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Abstract

This paper presents a new approach to the study of random tool motion during
machining. Theory of the hidden Markov model is applied to formulate a comprehensive
random excitation system present during machining. Based on the microstructural
analysis, characteristics of the hardness distribution in the material being machined are
identified for analyzing the cutting dynamics in microscale. The machining action within
one revolution of the workpiece and the relation between the machining actions in
consecutive revolutions are interpreted as a double stochastic process. Computer
simulation based on the hidden Markov model approach is used to predict values of surface
roughness characterization indices under given machining conditions. The predictions are
compared with the data obtained from direct measurements, showing good agreements.
The developed approach has brought new light on a better understanding of vibration
control during machining.

1. Introduction

Today's technological innovations in manufacturing are driven by demands to
maintain a consistent, high level of product quality in the modern manufacturing
environment. Quality of manufactured products such as functionality and reliability
depends on finish quality of machined surfaces. Manufacturing engineers are now faced
with the difficult problem of improving finish quality without compromising productivity.
As a result, research on the control of finish quality of machined surfaces has attracted great

attention.

It has been well known that the roughness profile of a machined surface contains
periodic and nonperiodic components. The geometry of machining action is responsible
for the generation of the periodic components. During a turning operation, the spindle
speed, machining feed and tool geometry determine a spiral tool path. However, random
tool motion during machining aggravates the surface texture formation. Factors, which
cause the tool vibration in a random manner, could be built-up edges, tool wear, and
nonhomogeneity of basic material properties. Evaluation and control of tool vibration, for
both deterministic and stochagtic parts, have been the focus for improving finish quality of

machined surfaces.



Results from previous research have strongly suggested the use of precise spindle
and feed mechanisms for machining error reduction [1-2]. Work on machine tool accuracy
enhancement has been successfully improving the rigidity of machine tool structures or/and
compensating the deterministic part of tool path errors during machining [3-5]. Study on
measurement and assessment of topography of machined surfaces has been extensive [6-
7]. Methods like wavelength decomposition of surface roughness [8], time series
modeling of machined surfaces [9], and surface models from light scattering measurements
[10] were developed for establishing the relationship between surface parameters and
pertinent machining parameters. A recent study indicated that the nonhomogeneity of basic
material properties, such as hardness, could be one of the major sources to excite random
tool motion during machining [11-12]. Research has been conducted to establish a
mapping function between the variability of standard material properties and the formation

of surface irregularities.

The work presented in this paper represents a continuation of the research effort for
evaluating random tool motion during machining. A statistic method of hidden Markov
modeling is applied to describe the random excitation phenomenon. The developed model
employs two stochastic processes to formulate the mechanism of random excitation. The
first stochastic process characterizes the random tool motion within a single revolution of
the workpiece. The second stochastic process quantifies the interrelationship of random
tool motion between the consecutive revolutions of the workpiece. Analysis of the cutting
dynamics in microscale under the formulated random excitation provides rich information

about possible strategies for controlling the quality of machined surfaces.

The paper is organized as follows. Section 2 presents the modeling process of
random excitation. The nonhomogeneity of hardness distribution in the workpiece material
is assumed to be a major random excitation source. Concepts of the segment excitation and
overall excitation are defined to form a basis for the development of a hidden Markov
model to describe the random excitation observed during machining. Section 3 presents a
technical detail about determination of the states and state transition matrix. Computer
implementation is also discussed in this section. A case study is presented in section 4 to
demonstrate the procedure to apply the developed hidden Markov model for the study of
random tool motion during machining. Discussion of results is given in section 5 where
results from the experimental work are compared with the predictions based on the hidden
Markov modeling approach. Effects of the state selection and state transition matrix on



random tool motion are investigated through a two-level factorial design. Section 5

contains concluding remarks.

2. Basic Methodology

Random tool motion, a phenomenon observed in the production line, has been
blamed as a major element to deteriorate product quality. Research on a quantitative
identification of the random excitation source still remains as a challenge to the
manufacturing community. In this research, we assume that the nonhomogeniety of basic
material properties, such as material hardness, is of primary importance to cause random

tool motion during machining.

