the structure matrix must

be consecutive.

R4. Switching any two columns of a structure matrix results in a renum-
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# # 0
# 0 #

Table 3.1: Admissible 2-DOF Structure Matrices

bering of the two corresponding input actuators. Hence, two kinematic
structures are said to be isomorphic if their corresponding structure
matrices become identical after one or repeated operations of column

exchange.

Rules 1 and 2 ensure the unidirectional controllability of a mechanism.
Applying the aboves rules, all the admissible 2-DOF and 3-DOF structure
matrices suitable for the construction of RBR mechanisms have been enu-
merated. Table 3.1 lists four admissible structure matrices for two-DOF
mechanisms, where the ”#” sign denotes the existence of a non-zero element

in the matrix.

Table 3.2 lists all the admissible 3-DOF structure matrices. In Table 3.2,
the matrices are arranged according to the distribution of actuators. It is
assumed that each transmission line has its actuator located on the joint axis
nearest to the ground. The letters g, s and e denote that the actuators are
to be located on the 1%, 27 and 3"¢ joint axes, respectively, and the power
stands for the number of actuators to be installed on that joint axis. There
are five families listed in Table 3.2: ¢*, ¢°s, g%e, ¢?s? and g%se. For example,

the g* family allows all the actuators to be ground-connected. The selection
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glse — 6

gise — 5
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of structure matrix is a compromise between mechanical complexity, inertia

load, and the coupling, and is not the subject of this study.

3.2.2 Construction of Mechanisms

The construction of mechanisms from a structure matrix can be accom-
plished by the method outlined in chapter 2. For example, we can construct
a mechanism from structure matrix g%se — 6 listed in Table 3.2 as follows.
First, a transmission line is constructed for each column of the structure ma-
trix as shown in Figs. 3.2(a), (b), (c) and (d). Then, these transmission
lines are combined to form a basic mechanism as depicted in Fig. 3.2(e).
Finally, idler gears can be added to increase the offset distance between two
joint axes and/or to achieve greater gear reduction. A derived spatial 3-DOF
RBR mechanism is shown in Fig. 3.3. Note that, many mechanisms can be

derived from a basic mechanism as discussed earlier.

Fig. 3.4 shows some additional mechanisms constructed from the struc-
ture matrices listed in Table 3.2 where A; denotes the :** actuator. These

mechanisms are judged to be less coupled among each of the five families.

3.3 System Observer

As discussed in section 3.1, torque reversal will cause a loss of positive

coupling between two mating gears and result in an end-effector position

uncertainty. From mathematical point of view, this decoupling will momen-
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tarily increase the degrees of freedom in the system and lead to the state of
uncertainty. This is illustrated in Fig. 3.5. The system has only one DOF
when gears 1 and 2 are in positive coupling, and the angular displacement of
the driven gear 2 can be predicted from that of the driving gear 1. However,
when the two gears lose contact, then both gears can rotate independently
and the DOF for the system is increased by one. Therefore, at least two
measurements are required to tell the state of the system. One sensor or
multiple dependent sensors (e.g. a position and a velocity sensors installed

on one joint axis) will not be adequate to describe the system.

The RBR mechanisms created by the method discussed in this chapter
will keep all the gear meshes in positive coupling. From the non-singular
properties of the structure sub-matrix, it can be concluded that an RBR sys-
tem can be observed if at least n sensors are installed on any n transmission

lines.

3.4 Prototype Design of a Two-DOF RBR
Arm

A two-DOF planar robot arm with three unidirectional drives has been
designed to demonstrate the proof of this concept. The structure matrix
g%*s — 2 in Table 3.1 is selected for the reason of simplicity and less coupling.
Its basic mechanism can be constructed by the procedures discussed in the

previous section. Fig. 3.6 shows the resulting basic mechanism.

The prototype arm is designed to have both joint axes parallel to the
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direction of gravity to reduce the effect of gravitational force. Also both
links are designed to have equal link lengthes to optimize its workspace.
Idler gears are used to increase the offset distance between the two joint axes.
The final design is shown in Fig. 3.7. There are three transmission lines and
three actuators (motors). The first two motors are ground-connected and
the third is installed on the rear-end of the upper-arm for the purpose of
counter-balancing. Motor 1 drives both joints 1 and 2 simultaneously, motor
2 drives joint 1 and motor 3 drives joint 2, all with a two-stage gear reduction
between the motor and the first joint it drives. Both actuator No. 1 and 2 use
Electro-Craft 0588-33-501 DC motors and, actuator No. 3 uses the Pitman
14203 DC motor. In order to reduce the resultant torque on joint 2 due to
motor 1, two step-up gear amplifications, gear pairs 3 to 4 and 5 to 6, are

used in the first transmission line.

As noted previously, two measurements are enough for the description
of the state for this system. Since actuators 2 and 3 drive joints 1 and 2,
respectively, sensors are placed on actuators 2 and 3 to avoid the compliance
problem associated with the first transmission line. In this design, the re-
duction gear unit of the 3"¢ transmission line is placed close to motor 3 to

reduce the inertia of the system.

In the design, the tooth numbers for all gears are as follows: N3 = 64,
Ny =16, Njy = Nig = Nig = Nyg = 15, N5 = Ny = 24, Ng = 12, N; =
Nio = 20, Ng = 10, Ny = 48, Ny = 120, and, Ny3 = Ny5 = N7 = Ny = 96.
The structure matrix can be obtained by writing Eq. (2.15) three times, once

for each transmission line:

N17N19 N13N15 0
NigNog N1aNyg .
A = . (3.7)
NizNya Ny Ne 0 _ NzNaNyj
N1gNog N3Ny NgNioNi2

54



11 oL ] TR, 2

= 4 6
[0 3 9
12 8l
118 T‘J I .y
motor 3 ! !
motor | motor 2
, mll [ in!
11

[
(o)

i,

SN [ Kf ]

Figure 3.7: An Experimental 2-DOF Manupulator Derived from Fig. 3.6

59



(3.8)
40.96 40.96 0
3.12 0 =241

I

(3.9

The null vector of this structure matrix is [75, —75,16]7. Hence, actuator

torque can be maintained either in the direction of [+, —, +]T or [—, +,—]".

3.5 Summary

A new and innovative concept has been introduced for the control of
backlash in gear-coupled robotic systems. The concept utilizes redundant

unidirectional drives to assure positive coupling of gear meshes at all times.

Based on the concept, a systematic methodology has been established
for the enumeration of a class of unidirectional-drive gear-coupled robotic
mechanisms. Some typical two- and three-DOF robot manipulators have

been sketched for the purpose of demonstration.

The main purpose of this concept is the elimination of gear backlash in a
manipulator. One of the necessary conditions for the controllability of such
a mechanism is that a sub-matrix obtained by deleting any column from the
structure matrix is non-singular. Physically, this means that a redundantly
driven manipulator has the fail-safe advantage in that, except for the loss of
backlash control, it can continue to function when one of its actuators fails
to work. Furthermore, if high accuracy is not important between precision
points, then it is possible to control the actuators in such a way that no
antagonism exist among the actuators so as to achieve optimal dynamic

performance.

Elimination of gear backlash reduces noise and vibration associated with
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gear trains and, at the same time, improves the accuracy and stability of a
manipulator. Since gear trains are structurally much more rigid than cables
and tendons, the compliance problem associated with tendon-driven manipu-
lators is also eliminated. The result is a high precision and high performance

manipulator.
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Chapter 4

Actuator Sizing

In order to overcome external loads and inertia forces, the actuators of
a manipulator must be designed to provide sufficient driving torques. Over-
sizing the actuators will result in a sacrifice of compactness, weight, and
performance of the system. Proper actuator sizing help ensure the robot
arm’s load capacity and its dynamic responsiveness. Therefore, actuator siz-
ing 1s a very important stage in the design of manipulators. Actuator sizing
has been previously studied by Thomas, et al. (1985). However, the study
was concentrated on individual joint driven manipulators. For unidirectional
redundant-drive manipulators, it is still completely unexplored. It should be
noted that the results on this subject is equally applicable for tendon-driven

manipulators.
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4.1 Resultant Joint Torques as Functions of
Dynamics Performance Criteria

The resultant joint torques as shown in Eq. (3.5) can be thought of as a
set of physical torques acting on the joints of an equivalent open-loop chain.
This can be illustrated from the dynamical equations of the system. The
Lagrange’s equations of motion for a gear-coupled robotic system can be

written as:

d (0L dL : )
d_t_(%)ﬁ—a—;:Qi, v=1,2,---,n (4.1)
L=K-—V, (4.2)

where the ¢’s denote the generalized coordinates, ()’s the generalized active
forces and, where K and V are the kinetic and potential energies of the

system, respectively.

Using joint angles as the generalized coordinates, ¢; = 6;, the generalized

active forces can be expressed as:

k O
Qi ::Z_qbigja P = 1,2,---,”. (43)
where ¢; and ¢, j = 1,2,...,n + 1, denote the angular displacements and

torques of the actuators.

Taking partial derivatives of Eq. (3.4) and substituting them into (4.3),
yields
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k
Qi = Z bji&;, 1=1,2,---,n. (4.4)
=1

Comparing Eqgs. (3.5) and (4.4), it can be concluded that the resultant joint

torques are the generalized active forces, i.e.
Qi = T, 1= 1,23"',n' (45)

The same dynamical equations would be obtained if we assume the mecha-
nism is made up of an open-loop chain having 7; acting on joint 7. Hence,
the dynamic response of the system can be completely characterized by the

resultant joint torques.

For a given set of joint torques, actuator torques can be obtained by

solving Eq. (3.5), using the pseudo inverse technique:
é = A+_7;+ A 143 (4.6)

where = [pi1, pay - 5 ptnga]T is the null vector of 4, ie. A u =0,
At = AT(A AT)1 is the pseudo inverse of A,

and where X is an arbitrary real number (Klein and Huang, 1983). The
first term on the right-hand-side of Eq. (4.6) is called the particular solution
and the second term, which results in no net joint torques, is called the
homogenous solution. The orthogonality property between these two terms

can be shown as follows:

AP " Ap=21{(AAHY YT Ap=0 (4.7)
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Eq. (4.7) implies that the particular solution is a hyperplane passing through
the origin and perpendicular to the null vector. To control backlash, actuator
torques should be kept in a predetermined direction at all times. This can
be achieved by adjusting the arbitrary constant A. Eq. (4.6) implies that the
direction of actuator torques can be kept either in the direction of the null

vector or in the opposite direction.

In the design of a manipulator, sometimes it is desirable to specify the
performance in terms of velocities and accelerations at the end-effector. For
this purpose, the joint velocities and joint accelerations in Eq. (4.1) can be
replaced by the end-effector velocities and accelerations. Using the inverse
kinematic transformation, the resulting equation can be written in the fol-

lowing form (Thomas and Tesar, 1982):
Ty = G?Q‘I‘QTPiQ’}' fis 1=1,2,.-+,n, (4’8)

where v and ¢ are velocity and acceleration vectors of a point in the end-
effector, G; and P; are n X1 and n X n coefficient matrices relating the motion
state to joint torques, and f; is the contribution due to conservative forces.
Note that v and ¢ contain both linear and angular components, and that

matrices (G; and P; are both position dependent.

Hence, joint torques can be calculated from a set of velocity and accelera-
tion specifications. Since the maximum achievable velocity and acceleration
are position dependent, the performance of a manipulator can only be spec-
ified at certain position(s) of the end-effector. Since, at a given position, the
maximum achievable velocity and acceleration are also direction dependent,

we may specify the performance of a manipulator in terms of its ability to
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reach

VW = v}

and QTVVO,Q = a2 (4.9)

for all directions of motion, where v, and a, are the desired magnitudes for
the velocity and acceleration, and where W, and W, are n X n symmetric
matrices used as weighting functions. If W, and W, are chosen to be identity
matrices, then Eq. (4.9) implies that the end-effector can achieve a maximum
velocity and acceleration of v, and a,, respectively at the specified location.
Thomas, et al. (1985) studied the minimum joint torque requirement for op-
timal actuator sizing based on local dynamic criteria. The study of Thomas,
et al. can be applied to individual joint-drive manipulators. However, for
gear-coupled mechanisms with unidirectional drives, the theory for actuator

sizing is still unexplored. In what follows, actuator sizing requirement will

be studied.

4.2 Actuator Sizing in Terms of Joint Torques
Requirement

Let D; be the joint torque working domain, in which a manipulator is
intended to operate. This working domain must be transformed into the
actuator torque domain, D;, in order to size the actuators properly. The
transformation from joint torques to input torques can be accomplished in
two steps, namely a transformation from the joint torque domain, D;, to a

particular solution hyperplane, D,, followed by a transformation from the
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particular solution domain to the actuator torque domain, D,. Fig. 4.1(a)
and (b) show the transformation between D;, D,, and D; in graphical form.
Note that, using Eq. (4.6), the transformation from D; to D, is unique and
Dy is obtained by extending D, along the null vector of the structure ma-
trix to plus and minus infinity. For a given set of joint torques 7* in D;,
there is a particular solution _{_; in D,, and the required motor torques can be
any point on the line passing through é; and parallel to the null vector. To
eliminate backlash effects, motor torques must lie in a predetermined quad-
rant. The actuator sizes can be determined by selecting a proper multiplier,
A, such that corresponding to every point in the joint torque domain, D;,
the required motor torque falls within the predetermined quadrant. Unfor-
tunately, both domains of the working joint torques, D;, and the particular
solution hyperplane, D, cannot be described in concise mathematical forms.
This method is, therefore, judged to be impractical for actuator sizing. In

what follows, an alternate approach will be presented.

