ABSTRACT

Title of Dissertation: DECENTRALIZED AND SCALABLE RESOURCE
MANAGEMENT FOR DESKTOP GRIDS

Jik-Soo Kim, Doctor of Philosophy, 2009

Dissertation directed by: Professor Alan Sussman
Department of Computer Science

The recent growth of the Internet and the CPU power of personal computers
and workstations enables desktop grid computing to achieve tremendous comput-
ing power with low cost, through opportunistic sharing of resources. However,
traditional server-client Grid architectures have inherent problems in robustness,
reliability and scalability. Researchers have therefore recently turned to Peer-to-
Peer (P2P) algorithms in an attempt to address these issues.

I have designed and evaluated a set of protocols that implement a scalable

P2P desktop grid computing system for executing Grid applications on widely

distributed sets of resources. Such infrastructure must be decentralized, robust,
highly available and scalable, while effectively mapping application instances to
available resources throughout the system (called matchmaking).

First of all, I address the problem of efficient matchmaking of jobs to avail-
able system resources by employing customized Content-Addressable Network
(CAN) where each resource type corresponds to a distinct dimension. With this
approach, incoming jobs are matched with system nodes through proximity in an
N-dimensional resource space. Second, I provide comprehensive load balancing
mechanisms that can greatly improve overall system throughput and response time
without using any centralized control or information about the system. Finally, to
remove any hot spots in the system where a small number of nodes are processing
a lot of system maintenance work, I have designed a set of optimizations to mini-
mize overall system overheads and distribute them fairly among available system
nodes. My ultimate goal is to ensure that no node in the system becomes much
more heavily loaded than others, either because of executing jobs or from system
maintenance tasks. This is because every node in our system is a peer, so that no
node is acting as a pure server or a pure client.

Throughout extensive experimental results, I show that the resulting P2P desk-

top grid computing system is scalable and effective so that it can efficiently match

any type of resource requirements for jobs simultaneously, while balancing load

among multiple candidate nodes.

DECENTRALIZED AND SCALABLE RESOURCE
MANAGEMENT FOR DESKTOP GRIDS

by

Jik-Soo Kim

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
2009

Advisory Committee:

Professor Alan Sussman, Chairman/Adviser
Professor Peter J. Keleher, Co-Adviser
Professor Bobby Bhattacharjee

Professor Atif M. Memon

Professor Derek C. Richardson

(©Copyright by
Jik-Soo Kim

2009

DEDICATION

To my wife — Boram Lee for her love and support.

i

ACKNOWLEDGEMENTS

My gratitude to those who have helped me to complete this disserta-
tion cannot be adequately expressed here. Please accept my apologies
if you find yourself unjustly missing or find your contribution inad-
equately credited. I really appreciate all those who supported me in

one way or another.

I have been very fortunate to work with my thesis adviser, Dr. Alan
Sussman, whose suggestions led me throughout this dissertation. He
has encouraged me in all the time of research and has guided me on
the right track with his penetrating insight to all the problems I had. I
am indebted to my former colleague and friend, Beomseok Nam who

helped me to build a cornerstone for my research.

Several faculty members provided me with their guidance about my
proposal and feedback about this work, including Dr. Peter Keleher,

1ii

Dr. Bobby Bhattacharjee, Dr. Atif Memon, and Dr. Derek Richard-
son. Especially, I would like to give my special thanks to Dr. Peter

Keleher who has co-advised me through all the way of my research.

I am very grateful to my close friends, I1-Chul Yoon, Youngmin Kim
and Minkyoung Cho who came to the College Park with me at the
same time. Because of them, I could have completed such a long
journey of graduate school without any major problems. Also, I have
been very happy to meet all of our KGCS members who gave me such
a great time. Especially, I was fortunate to have our group members,
Jaehwan Lee and Sukhyun Song and wish everything goes well with

them all the time.

Finally, I cannot express my great gratitude in any words to my wife

Boram Lee and my parents for their love and support.

January, 2009

iv

TABLE OF CONTENTS

List of Tables

List of Figures

1

Introduction
1.1 Motivating Applications
1.2 Thesis and Contributions oo o

1.3 Thesis Organization

Underlying Framework and Assumptions
2.1 Basic Framework

2.2 Workload Assumptions and Overall Goals

Basic Matchmaking Framework

3.1 Basic Matchmakingusing CAN

12

18

20

25

29

3.1.1 ChangestooriginalCAN 34

3.1.2 Performance Evaluation 37
3.2 Categorical Resource Types 52
3.2.1 1-Dimensional Transformation 57
3.2.2 Virtual Peer Management 59
3.2.3 Scalability Issues 65
33 Summary 69
Load balancing of Job Executions 71
4.1 Improved Static Load Balancing 72
4.1.1 Enhanced CAN Mechanism Details 73
4.1.2 Performance Evaluation 83
4.2 Dynamic Load Balancing 96
4.2.1 Models for MigratingJobs 99
4.2.2 Performance Evaluation 107
43 Summary e e 117
Reducing the System Load 120
5.1 Modified Heartbeat Messaging 120
5.1.1 Effects of Modified Heartbeat Messaging 123

vi

5.1.2 Performance Implications of Modified Heartbeat Messaging 126

5.2 Randomizing JobOwnership 132

5.2.1 Random Walking along T dimension 134

5.2.2 Effects of Randomizing Ownerships 139
53 Summary ... 143
Large Scale Experiment 145
6.1 Experimental Setup 146
6.2 Experimental Results 148
6.3 Summary e 152
Related Work 153
7.1 Peer-to-Peer Systems 154

7.1.1 Unstructured P2P Systems 155

7.1.2 Structured P2P Systems, 156
7.2 Unstructured P2P-based Matchmaking Mechanisms 157
7.3 Structured P2P-based Matchmaking Mechanisms 160
7.4 Dynamic Load Balancing Mechanisms 162
Conclusions and Future Work 164
8.1 Thesis and Contributions 164

vii

82 Future Work 168

Appendix 173

Bibliography 181

viii

LIST OF TABLES

4.1 Average Job Wait Time (seconds) 115

5.1 Average Number/Volume of Messages (Per Minute, Per Node) . . 126

6.1 Average Number/Volume of Messages (Per Minute, Per Node) . . 150

iX

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

LIST OF FIGURES

Overall System Architecture 22
Basic Matchmaking MechanisminCAN 31
Performance Results for Clustered Workloads 44
Performance Results for Mixed Workloads 45
Overheads of Decentralized Matchmaking 46
Dynamic Workloads 47

Resource Integration and Routing in a CAN space: In Figure 3.6(b),
solid arrows denote the physical routing path of job J, while dotted
arrows show the logical routing path. 54
Hilbert Space-Filling Curves [72] 58
Node Join by Splitting a Virtual Peer: T-Dim and CR-Dim denote

the transformed dimension and the continuous resource dimen-

sion, respectively.o o 61

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Improved Static Load Balancing Mechanism 72
Computing Aggregated Load Information 75
Utilization of Resources for Lightly-Constrained Workloads . . . 86
Performance Results for Lightly-Constrained Workloads 88
Performance Results for Heavily-Constrained Workloads 89
Average Matchmaking Costs 90

Costs and Benefits of CAN-P for Lightly-Constrained Workloads . 93
Experimental Results for Lightly-Constrained Dynamic Workloads 94
Models for Dynamic Load balancing: DN; and IDN; denote direct

and indirect neighbors, respectively. 101
Distributions of Job Running Times 109
Performance Results with Uniformly Distributed Job Running Times:

In the figures the Y-axis does not start from 0%, to show the results
moreclearly 111
Overheads with Uniformly Distributed Job Running Times 112
Performance Results with Normally Distributed Job Running Times:

In the figures the Y-axis does not start from 0% to show the results
moreclearly L 113

Overheads with Normally Distributed Job Running Times 114

xi

4.15 Overall Matchmaking and Load Balancing Process: Solid arrows
denote the physical routing path of job J, while dotted arrows

show the logical routing path.

5.1 Effects of Modified Heartbeat Messaging: Note that X-axis is in
logscale
5.2 Populations of Available Nodes and Jobs over Time
5.3 Matchmaking and Queuing Time
5.4 Randomizing Ownership of Jobs: CR denotes the continuous re-
source dimensions.
5.5 Costs and Benefits of Randomized Owners

5.6 Number of Owned JobsPerNode

6.1 Population of Available Jobs in the System

6.2 Performance Results (Matchmaking Overhead and Load Balanc-
ing): Note that in the Figure 6.2(b), the Y-axis does not start from
0% to show the results more clearly

6.3 Distribution of Maintenance Messages in CAN

6.4 Number of Owned JobsPerNode

xii

Chapter 1

| ntroduction

The recent growth of the Internet and the hardware capability of personal comput-
ers and workstations enables distributed computing to achieve tremendous com-
puting power by harnessing a large number of machines. These systems are of-
ten called desktop grid computing systems and leverage unused capacity of high-
performance desktop PCs [3, 4, 5, 19, 26, 34, 93]. Desktop grid computing sys-
tems mainly target complex scientific applications requiring massive computing
power and resources that might exceed those available in a single supercomputing
platform. Existing architectures for desktop grid computing are typically based
on a client-server model, where a trusted server supplies jobs to a set of client ma-
chines distributed across the Internet. Robustness and reliability are guaranteed

by the server maintaining the status of all outstanding jobs running on poten-

tially unreliable clients, so that jobs assigned to clients can be re-run if a client
does not return a result in a time period determined by the computational com-
plexity of the job. The server must therefore be reliable, otherwise the status of
outstanding jobs could be lost. The server typically stores the state of jobs in
a (relational) database, which provides some level of reliability. However, this
centralized client-server architecture is vulnerable to a single point of failure, i.e.,
no new jobs can be assigned to a client whenever the server becomes unavailable
either due to server failure or network partition. Also, the centralized server can
easily become performance bottleneck, which results in inherent shortcomings
with respect to robustness, reliability and scalability. Finally, since only the desk-
top grid server supplies jobs to the client machines across the Internet, existing
desktop grid computing platforms do not allow arbitrary users to submit their own
jobs to the pool of available computational resources.

Our goal is to design and build a scalable infrastructure for executing Grid
applications on a widely distributed set of resources. Such infrastructure must
be decentralized, robust, highly available, and scalable, while efficiently map-
ping application instances to available resources throughout the system (called
matchmaking). Fortunately, these are precisely the characteristics promised by

new techniques and approaches in Peer-to-Peer (P2P) systems. Using P2P ser-

vices can provide a robust, reliable, and scalable job submission and execution
system that is able to efficiently utilize widely distributed available computational
resources. By employing P2P services, we can allow users to submit jobs to
be run in the system and to run jobs submitted by other users on any resources
available in the system, essentially allowing a group of users to form an ad-hoc
set of shared resources. The overall system, from the point of view of a user,
can be thought of as a combination of a centralized, Condor-like grid system for
submitting and running arbitrary jobs [27, 33, 61, 75, 89], and a system such as
BOINC [3, 4] or SETI@Home [5] for farming out jobs from a server to be run on
a (potentially very large) collection of machines in a completely distributed envi-
ronment. Such a confluence of P2P and distributed computing is a natural step in
the progression of Grid computing, and has indeed been described as inevitable
[13, 25, 35, 36, 46, 47, 60].

However, how to apply P2P techniques to Grid computing area is not imme-
diately obvious. Although both Grid and P2P systems have the same goals for
global resource sharing, they have many essential differences imposed mostly by
the behaviors and objectives of the involved users. Compared to Grid computing
systems which are mainly used for complex scientific applications that are usually

compute-intensive and require a large amount of resources, the most popular ser-

vice provided by P2P systems such as Gnutella [42] or Kazaa [50] is file sharing.
Therefore, most of the research performed in the P2P community targets efficient
locating and sharing data across a very large number of potentially unreliable ma-
chines, rather than running and monitoring Grid-like applications. To summarize,
in order to appropriately employ P2P techniques in the Grid computing environ-

ment, we have to address several issues as follows:

1. Job submission - How can we submit a job into the decentralized and dis-

tributed environment?

2. Matchmaking - How can we find a resource that meets the resource require-
ments of a job without any centralized control and information about the

system for better scalability?

3. Load balance - How can we distribute the load (jobs) across the nodes in

the system?

4. Resilience to failures - The overall system must be resilient to failures of

individual resources.

To address these issues, first I rely on the basic framework designed by our

project team for submitting jobs, managing and monitoring jobs while they are

running, including methods for failure detection and recovery in a decentralized
and distributed environment [56].

Second, I have developed decentralized and distributed resource management
techniques in the P2P desktop grid computing system [52, 53, 54, 55, 57, 65]. The
resource management algorithms include both efficiently matching jobs having
different resource requirements with available heterogeneous computational re-
sources and providing good load balancing to obtain high system throughput and
low job turnaround times. However, as the overall system scales to large config-
urations and heavy workloads, it becomes a challenging problem to perform effi-
cient matchmaking and load balancing all without any centralized control or infor-
mation about the system. I address the problem of efficient matchmaking of jobs
to available system resources by employing a customized Content-Addressable
Network (CAN) [76], where each resource type corresponds to a distinct dimen-
sion. With this approach, incoming jobs are matched with system nodes through
proximity in an N-dimensional resource space. Additionally, I provide effective
load balancing mechanisms that can greatly improve overall system throughput
and response time without using any centralized control or information about the
system.

However, an effective P2P desktop grid system must ensure that no node in the

system becomes much more heavily loaded than others not only because of job
executions but also from system maintenance. This is because every node in our
system is a peer so that no node is acting as a pure server or a pure client. There-
fore, to remove any hot spots in the system where a small number of nodes are
performing a lot of system maintenance work, I have designed a set of optimiza-
tions to reduce overall system load and distribute it more fairly among available
system nodes.

Throughput extensive experimental results, I show that the resulting P2P desk-
top grid computing system is truly scalable and effective so that it can efficiently
match any type of resource requirements for jobs simultaneously, while balancing

load among multiple candidate nodes.

1.1 Motivating Applications

Our target applications are usually compute-intensive but have relatively low I/O
requirements. Examples of these applications include bioinformatics applica-
tions such as understanding protein folding, misfolding, and related diseases [34],
Monte Carlo and other physical simulations in various scientific disciplines, and

more esoteric applications such as searching for Mersenne primes [1] and search-

ing for extraterrestrial life [5]. However, unlike existing projects, the proposed
system can allow arbitrary users to submit jobs to be run in the system and to
run jobs submitted by other users on any resources available in the system. Then
the system should utilize all available computational resources to execute all sub-
mitted jobs in a fair manner. This includes allocating resources to requests both
from users submitting a large number of jobs at once (as in a parameter sweep
for a physical simulation application) and from users with smaller resource re-
quirements. While some research work regards this resource allocation problem
as a scheduling problem [22, 58], it is more appropriate to characterize it as one
of fair resource allocation among peers because there is no centralized control or
information about the system to assign resources to jobs [56].

With our astronomy collaborators at the University of Maryland, we have
identified several problem areas with these characteristics in astronomy and physics,

mainly related to physical simulations and data analysis such as follows:

Habitable Planets The scientific goal of this project is to determine where po-
tentially habitable terrestrial planets might safely exist in extrasolar planetary sys-
tems. The orbital dynamics in systems containing three or more bodies (e.g., a

star, a planet, and a test particle; or such a system with more planets; or a bi-

nary star system with more than one planet) are very complex and analytically
intractable. To locate stable orbits for the test particle in such systems generally
requires either sophisticated analytical estimates (which usually break down when
the eccentricities of any of the massive bodies are large, as is the case in a num-
ber of extrasolar planet systems) or N-body integration techniques. For a given
planetary system, we should compute at least 100,000 possible orbits for at least
10 million years to achieve a good impression of stable regions. A 10 million
year integration of 250,000 test particles placed randomly on circular orbits in the
asteroid belt region of our solar system was performed on the client-server grid
system, and took several CPU months to complete. The proposed system can be
used to explore the huge parameter space associated with this problem, and to

obtain statistically meaningful results.

Formation of Asteroid Binaries Understanding the formation of asteroid bi-
naries can show not only how asteroids evolve (which is essentially related to the
formation of planets and therefore the origin of life), but also the internal structure
of asteroids. Discovering that internal structure is an important requirement for
developing hazard mitigation strategies if one of these bodies is headed toward

the Earth and might result in a collision. If the current tidal disruption model of

asteroid binary formation is correct, most near-Earth asteroids are piles of rub-
ble that cannot be efficiently destroyed with explosives, because the blast energy
gets absorbed. However, there is an enormous parameter space of plausible en-
counter scenarios. The key variables include close-approach distance, encounter
speed, progenitor spin state (both magnitude and orientation), shape elongation,
and bulk density. This problem is ideally suited to the desktop grid model, since
a single simulation involves a relatively small number of particles and no com-
munication is needed between simulations. A study performed running 110,000
simulations where each takes over one hour on the fastest machine available so

that indeed massively parallel executions of these simulations are imperative.

The Deep Impact Mission The NASA Deep Impact (http://deepimpact.jpl.nasa.gov/home/)
mission team has identified several problems whose solutions require significantly
more computing capabilities than are currently available to the team. One compu-
tational bottleneck is performing a large set of expensive deconvolution operations
to correct data being returned from a faulty instrument on the spacecraft. The
team has both measured and modeled a variety of deconvolution algorithms, but
they are currently limited to relatively simple ones by the computational power

available for the processing. Utilizing a larger number of machines in parallel

to address the optimal deconvolution for a particular application will provide con-
siderably better scientific results faster. The deconvolutions are compute-intensive
and involve many Fourier transforms on a single input image. Another computa-
tional challenge is theoretical modeling of spectra and photometry of the Deep
Impact data. Currently the exploration of these models is limited by the amount
of computational capability available. Like many small bodies, the nucleus of
comet Tempel 1 is quite irregular, resulting in a need for good modeling of shape
and illumination to account for the effects of these influences on the observed light
intensities in various spectral filters and as a function of time. Similarly the vari-
ety of chemical species and their temperature states discernible with the medium
resolution infrared spectrometer instrument is limited by the spectral modeling
done so far. Most of this modeling is compute-intensive rather than I/O intensive,
so that it can get benefits if a larger number of machines can be applied to the

analysis.

All of these problem areas are examples of our target applications that are usu-
ally compute-intensive but require relatively low 1/O operations. In this disser-
tation I create various synthetic workloads based on the characteristics of these

applications rather than actually running them. Most of my work is implemented

10

and evaluated through event-driven simulations.

There are several reasons for performing simulations. First, we can test the be-
haviors of our proposed system under various scenarios of node capabilities and
resource requirements of the jobs. Events include node joins, departures (graceful
or failures), and job submissions so that we can inject the new nodes and jobs or
generate node failures or departures at any time. The main reason for using syn-
thetic workloads is that we could not find enough useful information throughout
existing systems such as Condor [33, 61, 75, 89]. However, we expect as we de-
ploy our real prototype system, we can collect more useful information about the
job workloads. Second, we can easily verify the correctness of our algorithms for
matchmaking and load balancing in a large set of node and job populations which
would be very difficult in the real implementation to collect all the information for
the analysis. Finally, we can effectively measure the performance and overhead
of our proposed P2P desktop grid computing system. This is because it would
be difficult to prove the functionality of our system theoretically in this dynamic
decentralized environment.

We currently have a prototype peer implementation, and are in the process of
characterizing its behavior on real workloads with large numbers of peers. We are

working with our collaborators in physics and astronomy to deploy the desktop

11

grid system onto their machines, to enable them to share compute resources with
colleagues across the globe. In the near future, we will measure and report on the

behavior of the system in heterogeneous environments running real applications.

1.2 Thesisand Contributions

In this dissertation, I support the following thesis: decentralized resource man-
agement can be employed to create scalable desktop grid computing systems. Our
system has two major advantages over the existing architectures for executing
Grid applications on a widely distributed set of resources: scalability and us-
ability. We make our system scalable by removing a single point of failure and
contention so that it can scale gracefully as more nodes and jobs are injected into
the system. Also, we provide an improved usability by allowing arbitrary users
to submit jobs to be run in the system and to run jobs submitted by other users
on any resources available in the system, essentially allowing a group of users to
form an ad-hoc set of shared resources. Therefore, as we mentioned earlier, the
overall system, from the point of view of a user, can be thought of as a combina-
tion of a centralized, Condor-like grid system [33, 61, 75, 89] for submitting and

running arbitrary jobs, and a system such as BOINC [3, 4] or SETI@Home [5] for

12

farming out jobs from a server to be run on a (potentially very large) collection of
machines in a completely distributed environment.

By employing a centralized matchmaker [75], Condor system allows arbitrary
users to submit and run their own jobs by specifying their resource requirements
on the pool of available machines. However, there are two constraints that can
limit Condor’s potential of sharing available resources (i.e., scaling to a large num-
ber of resources). First, the centralized matchmaker is a single point of failure, and
in case such a failure occurs, the whole pool becomes unavailable. Also, the cen-
tralized matchmaker is a single point of contention since as more nodes and jobs
are inserted into the system, the amount of work performed by the matchmaker
increases linearly. Second, the size of individual pools is limited by the resources
available to an organization. This is because the Condor pool is intended to be
deployed in a single administrative domain. Condor addresses the issue of shar-
ing resources among multiple pools by a mechanism referred to as flocking [33].
However, this mechanism is static and requires manual configuration so that each
user should be able to register in multiple different administrative domains and
the matchmaking process can be shipped to another pool throughout the gate-
way machine. Again, if this gateway machine becomes unavailable, the flocking

mechanism may not work properly. Our system can federate these multiple pools

13

of available machines by employing P2P techniques.

On the other hand, BOINC system employs a centralized server to deploy a
larger number of independent jobs across available client machines on the Internet.
This server again can become a single point of failure so that no new jobs can be
assigned to a client whenever the server becomes unavailable either due to server
failure or network partition. Clients connect the server and download the jobs to
be computed voluntarily so that this type of computing systems is often called
Volunteer Computing [4]. Therefore, the server in the BOINC system simply
deploys jobs (which are dedicated to a specific project) across client machines
and does not provide the matchmaking functionality. This means that systems
such as BOINC do not allow arbitrary users to submit and run their own jobs on
the pool of available machines which lacks of usability. However, our system
provides more improved usability compared to the BOINC system by allowing
arbitrary users to submit and run their own jobs.

To summarize, I define the “scalable” desktop grid computing system as the

system having following properties:

1. The overall system is resilient to the failures unless there are multiple simul-
taneous failures that can break the structure of the system (no single point

of failure)

14

2. The overall system scales gracefully as more nodes and jobs are inserted (no
single point of contention). Our system’s scalability is heavily based on the
functionality provided by the distributed hash table, especially the Content-
Addressable Network (CAN) [76]. The average routing path (which is
closely related to the matchmaking cost) in the CAN is proportional to the
number of dimensions (denoted as d) and v/ N where N is the number of

nodes in the system [76].

To support this thesis, I develop, apply, and evaluate a set of techniques for
building an effective and scalable P2P desktop grid computing system. More
specifically, this dissertation makes the following contributions not discussed in

previous related research:

1. An efficient decentralized matchmaking framework

A general-purpose desktop grid system must accommodate various scenar-
ios for node capabilities and job requirements. Nodes may be added one at
a time over time, so that their resource capabilities are heterogeneously dis-
tributed, or they may be added as sets of homogeneous clusters. Likewise,
jobs may be relatively unique in their requirements, or part of a series of

requests with similar or identical requirements (e.g., a simulation sweeping

15

over a large set of parameter combinations). A good matchmaking algo-
rithm must be expressive enough to fully describe both job requirements
and disparate nodes. Further, such an algorithm should find a valid assign-
ment for every job, if such an assignment exists. Also, resources should not
be wasted. All other issues being equivalent, a job should not be assigned to
a node that is over-provisioned with respect to that job. Finally, the match-
making process should not add significant overhead to the cost of execut-
ing a job. Most of existing approaches for matchmaking in the P2P desk-
top grid system sacrifice some of these requirements, however, I provide
an efficient decentralized matchmaking algorithm that can achieve a good
balance among all of these requirements based on a customized Content-

Addressable Network (CAN) (as described in Chapter 3).

. Comprehensive decentralized load balancing mechanisms

Whenever there are multiple candidate nodes in the system that can run a
given job (i.e., they can meet the resource requirements of the job), the desk-
top grid system must consider load balancing among them to obtain high
system throughput and low job turnaround times. However, in a decentral-
ized P2P desktop grid system where no centralized information exists, pro-
viding good load balancing becomes a challenging problem since available

16

nodes are heterogeneous and load information propagated in the system can
become stale. Even if the initial load balancing mechanism assigned jobs
uniformly across available system resources, over time the overall load dis-
tribution may change since some nodes can run the allocated jobs much
faster than others. Also, whenever jobs arrive at a high rate into the de-
centralized system, a large number of matchmaking decisions may be made
based on stale information, since current load information propagates over
time across the nodes in the system. To address these problems, I provide
comprehensive load balancing techniques that can initially assign jobs to
the available heterogeneous nodes in the system and later redistribute them

if needed to improve the overall system throughput (Chapter 4).

. A set of optimizations to reduce the system load

The load on individual nodes in a desktop grid consists of application load
(the jobs to be executed), and system load (load imposed by the workings
of the underlying system). Unfortunately, non-uniform distributions of jobs
and nodes can cause the system to distribute the system load unevenly across
nodes. This system load can come from either monitoring job executions
or maintaining the overall P2P system and it can limit the scalability of our
system. This overloaded system maintenance cost is not sustainable in the

17

P2P desktop grid system since every node in our system is a peer. There-
fore, unfair distribution of system loads could cause problems to attract the
participation of desktop machines into our system. To address these prob-
lems, I provide a set of optimizations that can not only reduce the overall
system load but also distribute this load more fairly, without impacting the

overall reliability or performance of the system (Chapter 5).

1.3 ThesisOrganization

The rest of this dissertation is structured as follows. Chapter 2 describes our over-
all system architecture for executing jobs using a P2P overlay network. Chapter 3
discusses our basic matchmaking framework for any type of resources in the sys-
tem based on customized Content-Addressable Network (CAN). In Chapter 4, we
describe our techniques to improve the overall throughput of our CAN-based sys-
tem by employing both static and dynamic load balancing schemes. In Chapter 5,
we present a set of optimizations to reduce overall system overheads and distribute
them fairly among system nodes. In Chapter 6, we perform a large scale experi-
ment to show the ability of our system to scale gracefully as more nodes and jobs

are injected. In Chapter 7, we present related work especially focusing on em-

18

ploying P2P services in Grid computing. Finally Chapter 8 presents conclusions,

summarizes the work, and points out possible directions for future work.

19

Chapter 2

Underlying Framework and Assumptions

In this chapter, we define terminology and the basic framework of our approach
for submitting jobs, managing and monitoring jobs while they are running, includ-
ing methods for failure detection and recovery in a decentralized and distributed
environment [56]. Then, we describe our assumed context and overall goals for

resource management algorithms.

