
  

 
 

ABSTRACT 
 
 
 

 
Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION 

OF LASER PULSES IN TENUOUS GASES 
AND PLASMA CHANNELS 

  
 Jianzhou Wu, Doctor of Philosophy, 2005 
  
Dissertation Directed By: Professor Thomas M. Antonsen, Jr.  

Department of Physics 
 
 

The nonlinear propagation over long distances of moderate intensity laser 

pulses in tenuous gases is studied.  The dynamics of these pulses will be affected by 

nonlinear focusing and dispersion due to the background gas, and by plasma induced 

refraction and dispersion.  Laser propagation is studied numerically using the 

simulation code WAKE.  Different phenomena are found for different regimes of 

peak input power.  For powers near the critical power, temporal pulse narrowing and 

splitting due to phase modulation and group velocity dispersion is seen.  For slightly 

higher powers, plasma generation and the formation of a trailing pulse, which is 

guided off axis by plasma refraction and nonlinear gas focusing, is observed.  For 

even higher powers, the laser pulse is partially trapped by the plasma and then 

exhibits a form of self-interference. 

 

The processes affecting the spectrum of the pulse is also studied.  Among 

these are self-phase modulation, nonlinear self-focusing, plasma generation, and 

group velocity dispersion.  The combination of these factors leads to an asymmetric 



  

spectrum.  If group velocity dispersion cannot arrest nonlinear self-focusing, self-

phase modulation, coupled with nonlinear self-focusing, gives rise to a red shifted 

spectrum.  In case plasma is generated, large blue shifted components are observed.  

The maximum blue shift is determined by both the maximum value of the electron 

density, and the distance over which the plasma extends. 

 

Finally, the injection of laser pulses into hydrodynamically preformed plasma 

channels is investigated.  The injection of laser pulses into hydrodynamically 

preformed plasma channels can be hindered by the conditions at the entrance of the 

channel.  In particular, neutral gas and narrowing of the channel prevent efficient 

coupling of laser pulse entering into the channel.  To solve this problem, a funnel 

shaped plasma lens can be grafted onto the channel using an auxiliary formation 

pulse.  Simulations of channel formation show that such a funnel can be made in the 

density ramp of a gas jet.  Simulations of laser pulse propagation show that such a 

funnel efficiently couples pulse energy into the channel.  For a backfill target with a 

funnel, the coupling efficiency is lower and required funnel parameters are more 

restrictive than for the gas jet case. 
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Chapter 1: Introduction 

 

1.1 Overview 

Nonlinear propagation of laser pulses in gases, fluids and solids has been 

extensively studied over the past decade [1-11].  Propagation in gases undergoing 

ionization is relevant to applications, such as laser plasma accelerators [12], x-ray 

lasers [13], harmonic generation [14], and supercontinuum generation [15].  For these 

applications, the pulse should have high peak power and propagate stably for long 

distances.  The propagation is affected by diffraction and refraction.  Moreover, in 

nonlinear media, the strong field distorts the orbits of bound electrons in atoms and 

perturbs their eigen energy levels and wave functions.  This perturbation translates to 

a classically intensity dependent refractive index change, characterized by the 

nonlinear refractive index n2.  The increase in the refractive index causes the pulse to 

nonlinearly focus.  The minimum power required for Gaussian pulse to nonlinearly 

focus is given by the critical power [16], ( )2
0 22crP n nλ π= , where λ  is the 

wavelength, 0n  is the linear index of refraction.  The self-focused laser pulse is 

eventually limited by some effect or combination of effects, such as ionization, 

plasma refraction, group velocity dispersion (GVD).  Tunneling and multi-photon 

ionization by the high intensity pulse generates plasma [2,17].  The decrease in the 

refractive index, which is proportional to the plasma density, pushes the pulse off the 

axis. This phenomenon is known as plasma induced spatial defocusing or ionization 

induced refraction [2-4].  Nonlinear self-focusing can also be arrested by normal 
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GVD for powers that are not too large.  By normal GVD we mean ( )2 2 0d k dω ω > , 

where ( )k ω  is the frequency dependent wave number of a linear plane wave 

propagating in the neutral gas medium.  As the pulse focuses, the nonlinear response 

of the gas (assuming the nonlinear modification to the index is positive) causes the 

leading edge of the pulse to frequency down shift and the trailing edge to frequency 

up shift.  For normal GVD the group velocity decreases with frequency.  Thus, the 

leading edge moves faster than the trailing edge does, the pulse spreads and splits in 

time, which reduces the peak power and weakens the self-focusing. 

 

The dynamic balance among these effects may lead to pulse self-guiding, 

where high power lasers are hoped to propagate over great distance.  Experiments 

have indicated that pulses can be propagated for many meters with a large intensity 

confined to a small radial region [18,19].  However, there has been considerable 

controversy as to whether the observed effect is stable guiding [18], the so-called 

moving focus effect [7], or a more dynamic balance of gas self-focusing and 

ionization induced refraction [20].  Moreover, self-guided pulses are subject to 

ionization and modulation instabilities [21, 22], which limit the propagation distance.  

Thus the basic study of every aspect of these effects is crucial to the fully 

understanding of laser propagation in ionizing gases. 

 

When an ultra short, high intensity, high power laser pulse passing through 

nonlinear media, a super-broadening spectrum can be observed [15, 23-30].  This 

super broadening spectrum covers the visible range and may even extend to the near 
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infrared and ultraviolet bands [25].  This phenomenon is well known as 

supercontinuum generation.  It was first observed in condensed media when a 

powerful picosecond pulse was focused into glass samples [15].  Similar observations 

in high-pressure gases were reported later [27-29].  Supercontinuum is used to 

generate tunable ultrafast light pulses, which is needed in ultrafast spectroscopic 

studies [31], optical parametric amplification [32], dynamic characterization of laser 

induced structural transitions [33], and optical pulse compression [31].  Various 

mechanisms have been suggested to explain this phenomenon.  Among them are 

commonly accepted self-phase modulation (SPM) [15,25,26], four wave mixing [23], 

ionization enhanced SPM [24], and self-steeping [26].  Even though self-steeping 

enhanced SPM is the commonly accepted main mechanism for supercontinuum 

generation, its theoretical prediction of a narrower continuum contradicts the 

experiment observation of a much broader continuum in the low nonlinearity of water 

[31].  Since by far none of these mechanisms alone can give us a complete 

understanding, supercontinuum generation remains an active research area today. 

 

In nonlinear media, self-focusing enhanced SPM plays an important role in 

continuum generation.  In the high power laser fields, the nonlinear response of the 

gases increases the refractive index of the media, which is proportional to the laser 

intensity.  The index-modified media reacts back on the laser pulse, introduces a 

nonlinear phase change, known as self-phase modulation, which generally depends on 

the spatial and temporal profile of the intensity.  The time derivative of this nonlinear 

phase change contributes new frequency components to the laser pulse.  The 
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instantaneous frequency is Stokes shifted (i.e. red shifted) at the leading edge of the 

pulse and anti-Stokes shifted (i.e. blue shifted) at the trailing edge of the pulse.  The 

transverse profile of the intensity results in a spatially dependent phase modulation, 

which distorts the wave front, and is responsible for the phenomena of nonlinear self-

focusing.  On focusing, the pulse shrinks in both spatial and temporal dimensions, and 

the peak intensity increases quickly.  SPM is enhanced by this positive feedback.  

Therefore, it is not surprising that the power threshold for continuum generation 

coincides with the critical power for self-focusing, as demonstrated by experiments 

[6,27,29,34]. 

 

Self-focusing stops when peak intensity is greater than the threshold for 

ionization.  In case ionization occurs, plasma induces a negative change in the 

refractive index at the trailing edge of the pulse, which is proportional to the electron 

density.  The decrease in refractive index due to ionization cancels or even 

overwhelms the increase in refractive index caused by nonlinear response of the 

gases, thus plasma generation can arrest self-focusing.  The asymmetric reduction in 

refractive index enhances SPM, which results in the blue shifted continuum.  Media 

dispersion is another important factor for continuum generation.  Group velocity 

dispersion rearranges the temporal distribution of pulse intensity, such that peak 

intensity and SPM are reduced.  Thus for the study of continuum generation of high 

power laser pulses in gases, self-phase modulation, nonlinear self-focusing, 

ionization, and group velocity dispersion are coupled factors for consideration.  To 
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fully understand spectrum super broadening, it is necessary to include all of these 

factors in the simulation model, which we attempt to do. 