The actuators can be sized in a reverse manner. This can be illustrated by
taking the 2-DOF mechanism shown in Fig. 3.7 as an example. The structure

matrix of the mechanism shown in Fig. 3.7 is given by:

Ni7Njo NialNygs 0
NigNao N14Nig
A= . (4.10)
Ny7N1g Ny Ne 0 _ NgNgNyy
N1gNag N3N NgNioNi2

Substltutlng N3 = 64, N4 = 16, N14 = ng = ng = N20 = 15, N5 =
le = 24, Ns = ].2, N7 = NlO = 20, Ng = 10, Ng = 48, N11 = 120, a,IlCL,
N13 = N1,5 = N17 = N19 = 96 into Eq (410’), ylelds

40.96 4096 0
A=l512 0 _oa | (4.11)
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Figure 4.1: The Relationship between Joint Torques and Input Torques
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The null vector of this structure matrix is [75,—75,16]7. To simplify the
analysis, the positive direction of rotation for the 2"¢ motor axis is redefined

in the opposite direction so that the structure matrix becomes

_[40.96 —40.96 0

A= 5.12 0 —24 |’

(4.12)

and the null vector becomes {75, 75, 16]7. Assuming that the actuators chosen
for the mechanism have nominal torques in the range of | iél, :l:éz, i£3]T.,
then the domain of actuator torques, Dg, will be a rectangular solid in the
first quadrant as shown in Fig. 4.2. Note that a hat, © | is used to denote
nominal torque available from the chosen actuators. Projecting f)g along the
direction of the null vector results in a domain, ﬁp, in the particular solution
hyperplane. The corresponding available joint torque domain, Dj, can then
be obtained by a transformation using Eq. (3.5). The domain of available
joint torques, Dj, should contain the domain of desired joint torques, D;, as
a subset. To obtain f)p, all 12 edges of the rectangular solid are projected
onto the particular solution hyperplane along the direction of the null vector.
But, six of them fall inside the boundary of the others. Hence, only six edges

constitute the boundary of D, as shown in Fig. 4.2. Each of them can be

expressed as the intersection of two planes as shown below:

{ & =6, =1,
gj = 07 .7 17

Substituting Eqs. (4.12) and (4.13) into (3.5) for each combination of (%, j),

b

2,3 \
4.1
2.3, j4i. (4.13)

yields two equations linear in &, & # ¢ # j. Eliminate ¢ from the two
equations results in one equation which serves as one of the boundary lines

for the DJ: domain. Repeating the above process for all combinations of (7, 7),
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Figure 4.2: Available Actuator Torque Domain Projected on the Particular
Solution Hyperplane
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the boundary of the available joint torque domain, bj, are obtained as shown

below:

7 > —40.96 &,

7 < 40.96 &

T > =246

T2 <9.12 él

m—87 <192,

T — 8 ) 2 -—4096 52

(4.14)

\

This domain is sketched in Fig. 4.3 for the purpose of illustration.

For example, assuming the 2-DOF RBR arm as shown in Fig. 3.7 requires

the following joint torque specifications:
-25 <7 <25 N-m
{ —6 <7 <6 N-m (4.15)

Then, the actuator torque requirements can be obtained from Eq. (4.14) as

(

£, > 0.61 N-m
fl > 0.61 N-m
5> 0.25 N-m
£, >1.17 N-m
5> 0.38 N-m
| &> 1.78 N-m

(4.16)

Therefore, actuators having nominal torques él > 1.17 N-m, fg > 1.78 N-m,
and 53 > 0.38 N-m of the desired operating speeds would be sufficient for the
design.

The above methodology can be extended to a general n-DOF robot arm.
For the reason of simplicity, it is assumed that positive directions of rotation

for the actuators have been defined in such a way that all elements in the null
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Figure 4.3: Domain of Available Joint Torque

68



vector of the structure matrix are positive. Thus, the domain of available
motor torques, Dg, can be represented by an (n + 1)-dimensional rectangular

solid in the first quadrant.

There are 2n(n + 1) edges in an (n + 1)-dimensional rectangular solid.
After transformation, only n(n+1) edges form the boundary of Dp, and each

of them can be represented as the intersection of two planes:

{&:0’ T (4.17)

gjzéja jzl’zv"'?n+1> ]#27

where éj is the nominal torque available from the j** actuator. Substituting

Eq. (4.17) into (3.5) for each combination of (z, ), we obtain:
T= Ayt + & A, (4.18)

where A;; is the matrix obtained by deleting the :** and j** columns from
the structure matrix A, £ s the column matrix obtained by deleting the ¢t

and j%* elements from ¢, and A; denotes the 3t column of the matrix A.

Equation (4.18) represents n linear equations in (n — 1) unknowns, éij‘,

and the compatibility condition for non-trivial solutions to exist is:

| = zn:(—l)l_l(Tl — &aij) |Aﬁj

=0, (4.19)

where |( )| denotes the determinant of ( ), a;; denotes the ([, 5) element of A,
and Ai-j denotes a sub-matrix of A;; with the [** row omitted. Rearranging

Eq. (4.19) yields the following boundary hyperplanes:

n

i(—l)l'lﬂ ALl =& Y (-1 ey

=1 I=1

Ayl (4.20)

Afjl =§(-1)°
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where A; denotes a sub-matrix of A with the i column omitted, and where

s=73—1, iof 1> \
{3:)', if 1<y, (4.21)

Hence, the actuator torque requirements can be written as:

. SZ?=1(_1)I—1TI
éj 2 (*1) A,‘

!

, (4.22)

where ¢ = 1,2,.-+ ,n+1; j =1,2,--- ;n+ 1; and j # i. There are n(n + 1)

such equations.

Hence, corresponding to a set of joint torques, Eq. (4.22) yields the min-

imum torque requirement for each actuator.

4.3 Actuator Sizing in Terms of End-Effector
Performance Criteria

The actuator torque requirements can also be written as functions of end-

effector performance criteria. Substituting Eq. (4.8) into (4.22), yields:

A S (1) ALN(GTa + v Pu + fi \

i s (T | Jllii l ) (4.23)
or

é]' 2: F]TQ+QTHjQ+gj’ ] = 1,2,”',71 (424)
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where

FT = (-1)* . 4.25)
i =(=1) " (4.25
n_ -1 -1 Al P
i = (—1) 2! (1) 4] 7 (4.26)
A;
Y (=D)AL fi ‘
g; = (=1 == 2 ‘ ! (4.27)
A,
and
i=1,2,-,n+1, i # J.

The actuators should be selected to satisfy Eq. (4.9), i.e.

oI W, = v?

and

2

QTI’VaQ = dag

Since the maximum value of the three terms in the right-hand-side of Eq.
(4.24) can occur simultaneously, actuators should be chosen such that their
available torques, é , are equal to the sum of the maximum value of each term.

The maximum value of each term can be obtained as follows:

(a) 1° term:

Maz ¢ =Fla, subject to o Waa=d (4.28)

J 2
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where £ denotes the maximum torque required to produce a desired accel-

eration, a. Define J as
J=Fla+h (o' Woa — d?), (4.29)
where h is a Lagrange multiplier. Equating g—i and %% to zero, yields:
F;+2h Waa =0, (4.30)
and

o Waa = a, (4.31)

Premultiplying Eq. (4.30) by o and substituting (4.31) into the resulting

)

equation, yields
Fla+2ha?=0. (4.32)

Thus, the maximum value of £ occurs at

Fla £ ‘
h=-ift= o (4.33)

Substituting Eq. (4.33) into (4.30) and simplifying, yields:

a?W'F;
£

o =

(4.34)

Premultiplying Eq. (4.34) by FjT and simplifying, yields the maximum value
of &2,



£ = a(FTW; )z, (4.35)

(b) 2" term:

Max £ = v Hjv, subject to  vITW,u = v2 (4.36)
Define J as
J=vTH;v+h (TW,p - v?), (4.37)

where h is a Lagrange multiplier. By the same method, equating % and %

to zero, yields:

(Hj+ H)v+2h W =0, (4.38)

and
o'Wy = vl (4.39)

From Eq. (4.38), it can be shown that h = —1 eigenvalue of W' (H; + HY),
and v = eigenvector of W, '(H; + H). Premultiplying Eq. (4.38) by vT and
substituting (4.39) into the resulting equation, yields

ol (H;+ H) v+2 hv?=0. (4.40)
Thus, £¥ has a maximum value of
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(c) 3™ term:

The third term is position dependent and can be obtained directly from

Eq. (4.27).

Finally, the actuactor sizes can be determined by summing Egs. (4.35),

(4.41) and (4.27).

4.4 Example

At the initial design stage actuator torque requirement has to be esti-
mated. Then, gears are selected according to the torque and speed capacity
of actuators. The system is updated with new data and the process is re-

peated until a satisfactory design is reached.

For the design of the 2-DOF prototype RBR arm, the dynamic analysis
will be approximated by an equivalent three-link chain connected by two
revolute joints as shown in Fig. 4.4. Both moving links are assumed to have
uniformly distributed mass of my; and ms, and, equal link length {. Since
this planar mechanism has its joint axes parallel to the gravitational field,
the potential energy of the system will be constant. The kinetic energy of
the system can be written as

1 . 1 . .
K = <(mi+ 3my)I%0° + gmzﬁ(al + 6,)*

+%‘T712120.1(0ll + 02) cos 0, (4.42)
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End-Effector

Ground link

Figure 4.4: An Equivalent Three-link Chain
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By applying Eq. (4.1), we can obtain the dynamical equations as

1 4 . 1 1 N
n o= 12(§m1 + 37 + ma cos ;)0 + 12(§m2 + 52 cos 0,)0;
1 L. \
—§m2l2 sin 92 (201 + 02)02 (443]\
1 | .1 . ‘
Ty = -ém212(2 + 3cos 03)0 + §m21292 -+ —2-m212(sin 6,)6° (4.44)
Suppose we want to choose the actuators such that at 6, = 60°, the

end-effector can reach a velocity of vy, = 0.8 m/s with an acceleration of
a, = 9.8 m/s’ in all direction. This means W, and W, in Eq. (4.9) are

identity matrices, i.e.
W,=W, =1 (4.45)

And suppose that for the prototype design, | = 0.3048 m, my = 7 kg and
mg = 0.7 kg. Then, at ; = 60°, Eqgs. (4.43) and (4.44) become

7y = 0.33600; + 0.037940, — 0.02816(20; + 6,)é, (4.46)

75 = 0.037940, + 0.021680, + 0.028166> (4.47)

Since ; has no effect on the dynamic performance, we can choose an
arbitrary number, say 6; = 0° for the analysis to follow. At 6; = 0° and

0y = 60°, the X-Y coordinates of the end-effector can be written as

[ cosby +1 cos(by + 6) (4.48)

8
il

I sin6y 4+ sin(0; + 62) (4.49)

@
il
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Taking the time derivatives of Eqs. (4.48) and (4.49), yields the velocity of

the end-effector as:
z = -l 0.1 sin 91 —1 (01 + 02) sin(é’l + 92)
= —0.264(6; + 0,)
:l) = | 0.1 COs 01 + ) (01 + 92) cos(01 + 02)

= 0.4572 0, + 0.1524 6,

and the acceleration of the end-effector as:

':';:" = —sin 01 51 — COS 010% - sin(01 -+ 02) (01 + 02)

—cos(6y + 0,) (0; + 92)2
V3. . 3. . 1.

) = —7(91 + 02) - —2-93 — 0102 —_ 50%

%‘ = COS 01 é] —sin (91 0% + COS((91 + 02) (01 + 02)
- sin(01 + 02) (01 + 92)2
3. 1. V3. .

= 501 + 592 - -'2--(91 + 0)?

Solving Eqgs. (4.50) and (4.51) for 0, and 0y, yields
0, = 1.894 i + 3.281 y
0, = —5.683 & — 3.281 §
Solving Eqs. (4.52) and (4.53) for 6 and 65, yields
01 = 1.894 & + 3.281 § + 18.644 1 +6.215 §* 4 7.176 iy

0, = —5.683 & — 3.281 j —31.073 &?