2.1 Basic Framework

All of the work described assumes an underlying Distributed Hash Table (DHT)
infrastructure [39, 69, 76, 78, 85, 98]. DHTs use computationally secure hashes to
map arbitrary identifiers to random nodes in a system. This randomized mapping

allows DHTs to present a simple insertion and lookup API that is highly robust,

20

scalable, and efficient. A system can build upon these basic services to allow
users to place idle computational resources into a general pool and draw upon
the resources provided by others when needed. We insert both nodes and jobs
into a single DHT, performing matchmaking by mapping a job to a node via the
insertion process, and then relying on that node to find candidates that are able and
willing to execute the job. By leveraging such an architecture, we are effectively
reformulating the problem of matchmaking to one of routing in the P2P network,
similarly to anycasting [73], or content-based routing [2].

A job in our system is the data and associated profile that describes a com-
putation to be performed. A job profile contains several characteristics about the
job, such as the client that submitted it, its minimum resource requirements, the
location of input data, etc. The resources modeled include continuous variables,
such as the speed of the CPU, the amount of memory available, and the amount of
disk space available, and categorical variables such as operating system type and
version. All jobs have modest I/O requirements, with individual input data sets
for our initial target applications typically on the order of a few 100 KB or less,
with correspondingly small output datasets. However, the jobs for each problem
are computationally intensive, since simulation runs consist of advancing physical

variables forward in time by solving a set of coupled differential equations, and

21

data analysis runs perform complex operations on the data. Finally, the jobs in
the system are independent, which implies that no communication is needed be-
tween them (as described in Maheswaran et al. [64]). This is a typical scenario in
a desktop grid computing environment, enabling many independent users to sub-
mit their jobs to a collection of node resources in the system, or embarrassingly
parallel workloads. Indeed, Iosup et al. [48] found that a high percent of Grid
applications still employ an embarrassingly parallel model based on their analysis
on the characteristics of traces of real Grid environments, namely LCG [32] and
TeraGrid [90] which are among the largest production Grids currently deployed,

and the DAS [31], which is a research Grid.

®

Matchmaker

Find

\ Assign GUID
A toJob J

-
~ I
S=a -

@ Return Job J

Figure 2.1: Overall System Architecture

Figure 2.1 shows the overall system architecture and flow of job insertion and

22

execution in the P2P network. The steps of job execution are as follows:

1. A client inserts a job into a node in the system (the injection node). The
DHT provides an external mechanism that can find an existing node in the

system [76, 85].

2. The injection node assigns a Globally Unique IDentifier (GUID) to the job

by using its underlying hash function and routes the job to the owner node.

3. The owner node initiates a matchmaking mechanism to find a run node

capable of running the job.

4. Once the matchmaking mechanism finds a run node for the job, the owner

node sends the job to the run node.

5. The job is inserted into the job queue of the run node, which processes jobs
in FIFO order. While processing the jobs, the run node periodically sends

heartbeat messages to the owner node.

6. When the job is finished, the run node returns the results to the client.

An owner node is responsible for monitoring the execution of the job and en-
suring that its results are returned to the client. Whenever a new job is assigned to
an owner node, the owner node attempts to find an appropriate node for running

23

the job (run node) through the matchmaking mechanism. Matchmaking is the
process of matching jobs with physical resources, and consists of finding an ap-
propriate node for running a job based on the constraints in the job profile and the
current (distributed) state of the nodes in the system. The job profile can include
several requirements for running the job, such as required CPU speed, amount of
memory, supported operating system type(s), etc. Therefore, in the matchmaking
process, the first criterion in finding a match is whether the job constraints can be
met.

Once an appropriate run node is found, the new job is inserted into the job
queue of the run node. Each run node processes jobs in its job queue in FIFO
order and only processes one job at a time. Any input data files for a job are
transferred to the run node only when the job actually starts running. Until a
job is completed and its results are returned, the run node periodically sends a
heartbeat message to the owner node, which can relay the message to the client
that initiated the job. This heartbeat message informs the owner node about the
status of the running job and also indicates that the run node is still alive. The run
node must generate heartbeat messages for every job in its job queue, including
jobs that are not yet running. This soft-state heartbeat message plays an important

role in failure recovery during the processing of jobs in our system. By employing

24

the owner node and run node pair, our system can provide a robust environment
for processing jobs, as the job profile is replicated both on the owner and run
nodes to enable reconstruction of job information in case of failures. If either
the owner or run nodes fails, the other node will detect the failure and initiate a
recovery mechanism to make progress in the job execution. If both the owner and
run node fail before the recovery protocol completes, the client must resubmit the
job. To communicate via the heartbeat message, for efficiency we employ a direct
connection between the run node and the owner node, for example by a socket

connection, rather than using the P2P network routing mechanism.

2.2 Workload Assumptionsand Overall Goals

A general-purpose desktop grid system must accommodate heterogeneous clus-
ters of nodes running heterogeneous batches of jobs. The implication is that a
resource management framework must incorporate both node and job information
into the process that eventually maps a job onto a specific node.

Our expected environment and usage make this problem easier in some ways
and more difficult in others. A large fraction of nodes in the system might be-

long to one of a small number of equivalence classes in terms of their resource

25

capabilities. For example, many organizations buy clusters of identical machines
all at once, whether to create compute farms or just to replace an entire depart-
ment’s machines. Node clusters make the problem more difficult by removing
the notion of a single best match for a given job. The underlying resource man-
agement algorithm must be able to cope with many similar nodes and perform
some intelligent load balancing across them. However, node clustering can also
simplify the problem by reducing the set of possible choices for the matchmaking
process. Similarly, job profiles might show clustering in terms of their minimum
resource requirements. Sets of similar jobs can result from running the same ap-
plication code with slightly different parameters or input datasets. For example,
researchers often perform parameter sweeps to optimize algorithmic settings or
explore the behavior of physical systems. Similarly, the same computation may
be performed on different input regions, such as N-body or weather calculations
that differ only in spatial coordinates.

Therefore, the overall problem space for Grid computing environments can be
divided along two axes, measuring the degree to which the nodes and jobs are ei-
ther clustered or mixed. Systems such as Condor [33, 61, 89] mainly target mixed
jobs in clustered nodes, while systems like BOINC [3, 4] or SETI@Home [5] deal

with clustered jobs in mixed nodes. Our intent is to effectively support all of these

26

scenarios. To summarize, the goals of any resource management algorithm for a

P2P desktop grid system must include the following:

1. Expressiveness - The matchmaking framework should allow users to specify

minimum or exact requirements for any type of resource

2. Load balance - Load (jobs) must be evenly distributed across the nodes

capable of performing them.

3. Parsimony - Resources should not be wasted. All other issues being equiv-
alent, a job should not be assigned to a node that is over-provisioned with

respect to that job.

4. Completeness - A valid assignment of a job to a node must be found if such

an assignment exists.

5. Low overhead - The matchmaking must not add significant overhead to the

cost of executing a job.

There are additional issues that we do not discuss here. For example, in
some situations (e.g., conditions of low load), the system might prefer to optimize
throughput by executing jobs on the most capable available node. This raises the

question of what we wish to optimize for: throughput or response time. We are

27

explicitly avoiding this issue by designing an infrastructure that can accommodate

either objective.

28

Chapter 3

Basic Matchmaking Framewor k

In this chapter, we describe our basic matchmaking framework based on Content-
Addressable Network (CAN) [76] which is customized to allow matching any
type of resource requirements of the jobs with available heterogeneous compu-
tational resources. First, we describe our basic matchmaking algorithm that can
allow minimum match for the resource requirements of the job such as minimum
required CPU speed or memory amount. Second, we integrate another type of
resources into our CAN-based framework which requires a singular value for that
resource (i.e., exact match) such as a specific type of operating system or proces-

SOr.

29

3.1 Basic Matchmaking using CAN

A Content-Addressable Network (CAN) is a DHT that maps GUIDs to points in
a d-dimensional space [76] so that nodes divide up the CAN space into (hyper-
)rectangular zones and each node maintains neighbor information. The conven-
tional use of CAN is to map a GUID into the space by applying d different hashes,
one for each dimension. However, positions in the CAN space need not be cre-
ated through randomized hashes. For example, Tang et al. [87] map documents
and queries into a CAN space where each dimension measures the relevance of
a particular index term, executing queries via a blind local search centered on a
query’s mapping.

Similarly, we can formulate the matchmaking problem as a routing problem in
a CAN space. By treating each resource type as a distinct dimension, nodes and
jobs can be mapped into the CAN space by using their capabilities or constraints
on each resource type to determine their coordinates. As a simple example, if
our resource types consist of CPU speed, memory size, and disk space, we might
map a 3.6GHz workstation, with 2GB of memory and 500GB of disk space, to
the point {360, 2000, 500}. A job requiring at least a IGHz machine, 100MB of
memory, and 200MB of disk space would map to {100, 100, 0.2}, clearly some

distance from the node discussed above. With this approach, mapping a job to a

30

node might seem to consist merely of mapping the job into the CAN space and
finding the nearest node. However, the semantics of matching jobs to nodes are
different than that of merely finding the closest match node. Most importantly, job
constraints represent minimum acceptable quantities. Any node meeting a job’s
constraints can run the job, but a node whose coordinate in any dimension is less
than that specified by the job’s constraints, even if very close in the CAN space,
is not a viable choice to run the job. Hence, instead of searching for the node
whose capabilities are closest to the job’s constraints, our matchmaking/routing
procedure must search for a node whose coordinates in all dimensions meet or

exceed the job’s constraints.

Memory
Dimension
Virtual
Dimension
Node L
/I Owner o~
M3 Node |
JobJ SendJ JobJ
Node A NodeD - -| - -|»NodeG Run
M Y __ Node
J 4 //
M2 " 7
Job J ForwardJ ! /
CPU>=C Insert J
28 I - - *NodeB - | - —|* Node E Node H
Memory >= M, V
M1 ///
Node C Node F Node
C1 C, c2 C3 CPU
Dimension

Figure 3.1: Basic Matchmaking Mechanism in CAN

Figure 3.1 shows the procedure for matching a job J to the node G in a system

31

with two resource types, CPU speed and Memory size, through routing in the
CAN space. A job is inserted into the system using its requirements as coordinates
({C;, M} for Job J) and defining the owner of the resulting zone as the owner
node of the job (Node D). The owner node creates a list of candidate run nodes,
and chooses the (approximately) least loaded among them (Node G) based on load
information periodically exchanged between neighboring nodes. To determine the
least loaded node among the candidate run nodes, we use the size of its job queue
(the current set of unfinished jobs assigned to a node) at the time the matchmaking
is performed. Queue size can be modeled as either the number of jobs in the queue
(which was used in this dissertation) or an estimate of the run time for all current
jobs in the queue. Job queue sizes can be included in the periodic neighbor state
update messages of CAN that are propagated to neighboring nodes[76]. No global
synchronization is required, and the additional overhead is a small fixed cost for
each update message, sent only to direct neighbors.

By selecting the least loaded node as the best run node, we address the prob-
lem of Load balance, as described in Section 2.2. The candidate nodes are drawn
from the owners of neighboring zones, such that each candidate is at least as capa-
ble as the original owner node of a job in all dimensions (capabilities), but more

capable in at least one dimension (nodes G and L). Parsimony and Expressive-

32

ness follow naturally from the fact that the owner node of a job maintains the
zone containing the representative point of a job (corresponding to its minimum
resource requirements), so the minimally capable nodes for a job are neighbors
(or next-nearest neighbors) of the owner node. Also, under the assumption that
there is always at least one node capable of running a given job, Completeness is
assured by the CAN routing, which in the worst case will eventually map a job
to the most-capable node in the system (the node occupying the extreme corner
of the CAN space). In this special case, the node to which the job is mapped by
CAN routing will have to become the run node and select a neighbor to act as the
owner node.

The above procedure works in all cases, but may cause some problems for
the CAN mechanisms when many nodes have similar, or perhaps identical, re-
source capabilities. Since the coordinates of a node are defined by its resource
capabilities, identical nodes are mapped to the same place in the CAN volume
(New Node and Node A in Figure 3.1). The best way to distribute ownership of
a zone across multiple such nodes is not immediately obvious. Conversely, many
jobs might have very similar requirements. For example, many jobs will likely
be inserted into the system with no requirements specified at all (represented by

0 coordinates). In this case, all those jobs will be mapped to the single node that

33

owns the zone containing the minimum point in the CAN volume (Node C).

We address this issue by supplementing the “real” dimensions (those corre-
sponding to node capabilities) with a virtual dimension. Coordinates in the virtual
dimension are generated uniformly at random. Whenever a new node joins the
system, a representative point for the new node is generated by combining the re-
source capabilities of the node and a randomly generated virtual dimension value.
Therefore, even when multiple identical nodes join the system, they are mapped
to distinct locations, and zone splitting is straightforward. Similarly, when a new
job is inserted into the system, the new job’s coordinates are a combination of the
job’s constraints and a randomly assigned virtual dimension coordinate. In com-
bination, the randomly assigned node and job coordinates act to break up clusters

and spread load more evenly.

3.1.1 Changestooriginal CAN

Our use of CAN differs from the canonical uses in that coordinates have semantic
meaning. This difference requires several changes in how the underlying network
management algorithms work. The most important changes are in the way zones
are split and merged.

Zones are split when a new node enters the system. The CAN maps the node

34

to an existing zone, and then the zone is split between the owner and the new
node. The default CAN split algorithm can choose to split the zone on any axis,
because the mapping of a zone to an owner has no semantics, and the coordinates
of a pair of points usually differ on most, if not all, axes. In our CAN, however,
nodes may be identical in resource capabilities, differing only in their coordinates
in the virtual dimension (e.g. for a cluster of homogeneous nodes, since we use
the resource capabilities as the representative point for each node in the system).
This restricts the choice of the dimension on which to split. Therefore, our split
mechanism first tries to find a split axis among the real dimensions that have
different coordinates across the existing node and the new node. If that is not
possible, the virtual dimension is used as the split axis. To build a better (i.e.
closer to cubic) grid space when splitting real dimensions, we iterate across all
dimensions for each split operation.

The second major change to the CAN algorithms is in how zones are merged.
A zone is merged with a neighbor when it is orphaned because of an owner leav-
ing, either gracefully or by failure. The default CAN recovery algorithms allow
such an orphaned zone to be merged with any neighboring zone: no restriction is
made on which nodes can own a zone. In fact, a node can own multiple zones,

which can result in a highly fragmented coordinate space. Therefore, to achieve

35

a one-to-one node to zone assignment, CAN runs a periodic background zone re-
assignment algorithm. That algorithm can assign one of the neighbor nodes of
the departed node to another region, without any restrictions on merging and re-
assigning the orphaned zone (for details see Ratnasamy et al. [76]). However, in
our system this can violate the required semantics about the relationship between
a zone and the owner of that zone, whereby a zone should contain the coordinates
(i.e., resource capabilities) of its owner.

Zone owners play two roles. First, they ensure that jobs mapped to the zone
are run. This is accomplished by creating a set of candidate run nodes and polling
them to find the least loaded candidate run node. For this purpose, the owner of a
zone would not actually have to be mapped into that zone, because a job’s owner
node is never a candidate to run the job. However, owner nodes also serve as
candidate run nodes for jobs mapped to neighboring zones. For example, assume
a job is mapped into a zone z;, and that zone z; is z;’s neighbor. z;’s owner may
then include z;’s owner in the list of candidate run nodes for any job mapped to
z;. However, if z;’s owner is not actually mapped somewhere in z;, it might not
have the capabilities z;’s owner expects, and might therefore not be able to run
the job. The zone merging procedure must therefore preserve the constraint that

a zone’s owner must be mapped into the zone. Satisfying this constraint requires

36

that zones be merged in a way that is consistent with the original split order. The
zone merge algorithm accomplishes this by preserving the original split order at
the owner, and reversing that order to select which node should merge the zone

with its own.

3.1.2 Performance Evaluation

In this section, we evaluate our basic CAN-based matchmaking algorithms in de-
centralized and heterogeneous environments through a comparative analysis of ex-
perimental results obtained via simulations. To compare against our CAN-based
approach, we evaluate two additional matchmaking algorithms, a Rendezvous

Node Tree-based approach and a Centralized Matchmaker.

The Rendezvous Node Tree

The Rendezvous Node Tree (RNT) is a distributed data structure built on top of
an underlying DHT, which in our implementation is Chord [85]. Specifically,
the RNT copes with the Load balance issue by performing a tree traversal after
the random initial mapping, and addresses Completeness by passing information
describing the most capable reachable node up and down the tree.

An RNT contains all participating nodes in the desktop grid. Each node deter-

37

mines its parent node based only on local information, which enables building the
tree in a completely decentralized manner (to find the parent node in the RNT, di-
vide the GUID of the predecessor node of the child node in the Chord ring by two
and find the successor node of that GUID in the Chord ring - see details in Kim
et al. [51]). Since the GUIDs of nodes in the system are generated uniformly at
random, the overall height of the RNT is likely to be O(log N) where N is the total
number of live nodes in the system (we investigated the characteristics of the RNT
in terms of overall height and node degree in Kim et al. [51]). Due to the dynam-
ics of the system (new nodes joining, existing nodes departing), the correct parent
pointer of a node can change over time. Therefore each node must refresh/update
its RNT parent node pointer periodically to maintain the RNT structure.

Once the parent-child relationship in the RNT is determined, each node peri-
odically sends local subtree resource information (for the subtree rooted by that
node) to its parent node, and this information is aggregated at each level of the
RNT (hierarchical aggregation). In the work described in this dissertation, the
only information distributed through the tree is a description of the maximal
amount of each resource available at some node in the subtree. This notion of
hierarchical aggregation is a fundamental abstraction for scalability in a large sys-

tem and is also used in distributed information management systems [77, 95].

38

We inject a job into the system by mapping it to a randomly-chosen node,
which becomes the job’s owner node. This achieves good initial load balancing
by spreading the jobs randomly across nodes in the system. The owner node then
initiates a search for a run node, which must satisfy the job’s resource require-
ments . The search first proceeds through the subtree rooted at the owner node,
only searching up the tree into subtrees rooted at the ancestors of the owner node
if the subtree does not contain any satisfactory candidates. The search is pruned
using the maximal resource information carried by the RNT. Rather than stopping
at the first candidate capable of executing a given job, the search proceeds until at
least k capable nodes are found (called extended search). The search completes
by choosing the least loaded of the £ nodes to run the job. Through experiments
not discussed here, we have determined that a value of five (5) for k£ produces
robust results with low overhead. Further details about this search procedure can

be found in Kim et al. [51].

Centralized Matchmaker

We have designed an online scheduling mechanism, called the Centralized Match-
maker, that maintains global information about the current capabilities and load

information for all the nodes in the system, and so can assign a job to the node

39

that both satisfies the job constraints and has the minimum job queue size across
all nodes in the entire system. In our simulation environment, the Centralized
Matchmaker does not incur any cost for gathering the global information about
the nodes in the system and performing the matchmaking (since the simulator can
maintain global information about all the nodes in the system). Even though the
matchmaking performed by the Centralized Matchmaker is not always optimal
(since it is an online algorithm), it should provide good load balancing and is a
good comparison model for other matchmaking algorithms [71, 99].

We can view the Centralized Matchmaker algorithm as the extreme case of the
CAN or RNT based search algorithm, since it first finds all candidate run nodes
that meet the job constraints and picks the one with the shortest job queue. How-
ever, such a scheme would not be feasible in a complete system implementation
with respect to scalability and robustness, since the algorithm would incur a large
overhead to find all nodes in the P2P system that meet the job constraints, and the
node performing the centralized algorithm would be a single point of failure in

the system.

40

Experimental Setup

We use synthetic job and node mixes to simulate the behavior and measure the
performance of both the CAN and RNT-based approaches. Our intent is to model
a P2P desktop grid environment with a heterogeneous set of nodes and jobs. We
therefore developed an event-driven simulator and generated a variety of work-
loads, each describing a set of nodes and events. Events include node joins, de-
partures (graceful or otherwise), and job submissions. The events are generated
using a Poisson distribution with an arrival rate of 1 / 7 (7 is the average event
inter-arrival time and is set to 0.1 seconds). Jobs can specify constraints for three
different resource types: CPU speed, memory, and disk space. We generated node
profiles using a clustering model to emulate resources available in a heteroge-
neous environment, where a high percentage of nodes have relatively small values
for their available resources and a small fraction of nodes have larger amounts of
available resources (as in Zhou et al. [101]).

Our first four test workloads are relatively static; no nodes join or leave during
the course of the experiments (after 1000 nodes join the system, 10000 jobs arrive
at the system with an arrival rate of 7). The workloads differ on two axes. Work-
loads are categorized as either clustered or mixed (as described in Section 2.2).

The former divides all nodes and jobs into a small number of equivalence classes,

41

where all items in a given equivalence class are identical. The latter assigns node
capabilities and job constraints randomly. Workloads are also distinguished by
whether the jobs have light or heavy constraints. For a given job, each type of
resource has a fixed independent probability of being constrained: light jobs have
an average of 1.2 constraints (out of the 3) and heavy jobs have an average of
2.4. As a job has more resource requirements (heavy constraints), it is likely to be
harder to match the job since fewer nodes in the system can meet those multiple
constraints.

The amount of work W for a job j is generated uniformly at random from a
predefined set of work ranges (200 seconds on average), which means that to run
the job j a node must execute for W time units if it has exactly the same node
specification as does the job j’s constraints. To model the actual running time of
a job, we divide W by the node CPU speed (relative to some baseline node CPU
speed), to get a run time on the node a job is assigned to. Finally, for the network
communication cost, the latency of a packet between any two nodes in the system
is modeled by an exponential distribution with a mean of 50 milliseconds.

Our metrics are matchmaking cost (the number of messages required for find-
ing candidate run nodes by the owner node of a job), wait time (the amount of

time between when a job is injected and when it actually starts running), and

42

queue length, which is the length of the non-preemptive job queue seen by a job
when it is finally assigned to a run node. Matchmaking cost directly quantifies the
messaging cost needed to perform the matchmaking in a decentralized manner.
Wait time includes the time to perform the matchmaking algorithm and the time
spent waiting in the job queue before a job is performed. Wait time reflects both
protocol overhead and the quality of the matchmaking results, i.e., load balance.
Finally, the distribution of queue lengths provides a direct measurement of the
load balance seen by injected jobs.

We test the CAN approach (CAN), RNT approach (RNT), and the ideal-
ized centralized approach (Centralized) that uses up-to-date global information
to choose the node with the shortest queue length from all nodes in the system. We
do not include “matchmaking cost” numbers for the centralized approach because

it requires no messages.

Experimental Results

Figure 3.2 and 3.4(a) show wait time, queue length and matchmaking cost (mes-
sages) for the clustered workloads, while Figure 3.3 and 3.4(b) show the cor-
responding data for mixed workloads. For the clustered workloads, the RNT

has lower matchmaking costs, but CAN has lower wait times and smaller queue

43

Wait Time, Clustered Workloads Queue Size, Clustered Workloads

< c
2 S
g 1r = 5 1
s | e e 8
® °
= >
8 8
3 E
E E
3 =
© [3)
. Centralized (light)
er oS CAN (ligh

Centralized (light) K (light)

CAN (light) RNT (light)

RNT (light) +++ Centralized (heavy)

— CAN (heavy) — CAN (heavy)
+ Centralized (heavy) === RNT (heavy)
‘ - RNT (hegvy) ‘ ‘ ‘
% 200 400 600 800 %% 5 10 15
time (seconds) gqueue length at job insertion
(a) Wait Time (b) Queue Length

Figure 3.2: Performance Results for Clustered Workloads

lengths. The difference in queue lengths explains the difference in wait times, and
comes from the virtual dimension allowing the nodes in a cluster to be spread
through the CAN space. More specifically, in the clustered workloads, many
nodes have identical resource capabilities so that the overall CAN space is split
along the virtual dimension. This results in coarse-grained ranges in the real di-
mensions, where each node maintains large zones relative to its own resource
capabilities. Therefore, matchmaking in CAN becomes expensive for jobs that
have a small number of very high resource requirements. However, for jobs that

have more constraints, overall matchmaking performance is better since jobs with

44

Wait Time, Mixed Workloads Queue Size, Mixed Workloads

< c
2 S
5 1t 5 1
& | e e 8 T
@ S
= >
8 8
3 E
E E
3 =
o o
Centralized (light)
er osr RNT (ligh
Centralized (light) (light)
RNT (light) + Centralized (heavy)
+ Centralized (heavy) — CAN (heavy)
— CAN (heavy) CAN (light)
CAN (light) === RNT (heavy)
‘ - RNT (hegvy) ‘ ‘ ‘
% 200 400 600 800 %% 5 10 15
time (seconds) queue length at job insertion
(a) Wait Time (b) Queue Length

Figure 3.3: Performance Results for Mixed Workloads

many constraints are more likely mapped to the right region in the space where
many candidate run nodes are available. However, contrary to the coarse-grained
ranges in the real dimensions, the ranges for virtual dimensions become fine-
grained, which spreads similar jobs uniformly across multiple nodes in the system
to achieve superior load balancing compared to RNT and close to Centralized (as
seen in Figures 3.2(a) and 3.2(b)).

The mixed workloads provide a slightly different story. The matchmaking
cost and the wait time for the “heavy” constraint workload still favor CAN, but

CAN’s performance on the “light” constraint mixed workload is much worse than

45

Matchmaking Cost, Clustered Workloads Matchmaking Cost, Mixed Workloads

= c
e o
S 1l ,emmeeemeemssss-------o-o-csccccaad S 1l
g / E T e
b /,//P/ S PP
2 / =
k|) =z
3 " RNT (light) E} CAN (light)
E : E
3 ! --- RNT (heavy) 3 ; — CAN (heavy)
— CAN (heavy) RNT (light)
05 0.5 *"
i CAN (light) h --- RNT (heavy)
: ;
1 i
]
\
0 L L 0 ! |
0 50 100 150 0 50 100 150

messages exchanged messages exchanged

(a) Clustered Workloads (b) Mixed Workloads

Figure 3.4: Overheads of Decentralized Matchmaking

that of RNT. Figure 3.3(b) shows that queue lengths are much larger and more
varied in CAN than RNT, implying load imbalance. To understand why the re-
sulting load imbalance is worse than in the clustered case, consider a hypothetical
CAN with only a single real dimension, CPU speed. If most jobs do not specify
CPU requirements (light constraint), their CPU speed coordinates will have the
minimum value in that dimension. The jobs can still be mostly distributed (via
the virtual dimension) along a line at a single CPU coordinate. However if most
nodes have distinct CPU speeds (mixed node profiles), the slowest node ends up

covering the bulk of the virtual dimension at low CPU speed, and will become the

46

owner of a disproportionate number of the jobs, resulting in a hot spot and load
imbalance.