2.1 Random Tool Motion

Figure 1 presents an intuitive view to explain the mechanism that a
nonhomogeneous distribution of the material being machined could excite random tool
motion during machining. The individual blocks in Fig. 1 represent volumes of the
material being removed at time intervals At. From the machining point of view, the cutting
force generated at these time intervals is related to the hardness of the volume material. It is
evident that the cutting force varies as the hardness value of an individual block varies. The
variation of the cutting force, which is of random nature, introduces random tool vibration
during machining. It becomes necessary to characterize the hardness distribution of

material for the evaluation of random tool motion.

2.2 Microstructural Analysis

It has been known that the hardness distribution of material in microscale is
characterized by the size, shape, and segregation of the microstructures present in material.
Figures 2a and 2b are photographs of the microstructures in an SAE 72 carbon steel bar.
Figure. 2a illustrates the microstructural distribution observed in a cross-section
perpendicular to the bar axis, and Fig. 2b the microstructual distribution observed in the
cross-section along the bar axis. The dark and white parts stand for pearlite and ferrite
structures, respectively. Comparing the microstructures displayed in Fig. 2a and Fig. 2b,
the sizes of pearlite structure shown in Fig. 2a are relatively small and their shapes look
irregular. On the other hand, the pearlite structures in Fig. 2b are shown as narrow strips.
These narrow strips are distributed in parallel, depicting a distribution pattern. This narrow
and parallel strip pattern results from the rolling process when the SAE 72 carbon steel was

fabricated. Due to the fact that the hardness of pearlite structure is much higher than the



hardness of ferrite structure, patterns of a nonhomogeneous distribution of microstructures
lead to patterns of a nonhomogeneous distributions of hardness correspondingly. During
the machining of carbon steel materials, the presence of a nonhomogeneous distribution of
hardness gives rise to variation of the cutting force, which causes the tool to randomly

vibrate.

2.3 Hidden Markov Modeling

Theoretically speaking, a hidden Markov model is a doubly stochastic process with
an underlying stochastic process that is not observable (it is hidden), but can only be
observed through another set of stochastic processes that produce the sequence of observed
events.

The strategy of modeling random excitation is to view the random excitation during
the machining of carbon steel materials as a direct concatenation of "short time" random
excitation segments. Each of "short time" random excitation segments represents the
random excitation action during one revolution of the workpiece. The statistical model for
the segment excitation is subjected to the hardness distribution observed in the cross-
section of the material being machined, i.e., the one shown in Fig. 2a. The overall
excitation action is a synchronous sequence of these segments. Therefore, it can be
described by a hidden Markov model. The statistical model to represent the transition
process from one segment to the consecutive segment is subjected to the hardness
distribution in the machining feed direction, i.e., the one shown in Fig. 2b. As a result, the
random excitation during the entire machining process is considered to be a doubly

embeded stochastic process.

2.3.1 Modeling of Segment Excitation

Imagining that the machining process is to take individual blocks away from the
workpiece material, the ratio of pearlite structure to ferrite structure within the block being
removed varies from one block to another. Meanwhile, the cutting force follows the ratio
variation to vary, forming a microscale random excitation.

A statistical model to describe this excitation action was developed and reported in
[11]. Development of the reported statistical model was based on an assumption, i.e., the
excitation action at a specific machining instant was determined by the mean hardness value
of the block being removed. Due to the nonhomogeneous hardness distribution, the
parameter of block mean hardness was treated as a random variable, which was assumed to
obey a normal distribution because of the central limit theorem in statistics. The mean and



variance of the normal distribution for modeling the variation of mean hardness values were
calculated through microstructural analysis, as briefly discussed in section 2.2.

In this research, this reported statistical model is used to characterize the segment
excitation action, or the excitation action within one revolution of workpiece. For given
mean and variance values of the statistical model and the number of blocks divided along
the workpiece circumference, one can construct a data set, using a random number
generator on a computer, to represent the block mean hardness variation along the

workpiece circumference, or within one revolution of the workpiece.

2.3.2 Modeling of Overall Excitation

As discussed above, the segment excitation model characterizes the effect of the
nonhomogeneous distribution of hardness on the variation of the cutting force during one
revolution of the workpiece. If examining the distribution pattern shown in Fig. 2b, which
is viewed along the machining feed direction, the concurrence of different microstructures
appearing in the neighboring areas, or in the consecutive revolutions of the workpiece, can
be observed. This concurrence is directly related to the narrow strips of pearlite and

characterized by

1.  the presence of a hard (or soft ) spot on a specific circumferential location is
correlated with the presence of a hard ( or soft ) spot on its consecutive, or
neighboring locations, and

2. in a general case, the changing process, which is from a hard ( or soft ) spot
to the soft (or the hard) spot is gradually proceeding, although the abrupt
jumps between an extreme hard and an extreme soft spots, or vice versa,
occasionally happen.