—18.644 3% — 21.528 &y

7

(4.50)

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)



Substituting Eqs. (4.54), (4.55), (4.56) and (4.57) into (4.46) and (4.47),
yields

_ i 14782 0972 ][ & .\
m=[0421 0978 | l ; ] +[é ] [0'972 681 ] ; ] (4.58)

@ o .1]0.135 0078 2 \
= [ —0.051 0.053 | [y] +[& 9| [ 0,078 0.135 | [y] (4.59)

Hence, the coefficient matrices in Eq. (4.8) are

GT = [ 0421 0978 |, (4.60)
G} = [ —0.051 0.053 |, (4.61)
4782 0.972 ‘
b= [0.972 1.684 l (4.62)

and
0.135 0.078 \
Br= [ 0.078 0.135] (4.63)

Assuming the system has the structure matrix given by Eq. (4.12), then
the actuator torques requirement can be written in term of the end-effector
performance criteria. Substituting Eqgs. (4.60)-(4.63) into (4.25), (4.26) and
then the resulting equations into Eqgs. (4.35) and (4.41) respectively for 2 =
1,2,3 and j = 1,2,3, ¢ # 7, yields the following results:

Hy, = P,/40.96
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&

a,(GYG1)? /40.96

9.8 x (0.4212 + 0.978)% /40.96

0.2548 N-m

0.8 x (% eigenvalue of (P, + P[))/40.96

0.0791 N-m

Hence, £ > €2 4 £ = 0.3339 N-m

(b):=3, j=1
F = Gy/5.12
Hy = P/5.12
£ = a,(GTG,y)7/5.12
= 9.8 x (0.051 + 0.053%)7/5.12
= 0.1408 N-m
& = 0.8 x (% eigenvalue of (P, + Py ))/5.12

0.1675 N-m

Hence, & > €& + € = 0.3083 N-m

j=2

1

—G1/40.96

—P,/10.96

as(GTGy)% /40.96

9.8 x (0.421% + 0.9782)2 /40.96

0.2548 N-m

0.8% x (% eigenvalue of (—P; — PI))/40.96
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= —0.0009 N-m

Hence, £ > €3 4 0 = 0.2548 N-m

(d)i=3, j=2
F, = —(Gy —8G,)/40.96
Hy = —(P—8P;)/40.96
& = a.(F] Pt
= 9.8 x (0.8297 + 0.554)7 /40.96
= 0.2386 N-m
(& = 0.8 x (% eigenvalue of (H, + HI))

= —0.0088 N-m

Hence, £, > €540 =0.2386 N-m

(e)i=1, j=3
F = —Gy/24
Hy = —P/24
& = a,(G]Gy)?/24

= 1.8 x (0.051% + 0.0532)2 /24
= 0.0300 N-m
1
= 0.8% x (-2— eigenvalue of (—P, — PJ))/24

= —0.0015 N-m

Hence, €3 > €2 + 0 = 0.0300 N-m

(f)i=2 j=3

I3

= (Gl — 8G2)/192
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Hy = (P —8P)/192
& = a,(Fy Fy)
= 9.8 x (0.829% + 0.554%)2 /192
= 0.0508 N-m
& = 0.8 x (% eigenvalue of (Hz + HY))

= 0.0125 N-m
Hence, &5 > €8 4+ € = 0.0633 N-m

Therefore, the actuators are chosen so that él > 0.3339 N-m, éz > 0.2548
N-m, and & > 0.0633 N-m

In the prototype design, the characteristics of actuators 1, 2 and 3 are as

follows:
characteristics actuators 1 & 2 actuator 3
continuous stall torque 0.353 N-m N/A
peak torque 2.47 N-m 1.13 N-m
torque constant 83.34 mN-m/A 65.4 mN-m/A
max speed 6000 rpm 3420 rpm

4.5 Summary

A methodology for actuator sizing has been established for RBR mech-
anisms. The actuator torques requirement was first derived as functions of
joint torques. Then, dynamical equations were applied to derive the actua-
tor torque requirement based on end-effector dynamic performance criteria.
With this method, the actuators sizing can be performed in a straightforward

method instead of recursive calculations. An example was also presented in
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this chapter. The methodology is also applicable for tendon-driven manipu-

lators.
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Chapter 5

Dynamics of Gear-Coupled Robotic
Mechanisms

In the area of robotics, we are constantly concerned with controlling the
position and orientation of the end-effector as well as the posture of a manip-
ulator itself. In order to generate a desired motion, actuator torques should
be applied properly. The first step for controlling such a system is to pre-
dict its response due to applied torques, i.e. to study the dynamics of the
robotic system. The dynamics of manipulators has been studied thoroughly
by many researchers (Thomas and Tesar, 1982; Paul, 1981). Usually, fric-
tional force is neglected in dynamics modeling of a manipulator. However,
frictional force in gear-coupled robotic mechanisms can have significant ef-
fects on the manipulator dynamics and control. Therefore, it is imperative
to take it into consideration in the formulation of dynamical equations. This

subject is important for precise motion control of an end-effector and is still
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relatively unexplored. Without knowing the exact form of dynamical equa-
tions, system parameters identification and adaptive control law cannot be

implemented (Craig et al., 1986; Han et al., 1987).

In this chapter, frictional force in the system dynamics of gear-coupled

robotic mechanisms will be studied.

5.1 Dynamical Equations without Frictional
Forces

The dynamical equations of a manipulator can be derived by several meth-
ods. In the study of kinematics, Tsai (1988) defined an equivalent open-loop
chain for gear-coupled robotic mechanisms. All links contained in the equiv-
alent open-loop chain are called the major links or the carriers, and those
not included in the equivalent open-loop chain are called the carried links.
Using this concept, Chen et al. (1990) developed a systematic methodology
for the dynamic analysis of such systems. The method is very efficient and
will be used in the study that follow. By this method, first, the equivalent
open-loop chain is identified, the carried links are treated as being rigidly
attached to their corresponding carriers, and the kinetic energy of the result-
ing equivalent open-loop chain is formulated. Then, the additional kinetic

energy contributed by the relative rotations of the carried links is added.

It has been shown that for a link ¢ performing a fixed-axis-rotation with

respect to its carrier j, the additional kinetic energy K;J is given by:
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P T . |
K;j = 5Ji0i5)" + Jibii(w; - &) (5.1)

where J; is the moment of inertia of the carried link 7 about its axis of
rotation, e; is a positive unit vector defined along the axis of relative rotation,
w; 1s the angular velocity of link j with respect to the inertia frame, and H'i“,,-
is the relative rotation of link : with respect to link 5. Finally, dynamical
equations can be derived by substituting the kinetic energy of the system

into the Lagrange’s equation of motion.

For the prototype arm shown in Fig. 3.7, either the rotation axis of a
carried link is perpendicular to the rotation axis of its carrier or the carrier
is stationary (ground link). Hence,

w;-e =0 (5.2)

J

and Eq. (5.1) reduces to:
K, . ==J (éi,j)z (5.3)

To simplify the formulation of dynamical equations, two or more compo-
nents keyed together with a common shaft are considered as one rigid link.
Fig. 5.1 shows the numbering of the rigid links, where links A and B are two
major moving links and link 0 is the ground link. Link 0 carries links 1, 6, 7,
8, and 9; link A carries links 2, 3, 4 and 5; while link B does not carry any

links. Fig. 5.2 shows its equivalent open-loop chain.

The kinetic energy of this system comprises two parts, K,,, contributed
from major links A and B and, K’ contributed from the relative rotation of

the carried links. That is
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Figure 5.1: Prototype RBR Arm
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Figure 5.2: The Equivalent Open-loop Chain of Fig. 5.1
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K=K, +K (5.4)

The first part of the above equation K, can be written as
; 1., 1 9y Lo s o
[‘m - _Z—JA9A+§mA$A0A+§JB(6,A+0B)
+§mB[l2931 + QIJZBOA(HA + 6)3) Ccos 03 + 1’3?3(0/1 + 03)2] (55)

where [ denotes the link length, 6 the joint angle, m the combined mass of
a major link and its carried links, = the length from the combined center
of mass to its preceeding joint, J the combined moment of inertia of an
equivalent link about an axis passing through its center of mass and parallel
to the joint axes, and where the subscripts A and B refer to the major links,

A and B, respectively.
Rearranging Eq. (5.5), yields
, 1 1. .
K, = §JAHA + -Q-JB(GA + 0p)
1 . . .
+5m3(1293 + 2[:1330?4 cos g + 2lxpls0p cosfp) (5.6)

where J denotes the moment of inertia of an equivalent major link about its

preceeding joint axis.

The relative rotational rate of carried links with respect to their corre-
sponding major links can be obtained by applying fundamental circuit equa-
tions and coaxiality conditions stated in Chapter 2. Using the gear teeth

numbers given in section 3.4, the results are shown below:

010 = 04 4 0.12505 (5.7)
0,0 = 0.5 05 (5.8)
93‘4 = —29B (59)
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044 = 4.805

054 = —2405

(
(

o = —6.40 4 (5.12)
070 = 40.960 4 (
fso = —6.40,4 — 0.805 (
(

B0 = 40.9604 + 5.1205

where 6;; denotes the relative rotational rate of link i with respect to link j.
The additional kinetic energy, K, can then be obtained by substituting Eq.
(5.7)-(5.15) into (5.3) and summing them. The result is

’

K = %[Jl(O'A +0.12505)% + J5(0.5 05)?

+J3(—20B)? + J4(4.805)?

+J5(—2405) + Js(—6.404)?

+J7(40.960,4)% + Js(—6.404 — 0.805)?

+.J5(40.960,4 + 5.1205)?] (5.16)
where J; denotes the moment of inertia of link ¢ with respect to its rotation
axis. The dynamical equations can be derived by substituting Eqs. (5.6) and

(5.16) into (5.4) and then substituting the resulting equation into Eq. (4.1).

The resulting equations are

n = (r+2k cos 9}3)5‘4 + (s+k cosfp)ip
—2k (sin 0p) éAf)B — k (sinfp) 0% (5.17)

79 =(s+k cosOp)fs+1t G+ k sinfp 6% (5.18)

where

r = Ji+ Jg+ J; +40.96J5 + 40.96%.J;
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+40.96Js + 40.96%Jg 4+ mpl? (5.19)

s=Jp+0.125J; + 5.12Jg5 + 5.12 x 40.96Jy (5.20)

t = Jg+ 0.1252.]1 +0.25J; 4+ 4J3
+23.04J4 + 5765 + 0.64J5 + 5.12%Jy (5.21)

k= mleB (5.22:}

Note that the dynamical equations contain only four independent param-
eters, v, s, t and k. If the J’s and m’s are completely known, then r, s,
t and k can be calculated. On the other hand, if the J’s and m’s are not
completely known, then r, s, t and k£ must be estimated experimentally. In
general, J4 and Jg are a few order of magnitude greater than that of the
rotors, gears, and shafts. However, the effect of rotors can be as large as the

arms since they are multiplied by the square of the gear ratio as shown in

Eqgs. (5.19)-(5.22).

5.2 Sliding Motion in a Gear Mesh

The relative sliding velocity at the point of contact in two meshing gears
can be determined by the velocity difference of the contact points. The
frictional force acts in the opposite direction of the relative sliding velocity.
Fig. 5.3 shows two teeth in contact, where X is the line of action, C is the

contact point and, R; and E; are the radii of the base circle of gears 1 and
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Figure 5.3: A Spur Gear Mesh
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2, respectively. Let gear 1 be the driving gear and gear 2 the driven gear.
Then, when gear 1 rotates counter-clockwise, the contact point C will travel

along the line of action X with a speed of
V., = Ri0; = — Ry0s, (5.23)

where 0, and 0, are the angular displacements of gears 1 and 2, respectively.
Note that a positive displacement represents a counter-clockwise rotation.
Since the line of action is perpendicular to the contact surface, the velocity
components along the line of action of the contact points C; on gear 1 and
(2 on gear 2 should be identical. And the sliding velocity of the driving gear
1 with respect to the driven gear 2 is the difference of their components along

the tangent at the contact surface. It can be written as

vs = 01C 0 sin B + 05C b, sin B,
= BlC 9.1 + B2C 9.2

= (BB — B,C) 0y + B,C 0, (5.24)

Note that we have defined the positive direction of the tangent at the contact
point to be pointing toward the center of the driving gear Oy, as shown in
Fig. 5.3. Let P be the point of intersection between the line of action X and
the line O10,5. Let |B1P| = a, |BoP| = b, and z = B;C — a. Note that x
is defined as the distance measured from point P to C, positive or negative
depending on whether PC points in the direction of # or in the opposite

direction as shown in Fig. 5.3. Since

0 = —Nyy by, (5.25)
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Eq. (5.24) can be rewritten as

Vg = (B1B2 fand BQC - leBQC) 91
= [(I,-*-.Z'—(b—SE)ng]él
= (14 Nz by (5.26)

Note that in arriving at Eq. (5.26), the relationship a — bN;; = 0 has been
used. From Eq. (5.26), we can conclude that the sliding velocity is negative
in the approaching period, positive in the recess period and zero at the pitch
point P. Also, it is proporational to the rotational speed of the driving gear

relative to their carrier.

5.3 Dry Friction Between Two Meshing Gears

5.3.1 The dynamical equation of a simple gear pair

In this dissertation, frictional effect at revolute joints will be neglected.
However, the friction due to gearing will be considered. Referring to Fig.
5.3, let gear 1 be the driving gear with an applied torque 7y and gear 2
the driven gear with a loading torque 75, and let gear 1 be rotating in the

counter-clockwise direction. When the contact point falls within the angle

of approach, the dynamical equations can be written as:

Ilél = T1 +yFn(a+x) ——Fan, (527)

1,0, =Ty + pF(b—z) — FL Ry, (5.28)
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where F, is the normal force at the contact point, u is the friciton coefficient,
I, and I, are the moments of inertia of gears 1 and 2 about O; and O, axes,

respectively, and where z is a negative number.

Solving Egs. (5.27) and (5.28) for F,, yields

Ilél — T

F, = 5.29
pla+ ) — Ry (5:29)
and
[géQ - Ty \
F o= 22277 5.30)
p(b—z) — Ry (530
Equating Egs. (5.29) and (5.30), yields
Ilél — T Izéz—ﬁ \
= 5.31)
pla+z)—Ry  pb—2z)— Ry (5.31)
Therefore,
Ilé].—"rl - pla+ ) — Ry (5.32)

Ly —m  pb—2)— Ry

Substituting @ = Nj2b and Ry = Ni2R; into Eq. (5.32) and rearranging it,

yields
Lo, — 7 p(b— Nyjz) — Ry
2 A =N 5.33
T — 1 T b= )~ R, 128 (5.33)
where

p(b—w) = Ry
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Note that g is a positive number. Assuming positive coupling between mating

gears is maintained at all times, then

0y = —Nyob,, (5.35)
Substituting Eq. (5.35) into (5.33) and rearranging it, yields

(I + BNL D)0, = 71 — N2y (5.36)

Equation (5.36) is the equation of motion for the system when the carrier
is fixed and when 0, is used as the generalized coordinate. Comparing Eq.