Average Wait Time for Jobs

200 - [RNT

seconds

Il CAN

[Centralized

Dynamic | Dynamic Il Dynamic llI

Figure 3.5: Dynamic Workloads

Figure 3.5 shows average wait times for three light mixed dynamic workloads.
In these workloads, after 1000 nodes initially join the system, new nodes join
and some existing nodes depart the system, which overall results in between 10%
and 30% of the nodes eventually leaving during the course of the simulation (the
Dynamic III has the highest node departure rate). Node departures are evenly split
between graceful departures, where a node informs its neighbors before leaving,
and failures, where the neighbors learn of the departure from the lack of heartbeat

messages. For all three dynamic workloads the number of jobs is about 10000,

47

which is similar to the static workloads, but different sets of nodes are available in
the system at different times, so that we cannot directly compare across workloads.

The CAN and RNT approaches perform poorly relative to Centralized because
of the need to recover and reconfigure the network. Although we cannot directly
compare results across the three dynamic workloads, the wait times are worse for
CAN than for RNT or Centralized as the overall system becomes more unstable
(higher departure rates make the system less stable). Therefore, CAN’s perfor-
mance appears to be more affected than RNT’s by increasing the departure rate.
Since all of the dynamic workloads are based on mixed sets of nodes and jobs,
a load imbalance problem similar to the one seen for the CAN earlier, due to a
hot spot in the CAN space, can occur as jobs are entering the system and being
assigned to run nodes. However, if one of the nodes in the hot spot leaves the
system or fails, that can be disastrous for wait time performance, since all of the
jobs that were running or waiting in the departed node must be re-assigned to live
nodes in the system. Since each node in the hot spot already has a dispropor-
tionate number of assigned jobs, this causes even more severe load imbalance for
CAN-based matchmaking. However, in the RNT approach, since all of the jobs
are assigned to owner nodes by a uniformly random function, it can achieve more

even job allocations compared to CAN and is affected less by the dynamism of

48

the system.

Discussion

The RNT and CAN algorithms have different underlying rationales. The idea
motivating the RNT approach is to balance load by randomizing job assignment,
mitigating the cost of matching demanding jobs by passing static capacity in-
formation across the tree (matchmaking after load balancing). Job assignment
essentially consists of a randomized mapping, followed by a tree traversal to find
a lightly-loaded node capable of running a given job (i.e., meet the minimum re-
source requirements of the job). The idea behind the CAN approach is to first find
a node whose capabilities approximately match the job’s constraints, followed by
a local search among similar nodes to find one that is lightly loaded (load balanc-
ing after matchmaking).

Both the RNT and CAN algorithms can cause poor load balance in at least
two ways. First, the search path (a tree traversal for RNT and a local search for
CAN) may not be long enough to find existing lightly-loaded nodes. However,
that may be a less serious problem for the CAN approach because each CAN
node stores a limited some load information for neighbor nodes. A second po-

tential cause of load imbalance is poor matches between jobs and nodes (i.e, poor

49

Parsimony). RNT can be thought of as a first-fit algorithm; it selects as the run
node the most lightly loaded of a set of randomly chosen nodes, such that each
node meets the minimum job constraints. However, the chosen run node might be
greatly over-provisioned for the job, and this over-provisioning might not be use-
ful. For example, over-provisioning in terms of CPU rate may be useful because
it can speed up the execution of a given job, but an extra GByte of memory might
not improve execution time, and therefore not be useful. Meanwhile, other jobs
needing the extra memory might be needlessly queued. By contrast, CAN is more
of a best-fit algorithm (more precise) because the search starts at the node most
closely matching the job’s constraints.

Dynamism of the system also can affect the performance of CAN and RNT
matchmaking mechanisms. Because existing nodes depart the system, the infor-
mation carried by the CAN- and RNT-based mechanisms can be stale compared to
the information maintained for static workloads, and there can also be some over-
head for P2P network recovery. Additionally, reliable job assignments become
more critical in dynamic environments, as seen from the results for the CAN ap-
proach, where the hot spots in the light mixed workloads become a problem for
load balancing.

To summarize, as a comparative analysis on the simulation results shows, we

50

have identified the benefits and costs of the CAN-based resource management

algorithm as follows:

e Overall, the CAN algorithm appears to produce significantly lower wait

times than the RNT approach over a broader spectrum of input

e CAN’s poor performance with the light mixed workload is an indicative of

a broader problem in the robustness of the load balancing

e Reliable job allocations become more crucial to the performance of match-

making and load balancing in a dynamic environment

To address the load balancing problem of basic CAN-based matchmaking
framework with the light and heterogeneous workload, we provide an improved
load balancing mechanism based on pushing jobs into underloaded regions of the
CAN space (as described in Section 4.1). Nodes periodically send load informa-
tion towards the origin in each dimension. This information is aggregated at each
step, resulting in each node having partial information about load in all regions of
the CAN space containing nodes more capable, which are exactly those nodes that
are also able to run that node’s jobs. In times of high load, a node can therefore
push jobs towards regions of high capability and low load, based completely on
local information.

51

3.2 Categorical Resource Types

In our system, there are two different types of resources (that can be specified
in node capabilities and job requirements): categorical and continuous resources.
Continuous resource constraints such as memory or disk size, or CPU speed re-
quire a minimum match. On the other hand, categorical constraints require a
singular value for that resource (exact match), such as a specific type of oper-
ating system or processor. Therefore, the system must be able to search for exact
matches for the categorical resource types and minimum matches for the contin-
uous resource types simultaneously, while balancing load among multiple candi-
date nodes.

One example of a possible user query for a set of required resources is (Arch
== “Intel” A OS == “Linux” A CPU > 2.4GHz A Memory > 500MB A Disk >
1GB), where Arch and OS are the required processor architecture and operating
system type, respectively. To be able to handle this kind of query, the system has to
find nodes that both have an Intel architecture and the Linux operating system, and
also that meet the remaining continuous resource constraints (i.e., CPU, Memory
and Disk).

One straightforward approach to integrate different types of resources into a

CAN space would be to add new dimensions for categorical resource types (e.g.,

52

a dimension for architecture and a dimension for operating system in the exam-
ple). The primary problem with this approach is in specifying the load information
that must be aggregated and disseminated throughout the system to perform load
balancing (load aggregation mechanism along each dimension presented in Sec-
tion 4.1). The load information must distinguish between machines with differ-
ent architectures (e.g., Intel and PowerPC), and also between different operating
systems (e.g., Linux and Windows). Moreover, load information must be differ-
entiated on the basis of all combinations of these choices; the number of such
combinations is exponential in the number of discrete choices for each categorical
resource type. A second approach is to create a distinct CAN space for each such
combination of choices for categorical resource types. Load information within
each such sub-CAN is then homogeneous and can be disseminated efficiently. The
drawback of this approach is that such a system requires some type of directory
service that vectors incoming jobs to the correct sub-CAN and manages the mul-
tiple sub-CANs. This front-end is both a potential performance bottleneck, and
also a single point of failure.

Our solution is to integrate categorical resource dimensions into a single
CAN space, by transforming them onto a single dimension using a space-filling

curve [59, 81]. Then, we address load balancing and connectivity issues by intro-

53

Memory Memory Run Node|
A G A G
e
—
E E -~
: 2 LT |
m < N T
Vee Ven M, Vee Veu /| el | V"
Owner o
© c |
/
F ! F
1
P EE I P
08 == Solaris {”
&&
Linux OSX Windows AIX Solaris oS Memory>=M, Linux OSX Windows AIX Solaris os
(a) Resource Integration (b) Routing including Virtual Peers

Figure 3.6: Resource Integration and Routing in a CAN space: In Figure 3.6(b),
solid arrows denote the physical routing path of job J, while dotted arrows show

the logical routing path.

ducing virtual peers [57].

Figure 3.6 shows the basic concepts of our approach for integrating categorical
resource types into a CAN (as an example, we use operating system for the cat-
egorical resource type and memory for the continuous resource type). The basic
idea of the approach is to divide the CAN space into multiple disjoint sub-spaces
where in each sub-space all of the categorical resource types are exactly the same,
and provide an efficient mechanism to connect the multiple sub-spaces (without
having a directory service). For example, in Figure 3.6(a) all nodes in the “Linux”

range (A, B, C, and D) have the Linux OS. There is no node that has another oper-

54

ating system type (such as Windows) in that sub-space. Similarly, nodes G, H, and
I have the Solaris OS. The overall CAN space is thus divided into three different
sub-spaces, for Linux, Windows and Solaris. The question then is what happens
to the rest of the CAN space (i.e., the sub-spaces for OSX and AIX). The OSX
and AIX sub-spaces are empty because no nodes have those OS types. Therefore,
there can be holes in the CAN space, since a sub-space of the CAN is occupied
only if there is at least one real node that has that categorical resource type. How-
ever, we cannot just allow holes in the CAN space since they may prevent routing
requests from being delivered.

We address this problem by supplementing the “physical” peers with addi-
tional virtual peers, as shown in Figure 3.6(a), where the OSX and AIX sub-spaces
are occupied by two virtual peers Vg and V gy, respectively. Virtual peers act
similarly to physical peers, both maintaining neighbor information and allowed
to be neighbors of physical peers. However, a virtual peer never is allowed to
become a neighbor of another virtual peer, since a single virtual peer can cover
multiple unoccupied CAN sub-spaces. Since a virtual peer is not a physical node,
we provide a mechanism to map each virtual peer to physical peers (called man-
ager nodes). A manager node of a virtual peer maintains all information about the

virtual peer (e.g., neighbor list) and processes any routing requests for its assigned

55

virtual peer(s). In Figure 3.6(a), Vg is managed by nodes B and E while Vg
is mapped to nodes E and H. A virtual peer can be managed by up to two differ-
ent physical peers (the number of mapped physical peers depends on whether the
virtual peer is an edge or an internal virtual peer in the integrated CAN space),
enabling robust failure recovery.

With this design, each physical peer only is responsible for the exact region
of the CAN space to which it belongs, with respect to its categorical resource
specifications, and the rest of the space is covered by virtual peers. This enables
employing the efficient matchmaking and load balancing techniques presented in
Section 4.1, since in each sub-space the existing algorithms can aggregate the
load information along the continuous dimensions, and employ the job pushing
mechanisms for better load balancing within a single CAN sub-space, without
considering different types of categorical resources. Figure 3.6(b) shows the over-
all procedure of matching a job J to node G, showing both physical and virtual
peers in the CAN space. Since each virtual peer is mapped to one or two physical
peers, a job request can be efficiently delivered to the owner node, as shown in
Figure 3.6(b) (e.g., when node D routes the job request to the virtual peer V g, it

can directly send the job to the physical peer E that V 5 is mapped to).

56

3.2.1 1-Dimensional Transformation

In Figure 3.6, we show only a single categorical resource dimension, to simplify
the introduction of the concepts of virtual peers, and the description of routing
messages across multiple sub-CANs. However, if there are multiple different cat-
egorical resource dimensions and we want to divide the CAN space into disjoint
sub-spaces, the management of virtual peers and failure recovery mechanisms
can become very complex. This is because the number of possible sub-spaces that
become empty (so must be covered by virtual peers) increases rapidly with the
number of categorical resource dimensions (a combinatorial explosion). The dis-
tribution of management of such multiple virtual peers along multiple dimensions
and the design of proper failure recovery mechanisms is much more complex than
with a single categorical resource dimension.

To address these problems, we transform all categorical resource types into a
single dimension. The overall CAN space is then composed of one transformed
categorical resource dimension (we call this dimension T), along with all other
continuous resource dimensions (including the virtual dimension described in
Section 3.1). Any type of 1-dimensional transformation function can theoreti-
cally be used for this purpose, but consider that a user query may specify “don’t

care” or a limited range query (some of these resource types may also involve

57

version numbers, which may themselves have ranges) as the requirement for a
categorical resource type. In that scenario, the resource query specified for a job
becomes a range query in a multi-dimensional space, so that a simple transforma-
tion function, such as a row-major or a column-major ordering, results in favoring

one dimension over others.

=71l B bHH E.I_-LJ
1 [FE=HE=
- I"I [1 I"I

1] el hidHh

_I |__ !_JI--ILJI I _I'-FII_JI

Figure 3.7: Hilbert Space-Filling Curves [72]

Therefore, to transform categorical resource dimensions into a single dimen-
sion without favoring any particular resource type, we use a locality-preserving
Space Filling Curve, specifically the Hilbert Space Filling Curve (HSFC) [59,
80, 81]. An HSFC is a continuous mapping from a d-dimensional space to a 1-
dimensional space, passing through every point in a d-dimensional space exactly
once, resulting in an ordering with good locality properties across all dimensions

(as seen from Figure 3.7). Many other research projects have employed HSFCs in

58

resource discovery scenarios [7, 82].

3.2.2 Virtual Peer Management

Transforming all of the categorical resource types into a single dimension allows
us to efficiently introduce virtual peers to cover gaps in the CAN space. If the
categorical resources had their own dimensions, then virtual peers would have
to cover rectangular holes in the space. In contrast, with a single dimension we
can represent a contiguous set of missing configurations (that have no real peer
with those values for the categorical dimensions) with a single virtual peer. The
result is that for separately managed dimensions, the number of virtual peers is (at
worst) the number of unused configurations, which grows exponentially as new
options are added for each categorical resource type, while for the 1-dimensional
transformation the worst case is the number of existing configurations (plus one).

A virtual peer, like a physical peer, maintains its own neighbor information
and periodically updates its information to neighbors. A virtual peer is mapped to
physical peers (managers) that perform any CAN-related operations for the virtual
peer. So, whenever a virtual peer becomes the neighbor of a physical peer, we
add additional mapping information about the virtual neighbor into the neighbor

state of the physical peer, to enable efficient routing in the CAN, as shown in

59

Figure 3.6(b). We now describe the management of virtual peer information when
a new node joins the CAN, how job routing works for virtual peers and how to

handle failure recovery in the presence of virtual peers.

Node Join Whenever a new node joins the CAN, the representative point for the
new node is the combination of the transformed categorical resource dimension
(the T dimension) coordinates and the other continuous resource type values. The
new node splits the zone of one of the existing nodes in the CAN space, specifi-
cally the one whose zone already contains the point for the new node. If the new
node splits the zone maintained by a physical peer, then the same zone splitting
mechanisms used for the continuous dimensions is applied, as described in Sec-
tion 3.1. However, if the new node splits the zone of a virtual peer, this means
that the new node is the first physical peer that actually has those values for the
categorical resource types. In this case, splitting along T dimension, we must split
the virtual peer zone correctly.

Figure 3.8 shows the procedure for splitting the zone maintained by a virtual
peer upon arrival of a new node N. Whenever a new node splits an existing virtual
peer’s zone, the new node becomes responsible for the newly split virtual peers

(i.e., becomes the manager of those virtual peers). In Figure 3.8, there were two

60

CR-
Dim
f\VAI‘, A f\VAB} B :\VB,"
l T-Dim
CR-
Dim
| @) v | @)l | @) e
T-Dim

Figure 3.8: Node Join by Splitting a Virtual Peer: T-Dim and CR-Dim denote the

transformed dimension and the continuous resource dimension, respectively.

physical peers (A and B) before N joins and virtual peers V 4 and Vi were man-
aged by node A and node B, respectively. However, V 45 was managed by both
nodes A and B, because whenever either node A or B departs the system (either
a graceful departure or a failure), the other node must be able to recover the lost
zone along the T dimension. Therefore virtual peer information is replicated in
multiple physical peers for failure recovery. Since we transform all categorical
resource types into a single dimension, a virtual peer must be replicated in only
at most two physical peers (a lower and an upper neighbor of the virtual peer
along dimension T). Suppose new node N joins the CAN and splits virtual peer

V ap. Since a physical peer maintains only the region it belongs in along the T

61

dimension, the resulting CAN space has four different virtual peers, as shown in
Figure 3.8, and node N becomes the manager of V 4 and V g that resulted from
splitting V 45. Node N must then notify physical peers A and B about the changes
to the virtual peers that they manage.

There are some special cases where the new node N happens to be maintaining
a zone adjacent to the existing physical peers along the T dimension. For example,
N can join the system by splitting the virtual peer V 45 and the zone for N becomes
adjacent to node A (e.g., the zone maintained by V 4 in the Figure 3.8). Then, the
node join algorithm should consider this special case where there is no virtual peer
between node A and new node N (similar for the case where N is adjacent to node
B). However, we simplify these special cases by allowing zero-width virtual peers
where even for adjacent nodes there is always a virtual peer between them whose
width is actually zero. This makes the node joining algorithm including virtual
peer split much simpler and enables our improved job ownership determination
mechanism (which are heavily dependent on the virtual peers between sub-CANs)
presented in Section 5.2. Therefore, there is only a single and universal case for

splitting the virtual peers in the system which is presented in Figure 3.8.

62

Job Submission Similar to the node join algorithm, whenever a new job is sub-
mitted, its categorical resource constraints are transformed into a one-dimensional
coordinate and combined with the continuous resource constraints to form a rep-
resentative point for the job. The job is forwarded to the node that contains the
representative point, using the CAN routing mechanism. If the new job ends up at
a zone maintained by a physical peer, existing matchmaking and load balancing
algorithms are applied within the sub-CAN. Therefore, the overall matchmaking
process is to first place a job in the right sub-space where it belongs for its cate-
gorical resource constraints, and then do matchmaking and load balancing along
the continuous dimensions.

However, if the new job ends up in a zone maintained by a virtual peer, then
the system rejects the job since this means that there is no real node that can
run the job. (Completeness). This is a useful property of the virtual peer design,
since physical peers only cover the exact sub-spaces that they belong to, with

unoccupied spaces covered by virtual peers.

Failure Recovery An existing node can depart the system at any time either
gracefully (meaning the departing node informs its neighbors) or due to failures.

The rest of the nodes must then be able to recover the orphaned CAN zone that

63

was maintained by the departed node. Our failure recovery algorithms are based
on the periodic heartbeat messages exchanged between neighbors (as in a standard
CAN [76]), with the addition of information related to sibling neighbors that abut
at the most recent split edge (Section 3.1). Therefore, when the departed node’s
zone was split along a continuous dimension, that recovery algorithm will be ap-
plied to take over the lost zone. If the departed node was one of the managers for
a virtual peer, then one of the nodes that ends up taking over the zone becomes
responsible for that virtual peer. Since virtual peer information is replicated, the
node that takes over the zone can properly initialize the virtual peer information
from another live manager. Therefore, as long as there is at least one physical
peer in a sub-CAN, the failure recovery algorithm will be applied only along the
continuous dimensions.

However, if the departed node’s zone was only split along the T dimension
(i.e., the departed node was the last one live in that sub-CAN), we reverse the
procedure for node join shown in Figure 3.8. Therefore, three sub-spaces are
merged into a single zone managed by the virtual peer. Since the virtual peer
information is replicated on multiple physical peers, and each node in a CAN
space maintains not just its neighbor information, but also neighbor of neighbor

information [76], the algorithm can recover the zone and initialize the appropriate

64

virtual and physical peers. By transforming all categorical resource types into the
one-dimensional space, we obtain the benefits of a straightforward, robust failure
recovery algorithm that only has to work differently from the earlier algorithm for

the single transformed dimension.

3.2.3 Scalability Issues

Although our proposed design for integrating all types of resources based on vir-
tual peers and 1-dimensional transformation can effectively match incoming jobs
with various types of resource constraints to available heterogeneous resources, it
has drawbacks in terms of system maintenance.

As shown in Figure 3.6, a virtual peer becomes the neighbor of all physical
peers that abut in the T dimension (for example, V gg is the neighbor of nodes
A, B, C, D, E, and F). This means that a virtual peer must exchange heartbeat
messages with many neighbors periodically, and the size of each message grows
with the number of the virtual peer’s neighbors (this is because each node in CAN
sends its own information and its neighbor information in a periodic update mes-
sage [76]). Therefore, such messages can add substantial overhead for the nodes
responsible for the virtual peers. For example, if a virtual peer manages 1000

neighbors then the size of a single heartbeat message is about 600KB and this can

65

become a significant burden since a virtual peer sends update messages to all its
neighbors (i.e., the total size of the messages would be 600MB at every update).

A similar problem can occur with the continuous dimensions. Specifically,
whenever there are sets of homogeneous clusters in the system, some nodes might
have many neighbors along the virtual dimension, due to the zone splitting pro-
cess. However, unlike the virtual peer case, this does not always happen since
it depends on the order of nodes joining. This kind of problem occurs because,
unlike the original CAN DHT our CAN has dimensions with semantics, corre-
sponding to resource types. Therefore, we cannot guarantee to split the zone for
a new node along a specific dimension (i.e., we cannot assume that the resource
capabilities of nodes are truly heterogeneous, which enables us to choose an arbi-
trary splitting dimension).

Another potential problem with the virtual peers is that some nodes may pro-
cess more routing messages than other nodes. As described in Section 2.1, routing
a submitted job starts from an injection node, and we assume that this injection
node is chosen randomly from the available nodes. Therefore, some jobs start
from the desired sub-space where the categorical resource types are already met.
Other jobs however may start from a completely different sub-CAN. For example,

in Figure 3.6, a job that requires the Linux operating system type may start from

66

node H (which is the injection node of this job), where only Solaris machines are
located. This means that some jobs must traverse multiple sub-spaces until they
arrive at the right sub-CAN (in terms of categorical resource types). In this step
of matchmaking, the manager nodes may be heavily used for routing jobs, since
to move from one sub-space to another sub-space jobs must traverse the virtual
peers. Therefore, the manager nodes can suffer from processing a large number
of routing messages.

All of these issues can limit system scalability as they complicate system
maintenance with increasing numbers of nodes and jobs. We address the prob-
lem of heartbeat message exchanges between virtual peers and physical peers by
employing modified heartbeat messaging scheme in Section 5.1. This is one of
our efforts to minimize any overheads in the system and distribute them fairly
among system nodes to build an effective and scalable P2P desktop grid. In the
following section, we discuss our technique to balance the overhead of processing
routing requests across multiple sub-CANs by using specialized routing in the T

dimension.

67

Specialized Routing in the T Dimension

Since a job can be injected at any node in the CAN space, it may have to traverse
multiple sub-spaces to reach the sub-space where it belongs, to match its categori-
cal resource requirements. Due to this property of job routing, the manager nodes
for virtual peers can be a bottleneck in processing routing messages. We address
this problem by using a special routing mechanism in the T dimension.
Whenever a physical peer tries to route a request to the virtual peer, it sends
the request to one of the neighbors of the virtual peer (rather than sending directly
to the manager of the virtual peer). Therefore, in the T dimension, the algorithm
utilizes the neighbor of neighbor information maintained by the CAN, and routing
requests are processed not only through direct neighbors but also indirect neigh-
bors. For example, in Figure 3.6(b), when node D routes the request for job J, it
selects one of Vgg’s neighbors (nodes E or F) and sends the request. This pre-
vents all routing requests delivered from the Linux sub-space to another sub-space

from always going through node E, the manager of Vg [57].

68

3.3 Summary

In this chapter, we have presented our basic matchmaking framework for matching
minimum and exact resource requirements specified by the jobs with available
heterogeneous computational resources.
First of all, to handle continuous resource types which require minimum matches

for those resources, we modified the Content-Addressable Network (CAN) [76]
by treating each resource type as a distinct dimension in the CAN space. However,
the basic CAN procedure encounters difficulties when many nodes have similar,
or even identical, resource capabilities. Since the coordinates of a node are de-
fined by its resource capabilities, identical nodes are mapped to the same point in
the CAN volume. This creates a problem for the one-to-one mapping of nodes to
zones. Additionally, many jobs might have very similar requirements so that they
can be mapped to a comparatively small region of the CAN space which results
in load imbalance. We addressed this problem by augmenting both job and node
descriptions with a randomly assigned value in a virtual dimension. The virtual
dimension ensures that all jobs and nodes are unique, and helps balance load even
when the actual jobs and nodes are similar. The resulting system can achieve a
good balance among multiple goals for matchmaking frameworks presented in

Section 2.2. However, we found that the CAN-based algorithm works very poorly

69

due to serious load imbalance when jobs with few requirements are run on nodes
with heterogeneous (mixed) resource capabilities. We will address this problem
by employing advanced load balancing mechanism in Section 4.1.

Second, to integrate categorical resource types which require exact matches
into a single CAN space, we transformed them onto a single dimension using a
space-filling curve. Then, we addressed load balancing and connectivity issues
by introducing virtual peers. With this design, each physical peer only is respon-
sible for the exact region of the CAN space to which it belongs, with respect to
its categorical resource specifications, and the rest of the space is covered by vir-
tual peers. This enables employing the efficient matchmaking and load balancing
techniques, since in each sub-space the load information is homogeneous and can
be disseminated efficiently, without considering different types of categorical re-
sources. However, as we discussed in Section 3.2.3, this can distribute the system
load unevenly across nodes due to highly non-uniform distributions of jobs and
nodes in the system. We will address this problem by providing a set of optimiza-

tions that can improve the scalability of our system in Section 5.1.

70

Chapter 4

L oad balancing of Job Executions

In this chapter, we present our comprehensive load balancing techniques which
employ initial static load balancing mechanism and supplemental dynamic load
balancing scheme to improve overall system throughput and user response time.
First, we address the load imbalance problem discussed in Section 3.1 by employ-
ing pushing mechanism based on dynamic aggregated load information. How-
ever, these improvements are still based on a static allocation of jobs to nodes in
the system which can cause potential load imbalance due to the heterogeneity of
nodes and jobs and stale load information. Therefore, we supplement our initial
and static load balancing scheme by using lightweight and effective dynamic load

balancing mechanisms.

71

4.1 Improved Static Load Balancing

In previous chapter, we showed that the CAN-based matchmaking mechanism
can achieve good load balancing among the multiple candidate run nodes with
low matchmaking cost in most scenarios. However, we found that the CAN-based
algorithm works very poorly due to serious load imbalance when jobs with few
requirements are run on nodes with heterogeneous (mixed) resource capabilities
(as we discussed in Section 3.1).

We now describe how we have improved the basic CAN-based matchmaking
mechanism to address this problem by pushing jobs into underloaded regions of

the CAN space based on dynamic aggregated load information [52, 53].

Memory

Dimension !