To further clarify the two observations, Fig. 3 illustrates a state-transition
representation. The entire area of the microstructural photograph shown in Fig. 2b was
divided into 12 equal gridblocks. Each gridblock represented an area of 0.14 x 0.14 mm?2,
Using electronic scanning, the numbers of pearlite and ferrite within each of the 12
gridblocks were identified and listed in the corresponding gridblock. The mean hardness
values of the 12 gridblocks were calculated where the hardness values of pearlite and ferrite
structures were assumed to be 150 BHN and 38 BHN, respectively. It is evident that the
mean hardness value varies from one gridblock to another. If we assume that gridblock A-
1 (a1 = 122 BHN) represents a soft spot location and gridblock B-1 (ug ; = 132 BHN) a

hard spot location, an observation can be made that the variation of the mean hardness



values on row A ranges from 122 BHN to 121 BHN and the variation of the mean
hardness values on row B ranges from 132 BHN to 121 BHN. This observation again
confirms that along the machining feed direction, the appearance of a hard (or soft) spot
location on the circumferential direction is constrained by its neighboring hardness status.
In order to evaluate the overall excitation action during machining, there is a pressing need
to formulate a statistical method to describe the distribution pattern of the mean hardness
values in the consecutive locations along the machining feed direction. In this research,
theory of hidden Markov modeling is used to extend the segment excitation model into a
comprehensive random excitation model.

3. Determination of States and State Transition Matrix

In the theory of hidden Markov modeling, the possible outcomes of a stochastic
process are classified as events. The basic principles of hidden Markov modeling are using
an observable stochastic process to toss the outcome (one of the classified events) and
using an underlying stochastic process to add a specific constraint on the likelihood of the

concurrence of different states. This constraint is called "state transition matrix".

3.1 Determination of States of Segment Excitation
In this research, the segment excitation model is considered to be the observable

stochastic process. If the number of blocks on the circumferential direction is assumed to
be N, the Ny mean hardness values, i.e., {i;,ls,H3, ..., kNs-15UNs>» ODEy a normal

distribution shown in Fig. 4. Now we classify the N mean hardness values into n states
and each of the n states covers a certain range of the mean hardness values. As indicated in

Fig. 4, the probability associated with each of the n states is given by ratio of the number of
those mean hardness values falling into its corresponding interval to the block number Nj,

and the probabilities associated with the n states for the N, blocks, or within one revolution

of the workpiece, are governed by

As an example to demonstrate the formation of a four (4) state segment excitation ,
we assume that the material being removed from the workpiece circumference during one
revolution is divided into 50 blocks. The mean (i) and standard deviation (¢) of the
normal distribution associated with the 50 block mean hardness values are 125 BHN and

12 BHN, respectively. Figure 4 actually depicts this normal distribution. Within the range



3
[L-30, p+30c] or [89, 161], four cells with an equal span —22 are formed. As

illustrated, state 1 covers the mean hardness values from 89 BHN to 107 BHN. There are
4 mean hardness values falling into this cell. The probability associated with state 1, Py, is

0.08. In a similar manner, we determine P, = 0.42, P; = 0.42, and P, = 0.08.

3.2 Determination of State Transition Matrix
Serving as the second, or the hidden, stochastic process, the state transition matrix
describes both the neighboring and global state transitions. In formulating this matrix, the

following two assumptions are made in this research.

1. The next state entered in the hidden stochastic process depends only on the
current state, not on the previous states.

2. The transition that can occur is within two adjacent states, implying that the
transition is bi-directional. However, the two states on the extremely right and
left boundaries are exceptional. Their transitions are unidirectional.

Figure 5a is the state diagram illustrating the model for the neighboring state

transition where state 1 represents the state on the left boundary and state 2 is a bi-
directional transition state. As illustrated in Fig. 5a, parameter a; denotes the transition

probability from state 1 to state 1 (itself), parameter a, denotes the transition probability
from state 2 to state 2 (itself), parameter (1-a;) denotes the transition probability from state
1 to state 2, and parameter b; denotes the transition probability from state 2 to state 1. As a
demonstration example, let us assume that a; = 0.7, (1 - a;) =0.3, a, =04, b; = 0.3, and
(1-a,-by) =0.3. Physical interpretations of these given transition probabilities during the

transition process are as follows.