(5.36) with the dynamical equation of a frictionless model
(Il + N122]2)91 =T — N]ZTQ, (537)

it can be said that the moment of inertia of gear 2 reflected on the drive shaft
of gear 1 is changed from N3, I, to SN2, I, while the loading torque reflected
on the drive shaft of gear 1 is changed from —Nj7y to —fNjo7, ie. they

are amplified by 3.

Eq. (5.36) and (5.37) can be also rewritten, using 6, as the generalized

coordinate, as

N
8

1)y =75 — "]\“72—1‘7'1, (5.38)

(I + 3

and

(I + N2 1)02 = 75 — Noumy (5.39)
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From the above two equations, it can be said that the moment of inertia and

the applied torque of gear 1 reflected on the driven shaft are amplified by -15

By the same method, when contact point falls within the angle of recess,

ie.xz > 0, we have

p(b— Nyyz) + R,

8= G E; (5.40)

And, the dynamical equation (5.36) still applys.

5.3.2 Gearing efficiency

The input power, P;, and output power, P,, of the system shown in Fig.

5.3 are given by

P: = 1,0, (5.41)
and

P, = =730, = 1 Ny20, (5.42)

where 7 is related to 7 by the dynamical equation (5.36). The increasing

rate of the system energy can be written as

d 1 .
16} +

1
=75

P, = 31203) = Ilélél + 12‘92é2. (5.43)

Therefore, the instantaneous gearing efficiency of this system is given by

Py + P
P;

T] pred

96



leTzél + 119151 + 129252

710,
B %[7'1 — (I + BNL1,)0,) + 6,0, (1, + N3, 1)
B Tlél
1-14)1,0
= 1 4+ (__ﬂ_)__l_.l (5.44)
g !
For constant angular velocity,
1
Ne = E (545]'

Assuming —2; < ¢ < zy, then the average gearing efliciency can be

written as

1 zf
N o= cd
7 T, + x5 Joz, e
1 0 ub—z)— R, zf  p(b—z)+ R )
— d / d
T+ g (/—x, (b — Nyjz) — Ry vt o u(b— Nyz)+ R, v
1 (N21 — 1) Rg — ﬂb

= — R —_ '/bl
Noy  pN3i(xi + ) <( 2~ 4b) In

~ Ry — pb )
[LNQ]ZCf - R2 — ,ub

—pNyyz; + Ry — pb

+ (R2 + pb)In

(5.46)

All the foregoing discussion is based on the assumption that the driving
gear rotates in the same direction as the applied torque. If the torque applied
to gear 1 is a braking torque, i.e. the driving gear rotates in the opposite
direction of its applied torque, then it can be shown that the dynamical
eq. (5.36) and (5.38) remain the same. However, due to the change in the

direction of frictional force, the definition of 8 becomes

w(b— Narz) + Ry
(b —2) + Ry

/8:

, forx < 0
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and

ﬂ(b — Nglx) - Rz

AT)
Moo T forz > 0 (5.47)

8=

which is equivalent to replacing ¢ by —p in equations (5.34) and (5.40), re-
spectively. Note that this is essentially the same as interchanging the driving
and driven gears. In what follows, we shall only consider the case for which

the driving gear rotates in the direction of applied torque.

All the equations derived above are based on the assumption that all the
gears and shafts are axially symmetric. If a gear is not axially symmetric,
then the inertia force due to the offset of mass center will create an inertia

torque about its axis of rotation.

5.3.3 Power loss

The normal force F, can be obtained by solving Eq. (5.36) for 0, and
substituting it into Eq. (5.29). This yields
NipB(Ni2lomi + I172)

F, = — , {i <0 5.48)
(ilato) - R BNEL) & ° (5:48)

Similarly,

Ni2f(Ni2lom + I172)
F, = , forz > 0 9.49
(ula+ )+ Ri) (N + BN 1) (5:49)

The frictional force can be written as

f=pk, (5.50)
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The power loss of this system is
P = —|f v (5.51)

Substituting Eqgs. (5.48) or (5.49) into (5.50), and then the resulting equa-
tion and (5.26) into (5.51), yields

P, = (p1(2)7 + pa(2)72) b1, (5.52)

where

—uBILNL(1 + Nig)z

ne) = T - rot T RGOS
N —HBLNR(L 4+ Nz ‘
pi(z) = (et ) R)(Ii 1 BNAL) forz > 0 (5.53)
and
p2(z) = %anl(x) (5.54)

The dynamical equation including friction term can be also derived by
Lagrange’s equation of motion, where the generalized active force due to
friction is given by

0P
Q; - l

Sy j=1,2,--. 5.95)
dg; (5.5

where ¢; is the generalized coordinate. The resulting dynamical equation

would be the same as Eq. (5.36) or (5.38).

Note that 7 or 75 in Eq. (5.52) can be replaced by the angular acceleration

of gear 1 or 2. Solving Eq. (5.27) for Fy, yields
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-7 + 1151

Fn == —
pla+z)— By

(5.56)

Substituting Eq. (5.56) into (5.50) and then substituting the resulting equa-
tion and (5.26) into (5.51), yields

. 1+N12.’B .
P =(- L0 0 fi <0
) = (—71 + 11)<,u(a+m)—R1) 1, forz <
w 1+Nl2$ .
P pomnd —_ 0 > .
] ( T + Il 1) (Iu(a -}-x) n R1> 01, for z - 0 (5 57)

5.4 Two Meshing Gears Mounted on a Mov-
ing Carrier

The derivations given in the previous section are valid for situations where
the carrier is fixed. In this section, we shall discuss the effect of carrier motion
on friction between two meshing gears. Obviously, translational motion of
the carrier does not have any effect on the normal contact force between two
meshing gears. And, the frictional effect in such a system would be the same
as the one with stationary carrier. In what follows, we shall discuss the case

when the carrier has rotational motion.

Fig. 5.4 shows such a mechanism, where two mating gears 1 and 2 with
applied torques 7, and 7y, respectively, are supported by a moving carrier,
A. For such a system, the dynamical equations (5.27) and (5.28), and the
combined equation, (5.33), remain valid. However, 6, and 0, are not related

by Eq. (5.35). Assuming positive coupling is maintained, they are related by

024 = —N13614 (5.58)
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Gear 1

Figure 5.4: A Simple Gear Pair with Moving Carrier
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where
éiA = 0.,' - éA, 1= 1,2 (559)

where 0, is the angular velocity of the carrier, and 0; 4 is the angular velocity
of gear ¢ relative to its carrier A. Substituting the time derivative of Egs.

(5.58) and (5.59) into (5.33), yields

(I + NLBIL)0 4 = 11 — Niofry + (Ny2fBlo — 1)04 (5.60)

or in terms of f34 and 04,

(12 -+ —%11)02‘4 = Ty — '—'ﬂg}"rl + (‘_%L_l' - -[2)0.4 (561)

From Egs. (5.60) and (5.61), it can be said that the angular acceleration of
the carrier 04 produces an effective torque of (Ny281, —11)5,4 about the drive
shaft of gear 1. On the other hand, it can also be said that 4 produces an

effective torque (ﬂ%ll — 12)9"4 about the driven shaft of gear 2.

The normal contact force between these two gears can be obtained by
solving Eqs. (5.59) and (5.60) for 0; and substituting the result into Eq.
(5.29). This yields

P NioSL (1 + Nm)éA — BNio(Nio Loy + I173)
" (1 + NjBL)(pla + z) — Ry)

(5.62)

The power loss of this system can be obtained by substituting Eq. (5.62)
and vy = (1 + ng);cém into Eq. (5.51). This gives

P, = [pi(z)m + p2(2)m2 + Po(»’b‘)éA]élA (5.63)
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where py(z) and py(z) are given by Eqgs. (5.53) and (5.54), and where

pN2BL (1 4 Nig)a

x) = , forz < 0
Pol®) = T NGB (e 1 o) = )
/J,leﬂjllg(l -+ N12)2SE 3
) = ~ . forz >0 5.64)
S N T A T AT s R (

5.5 Gear Train

Fig. 5.5 shows a gear train having three gears mounted on one carrier,

where 71, 7, and 73 are torques applied on gears 1,2 and 3, respectively.

As discussed in section 5.3, the effective moment of inertia of gears 2 and

3 reflected on the axis of gear 2 can be written as:

(I2)efs = Io + BaaNgIs. (5.65)

The effective torque due to 7, and 73 and reflected on the axis of gear 2 can

be written as:

(T2)efs = To — Ba3NasTs (5.66)

where §;; is defined by Egs. (5.34) and (5.40) and where the subscript (23)
denotes the gear pair (2,3). Hence, the effective moment of inertia of gears
1, 2 and 3 and the effective torque due to 71, 7 and 73 reflected on the axis

of gear 1 can be written as

(Iess = L+ PraNEH(12)ess
= I + B NEL + BrifiaNE NKIs (5:67)
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Figure 5.5: Three Gears Mounted on One Carrier
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and

(T1)ers = 71— Pr2Nia(72)esy

= 71— P12N1272 + Br2B23N12NaaTs (5.68)

Hence, using 6, as generalized coordinate, the dynamical equation for this

gear train can be written as

(I)es 101 = (1)ess (5.69)

or

(I + BaNE L + BrafasNH N 13)0:
= 71— P12N1am2 + B12fasNi2NoaTs (5.70)

The power loss between gears 1 and 2 can be obtained by replacing 7

with (72)esy and Ip with (I2)ess in Eq. (5.52). The result is
P = (P%Q(ﬂma 223)71 + Py° (212, Ta3) Ty + P:laz(wlz,fﬂzs)ﬁ) b,  (5.71)

where

—uB12NE (1 + Nig)zio(Is + Baa NG I5)
,U((llz + $12) - Rl)(Il + /312N122(12 + ﬂ23N§313))’

pi2($12,$23) = (
T2 < 05

——ﬂﬂlng?(l + N12).’1312(I2 + 623N223I3)
plarz + @12) + Ri) (I + P1aNL(Iz + B2sN&Is))’

P}Q(mnal’?s) = (
12 2 05 (5.72)
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P2 (219, w25) = —pBr21 N12(1 + Nig)z1g
2 AT (ularz + x12) — Ba) (L1 + PraNE (L + BaaNLI3))’

T2 < 05

—pB12l1 Nio(1 + Nig)ze2
plarz + x12) + Ry)(Ly + PraNE (I + PasNEI3))

p%2(w12, 3723) = (

and

Py’ (212, T23) = —B23Naspy’ (5.74)

Similarly, the power loss between gears 2 and 3 can be written in the

following form:

P = (pfe’(a:m, 223)71 + 3 (212, 223) T2 + P3°(T12, 5'323)73) 04 (5.75)

The power loss of the overall system can be written as follows:

PI = P112 + P123

= (pim1 + pam2 + ps73)bh (5.76)
where
p=prt (5.77)
p2 = py’ +p3° (5.78)
and
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p3 = p}f + p:233 (579)

The above method of effective moment of inertia and effective applied
torque can be extended to a gear train with any number of gears mounted
on a common stationary or moving carrier. In general, we can conclude that
for a gear train with n gears sharing a common moving carrier, the power

loss can be written in the following form:

P = (PeéA + me) 014 (5.80)
=1

where ps and p; are functions of contact point, but are independent of 014.

Note that Eq. (5.80) can also be written in terms of 7, (k = 1,2,-++,n—1), 04

and 6,4 as discussed in section 5.3.3. That is

n—1
-Pl = (PBHA + pnonA + E piTi) 01.4 (581)

i=1

5.6 Dynamical Equations with Friction Term

In this section, we shall demonstrate the effect of friction on the dynamics
of gear coupled manipulators. We shall use the two-DOF prototype arm
shown in Fig. 5.1 as an example. The dynamical equations for the prototype
arm can be obtained by adding the generalized active forces contributed from

frictional forces into Egs. (5.17) and (5.18).

In a gear-coupled robotic mechanism, every column in the structure ma-
trix represents a transmission line. A transmission line may start from one

link and end at the following link, which results in only one non-zero element
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in the column. It may also start from one link and go through several links
and joints, which results in several consecutive non-zero elements. Every
transmission line can be broken into several sections, such that all gears in a

section share a common carrier.

There are three transmission lines in the prototype design. The first
starts from the ground link and goes through two major links, A and B. This
transmission line can be broken into two sections. The first section contains
two gear pairs mounted on links 9 and 8, and 8 and 1; the second section also
contains two gear pairs mounted on links 1 and 2, and 2 and B, respectively.

The power loss in the first section can be written as

Pl(l) = (p1&1 + Pzélo)dgo (5.82)

where £; is torque applied by motor 1, and where p; and p; are functions of
zog and zg; as well as the rotational direction of 990, i.e. the sign of (40.969,4 +
5.120p). Since the third transmission line contains gear pairs (5,4), (4,3) and
(3,B) with link A as the carrier, power can be circulated through (5,4), (4,3),
(3,B), (B,2) and (2,1) gear pairs. And, since they all share the common
carrier A, the power loss in the third transmission line can be combined with
the second section of the first transmission line. Note that the inertia force
from the motion of link B has an equivalent torque &; applied on the second

axis of link B. The inertia torque is given as
¢ = —(Jg +mplepcos05)04 — Jplp — mplep sin 067 (5.83)

where Jg is the moment of inertia of link B about its rotation axis, Z,.