JobJ

Aggregating
load information

(1. ' e
2o +1 20

Run
Node

1
1
"D
[}
- =
Client T
1 Pushing J
10 C
1
I Insertion of J 1 f
Job J M, v Aggregating
CPUZC, ---T* A -7 B -1+ O Owner load information
Mem > M, Jopg 4= =-F----
G CPU Dimension

Figure 4.1: Improved Static Load Balancing Mechanism

Figure 4.1 shows the basic concepts of our improvements. When a new job is

72

inserted into the system and routed to the owner node (node O), the job is pushed
into an underloaded region in the CAN space. To determine whether to initiate
pushing of a job, a fixed amount of current system load information is propagated
along each dimension in the CAN space. If the overall system is lightly loaded,
the job can be pushed into the upper regions of the CAN space (farther from the
origin) and utilize the more capable nodes in the system (node R). We cannot push
jobs to lower regions (closer to the origin) in the CAN space, because the nodes
occupying those regions will likely not be able to satisfy the jobs’ requirements.
It is very important that each node in the pushing path of a job be able to make
the decision whether to continue pushing the job in a completely decentralized
fashion, based only on local information. Therefore, the amount of information
maintained by each node for pushing jobs should remain constant with respect to

the number of jobs.

4.1.1 Enhanced CAN Mechanism Details

To enable the pushing of a job to an underloaded region in the CAN, we have
to propagate a fixed amount of current load information through the nodes in the
CAN space. Since each node cannot maintain an accurate global picture of the

system load, the load information must be properly aggregated. Also, the load

73

information should be dynamic so that it can reflect the current distributed state of
the system. For this dynamic aggregated load information we use the following

measures along each dimension in a CAN space:

o Number of Nodes

e Sum of the Job Queue Sizes

We add this aggregated load information to the periodical neighbor state up-
date mechanism of the original CAN DHT maintenance algorithm [76], to avoid
generating additional messages in the P2P network. By using the two aggregated
load statistics, for a given node N we can estimate the current load (e.g., average
job queue size) along each dimension of the CAN for the nodes that own CAN
regions with greater values than that of node N in that dimension. However, it is
not easy to accurately compute the aggregated load information, since the overall
CAN space can be irregularly partitioned. To build a regularly partitioned CAN
space, the representative points for all nodes in the system should be distributed
uniformly. In our CAN, the point for a node consists of its resource capabilities
and an additional virtual dimension coordinate. Therefore we cannot assume that
the resource capabilities of the nodes in the system have a uniform distribution

since, in the real system, only a small portion of the nodes are likely to have

74

high resource capabilities, with the majority of the nodes having relatively lower

capabilities [101].

Memory |
Dimension 1
Node A Node B |
1
L L L !

[AC AD BD I Aggregation of

I |oad information

I along Memory

Node C Node D I Dimendon
1
1
L L !
CE DE 1
1
Node E 1
v
CPU Dimension

Adggrinfo(A) = Aggrinfo(B) =0

Aggrinfo(C) = [Info(A) + AggrInfo(A)] * [Lac/ (LactLap)]

Aggrinfo(D) = [Info(A)+AggrInfo(A)] * [Lap / (LactL ap)] + [Info(B)+Aggrinfo(B)] * [Lgp/Lgp)
Aggrinfo(E) = [Info(C)+AggrInfo(C)] * [Lcg/L el + [Info(D)+Aggrinfo(D)] * [Lpe/L el

Figure 4.2: Computing Aggregated Load Information

To deal with aggregation of load information in the irregular CAN space, the
algorithm uses an overlap fraction-based computation, as shown in Figure 4.2.
Figure 4.2 shows the process for aggregating load information along the Mem-
ory dimension in a CAN space. Info(N) is the current load information for node
N (e.g., job queue size on N). Aggrinfo(N) is the computed aggregated load in-
formation from nodes with Memory values greater than that of node N (Nunber
of Nodes orSum of the Job Queue Sizes). Whenever anode N com-
putes its aggregated load information, it only carries some fraction of the infor-
mation from its neighbors with larger Memory values, depending on how much

75

N’s boundary overlaps with those neighbors. Note that the information about the
neighbors is propagated through the periodical CAN neighbor state update mecha-
nism. More generally, for each dimension d in a CAN space, node N can compute
the aggregated load information along the dimension d (denoted by AI;(NV)) as

follows:

AL(N) = S (AL(u) + I(u)) x OFy(N, u) 4.1)

UEUNd

[1;2a OverlapEdge(u, N, i)
[Tiza Edge(u, 1)

OFy(N,u) = 4.2)

In Equation 4.1, UNj is the set of nodes adjacent to /N with which it shares
a border along N’s upper edge in dimension d. For Node D in Figure 4.2, and
considering the memory dimension, this would be the set {Node A, Node B}.
For each node v in UNy4, N adds the local and aggregated information from w
and multiplies it by a factor OFy(N,u). This factor reflects the fact that nodes
other than N might have u as a neighbor in dimension d (for example, Node C
also has Node A as a neighbor), so without the multiplier v’s information will be
included more than once (when Node E aggregates information from both Node

C and Node D). In particular, if LN, are the lower neighbors of « at dimension d

76

(thus N € LN,), then it must hold that

> OF,(v,u) =1

UELNd

in order for u’s load information to be aggregated in full along dimension d (Node
A’s information must be split between Node C and Node D).

The aggregation multiplier O F,;(N, u) is the overlap fraction of N and u along
dimension d, from the perspective of node . That is, if N and u control adjacent
hyper-volumes in the CAN space, it is the fraction of u’s hyper-area at its lower
bound in dimension d that intersects with /N’s hyper-area at its upper bound in
d. In two dimensions, it is the length of the line segment describing N and u’s
shared border divided by the full length of «’s bordering edge. For example,
OFemory(D,A) = Lap/(Lac + Lap), where L is the length of the line seg-
ment. In higher dimensions, the orthogonality of the dimensions means that we
can compute each of these linear fractions for the dimensions other than d, and
take their product to obtain the overlap fraction. This is what is shown in Equa-
tion 4.2, where QuverlapFEdge(u, N, i) is the overlap of v and N in dimension ¢
(L ap for Node D and Node A in the CPU dimension) and Fdge(u, ©) is the length
of u’s edge in dimension ¢ (L o + L ap for Node A in the CPU dimension).

Once the aggregated load information is propagated through the entire CAN
space, all the way to the nodes near the origin, the system is able to push the

77

incoming jobs into underloaded regions for better load balancing and to utilize
more capable nodes in the system. To initiate the job pushing we have to address

several issues as follows:

1. Target Node - Where should a job be sent?

2. Stopping Criteria - When should pushing be stopped?

3. Criteria for the Best Run Node - Which candidate run node should be se-

lected?

To determine the target node, first we want to push the jobs into lightly loaded
regions of the CAN space. Likely the best way to determine the load of the system
is to use the aggregated average job queue size. Since each node has aggregated
load information about each upper neighbor locally, it can calculate the aggregated
average job queue size for each upper neighbor by using Nunber of Nodes
and Sum of the Job Queue Si zes carried by the load propagation mech-
anism. However, the shortest average job queue size does not always give the best
choice. A node with a slightly longer aggregated average queue size might also
enable access to a larger number of potential run nodes than the node with the
smallest aggregated average queue size. This larger number of nodes makes it
more likely that when a pushed job reaches one of the nodes believed to be lightly

78

loaded, that node will still be lightly loaded. Therefore, we want to push jobs to
the upper neighbor node that has both a small aggregated load (average job queue
size) and a large number of available nodes above that neighbor node, to increase
the number of candidate run nodes. To summarize, we can determine the target

node based on the following objective function:

_ Ali(u).SumO f JobQueueSizes

Fa(u) (AIy(u).NumberO f Nodes)®

4.3)

Whenever a node chooses a target node from among its upper neighbors, it
calculates F;(u) for each u € UN, and picks the one that has the minimum
objective function value across all dimensions.

By using the objective function in Equation 4.3, each node in the path of a
pushed job can decide where to push the job based only on local information.
The question then is the stopping criteria — when should pushing be stopped? We
must avoid pushing jobs to the extreme edges of the CAN space, because that will
result in load imbalance. The stopping criteria for pushing a job should reflect
the current (but distributed) load of the system and be computed based only on
each node’s local information. The very first condition for stopping should be
whenever the matchmaking mechanism finds a free node that meets the resource

requirements of a job; then matchmaking can stop pushing the job and assign the

79

free node as the run node. Note that each node can determine whether there is a
free node in its neighborhood based only on its local neighbor state information,
which is updated periodically. In a relatively lightly loaded system, this mecha-
nism works well, since every time the matchmaking is performed, it can find a
free node in the system. However, in a heavily loaded system where most, if not
all, of the nodes are already busy processing jobs, it is not clear how we stop push-
ing a job without causing severe load imbalance. A simple way to do this is for
each node to estimate the current load (average job queue size) of its surround-
ing neighbors, and if the load is below a predefined threshold, then it can stop
pushing and assign the job to one of its neighbor nodes. However, to determine
a threshold that is insensitive to the characteristics of various workloads is not
trivial. Therefore, we employ probabilistic stopping according to the following

formula:

1

PS(N) =
SN (14 AIrp(N).NumberO f Nodes)SF

4.4)

In Equation 4.4, PS(N) shows the probability to stop pushing a job from node
N, and SF is the stopping factor, which greatly affects the shape of the probabil-
ity function. As the number of nodes above node N in the target dimension 7'D

(determined by the neighbor minimizing Equation 4.3) becomes smaller, the prob-

80

ability of stopping becomes greater. This means that if a job approaches the edges
of the CAN space, with high probability the pushing will stop and a run node is
chosen based on local information. This feature avoids pushing incoming jobs to
the edges of the CAN space, which would overload the nodes near the edges. We
can adjust the probability function by changing SF' (higher SF means a higher
probability of pushing the job). We tested three different SF' values from 1 to 3
and show the experimental results in Section 4.1.2.

We have shown (1) how to aggregate the dynamic load information in a CAN
space (Equations 4.1 and 4.2), (2) based on that information how to choose a
target node for a job (Equation 4.3), and (3) when to stop pushing a job (Equa-
tion 4.4). The final step in the matchmaking algorithm is to choose the best run
node among the multiple candidates. Pushing of incoming jobs can be stopped
either because the matchmaking mechanism found a free node or due to the prob-
abilistic stopping function. In the former case, the node where the pushing stopped
(we call this node the matching node) creates a list of capable candidates using its
local neighbor state information. It is possible that there might be multiple free
nodes among the candidates, in which case the matchmaking algorithm selects
the fastest candidate run node (measuring CPU speed), since that can speed up

the overall processing of a job. However, if the pushing process stopped because

81

of the probabilistic stopping function, this means that there are not enough free
nodes in the system. To choose the best run node from among the candidates, but
with no available free nodes, we use the following score function for ranking the

candidates:

_ C.JobQueueSize

F(e) = C.SpeedO fCPU

4.5)

In Equation 4.5, F'(C) is the score function for a candidate run node C. The
candidate node with the minimum score will be selected as the best run node: the
algorithm prefers a node with a smaller job queue and a faster CPU. Using only
the set of candidate run nodes built by the matching node may not be sufficient,
since we are pushing the jobs across multiple nodes in the system. Therefore, we
still consider the candidate run nodes found in the process of pushing, in addition
to the candidate run nodes around the matching node, for better load balancing. To
summarize, at each step of pushing a job, the matchmaking mechanism keeps the
best candidate run node based on the score function in Equation 4.5, and considers
it in the list of candidates created by the matching node whenever the matchmak-

ing mechanism cannot find a free node in the system.

82

4.1.2 Performance Evaluation

In this section, we evaluate our improved load balancing algorithms in decentral-
ized and heterogeneous environments and present a comparative analysis of exper-
imental results obtained via simulations. To compare against our CAN-based ap-
proach, we evaluate two additional matchmaking algorithms, a Rendezvous Node
Tree-based approach and a Centralized Matchmaker that were described in detail

in Section 3.1.2.

Experimental Setup

To see the behaviors of our system with improved static load balancing techniques,
we use our event-driven simulator described in Section 3.1.2. Events include node
joins, node departures (graceful or from a failure), and job submissions. The
events are generated using a Poisson distribution with an arrival rate of 1/7 (7 is
the average event inter-arrival time). Jobs can specify constraints for three dif-
ferent resource types: CPU speed, memory, and disk space. We generated node
profiles using a clustering model to emulate resources available in a heterogeneous
environment as described in Section 3.1.2.

Our test traffic workloads differ on two axes. Workloads are categorized as

either clustered or mixed (as described in Section 2.2). The former divides all

83

nodes and jobs into a small number of equivalence classes, where all items in
a given equivalence class are identical. The latter assigns node capabilities and
job constraints randomly. Workloads are also distinguished by whether the jobs
are “lightly” or “heavily” constrained. For a given job, each type of resource
has a fixed independent probability of being constrained: “lightly-constrained”
jobs have an average of 1.3 constraints (out of the 3) and ‘“heavily-constrained”
jobs have an average of 2.4. As a job has more minimum resource requirements
(heavily-constrained workloads), it is likely to be harder to match the job since
fewer nodes in the system can meet those multiple constraints. We present only
results from mixed workloads since in the clustered workloads, the CAN-based
matchmaking mechanism already has shown better performance than the RNT
based approach and is close to that of the Centralized Matchmaker (Section 3.1.2).

The amount of work W for a job j is generated uniformly at random from a
predefined set of work ranges (40 minutes on average), and means that to run
the job j a node must execute for W time units if it has exactly the same node
specification as does the job j’s constraints. To model the actual running time of
a job, we divide W by the node CPU speed (relative to some baseline node CPU
speed), to get a run time on the node a job is assigned to. Finally, for the network

communication cost, the average latency of a packet between any two nodes in

84

the system is set as 50 milliseconds which is exponentially distributed.

Our metrics are matchmaking cost (the amount of time between when a job is
injected and when it is assigned to a run node in the system), wait time (the amount
of time between when a job is injected and when it actually starts running) and
average queue length (the length of the non-preemptive job queue seen by a job
when it is finally assigned to a run node). Matchmaking cost directly quantifies
the overhead needed to perform the matchmaking in a decentralized manner. Wait
time includes the time to perform the matchmaking algorithm and the time spent
waiting in the job queue of a run node before a job is executed. Wait time reflects
both protocol overhead and the quality of the matchmaking results, i.e., load bal-
ancing. Finally, the distribution of queue lengths provides a direct measurement
of the load balance seen by injected jobs.

We test the original CAN approach (Section 3.1) (CAN) and the improved
CAN approach employing dynamic aggregated load information with different
stopping factors from 1 to 3 (CAN-P1,2,3). To compare against CAN-based
matchmaking mechanisms, we also tested the RNT based approach (RNT) and
the idealized centralized approach (CENTRAL). We do not include matchmak-

ing cost for the centralized approach because it incurs no cost for matchmaking.

85

Performance Results

We begin by discussing the experimental results obtained from relatively static
workloads with lightly and heavily-constrained jobs, respectively. In the static
workloads, no nodes join or leave the system during the course of the experi-
ments. There are six different workloads for the lightly-constrained jobs, which
have different values of 7 (average inter-arrival time of jobs) from 15 seconds to
20 seconds. Similarly, for the heavily-constrained workloads, we varied 7 from

25 seconds to 30 seconds.

Utilization of Resources (Lightly-Constrained)

5 100 : ‘ — =—=a
B 5 e a t
£ 9t B ,
3 @ B
PR B -
5 0w
2 6o}
2
2 CAN A
8 %0r CAN-P2 -~
5 RNT [
£ . ‘ ‘ ‘ CENTRAL M-
18 17 16 15 14 13 12

Average Inter-Arrival Time (s)

Figure 4.3: Utilization of Resources for Lightly-Constrained Workloads

The important characteristic of these workloads is that all of them reach a
steady state during the simulation period. For example, the percentage of active
nodes (nodes currently running jobs) when the last job is injected into the system

for lightly-constrained workloads is depicted in Figure 4.3. Figure 4.3 shows

86

that for values of 7 from 18 down to 16 seconds, the utilization of the overall
system resources remains low, indicating lightly loaded environments, while from
14 seconds down almost 100% of the nodes are busy processing other jobs when
the last job is inserted into the system. This means the system has reached its
maximum throughput. Interestingly, the utilization of CENTRAL is smaller than
all other matchmaking mechanisms in lightly loaded environments (from 18 to 16
seconds). This is because CENTRAL is the global algorithm that can assign a job
to the fastest idle node in the system, which accelerates the rate at which jobs are
processed.

In the steady state, the rate for incoming jobs and finishing jobs is approx-
imately the same, and we want to show the performance of each matchmaking
mechanism in this steady state, to avoid the transient effects of earlier jobs that
see a largely empty system. We can inject more jobs with smaller 7 to increase
the system load, which will eventually saturate the system and result in indefi-
nite growth of job queues. However, this will not be feasible in a real system,
since when the overall system becomes too heavily loaded the system can refuse
to receive more jobs until it becomes stabilized.

The desire to measure steady state behavior explains why we choose different

ranges for 7 for lightly and heavily-constrained jobs. In the heavily-constrained

87

workloads, many jobs have multiple resource requirements, and this reduces the
number of nodes that are legal matches for a job in the system. Therefore to make
the workloads reach steady states, we increase 7 for these jobs relative to the
lightly-constrained workloads. The workloads belonging to either the lightly or
heavily-constrained sets have exactly the same job and node profiles, respectively,

so that we can directly compare across different values of 7.

Average Wait Time of Jobs (Lightly-Constrained) Average Job Queue Size (Lightly-Constrained)

12000

CAN o gA CAN &
A CAN-P2 - gt CAN-P2 --©— |
10000 RNT £ - RNT —[J
- CENTRAL - 21 A CENTRAL -
2 000 RN _ 6l A
S 5
5 g sy -
g 6000 " § | A |
% A I3 A
s 4000[3 A 35 A
2+ =
2000 - (&) o &
= B = =]
U S~ S = st M - M—
15 16 17 18 19 20 15 16 17 18 19 20
Average Inter-Arriva Time (s) Average Inter-Arrival Time ()
(a) Average Job Wait Time (b) Average Job Queue Length

Figure 4.4: Performance Results for Lightly-Constrained Workloads

Figures 4.4(a) and 4.4(b) show the performance results for the matchmaking
mechanisms, measuring job wait time and queue length for lightly-constrained
workloads. We only plot the improved CAN-based matchmaking mechanism
with stopping factor 2 (CAN-P2) since it shows relatively stable performance for

both lightly and heavily-constrained workloads (insensitive to the characteristics

88

Average Wait Time of Jobs (Heavily-Constrained) Average Job Queue Size (Heavily-Constrained)

5500

‘ CAN & CAN A
5000 - CAN-P2 -G~ CAN-P2 -
RNT —£5 30| RNT —(3
4500 - B CENTRAL - { = CENTRAL -
@ 4000 1 251 =!
§ 3500 i a
[2 20
$ 3000 2 L
£ g =
= 2500 | g 15¢ &
5 O ©
S 2000 + m 1.0 | 1
1500 L | | EE— L [™ I ™
s ost B R
1000 el 1 T
500 . . \] 00
2 26 27 28 29 30 25 26 27 28 29 30
Average Inter-Arrival Time (s) Average Inter-Arrival Time (s)
(a) Average Job Wait Time (b) Average Job Queue Length

Figure 4.5: Performance Results for Heavily-Constrained Workloads

of the workloads). The results imply that our improved CAN-based matchmaking
mechanism shows very competitive performance even compared to CENTRAL
and improves the quality of load balancing dramatically from the original CAN
algorithm (CAN). More specifically, CAN-P1 has 2.1 times the average job wait
time of CENTRAL across all the lightly-constrained workloads, CAN-P2 is a fac-
tor of 1.5 worse and CAN-P3 is a factor of 1.4 worse, while the RNT is a factor
of 4.6 worse and CAN 21.2 times worse. The main reason CAN has poor load
balancing is that for the lightly-constrained workloads, a majority of the jobs have
few or no constraints, so that many jobs are mapped to a comparatively small re-
gion of the CAN space near the origin. More specifically, if a job does not specify

any requirement for a specific resource type, the corresponding coordinate for the

89

Average Matchmaking Cost (Lightly-Constrained) Average Matchmaking Cost (Heavily-Constrained)

0.45 0.6[o o = 5 4
0.4000
= E O o i 05
035¢ .
z o z
% 030 F O q % 04Ff
8 8
? 0.2513 T £ E’ 03
g o020 1 £ S WUNNNEN SN —
S 5 4
8 015 8 02F
= s
0.10 |]
CAN - 01r CAN -t |
0.05 | CAN-P2 -~] CAN-P2 -~~~
0.00 . . . RNT 1 00 . . . RNT —f1
15 16 17 18 19 20 T25 26 27 28 29 30
Average Inter-Arrival Time (s) Average Inter-Arrival Time (s)
(a) Lightly-Constrained (b) Heavily-Constrained

Figure 4.6: Average Matchmaking Costs

job is mapped to the minimum constraint value (in our case, 0), and this results
in a hot spot causing load imbalance. However, by pushing jobs to underloaded
regions of the CAN space, CAN-P2 can disperse the jobs in the different dimen-
sions from the original hot spot, which results in superior load balancing (as seen
in Figure 4.4(b)). Additionally, CAN-P2 can utilize more capable nodes when-
ever needed, which can accelerate overall job processing so that CAN-P2 also
outperforms the RNT.

However, pushing jobs in the CAN space may cause additional overhead for
matchmaking, since each job must traverse the CAN space from its owner node to
find an appropriate run node. Figure 4.6(a) shows that CAN-P2 has worse match-

making performance than CAN. Also, as we increase the stopping factor (SF), the

90

matchmaking cost increases accordingly, since with higher SF the probability for
stopping decreases. However, all of the CAN-based matchmaking mechanisms
(CAN and CAN-P2) still show better matchmaking performance than RNT. This
is because the CAN-based matchmaking mechanism inserts each job into the right
place in the DHT for matchmaking (the owner node), where surrounding neigh-
bor nodes can already meet the resource requirements of the job. However, in the
RNT approach each job starts from a completely random place in the DHT and
must find an appropriate run node for the job through searching up and down the
RNT. Another interesting result in Figure 4.6(a) is that all of our matchmaking
algorithms (including CAN, CAN-P2 and RNT) show very low cost for perform-
ing matchmaking in distributed and heterogeneous environments. Compared to
the wait time of jobs shown in Figure 4.4(a), the cost for matchmaking is almost
negligible. This could be because of our assumption about the average packet de-
lay for a message, which is set to 50 milliseconds. However, even considering this
packet delay, the results show that all of our matchmaking mechanisms find an ap-
propriate run node with a very small number of P2P network hops to achieve good
load balancing. Hence, we can concentrate on the load balancing issue whenever
the average running time of jobs (in our case, 40 minutes) is significantly longer

than the network communication speed, which is a typical scenario in a desktop

91

grid computing environment.

Heavily-Constrained Workloads The results in Figure 4.5 show quite differ-
ent stories about the performance of matchmaking algorithms. Figure 4.5(a) and
4.5(b) show that all of the CAN-based matchmaking mechanisms obtain per-
formance very close to that of CENTRAL when measuring load balance, while
RNT shows the worst performance among all the matchmaking mechanisms. For
the heavily-constrained workloads, many jobs have multiple resource constraints,
which limits the number of nodes in the system that can be matched to a job,
so that the CAN-based mechanisms can achieve very good load balancing even
compared to CENTRAL [54].

Although we cannot directly compare the results in Figure 4.6(b) with Fig-
ure 4.6(a), the gap between the RNT and CAN-based mechanisms appears larger
for the heavily-constrained workloads. This is because the RNT search suffers
heavily from trying to find appropriate run nodes for jobs with multiple resource

requirements.

Costs and Benefits of SF Different stopping factor values can affect the behav-
ior of the CAN-P algorithm, measuring the number of jobs pushed, as seen in

Figure 4.7(a). With higher SF, more jobs will be pushed into the upper regions of

92

% of Pushed Jobsin CAN-Ps (Lightly-Constrained) Average Wait Time of Jobs (Lightly-Constrained)

12000

100

CAN-P1 A CAN A
N : L
CAN-P3 —@— i P2 O
. | 10000 e CAN-P3 @
A RNT -]
2 [S Z o0 | e CENTRAL -~
5 eob 3
g i N - . e 6000 |
3 A R £ &
5 40| A e 9 E .
< A A 'g 4000 - A
ig]
20 2000 | = o 1
At S o =
L W
15 16 17 18 19 20 15 16 17 18 19 20
Average Inter-Arrival Time (s) Average Inter-Arrival Time (s)
(a) % of Pushed Jobs (b) Average Job Wait Time

Figure 4.7: Costs and Benefits of CAN-P for Lightly-Constrained Workloads

the CAN space due to the decreased stopping probability, so that CAN-P3 shows
the highest percentage of pushed jobs among the three different CAN-Ps. In-
creasing the stopping factor increases the overall matchmaking cost, since jobs
are pushed farther in the CAN space to find appropriate run nodes. However, that
does provide benefits from better load balancing, as seen in Figure 4.7(b), since
more capable nodes end up being used for some jobs in the system. As the overall
system becomes lightly loaded (increasing 7), the percentage of pushed jobs de-
creases, since the matchmaking mechanism is more likely to encounter an empty
node (as seen from Figure 4.7(a)). The decrease is less for heavily-constrained
workloads since there are not as many nodes in the system that can run the incom-

ing jobs, which means that the jobs start pushing from relatively near the edges of

93

the CAN space.

Average Wait Time of Jobs (Dynamic)

CAN
mCAN-P2
RNT
20,057 20,931 17,048 mWCENTRAL

R
8

Wait Time of Job (s)
. 5 N
g 8 3

o
8

10 20 30
Per centage of Node Depar tures

Figure 4.8: Experimental Results for Lightly-Constrained Dynamic Workloads

Dynamic Workloads Figure 4.8 shows wait times for three lightly-constrained
mixed workloads, where between 10% and 30% of the nodes leave during the
course of simulation, and shows that node departures can affect CAN-P’s abil-
ity to match CENTRAL'’s performance. The value of 7 for all of the dynamic
workloads is set at 17.5 seconds. Note that in Figure 4.8, results from the basic
CAN are truncated since they have very large values compared to the other match-
making frameworks. Node departures include graceful departures, where a node
informs its neighbors before leaving, and failures, where the neighbors learn of
the departure from missing P2P network heartbeat messages. All of the dynamic

workloads have the same number of jobs and the same job profiles, but have dif-

94

ferent sets of available nodes in the system at different times, so that we cannot
directly compare across workloads.