 

As an application of optical guiding of an intense laser pulses in plasma, laser 

wakefield accelerators (LWFA) aroused tremendous interest in the past two decades 

[35-39].  Three basic concepts have been proposed for the acceleration of charged 

particles by plasma waves: the plasma wakefield accelerator [37], the plasma beat-

wave accelerator [38], and the laser wakefield accelerator [39].  These three plasma-

based accelerators can provide extremely large acceleration gradient, such that GeV 

electron energies can be acquired in centimeters [39], and it is hoped that they will be 

more compact then existing accelerators.  In comparison, the traditional radio 

frequency linear accelerators have an accelerating gradient limit of about 100 

MeV/m, and consequently their length is measured in miles.  The advantage over 

traditional accelerators goes without saying, and it is not surprising that plasma-based 

accelerators are very hot research topics. 

 

Among these three most widely investigated schemes, the laser wakefield 

accelerator uses a very short (∼ 100 fs), ultra intense ( 1810≥  W/cm2) laser pulse to 

drive a plasma wave.  A strong plasma wave is excited when the laser pulse duration 

is about the plasma period, which is about 100 fs in time for a typical plasma density 

of 181.24 10×  cm-3.  Due to the short required pulse length, LWFA appeared feasible 

only after chirped-pulse amplification technology was demonstrated [40].  Laser 

wake field accelerators work in either the self-modulation regime or the resonant 
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regime.  The resonant regime corresponds to the case discussed above the pulse 

duration matches the plasma period.  The self-modulation regime corresponds to a 

pulse of several or more plasma waves in duration.  In this case the pulse 

spontaneously develops modulations on the plasma wave time scale due to Raman 

instability.  The modulated pulse then drives a laser plasma wave.  The advantage in 

self-modulation regime is that a larger accelerating field can be achieved for a given 

pulse duration, because a higher density plasma is employed.  Difficulty in control is 

its main disadvantage, since it relies on an instability to excite plasma waves.  In 

comparison, a LWFA working in the resonant regime is operated in a low plasma 

density regime.  The resulting plasma wave is more stable, because it has less 

influence on the laser pulse. 

 

Guiding of laser pulses prolongs the interaction of the laser with the 

propagation medium, so it is a key issue for LWFA.  Several approaches to guiding 

have been studied.  One approach is to use the natural self-focusing that occurs in a 

nonlinear medium.  Such a nonlinearity can arise from the response of bound 

electrons in the atoms of a neutral gas, or from free electrons that are quivering 

relativistically.  A second approach is to create some sort of guiding structure that 

confines radiation within the interaction region.  Examples include capillary 

discharges [41], gas filled capillaries [42], and plasma channels created by thermally 

driven plasma expansions [43-49].  In the last approach, a waveguide formation pulse 

is line-focused into backfill [43-45] or gas jet [46-48] targets.  Channels formed this 

way have been investigated extensively and found to be effective in guiding radiation 
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over many Rayleigh lengths.  Waveguide propagation of a pulse at ~1017 W/cm2 has 

been reported in a channel preformed in jet clustered gas [48].  Injection of pump 

pulses with intensity >1017 W/cm2 into axicon formed waveguides is hindered by the 

poor coupling of the laser to the waveguide entrance in both gas jet and backfill cases 

[44,48].  The poor coupling is a result of both waveguide taper at the entrance (the 

channel radius decreases as the end of the channel is approached) and ionization 

induced refraction of the laser pulse there.  Improving the coupling efficiency will 

determine the operational success of LWFA, and remain an issue of intense study. 

1.2 Purpose of the Dissertation 

Recent theoretical studies show that [1, 9-11], under certain conditions, group 

velocity dispersion is an important factor in nonlinear laser pulse propagation.  The 

combination of nonlinear self-phase modulation and group velocity dispersion leads 

to pulse splitting.  Pulse splitting is observed in many different materials [1, 6, 9-11], 

and observation of multiple splitting has also been reported [11].  In all of the above 

references, in both theory and experiment, the media are dense gases, liquids or even 

solids, where the coefficient of GVD is considerably large.  The importance of GVD 

to pulse propagation in tenuous gases, where the corresponding coefficient of GVD is 

very small, remains unknown. 

 

In this thesis, we study the propagation behavior of moderate power laser 

pulses in tenuous gases at different power levels, around 11 1210 10∼  W.  For low input 

power just above the critical value for self-focusing, the pulse produces almost no 

plasma due to its initially large laser spot size and low laser intensity.  Nonlinear self-
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focusing causes the laser pulse to collapse very quickly.  We must consider the effect 

of group velocity dispersion, which arrests the self-focusing by splitting and 

spreading the temporal intensity profile.  A heuristic argument shows that, in this 

power region, what is important is the normalized coefficient of GVD, which is 

proportional to the coefficient of GVD and spot size squared, and inverse to the pulse 

length squared.  Also of importance is the value of the excess power factor 

( )max cr crP P Pε = − , where maxP  is the maximum power.  We find similar propagation 

behavior for laser pulses with different characteristic parameters but equal values of 

normalized coefficient of GVD divided by 3ε .  For moderate power, plasma is 

generated and plasma defocusing overwhelms GVD.  The peak region of the pulse is 

refracted due to the high gradient of plasma, but the trailing part of the pulse is off 

axis guided just outside the plasma region, which is resulted from the balance 

between the nonlinear self-focusing and plasma defocusing.  For high input power, 

the pulse behavior is dominated by plasma defocusing.  Part of the pulse is trapped in 

the plasma and then decays due to the generation of outgoing waves, which interfere 

with other portions of the pulse. 

 

Our simulation model also applies to situations in which super continuum 

radiation is generated [30].  In this thesis we study the dependence of supercontinuum 

on the details of pulse propagation.  Self-phase modulation, coupling with nonlinear 

self-focusing and GVD, generates new asymmetric frequency components that are 

red-shifted near the leading edge and blue-shifted near the trailing edge [13].  

Tunneling and multi-photon ionization and plasma generation induce a blue shift at 
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the pulse center [3,8].  The goal of this research is to study these competing effects 

and determine the laser parameters for which each effect is dominant.  Particular 

attention is focused on the regime in which the pulse propagates for many meters in 

gas under the influence of nonlinear self-focusing and ionization induced refraction. 

  

Guiding of pulse in preformed plasma channels is needed in a number of 

applications.  However, coupling of a high intensity pulse into a plasma channel can 

be difficult due to the presence of gas at the entrance of the channel or due to the 

channel having a closed entrance.  To overcome these effects, we consider “grafting” 

a plasma funnel onto the preformed waveguide using an auxiliary formation pulse 

[48].  This funnel formation pulse can precede or follow the waveguide generation 

pulse such that different funnel shapes can be selected.  This “grafted” funnel 

eliminates the neutral gas near the channel entrance and provides a focusing element 

to funnel the high intensity laser pulse into the channel [48].  In this thesis, we study 

the coupling process by examining the coupling efficiency of laser pulses to the 

funnel-mouthed channels of a variety of shapes in both backfill and gas jet Helium.  

The initial profiles for the waveguide are generated using the waveguide formation 

code developed by H. M. Milchberg [49].  This code determines time dependent 

radial profiles of electron and ion density and temperature.  Parameters of the funnel 

and channel are obtained by varying the gas density, the intensities of the funnel 

formation pulse and the channel formation pulse, the time delay between the 

formation pulses, and the time between channel formation pulse and the injected 

pulse.  The electron and ion densities are then modeled with simple formulas that 
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captured their essential features by allowing the parameters to vary with axial 

distance.  This information is imported to our model, which then simulates the 

propagation of the short pulse laser.  The effective coupling can be most easily 

achieved in gas jet targets.  This is because ionization induced refraction is so strong, 

that unreasonably long entrance funnels (1~2 cm) are required in backfill targets.  In 

gas jet targets the entrance funnel only needs to extend the short distance (1~2 mm) 

between the channel and edge of the gas jet, and high coupling efficiencies can be 

achieved. 