Hence, the power loss can be written as
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P = (pats + pati + psbia)bsa (5.84)

where &3 is the torque applied by motor 3, and where p3, py and ps are
functions of x5y, 243, 3B, T2 and x5, as well as the rotational direction of
05 4, 1.e. the sign of éB. The second transmission line starts from the ground
link and ends at link A. There is only one section in the transimission line,
making up of gear pairs (7,6) and (6,A). The power loss due to this section

can be written as
P = (pota + prla)bro (5.85)

where &; is torque applied by motor 2, and where ps and p; are functions of
z7¢ and zg4 as well as the direction of rotation of 970, i.e. the sign of 0.,4.‘
The total power loss of this system can be obtained by summing Eqgs. (5.82),
(5.84) and (5.85) as

Pi = (pi&y + pabho)fso
+(psés + padi + psia)0s.4
+(pota + prla)fio (5.86)
The generalized active force can be obtained by substituting Egs. (5.83),
(5.7)-(5.15) into (5.86) and the resulting equation into Eq. (5.55). This yields
Q1 = 40.96(py + pr)la + 5.12p,05 + 40.96p, &
+40.96psts + 48mplapps sinfy 0405 (5.87)

and

Q2 = (5.12p; + 24p4(Jp + mplaep coslp))04
+(0.64p; — 3ps + 24P4JB)éB

+24pymplep sin 959?4 + 5.12p1 & — 24p3&; (5-88)
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The overall dynamical equations can be obtained by adding Q1 and @),
into left hand side of Eqs. (5.17) and (5.18), respectively. This yields

= (r+2k cosfp —40.96(p: + p—/))éA +(s+k cosbp — 5.12p2)éB
+(48mleBp4 sin 0.4 — 2k sin HB)éAéB —k sin 03 0% (589)

and

5.12p1&; + & — 24ps&s
= (s+k cosfp — 5.12p; — 24ps(Jp + mplzp cos HB))éA
+(t — 0.64p; + 3ps — 24p,JB)05

—(24pymplep cosfp — k sin 03)0& (5.90)

Note that z;;'s are periodic functions. Usually, their frequencies are much
higher than that of the mechanical system. Hence, p; can be approximated
by a constant for a designated rotational direction and another constant for
the reverse direction. Equations. (5.89) and (5.90) can be used for more

accurate modeling of the system.
5.7 Summary

The dynamical equations of motion for a typical RBR robot have been
derived. It is shown that rotor inertia can have significant effect on the dy-
namics of such gear-coupled mechanical systems. Frictional force can also
have significant effect on the dynamics and control of gear-coupled manip-

ulators. The effect of friction has been investigated for two meshing gears

110



with a stationary or moving carrier, and for a gear train with a common
stationary or moving carrier. The inclusion of friction in the dynamic model

makes precise control of a manipulator more feasible.
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Chapter 6

Computed Torque Control and the
Experimental Results

6.1 Computed Torque Control Law

Computed torque technique together with PD control can be implemented
for the control of RBR arms. This control algorithm has been employed in the
experimental RBR arm shown in Fig. 6.1. The dynamical equations, (5.17)
and (5.18), for this two-DOF RBR arm can be written in the following form

GO+ f0.0)=z1 (6.1)
where

n : : ‘

0= s | = generalized coordinates, (6.2)
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Figure 6.1: The Picture of the Experimental Arm
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| r+2k coslp s+k coslp | )
G = { sS4k cosOp : = mass matrix, (6.3)
o i "
f o= —k sinfs [ 20405 + 0 ]
Fay oA
= coriolis and centrifugal forces, (6.4)

and

T = [ :1 J = generalized active forces, (6.5)

2

and where r, s, t and k are given by Eqgs. (5-19) through (5.22). Since joint
angles are used as the generalized coordinates, the generalized active forces
are the resultant joint torques about joint axes Z; and Zj, respectively. If

frictional forces are considered, G and [ have to be modified according to

Egs. (5.89) and (5.90).

In the computed torque technique, the generalized active forces are com-

puted in every sampling period by using the following equation:

T= [ (0,0) + Gly+ Ghoé + Ghye (6.6)

T

where 0, is the desired joint angles, k, and k, are matrices representing

positional and velocity feedback gains, respectively, and where
e=0,-18 (6.7)

is the error signal obtained by substracting the measured displacement, 0,

from the desired displacement, 8,. Substituting Eq. (6.6) into (6.1), yields
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'p £ (6.8)
Rearranging the above equation and pre-multipling it by G, yields

Etk etk e=0 (6.9)
The position feedback gain, ky, and velocity feedback gain, k,, must be chosen
such that all the poles in Eq. (6.9) locate on the left-hand-side of the complex
plane. This ensures the position error, e, will converge to zero, and the arm

will follow the desired path, 6.

For the 2-DOF prototype arm design, the inertia properties of the rotors,
gears, shafts, and the two major links were estimated from their sizes and

materials to be as follows:

Ji 44195 gm-cm? || J, 205 gm-cm?®
Js 189 gm-cm? || J4 111 gm-cm?
Js 470 gm-cm? || Jg 10102 gm-cm®
J7 1223 gm-cm? || Js 10102 gm-cm?
Jo 1223 gm-cm? || J4 | 1195685 gm-cm?®
Jp | 124005 gm-cm? || my 5770 gm
ma 515 gm || { 30.48 cm
) 11.04 cm
Hence,
r = 6773598 gm-cm?, (6.10)
s = 437732 gm-cm?, (6.11)
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t = 437307 gm-cm?, (6.12)

k = 173297 gm-cm?, (6.13)
G = [ 67‘73598 + 346594 cosfp 437732 + 173297 cosOp (6.14)
437732 + 173297 cos g 437307 :

and
£ = —173297 sin0p [ 29Aégz+ O ] (6.15)

In this experimrntal arm, k, = [ 0'54 O%él ] and k, = [ 1'%33 1 533 l

were chosen so that the system is critically damped.

6.2 System Parameters Estimation

The values of r, s, t and k in Eqgs. (6.10) - (6.13) were calculated from the
size and material used for each mechanical part in the system. To obtain a
more accurate dynamical model, the system parameters can also be estimated

by experiments.

In the first experiment, the second joint was mechanically locked at p = 0
and then 180 degrees. A sinusoidal input torque 7 was applied to joint 1,
where 7y is generated by applying proper current to motor 1 with a small
biased current to motor 2 when its value is positive, and applying current to
motor 2 with a small biased current to motor 1 when its value is negative.
The circuit to motor 3 is kept open. This ensures positive coupling of the

gear meshes.
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Substituting g = 0° into Eq. (5.17), yields
7= (r+2k)0, (6.16)
Substituting fp = 180° into Eq. (5.17), yields

1 = (7‘ — 2]\7)0/1 (617)

Under constant frequency excitation, the following equations can be obtained

from Eqs. (6.16) and (6.17)

Iy

r+ 2k = R for g = 0°, (6.18)
ok = L1 for 0 = 180° (6.19)
T w0y, b= o

where I'} and ©4 are the amplitude of 7, and 84, respectively, and where
w is the frequency of the sinusoidal input. Figs. 6.2 and 6.3 show the
experimental results, the output displacement 84 and input torque 7y versus

time for g = 0° and 0 = 180°, respectively. From these two figures, we

obtain

r+ 2k = 6478446 gm-cm® (6.20)
and

r— 2k = 5417242 gm-cm® (6.21)

Summing Eqs. (6.20) and (6.21) and dividing the result by 2, yields
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Figure 6.3: Sinusoidal Response (05=180°)

119



r = 5947844 gm-cm? (6.22)
Subtracting Eq. (6.21) from (6.20) and dividing the result by 4, yields
t = 191051 gm-cm? (6.23)

In the second experiment, the first joint axis, 4, was mechanically locked.
The second joint was driven by a sinusoidal torque 73, to estimate the value
of t, where 7, was generated by applying current to motor 3 plus a small
biased current to motor 1 when its value is positive, and applying current
to motor 1 with a small biased current to motor 3 when it is negative. The
circuit to motor 1 is kept open. Substituting 04 = 0 and 04 = 0 into Eq.
(5.18), yields

T, =1 0p (6.24)

Hence, under constant frequency excitation, we obtain

I

t= ———
uJZ@B

(6.25)

where 'y and Op are the amplitude of 7, and @p, respectively, and where
w is the frequency of the sinusoidal input. The output displacement 65 and
input torque r, versus time of this experiment is shown in Fig. 6.4. This

results in
t = 510262 gm-cm? (6.26)

In the third experiment, none of the joints were mechanically locked, and

the input torques 7 = I'y sin(wt) and 7, = 0 were used for the estimation

120



98, T2

8

1

4

0.05 0.1 0.15 0.2 0.25 0.3 0.35
t (sec)

Figure 6.4: Sinusoidal Response (,=0°)

121

0.4

0.45

0.5



of s. The input torques were generated by applying current to all the three
motors by using Eq. (4.6) in which minimum value of A to keep all the motor
torques unidirectional was used. In this experiment, I'y and w were chosen
so that both 4 and 0 are much smaller than 1 rad, and both 04 and
0p are much smaller than 1 rad/sec. Hence, Eqs. (5.17) and (5.18) can be

approximated by

7= (7 +2k)04 + (s + k)05 (6.27)
0= (s+k)i4s+t0p (6.28)

Solving Eq. (6.28) for 0, yields

"y (6.29)
Substituting Eq. (6.29) into (6.27), yields
(s +k)?\

= <r + 2k — —) fa (6.30)

Hence, under constant frequency excitation,

(S + l\,)2 Fl \
2%k — = 31
r+ . 0, (6.31)
or
o Ty |
s = \/z (7' 2k - = 6,1) iy (6.32)

Fig. 6.5 shows the result of this experiment. From this figure, we obtained
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s = 593852 (6.33)

Because 0 # 0 at all times, it can be expected that the estimated value
of s will have a larger error. The estimated parameters r, s, t and k were

used in the dynamic model for controlling the 2-DOF experimental arm.

6.3 Actuator Torques Computation and Power

Comsumption Optimization

As discussed in Chapter 4, there are infinite many sets of actuator torques,
£, corresponding to a set of desired joint torques. To keep all the gear meshes
in contact at all times, the parameter A in Eq. (4.6) should be chosen properly.
From power consumption point of view, A can be selected in such a manner
that energy consumption is minimized. Using DC motors as actuators, the

power consumption for the j** motor can be written as
. .2 5\
b =z (6.34)

where z; is the internal impedence of motor j, and ¢; is its armature current.

The output torque of a DC motor is given by
& = (K¢); 4 (6.35)

where K is the torque constant. Eliminating ¢; from Eqs. (6.34) and (6.35),
yields

E, = Z, 512 (6.36)



= L (6.37)

The total energy consumption for an N-DOF RBR system, with (N+1) uni-

directional drives, can be written as

N+1 N+1

j=1 =1
Substituting Eq. (4.6) into (6.38), yields
E=73"Z; (X;+ X )° (6.39)
where X and p; denote the particular solution and the homogenous solution
of ¢, respectively.

The problem of minimizing power consumption can now be stated as

minimizing the objective function E subject to the following constraints:
0<§ <&,  j=12-,N+1 (6.40)

where ¢; is the required torque of the j** motor and f ; the maximum torque

available from the j* motor.

The objective function is a positive-definite, second-degree polynominal

function of A. Without considering the constraints, the minimum value oc-

curs at
oE XK ‘
=2 2 Zi i (XA ) =0 (6.41)
j=1
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Solving the above equation for A, yields

S Z X
S Z

/\opt = - (642)

Since the objective function is a second-degree polynomial, its function is

symmetric with respect to A = A,,; as shown in Fig. 6.6.

Substututing

into Iiq. (6.40), yields

g; <A< hy, J=12---,N+1 (6.44:)
where
X; .
g; = — 6.45)
g; 1 ( y
£ X, ‘
h]‘ = £] I (646)
Hj

IFrom the properties of a parabolic function, the minimum value of E can

be found as follows:

1. If max(g;) > min(h;), the desired joint torques are out of the available

motor torque region D;.
2. If max(g;) > Aopt, the minimum occurs at A = max(g;).
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3. lf maz(g;) < Aopr < min(h;), the minimum occurs at A = Agps.

4. If min(h;) < —Agp, the minimum occurs at A = min(h;).

For the control of the prototype arm, actuator torques will be computed
using the above procedure. To correct the steady-state error, the integration
of position error is also added to the controller. The computed torque control
flow chart for the RBR arm is shown in Fig. 6.7, where k; is the gain of the

integration feedback.

6.4 Experiment

To establish a proof of the concept of RBR mechanisms, experiments
were performed with and without backlash control. Although the protoype
arm were designed for unidirectional redundant drives, it can also be driven

without backlash control.

In the first experiment backlash was not controlled. Since actuators 2
and 3 directly drive joints 1 and 2, respectively, these two actuators were
selected as the drivers while the third motor was disconnected. In this case,

the actuator torques [¢1, &]T were given by [r1/40.96,0, —72/24]7.

In the second experiment, backlash was controlled. The value of A was
calculated using the procedure outlined in the previous section. Actuator
torques were then calculated by using Eq.(4.6). Appendix A shows details
of the controller design implemented on an IBM Model 55, 803865X per-

sonal cornputer. Appendix 3 shows the cornPuter program developed for the
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purpose of motion planning.

A laser tracking system developed by NIST (National Institute of Stan-
dard and Technology) was used to measure the Cartensian coordinates of
a reference point at the end of the second moving link. The experiments
were performed at four different postures of the robot arm to ensure a good
coverage of the workspace. For each psoture, a target point was selected by
servoing the end-effector to a predetermined position. Then the robot was
commanded to approach the target point from four different directions (four
orthogonal directions in the joint space). Fifteen measurements were made

for each approach. The experimental data measured at NIST is given in

Appendix C.