In the dynamic workloads, because existing nodes depart the system the in-
formation carried by the CAN- and RNT-based mechanisms can be more stale
compared to the information maintained for static workloads, and there can also
be some overhead for P2P network recovery (unlike for CENTRAL). More specit-
ically, CAN-P2 shows 1.6 times the job wait time of CENTRAL on average across
all the workloads, and RNT is a factor of 5.2 worse. Although we cannot directly
compare these results with Figure 4.4, clearly there are some load balancing issues
for both the CAN-P and RNT algorithms, that keep them from approaching the
wait time performance of CENTRAL. The dynamic behavior of the nodes in the
system seems to have a much larger impact on basic CAN compared to CAN-P2
or RNT. Since all of the dynamic workloads are based on mixed sets of nodes and
jobs, a load imbalance problem similar to the one that we saw for the basic CAN
earlier, due to a hot spot in the CAN space, can occur as the jobs are entering the
system and being assigned to run nodes. However if one of the nodes in the hot
spot leaves the system or fails, that can be disastrous for wait time performance,
since all of the jobs that were running or waiting in the departed node must be

re-assigned to other live nodes in the system. Since each node in the hot spot

95

has a disproportionate number of assigned jobs, this causes even more severe load
imbalances. However, by employing the pushing mechanism based on dynamic
aggregated load information, CAN-P2 can spread the jobs away from the hot spot
and achieve more reliable load balancing compared to CAN and still outperforms

the RNT, which is based on random initial load balancing.

4.2 Dynamic Load Balancing

One way the CAN-based matchmaking techniques balance load across run nodes
is through the use of randomly generated virtual dimension values for both node
capabilities and job requirements, which acts to distribute clusters of nodes and
jobs through the CAN space. We also use the job pushing mechanism during
matchmaking to balance load across all nodes that are capable of running the job.
However, all of our prior job load balancing mechanisms are based on a static
allocation of jobs to nodes, and do not allow jobs to be migrated to run on another
node after it has been assigned to an initial run node.

Static load balancing has drawbacks, both because of heterogeneity in the run-
ning times of jobs and in the resource capabilities of the nodes. Even if the load

balancing mechanism initially assigns the jobs uniformly across available system

96

resources, as time passes the overall load distribution may change because some
nodes run the allocated jobs much faster than others (or some jobs just have rela-
tively short running times). Therefore, the overall throughput of the entire system
may heavily depend on its slowest nodes. Also, we use the number of jobs in
the queue at a run node as the metric to determine the best run node for a job
when there are multiple candidates capable of running the job. This is because
it can be very difficult in general to predict the actual running time of a job on a
given node, unless clients provide such information and it is accurate for all node
types in the system. However, the actual queuing time for a job is not necessarily
directly proportional to the number of jobs in the queue, since the job running
times can vary widely. A final source of uncertainty comes from the decentralized
nature of the P2P desktop grid system. All matchmaking and load balancing de-
cisions are made based on only local information that is propagated over time as
part of the basic CAN DHT maintenance algorithms. Therefore, if jobs are arriv-
ing faster than load information propagates, many matchmaking decisions will be
made based on stale load information, which can result in load imbalances across
run nodes.

To address these problems, we have designed dynamic load balancing mech-

anisms that redistribute the jobs across run nodes as needed, to improve overall

97

system throughput. This redistribution of jobs is different from what is needed by
the CAN failure recovery mechanisms. Reallocation of jobs because of nodes fail-
ing or departing must always be performed to maintain the CAN properly, while
dynamic load balancing is an optional process and is only be used to improve
overall system throughput. However, job redistribution (migration) has both ben-
efits and costs. Job migration cost may be higher in a P2P system that spans a
wide-area network compared to a local area network, since the job profile has to
be transferred, including all input data. For jobs that do not run for a long time,
the migration cost may be very high compared to the job execution time. Jobs that
run for hours or days can greatly benefit from migration, rather than sitting in a
queue for a long time. Therefore, long running jobs having minimal data commu-
nication cost are most appropriate for job migration, and fortunately are also the
usual characteristics of applications targeted at desktop grid systems. Most long
running desktop grid applications, such as those performed by SETI@Home [5]
or Folding@Home [34], are indeed long running [101] and are the main target
applications for such systems.

We choose to only employ the job migration techniques to jobs that are not
currently running, but are currently waiting in a queue on a run node, since mi-

grating running jobs requires complex mechanisms for state storage and resuming

98

the job. Also, in our system, any input data files for a job are transferred to the run
node only when the job actually starts running. This means that by targeting only
jobs waiting in the queue, the job migration cost is low since we only need to mi-
grate the job description file, which is quite small. We now present our dynamic
load balancing schemes, based on either pulling jobs to lightly loaded nodes or

pushing jobs away from heavily loaded nodes.

4.2.1 Modesfor Migrating Jobs

In the push model, a node that has a disproportionate number of jobs in its queue
can push jobs to its neighboring nodes in the CAN, while in the pull model a node
that becomes idle can pull jobs from its more heavily loaded neighbor nodes.
However, the semantics of the matchmaking process and the CAN organization
can make this procedure difficult, since we must ensure that a node receiving a
migrated job meets the resource requirements of the job. Also, it is desirable to
perform job redistribution in a completely decentralized, local fashion to avoid
multiple retrials of the entire matchmaking process just to migrate jobs.
Decentralized dynamic load balancing can be done using the neighbor state
information that must be maintained for connectivity in the CAN space. From the

perspective of a node, its neighbor nodes are good candidates for running jobs in

99

its queue, since they are likely to meet the constraints of those jobs, due to the
assignment of resource types to the different CAN dimensions. Periodically, and
independently of when other nodes send updates, a node sends its own current
information (such as zone, coordinates, etc.) and the same information that it cur-
rently has for its neighbors in the CAN space to its neighbors [76]. Therefore,
each node maintains both the state of its direct neighbors and also state for neigh-
bors of neighbors (indirect neighbors). This information is required to enable the
basic CAN failure recovery mechanism, where the node that ends up taking over
the zone vacated by a failed neighbor can discover the neighbors of the lost zone
through its indirect neighbor information [76]. In our desktop grid CAN, addi-
tional load information (i.e., the current size of the job queue) is piggybacked
onto the periodic neighbor updates so that each node can estimate the current load
of its direct and indirect neighbors.

Based on load information about its neighbors, a node periodically performs
dynamic load balancing, but at a longer interval than for updating the neighbor
state information. That is because job redistribution should not add substantial
overhead, and also because the system targets jobs that usually run long enough
so that relatively infrequent job redistribution will be adequate to smooth out any

load imbalances caused by the static load balancing scheme and widely varying

100

job run times.

CPU CPU
j» IDN, ~\J IDN,
Request Reject I
i v
| '
IDN, | . ! [IDN, IDN, . IDN,
\
R oLt | Request
) equest _ | oy s = ~ Accept \\ .
®» “ONO~ ©® ~0F e
s
1 N\ Send adob s | Reject 2 1 N |
Send a Job J
DN, ‘ IDN, IDN, /‘ IDN,
Notif Notify
the Owner — the Owner]
IDN, IDN,
Memory Memory
(a) Pull Model (b) Push Model

Figure 4.9: Models for Dynamic Load balancing: DN; and IDN; denote direct and

indirect neighbors, respectively.

PULL Model Figure 4.9 shows two different approaches for the dynamic load
balancing of jobs, a pull model (Figure 4.9(a)) and a push model (Figure 4.9(b)).
In the pull model, whenever a node PL becomes idle (or very lightly loaded), it
tries to pull jobs from its more heavily loaded neighbors (both direct and indirect).
In Figure 4.9(a), node PL is performing dynamic load balancing and has twelve
neighbors that can be considered. PL sorts those neighbors according to their job
queue sizes (propagated through the neighbor updates), and selects the one that

has the longest job queue size (but it must be longer than PL’s job queue). PL then

101

sends a message to that neighbor to request a job (Request in the Figure 4.9(a)).

One important constraint is that PL. must be able to run the job migrated from
its neighbor (i.e., it should meet the resource requirements of the job). For that
reason, one approach for the pull model is that PL contacts only neighbors that can
be covered by its own coordinates (i.e., each coordinate of a neighbor is less than
or equal to the corresponding coordinate of PL). For example, in Figure 4.9(a),
nodes DN,, DNy, IDN,, IDNy and IDNg are covered by the coordinates of PL,
which means that all jobs in these neighbors are guaranteed to be able to run on
PL due to the semantics of the multi-dimensional CAN space. While this scheme
guarantees meeting the job constraints, it restricts the flow of job migration to
only one direction (always from regions closer to the CAN origin than PL). How-
ever, the static load balancing mechanism, which pushes jobs away from the node
that has the minimum capability to run the job (i.e. meet its resource require-
ments), may push a job to nodes with higher resource capabilities (Section 4.1)
. That means that neighbors that cannot be covered by PL (the other 7 nodes in
Figure 4.9(a)) may indeed have jobs that PL can run.

Therefore, in our pull model node PL contacts one of its neighbors based only
on their job queue sizes, ignoring their CAN coordinates. However, when the node

PL contacts its most heavily loaded neighbor, that neighbor may not have any jobs

102

waiting in its queue that can be run on PL. In this case, that neighbor simply sends
a reject message to PL, and PL tries to pull a job from the next most heavily
loaded neighbor node (Reject in Figure 4.9(a)). Although this may require several
attempts to contact neighbors of PL, the overhead is not too high since the number
of neighbors is limited and PL always contact more heavily loaded neighbors than
itself (we investigate the overhead incurred by the pull model in Section 4.2.2).
Finally, if PL finds an appropriate node for migration, a job that can be run on
PL (selected by searching from the head of the job queue on the node sending the
job) is transferred to PL and inserted into PL’s job queue (Send in Figure 4.9(a)).
To ensure fairness among jobs in the system, we sort all jobs in a job queue based
on their submission times so that migrated jobs may be inserted anywhere in a job

queue, not just the end.

PUSH Model In the push model whenever a node PS becomes heavily loaded
(i.e. its job queue gets long enough), the node attempts to push one or more of its
queued jobs to its more lightly loaded neighbors (both direct and indirect), as seen
in Figure 4.9(b). PS sorts those neighbors according to their job queue sizes and
picks the one that has the shortest queue size (and the job queue size is shorter

than PS’s). PS then contacts that neighbor to request job migration. However,

103

unlike the pull model, node PS never has to make multiple attempts to find a
neighbor that can run one of the waiting jobs in its queue. That is because all of
nodes that are candidates for job migration from node PS are neighbors of PS, so
PS can determine whether a neighbor can run the migrating job before making
the request based on the job coordinates (resource requirements) all being less
than or equal to the corresponding neighbor coordinates (resource capabilities).
Therefore, when PS sorts its neighbors it can safely exclude nodes that cannot run
any of the jobs in its queue. This keeps the number of messages the push model
requires for performing dynamic load balancing mechanism low, as will be seen

experimentally in Section 4.2.2.

Diffusion of Load In both the pull and push models, one important issue is to
determine the idleness of a node, since jobs should always migrate from heavily
loaded nodes to idle ones. If a node N is free (no running or waiting jobs in its
queue), we can definitely regard N as an idle node. Therefore, in this case, node
N should always try to have a job migrated from one of its neighbors (through
either the pull or push mechanism). However, what should happen if N has only
one or two jobs in its queue? Note that we calculate job queue size as the number

of running and waiting jobs in the queue (e.g., a free node has a job queue size of

104

zero). We could use a threshold to determine the idleness of node N so that if N has
fewer jobs in its queue than the threshold it is regarded as an idle node. However,
selecting a good threshold value that is independent of the job characteristics can
be very difficult. Therefore, another possibility is for a node N to be regarded as
idle if and only if it is free (zero queue length). So only free nodes will get jobs
migrated from its more heavily loaded neighbors. However, this scheme also may
not work well in the decentralized P2P grid environment, because a node shares
migratable jobs only with its neighboring nodes. However, if only free nodes are
allowed to migrate jobs, that will only balance load in the regions in the CAN
space near free nodes, so that jobs may not be propagated over longer distances
in the CAN. Therefore, even though all operations are performed locally, a better
method would gradually propagate the effects of job migrations so that loads are
diffused into the entire CAN space.

To achieve that behavior, we employ a probabilistic approach for each node to
determine whether or not it will accept a migrated job from its neighbors. A node

N accepts a job migration request with a probability of N joblqueue 70 There-

fore, if a node N is free, it will always accept migrated jobs from its neighbors.
Also, even if N has some jobs in its queue, it may get additional jobs migrated from

more heavily loaded neighbors. This simple but effective scheme allows jobs to

105

gradually move from heavily loaded regions to lightly loaded regions in the CAN
space, resulting in global diffusion of loads across all available nodes. Note that
for all job migrations, the new node must always meet the resource requirements

of a migrated job.

Choosing the Best Node for Migration It is possible for a node N to receive
multiple job migration requests from multiple neighbors at about the same time.
For the pull model, that is most likely to occur at the locally most heavily loaded
node, and for the push model the most lightly loaded neighbor is likely to have this
problem. The solution is for N to decide which requesting node finally will get the
job. The choice could be done randomly or in order of the requests, but we have
designed a method tailored to the characteristics of the load balancing algorithms.
For the pull model, if a node receives multiple requests for job migration, it se-
lects the lightest loaded neighbor and sends a job to that node. For this purpose,
whenever a node requests a job migration, it includes its current job queue size in
the message. Similarly, for the push model if a node receives multiple requests
for job migration, it selects its most heavily loaded neighbor. The final step of job
migration is to notify the owner node for the migrated job about the migration, so

that it can keep track of the run node for the job (as shown in Figure 4.9).

106

4.2.2 Performance Evaluation

In this section, we evaluate our decentralized dynamic load balancing mechanisms

through experimental results obtained via simulations.

Experimental Setup

We used five different resource types for nodes and jobs: CPU architecture, op-
erating system type, CPU speed, memory size, and disk space. For the categor-
ical resource types (architecture and operating system), the nodes and jobs used
four different combinations (sub-CANs). Nodes (total 1000 nodes) and jobs (to-
tal 5000 jobs) have one of those combinations for their resource specifications
and constraints, respectively. We generate continuous resource type values (CPU,
memory and disk) for nodes and jobs based on a clustering model, as described
in our earlier chapter. We used ten different sets of homogeneous clusters having
different continuous resource capabilities, and the resource requirements for jobs
are also clustered (i.e., multiple jobs have similar or even identical requirements).

If we designate the amount of work for a job j by W, then to run the job j a node
must execute for W time units if it has exactly the same CPU speed as specified
by the job j’s minimum CPU requirement. To model the actual running time of

a job on the node to which it is assigned, we divide W by the node CPU speed

107

(relative to some baseline node CPU speed). Finally, for network communication
cost, we model the latency of a packet between any two nodes by an exponential
distribution with a mean of 50 milliseconds.

In these experiments, we varied two values, 7 for jobs (i.e., average job inter-
arrival time) and the distribution of job running times. We used two different
7 values: 1 and 4 seconds respectively (denoted as heavy and light workloads).
With 7 set to 4 seconds, the overall system stays in a steady state, where the rate
for incoming jobs and finishing jobs is approximately the same. However, if 7
decreases to 1 second, the system becomes heavily loaded and will eventually
saturate all available nodes, resulting in indefinite growth of the node job queues.
That scenario shows the behavior of our algorithms for dynamic load balancing in
a very heavily loaded environment, where the static matchmaking decisions may
be made based on stale load information. Also, we used two different distributions
for job running times, uniform and normal (as we can see from Figure 4.10). In the
uniform model, a job running time is generated uniformly at random from between
30 and 90 minutes and an average of 60 minutes (as seen from Figure 4.10(a)).
We also tested the algorithms with normally distributed job running times, with a
mean of 60 minutes and a standard deviation of 20 minutes (Figure 4.10(b)). This

scenario shows how the algorithms are affected by non-uniformity in job running

108

times, and also shows the effects of situations where the number of jobs in a node’s

queue is not a good estimate for the queuing time of a newly assigned job.

Running Times of Jobs (CDF) Running Times of Jobs (CDF)
100 | | | | | L 100 | | | | L e -
- ’.J
~ I
80 - - 80 - /
o 7
S 60} pd £ 60| /
[Va I
g e g /
8 e g /
40 - 40 /
: P :
-~ 7
/!
20 - e - 20 |
0 ,\ L L L L L L J 0 el L L L L L L L J
1500 2000 2500 3000 3500 4000 4500 5000 5500 0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Job Running Time (s) Job Running Time (s)
(a) Uniform Distribution (b) Normal Distribution

Figure 4.10: Distributions of Job Running Times

Our metrics are wait time, which is the amount of time between when a job
is injected by a client and when it actually starts running, and the rate of dy-
namic load balancing messaging, which is the number of messages required to
perform the dynamic load balancing scheme per minute. Wait time includes the
time to perform the matchmaking algorithm and the time spent waiting in the job
queue of a run node before a job is executed. Wait time reflects both protocol
overhead and the quality of the matchmaking results, i.e., load balancing. Since
the matchmaking cost in our system is very small compared to the job running

time [52, 55, 57], the majority of wait time is composed of the queuing time. The

109

number of dynamic load balancing messages shows the overhead for executing
the job redistribution algorithms in a decentralized fashion.

We compare the basic CAN approach that only uses the static job load bal-
ancing scheme (labeled as CAN-Vanilla in the figures) with the improved CAN
approach that uses dynamic load balancing either with the job pull model (CAN-
PULL) or the job push model (CAN-PUSH). Both CAN-PULL and CAN-PUSH
perform the dynamic load balancing algorithms every five minutes, which is much
longer than the 30 second interval between neighbor updates for CAN mainte-
nance. To see how well the dynamic load balancing schemes work, we also
show results for a centralized scheme (CENTRAL) that has complete informa-
tion about the job queue status of all nodes. Similar to our dynamic load bal-
ancing mechanisms, CENTRAL periodically redistributes jobs across all nodes in
the system. We verified that without the redistribution of jobs, naive Centralized

algorithm cannot outperform our CAN-PULL or CAN-PUSH mechanisms.

Experimental Results

Figures 4.11, 4.12, 4.13, 4.14 and Table 4.1 show performance results for the
dynamic load balancing mechanisms, with two different job running time distri-

butions and the two different job inter-arrival times.

110

Wait Time of Jobs (CDF)

100 | | | Bl 100
o KM 7 i

90 90 -

Wait Time of Jobs (CDF)

85 85

Percentage (%)
Percentage (%)

80 ¢ 80

CAN-Vanilla —*— 7
CAN-PULL —8— ~ 5r
CAN-PUSH —a&—

_CENTRAL —e—

75 L CAN-Vanilla —%—

CAN-PUSH —a—
70 _CENTRAL —e—

.
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

70

Job Wait Time (s) Job Wait Time (s)
(a) Job Wait Time (Light Workload) (b) Job Wait Time (Heavy Workload)

Figure 4.11: Performance Results with Uniformly Distributed Job Running
Times: In the figures the Y-axis does not start from 0%, to show the results more

clearly

We first discuss the results for uniform job running time distributions, seen
in Figures 4.11(a) and 4.11(b). The figures show that the dynamic load balanc-
ing schemes (CAN-PULL and CAN-PUSH) greatly improve load balance com-
pared to CAN-Vanilla, and show very competitive performance even compared
with CENTRAL. Both CAN-PULL and CAN-PUSH not only remove the high
end of the wait time distribution compared to CAN-Vanilla, meaning that the
longest waiting jobs wait much less, but also shift the CDF up and to the left,
which means that they achieve better distribution of jobs across available nodes

compared to CAN-Vanilla. However, under the heavy workloads shown in Fig-

111

Number of Dynamic Load Balancing Messages (CDF) Number of Dynamic Load Balancing Messages (CDF)

100 7754 & o e = 100 - 5588 ; =
9 - 98 ‘: 7 -
[

96 -

96 -

94 - 94

Percentage (%)
Percentage (%)

92 - 92

CAN-PULL —&— CAN-PULL —B—

)) QAN-PUSH ., 90)) QAN-PUSH —
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Messages/ Minute (Per Node) Number of Messages/ Minute (Per Node)

90

(a) Number of Messages (Light Workload) (b) Number of Messages (Heavy Workload)

Figure 4.12: Overheads with Uniformly Distributed Job Running Times

ure 4.11(b), all of the matchmaking frameworks show longer job wait times com-
pared to the lighter workloads. More specifically, the average job wait times for
the light workload in Table 4.1(a) show that CAN-PULL and CAN-PUSH de-
crease the average job wait time to 23% and 36% that of CAN-Vanilla, respec-
tively, while CENTRAL decreases that metric to 22% that of CAN-Vanilla. For
the heavy workload, CAN-PULL, CAN-PUSH and CENTRAL decrease the av-
erage wait times to 60%, 68% and 44%, respectively, that of the average job wait
time for CAN-Vanilla. Therefore, dynamic load balancing algorithms improve
load balance for executing jobs dramatically compared to CAN-Vanilla, and show
performance close to that of CENTRAL, which has a global view of the entire set

of nodes.

112

Wait Time of Jobs (CDF) Wait Time of Jobs (CDF)

100 100

95 95 -

90 90 -

85 85

Percentage (%)
Percentage (%)

80 | 80

CAN-Vanilla —*—
nr CAN-PULL —5— - 75
CAN-PUSH —&—

CENTRAL —e—

CAN-Vanilla —%—

CAN-PUSH —a—
70 . CENTRAL —e—

.
0 1000 2000 3000 4000 5000 6000 7000 0 2000 4000 6000 8000 10000 12000 14000 16000

70

Job Wait Time (s) Job Wait Time (s)
(a) Job Wait Time (Light Workload) (b) Job Wait Time (Heavy Workload)

Figure 4.13: Performance Results with Normally Distributed Job Running Times:

In the figures the Y-axis does not start from 0% to show the results more clearly

All the benefits from dynamic load balancing come with additional cost (over-
head), since redistribution of jobs occurs periodically. However, as can be see
from Figure 4.12(a) and 4.12(b), the networking requirements to perform dynamic
load balancing are very low, totaling only a few messages per minute. The mes-
sages counted include all those needed to perform the dynamic load balancing
algorithms, which include contacting neighbor nodes to request a job migration,
actually migrating a job, and notifying the job owner node of the new run node
(as described in Section 4.2.1). One important characteristic about Figure 4.12(a)
and 4.12(b) is that the graphs show the number of messages over the entire sim-

ulation, which means that for all one minute intervals simulated, there was no

113

Number of Dynamic Load Balancing Messages (CDF) Number of Dynamic Load Balancing Messages (CDF)

100 — = 88 = B 100 58 B8 =
il 7 N //W 7
o

96 -

96 -

Percentage (%)
Percentage (%)

94 - 94
92 - 92

CAN-PULL —&— CAN-PULL —B—

‘ ‘ CAN-PUSH —=— | 90 ‘ ‘ ‘ ‘ , CAN-PUSH ——e— |
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16
Number of Messages/ Minute (Per Node) Number of Messages/ Minute (Per Node)

90

(a) Number of Messages (Light Workload) (b) Number of Messages (Heavy Workload)

Figure 4.14: Overheads with Normally Distributed Job Running Times

node in the system that processed more than 12 dynamic load balancing messages
(for CAN-PULL). When we measure the total size of the dynamic load balancing
messages across all the workloads, CAN-PUSH and CAN-PULL send up to 300
bytes and 600 bytes per minute respectively. As was described in Section 4.2.1,
CAN-PULL generates more messages than CAN-PUSH, since a node can perform
multiple retrials to contact its neighbors to find a job that can be run on that node.
In results not shown, we also measured the average number of messages sent in the
CAN per minute during the entire simulation and CAN-PULL on average causes
only 0.3% of all messages (meaning the vast majority come from other sources,
including CAN maintenance and matchmaking), while CAN-PUSH causes only

0.2% of the total number of CAN messages.

114

Vanilla | PULL | PUSH | CENTRAL

Light | 138.8 | 31.8 | 49.8 30.8

Heavy | 1236.5 | 740.2 | 843.8 547.3

(a) With Uniformly Distributed Job Run Times

Vanilla | PULL | PUSH | CENTRAL

Light | 123.5 19.9 41.5 34.2

Heavy | 1261.0 | 758.9 | 806.2 526.6

(b) With Normally Distributed Job Run Times

Table 4.1: Average Job Wait Time (seconds)

The results presented in Figure 4.13 and Table 4.1(b) show that our dynamic
load balancing mechanisms are effective regardless of the distribution of job run-
ning times. For the light workload (Figure 4.13(a)), CAN-PULL and CAN-PUSH
decrease the average job wait time to 16% and 34% that of CAN-Vanilla, respec-
tively, while CENTRAL decreases that metric to 27.7% that of CAN-Vanilla. Oc-
casionally, CENTRAL shows somewhat longer job wait times than CAN-PULL
because it assigns jobs to the fastest idle node in the system, so some jobs requir-

ing high resource capabilities that arrive after one or more jobs have already been

115

assigned to the highly capable node may wait in its queue. For the heavy workload
(Figure 4.13(b)), CAN-PULL, CAN-PUSH and CENTRAL decrease the average
wait time to 60%, 64% and 42% that of CAN-Vanilla. Of greater interest is that
CAN-PULL and CAN-PUSH perform better for this metric for the normal job
running time distribution compared to the uniform distribution. That is because
job running times have much wider variance for the normal distribution, so that
the number of jobs in the queue is definitely not a good metric for the load bal-
ancing scheme. Again, the cost to perform dynamic load balancing is still low,
as can be seen in Figure 4.14(a) and 4.14(b). If we measure the average num-
ber of dynamic load balancing messages per minute across the entire simulation,
CAN-PULL again causes only 0.3% of the average number of all CAN messages,
while CAN-PUSH causes 0.2% of all messages, the same as for the uniform dis-
tribution of job running times. That is because the overhead of the CAN-PULL
or CAN-PUSH algorithms is effectively independent of the distribution of job
running times.

Another interesting result is that, across all of workload combinations (dif-
ferent loads and job running times), CAN-PULL provides better load balance
(measure by job wait times) than CAN-PUSH. We believe that is because in

CAN-PULL idle (or comparatively lightly loaded) nodes aggressively pull jobs

116

from their more heavily loaded neighbors, compared to the idle nodes in CAN-
PUSH passively accepting jobs from their neighbors. This is similar to Demers
et al. [29] suggestion to use a pull or combined push-pull approach rather push
when epidemic algorithms are used for distributing updates and driving repli-
cas toward consistency in distributed database systems. Although our problem
does not exactly match their model, we can regard the distribution of jobs across
multiple nodes as spreading information throughout the set of distributed nodes.
However, since CAN-PUSH has the advantage of lighter overhead (counting mes-
sages) compared to CAN-PULL, both dynamic load balancing approaches have
their strengths and weaknesses. So if the target system can handle some extra
messages, CAN-PULL is the best choice. Otherwise CAN-PUSH should be used
in to perform dynamic load balancing, since it can still greatly improve overall
system throughput compared to CAN-Vanilla, which does not do any dynamic

load balancing.

4.3 Summary

In this chapter, we have presented our comprehensive load balancing techniques

that can initially assign jobs to available heterogeneous computational resources

117

based on pushing mechanism and later redistribute them if need, by employing
decentralized dynamic load balancing mechanisms.