1.3 Organization of the Dissertation 

The reminder of this thesis is organized as follows.  Chapter 2 presents the 

basic study of the propagation behavior of ultra-short, high intensity laser pulses in 

tenuous gases undergoing ionization.  Chapter 3 discusses the dependence of 

supercontinuum on the laser geometry.  In chapter 4, we study the coupling efficiency 

between the injected pulse and the preformed funnel-mouthed plasma channel for 

both gas jet and backfill cases.  Finally, in chapter 5, a conclusion is briefly discussed. 
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Chapter 2: Laser Pulse Splitting and Trapping in Tenuous Gases 

 

2.1 Introduction 

Nonlinear propagation of laser pulses in gases, fluids and solids has been 

extensively studied over the past decade [1-10].  Propagation in gases undergoing 

ionization is relevant to applications, such as laser plasma accelerators [11], x-ray 

lasers [12] and harmonic generation [13].  For these applications, the pulse should 

have high peak power and propagate stably for long distances.  The propagation is 

affected by diffraction and refraction, moreover, if the peak power is large enough, 

that is, greater than a certain critical power [14], ( )2
0 22crP n nλ π= , where λ  is the 

wave length, 0n  is the linear index of refraction and 2n  is the second order coefficient 

of the nonlinear index of refraction, the nonlinear response of the gas causes the pulse 

to focus.  Eventually self-focusing is limited by some effect or combination of effects.  

In our studies we include ionization of the gas and group velocity dispersion.  

Ionization by the high intensity pulse generates plasma.  The decrease in the 

refraction index then pushes the pulse off the axis, which is known as plasma induced 

spatial defocusing or ionization induced refraction [2, 3].  Group velocity dispersion 

(GVD) spreads the pulse in time.  The parameter regions in which these effects 

compete will be explored. 

 

Recent theoretical studies show that [1, 8-10], under certain conditions, group 

velocity dispersion is an important factor in laser pulse propagation.  As mentioned 
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above, nonlinear self-focusing can be halted by plasma defocusing in space; it can 

also be arrested by normal GVD for powers that are not too large.  By normal GVD 

we mean ( )2 2 0d k dω ω > , where ( )k ω  is the frequency dependent wave number of 

a linear plane wave propagating in the neutral gas medium.  As the pulse focuses, the 

nonlinear response of the gas (assuming the nonlinear modification to the index is 

positive) causes the leading edge of the pulse to frequency down shift and the trailing 

edge to frequency up shift. For normal GVD the group velocity decreases with 

frequency.  Thus, normal GVD spreads and splits the pulse in time and reduces the 

peak power, thus weakening the self-focusing.  Pulse splitting is observed in many 

different materials [1, 5, 8-10], and observation of multiple splitting has also been 

reported [10].  In all of the above references, in both theory and experiment, the 

media are dense gases, liquids or even solids, where the coefficient of GVD is 

considerably large. 

 

In this chapter, we focus on the propagation of moderate power, around 

11 1210 10∼  W, laser pulses in tenuous gases, where the corresponding coefficient of 

GVD is very small.  We study the pulse behavior at different power levels.  For low 

input power, that is power levels just above the critical value for self-focusing, the 

pulse produces almost no plasma due to its initially large laser spot size and low laser 

intensity.  Nonlinear self-focusing causes the laser pulse to collapse very quickly.  

During the collapse the pulse acquires a sharp peak and we must consider the effect 

of group velocity dispersion (GVD), which spreads the pulse, lowers the power, and 

arrests the self-focusing.  For moderate power, plasma is generated and plasma 
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defocusing overwhelms GVD.  The peak region of the pulse is refracted due to the 

high gradient of plasma, but the trailing part of the pulse can still be trapped just 

outside the plasma region.  Thus, in the moderate power regime, the pulse is guided 

off axis.  For high power, the pulse behavior is dominated by plasma defocusing.  

However, part of the pulse is trapped in the plasma and then decays due to the 

generation of outgoing waves, which interfere with other portions of the pulse. 

 

Our calculations are relevant to a form of guiding that has been discussed in 

the literature.  It is achieved due to the balance between the nonlinear self-focusing of 

a background gas and refraction due to the creation of plasma near the axis by 

tunneling and multi-photon ionization of the gas.  Experiments have indicated that 

pulses can be propagated for many meters with a large intensity confined to a small 

radial region [15].  However, there has been considerable controversy as to whether 

the observed effect is stable guiding [15], the so-called moving focus effect [6], or a 

more dynamic balance of gas self focusing and ionization induced refraction [16].  

Our calculations also apply to situations in which super continuum radiation is 

generated [17].  Here, broad spectra are generated which depend on details of pulse 

propagation. 

 

The remainder of this chapter is organized as follows.  In section 2.2 we give 

the basic equations for our theoretical model.  In section 2.3 we analyze the numerical 

simulations in different regions of input power.  Section 2.4 contains a brief summary 

and conclusion. 
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 2.2 Model 

The laser field is determined by Maxwell’s equations, which in the Lorenz 

gauge become 

2
2

2 2

1 4 4
c t c c t

π π ∂ ∂
−∇ = + ∂ ∂ 

PA J  ,     (2.1) 

where A , J  and P  are the vector potential, the current density of free charges and 

the polarization of the medium respectively.  We now assume the laser field is nearly 

monochromatic with a narrow spectrum centered on frequency 0ω , the Fourier 

expansions of A  and P  are 

( )1
2

i tA e dωω ω
π

−= ∫A e  ,      (2.2) 

and  

( )1
2

i tP e dωω ω
π

−= ∫P e  ,      (2.3) 

where e  is the polarization direction, and ( )A ω  and ( )P ω  will be peaked about 0ω .  

We insert (2.2) and (2.3) in Eq. (2.1), which gives 

2
2

2

4 4 iA A J P
c c c
ω π π ω

− −∇ = −  .     (2.4) 

The polarization density will contain both the linear and nonlinear response of the gas 

in which the pulse propagates.  At this point, in the derivation we assume the 

response is dominantly linear in which case the constitutive relation 

( ) ( ) ( )P Eω χ ω ω=  and the relation ( ) ( )E i A cω ω ω=  give 
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( ) ( ) ( )iP A
c
ωω χ ω ω= .      (2.5) 

Corrections to this will be added later. Combining Eqs. (2.4) and (2.5) yields 

2
2

2

4( ) ( ) ( ) ( )A A J
c c
ω πε ω ω ω ω− −∇ =  ,    (2.6) 

where the dielectric constant )(41)( ωπχωε +=  and )(ωχ  is the electric 

susceptibility of the gas medium.  The free electron response of the plasma will be 

treated separately. 

 

To obtain equations in the time domain we must take the inverse Fourier 

transform of (2.6).  Before doing this we first expand )(ωε  around the laser 

frequency, 0ω , 

2
020102

2

)()()( ωωαωωααωεω
−+−+=

c
 ,    (2.7) 

where the constants are defined as, 

 
2
0

0 02 ( )
c
ωα ε ω=  , 

 
0

2

1 2 ( )
c

ω ω

ωα ε ω
ω

=

 ∂
=  ∂  

 , 

and 

 
0

2 2

2 2 2

1 ( )
2 c

ω ω

ωα ε ω
ω

=

 ∂
=  ∂  

 . 

Next we substitute expansion (2.7) into Eq. (2.6), and take the inverse Fourier 

transform to obtain, 
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2
2

0 1 2 2

ˆ ˆ 4ˆ ˆ ˆA AA i A J
t t c

πα α α∂ ∂
− − + −∇ =

∂ ∂
 ,    (2.8) 

where ( ) 0( )

0
ˆ ( , , , ) 1 2 ( , , , ) i tA x y z t A x y z e dω ωπ ω ω

∞ −= ∫  is the complex amplitude of the 

vector potential and Ĵ  is the similarly defined complex amplitude of the current 

density. 