1. There are only two possibilities for state 1 to transit, either to remain its original
state, or to become state 2. The likelihood for state 1 to stay in its original state
is 0.7 and the likelihood for state 1 to transit to state 2 is 0.3.

2. There are three possibilities for state 2 to transit, either to remain its original
state, or to become state 1, or to become state 3. The likelihood for state 2 to
stay in its original state is 0.4, the likelihood for state 2 to transit to state 1 is
0.3, and the likelihood for state 2 to transit to state 3 is 0.3.

After having developed the model for the neighboring state transition, an n-state
model for the global state transition can be established. Figure 5b is the state diagram



illustrating the global n-state transition. In Fig. 5b, parameter a; denotes the transition
probability from state i to state i (itself), parameter b; denotes the transition probability from
state i to state (i-1), and parameter (1 - a; - b, ; ) denotes the transition probability from state
i to state (i+1). The neighboring and global state transition diagrams shown in Fig. 5a and
5b can be explicitly represented in a matrix form. Such a matrix is called state transition

matrix. Its basic structure is provided below.
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In the state transition matrix, the elements on the diagonal represent the transition
probabilities of remaining their original states, and the off-diagonal elements represent the
probabilities of transiting from one state to another. The bandwidth of the transition
matrix, which is equal to three (3) in the above matrix, reflects the assumption made for the
neighboring state transition. Therefore, the transition matrix characterizes the

unobservable, or the hidden, stochastic process.

3.3 Determination of Transition Probabilities

As discussed in section 2.4.1, to determine Pj fori =1, 2, ..., n, we may group the
mean hardness values of Ly,ly,H3, ..., INs-1,HNs into their corresponding state cells. An
experimental procedure is developed to determine the state transition probabilities, i.e., a;,
b;, and (1 - a;- by ;) fori=1, 2, ..., n. The procedure consists of three steps.

Step 1. Select a representative sample along the machining feed direction from the
material to be machined. Use a computer-based scanning and imaging process
to identify the type of microstructure at each location in the representative



sample. Measure the microhardness value for each of the identified
microstructures.

Step 2. Construct the gridblocks. The gridblock dimension should be determined by
the number of blocks assumed on the workpiece circumference and the
machining feed to be used during machining. Count the numbers of pearlite
and ferrite structures within each of the formed gridblocks. Calculate the mean
hardness value for each gridblock. Examine the variation among the calculated
mean hardness values to confirm the number of states which was selected in the
modeling of segment excitation. Otherwise, a proper adjustment for the number
of states should be taken. At this stage, a state transition description, which is
similar to the one shown in Fig. 3, is completed.

Step 3. Determine the transition probabilities, i.e.,a;, b;, and (1 - a; - b; ;) fori=1, 2,
..., .. In this initial research, we assume that transition probabilities, a;, b;,
and (1 - a; - b; ;) fori = 2,3, ..., n-1, are equal to each other. The transition
probabilities associated with the two extreme boundary states are defined as a,
= (ap, + b;) and a, = (a,_; + b, ;) because these two states are unidiretional
states. Referring to the state transition representation shown in Fig. 3, we may
select a; = 0.4 fori=2,3,..,n-2,n-1, b; = 0.3 fori =1,2,...,n-1, a; = 0.7, and
a, =0.7.

3.4 Implementation on Computer

The basic methodology for modeling a comprehensive random excitation is based
on the hidden Markov modeling theory. A computer program was developed to implement
this methodology on a computer. The block diagram shown in Fig. 6 outlines the
simulation strategy, which is built upon four modules, i.e., the user input module, the
segment excitation module, the state transition module, and the output module. Note that
the data from the output module represents the random excitation action, which will be used
as an input function to the program called "evaluation of random tool motion", which was
developed in [14]. The descriptions of these four modules are given below.

1. The user input module. To initiate the computer simulation, the following
parameter values should be specified through the designed user interface.
(1).  The mean and standard deviation of the segment excitation model, i.e., 1
and ©.
(2).  The block number selected for the segment excitation model, N, and the

number of states selected for the state transition matrix, 7.



(3).  The transformation probabilities, i.e., a; fori = 1,2,3,...,n-1,n, and b;
fori=1,2,..n-1.