We improved our static load balancing scheme for executing jobs by pushing
jobs into underloaded regions of the CAN space. Nodes periodically send load
information towards the origin in each CAN dimension. This information is ag-
gregated at each step, resulting in each node having partial information about load
in all regions of the CAN space containing nodes more capable,— exactly those
nodes that are also able to run the node’s jobs. In times of high load, a node
can therefore push jobs towards regions of high capability and low load, based
solely on local information. Note that our pushing mechanism and load aggrega-
tion process are only applied along the continuous resource dimensions. As we
discussed in Section 3.2, we integrate all types of resource by configuring sepa-
rate sub-CANs for each combination of categorical resource types and inside each
sub-CAN, we do the load balancing along the continuous dimensions. Therefore,
overall matchmaking and load balancing procedure can be illustrated as shown in
Figure 4.15 (revising the Figure 3.6).

However, we found potential load imbalance problems that arise from our
static load balancing mechanisms for assigning jobs to nodes that can arise for

various reasons, including the heterogeneity of the available nodes or the jobs to be

118

Memory Run Node
. R
N
‘\4 Pushing J
<
S ’ N
¥ - TN LSRN D s N
M / 8 ; | Sy
\ :L L Ve “Vew 0 H |\ VH)/
= S S N
VeE , s,
Client / Owner
/
' .
y
’
Job J I
Arch = SUN |~
&& A
OS = Solaris
&&
INTEL PP AMD IBM N
Memory >= M, < su T

& Linux & OSX & Windows & AIX & Solaris

Figure 4.15: Overall Matchmaking and Load Balancing Process: Solid arrows
denote the physical routing path of job J, while dotted arrows show the logical

routing path.

run, and from stale information in the P2P system. Therefore, we greatly improve
our load balancing scheme by providing lightweight yet effective dynamic load
balancing mechanisms to overcome load imbalances caused by the limitations of
the initial static job assignment scheme. Throughout extensive simulation results,
we showed that dynamic load balancing makes the overall system more scalable,
by improving overall system throughput and response time with low additional

overhead.

119

Chapter 5

Reducing the System L oad

In this chapter, we describe a set of optimizations to reduce the overheads in the
system and distribute them fairly by employing modified heartbeat messaging and
randomizing job ownership. First, we address the increased amount of heartbeat
message exchanges between virtual peer and neighbors discussed in Section 3.2.3.
Then, we reduce the cost of monitoring job executions by effectively randomizing

ownership of jobs.

5.1 Modifi ed Heartbeat Messaging

As we discussed in Section 3.2.3, our virtual peer-based resource integration
scheme has a scalability issue since a virtual peer maintains a large number of

neighbors in sub-CANs. Each time when a virtual peer sends a heartbeat message

120

to its neighbors, it packs all of its neighbor information in the update message and
sends it to all of its neighbors. This is because each node in CAN sends its own
information and its neighbor information in a periodic update message [76]. This
does not only increase the size of a single update message but also increase the
number of messages sent by the virtual peer. Therefore, such messages can add
substantial overhead for the nodes responsible for the virtual peers. As an exam-
ple, if a virtual peer manages 1000 neighbors then the size of a single heartbeat
message is about 600KB and this can become a significant burden since a virtual
peer sends update messages to its all neighbors (i.e., the total size of the messages
would be 600MB at every update).

To deal with the large size of a periodic update message, we introduce a par-
tial update mechanism for heartbeat messaging. Whenever a node sends infor-
mation about its neighbors, it may only send partial neighbor information. For
this purpose, we use a threshold value, PU_Threshold, which limits the number of
neighbors that are included in a periodic update message in each direction (upper
or lower in each dimension). Therefore, even with only partial information about
neighbors, each node will let its neighbors know about at least one and at most
PU _Threshold neighbors in each direction (we select the PU_Threshold neighbors

from each direction randomly). This ensures the correctness of the failure recov-

121

ery algorithms, so that whenever a node leaves the system or fails, the neighboring
nodes can determine the neighbors of the lost zone through the neighbor informa-
tion maintained in that direction. Note that the partial updates mechanism does
not affect failure recovery along the T dimension, since a physical peer never
takes over the zone along that dimension (only virtual peers do as described in
Section 3.2). By employing partial update mechanism, the size of a single update
message is limited to d * 2 (for both directions) * PU_Threshold * SN where d
is the number of dimensions and SN denotes the size of a single neighbor infor-
mation. A single neighbor information includes zone, coordinates and neighbors
of neighbors (indirect neighbors) information, etc. Therefore, we can reduce the
system load and distribute it more fairly among available system nodes.

In addition to the partial update mechanism, to reduce the overhead of message
exchanges between a virtual peer and its neighbors, we also employ round-robin
heartbeat messaging. As discussed earlier, the node takeover operation along the
T dimension occurs only if the last node in a sub-CAN departs. Therefore, all
physical peers abutting a virtual peer do not have to send heartbeat messages to
the virtual peer (except the ones that manage the virtual peer). This reduces the
number of incoming messages to the virtual peer. Also, the virtual peer limits

how often it sends heartbeat messages to any given neighbor through the partial

122

update mechanism described previously, which only lengthens the average time
between heartbeat messages sent to each neighbor. By employing this round-robin
heartbeat messaging scheme, the number of messages sent per period is limited to
the 2 * d so that every node in our CAN sends the same number of messages as

the original CAN [76].

5.1.1 Effectsof Modifi ed Heartbeat M essaging

To see the effects of our modified heartbeat messaging scheme in terms of system
maintenance cost, we use similar experimental setup (1000 nodes and 5000 jobs
in the system) as described in earlier chapters using an event-driven simulator.
We use the same set of resource types, CPU architecture, operating system type,
CPU speed, memory, and disk space. For the categorical resource types (architec-
ture and operating system), the nodes and jobs used two different combinations
to show the behavior of our system with a large number of jobs and fewer avail-
able sub-CANs resulting in the number of neighbors of a virtual peer tends to
increase. Again, we used ten different sets of homogeneous clusters having dif-
ferent amounts of continuous resource capabilities and resource requirements of
jobs are also clustered. Finally, each node (including both of physical and virtual

peers) refreshes its neighbors with heartbeat messages every 30 seconds.

123

Number of Maintenance Messages (CDF)
100 o R

00« o

P
90 90
80 | 80 r
70 70 -
S eof £ 60
g g
£ 50 £ 50
8 g
éif 40 E 40 -
30 30 r
20 20
10 CAN-Basic -==--- - 10 CAN-Basic -=-=-=- -
o ‘ ‘ CAN-MHM —— 0 1 ‘ CAN-MHM ——
1 10 100 1000 10000 0.001 0.01 0.1 1 10 100 1000 10000
Number of Messages/ Minute (Per Node, Log scale) Volume of Messages (MB) / Minute (Per Node, Log scale)
(a) Number of Messages (b) Volume (MB) of Messages

Figure 5.1: Effects of Modified Heartbeat Messaging: Note that X-axis is in log

scale

In this experiment set, our metrics are number of messages and volume of mes-
sages (i.e., size of messages) in the system. Specifically, to see the effects of our
modified heartbeat messaging scheme, we investigate the maintenance message
distribution which includes the messages required to maintain the CAN DHT.
We test the CAN approach using normal periodic heartbeat messaging scheme
(CAN-Basic) and the improved CAN approach employing our modified heartbeat
messaging techniques (CAN-MHM).

Figure 5.1 shows the effects of modified heartbeat messaging in terms of sys-
tem maintenance cost. Our modified heartbeat messaging scheme includes two

optimizing mechanisms: round-robin heartbeat messaging to reduce the number

124

of messages and partial updates to reduce the size of each message. By employing
these techniques, CAN-MHM effectively reduces both the number of messages
per minute (Figure 5.1(a)) and the volume of messages per minute (Figure 5.1(b)).
CAN-MHM not only removes the high end of the number (volume) of mainte-
nance messages compared to CAN-Basic, meaning that there is no node in the
system that processed much larger amount of maintenance work, but also shift the
CDF up and to the left, which means that they achieve better distribution of system
loads across available nodes compared to CAN-Basic. This is because in CAN-
Basic, virtual peers maintaining a large number of neighbors in sub-CANs incur
huge overheads during exchanging periodic update messages with neighbors. This
means that some nodes managing these virtual peers will be very heavily loaded
only because of processing periodic update messages. This overloaded system
maintenance cost is not sustainable in the P2P desktop grid system since every
node in our system is a peer so that unfair distribution of system loads cannot
attract the participation of desktop machines into our system.

Total messages in our system not only include CAN maintenance messages
but also other job-related messages such as matchmaking messages and node
join messages. However, in terms of average number (volume) of messages per

minute, overall 99% of total messages come from CAN maintenance as we can

125

Total | Maintenance | Others

CAN-Basic | 19.4 19.2 0.2

CAN-MHM | 13.6 13.4 0.2

(a) Average Number of Messages

Total | Maintenance | Others

CAN-Basic | 1575.6 1575.5 0.1

CAN-MHM | 74.7 74.4 0.3

(b) Average Volume (KB) of Messages

Table 5.1: Average Number/Volume of Messages (Per Minute, Per Node)

see from Table 5.1. Therefore, by employing our modified heartbeat messaging
scheme, our system can get rid of most overheads coming from CAN maintenance

and becomes more scalable and effective.

5.1.2 Performance Implications of Modifi ed Heartbeat Mes-
saging

Although employing modified heartbeat messaging scheme can greatly reduce

the overall system maintenance cost and distribute the load fairly across nodes in

126

the system, it can affect the quality of load balancing since we are using partial
neighbor information. Therefore, in this section we investigate the performance
effects and implications of the modified heartbeat messaging scheme.

Again, we use a similar experimental setup using our event-driven simulator
where there are five different resource types, CPU architecture, operating system
type, CPU speed, memory, and disk space. For the categorical resource types
(architecture and operating system), the nodes and jobs used two different combi-
nations. So nodes and jobs can belong to either of the combinations with respect
to their resource specifications and constraints, respectively. We used ten differ-
ent sets of homogeneous clusters having different amounts of continuous resource
capabilities and resource requirements of jobs are also clustered. As described in
previous chapters, our algorithms can also handle truly heterogeneous set of nodes
and jobs where there are few identical nodes (an unclustered set of nodes). How-
ever, we use the clustered model for our experiments since this is a likely scenario
and it also shows the behavior of the system when nodes have many neighbors
along the virtual dimension, as described in Section 3.2.3.

One important characteristic of the test workload is that the overall system
reaches a steady state, for both available nodes and active jobs, during the simu-

lation period (as seen from Figure 5.2). The way we generated the workload is

127

that first an initial set of 1000 nodes join the system. Then, new node join events
and existing node departure events (graceful leaving or failure) occur at approxi-
mately the same rate. Once the system reaches the steady state in terms of active
nodes a total of 5000 jobs are submitted. Again, the system behavior is measured
in a steady state, so that the number of active jobs remains about the same (jobs
arrive and complete at about the same rate), and we show the performance of
each matchmaking mechanism in this steady state to avoid the transient effects of
earlier jobs that see a largely empty system.

Our metrics are matchmaking cost (the amount of time between when a job
is injected and when it is assigned to a run node) and queuing time (the amount
of time between when a job is inserted into a run node and when it actually starts
running). Matchmaking cost directly quantifies the overhead needed to perform
the matchmaking in a decentralized manner. Queuing time includes the time spent
waiting in the job queue of a run node before a job is executed (i.e., indirectly
measuring load balance).

We test the CAN approach both before addressing scalability issues (CAN-
Basic) and the improved CAN approach employing partial updates mechanism.
For partial updates, we used two different PU_Thresholds, 1 and 2 (CAN-PU1 and

CAN-PU2, respectively). Since both thresholds showed similar (good) behavior,

128

Active Nodes in the System (Snapshots) Jobs in the System (Snapshots)

500

1100

1000
»
w F 1w o AAA
8 soof s 1 »
2 00f 2
g S 300 -
3§ 600 - 5 b
< o ?
5 500 2 ‘
g 400 | / | 5 200¢ ‘
2 300f 1 .
200 F 1 100 ¢ :
100 | *
o‘ L L L L L L L L L 0 L L L L L L
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Elapsed Time since the Start of Simulation (minutes) Elapsed Time since the Start of Simulation (minutes)
(a) Steady-state behavior of grid nodes (b) Steady-state behavior of queued and

running jobs

Figure 5.2: Populations of Available Nodes and Jobs over Time

we do not show results for higher threshold values. To see how well the workload
could be balanced, we also show results for a centralized scheme (CENTRAL)
that uses knowledge of the status of all nodes and jobs.

Figure 5.3 shows the matchmaking cost and queuing time of jobs with the
different algorithms. As we can see from Figure 5.3(a), the CAN-based mech-
anisms can match the jobs having different resource constraints with available
heterogeneous resources with very low cost. Most of the jobs can be matched
within a couple of seconds, but some take much longer. High matchmaking costs
can occur when new nodes join or existing nodes leave the system Those events

cause transient system states where matchmaking for a job cannot proceed un-

129

Matchmaking Cost of Jobs (CDF) Queuing Time of Jobs (CDF)

100 ' o et a 100
98
80 | 7
96
§ 60 % 94 F
2 g U
8 g I/
40 - %
@ & o
20 + - 88 CENTRAL —»— -
CAN-Basic —=— CAN-Basic —=—
CAN-PU1l —e— CAN-PU1L —e—
o e CAN-PUZ —— L . . cAvPR—— ¢
0 0.5 1 15 2 25 3 35 4 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time(s) Time (s)
(a) Matchmaking is not noticeably im- (b) Stale queue information for neighbors
pacted by partial updates results in slightly longer queuing times with
partial updates

Figure 5.3: Matchmaking and Queuing Time

til the holes in the CAN space caused by the node departures have been repaired.
During those periods CAN routing can fail, so has to be retried. However, jobs are
still matched within a very short time period, since the system quickly recovers
from those transient states.

Figure 5.3(b) shows the quality of load balancing of the CAN-based approaches
compared to the centralized matchmaker. As the figure shows, all of the CAN-
based frameworks show performance competitive with CENTRAL, although there
are some jobs that wait longer in the queues. Through the experiments shown here,

we verify that the partial update mechanism does not affect the quality of load bal-

130

ancing very much, so that our algorithms perform well for both categorical and
continuous resource capabilities for nodes and requirements for jobs.

The partial update mechanism may affect failure recovery along the continu-
ous dimensions, since each node has only a small amount of information about the
neighbors of its neighbors. So when an existing node leaves the system or fails,
the node that takes over that zone, call it N, might not be able to find all new neigh-
bors abutting the lost zone (since the departed node did not provide node N all of
its neighbor information). Therefore, temporary holes that no node owns can oc-
cur in the CAN space, since a node that takes over a zone may not have complete
neighbor information after merging the lost zone with its own zone. However,
these holes are quickly repaired through later heartbeat messages when neighbor
information is exchanged, since the partial update algorithm always sends infor-
mation about at least one neighbor in each direction in the periodic update mes-
sages. In experiments not shown, we verified that the average time to recover from
failures along the continuous dimensions with partial updates is only a factor of
three worse compared to sending complete updates (CAN-Basic takes an average

of around 20 seconds to repair holes).

131

5.2 Randomizing Job Ownership

As noted in Section 2.1, for each job our system has two nodes that know about it,
an owner and a run node, to enable reliable recovery from various types of failures.
In prior work, we have mainly addressed load balancing of jobs across run nodes,
which directly affects overall system throughput and response time. However,
we have discovered that balancing load across owner nodes is also important to
evenly balance overall system maintenance costs across all nodes.

A node 0 becomes the owner of a job j if and only if its zone contains the
point for j (determined by j’s resource requirements). There are two main rea-
sons for assigning an owner in this way. First, it enables efficient matchmaking
for j to find a run node, since neighbors in the CAN of the owner zone become
good candidates for running the job (since many of them will meet the resource
requirements of the job because of the CAN organization). Therefore, our pushing
mechanism (Section 4.1) basically starts from the region consisting of minimally
capable nodes for running the job, and searches for more capable nodes for better
load balancing. Second, we require a deterministic mechanism to decide the job
owner, since an owner node can depart the system at any time (or fail). If that oc-
curs, the run node or a client always can find the new owner node by routing again

to the job’s coordinates, since the basic CAN recovery mechanisms will assign the

132

zone to another node.

However, this mechanism can cause high overhead for a small set of nodes that
own a disproportionate fraction of the jobs, because of the heartbeat messages that
run nodes periodically exchange with owner nodes (so that either can detect failure
of the other). As an extreme example, suppose that the zone for node n contains
the origin in the CAN space. If clients submit 1000 jobs that specify no resource
requirements at all, then n will become the owner of all the jobs (since the default
value in each resource dimension is 0). If all of the jobs run for a long time, node
n will receive thousands of messages periodically from the multiple run nodes that
have been assigned to run the jobs. Also, if n departs the system, all the jobs that
n owned must be redistributed to the neighbors of n in the CAN space, resulting
in high recovery cost. This message load balancing problem can occur whenever
many jobs have very similar or even identical resource requirements, resulting in
hot spots (in terms of owning jobs) in the CAN space. The node(s) in a hot spot
will have much higher message loads, and therefore higher overhead costs for
participating in the desktop grid, than other nodes.

In the following sections, we address these problems and propose an effective
mechanism to uniformly distribute ownership of jobs so that the number of owned

jobs per node does not depend on the distributions of resource capabilities of

133

nodes or resource requirements of jobs in the system.

5.2.1 Random Walking along T dimension

One straightforward approach to address the problem of job ownership is ran-
domizing each coordinate of a job (from 0 to some maximum value M) and use
them to determine the owner node (by routing to the randomly generated coordi-
nates). Thus, each job has two different sets of coordinates: randomly generated
pseudo coordinates and real coordinates (corresponding to the job’s resource re-
quirements). Pseudo coordinates are used only for determining owners and real
coordinates are used for matchmaking process. For this purpose, we may propa-
gate the maximum value of each resource dimension (M) through the periodic load
aggregation mechanism (presented in Section 4.1) and use it to set each range of
resource dimensions. However, we cannot assume that resource capabilities of
nodes are uniformly distributed in the CAN space (as we discussed in Section 4.1
and Figure 4.2). This means that randomly generated coordinates still can result
in a biased job ownership distribution unless we know the exact distribution of
resource capabilities of all nodes in the system. This is almost impossible to get
in a decentralized desktop grid system where no centralized information exists.

Figure 5.4 shows basic concepts of our approach where there are four different

134

C{l Starting
-Dim Sub-CAN

TP= TP= TP=
VNN, NN R | NN

AT TN P ~
- S~o - " o
I's - e - * - -
[, N [, N [, N [, \\
SCI \ V] ,‘ SCZ \ Vz ,‘ SC3 \ Vw ,‘ SC4 \ V4 ,‘
\ P noa \ P ’ N " \

~- ~- \ ~- \ ~-

ol
W W W W

sSP= SP= SP= SP=
N/N; N,/(N;+N, Ny/N N,/N,
N N N
N, 2 nodes 4
U nodes nodes

nodes

N = NN, +N;+N,

Aggregating number of nodes in each sub-CAN through Virtual Peers

Figure 5.4: Randomizing Ownership of Jobs: CR denotes the continuous resource
dimensions.

sub-CANs (SC;’s) in the system (i.e., four different combinations of categorical
resource types such as architecture and operating system type). We first distribute
the ownership of jobs fairly across multiple sub-CANs (i.e., make the probability
for each sub-CAN to own a job be proportional to the number of nodes in that sub-
CAN) and then determine the ownership of a job inside the sub-CAN randomly.
Let P; be the probability for SC; to have an owned job and N; be the number of
jobs in the SC;. Then, the total number of nodes in the system (denoted by N) is
the sum of all N;’s (in the figure, N=N;+Ny+N3+N,). To uniformly distribute the
job ownership across multiple sub-CANs, P; should be % since each sub-CAN

may have different number of nodes. The question is then how we can distribute

135

jobs across multiple sub-CANs in a decentralized fashion and based only on local
information.

To address this problem, we employ random walking along the T dimension
based on aggregated information propagated through virtual peers. For the job
pushing mechanism, our system periodically aggregates load information along
each continuous resource dimension (Section 4.1) which is piggybacked on the
conventional CAN periodic neighbor update mechanism [76]. Similarly, each
virtual peer sends the number of physical peers in its left and right sub-CANs
(along T dimension) and this information is aggregated (bidirectional aggregation
of the number of nodes). This enables each physical peer can estimate the number
of nodes in its left sub-CANs, right sub-CANs and its own sub-CAN where it
belongs to through the information provided by the virtual peers.

Based on this aggregated information about the number of nodes in the system,
random walking across multiple sub-CANs can be effectively performed along
T dimension. There are three important factors that affect behaviors of random
walking: transition probability (TP), stopping probability (SP) and direction. The
TP is the probability to move from current sub-CAN to another sub-CAN (left
or right) and the SP is the probability to stop walking at current sub-CAN. TP

and SP can be calculated based on the aggregated number of nodes in other sub-

136

CANSs, the number of nodes in current sub-CAN and the direction of walking. The
direction (left or right walking along T dimension) is determined at the initial step
of walking and it never changes until the random walking stops at some point (no
coming back). For example, in the Figure 5.4, job J starts from SC3 and there are
three different choices for this job, start walking into left (right) direction or stops
at current sub-CAN. The left (right) transition probability for this job becomes
[Number of nodes in left (right) sub-CANs / Total number of nodes in the system].
In the example, this probability becomes either 2222 (for left walking) or 52 (for
right walking). Also, with the probability of [Number of nodes in current sub-
CAN / Total number of nodes in the system], this job can stop at current sub-CAN
(52 in the example).

This simple probabilistic walking model exactly matches with our previous
uniform distribution model, where each sub-CAN SC; has the probability of own-
ing a job as % Once the walking starts into a specific direction, it never comes
back to the other direction and transition/stopping probabilities can be calculated
in a similar way. However, at this time, we only have two choices, whether keep
moving into another sub-CAN based on the determined direction or just stop the
walking (Figure 5.4 shows the TP and SP of each step of walking along T dimen-

sion).

137

Until now, we have presented our probabilistic model of random walking
along T dimension to select one of the sub-CANs randomly. Now, we have to
decide the owner node of a job inside the determined sub-CAN and this should
be done also uniformly at random. One of the important characteristics of our
routing mechanism is that whenever a request is delivered from one sub-CAN to
another sub-CAN, it utilizes neighbors of a virtual peer (specialized routing in T
dimension described in Section 3.2.3). Each physical peer directly sends a request
from a sub-CAN to another sub-CAN through one of the neighbors of a virtual
peer (which is randomly selected). This prevents all routing requests delivered
from one sub-CAN to another sub-CAN from always going through a node man-
aging virtual peers. This special routing mechanism can be effectively combined
with our new algorithm for determining random owners. Since the routing request
is sent to one of nodes in target sub-CAN randomly (selected from a virtual peer’s
neighbors), every time a routing request is processed across multiple sub-CANs,
it may go through different destination nodes. Therefore, whenever the walking
along T dimension stops at a specific sub-CAN, current node simply can become
the owner of the job (since it is randomly selected inside this sub-CAN during
routing procedures).

The final step is to generate random (pseudo) coordinates for a job, that lie

138

in the zone of the selected owner node, but these coordinates are used only for
selecting the owner. After determining a random owner for the job, the match-
making process starts from that point, i.e., route to the node whose zone contains
the real coordinates of the job (its resource requirements) and perform the pushing

mechanism in the CAN to balance load across eligible run nodes.

5.2.2 Effectsof Randomizing Owner ships

To see the effects of randomizing job ownership, we use similar experimental
setup (1000 nodes and 5000 jobs in the system) as described in earlier sections,
using an event-driven simulator. We use the same set of resource types, CPU
architecture, operating system type, CPU speed, memory, and disk space. For the
categorical resource types (architecture and operating system), the nodes and jobs
used two different combinations to show the behavior of our system with a large
number of jobs and fewer available sub-CANSs resulting in the number of owned
jobs per node tends to increase. Again, we used ten different sets of homogeneous
clusters having different amounts of continuous resource capabilities and resource
requirements of jobs are also clustered.

In this experiment set, our metrics are matchmaking cost (the amount of time

between when a job is injected and when it is assigned to a run node) and rate

139

of heartbeat messaging (the number of heartbeat messages exchanged between
owner and run nodes per minute), and number of owned jobs per node (during
entire simulation). Matchmaking cost directly quantifies the overhead needed to
perform the matchmaking in a decentralized manner and includes the time to find
a random owner for a job (in our new algorithm). Number of heartbeat mes-
sages and owned jobs per node can show whether there are any hot spots in the
system where some nodes own a disproportionate number of jobs. We test the
CAN approach both before addressing job ownership problems (CAN-Vanilla)
and the improved CAN approach employing our new techniques for randomizing

job owners (CAN-RON).

Matchmaking Cost (CDF) Number of HeartBeat Messages (CDF)
100 | | . . 100 ¢ /,.M«
80 - 80 -
€ wf & et
@ @
g g
5 8
z Yf § 40 ¢
20 + - 20 +
CAN-Vanilla —*— CAN-Vanilla —*—
o, ., CANRON —e— 0 ‘ ‘ ‘ _CAN-RON —e—
0 0.5 1 15 2 2.5 3 3.5 4 0 10 20 30 40 50 60
Matchmaking Cost (s) Number of Messages/ Minute (Per Node)
(a) Matchmaking Cost (b) Number of Heartbeat Messages

Figure 5.5: Costs and Benefits of Randomized Owners

Figure 5.5 and 5.6 show the behavior of our system with improved mechanism

140

Number of Owned Jobs (CDF)

CAN-Vanilla —%—

_CAN-RON —e—

0 50 100 150 200 250 300 350 400 450
Number of Owned Jobs Per Node

=
o
S

®
=]

[}
=}

Percentage (%)
B
o

N
o

o

Figure 5.6: Number of Owned Jobs Per Node

for randomizing job ownership. Figure 5.5(a) shows that in terms of matchmaking
cost, CAN-RON does not have any significant overhead even though it has two
steps of matchmaking process (first finding the random owner of a job and then
do the conventional matchmaking and load balancing). This is because additional
overhead comes only from traversing multiple sub-CANs (random walking) and
the rest of procedures is essentially same since even in CAN-Vanilla, a job can
start from anywhere (injection node) in the system. However, if we increase the
number of sub-CAN:Ss, it can affect the overall matchmaking cost of CAN-RON.
In the experiments not shown here, we have verified that with more than two sub-
CAN:s, the cost is still negligible.