 

In the laser frame, that is, a frame moving near the speed of light, the field 

varies slowly, which makes it easier for us to analyze its properties.  So the next step 

is to transform from the lab frame to the laser frame by introducing the variable 

v f t zξ = − , where v f  is the frame velocity.  The frame velocity can be chosen 

arbitrarily, for example, it could be the speed of light in vacuum or it could be the 

group velocity vg  based on linear propagation in the gas.  A suitable frame velocity 

v f  is the one for which the field varies slowly.  Thus, in our new coordinates the 

dependence of ( )ˆ , ,A t ξ ⊥x  on t will be weak and we will drop the second order 

derivative in t.  Introducing the frame velocity and assuming the field has the general 

form of a plane wave multiplied by a complex envelope, we write, 

0ˆ ( , , ) ( , v , ) ik z
fA t z A t t z eξ⊥ ⊥= = −x x ,     (2.9) 

where 0 0k cω=  is the laser wave number in vacuum.  Further, the contribution to 

the current density Ĵ  from the plasma is 0ˆ ( ) ik z
eJ q mc n Aeγ= −  [7], where ne is 

the electron density, ( ) 1 22 21 v cγ
−

= −  is the relativistic factor, and the angular 

bracket denotes average over one period of the laser.  Inserting (2.9) into Eq. (2.8), 
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dropping the small term 2 2A t∂ ∂ , and inserting the expression for the current density 

then gives, 

( ) ( )2
0 0 1 2 1 02 v v 2f f

A Ak A i i k
t

α α α α
ξ ξ

 ∂ ∂ ∂
− − + − + − ∂ ∂ ∂ 

 

( )
2 2

2 2
2 2 2

4v 1 e
f

nA qA A
mc
πα

ξ γ⊥
∂

− − +∇ =
∂

. (2.10) 

To simply matters we introduce the following normalized field: 2a qA mc= , and we 

express the coefficients 0α , 1α  and 2α , writing ( ) 1 ( )ε ω δε ω= + , where we will 

assume ( ) 1δε ω . We denote 0( )δε ω  as 0δε , then we have 

( )
2

20
0 0 0 02 ( ) 1k

c
ωα ε ω δε= = +  , 

 ( )
00

2
20

1 0 02 2

2 ( )( ) 1 k
c c ω ωω ω

ωω δε ωα ε ω δε
ω ω ==

 ∂ ∂
= = + + ∂ ∂ 

, 

 ( )
0 00

2 2 2
20

2 0 02 2 2 2 2

21 1 ( ) 1( ) 1
2 2

k
c c c ω ω ω ωω ω

ωω δε ω δεα ε ω δε
ω ω ω= ==

 ∂ ∂ ∂
= = + + + ∂ ∂ ∂ 

 . 

We insert the expansions into Eq. (2.10). Then, the first term becomes 

( )2 2
0 0 0 0k a k aα δε− = − . 

The second term becomes 

1 2 0
22 v fi a ik a

t c t
α α

ξ ξ
   ∂ ∂ ∂ ∂

− −   ∂ ∂ ∂ ∂   
 , 

where we have used the lowest order approximations to 1α  and 2α , because the time 

derivative appearing in this term is already very small.  That is, 2
1 02 cα ω  and 

2
2 1 cα , and we assume v 1f c .  The third term becomes 
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( )
0

1 0 0 0 0 0 1

v
v 2 2 1 2f

f
a a ai k ik ik

c ω ω

δεα δε ω β
ξ ω ξ ξ=

  ∂ ∂ ∂ ∂
− − + + =  ∂ ∂ ∂ ∂   

 , 

with the coefficient 

0

1 0 0 0

v v v
2 1 2 2f f g

c cω ω

δεβ δε ω δε
ω =

−  ∂
= − + + = +  ∂ 

 , 

and the group velocity in the gas is given by 

0 0

0 0
1v 1
2g

d c
dk ω ω ω ω

ω δεδε ω
ω= =

  ∂
= − +   ∂   

 . 

The fourth term becomes, 

( )
0 0

22 2 2 2
2 2

2 0 0 0 22 2 2 2 2

v 1v 1 1 2
2

f
f

a a a
c ω ω ω ω

δε δεα δε ω ω β
ξ ω ω ξ ξ= =

 ∂ ∂ ∂ ∂ ∂
− = − + + + = 

∂ ∂ ∂ ∂ ∂  
 , 

with coefficient 

0 0

2 2
2

2 0 0 02 2

v 11 2
2

f

c ω ω ω ω

δε δεβ δε ω ω
ω ω= =

∂ ∂
= − + + +

∂ ∂
. 

After considering the above approximations, Eq. (2.10) can be rewritten 

2 2
2 2

0 0 1 2 0 02 2

2 4 ena a qik a ik a k a
c t mc

πβ β δε
ξ ξ ξ γ⊥

  ∂ ∂ ∂ ∂
− + − +∇ = −  ∂ ∂ ∂ ∂   

. (2.11) 

 

Generally we should also consider the contribution to the refractive index 

from the non-linear response of the gas.  We will simply add this effect to the right 

hand side of (2.11).  That is, we replace 0δε  as follows 

0 0 22n Iδε δε⇒ + ⊗ , 
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where ( ) 22I c mca qπ ω=  is the laser intensity in units of 2erg /(sec cm )⋅  and 

2n I⊗  is a convolution giving the nonlinear dielectric response of the gas.  For the 

simplest model the gas responds instantly and 2 2 ( )n I n I t⊗ = , where 2n  is the second 

order nonlinearity coefficient.  We will consider the effect of a delayed component of 

the response later in this paper. 

 

Equation (2.11) can be further simplified if coefficients 0δε , 1β  and 2β  are 

constants.  We introduce a frequency shift by assuming ( , , ) i ta a x t e δωξ −
⊥= , and 

substitute it into Eq. (2.11), we then have 

2
2

0 0 1 2 2

2 2 a aik a i k a
c t c

δωβ β
ξ ξ ξ ⊥

 ∂ ∂ ∂ ∂ − + + − +∇   ∂ ∂ ∂ ∂  
 

   
2

2 2 0
0 2 0 02

24 2en kq k n I k a
mc c

δωπ δε
γ

 
= − ⊗ − − 
 

. 

Since δω  is arbitrary, we can choose it such that 2
0 0 02 0k k cδε δω− − = , that is, 

0 02 c kδω δε= − .  Inserting this into the above equation, we get the simplified 

equation 

( )
2

2
0 0 1 0 2 2

2 a aik a ik a
c t

β δε β
ξ ξ ξ ⊥

 ∂ ∂ ∂ ∂
− + − − +∇ ∂ ∂ ∂ ∂ 

 

2
2
0 22

4 2enq k n I a
mc
π

γ
 

= − ⊗ 
 

, (2.12) 

where 1 0 2(v v )f g cβ δε− = − .  It is obvious that Eq. (2.12) will be concise if we 

choose the frame velocity to be the group velocity, v vf g= .  In this special case, we 

have 
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2
2 2

0 2 2

2
p

aik a a k a
c t

β χ
ξ ξ ⊥

 ∂ ∂ ∂
− − +∇ = ∂ ∂ ∂ 

 ,    (2.13) 

where ( )2 2 2 2 2
04p pk c q n mcω π= = , 0n  is the ambient electron density.  The 

coefficients are 

0 0 0

2 2 2
2

2 0 0 0 02 2 2

v 11 2
2

g d kc
c dω ω ω ω ω ω

δε δεβ δε ω ω ω
ω ω ω= = =

∂ ∂
= − + + + =

∂ ∂
, (2.14) 

and 

2
0

22
0

2e

p

n k n I
n k

χ
γ

= − ⊗ .      (2.15) 

Equation (2.13) accounts for the second order GVD, axial flow of laser power, 

transverse diffraction, ionization, plasma defocusing, relativistic self-focusing and 

nonlinear self focusing. 

 

We now discuss the model of the plasma response.  The electron density and 

relativistic factor will be calculated to second order in the laser intensity.  Thus, we 

write the electron density 

0en n nδ= + , 

where nδ  is the perturbation which is the first order in the laser intensity. 