(4). The number of workpiece revolutions to be simulated.

(5).  The control parameters such as the variation levels of U and o for each
revolution of the workpiece.

2.  The segment excitation module. A random number generator is built to construct
the normal distribution, N(i,02), which is associated with the block mean
hardness values. These generated values are then distributed to individual blocks
resembling the workpiece material being removed at specific instants. A built-in
divider forms the n state groups and assigns the state number to each block. This
completes the random excitation simulation for the first workpiece revolution.

3. The state transition module. For the second workpiece revolution and those
revolutions to follow, the block mean hardness values are generated using the
state transition matrix, instead of using the random number generator built in the
segment excitation module. Using the state assignments for the first workpiece
revolution as the initial condition, an algorithm is developed to assign the state
number to the neighboring location in accordance with the given state transition
probabilities. In order to maintain the mean and standard deviation of the
assigned block mean hardness values, which also obey a normal distribution, a
control scheme is used to regulate the selection of a block mean hardness value
from its group. When the assignment for the second revolution is completed,
these assigned values will serve as the initial condition to assign new block mean
hardness values for the third workpiece revolution. The reiteration of this process
completes the second, or the hidden, stochastic process.

4.  The output module. It calculates the mean and standard deviation of the assigned
block mean hardness values for each revolution of the workpiece, check the
normality of the data distribution, and prints out the simulation results. The table
attached to Fig. 6 was taken from the state transition representation obtained
through computer simulation. This state transition representation and its
corresponding block mean hardness values will be used as an input to the
computer program designed for simulating tool vibration during machining and

the surface topography after machining.

4. A Case Study
A turning operation to machine an SAE 72 steel bar (diameter = 80 mm and length

= 300 mm) was studied to demonstrate an application of the hidden Markov model

10



approach for controlling tool vibration during machining. The study consists of

experimental work and computer simulation.

4.1  Experimental Work

First, microstructural analysis, as shown in Fig. 2a and 2b, was performed to
quantify the microstructural distribution in the SAE steel bas. Based on the experimental
data, the mean and standard deviation used in the segment excitation model and the
probabilities of the state transition matrix were estimated. Second, turning test shown in
Fig. 1 were carried out on a Placemaker lathe. The machining parameter settings used were
feed = 0.23 mm/rev, depth of cut = 0.5 mm, and spindle speed = 470 rpm. After
machining, twenty-five (25) surface profiles were taken along the axial direction on a
Talysurf 6 surface profilometer. The measured surface profiles were positioned in parallel

to form a surface topography. Figure 7a presents the experimental results. The twenty-

five measured R, values, together with R, = 4.22 um and og, = 0.32 um, were listed in

Table 1.

4.2  Study of Random Tool Motion

Following the experimental work, the developed computer program was used to
study random tool motion and its effect on the surface texture formation during machining.
The block diagram shown in Fig. 6 illustrates how the basic methodology discussed in
section 2 is implemented for the evaluation of random tool motion. As illustrated in Fig. 6,
the program named as "evaluation of random tool motion" takes the nominal chip load, the
residual chip load due to overlapping machining, and the random excitation as the system
inputs to evaluate the tool vibratory response. It combines the evaluated tool motion with
the spiral trajectory tool path to generate the data base for constructing the topography of a
machined surface [12].

In the computer simulation , the machining parameters used were set identical to
those used in the experimental work. In the first simulation run, the input of random
excitation only takes the segment excitation into consideration. This means that the random
number generator in the segment excitation module was used to generate the block mean
hardness values for the first workpiece revolutions, which obeyed the specified normal
distribution. Also, the segment excitation module was used to generate the block mean
hardness values for the consecutive workpiece revolutions, and the state transition module
was skipped during the first simulation run. As a result, there were no constraints which

were imposed between the neighboring block mean hardness values along the machining
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feed direction. In fact, the first simulation run duplicated the research work reported in
[11-12] where random excitation was considered, but only accounted for the
nonhomogeneity of the hardness distribution in the cross-section perpendicular to the bar
axis. Effect of the nonhomogeneity of the hardness distribution along the machining feed
direction was neglected in the previous work [11-12]. Figure 7b presents the simulation
results, showing the surface topography through computer visualization. The

corresponding R, values calculated from the simulated surface profiles, together with _fl!_a =
3.92 um and oR, = 0.13 pm, were listed in Table 1.