The radius of the smallest sphere containing the fifteen data points is
defined as the unidirectional repeatability for that direction of approach. The
radius of the smallest sphere containing the sixty data points taken from four
directions of approach is defined as the overall repeatability for the posture.

A graphical definition of repeatability is shown in Fig. 6.8.

Tables 6.1 through 6.4 show the differences in repeatability calculated
from the experimental measurements made at NIST. From these tables, we

can summarize the experiment results as follows:

1. With redundant drives, the unidirectional repeatability and the overall re-
peatability have same order of magnitude. This indicates that backlash

has been successfully controlled by using redundant drives.

2. Without redundant control, the unidirectional repeatability can be quite

random. Since the robot arm was driven slowly to a target point in
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the same manner fifteen times, free play in gear meshes tends to occur
at the same side of the teeth most of the times. The unidirectional
repeatability will be as good as that with redundant control if free play
does occur at the same side in all fifteen measurements. However, in
some cases, noise can cause free play to occur at different side of gear
meshes, and therefore increase the repeatability dramatically. This can
be seen from the experimental data in Appendix C. For example, the
first approach of the first direction in page 157 is far from the other
fourteen approaches. This causes a big increase of repeatability. The
overall repeatability without redundant control is always very large,

because of the changes in the direction of approach.

3. The overall repeatability for the experiment without redundant drives is

one order of magnitude greater than that with redundant drives.

Direction Repeatability (mm)
of Approach | Conventional Control | Redundant Control
1 1.989341 0.3218217
2 1.417662 0.1772752
3 0.2244366 0.2746798
4 0.3008665 0.2892615
Overall 6.388480 0.3985681

Table 6.1: Comparison of Repeatability at the First Target Position



Direction Repeatability (mm)
of Approach | Conventional Control | Redundant Control
1 1.950774 0.1821312
2 4.589997 7.6511331E-02
3 1.510194 0.1207631
4 0.3899245 0.2032410
Overall 6.611162 0.4786238

Table 6.2: Comparison of Repeatability at the Second Target Position

Direction Repeatability (mm)
of Approach | Conventional Control | Redundant Control
1 0.1618994 0.1525680
2 0.1601167 0.3175775
3 0.2431160 0.1664969
4 0.1678905 0.1501162
Overall 3.195182 0.4188084

Table 6.3: Comparison of Repeatability at the Third Target Position

Direction Repeatability (mm)
of Approach | Conventional Control | Redundant Control
1 0.4496819 0.1955256
2 0.1075683 0.1361130
3 0.1414595 0.1861271
4 0.2858933 0.1170794
Overall 2.593668 0.3054367

133

Table 6.4: Comparison of Repeatability at the Fourth Target Position




6.5 Summary

The system parameters were estimated experimentally. The computed
torque technique and PD control algorithm were employed in this experi-
mental RBR arm. This algorithm, first, computes joint torques according
to a desired end-effector performance requirement. Then, joint torques are

converted into actuator torques based on minimum power consumption.

Expertiments on verifying the concept of backlash control were performed.
The results of the experiments show that the improvement in repeatability
for the redundant drive robot is one order-of-magnitude better than that

without backlash control.
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Chapter 7

Summary and Future Work

In this thesis, we have presented a new concept for controlling gear back-
lash of an articulated robotic mechanism. It has been shown that through
proper arrangement of a minimum number of N+1 transmission lines, gear

backlash of an N-DOF robotic mechanism can be completely eliminated.

We have started this subject from the concept of transmission lines. Using
this concept, a methodology for the creation and analysis of geared robotic
mechanisms has been established. Using this methodology, all the admissible
structure matrices for RBR mechanisms have been enumerated. A two-DOF
RBR arm has been built for the demonstration of gear backlash elimina-
tion. The dynamics and control algorithm for this class of mechanisms have

been also studied. An experiment has been made for the verification of this

theorem.

The major results of this study can be summarized as follows:
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7.1 The Concept of Transmission Lines

A transmission line is a gear train which transmits actuator torque through
consecutive joints of an articulated gear-mechanism. It is represented by a
series of numbers. Each number of the transmission line stands for the ampli-
fication factor of the actuator torque at its corresponding joint. The structure
matrix, which consists of all the transmission lines as its columns, will relate

input torques and joint torques.

A set of rules for the enumeration of structure matrices of conventional
gear-coupled robotic mechanisms has been established. The correspondence
between structure matrices and basic mechanisms has also been derived. By
using these rules, all the admissible two- and three-DOF structure matrices
have been enumerated. A basic mechanism corresponding to each structure
matrix has been constructed. Furthermore, we have also shown that idler
gear(s) can be added to a basic mechanism to form derived mechanisms

without changing its structural topology.

7.2 The Creation of RBR Mechanisms

A new concept has been conceived for the control of backlash in gear-
coupled robotic mechanisms. The concept utilizes redundant unidirectional
drives to assure positive coupling of gear meshes at all times. Consolidat-
ing this concept and the methodologies of mechanism creation and analysis

using transmission lines, we have shown that through proper arrangement,
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a minimum number of N+1 transmission lines is required for the control of
an N-DOF robotic mechanism. Based on this concept, a systematic method-
ology has been established for the enumeration of a class of RBR mecha-
nisms. Typical two- and three-DOF RBR mechanisms have been derived. A
two-DOF experimental RBR arm has been designed and constructed for the

purpose of demonstration.

The main purpose of this class of mechanism is to eliminate gear backlash
in mechanical systems. One side-benefit of this class of mechanisms is that
it is fail-safe, i.e., unless there is loss of backlash control, the mechanisms
can continue to function when one of its actuators fails to work. This can be
easily observed from the necessary conditions of controllability incorporated
in the structure matrix. A sub-matrix obtained by deleting any one column
from the structure matrix of a controllable RBR mechanism is non-singular.
Physically, this sub-matrix is indeed a structure matrix of the mechanism, if
one removes the transmission line corresponding to that column. Since the
structure matrix of this new mechanism is non-singular, it is still a drivable

mechanism.

7.3 Actuator Sizing

The actuator sizing for unidirectional redundant-drive manipulators has
been studied in this dissertation. Using the relationship between input and
output torques which is described by the structure matrix, the actuator

torque requirements were first derived as functions of joint torques. Then,
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dynamical equations were applied to derive the actuator torque, a deriva-
tion based on the velocity and acceleration of the end-effector. Finally, the
minimum actuator torques are calculated by an optimization scheme. Using
this method, the actuator sizing can be performed in a straightforward way
instead of by means of recursive calculations. The methodology is equally

applicable for tendon-driven manipulators.

7.4 Dynamics

The dynamical equations of motion for a typical gear-coupled robotic
mechanism, including the inertia effect of gears and rotors, have been derived.
From the dynamical equations of motion, it can be seen that the inclusion
of rotors and gears in the equations could be imperative. We have also
considered the gearing friction in dynamics analysis. First, the frictional
force, power loss, and dynamical equations of a simple gear pair are studied.
Then, the dynamics and power loss of a gear train with a common carrier are
studied. It is shown that, by incorporating the power loss into the formulation
of Lagrange’s equations, the generalized forces due to frictional forces can be

derived.

The inclusion of gearing friction in the dynamical equations can furnish
more information about its influence on dynamic behavior and make precise

control of a RBR mechanism more feasible.
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7.5 Control and Experiment

The computed torque technique and PD control law are implemented in
the two-DOF RBR experimental arm. In this control algorithm, the required
joint torques are computed first. Then, motor torques are calculated based

on minimum power consumption of the system.

The experiments included both conventional and redundant-drive control
methods. For each control method, four target points were chosen. For each
target point, the arm was commanded to approach the target point from four
orthogonal directions fifteen times each. It is shown that the improvement
in repeatability for the redundantly driven robot is one-order-of-magnitude

better than that of conventional control.

7.6 Future Research

The improvement in manipulator repeatability has been verified by the
experimental RBR arm. However, the work presented in this dissertation is
only initial groundwork. The following topics are considered worth further

study.
(1) Adaptive Control

The experiments made in this study demonstrate an improvement in re-
peatability. However, this is not the only advantage of RBR mechanisms.

Since backlash can be completely eliminated in RBR mechanisms, the sta-
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bility of such mechanisms can also be improved. Additional experiments on
dynamic tracking is, therefore, encouraged. The employment of adaptive

control using dynamical equations including gearing friction is suggested.
(2) Mechanism Creation

The concept of transmission lines has been used to enumerate all ad-
missible articulated gear-mechanisms whose articulation points are equal in
number to the number of degree-of-freedom of the mechanism. Mechanisms
whose number of DOFs is greater than that of the articulation points such
as the soft hand, have been employed in some special applications. Those
mechanisms with a number of DOFs smaller than that of the articulation
points, on the other hand, have the advantage of singularity avoidance. The
concept of transmission lines can also be applied to the creation and analysis

of these two classes of mechanisms. This will be the subject of future study.
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Appendix B Motion Control

Program
#include '"setup.c"
#include "path2.c"
#define mhz 1795000
/* #define gil 0.0005 0.00005
#define gpi 0.31
#define gvil 2.2 0.8429907
#define gi2 0.002 0.0008
#define gp2 0.085 0.075
#define gv2 4.0957971 */
#define a 76.6388
#define b 1.0262285
#define c 4.5440542
#define k 2.709245
#define f1 0 /* 327.11289 */
#define f2 0 /* 40.889111 %/
#define £3 0 /x 43.706842 */
#define pml 1
#define pm2 1
#define pm3 0.5155656
#define pi 3.1415927
main(){

unsigned int velocity1[3000],sampnol,

velocity2[3000],sampno2;

unsigned long int thetal[3000],theta2[3000],p2,p2p,
targetl,target2,thetall,theta20,thetalf,thetalf;

unsigned int pl1,pl12,vl,count,

p21,p22,v2,pp;

unsigned int stepl,step2,data_412,dev_code;

int avil,av2,s,ml,m2,m3,vdl,vd2,overflow,flag;

long int pdl,pd2,accul,accu2,pl,plp;

float anglel,angle2,vell,vel2,accell,accel2,
timeunit,raccell,raccel?,sinbeta,cosbeta,
fls,f2s,f3s,ak,bk,p,q,r,avl2,avisqu,
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av2squ,racl,rac2,torl,tor2,bitl,bit2,vbitl,
vbit2,gil,gpl,gvl,gi2,gp2,gv2;

double Dbeta;

div_t n;

char ch;

/* thetal0,theta20 : initial position in binary form
thetal[],theta2[]: desired position in binary form
velocityl[],velocity2[]: desired velocity in digit form
sampnol,sampno2: no. of sample
pl1,p21: the most significant byte of position 1 and 2
pl2,p22: the least significant byte of position 1 and 2
pl,p2 : actual position in binary form
vl,v2 : actual velocity in digit form
pdl,pd2: position error in binary form
vdl,vd2: velocity error in digit form
bit1,bit2: the coefficient betwwen degree and binary form
vbitl,vbit2: the coefficient between degree and digit form
torl,tor2: torque required to apply to motor 1 and motor 3

in digit form, motor is zero
ml,m2,m3: torque required to apply to motors
stepl,step2: counter
n,data_412,dev_code:timeing coefficient
thetalf,theta2f: final position in degree
vell,vel2: specified velocity in degree
accell,accel2: preset acceleration
timeunit: sampling period in degree
raccell,raccel2: preset acceleration in radian form
beta: position of joint 2 in radian
sinbeta: sin(beta)
cosbeta:cosbeta
£2s : £2 *sgn ()
ak : a+2xk*cos(beta)
bk : bt+k*cos(beta)
avl,av2: actual velocity in digit form v1-128, v2-128
avl2 : avi*av2 in radian
avlisqu: avi*avl
av2squ: av2*av2
accul, accu2:; accumulation of position error

147



*/

accell=40.00;
accel2=40.00;
timeunit=0.005;
bit1=455.11111;
bit2=133.33333;
vbit1=962.56;
vbit2=653.59465;
raccell=accell*pi/180.;
raccel2=accel2*pi/180.;
overflow=0;

vell=40;

vel2=40;

outportb(0x400,128);
outportb(0x401,128);
outportb(0x402,128);

data_412=mhz*timeunit/2;
n=div(data_412,256);
outportb(0x413,0x56) ;
outportb(0x411,2);
pli=inportb(COUNT1_A);
p12=inportb(COUNT1_B) ;
p21=inportb(COUNT2_A) ;
p22=inportb(COUNT2_B) ;
pPp=pli;

plp=0;

p2p=0;

target1=0;

target2=0;

start:
printf("\n Next step (joint angle 1, joint angle 2): \n");
scanf ("4f,%f" ,%anglel,&angle2);
angle2=angle2+178.5;
thetalf=anglel*bitl;
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theta2f=angle2*bit2;
target:

gi1=0.0005;
gpl1=0.25;
gvli=2.2;
g12=0.001;
gp2=0.075;
gve=4.1;

thetalO=overflow*65536+p11%256+p12;

theta20=p21%256+p22;

pl=thetall;

p2=theta20;

pd1=0;

pd2=0;

path(thetalO,thetalf,accell,ve11,timeunit,&sampnoi,
bitl,thetal,velocityl,vbitl);

path(thetaQO,theta2f,acce12,vel2,timeunit,&sampnoZ,
bit2,theta2,velocity2,vbit2);

printf("\n Do you want to take this position as target \

position?(y/n) \n");

accul=0;

accu2=0;

count=0;

flag=0;

stepl=1;

step2=1;

outportb(0x413,0xb0);

outportb(0x412,n.rem) ;

outportb(0x412,n.quot);

while(!'kbhit()){
pli=inportb(COUNT1_A);
pl2=inportb(COUNT1_B);
p21=inportb(COUNT2_A) ;
p22=inportb(COUNT2_B);
if( pp >192 && pi1 < 64){

overflow=overflow+l;
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}
else if(p11l > 192 && pp < 64){
overflow=overflow-1;