 

The electron density is determined by the rate of ionization of the gas atoms in 

the laser field.  In the laser frame coordinates, the evolution of the electron density as 

well as the density of the various ionization stages of the gas atoms is given by [18], 

, , 1 1 ,( ) ( )g i i g i i g ic n a n a nν ν
ξ − +
∂

= −
∂

,     (2.16) 
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, 1
1

( )
Z

e i g i
i

c n a nν
ξ −

=

∂
=

∂ ∑ .      (2.17) 

where ,g in  is the density of gas atoms which have been ionized i times, and ( )i aν  is 

the rate at which the ith electron is ionized. This rate is given by [2] 

2 13 2 3 2
2 (2 1)( )! 2( ) 2 exp

2 32 ( )!( )!

n m

i i h i h
i mn

h h h

l l m a aa C
a am l m

χ χ χν
χ χ χ

∗

∗

− −
   + +    Ω
   = −   

−          

. (2.18) 

where 4 3mq hΩ =  is the atomic frequency, h  is Planck’s constant, 2
04h ea r aλ π=  

is a normalization factor for the vector potential such that / ha a  measures the electric 

field of the laser in units of the atomic electric field, 2 2
0 ( )a h mq=  is the Bohr 

radius, 2 2
er q mc=  is the classical electron radius, hχ  is the ionization potential of 

hydrogen, iχ  is the ionization potential of the ion of interest, h in Z χ χ∗ = , Z is the 

total number of electrons per atom, for n*>>1, ( )2 2
n

C q n nπ∗
∗ ∗≈ , and l, m are 

angular momentum and magnetic quantum number respectively.  This model 

describes tunneling ionization when the laser frequency is lower than the resonant 

frequency for single photon ionization of the gas.  At low intensity the ionization rate 

is exponentially small.  In this case we replace the tunneling rate by one designed to 

model multi-photon ionization [19, 20] 

 ( ) 0i ia aβν ν= ,        (2.19) 

where 0iν  is picked to match smoothly to the tunneling rate, and 7.5β =  represents 

the order of the process in electric field strength. 
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The perturbed electron density is determined by the quasi-static, weakly 

relativistic fluid equations.  The continuity and momentum equations in the laser 

frame are given by [2] 

0 0
1v v 0z rc n n rn
r r

δ
ξ ξ
∂ ∂ ∂

− + =
∂ ∂ ∂

,     (2.20) 

2
2

0 0v
2r

mcmc n n q a
r r
φ

ξ
 ∂ ∂ ∂

= − − ∂ ∂ ∂ 
,    (2.21) 

and 

( )
2

2
0 0v

2z z
mcmc n n q A aφ

ξ ξ ξ
 ∂ ∂ ∂

= − + ∂ ∂ ∂ 
.   (2.22) 

where vr  and vz  are the radial and axial fluid velocities, which are assumed to be 

first order in the laser intensity.  The electromagnetic field of the wake is generated 

by the scalar potential φ  and magnetic vector potential zA .  In principle, vector 

potential must be included because of the spatially inhomogeneous ambient density 

( )0 , ,n r tξ .  Finally, the wake fields are determined by the axial and radial 

components of Ampere’s law 

( )
2

0 2

1 4 vz
z z

Ar qn A
r r r c

π φ
ξ

∂ ∂ ∂
− = + −

∂ ∂ ∂
,    (2.23) 

and 

2 2

0
4 vz

r
A qn

r c r
π φ

ξ ξ
∂ ∂

− = −
∂ ∂ ∂ ∂

.      (2.24) 

Using the electron density perturbation and assuming that the nonlinear response of 

the gas is instant, we can rewrite Eq. (2.15) as, 
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2
2 0

22
0

11 2
2 p

kn a n I
n k
δχ = + − − .      (2.25) 

This completes our description of the analytical model used in our studies. 

 

 2.3 Numerical Simulation 

We wish to find a stable numerical approach to solve Eq. (2.13).  Generally 

implicit schemes are the most robust and allow for the largest time steps.  However, 

an implicit scheme applied directly to Eq. (2.13) requires inversion of an operator 

with second derivatives in both the transverse coordinate ( 2
⊥∇ ) and time ( 2 2ξ∂ ∂ ).  

Such an inversion is possible if one were working in Fourier space.  We however 

wish to carry out all steps in real space because the nonlinear and spatially varying 

terms can be evaluated directly in physical space.  For this reason we consider a split 

step algorithm [21] which we now describe.  For a general differential equation with 

operators L0 and L1, 

0 1 0L L a
t
∂ + + = ∂ 

,       (2.26) 

we can numerically integrate it in two steps. First, we apply the operator L0 for every 

dt step 

0 0
2

t dt t t dt ta a a aL
dt

+ +− +
+ = ,      (2.27) 

then apply L1 every two dt steps with a double step size 2dt 

2 2

1 0
2 2

t dt t t dt ta a a aL
dt

+ +− +
+ = .      (2.28) 
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These two steps operate alternately, and this method is stable as long as the two 

operators can be inverted individually.  Returning to our Eq. (2.13), we solve it by 

defining 

2
2 2

0
0

2
2 p
icL k
k c t

χ
ξ ⊥

 ∂
= −∇ + ∂ ∂ 

,     (2.29) 

and 

2

1 2 2
02

icL
k
β

ξ
∂

=
∂

.       (2.30) 

The finite differencing of Eqs. (2.27) and (2.28), after inserting operators (2.29) and 

(2.30), yields two tri-diagonal matrix equations.  These equations are solved by the 

standard double sweep recursion algorithm [21].  The radial boundary condition is 

discussed in detail in the appendix of Ref. [4], which allows outgoing waves at the 

radially outmost points.  The boundary conditions imposed on the inversion of Eq. 

(2.28) are as follows. We suppose that ( )0 0a = .  That is, we do not allow pulse 

energy to run ahead of the laser frame.  At the maximum value maxξ , we assume that 

the inversion of Eq. (2.28) includes no change in the value of ( )maxa ξ , that is, 

( ) ( )2
max max

t dt ta aξ ξ+ = .  This allows pulse energy to fall behind the laser frame as 

described by Eq. (2.27).  Generally, the simulation region is large enough so that 

there are no visible reflections of waves at either boundary. 

 

In our simulation, the initial laser profile is chosen as, 

( ) ( ) ( )
2

max
2

0 0 0

, , 0 exp sin
1 1 LR R

a ra r t
i t T r i t T Z

πξξ
   

= = −    − −   
, (2.31) 
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where maxa  is the maximum amplitude, and 0r  is the spot size that would be achieved 

in vacuum at the focus, 0t  is the time at which the vacuum focus would occur, and 

/R RT Z c=  where 2
0 0 / 2RZ k r=  is the Rayleigh length.  The temporal profile of the 

pulse envelope is taken to be a half sine wave with full width at half maximum of the 

intensity equal to 2LZ c .  The typical parameters we consider are as follows.  The 

laser wavelength λ is 800 nm and the spot size 0r  is fixed at 0.21 cm, which 

corresponds to a Rayleigh range of 17.3 m.  The pulse duration LZ c  is chosen to be 

either 450 fs or 225 fs, the corresponding full widths at half maxima (FWHM) are 

about 225 fs and 112.5 fs respectively.  The medium is uniformly distributed 0.41 

atmosphere of Argon, with nonlinear coefficient 20 2
2 2.275 10 cm /Wn −= ×  for one 

atm of Argon.  For 800λ =  nm, the quantities in Eq. (2.14) are 

22 20.083fs cmk k ω′′ = ∂ ∂ = , and 6
2 5.87 10β −= × .  Therefore, the corresponding 

GVD is normal.  The constant maxa  will be varied so that phenomena corresponding 

to different input powers can be studied. 