In the second simulation run, the input of random excitation takes both the segment
excitation and overall excitation into consideration. During the simulation process, the
segment excitation module was used to generate the block mean hardness values only for
the first revolution. Afterwards, the state transition matrix was used to generate the block
mean hardness values for the rest of workpiece revolutions. The defined transition
probabilities, serving as an imposed constraint, supervise the assignments of the block
mean hardness values. The assignment process simulates a direct concatenation of the local
segment excitation actions, resembling a hidden Markov chain action. This entire
simulation process represents a comprehensive study of the effect of the nonhomogeneity

of the hardness distribution of the material being machined on the surface texture formation
during machining. Figure 7¢ presents the simulation results. The corresponding R, values

calculated from the simulated surface profiles, together with R, = 4.24 um and oy, = 0.17

um, were listed in Table 1.

4. Discussion of Results

4.1 Comparison between the Measured and Simulated Topographies.

The two surface topographies shown in Figs. 7b and 7c provide a qualitative
visualization of the effect of random tool motion on the surface irregularity generation. In
this research, nonhomogeneous distributions of the basic material properties, such as
hardness, were assumed to be the major excitation source. A main difference between the
two surface topographies can be observed if examining them carefully. The difference is
that the surface topography shown in Fig. 7c displays a gentle variation of the profile
heights. Such a gentle trend comes from the cohesive relationship of random excitation
actions between the consecutive revolutions during machining. This cohesive relation
indicates that the likelihood for the occurrence of strong (or a weak) excitation actions at

12



neighboring locations is higher than the likelihood of the mixed occurrence of strong and
weak excitation actions at neighboring locations. Therefore, the simulated Markov chain
characterizes the effect of the narrow and parallel pearlite strip pattern of the microstructural
distribution on random tool motion during machining. In fact, the gentleness of profile
height variation can also be seen from the measured surface topography shown in Fig. 7a.
The two surface profiles shown in Fig. 8a and Fig. 8c, which were taken from the two
corresponding surface topographies, clearly depict a slow variation pattern of the profile
heights. The similarity between the measured topography (Fig. 7a) and the simulated
surface topography (Fig. 7c) confirms the validity of proposing the hidden Markov

modeling approach for the study of random tool motion during machining.

On the other hand, a high level of variation among the profile heights shown in Fig.
7b can be observed. This is due to the fact that random excitation action was evaluated on a
single revolution basis. The random excitation actions between two consecutive workpiece
revolutions are considered to be independent of each other. Consequently, the occurrence
of a strong (or weak) excitation action at a given location does not impose a condition that a
rather strong (or weak) excitation action will occur in its neighboring locations. In fact, the
likelihood of having a strong, or a weak, excitation action, in its neighboring location, is
solely governed by the segment excitation model which is characterized by a normal
distribution. The surface profile shown in Fig. 8b, which was taken from its surface
topography, depicts a rather significant variation of the profile heights if compared with
those shown in Figs. 8a and 8c. Although more discrepancies can be observed if
comparing with the measured surface topography shown in Fig. 8a, the surface topography
shown in Fig. 8b would still be a good representation for machining certain carbon steel
materials having relatively small and spherical pearlite structures as opposed to the narrow

strips of pearlite in the present case study.

4.2 Effects of State Selection and Transition Probabilities

As discussed above, the block mean hardness values within one workpiece
revolution are grouped into the state cells for implementation of the state transition matrix.
The number of states and the associated transition probabilities were determined mainly
based on the results from microstructural analysis. In order to extend our understanding of
using the hidden Markov modeling method to formulate the random excitation observed
during machining, a two-level factorial design was utilized to investigate the effects of the
state selection and transition probability setting on the evaluation of random tool motion
during machining. The LOW and HIGH levels of the state selection were set at 4 and 10,

13



respectively. The low and high levels of the transition probability setting used were (a;
04 fori=23,.,n-2,n-1, b; = 0.3 fori = 1,2,...,n-1, a; = 0.7, and a, = 0.7), and (a;
0.6 for i = 2,3,...,n-2,n-1, b; = 0.2 for i = 1,2,...,n-1, a; = 0.8, and a, = 0.8) where the

number of the select states is equal to either 4 or 10. Four computer simulation runs were

performed using the two-level factorial design. The simulation results in terms of the

predicted R, and o, values were given below.