With this minimal cost, CAN-RON can achieve much better load balancing of

job ownership as we can see from Figure 5.5(b) and 5.6. In terms of number of

141

heartbeat messages exchanged between owner and run nodes, CAN-RON shows
much less overhead compared to CAN-Vanilla (as seen from Figure 5.5(b)). This
is because in CAN-Vanilla, a small number of nodes may become owners of many
jobs since in our workload, job requirements are clustered. Although the virtual
dimension can help to distribute the ownership across multiple identical nodes, it
depends on how many such nodes are existing in the system (as we mentioned an
extreme case earlier). Therefore, CAN-Vanilla’s ability to distribute job owner-
ship is heavily dependent on the distribution of node capabilities and job resource
requirements. Figure 5.6 shows the number of owned jobs per node during entire
simulation. It shows that there are some nodes who own more than 400 jobs in
the system and if all of jobs are running very long time (several hours or even
for days), these nodes will receive a large number of heartbeat messages from run
nodes. Also, if these critical nodes depart the system, hundreds of jobs should be
redistributed resulting in high recovery cost compared to CAN-RON.

To summarize, CAN-RON could achieve much better distribution of job own-
ership which is not dependent on any of node capabilities or resource requirements

of jobs and reduce the overhead of monitoring jobs effectively.

142

5.3 Summary

In this chapter, we have discussed our techniques to reduce the overall system
maintenance cost and distribute the system load fairly across available nodes in
the system.

First, we addressed the problem of periodic neighbor update message ex-
changes between virtual peers and physical neighbors by employing modified
heartbeat messaging scheme. Throughout our improvements, we could not only
reduce the size of a single update message (partial updates mechanism) but also re-
duce the number of messages exchanged (round-robin heartbeat messaging) with-
out affecting the correctness of our basic CAN. As the experiments showed, ma-
jority of the messages in our desktop grid system comes from maintaining CAN
space so that by reducing the cost for CAN maintenance, we could greatly im-
prove the scalability of our system.

Second, we noticed that the load balancing of job ownership is also important
since some nodes can own a disproportionate fraction of the jobs in the system
which results in high costs for message exchanges and failure recovery. By effec-
tively randomizing the job ownership in a decentralized manner, we could achieve
much better distribution of job ownership which is not dependent on any of node

capabilities or resource requirements of jobs.

143

All of our efforts to minimize any overheads in the system is to ensure the
fairness among the participating nodes in our P2P desktop grid. A truly scalable
P2P desktop grid computing system must be able to balance the load of job exe-
cutions and introduce minimal and fair overheads among the nodes in the system.
Throughout our comprehensive load balancing mechanisms presented in Chap-
ter 4 and a set of optimizations to minimize overheads in the system presented in

this Chapter, we could build a scalable and effective P2P desktop grid system.

144

Chapter 6

L arge Scale Experiment

In this chapter, we evaluate our system with a large set of node populations and job
workloads to see whether the system scales gracefully as more nodes and jobs are
injected. The evaluated system under this experimental set includes everything
discussed in this dissertation: comprehensive load balancing techniques based
on pushing mechanism and pull-based dynamic load balancing (as described in
Chapter 4), and a set of optimizations to minimize the system load based on mod-
ified heartbeat messaging and randomized job ownership (as described in Chap-

ter 5).

145

6.1 Experimental Setup

Similar to the previous experiments, we used five different resource types for
nodes and jobs: CPU architecture, operating system type, CPU speed, memory
size, and disk space. For the categorical resource types (architecture and operating
system), the nodes and jobs used four different combinations (sub-CANs). Nodes
(total 10000 nodes) and jobs (total 50000 jobs) have one of those combinations
for their resource specifications and constraints, respectively. We generate contin-
uous resource type values (CPU, memory and disk) for nodes and jobs based on
a clustering model, as described in Chapter 3.1.2. We used 100 different sets of
homogeneous clusters having different continuous resource capabilities, and the
resource requirements for jobs are also clustered (i.e., multiple jobs have similar
or even identical requirements).

In this experiment, 7 for the jobs (average job inter-arrival time) is set to 200
milliseconds to achieve the steady state where the rate for incoming jobs and fin-
ishing jobs is approximately the same (as seen from Figure 6.1). Since the number
of available nodes increased, we had to reduce the average job inter-arrival time
to make the overall system in the steady state (e.g., 4 seconds for 7 was used in
Section 4.2.2). A job running time is generated uniformly at random from be-

tween 30 and 90 minutes with an average of 60 minutes. As in the experiments

146

in Section 4.2.2, CAN performs the dynamic load balancing mechanism based on
pull model every five minutes, which is much longer than the 30 second interval
between neighbor updates for CAN maintenance. Finally, for the network com-
munication cost, the average latency of a packet between any two nodes in the

system is set as 50 milliseconds with an exponential distribution.

Jobsin the System (Snapshots)
6000 ! ! !

5000 -

4000 -

3000 -

Number of Jobs

2000

1000

0
1650 1700 1750 1800 1850 1900 1950 2000 2050
Elapsed Time since the Start of Simulation (minutes)

Figure 6.1: Population of Available Jobs in the System

We compare our CAN-based approach (labeled as CAN in the figures) with
a centralized scheme (CENTRAL) that has complete information about the job
queue status of all nodes. Similar to the previous experiments discussed in Sec-
tion 4.2.2, CENTRAL periodically redistributes jobs across all nodes in the sys-

tem.

147

Matchmaking Cost (CDF) Wait Time of Jobs (CDF)

100 100

Percentage (%)
Percentage (%)

CAN —5—
‘CENTRAL -

. . 70
3 4 5 6 7 8 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Matchmaking Cost (s) Job Wait Time (s)

(a) Matchmaking Cost (b) Wait Time of Jobs

Figure 6.2: Performance Results (Matchmaking Overhead and Load Balancing):
Note that in the Figure 6.2(b), the Y-axis does not start from 0% to show the results

more clearly

6.2 Experimental Results

Figure 6.2 shows the performance results of CAN in terms of decentralized match-
making overhead and quality of load balancing compared to CENTRAL. As we
mentioned earlier, wait time reflects both protocol overhead and the quality of the
matchmaking results, i.e., load balancing. Since the matchmaking cost in our sys-
tem is very small compared to the job running time, the majority of wait time is
composed of the queuing time. As we can see from Figure 6.2(b), CAN shows
still very competitive performance in terms of load balancing compared to CEN-
TRAL by employing our comprehensive load balancing techniques. The cost for

148

performing decentralized matchmaking has slightly increased due to the increased
number of available nodes in the system compared to the experimental set with
1000 nodes (Figures 5.3(a) and 5.5(a)). However, as we increase the number of
nodes and jobs by a factor of 10, the average matchmaking cost increased only

30%. Therefore, the overall system scales gracefully as more nodes and jobs are

injected.
Number of Maintenance Messages (CDF) Volume of Maintenance Messages (CDF)
00 . . @ - 100 ¢ | | =
9 - 90 -
80 - 80 -
70 - 70 ©
S eof S 60t
g g s
g 50t :
g 5
§ 40 - § 40 ¢
30 - 30 -
20 - 20 ¢
10 + - 10 t -
olod o CAN —g— o CAN —e— |
0O 10 20 30 40 50 60 70 8 90 100 0 50 100 150 200 250 300 350 400 450
Number of Messages/ Minute (Per Node) Volume of Messages (KB) / Minute (Per Node)
(a) Number of Messages (b) Volume (KB) of Messages

Figure 6.3: Distribution of Maintenance Messages in CAN

As we described in Chapter 5, we have described a set of optimizations to re-
duce the overheads in the system and distribute them fairly by employing modified
heartbeat messaging and randomizing job ownership.

We first discuss the results for performing modified heartbeat messaging with

a large set of nodes and jobs in the system. As we can see from Figure 6.3 and

149

Total | Maintenance | Others Total | Maintenance | Others

15.7 15.5 0.2 99.7 99.5 0.2
(a) Average Number of Messages (b) Average Volume (KB) of Mes-
sages

Table 6.1: Average Number/Volume of Messages (Per Minute, Per Node)

Number of Owned Jobs (CDF)
100 |

Percentage (%)

‘ ‘ CAN —=— |
0 5 10 15 20 25
Number of Owned Jobs Per Node

Figure 6.4: Number of Owned Jobs Per Node

Table 6.1, overall maintenance overhead of CAN is not heavily affected by the in-
creased number of available nodes or jobs in the system. Figures 6.3(a) and 6.3(b)
show the number (volume) of maintenance messages sent per minute during the
entire simulation. More specifically, in 99.9% of all one minute intervals simu-
lated, there was no node in the system that processed more than 20 messages or

180KB. There are some intervals where some nodes processed more messages and

150

larger volumes but these events mainly occurred during the initial step of simula-
tion where nodes are rapidly joining the system. However, as the system reaches
the steady state in terms of available nodes and jobs, CAN maintenance overhead
becomes stabilized which results in a very low overall cost for maintaining the
entire CAN (as seen from Table 6.1).

Figure 6.4 shows the effects of randomizing job ownership in this large scale
experiment. Compared to the experimental set with fewer nodes in the system
(Figure 5.6), the distribution of job ownership becomes a little worse. However,
this is not because of the larger scale of available nodes and jobs in the system
but because of the smaller job inter-arrival time (from 4 seconds down to 200
milliseconds). Since the random walking along the T dimension is based on the
aggregated information propagated periodically through virtual peers, the deci-
sion for a random owner might be made based on stale information as jobs are
arriving with a high rate. However, we can still achieve a good distribution of
job ownership since the algorithm does not depend on any distributions of node

capabilities and job requirements.

151

6.3 Summary

In this chapter, we have performed a much larger scale experiment than in previous
chapters to measure the ability of our system to scale gracefully as more nodes and
jobs are injected into the system. By employing a comprehensive suite of load
balancing techniques based on initial static pushing mechanism and supplemental
dynamic load balancing scheme, our system could achieve good load balance with
low matchmaking cost. Also, we could minimize the system load mainly imposed
by maintaining the CAN space, by employing the modified heartbeat messaging
scheme, which is not affected by the populations of available nodes and jobs in

the system.

152

Chapter 7

Related Work

P2P research has shown that a robust, reliable system for storing and retriev-
ing files can be built upon unreliable machines and networks. Systems such as
Kazaa [50] have been scaled to very large numbers of machines, and support large
numbers of simultaneous user requests for files. The algorithms for object loca-
tion and routing in P2P systems such as CAN [76], Chord [85], Pastry [78] and
Tapestry [98] are also capable of scaling to very large numbers of machines and
simultaneous requests for service. Based upon these basic P2P services, recently
there have been several research efforts to combine P2P and Grid computing tech-
niques to improve the robustness, reliability and scalability of commonly available

client-server based desktop grid infrastructure [91].

153

7.1 Peer-to-Peer Systems

Peer-to-Peer systems can be defined as “distributed systems consisting of inter-
connected nodes able to self-organize into network topologies with the purpose
of sharing resources such as content, CPU cycles, storage and bandwidth, capable
of adapting to failures and accommodating transient populations of nodes while
maintaining acceptable connectivity and performance, without requiring the inter-
mediation or support of a global centralized server or authority” [6]. Therefore,
no node in the P2P system acts as a pure server or a pure client, as opposed to the
traditional server-client model.

Existing P2P systems can be divided into two main categories based on the
network structure: structured and unstructured. Structured P2P systems employ
a deterministic structure to interconnect the peers and organize the file indexes,
while in unstructured P2P systems each peer is randomly connected to a fixed
number of other peers (often called neighbors) so that overlay network is created

nondeterministically.

154

7.1.1 Unstructured P2P Systems

In unstructured P2P systems, each peer maintains a constant number of connec-
tions to other peers (neighbors), and the placement of data files is completely in-
dependent of the overlay topology. Due to the lack of an underlying deterministic
structure in those systems, the prevailing resource location method is flooding the
network by propagating queries in a breadth-first or depth-first manner until the
target file is found. Clearly, flooding is not scalable since it creates a large volume
of unnecessary traffic in the network. To limit the number of messages generated
by flooding, each message is tagged with a Time-To-Live (TTL) field. The TTL
indicates the number of hops away from its source a query can propagate so that
each message is propagated into the network until the TTL expires. A small TTL
value can reduce the network traffic, however the search may fail to find a target
file although it is existing somewhere in the system. Many other techniques have
been proposed to alleviate the excessive traffic problem caused by flooding and
to deal with the traffic/coverage trade-off [92] such as random walks, multiple
random walks, hybrid methods that combine flooding and random walks [40], di-
rected searches based on statistical information [63], forwarding indexes [28], or
the incorporation of semantic information [84, 97].

Unstructured P2P systems are generally more appropriate for accommodating

155

highly-transient node populations (high-churns). Examples of the popular un-
structured systems are Gnutella [42], Kazaa [50], Publius [94], Edutella [70] and

FreeHaven [30].

7.1.2 Structured P2P Systems

Structured P2P systems have emerged mainly in an attempt to address the scal-
ability issues that unstructured P2P systems have. These systems are equipped
with a distributed indexing service which is based on hashing so that they are of-
ten called distributed hash table (DHT) [9, 39, 49, 69, 76, 78, 85, 98]. Peers and
files are mapped, usually through the same hash function, to a key space. Peers
and file indexes are organized in a rigid structure according to their keys, which
facilitates the location of files. Most structured P2P systems support a scalable
solution for exact match queries in O(log N) hops, where N is the number of avail-
able nodes in the system. However they do not support directly keyword searches
which constitute the core of queries in real P2P systems.

Structured P2P systems are more scalable than unstructured ones, in terms
of traffic load, but need to have strong self-organization capabilities in order to
maintain their deterministic structure. A main disadvantage of structured P2P

systems is that it is difficult to maintain the structure required for an efficient

156

routing of messages with a very transient node population where nodes are joining

and leaving the system with a high rate [24].

7.2 Unstructured P2P-based Matchmaking M echa-
nisms

Research such as [21, 45, 46] proposed a P2P architecture to locate and allocate re-
sources in Grid environment employing a Time-To-Live (TTL) mechanism. TTL-
based mechanisms are relatively simple but effective ways to find a resource (that
meets the job constraints) in a widely distributed environment without incurring
too much overhead in the search. However, such mechanisms may fail to find an
appropriate resource on which to run a given job (that meets the job constraints),
even though such a resource exists somewhere in the network, because of the TTL
mechanism (lack of Completeness).

Research such as [68, 74] adopt the super-peer model to design a P2P-based
Grid information service. The super-peer model has been originally proposed to
achieve a balance between the inherent efficiency of the centralized search and
the autonomy, load balancing and fault-tolerant features offered by the distributed

search [96]. A super-peer node acts as a centralized server for a number of reg-

157

ular peers (collecting information about the all nodes that it is managing), while
super-peers connect to each other to form an overlay network that exploits P2P
mechanisms at a higher level. Resource discovery is based on the TTL-like mes-
sage forwarding among the super peers which is similar to the approach presented
in Iamnitchi et al. [45, 46]

Similar to the resource discovery mechanisms based on the super peer model,
Talia et al. [86] proposed a P2P architecture composing of two layers. The lower
layer is a hierarchy of Index Services (provided by the Globus Toolkit [37, 41])
which publish information owned by each Virtual Organization (VO) [38]. The
upper layer is the P2P layer which collects and distribute this information. The
P2P layer includes two types of OGSA [38] compliant Web Services: Peer Ser-
vices used to perform resource discovery and Contact Services that allow Peer
Services to organize themselves in a P2P network. An extension of the Gnutella
protocol is adopted to exchange matchmaking messages among the Peer Services
in the P2P layer.

The CCOF (Cluster Computing on the Fly) project [62, 99] conducted a com-
prehensive study of generic searching methods (such as Centralized, Expanding
Ring, Random Walk, Advertisement-based and Rendezvous Point searches) in a

highly dynamic P2P environment to locate idle computer cycles throughout the

158

Internet. However, the host availability model in that work is not based on the
resource requirements of the jobs nor the varying resource capabilities of nodes in
the system (lack of Expressiveness).

Awan et al. [10] proposed a distributed cycle sharing system that utilizes a
large number of participating nodes to achieve robustness through redundancy
on top of an unstructured P2P network. By employing efficient uniform random
sampling using random walks, probabilistic guarantees on the performance of the
system could be achieved. The Organic Grid [23] proposed a self-organizing and
fully decentralized approach to the organization of the computation. A large com-
putational task is divided into small subtasks and each subtask is encapsulated
into a mobile agent, which is then released on the Grid and finds appropriate
resources based on autonomous behaviors of each agent. Balanced Overlay Net-
works (BON) [15] encode information about each node’s available computational
resources, resulting in a self-organized network that allows jobs to be assigned to
free nodes via short random-walks. However, as for the CCOF project, the job
allocation models in these work do not consider the resource constraints nor the
varying resource capabilities in the system.

Marzolla et al. [66, 67] proposed another system for locating Grid resources

by organizing system nodes as a tree-structured overlay network, where each node

159

maintains complete information about the set of resources it manages directly and
a condensed description of the resources present in the sub-trees rooted in each
of its neighboring nodes. However, all of these work are lack of fault-tolerance
mechanism which is essential to improve the robustness and reliability of desktop
grid computing systems.

Cappello et al. proposed a computational P2P system called XtremWeb [20]
whose aim is to investigate the issues for turning a large scale distributed system
into a parallel computer with classical user, administration and programming in-
terfaces possibly harnessing simultaneously uncoordinated set of resources. How-
ever, the “coordinator” component in the XtremWeb architecture which performs
mediation between clients and workers is implemented in a centralized way which

is not scalable and robust as in the traditional desktop grid system.

7.3 Structured P2P-based M atchmaking M echanisms

Butt et al. [16, 17] employed Pastry [78] to enable an efficient resource location
in various computing environments. They allowed distributed Condor pools [33]
to self-organize into a P2P overlay and locate nearby resource pools in the phys-

ical network for flocking [17]. Also they built a system that allows the sharing

160

of computational resources that builds on the Java properties of portability and
safety, the credit system and scalable P2P networks [16]. However similar to the
unstructured P2P-based approaches, they used a Time-To-Live (TTL) mechanism
which lacks of Completeness.

Studies on encoding static or dynamic information about computational re-
sources using a DHT hash function for resource discovery have also been con-
ducted [7, 12, 18, 25, 43, 71]. Research such as [7, 12, 18, 43] employ one
DHT per each resource attribute and perform matchmaking for the multi-attribute
queries based on either controlled flooding [7] or sequential search [12, 18] which
have shortcomings with respect to search performance with a large number of re-
source attributes (lack of Low overhead). Registering all resource attributes in a
single DHT which enables an efficient matchmaking [25, 71] can have another
problem in terms of load balancing. A small fraction of the nodes can contain
a majority of the resource information whenever there are many nodes that have
very similar (or identical) resource capabilities in the system (lack of Load bal-
ance). Also, simple encoding of resource information cannot effectively avoid
selecting resources that are over-provisioned with respect to the jobs (lack of Par-
simony).

Heine et al. [44] used DHTs for storing semantic information in Grids. Peers

161

provide resource descriptions and background knowledge in ontology based on
description logic and each peer can query the network for available resources.
However, their work are lack of fault-tolerance mechanism which is essential to
improve the robustness and reliability of desktop grid computing systems.

The WaveGrid [101] system constructed a “timezone-aware” overlay network
based on Content-Addressable Network (CAN) [76] and utilized idle night-time
cycles geographically distributed across the globe. However, the host availability
model in this work is not based on the resource requirements of the jobs nor the

varying resource capabilities of nodes in the system.

7.4 Dynamic Load Balancing M echanisms

Dynamic load balancing concepts are widely used for distributing loads in locally
distributed systems [83] or thread migration techniques [11]. Zhou et al. [100,
101] incorporated this concept by employing two distinct scheduling steps: ini-
tial scheduling and later migration. A client initially schedules its jobs on a host
in the current night-time zone and when the host machine is no longer idle, the
job is migrated to a new night-time zone. They are the first to investigate mi-

gration strategies in a peer-based desktop grid systems [100]. However, as we

162

described earlier, they do not allow users to specify resource requirements of their
jobs. Therefore, it is much simpler model than our schemes where a node receiv-
ing a migrated job should be able to meet resource constraints of the job. The
Condor system uses preemptive resume scheduling, which moves jobs before they
complete (preemption) in order to meet the needs of system participants (such as
owners, users and system administrators) or to deal with the inevitable hetero-
geneity of available computers [79]. However, Condor is based on a traditional
centralized server-client architecture so that it has limited scalability and robust-

ness compared to our decentralized job redistribution schemes.

163

Chapter 8

Conclusions and Future Wor k

In this chapter, I conclude this dissertation by reviewing the thesis and its contri-

butions and present some directions for future work.

8.1 Thessand Contributions

In this dissertation, I supported the following thesis: decentralized resource man-
agement can be employed to create scalable desktop grid computing systems. The
goal of this work was to investigate the problem of building a scalable infras-
tructure for executing Grid applications on a widely distributed set of resources.
Such infrastructure must be decentralized, robust, highly available, and scalable,
while efficiently mapping application instances to available resources throughout

the system. The main contributions made by this dissertation include:

164

1. An efficient decentralized matchmaking framework

I designed and built a modified Content-Addressable Network (CAN) where
each resource type corresponds to a distinct CAN dimension. To address
the problems of one-to-one mapping of nodes to zones and jobs having very
similar requirements, I augmented both job and node descriptions with a
randomly assigned value in a virtual dimension. The virtual dimension
ensures that all jobs and nodes are unique, and helps balance load even
when the actual jobs and nodes are similar. Also, to support both of mini-
mum and exact matches for the resource requirements of jobs, I integrated
all types of resources in a single CAN consisting of multiple disjoint sub-
CANSs through virtual peers and 1-dimensional transformation. By lever-
aging such an architecture, incoming jobs specifying any types of resource
requirements are efficiently matched with system nodes through proximity
in an N-dimensional resource space without wasting any resources in the

system.

Our modified CAN has a different structure compared to the original CAN [76]
where the coordinates in all dimensions are randomly generated. This is
because our CAN is constructed based on semantic resource dimensions.

Therefore, it is difficult for us to prove the matchmaking cost theoretically.

165

However, I supported this claim through experimental results obtained via
simulations for both smaller and larger scale of node and job populations.
The results show that as we increase the number of nodes and jobs by a

factor of 10, the average matchmaking cost increased only 30%.

. Comprehensive decentralized load balancing mechanisms

The load on individual nodes in a desktop grid consists of application load
(the jobs to be executed), and system load (load imposed by the workings of
the underlying system). Here, the load balancing means that we distribute
the application load across multiple candidate nodes in the system that can
run the given jobs (i.e., meet the resource requirements specified by those
jobs). Comprehensive means that we employ both static and dynamic load
balancing schemes to improve overall system throughput and user response

time.

I have designed comprehensive decentralized load balancing mechanisms
that can greatly improve the quality of load balancing and obtain very com-
petitive performance even compared to the idealized centralized scheme.
Overall steps of load balancing algorithms are composed of initial and static

load balancing based on job pushing mechanism and supplement it with

166

lightweight and effective dynamic load balancing mechanisms that can re-
distribute the jobs if needed. By employing such a framework, our system
can prepare and handle any source of potential load imbalance that can be
caused by the heterogeneity of the system nodes and jobs and stale load

information in the decentralized P2P desktop grid.

3. A set of optimizations to reduce the system load

A scalable P2P desktop grid computing system must be able to not only
balance the load of job executions but also introduce minimal and fair over-
heads among the nodes in the system. Unfortunately, non-uniform distribu-
tions of jobs and nodes can cause the system to distribute the system load
unevenly across nodes. This system load can come from either monitor-
ing job executions or maintaining overall CAN space and it can limit the
scalability of our system. This overloaded system maintenance cost is not
sustainable in the P2P desktop grid since every node in our system is a peer
so that unfair distribution of system loads cannot attract the participation of

desktop machines.

The majority of the system load comes from maintaining the CAN by in-

dividual nodes independently and periodically sending heartbeat messages

167

to neighboring nodes in CAN. By employing partial updates mechanism,
the size of each update message is limited to d * 2 (for both directions) *
PU_Threshold * SN where d is the number of dimensions and SN denotes
the size of a single neighbor information. A single neighbor information
includes zone, coordinates and neighbors of neighbors (indirect neighbors)
information, etc. PU_Threshold denotes the number of maximum neighbors
information for each direction of a dimension included in a single update
message. Also, by employing round-robin heartbeat messaging scheme,
the number of messages sent per period is limited to the 2 * d so that ev-
ery node in our CAN sends the same number of messages as the original
CAN [76]. These mechanisms ensure that the system load can be reduced

and distributed more fairly among available system nodes.

8.2 FutureWork

We foresee many possible extensions to the work presented in this dissertation.
Although I provided a set of algorithms and techniques that can build a scalable

P2P desktop grid system, many improvements can still be made and explored.

168

Investigating the Real System Until now, I have mainly implemented and eval-
uated my decentralized matchmaking and load balancing mechanisms in an event-
driven simulator. This is to see the behaviors of our system under various sce-
narios of node capabilities and resource requirements of jobs. Our project team
has developed a real prototype system based on CAN and is testing the system
with real workloads provided by our astronomy collaborators in the University of
Maryland. While we are switching from simulator to the real system, we confront
many other challenges that could not be addressed in the simulation environment.
Therefore, we will investigate the behaviors of our real prototype system and re-

port the results of executing real applications in the near future.

Incorporating Multi-Processor (Core) Nodes In my thesis work, I have as-
sumed that when a job is assigned to a run node, the run node processes only one
job at a time and in FIFO order. However, as hardware technologies evolve and
the needs for computing power to solve complex scientific applications increases,
we have to be able to run multiple independent jobs at a single physical node in
the system. For example, if a node has multiple processors or multiple cores,
allowing only a single job execution in that node is a waste of those resources.

This kind of highly capable machines is becoming more prevalent in the desktop

169

grid computing environment as multi-core desktop machines are introduced. Fur-
thermore, we can even consider running multi-threaded jobs in the P2P desktop
grid system if we can find a node containing multiple processors (cores) that can
match the required number of threads for that job. This brings us new challenges
since we have to devise a mechanism to represent highly capable nodes (having
more than one processing units) in the CAN space and also the matchmaking al-
gorithm should be able to consider the number of required processors for a single

(multi-threaded) job.

Executing Dependent or Parallel Jobs 1In our current formulation of the prob-
lem, there are no dependencies between jobs, but if computational scientists also
use the system for data analysis of results, then the system will have to distinguish
between job types (simulation vs. analysis) and perform the jobs in the correct
order (analysis after simulation of a given problem), and make the output of a sim-
ulation job available as the input for the corresponding analysis job(s). Whenever
jobs are dependent on each other, there should be a scheduler such as Condor’s
DAGMan [88] which can manage and monitor the overall execution flows of jobs
in the system.

Also, we can consider running parallel jobs on the pool of machines in the

170

P2P desktop grid. To run the parallel jobs in the P2P desktop grid system, we
have to find multiple nodes that can run these jobs and also preferably they should
be close enough each other in terms of network distance. This means that now
our P2P desktop grid system should be able to consider building an ad-hoc cluster
that can be constructed from the pool of machines on the fly and also incorporate

other hardware specifications such as network bandwidth and latency.