 

2.3.1 Phenomena corresponding to various input powers 

In this subsection, we study self-focusing phenomena in several regimes of 

peak input power.  We initialize the pulse with a spot size that is sufficiently large so 

that the initial peak intensity is below the threshold for ionization.  We then allow the 

pulse to focus, either linearly or nonlinearly, and examine the evolution of various 

pulse characteristics. 
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2.3.1.1 Pulse splitting in the critical power regime 

The laser pulse will self-focus when the input power is greater than the critical 

power crP .  In media such as dense gases, liquids or solids, the coefficient of GVD is 

relatively large and can be expected to affect the pulse as it focuses.  However, in 

tenuous gases, the coefficient of GVD is much smaller and we would not expect it to 

have much effect. A case when GVD is important in tenuous gases is when the peak 

power of the pulse is just above the critical power for self-focusing.  In this case only 

the central portion of the pulse is above critical power and will focus.  This has the 

effect of substantially shortening the pulse intensity on axis and as a consequence 

GVD will be more effective.  Further, the dispersion only needs to make a small 

change to the pulse power to halt the nonlinear focusing. 

 

This case is illustrated in the following example, where a laser pulse 

propagates in 0.41 atm of argon.  Figure 2.1 shows the time evolution of the 

normalized laser intensity. In this case, the peak input power 11
max 1.14 10P = ×  W, is 

above the critical power for nonlinear self-focusing, which we estimate by a series of 

simulations to be about 111.0 10×  W in our model.  The critical power given by the 

analytic formula ( )2
0 22crP n nλ π=  is 111.09 10×  W, which is about nine percent 

higher than our estimated one.  The difference arises because the value of critical 

power is radial-profile dependent.  The central portion of the pulse focuses and the 

intensity on axis increases dramatically.  This is illustrated in Fig. 2.2, where the on 

axis intensity is plotted as a function of vgt zξ = −  (time in the pulse) for the same 



 

 27   

four propagation distances.  The initial formation of a central peak and the subsequent 

splitting are clearly evident.  The forward spike remains for more than six Rayleigh 

times, with its peak intensity slowly dropping down due to diffraction.  Figure 2.3 

shows the evolution of the radially integrated power over the same propagation 

distance.  The power has been redistributed in time ( vgt zξ = − ) due to the combined 

effects of nonlinearity and dispersion.  Power from the central peak has been shifted 

forward and backward in the pulse.  The front to back asymmetry is the result of 

including the mixed derivative in Eq. (2.13). 

 

We now address the issue of determining the range of parameters that GVD 

can be expected to arrest self-focusing before the intensity has reached a level 

sufficient to produce ionization of the gas.  If we neglect the mixed derivative term 

appearing in Eq. (2.13) and assume that no plasma has been generated, then we can 

rescale variables by normalizing radius to the initial radius of the pulse 0r , time, t, to 

the Raleigh time 2
0 0 (2 )RT k r c= , and time within the pulse ( v vg gt zξ = − ) to the 

pulse duration LZ c .  This leaves two dimensionless parameters on which the 

solution depends, the normalized coefficient of GVD, 2 2 2
2 0N Lr Zβ π β= , and the 

excess peak power normalized to the critical power, max 1crP Pε ≡ − .  There is also an 

implicit dependence on the initial shape of the pulse and the location of the vacuum 

focus.  In our studies, we consider Gaussian pulses which are unfocused ( 0 0t =  in Eq. 

(2.31)).  Since the coefficient of the normalized GVD is small, we expect it to be 
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effective in arresting focusing only for peak powers slightly above the critical power 

1ε . 

 

Plots of the peak intensity on axis, normalized to the initial peak intensity, as a 

function of normalized time Rt T  are shown in Fig. 2.4 for various initial parameters.  

The parameters correspond to three different choices of peak power (ε ), 

11
max 1.322 10P = × , 111.14 10×  and 111.057 10×  W.  For each power several choices of 

normalized dispersion ( Nβ ) are considered.  For 11
max 1.322 10P = ×  W, 0.074Nβ = , 

0.084, 0.112 and 0.126.  For 11
max 1.14 10P = ×  W, 0.011Nβ = , 0.014, 0.017, and 

0.021.  And for 11
max 1.057 10P = ×  W, 48.76 10Nβ

−= × , 31.17 10−× , 31.56 10−×  and 

32.0 10−× .  What is clear from the plot is that for small values of excess power 

( 1ε ) only very small values of normalized dispersion are required to arrest 

focusing. 

 

A heuristic argument can be made that the required value of GVD should 

scale as the third power of ε  ( 3
Nβ ε∼ ) for small ε .  First, we note that for small 

values of ε  only the central time slice with width LZξ ε∆ ∼  will be above the 

critical power and start to focus.  This enhances the dispersion term by a factor 1ε − .  

Second, in order to arrest focusing, the laser amplitude only has to be reduced by a 

factor of order ε .  This enhances the dispersion term by an additional factor of ε .  

Finally, for small values of ε  the self-focusing proceeds slowly giving the dispersive 

term longer time to operate.  The self-focusing time scales as 1 2ε − . Thus, the degree 
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of phase modulation will scale in the same way and the modification of the power 

over the longer period of time will contribute an additional factor 1 2ε − . 

 

It is not easy to discern from the Fig. 2.4 whether the scaling 3
Nβ ε∼  is 

followed.  This is because the value of ε  depends sensitively on the determination of 

the value of the critical power.  Further, the scaling of the focusing time ( 1 2ε −∼ ) is 

only true asymptotically.  However, if we consider the three cases producing the 

largest peak intensity ( 111.322 10P = ×  W, 27.4 10Nβ
−= × , 111.14 10P = ×  W, 

21.13 10Nβ
−= × , and 111.057 10P = ×  W, 48.76 10Nβ

−= × ), we note that the peak 

intensity is reached in normalized times 1.65p Rt T = , 3.0 and 4.75 respectively.  If 

we assume 1 2
p Rt T ε −∼  and extrapolate the two lowest power cases, we estimate 

111.0019 10crP = ×  W.  Based on this critical power, the values of ε  and scaled values 

of dispersion 3
Nβ ε are 0.32ε = , 0.14 and 0.055 and 3 2.27Nβ ε = , 4.28 and 5.26 

respectively.  Thus, the critical value of dispersion needed to arrest self focusing 

scales roughly as 3ε . 

 

Figure 2.5 shows the intensity on axis as a function of ξ  for the three cases 

just discussed.  The intensity is plotted at the times 1.82Rt T = , 3.2 and 5.08 

respectively.  We note that the shapes of the pulses are similar, all showing splitting. 

The features of the pulse become more narrow as ε  decreases as expected from the 

1 2
LZξ ε∼  scaling.  
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An important consequence of nonlinear focusing is the resulting self-phase 

modulation and broadening of the pulse spectrum.  Figure 2.6 shows the power 

spectrum of the pulse amplitude on axis for the three cases of Fig. 2.5 and for the 

initial pulse amplitude.  As can be seen, there is significant spectral broadening in 

each case.  As seen in the nominal case of Fig. 2.1, the pulse nonlinearly focuses to a 

sharp intensity spike at 2.0Rt T = , which, in frequency space, corresponds to a 

broadened spectrum distribution. At 2.4Rt T = , the pulse splits due to GVD, the two 

intensity spikes are coherent.  Consequently in the frequency domain the pulse 

spectrum has modulations spaced by the time separation, sT , between the spikes, 

2 sTω π∆ = . 

 

The spectral width is enhanced for pulses just above the critical power.  

According to the scaling argument only the central portion of the pulse, 

corresponding to a time duration 1 2
LZ cε , self-focuses.  This effective pulse 

shortening leads to a broadening of the spectrum.  The amount of pulse energy that 

experiences this shortening is a fraction 1 2ε  of the total pulse energy.  This results in 

a power spectrum which is broader than would be achieved if the pulse were focused 

(by a lens) to the same spot size. 

 

2.3.1.2 Transient ionization 

Figure 2.4 predicts the increase in intensity on axis a pulse will undergo as a 

function of the various parameters.  Depending on these parameters, this predicted 

intensity may exceed that level required to produce significant ionization.  The 
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critical intensity for ionizing a gas is generally in the range 14 210 W cm  to 

16 210 W cm .  For example, table 2.1 gives the intensities at which the rate of 

ionization due to tunneling is equal to the laser frequency for various gases and 

assuming the laser wavelength is 800 nm.  Table 2.1 also shows the critical power for 

self focusing in one atmosphere of gas. 

 

When the gas is ionized a plasma is created which will refract the laser pulse.  