Predictions Run 1 Run 2 Run 3 Run 4
um (LOW, low) (LOW, high) (HIGH, low) (HIGH, high)
R, 4.24 3.87 3.70 3.67
ORa 0.17 0.18 0.02 0.02

Examining the simulation results, the combination of a LOW level of the state
selection and a low level of the transition probability setting resulted in the highest value of

the Ea prediction, which is listed as 4.24 pm. Accordingly, the combination of the HIGH

and high levels yielded the smallest value of the Ea prediction (3.67 um). Regarding the
OR, €stimations, it is interesting to note that the low and high levels of the transition
probability settings have an unobservable effect on the Gy, estimation. From the viewpoint
of hidden Markov modeling, this phenomenon could be due to the fact that the transition
probability setting is related to the hidden stochastic process, which generates patterns
along the machining feed directions. At a given state selection, the random hardness
valuess generated by the two transition probability settings maintain the R, variation at a
similar level. This phenomenon deserves a further study. Another interesting observation
is that the change of the state selection from a LOW level to a HIGH level has a more

significant effect on the ﬁ; and o, predictions than the change of the transition probability

setting does. This indicates that great attention should be paid to a proper selection of the
number of the states because the number of states determines the possible patterns which
can be observed during the state transition process.
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Conclusions

. As a new and innovative approach, the theory of hidden Markov modeling is

applied to study the phenomenon of random tool motion caused by the
nonhomogeneity of hardness distribution in the material being machined. The
general random excitation during machining is viewed as a series of segment
excitation during individual revolutions of the workpiece, and the relationship

between the segment excitation actions is governed by the state transition process.

. The segment excitation and the state transition process are modeled as two

stochastic processes. The stochastic process to describe the segment excitation,
serving as the observable stochastic process, is characterized by a normal
distribution with its mean standing for the material hardness in general and its
standard derivation representing nonhomogeneity of the hardness distribution. The
distribution pattern of microstructures is used to establish the state transition matrix,
which characterizes the cohesive relationship between random excitation actions in
the consecutive workpiece revolutions. The state transition matrix maneuvers the
likelihood of concurrence of different states of the random excitation action,

resembling a so-called hidden stochastic process.

. A prototype system to implement the hidden Markov model on a computer is

developed for the study of random tool motion and its effect on the surface texture
formation during machining. To confirm the validity of the proposed approach,
predictions through computer simulation are compared with the results from the
experimental work. A general match between them has been observed.
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Program of Hidden Markov Modeling
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Fig. 6. Methodology to Simulate the Topography of a Machined Surface
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Table 1. Ra Values of the Measured and Simulated Surface Topographies

Measured Seg_mqnt Hidden Markov Model Hidden Markov Model
Excitation (03,04,0.3) 0.2,06,02)
(Hm) (um) state=4 (um) state=10 state=4 (lm) state=10
4.54 4.19 4.17 3.69 3.75 3.65
4.38 3.73 4.42 3.72 3.89 3.66
4.60 3.72 4.22 3.67 3.92 3.66
4.54 4.00 4.43 3.75 3.72 3.65
421 3.78 4.19 3.66 3.76 3.70
4.03 3.97 4.14 3.72 3.86 3.68
4.10 3.73 4.62 3.67 3.84 3.70
3.65 3.79 3.97 3.71 3.86 3.67
4.25 4.07 3.95 3.69 3.70 3.66
4.40 4.03 4.09 3.73 4.00 3.66
3.80 3.78 4.49 3.68 3.82 3.69
3.74 3.92 4.19 3.69 3.73 3.67
4.28 3.80 4.05 3.69 3.70 3.66
4.51 4.04 434 3.71 3.89 3.69
473 3.88 4.10 3.70 3.76 3.68
4.64 3.82 4.47 3.69 3.85 3.69
4,08 3.89 4.09 3.70 3.87 3.65
4.10 3.98 4.15 3.65 3.77 3.69
391 4.00 4.15 3.73 448 3.66
4.54 3.81 4.08 3.71 4.37 3.66
4.52 3.93 4.50 3.71 3.87 3.69
3.64 4.11 4.10 3.70 3.81 3.64
4.01 4.11 441 3.70 3.84 3.69
4.06 3.84 4.42 3.69 3.86 3.70
4,18 3.95 4.31 3.68 3.89 3.70
Mean 4.22 3.92 424 3.70 3.87 3.67
Std. 0.32 0.13 0.17 0.02 0.18 0.02