¥

pp=pil;
pl=overflow*65536+256*p11+p12;
pP2=256+%p21+p22;

beta=p2%0.0001308997;
sinbeta=-sin(beta);
cosbeta=-cos(beta);
ak=at+2¥k*xcosbeta;
bk=b+k*cosbeta;
vi=inportb(0x408);
vi=inportb(0x408);
v2=inportb(0x409);
v2=inportb(0x409) ;
vdi=velocityl[stepl]-vi;
vd2=velocity2[step2]-v2;
pdi=thetal[stepl]-pi;
pd2=theta2[step2]-p2;
avi=v1-128;
av2=v2-128;
avi2=avi*av2*0.003158165;
avlsqu=avi*avi*0.001362622;
av2squ=av2*av2*0.007319717;
if (count >= max(sampnol,sampno2)){

flag=1;
}
if (flag==0){

if (count < sampnol){

pip=thetal[count+1]-thetal[count];

}

elseq
p1p=0;

}

if (count < sampno2){
p2p=theta2[count+1]-theta2[count];
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else{

p2p=0;
}
}
else{
fls=f28=f3s=0;
}

if (flag==0){
if(p1p+3.41333*p2p < 0) {
f2s=-f2;
}
elseq{
f2s=f2;
}
if (pip < 0){
flg=-f1;
}
elseq{
fis=1f1;
}
if (p2p < 0){
f3s=-£3;
}
elseq
f3s=£3;

}
count++;
s=velocityl[stepl]-velocityl[stepl-1];
if( s 1= 0){

racl=raccell*s/abs(s);

}

else{
racl=0;

}

s=velocity2[step2]-velocity2[step2-1];
if(s = 0){

rac2=raccel2+*s/abs(s);
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}

else{
rac2=0;

}

/%

f1s=0;

£2s5=0;

£3s=0;

*/

r=(ak*c) - (bk*bk) ;

p=c*fls+8kc*f2s+bk* (£2s-£3s) -k*c*ksinbetax (2%
avi2+av2squ)+avisqu*sinbetaxk*bk+
r*(racl+gvi*vdi+gpl*(long int)pdi+gil*(long
int)accul);

q=ak*(f3s-f2s-k*sinbeta*avisqu)+bk*(k*sinbeta*
(2xavi2+av2squ) -8*f2s-f1s)+
r*(rac2+gv2+vd2+gp2*(long int)pd2+gi2*(long
int)accu?2) ;

tor2=(bk*p+ckq)/(24.0%r);

torl=(ak*p+bk*q)/(40.96%r);

torli=torlx1.8782505;

tor2=tor2+*4.53922;

ml=128-toril;

m2=128;

m3=128+tor2;

if (m1 < 30)
mi1=30;

if (m1 > 220)
mi=220;

if (m3 > 220)
m3=220;

if(m3 < 30)
m3=30;

outportb(0x400,m1);

outportb(0x401,m2);

outportb(0x402,m3);

stepl++;

step2++;

if(stepl > sampnoil){



if (accul*pdl <= 0){
accul=pdl;

}

else{
accul=accul+pdl;

by

stepl--;

gi1=0.0007;
gp1=0.2;
gvl=1.5;

¥
if(step2 > sampno2){
if(accu2*pd2 <= 0){
accu2=pd2;
by
elseq
accu2=accu2+pd?2;
by
step2--;

g12=0.002;
gp2=0.09;
gv2=4.0;
}
if (abs(pdl)+abs(pd2) < 3){
accul=0;
accu2=0;
}
dev_code=inportb(0x430) ;
while(!dev_code){
dev_code=inportb(0x430) ;
}
outportb(0x412,n.rem);
outportb(0x412,n.quot) ;
}
outportb(0x400,128);
outportb(0x401,128);
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outportb(0x402,128) ;

pl1=inportb(COUNT1_A);

pi2=inportb(COUNT1_B);

p21=inportb(COUNT2_A) ;

p22=inportb(COUNT2_B) ;

if ( pp > 192 && pil < 64){
overflow=overflow+i;

}

else if(p11l > 192 && pp < 64){
overflow=overflow-1;

by

pp=pl1;

pl=overflow*65536+256*p11+p12;

p2=256%p21+p22;

printf("%1d,%1d \n",pi-thetal[sampnol] ,p2-theta2[sampno2]);

repeat:
ch=getche();
if(ch == ’y’){
targetl=pl;
target2=p2;
goto start;
b
else if( ch == ’n’){
printf("\n Move to target? (y/n)");
ch=getche();
if(ch == ’n’){
goto start;
}
else {
thetalf=targetl;
theta2f=target2;
goto target;

}

else{
printf£("\n Stop? (y/n)");
ch=getche();
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if(ch == ’n?) {
goto repeat;

outportb(0x400,128);
outportb(0x401,128);
outportb(0x402,128);
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Appendix C: Experimental Data

Experiment 1: Conventional Control
First target position (mm):

X

486.980653

y
1593.003201

First direction:

z
-24.167939

Third direction:

486.738812 1592.854887 -24.181058 | 478.973988 1590.093955 -24.171930
485.838051 1592.397990 -24.195490 | 479.066196 1590.104625 -24.186421
486.044833 1592.500472 -24.185105 | 479.295591 1590.169524 -24.207587
485.146270 1592.036758 -24.195382 | 479.113837 1590.142818 -24.186543
487.198320 1593.045755 -24.184805 | 479.168567 1590.131972 -24.195599
487.295308 1593.047007 -24.197293 | 478.975681 1590.091931 -24.184588
487.199899 1592.979187 -24.189253 | 478.977769 1590.105214 -24.182506
487.223137 1592.994359 -24.182124 | 478.983161 1590.100505 -24.189734
487.348397 1593.075724 -24.178663 | 479.079039 1590.104338 -24.189840
487.471829 1593.079152 -24.168273 | 479.284372 1590.160647 -24.209550
487.524474 1593.082279 -24.165431 | 479.099676 1590.132512 -24.199380
487.443514 1593.059934 -24.162886 | 479.038558 1590.103809 -24.200804
487.388828 1593.022979 -24.167933 | 479.085386 1590.131046 -24.198634
487.295605 1592.949973 -24.174437 | 479.059735 1590.110465 -24.202026
487.121221 1592.949643 -24.178204 | 478.963231 1590.083440 -24.196291
Second direction: Fourth direction:
482.394973 1590.692488 -24.231879 | 477.784247 1589.684795 -24.137802
481.365708 1590.565643 -24.213858 | 477.874971 1589.725080 -24.149936
483.728381 1591.302381 -24.212662 | 477.676042 1589.653494 -24.130010
482.598364 1590.732747 -24.214337 | 477.654474 1589.655781 -24.145115
482.020435 1590.644426 -24.214918 | 477.431894 1589.532454 -24.158547
483.086993 1590.989286 -24.209940 | 477.682758 1589.669607 -24.121924
482.074189 1590.590342 -24.210482 | 477.607742 1589.629175 -24.134598
481.796526 1590.605994 -24.212614 | 477.587797 1589.654346 -24.133651
481.716057 1590.540913 -24.213590 | 477.610918 1589.633140 -24.126142
482.272578 1590.647182 -24.204713 | 477.486860 1589.562788 -24.141684
483.690968 1591.277406 -24.199527 | 477.713161 1589.681591 -24.123722
483.695307 1591.281220 -24.199106 | 477.782080 1589.685035 -24.132294
481.360564 1590.538643 -24.221945 | 477.877233 1589.735625 -24.139683
482.119978 1590.586930 -24.218017 | 477.823832 1589.690820 -24.165198
482.250586 1590.663333 -24.211607 | 477.945457 1589.737542 -24.153426

156




Experiment 1: Conventional Control (Continued)

Second target position (mm):

X
373.407331

y
1702.452885

First direction:

371.527110
373.400600
373.364984
373.304312
373.376812
373.391121
373.505441
373.528758
373.492617
373.793783
373.508369
372.849237
373.070154
373.749085
373.490627

1701.565732
1702.445918
1702.412467
1702.454579
1702.459111
1702.433981
1702.499507
1702.501144
1702.471909
1702.641533
1702.466647
1702.238033
1702.327391
1702.597497
1702.485777

Second direction:

368.427100
369.503144
368.847474
368.869495
368.374171
370.307402
369.105638
3638.283892
368.906907
373.450311
368.388444
371.160330
368.692191
368.382163
368.716229

1700.147401
1700.605215
1700.301995
1700.265254
1700.139115
1700.998653
1700.385951
1700.095224
1700.297225
1702.472356
1700.129712
1701.422714
1700.222634
1700.146543
1700.234501

zZ

-21.928235

-21.953602
-21.929811
-21.939135
-21.932559
-21.914230
-21.923900
-21.932132
-21.923496
-21.941492
-21.926472
-21.947502
-21.924129
-21.942799
-21.931865
-21.917363

-21.967932
-21.968700
-21.969346
-21.962238
-21.980801
-21.966713
-21.986974
-21.980017
-21.979588
-21.948219
-21.980575
-21.959096
-21.972140
-21.986086
-21.965869
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Third direction:

365.576147
365.469992
363.703866
363.734057
363.871267
363.719983
363.956048
363.836296
363.852227
363.943876
364.001453
363.852626
363.908618
363.786570

363.947695

1700.149492
1700.168355
1700.322806
1700.350004
1700.384462
1700.362703
1700.373171
1700.374045
1700.340910
1700.346313
1700.379963
1700.383096
1700.363715
1700.342477
1700.388483

Fourth direction:

363.107771
363.248678
363.190541
363.283661
363.177611
363.009292
363.180006
362.802254
362.711668
362.792544
363.301520
363.025538
363.343166
362.759426

363.266794

1700.112481
1700.175197
1700.106920
1700.129508
1700.058937
1700.029831
1700.078479
1699.957153
1699.933896
1699.930563
1700.124019
1700.025583
1700.161586
1699.932906
1700.153633

-21.882404
-21.875755
-21.874740
-21.874591
-21.882004
-21.863485
-21.877462
-21.864793
-21.886470
-21.891243
-21.876918
-21.883185
-21.892380
-21.875653
-21.852685

-21.842799
-21.834094
-21.856582
-21.836611
-21.864759
-21.840876
-21.840207
-21.846223
-21.861768
-21.848249
-21.853455
-21.838587
-21.813121
-21.863460
-21.851252



Experiment 1: Conventional Control (Continued)

Third target position(mm):

X
339.818795

y
1775.535945

First direction:

340.078440
340.117552
340.002119
339.997290
340.133639
340.144575
340.049405
340.177524
339.984917
340.133443
340.184037
339.955966
340.097937
340.131992
340.247742

1775.550055
1775.572638
1775.578759
1775.539345
1775.591980
1775.572408
1775.588112
1775.616470
1775.517678
1775.581316
1775.613322
1775.531685
1775.560860
1775.563157
1775.629536

Second direction:

337.896645
337.936204
337.892945
337.867261
337.973781
337.870590
337.974498
338.010793
337.933214
338.024514
338.046990
338.099125
337.856513
337.980163
337.806675

1774.649206
1774.596129
1774.602918
1774.605265
1774.611857
1774.597375
1774.616516
1774.641891
1774.597225
1774.646680
1774.642108
1774.659818
1774.588890
1774.623091
1774.596714

Z
-20.534879

-20.532266
-20.536556
-20.553813
-20.531700
-20.533827
-20.526706
-20.550026
-20.530828
-20.534636
-20.539852
-20.527991
-20.541058
-20.542603
-20.546045
-20.536138

-20.538166
-20.549007
-20.535008
-20.532014
-20.547791
-20.546693
-20.550927
-20.544364
-20.545262
-20.544908
-20.542289
-20.533618
-20.551235
-20.543697
-20.541931

158

Third direction:

335.908962
335.827337
335.861522
335.854666
335.794997
335.762911
335.840166
335.533076
335.652643
335.659470
335.714042
335.638261
335.884194
335.835170
335.724686

1774.945821
1774.919175
1774.912177
1774.878377
1774.853722
1774.867743
1774.877473
1774.796054
1774.842963
1774.841306
1774.842403
1774.858437
1774.840001
1774.867409
1774.834603

Fourth direction:

334.584140
334.691566
334.6624389
334.713243
334.642911
334.586536
334.710200
334.805184
334.783504
334.851139
334.809458
334.853828
334.809135
334.886896

334.835942

1774.550873
1774.560599
1774.547379
1774.573527
1774.536553
1774.493718
1774.495493
1774.505994
1774.479162
1774.510392
1774.503350
1774.502593
1774.505048
1774.506297
1774.485292

-20.469909
-20.461574
-20.465578
-20.479079
-20.482269
-20.462997
-20.474260
-20.465150
-20.454959
-20.458714
-20.459964
-20.452039
-20.501691
-20.465418
-20.473010

-20.443823
-20.440576
-20.442918
-20.430926
-20.431410
-20.432420
-20.434158
-20.441018
-20.441809
-20.438635
-20.432760
-20.428635
-20.416504
-20.445949
-20.434425