This refraction usually becomes a dominant effect.  Refraction is dominant for the 

following reason.  Let us estimate the spot size cr  over which at least the first electron 

is ionized from the gas according to the formula 2 ( )c cr P Iπ= , where cI  is the critical 

intensity given by the first row of table I.  The resulting plasma density will be 

roughly equal to the gas density or greater over this region. The size of the plasma 

region measured in collisionless skin depths is 2 2
cr δ , where pcδ ω= .  This 

measure of size gives the relative importance of the transverse Laplacian on the left of 

Eq. (2.13) to the plasma density on the right of (2.13).  The expression for the 

normalized spot size becomes 2 2
c cir P Pδ =  where ciP  is a power given by 

2 11 2 38.4 10 [W/cm ] [cm ]ci c c gP I I nπ δ −= = × , 

where gn  is the gas density. Values of ciP  for the various gases are also shown in 

table I.  In general ciP  is much less than the critical power for self-focusing due to gas 

nonlinearity (Note that both ciP  and crP  scale inversely with gas density).  Thus, self-

focused pulses which reach sufficient intensity will generally generate plasma over a 

large spatial region and plasma refraction will be a dominant effect. 
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For our parameters (Argon at 0.41 atm) ionization occurs when the peak 

intensity exceeds 14 25.8 10 W cm× .  We now consider the case of our nominal 

parameters with peak power equal to 111.19 10×  W (This is only about 20% above the 

critical power).  Figure 2.7 shows the time evolution of the on axis laser intensity.  

The radially integrated powers are plotted in Fig. 2.8.  Figure 2.9 shows the on axis 

maximal electron density en . As shown in Fig. 2.7, after 2.0Rt T = , the pulse 

nonlinearly focuses to a sharp intensity peak, at which time the gas is ionized 

according to Fig. 2.9.  However, GVD spreads and splits the pulse, the on axis peak 

intensity drops very quickly.  Consequently, the plasma generation is stopped. 

 

2.3.1.3 Off axis guiding in the slightly higher power regime 

If the input power is increased further, different phenomena appear.  Figure 

2.10 shows the contour plots of the intensity when the peak input power equal 

112.28 10×  W (or about 2.3 times the critical power), where we still use the same 

parameters as those in Fig. 2.1.  As in the previous cases, the nonlinear response of 

the gas induces the time slices of the pulse above the critical power to self-focus.  The 

peak intensity increases quickly to a significant value at which time plasma is 

generated.  Plasma is generated by the portion of the pulse in the rising edge which is 

just above the critical power.  The high gradient plasma then refracts the body and 

trailing part of the pulse, as shown in Fig. 2.10(b).  This refracted portion then 

propagates just outside the plasma region for an extended period of time.  This 

phenomenon is a form of off axis self-guiding.  The off axis guided laser pulse 
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propagates more than 10 m before it comes back to the axis (Fig. 2.10(c)).  At that 

time, the laser intensity in the rising edge has become too weak to generate plasma.  

The pulse then splits and diffracts out of the simulation box (Fig. 2.10(d)). 

 

The physics behind the off axis guiding phenomenon is explained in the next 

figure.  Figure 2.11 shows the profiles of the electron density and index coefficient 

χ , which is defined in Eq. (2.25), at time 0.7Rt T =  and position 0.0113ξ =  cm.  In 

this figure, just outside the plasma region, there is a potential well in the spatial 

distribution of χ .  The contributions to variations in χ  come from the plasma 

electrons and the nonlinear response of the gas.  The former refracts the pulse from 

the axis, while the latter focuses the pulse at larger r. In the plasma region, the 

contribution from the plasma dominates the value of χ , and χ  is positive.  The pulse 

is refracted.  Outside the plasma region, the contribution only comes from the 

nonlinear response of the gas, and χ  is negative.  The pulse tends to nonlinearly 

focus.  The balance between these two factors traps the trailing part of the pulse and it 

is guided in the well.  The trailing part also slips slowly back in the laser frame, 

which is accounted for by the fact that the group velocity in the weakly ionized gas is 

slightly smaller than in the neutral gas.  A key feature of this regime of propagation is 

that the central plasma region is created by ionization occurring in the leading edge of 

the pulse.  The ionization occurs in a narrow portion of the pulse where the power is 

just at or slightly above the critical power for self-focusing.  This portion neither 

diffracts nor self-focuses, propagating stably over an extended distance.  The portion 

of the pulse which is guided off axis does not generate plasma on axis. 
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The evolution of the on axis intensity is plotted in Fig. 2.12.  The on axis 

intensity exhibits two peaks.  The first peak is attributable to the rising portion of the 

pulse which was at the critical power.  The second peak is attributable to the portion 

of the pulse which was off axis guided, but has returned to the axis at later times 

when the first peak has decayed to level below which there is insufficient ionization.  

This trailing portion exhibits pulse splitting arrested by GVD as evidenced by Fig. 

2.12.  Figure 2.13 shows the radially integrated powers.  The radially integrated 

power shows a spike on the leading edge where phase modulation and group velocity 

dispersion have pushed power forward in the pulse.  Additionally, due to refraction 

some power has escaped the simulation volume.  The power in the body of the pulse 

has not changed significantly, remaining above the critical level, until the pulse 

escapes at later time.  However, due to refraction the pulse energy has been deflected 

and acquired a large radial momentum.  This energy does not return to the axis. 

 

2.3.1.4 Outgoing waves in the much higher power regime 

As the input power increases further, pulse splitting and off axis guiding do 

not occur.  The pulse behavior is dominated by plasma defocusing.  Figure 2.14 

shows the contour plots of laser intensity evolution for a case in which the initial 

profile and parameters are the same as those in the previous parts, while the peak 

input power is 15.0 crP  ( 12
max 1.50 10P = ×  W).  Figure 2.14 (a) shows the initial 

contour of the laser pulse intensity.  The high intensity laser pulse collapses radially 

and generates a high gradient plasma column around the axis.  This plasma column 
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then refracts the trailing part of the pulse, as shown in Fig. 2.14 (b).  Shortly after 

(Fig. 2.14 (c)), the pulse exhibits radial striations, which in fact are outgoing waves, 

as we will discuss next.  Figure 2.14 (d) shows the pulse energy refocusing on axis. 

 

The radial striations of Fig. 2.14 (c) can be explained as follows.  As the pulse 

focuses the critical intensity for ionization is exceeded over the central portion of the 

spatial extent of the pulse.  If the ionization occurs rapidly, then this results in a 

frequency upshift with small change in axial wave number for the central portion of 

the pulse [22].  Thus, if 0ω  and 0 0k cω=  are the initial frequency and wave number, 

the upshifted wave number 0ω′  satisfies 2 2 2 2 2
0 0 0p pk cω ω ω ω′ = + = + .  The pulse 

energy then diffracts radially into a region of unionized gas.  On encountering this 

radial transition in plasma density, the axial wave number and frequency do not 

change.  Thus, the pulse acquires a radial wave number to maintain the dispersion 

relation with the upshifted frequency, 2 2 2 2 2 2
0 0 pk c k cω ω⊥ ′= − = .  Therefore the 

striations have a spatial scale of the collisionless skin depth, pc ω , of the plasma 

region. 

 

Figure 2.15 shows the radial profiles of the real and imaginary parts of the 

complex amplitude of the vector potential a at time 0.2Rt T =  and 0.0066ξ =  cm.  

Both parts oscillate sinusoidally with radius and are out of phase by 90  indicating 

outgoing waves.  The wavelength of the striations is 0.05 cm and the skin depth based 
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on the peak electron density ( 154.4 10en = ×  cm-3) is 38.0 10−×  cm satisfying the 

relation 2λ πδ⊥ = . 

 

Closer examination of the process of generation of striations revels that the 

electron density does not rise so fast that the frequency up-shift occurs at constant 

wave number.  Consequently the preceding explanation is only qualitative.  A 

consideration not treated here is the generation of a static magnetic field that can 

occur when electrons are ionized rapidly at all phases of laser cycle.  This effect 

would not modify the laser propagation studied here. 