Long-Term Plans In the near future, small embedded computing devices with
wireless network will become more prevalent. These devices will enable the au-
tomated and remote control of living environments and the transparent use of the
Internet. This phenomenon is already happening as more smartphones such as
Apple iPhone [8] or BlackBerry [14] are introduced into the market and become
more and more popular. As these devices multiply, enormous amount of infor-
mation will be generated and carried by such small mobile devices. This means
that the concept of a “resource” will not be limited to the conventional desktop
computers or workstations any more and will evolve to include all kinds of com-
putable and connectible devices. This post-desktop model of computing in which
information processing is integrated into everyday devices and activities is often

called ubiquitous computing or pervasive computing. In such ubiquitous com-

171

puting environments, I believe that the techniques for harnessing and managing
those resources will become more important. I intend to develop efficient, robust,
and reliable resource management schemes in such dynamic pervasive comput-
ing environments. To achieve this goal, I believe that many challenging questions
should be addressed and my research experience during Ph.D work will be the

foundation of identifying and devising solutions to such questions.

172

Glossary

e Categorical Resource Type is such as a specific type of operating system
or processor. Categorical resource constraints require a singular value for

that resource (exact match) (described in detail in Section 3.2).

e Centralized Matchmaker is an online scheduling mechanism that main-
tains global information about the current capabilities and load information
for all the nodes in the system, and so can assign a job to the node that both
satisfies the job constraints and has the minimum job queue size across all

nodes in the entire system (described in detail in Section 3.1.2).

e Continuous Resource Type is such as memory or disk size, or CPU speed.
For continuous resource types, matchmaking requires that a node meet or
exceed a job’s requirements (minimum match) (described in detail in Sec-

tion 3.2).

173

e Distributed Hash Table (DHT) are a class of decentralized distributed sys-
tems that provide a lookup service similar to a hash table: (name, value)
pairs are stored in the DHT, and any participating node can efficiently re-
trieve the value associated with a given name. Responsibility for maintain-
ing the mapping from names to values is distributed among the nodes, in
such a way that a change in the set of participants causes a minimal amount

of disruption.

e Dynamic Load Balancing addresses problems that arise from our static
load balancing mechanisms for assigning jobs to nodes that can arise for
various reasons, including the heterogeneity of the available nodes or the
jobs to be run, and from stale information in the P2P system. Dynamic load
balancing scheme redistributes the jobs if needed based on either pulling
jobs to lightly loaded node or pushing jobs away from heavily loaded nodes

(described in detail in Section 4.2).

e Heartbeat Messages are soft-state messages for failure recovery in our sys-
tem. There are two different types of heartbeat messages: messages be-
tween owner and run nodes and messages between each node and its neigh-

bors. Former messages are used for failure recovery whenever either owner

174

or run node fails or depart the system. Latter messages are used for main-

taining the CAN DHT (described in detail in Section 2.1 and 5.1).

Injection Node is the node where a job insertion is initiated from. The
injection node can be any arbitrary node in the system and DHT's provide an
external mechanism that can find an existing node in the system (described

in detail in Section 2.1).

Load Balancing is the process of distributing application load (the jobs to
be executed) across multiple candidate nodes in the system that can run the

given jobs (i.e., meet the resource requirements specified by those jobs)

Matchmaking is the process of matching jobs with physical resources, and
consists of finding an appropriate node for running a job based on the re-
source constraints in the job profile and the current (distributed) state of the

nodes in the system.

Modified Heartbeat Messaging addresses the heartbeat message exchang-
ing problem between virtual peers and their neighbors to improve the scala-
bility of our system. This is because a virtual peer maintains a large number
of neighbors in the sub-CANSs so that it can send not only a larger number

of messages but also the size of each message becomes large. Modified

175

Heartbeat Messaging is composed of two different mechanisms: partial up-
date mechanism and round-robin heartbeat messaging (described in detail

in Section 5.1).

Owner Node is originally the node where a job is routed to based on the
coordinates of the job. After introducing the concept of randomized own-
ership (Section 5.2), an arbitrary node in the system can become the owner
node of a job. However, we can still find the owner node of a job determin-
istically based on the (pseudo-)coordinates of the job. The owner node is
responsible for monitoring job executions (described in detail in Section 2.1

and 5.2).

Partial Update Mechanism is to reduce the size of a single update mes-
sage. Whenever a node sends information about its neighbors, it may only
send partial neighbor information. For this purpose, we use a threshold
value, PU_Threshold, which limits the number of neighbors that are in-
cluded in a periodic update message in each direction (upper or lower in
each dimension). Therefore, even with only partial information about neigh-
bors, each node will let its neighbors know about at least one and at most

PU _Threshold neighbors in each direction (we select the PU _Threshold neigh-

176

bors from each direction randomly) (described in detail in Section 5.1).

Pushing Mechanism is an improved static load balancing scheme. Nodes
periodically send load information towards the origin in each CAN dimen-
sion. This information is aggregated at each step, resulting in each node
having partial information about load in all regions of the CAN space con-
taining nodes more capable,— exactly those nodes that are also able to run
the node’s jobs. In times of high load, a node can therefore push jobs to-
wards regions of high capability and low load, based solely on local infor-

mation (described in detail in Section 4.1).

Pseudo Coordinates of a job are randomly generated and used only for
determining the owner and “real” coordinates (corresponding to the job’s
resource requirements) are used for matchmaking process (described in de-

tail in Section 5.2).

Random Walking along T dimension is based on aggregated information
propagated through virtual peers and used for determining the owner node
of a job randomly across all available nodes in the system (described in

detail in Section 5.2).

177

e Rendezvous Node Tree (RNT) is a distributed data structure built on top
of an underlying DHT, which in our implementation is Chord [85]. The
RNT copes with the Load balance issue by performing a tree traversal after
the random initial mapping, and addresses Completeness by passing infor-
mation describing the most capable reachable node up and down the tree

(described in detail in Section 3.1.2).

e Round-robin Heartbeat Messaging is to reduce the number of update
messages sent by a virtual peer. The virtual peer limits how often it sends
heartbeat messages to any given neighbor through the partial update mech-
anism described previously, which only lengthens the average time between

heartbeat messages sent to each neighbor (described in detail in Section 5.1).

e Run Node is the node that processes job executions. The run node should
be able to meet the resource requirements specified by the jobs (described

in detail in Section 2.1).

e Specialized Routing in the T Dimension addresses the problem of routing
bottleneck across multiple sub-CANs. Whenever a physical peer tries to
route a request to the virtual peer, it sends the request to one of the neighbors

of the virtual peer (rather than sending directly to the manager of the virtual

178

peer). This prevents all routing requests delivered from the one sub-space
to another sub-space from always going through the virtual peers (described

in detail in Section 3.2.3).

e T Dimension is the transformed dimension of all categorical resource di-
mensions. For this purpose, we use a locality-preserving Space Filling
Curve, specifically the Hilbert Space Filling Curve (HSFC) [59, 80, 81]

(described in detail in Section 3.2.1).

¢ Virtual Dimension is an additional dimension in a CAN space where the
coordinates are generated uniformly at random. The virtual dimension en-
sures that all jobs and nodes are unique, and helps balance load even when

the actual jobs and nodes are similar (described in detail in Section 3.1).

e Virtual Peers are used for covering unoccupied sub-spaces in CAN. To
integrate categorical resource types, we divide the CAN space into multiple
disjoint sub-spaces where in each sub-space all categorical resource types
are exactly the same and address the connectivity issue through virtual peers

(described in detail in Section 3.2).

e Virtual Peer Manager Node is the node where a virtual peer is mapped to

and maintains all information about the virtual peer (e.g., neighbor list) and

179

processes any routing requests for its assigned virtual peer(s) (described in

detail in Section 3.2.2).

180

(2]

(3]

[4]

[5]

BIBLIOGRAPHY

The Great Internet Mersenne Prime Search. Available at
http: //mww.mer senne.org/prime.htm.

W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The design and
implementation of an intentional naming system. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles, Dec. 1999.

D. Anderson. BOINC: A System for Public-Resource Computing and Storage.
In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing
(GRID 2004), Nov. 2004.

D. P. Anderson, C. Christensen, and B. Allen. Designing a Runtime System for
Volunteer Computing. In Proceedings of the 2006 IEEE/ACM SC06 Conference,
Nov. 2006.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
SETI@home: An Experiment in Public-Resource Computing. Communications

of the ACM, 45(11):56-61, Nov. 2002.

181

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

S. Androutsellis-Theotokis and D. Spinellis. A Survey of Peer-to-Peer Content
Distribution Technologies. ACM Computing Surveys, 36(4):335-371, 2004.

A. Andrzejak and Z. Xu. Scalable, Efficient Range Queries for Grid Information
Services. In Proceedings of the 2nd International Conference on Peer-to-Peer
Computing, Sept. 2002.

Apple. Available at http://www.apple.com/.

M. S. Artigas, P. G. Lopez, J. P. Ahullo, and A. G. Skarmeta. Cyclone: a Novel
Design Schema for Hierarchical DHTs. In Proceedings of the Fifth |EEE Interna-
tional Conference on Peer-to-Peer Computing (P2P 2005), Aug. 2005.

A. Awan, R. A. Ferreira, S. Jagannathan, and A. Grama. Unstructured Peer-to-Peer
Networks for Sharing Processor Cycles. Parallel Computing, 32(2), Feb. 2006.
M. Becchi and P. Crowley. Dynamic Thread Assignment on Heterogeneous Mul-
tiprocessor Architectures. In Proceedings of the 3rd Conference on Computing
frontiers, May 2006.

A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting Scalable
Multi-Attribute Range Queries. In Proceedings of the ACM SGCOMM, Aug.
2004.

K. Bhatia. Peer-To-Peer Requirements On The Open Grid Services Architecture
Framework. GFD-1.049 OGSAP2P Research Group, Global Grid Forum, July
2005.

BlackBerry. Available at http://www.blackberry.com/.

182

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Bridgewater, P. O. Boykin, and V. Roychowdhury. Balanced Overlay Networks
(BON): An Overlay Technology for Decentralized Load Balancing. |[EEE Trans-
actions on Parallel and Distributed Systems, 18(7):1122-1133, 2007.

A. R. Butt, X. Fang, Y. C. Hu, and S. Midkiff. Java, Peer-to-Peer, and Account-
ability: Building Blocks for Distributed Cycle Sharing. In Proceedings of the 3rd
Virtual Machines Research and Technology Symposium (VM’ 04), May 2004.

A. R. Butt, R. Zhang, and Y. C. Hu. A Self-Organizing Flock of Condors. In

Proceedings of the 2003 IEEE/ACM SCO03 Conference, Nov. 2003.

M. Cai, M. Frank, J. Chen, and P. Szekely. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. In Proceedings of the 4th IEEE/ACM
International Workshop on Grid Computing (GRID 2003), Nov. 2003.

B. Calder, A. A. Chien, J. Wang, and D. Yang. The Entropia Virtual Machine for
Desktop Grids. In Proceedings of the 1st ACM/USENIX Conference on Virtual
Execution Environments (VEE' 05), June 2005.

F. Cappello, S. Djilali, G. Fedak, T. Herault, F. Magniette, V. Nri, and O. Lody-
gensky. Computing on large-scale distributed systems: XtremWeb architecture,
programming models, security, tests and convergence with grid. Future Genera-
tion Computer Systems, 21(3):417-437, Mar. 2005.

D. Caromel, A. di Costanzo, and C. Mathieu. Peer-to-peer for computational grids:
mixing clusters and desktop machines. Parallel Computing, 33(4-5):275-288,

2007.

183

[22]

[23]

[24]

[25]

[26]

[27]

(28]

A.J. Chakravarti, G. Baumgartner, and M. Lauria. Application-Specific Schedul-
ing for the Organic Grid. In Proceedings of the 5th IEEE/ACM International Work-
shop on Grid Computing (GRID 2004), Nov. 2004.

A. J. Chakravarti, G. Baumgartner, and M. Lauria. The Organic Grid: Self-
Organizing Computation on a Peer-to-Peer Network. |EEE Transactions on Sys-
tems, Man, and Cybernetics, 35(3), May 2005.

Y. Chawathe, S. Ratnasamy, and L. Breslau. Making Gnutella-like P2P Systems

Scalable. In Proceedings of the ACM SGCOMM 2003, Aug. 2003.

A. S. Cheema, M. Muhammad, and I. Gupta. Peer-to-peer Discovery of Compu-
tational Resources for Grid Applications. In Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing (GRID 2005), Nov. 2005.

A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia: Architecture and Perfor-
mance of an Enterprise Desktop Grid System. Journal of Parallel and Distributed
Computing, 63(5):597-610, May 2003.

N. Coleman, R. Raman, M. Livny, and M. Solomon. Distributed Policy Manage-
ment and Comprehension with Classified Advertisements. Technical Report UW-
CS-TR-1481, University of Wisconsin - Madison Computer Sciences Department,
Apr. 2003.

A. Crespo and H. Garcia-Molina. Routing Indices For Peer-to-Peer Systems. In
Proceedings of the 22nd International Conference on Distributed Computing Sys-

tems (ICDCS2002), July 2002.

184

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Demers, , D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. Epidemic Algorithms for Replicated Database Main-
tenance. In Proceedings of the sixth annual ACM Symposium on Principles of
distributed computing, Aug. 1987.

R. Dingledine, M. J. Freedman, and D. Molnar. The Free Haven project: Dis-
tributed anonymous storage service. In Proceedings of the Workshop on Design
Issues in Anonymity and Unobservability, July 2000.

Dutch University Backbone. The Distributed ASCI Supercomputer 2 (DAS-2).
Available at http://www.cs.vu.nl/das2, 2006.

EGEE Team. LCG. Available at http://Icg.web.cern.ch/LCG, 2004.

D. Epema, M. Livny, R. van Dantzig, X. Evers, and J. Pruyne. A Worldwide
Flock of Condors: Load Sharing among Workstation Clusters. Future Generation
Computer Systems, 12(1):53-65, May 1996.

Folding@Home. Available at http://folding.stanford.edu.

I. Foster and R. Grossman. Data Integration in a Bandwidth-rich World. Commu-
nications of the ACM, 46(11):50-57, Nov. 2003.

I. Foster and A. lamnitchi. On Death, Taxes, and the Convergence of Peer-to-
Peer and Grid Computing. In Proceedings of the 2nd International Workshop on
Peer-to-Peer Systems (IPTPS’03), Feb. 2003.

I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. In-

ternational Journal of Supercomputer Applications, 11:115-128, 1997.

185

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

I. Foster and C. Kesselman, editors. The GRID 2: Blueprint for a New Computing
Infrastructure. Elsevier / Morgan Kaufmann, 2004.

M. J. Freedman, E. Freudenthal, and D. Mazi. Democratizing content publication
with Coral. In Proceedings of the 1st Symposium on Networked Systems Design
and Implementation (NSDI’ 2004), Mar. 2004.

C. Gkantsidis, M. Mihail, and A. Saberi. Hybrid Search Schemes for Unstructured
Peer-to-Peer Networks. In Proceedings of the IEEE Infocom 2005, Mar. 2005.
GlobusToolkit. Available at http://www.globus.org/toolkit/.

Gnutella. Available at http://www.gnutella.com/.

R. Gupta, V. Sekhri, and A. K. Somani. CompuP2P: An Architecture for Inter-
net Computing using Peer-to-Peer Networks. |EEE Transactions on Parallel and
Distributed Systems, 17(11):1306-1320, Nov. 2006.

F. Heine, M. Hovestadt, and O. Kao. Towards Ontology-Driven P2P Grid Resource
Discovery. In Proceedings of the 5th IEEE/ACM International Workshop on Grid
Computing (GRID 2004), Nov. 2004.

A. Tamnitchi and 1. Foster. On Fully Decentralized Resource Discovery in Grid
Environments. In Proceedings of the 2nd IEEE/ACM International Workshop on
Grid Computing (GRID 2001), Nov. 2001.

A. Iamnitchi and I. Foster. A Peer-to-Peer Approach to Resource Location in Grid

Environments. In J. Nabrzyski, J. M. Schopf, and J. Weglarz, editors, Grid Re-

186

[47]

[48]

[49]

[50]

[51]

[52]

[53]

source Management: Sate of the Art and Future Trends, pages 413—-429. Kluwer
Academic Publishers, 2004.

A. lamnitchi and D. Talia. P2P computing and interaction with grids. Future
Generation Computer Systems, 21(3):331-332, 2005.

A. Tosup, C. Dumitrescu, and D. Epema. How are Real Grids Used? The Analysis
of Four Grid Traces and Its Implications. In Proceedings of the 7th IEEE/ACM
International Conference on Grid Computing (GRID 2006), Sept. 2006.

M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-Optimal Distributed
Hash Table. In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS’03), Feb. 2003.

Kazaa. Available at http://www.kazaa.com.

J.-S. Kim, B. Bhattacharjee, P. J. Keleher, and A. Sussman. Matching Jobs to Re-
sources in Distributed Desktop Grid Environments. Technical Report CS-TR-4791
and UMIACS-TR-2006-15, University of Maryland, Department of Computer Sci-
ence and UMIACS, Apr. 2006.

J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman. Using
Content-Addressable Networks for Load Balancing in Desktop Grids. In Proceed-
ings of the 16th |EEE International Symposium on High Performance Distributed
Computing (HPDC 2007), June 2007.

J.-S. Kim, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman. Using

Content-Addressable Networks for Load Balancing in Desktop Grids (Extended

187

[54]

[55]

[56]

[57]

[58]

Version). Technical Report CS-TR-4863 and UMIACS-TR-2007-16, University
of Maryland, Department of Computer Science and UMIACS, Mar. 2007.

J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman.
Resource Discovery Techniques in Distributed Desktop Grid Environments. In
Proceedings of the 7th IEEE/ACM International Conference on Grid Computing
(GRID 2006), Sept. 2006.

J.-S. Kim, B. Nam, P. Keleher, M. Marsh, B. Bhattacharjee, and A. Sussman.
Trade-offs in Matching Jobs and Balancing Load for Distributed Desktop Grids.
Future Generation Computer Systems - The International Journal of Grid Com-
puting: Theory, Methods and Applications, 24(5):415-424, 2008.

J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee, D. Richardson,
D. Wellnitz, and A. Sussman. Creating a Robust Desktop Grid using Peer-to-Peer
Services. In Proceedings of the 2007 NSF Next Generation Software Workshop
(NSFNGS 2007), Mar. 2007.

J.-S. Kim, B. Nam, M. Marsh, P. Keleher, B. Bhattacharjee, and A. Sussman.
Integrating Categorical Resource Types into a P2P Desktop Grid System. In Pro-
ceedings of the 9 IEEE/ACM International Conference on Grid Computing (GRID
2008), Sept. 2008.

D. Kondo, M. Taufer, C. L. Brooks, H. Casanova, and A. A. Chien. Characterizing

and Evaluating Desktop Grids: An Empirical Study. In Proceedings of the 18th

188

[59]

[60]

[62]

[63]

[64]

[65]

International Parallel & Distributed Processing Symposium, Apr. 2004.

J. Lawder. Calculation of Mappings Between One and n-dimensional Values Us-
ing the Hilbert Space-filling Curve. Technical Report BBKCS-00-01, Birkbeck
College, Aug. 2000.

J. Ledlie, J. Schneidman, M. Seltzer, and J. Huth. Scooped, Again. In Proceed-
ings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS’ 03), Feb.
2003.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A Hunter of Idle Worksta-
tions. In Proceedings of the 8th International Conference on Distributed Comput-
ing Systems, June 1988.

V. Lo, D. Zhou, D. Zappala, Y. Lin, and S. Zhao. Cluster Computing on the
Fly: P2P Scheduling of Idle Cycles in the Internet. In Proceedings of the 3rd
International Workshop on Peer-to-Peer Systems (IPTPS’04), Feb. 2004.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and Replication in Un-
structured Peer-to-Peer Networks. In Proceedings of the 16th ACM International
Conference on SQupercomputing (1CS2002), June 2002.

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freud. Dynamic Map-
ping of a Class of Independent Tasks onto Heterogeneous Computing Systems.
Journal of Parallel and Distributed Computing, 59(2), Nov. 1999.

M. Marsh, J.-S. Kim, B. Nam, J. Lee, S. Ratanasanya, B. Bhattacharjee, P. Keleher,

D. Richardson, D. Wellnitz, and A. Sussman. Matchmaking and Implementation

189

[66]

[68]

[69]

[70]

[71]

Issues for a P2P Desktop Grid. In 2008 National Science Foundation Next Gener-
ation Software Workshop (NSFNGS 2008), Apr. 2008.

M. Marzolla, M. Mordacchini, and S. Orlando. Resource Discovery in a Dy-
namic Grid Environment. In Proceedings of the 16th International Workshop on
Database and Expert Systems Applications (DEXA 05), Sept. 2005.

M. Marzolla, M. Mordacchini, and S. Orlando. Peer-to-peer systems for discover-
ing resources in a dynamic grid. Parallel Computing, 33(4-5):339-358, 2007.

C. Mastroianni, D. Talia, and O. Verta. A Super-Peer Model for Building Resource
Discovery Services in Grids: Design and Simulation Analysis. In Proceedings of
the European Grid Conference (EGC2005), Feb. 2005.

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system
based on the XOR metric. In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS’02), Mar. 2002.

W. Nejdl, B. Wolf, C. Qu, S. Decker, A. Naeve, M. Nilsson, M. Palmer, and
T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
Proceedings of the 11th International World Wide Web Conference, May 2002.

D. Oppenheimer, J. Albrecht, D. Patterson, and A. Vahdat. Design and Imple-
mentation Tradeoffs for Wide-Area Resource Discovery. In Proceedings of the
14th IEEE International Symposium on High Performance Distributed Computing

(HPDC-14), July 2005.

190

[72]

[73]

[74]

[75]

[76]

[77]

[78]

M. Parashar, J. C. Browne, C. Edwards, and K. Klimkowski. A Common Data
Management Infrastructure for Adaptive Algorithms for PDE Solutions. In Pro-
ceedings of the 1997 IEEE/ACM SC’' 97 Conference, Nov. 1997.

C. Partridge, T. Mendez, and W. Milliken. Host anycasting service. Request for

Comments 1546, Internet Engineering Task Force, Nov. 1993.

D. Puppin, S. Moncelli, R. Baraglia, N. Tonellotto, and F. Silvestri. A Grid Infor-
mation Service Based on Peer-to-Peer. In Proceedings of the Euro-Par 2005, Aug.

2005.

R. Raman, M. Livny, and M. Solomon. Matchmaking: Distributed Resource Man-
agement for High Throughput Computing. In Proceedings of the 7th IEEE In-
ternational Symposium on High Performance Distributed Computing (HPDC-7),

July 1998.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Con-

tent Addressable Network. In Proceedings of the ACM SGCOMM, Aug. 2001.

R. V. Renesse, K. P. Birman, and W. Vogels. Astrolabe: A Robust and Scalable
Technology for Distributed System Monitoring, Management, and Data Mining.

ACM Transactions on Computer Systems, 21(2), May 2003.

A. Rowstran and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001),

Nov. 2001.

191

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

A.Roy and M. Livny. Condor and Preemptive Resume Scheduling. Grid Resource
Management: Sate of the Art and Future Trends, pages 135-144, 2003.

H. Sagan. Space-Filling Curves. Soringer-Verlag, 1994.

H. Samet. Foundations of Multidimensional and Metric Data Siructures. Morgan-
Kaufmann, 2006.

C. Schmidt and M. Parashar. Flexible Information Discovery in Decentralized
Distributed Systems. In Proceedings of the 12th IEEE International Symposium
on High Performance Distributed Computing (HPDC-12), June 2003.

N. G. Shivaratri, P. Krueger, and M. Singhal. Load Distributing for Locally Dis-
tributed Systems. Computer, 25(12):33-44, 1992.

K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using
Interest-Based Locality in Peer-to-Peer Systems. In Proceedings of the IEEE IN-
FOCOM 2003, Mar. 2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of
the ACM SGCOMM, Aug. 2001.

D. Talia and P. Trunfio. Peer-to-Peer Protocols and Grid Services for Resource
Discovery on Grids. Grid Computing: The New Frontier of High Performance

Computing, 14:83-103, 2005.

192

[87]

[88]

[89]

[92]

[93]

[94]

C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. In Proceedings of the ACM S GCOMM,
Aug. 2003.

D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. In F. Berman, A. J.
Hey, and G. Fox, editors, Grid Computing: Making The Global Infrastructure a
Reality, chapter 11, pages 299-336. John Wiley, 2003.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
Condor experience. Concurrency and Computation: Practice and Experience,
17(2-4):323-356, 2005.

The TeraGrid Project. Npaci. Available at http://www.teragrid.org, Mar. 2006.

P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini, M. Pennanen,
K. Popov, V. Vlassov, and S. Haridi. Peer-to-Peer resource discovery in Grids:
Models and systems. Future Generation Computer Systems, 23(7):864-878, Aug.
2007.

D. Tsoumakos and N. Roussopoulos. A Comparison of Peer-to-Peer Search Meth-
ods. In Proceedings of the International Workshop on the Web and Databases
(WebDB 2003), June 2003.

UnitedDevices. Available at http://www.ud.com.

M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A robust, tamper-evident,
censorship-resistant web publishing system. In Proceedings of the 9th USENIX

Security Symposium, Aug. 2000.

193

[95]

[96]

[97]

[98]

[99]

[100]

[101]

P. Yalagandula and M. Dahlin. A Scalable Distributed Information Management
System. In Proceedings of the ACM SGCOMM, Aug. 2004.

B. Yang and H. Garcia-Molina. Designing a Super-Peer Network. In Proceedings
of the 19th International Conference on Data Engineering (ICDE), Mar. 2003.

D. Zeinalipour-Yazti, V. Kalogeraki, and D. Gunopulos. Exploiting Locality for
Scalable Information Retrieval in Peer-to-Peer Networks. Information Systems,
30(4):277-298, 2005.

B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Kubiatowicz.
Tapestry: A Resilient Global-scale Overlay for Service Deployment. |EEE Journal
on Sdlected Areas in Communications, 22(1), Jan. 2004.

D. Zhou and V. Lo. Cluster Computing on the Fly: Resource Discovery in a Cycle
Sharing Peer-to-Peer System. In Proceedings of the 4th International Workshop
on Global and Peer-to-Peer Computing, Apr. 2004.

D. Zhou and V. Lo. Wave Scheduler: Scheduling for Faster Turnaround Time in
Peer-Based Desktop Grid Systems. In Proceedings of the 11th Workshop on Job
Scheduling Strategies for Parallel Processing, 2005.

D. Zhou and V. Lo. WaveGrid: a Scalable Fast-turnaround Heterogeneous Peer-
based Desktop Grid System. In Proceedings of the 20th International Parallel &

Distributed Processing Symposium, Apr. 2006.

194