Experiment 1: Conventional Control (Continued)

Fourth target position(mm):

X

328.142247

y
1853.913059

First direction:

328.346238
328.227969
328.324486
328.153501
328.284154
328.180031
328.131708
327.775425
328.094092
328.233569
328.086540
328.227132
328.342063
328.352574
328.268644

1853.864390
1853.839770
1853.858271
1853.843063
1853.829134
1853.786714
1853.791817
1853.658111
1853.760821
1853.840518
1853.743745
1853.768804
1853.785525
1853.796181
1853.824968

Second direction:

326.529500
326.546868
326.560061
326.433106
326.590119
326.560336
326.600915
326.533696
326.532266
326.565764
326.450909
326.529494
326.542215
326.507566
326.440662

1853.010389
1853.019970
1853.030437
1852.967542
1853.067995
1853.018063
1853.061200
1853.024740
1853.026002
1853.006024
1852.984613
1853.035656
1852.997577
1852.985807
1852.949919

z
-19.109795

-19.127129
-19.104928
-19.112504
-19.129135
-19.124889
-19.120950
-19.128475
-19.104766
-19.118302
-19.123218
-19.143190
-19.114275
-19.133877
-19.119806
-19.140803

-19.113468
-19.118230
-19.108482
-19.104500
-19.112299
-19.119723
-19.103778
-19.114487
-19.109978
-19.119558
-19.123464
-19.109178
-19.125941
-19.114571
-19.110954

159

Third direction:

324.845019
324.912493
324.728583
324.769745
324.688278
324.778664
324.640876
324.787850
324.761733
324.769370
324.875082
324.809318
324.733781
324.740245

324.748326

1853.385198
1853.367589
1853.348955
1853.389973
1853.324779
1853.379291
1853.342296
1853.364915
1853.353556
1853.371442
1853.387978
1853.380985
1853.410007
1853.382505
1853.357181

Fourth direction:

323.696563
323.744327
323.763497
323.802279
323.746166
323.488288
323.739662
323.834766
323.798846
323.738939
323.705403
323.680330
323.723746
323.930192

323.841049

1853.115206
1853.068653
1853.090700
1853.083114
1853.048393
1852.941129
1853.053201
1853.070377
1853.047244
1853.028950
1853.029776
1853.012421
1853.047810
1853.128195
1853.106577

-19.060818
-19.076322
-19.055660
-19.051453
-19.047501
-19.047917
-19.057501
-19.055383
-19.058669
-19.048039
-19.059102
-19.063726
-19.043730
-19.046410
-19.059594

-19.030691
-19.013498
-19.027190
-19.027810
-19.031332
-19.035648
-19.017910
-19.027148
-19.028900
-19.045713
-19.019646
-19.024811
-19.015964
-19.045493
-19.023644



Experiment 2: Redundantly driven Control

First target position (mm):

X
309.167663

y
1857.337207

First direction:

308.939450
308.854455
308.894433
309.366945
308.885230
309.321275
309.329459
309.204785
309.376551
308.926891
309.161527
308.888587
308.883715
308.959667
309.200073

1857.237822
1857.220313
1857.223181
1857.374914
1857.224213
1857.394571
1857.405601
1857.354006
1857.426493
1857.259355
1857.364255
1857.202343
1857.237595
1857.261740
1857.354639

Second direction:

309.370723
309.412143
309.354632
309.422384
309.326861
309.164434
309.213349
309.309834
309.376247
309.343227
309.432581
309.293248
309.286263
309.311359
309.432830

1857.420249
1857.429364
1857.392413
1857.419854
1857.366102
1857.349884
1857.331150
1857.367852
1857.370224
1857.410008
1857.401629
1857.384313
1857.391899
1857.381330
1857.454309

Z

-18.949429

-18.956039
-18.972659
-18.955600
-18.949773
-18.941603
-18.947685
-18.943533
-18.945216
-18.941085
-18.952369
-18.945169
-18.971058
-18.959370
-18.954539
-18.944316

-18.940705
-18.943211
-18.944870
-18.922082
-18.942879
-18.938623
-18.954877
-18.939250
-18.958897
-18.947078
-18.938312
-18.948524
-18.947806
-18.929589
-18.943020

160

Third direction:

308.973802
309.182026
309.050408
308.936756
309.348220
309.297271
309.368774
309.341007
309.063054
309.024117
309.164964
309.218276
309.349189
309.291660
309.309541

1857.278434
1857.353594
1857.331625
1857.270425
1857.426344
1857.419267
1857.445376
1857.381027
1857.322020
1857.301832
1857.348213
1857.375048
1857.425510
1857.401842
1857.391761

Fourth direction:

309.113346
309.314982
309.461974
309.393019
309.454703
309.293798
309.362819
309.360920
309.230285
309.412669
309.204667
309.320702
309.353774
309.027455
309.098788

1857.302519
1857.409959
1857.479308
1857.452303
1857.469444
1857.367790
1857.409059
1857.421953
1857.352679
1857.448828
1857.362016
1857.409961
1857.423279
1857.278173
1857.283341

-18.942750
-18.948203
-18.941081
-18.948422
-18.946479
-18.946838
-18.946483
-18.947004
-18.937425
-18.957340
-18.936506
-18.957849
-18.949544
-18.954180
-18.958757

-18.959471
-18.957008
-18.941006
-18.940714
-18.941821
-18.939865
-18.956013
-18.949473
-18.973630
-18.960482
-18.948119
-18.942086
-18.951925
-18.942373
-18.938679



Experiment 2: Redundantly driven Control (Continued)

Second target position (mm):

X
317.316476

y
1778.310633

First direction:

317.131716
317.227551
317.319188
317.238212
317.396223
317.116669
317.272632
317.340784
317.210495
317.173016
317.389589
317.263905
317.084632
317.417028
317.270601

1778.265566
1778.296316
1778.332622
1778.307750
1778.368742
1778.257595
1778.342004
1778.339698
1778.280580
1778.276025
1778.344624
1778.304327
1778.249871
1778.350153
1778.307778

Second direction:

317.394703
317.318461
317.398021
317.318304
317.291871
317.367142
317.257799
317.305152
317.262229
317.369585
317.300415
317.319441
317.341920
317.298316
317.352263

1778.357775
1778.320459
1778.342283
1778.320772
1778.311848
1778.358789
1778.294856
1778.333498
1778.310750
1778.333941
1778.334026
1778.318748
1778.334594
1778.318879
1778.341051

z
-20.356240

-20.349222
-20.353519
-20.344567
-20.367834
-20.354641
-20.367382
-20.348891
-20.358537
-20.365358
-20.378524
-20.346690
-20.378736
-20.347905
-20.348400
-20.366062

-20.353622
-20.365517
-20.349490
-20.326561
-20.366871
-20.343759
-20.346568
-20.360472
-20.349201
-20.342280
-20.346114
-20.345229
-20.337431
-20.354255
-20.342215

161

Third direction:

317.241010
317.321348
317.321588
317.308282
317.370343
317.350788
317.267668
317.201899
317.323632
317.352197
317.214823
317.267091
317.322492
317.348673

317.375018

1778.319829
1778.333901
1778.335445
1778.322053
1778.356438
1778.358364
1778.298985
1778.272873
1778.336386
1778.363708
1778.303687
1778.303716
1778.354324
1778.376256
1778.376391

Fourth direction:

316.968630
316.952463
316.768579
317.118099
316.916985
316.898328
317.101454
316.965988
317.051578
316.927205
316.938630
316.770416
316.826403
317.092549
316.972407

1778.198839
1778.207004
1778.139782
1778.262430
1778.186436
1778.179769
1778.250902
1778.203787
1778.236102
1778.199026
1778.176166
1778.102342
1778.140944
1778.237939
1778.201962

-20.364145
-20.353620
-20.341339
-20.356852
-20.358785
-20.355001
-20.365551
-20.358309
-20.353637
-20.357574
-20.357201
-20.368442
-20.348799
-20.341264
-20.353978

-20.351127
-20.352849
-20.341372
-20.357965
-20.357524
-20.345926
-20.360843
-20.353090
-20.352753
-20.348036
-20.356057
-20.354497
-20.350703
-20.354409
-20.342354



Experiment 2: Redundantly driven Control (Continued)

Fourth target position(mm):

X

452.388394

y
1588.498864

First direction:

452.533412
452.314321
452.549763
452.312060
452.396650
452.481268
452.221149
452.377166
452.429973
452.320980
452.527106
452.392887
452.376911
452.473175
452.377351

1588.554137
1588.460687
1588.535194
1588.465795
1588.491692
1588.491317
1588.428173
1588.491004
1588.500351
1588.454789
1588.526333
1588.492671
1588.482725
1588.511832
1588.495018

Second direction:

452.626917
452.597952
452.674624
452.719261
452.509334
452.728639
452.683789
452.566321
452.546568
452.607133
452.672474
452.353776
452.509760
452.538763
452.494808

1588.577498
1588.555516
1588.618827
1588.618774
1588.537117
1588.628729
1588.610745
1588.573566
1588.553466
1588.582942
1588.619700
1588.569407
1588.558211
1588.559906
1588.522701

z
-23.964790

-23.975102
-23.956930
-23.951438
-23.955443
-23.957147
-23.954774
-23.944889
-23.956205
-23.964534
-23.960526
-23.952505
-23.963324
-23.942707
-23.958184
-23.937406

-23.997776
-23.973565
-23.977738
-23.977843
-23.998494
-23.991394
-23.980458
-23.985099
-23.989275
-23.988747
-24.004121
-23.985135
-23.966299
-23.993302
-23.963408

163

Third direction:

452.526968
452.678046
452.770837
452.553672
452.603375
452.429342
452.668959
452.715494
452.601354
452.707406
452.597162
452.597599
452.519674
452.427067

452.686443

1588.570601
1588.630533
1588.652849
1588.550175
1588.599329
1588.569778
1588.652373
1588.678443
1588.616792
1588.655689
1588.621010
1588.619513
1588.585739
1588.563421
1588.648675

Fourth direction:

452.301412
452.408096
452.254010
452.297984
452.375213
452.294516
452.339738
452.289718
452.359586
452.436594
452.320198
452.234306
452.320415
452.363328

452.322969

1588.491207
1588.531594
1588.467950
1588.493452
1588.525024
1588.484145
1588.495769
1588.485374
1588.509755
1588.540342
1588.495938
1588.441557
1588.487315
1588.516646
1588.499556

-23.965098
-23.987755
-23.983748
-23.996887
-23.998538
-23.987242
-23.987636
-23.976109
-24.002417
-23.990414
-23.965566
-23.991113
-23.982675
-23.971760
-23.989809

-23.955003
-23.953223
-23.948632
-23.947231
-23.962596
-23.942640
-23.965167
-23.940818
-23.928370
-23.936758
-23.930238
-23.954470
-23.952483
-23.946209
-23.921582



Experiment 2: Redundantly driven Control (Continued)

Third target position(mm):

X
343.082895

y
1702.791025

First direction:

343.010425
343.235832
343.034819
342.989985
342.946289
343.201527
343.174052
343.009986
343.199178
343.168254
343.029937
342.996453
343.096598
343.149920
343.217315

1702.762893
1702.817933
1702.743307
1702.755109
1702.771135
1702.808479
1702.823314
1702.768246
1702.813170
1702.820305
1702.796934
1702.746820
1702.801879
1702.818000
1702.832924

Second direction:

343.075670
343.184641
343.306624
343.161996
342.925262
342.980214
343.159328
343.002310
343.383303
342.938876
343.008283
343.109784
343.259228
343.075947
343.430923

1702.832641
1702.883007
1702.937944
1702.869528
1702.785185
1702.813771
1702.866734
1702.809756
1702.953470
1702.774677
1702.797842
1702.846541
1702.905081
1702.832016
1702.970194

z
-21.702275

-21.724614
-21.706340
-21.710786
-21.721358
-21.711678
-21.711634
-21.716630
-21.729460
-21.709970
-21.715082
-21.733821
-21.699653
-21.723037
-21.704617
-21.696739

-21.691779
-21.703021
-21.706604
-21.725685
-21.688668
-21.692541
-21.695870
-21.696320
-21.719477
-21.702878
-21.726279
-21.708138
-21.716877
-21.711125
-21.705459

162

Third direction:

343.560134
343.410646
343.546044
343.525749
343.377365
343.488097
343.584496
343.564081
343.573781
343.610014
343.583827
343.553717
343.544298
343.357041

343.533392

1702.942328
1702.930734
1702.950883
1702.972216
1702.926661
1702.961828
1702.974988
1702.956819
1702.974874
1702.979226
1702.996419
1702.999904
1702.995711
1702.936022
1702.980231

Fourth direction:

343.064604
343.110030
343.227569
343.036834
343.147292
343.183200
343.047926
343.088829
343.065813
343.021816
343.064846
343.113134
342.998666
342.985074

343.186092

1702.794502
1702.816904
1702.851874
1702.790655
1702.836104
1702.813860
1702.771539
1702.811468
1702.760524
1702.790263
1702.804542
1702.826480
1702.775569
1702.748194
1702.838594

-21.707635
-21.690412
-21.689983
-21.730458
-21.713385
-21.697709
-21.710128
-21.698591
-21.686080
-21.708231
-21.698250
-21.724102
-21.670278
-21.693092
-21.677077

-21.680624
-21.712172
-21.744620
-21.712295
-21.693379
-21.705891
-21.719797
-21.726668
-21.680335
-21.701853
-21.699503
-21.747529
-21.726346
-21.720997
-21.732981