 

The pulse refocusing 0.4Rt T =  can be clearly seen from Fig. 2.16, which 

shows the evolution of the radius, which contains a given percentage of the pulse 

energy. The average radius is defined by ( ) ( )
1 22 23, , , ,a r t r drd a r t rdrdξ ξ ξ ξ 

 ∫ ∫ .  

The outer curve shows that a portion of the pulse energy is lost due to refraction, 

while the inner portion of the pulse periodically focuses and defocuses. 

 

2.3.2 Time delayed Raman response 

The self-focusing studied in the previous section is due to the second order 

nonlinear electric susceptibility of the gas medium.  There are two kinds of physical 

contributions to the second order nonlinear electric susceptibility.  One is the 

essentially instantaneous nonlinear electronic response due to the distortion of the 

atomic electron orbits.  The other is the time-delayed (~100 fs) response to the 
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electric field, which accounts for the relative motion and rotation of atoms in non-

spherical molecules [23], such as Nitrogen, Oxygen.  The spherically symmetric atom 

gases, such as Argon, and Xenon, respond instantaneously to the field.  For short 

pulses, where the time scale can be of the order of 100 fs, the time delayed Raman 

portion of the response should be considered in more detail.  

 

The modified nonlinear refractive index describing both portions is given by 

[9] 

( )
22 2

2 20
2 1 ( ) ( ) ( )

t

NL
ck mcn a t d G t a

q
δε α α τ τ τ

π −∞

   − + −     
∫ ,  (2.32) 

where α  is the fractional amount of the nonlinearity due to the delayed Raman effect.  

The normalized kernel function is given by 

( )
0/2 sin

( ) ( ) t t t
G t t eθ − Λ

= Ω
Λ

,      (2.33) 

where ( )tθ  is the unit step function and 2 2
01 tΛ = Ω − .  This kernel describes a 

delayed response which is analogous to that of a damped harmonic oscillator.  Here 

the parameters Ω  and 0t  describe the oscillation frequency and damping time of the 

oscillator, and are presumably determined by properties of the gas molecules.  The 

area under the kernel is unity.  Thus, the response to a constant intensity is 2aα , 

which cancels the corresponding term in the instantaneous response. 

 

In the study of the effect of the time delayed Raman response, air is used as 

the propagation medium.  The parameters in our simulation are selected as 
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20 2
2 2.04 10 cm Wn −= × , 20.2 fs cmk′′ =  at 800λ =  nm, corresponding to the 

dimensionless parameter 5
2 1.42 10β −= × .  Parameters for the kernel function of 

Raman response are 1 2α = , 20.6Ω = THz, and 0 77t = fs [9].  The initial pulse 

profile has a duration (FWHM) of 112.5 fs, and spot size 0 0.21r =  cm.  The 

important features that occur in the intensity frequently are of much shorter duration 

(See Figs. 2.5, 2.7, and 2.12).  Thus, we can anticipate that the primary effect of the 

delayed response will be to decrease the nonlinearity by a factor ( )1 α− .  That is, the 

delayed response can be ignored.  With the given value of 1 2α ≅ , the net effect is to 

double the critical power.  For our parameters the critical power including the delayed 

response (long pulses) is 104.99 10crP = ×  W.  If we neglect the delayed response 

(short pulse) 111.0 10crP ≅ ×  W. 

 

As an example, we consider a case where the peak input power is 

11
max 3.87 10P = ×  W.  This is about 3.87 times the short pulse critical power.  Figure 

2.17 shows the contour plots of the laser intensity at time 0.5Rt T = , where the initial 

laser profile is Gaussian.  The Phenomena of off axis guiding and pulse splitting, 

similar to those seen in Figs. 2.10-2.13 are observed.  The same feature is also 

observed at half the input power when 0α = .  When the peak input power increases 

further, as before, radial filaments are observed.  Figure 2.18 shows the contours of 

laser intensity at 0.15Rt T = .  The initial Gaussian pulse has a peak input power of 
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121.85 10×  W.  If we do not consider the Raman response ( )0α = , the same feature, 

outgoing waves, is observed at half the input power. 

 

2.4 Chapter Summary 

In this chapter, we have numerically studied the propagation of high power, 

initially large spot size, laser pulses in tenuous gases.  Propagation is affected by gas 

ionization, plasma defocusing, nonlinear self-focusing and group velocity dispersion 

(GVD).  The instantaneous electronic response and time delayed Raman response of 

the gas are also considered.  The propagation properties have been studied at different 

input power levels.  For peak input power near the critical power for nonlinear self-

focusing, the pulse behavior is dominated by nonlinear self-focusing and GVD.  No 

plasma or very tenuous plasma is generated in this regime.  The nonlinear response of 

the gas makes the pulse self-focus very quickly, however, it is effectively stopped by 

GVD.  Group velocity dispersion spreads the pulse, lowers the power, and arrests the 

self-focusing collapse.  For moderate input power, plasma is generated and plasma 

defocusing overwhelms GVD.  The peak region of the pulse is refracted due to the 

high gradient of plasma.  The trailing part of the pulse is then trapped just outside the 

plasma region, and it can be off axis guided for a remarkably long distance.  For 

higher input power, the pulse behavior is dominated by plasma defocusing.  However, 

part of the pulse is initially trapped in the plasma.  Filaments then appear as pulse 

energy is refracted from the plasma and interference with the part of the laser pulse 

not trapped occurs.  At higher levels of power we can expect three dimensional 

effects [24] to be important.  These will be studied in more detail in the future.
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Table 2.1: Critical intensities for ionization and critical powers for self focusing 

 

 Helium Nitrogen Argon Xenon 

2
1(W cm )I  154.67 10×  145.07 10×  145.79 10×  142.15 10×  

2
2 (W cm )I  162.76 10×  151.82 10×  151.23 10×  145.05 10×  

2
3(W cm )I   154.91 10×  152.36 10×  151.29 10×  

2
4 (W cm )I   161.90 10×  155.81 10×  152.84 10×  

2
5 (W cm )I   163.25 10×  158.90 10×  153.60 10×  

2
6 (W cm )I    161.32 10×  155.34 10×  

2
7 (W cm )I    163.41 10×  161.40 10×  

2
8 (W cm )I    164.82 10×  161.05 10×  

( )WciP  81.47 10×  71.59 10×  71.82 10×  66.75 10×  

crP (W) 121.05 10×  104.24 10×  104.48 10×  95.60 10×  

 

Remark: 

1. The critical intensity ( 1,2, )jI j = …  is the intensity at which the ionization rate of 

the jth electron due to tunneling equals the laser frequency. 

2. 2
1ciP Iπ δ=  where δ  is the skin depth for singly ionized gas. 

3. Calculation of the critical intensity and powers is based on 1 atm of gases and 

wavelength 0.8λ =  cm. 
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Figure 2.1: Time evolution of the normalized laser intensity. The peak input power 

11
max 1.14 10P = ×  W, spot size 0 0.21r =  cm, and pulse length 135LZ =  cm. 
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Figure 2.2: Plots of the on axis intensity as function of ξ  for the case of Fig. 2.1. 
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Figure 2.3: Distribution of the radially integrated power for the case of Fig. 2.1. 
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Figure 2.4: Plots of the peak intensity on axis, normalized to the initial peak intensity, 

as a function of normalized time Rt T  for various initial parameters. The peak 

input powers associated with the solid, dashed, and dotted lines are 111.14 10×  W, 

111.322 10×  W, and 111.057 10×  W respectively. The normalized coefficient, Nβ , 

for the solid lines with diamond, circle, square, and triangle, are 0.011, 0.014, 

0.017 and 0.021, for the dashed lines with the same marks in order, are 0.074, 

0.084, 0.112 and 0.126, and for the dotted lines in the same order, are 48.76 10−× , 

31.17 10−× , 31.56 10−×  and 32.0 10−×  respectively. 
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Figure 2.5: Plots of the axial intensity versus ξ  at the given time.  The peak input 

power maxP , normalized coefficient Nβ , and normalized time Rt T , are 111.14 10× , 

0.011, and 3.2 for the solid line, 111.322 10×  W, 0.074, and 1.82 for the dashed 

line, 111.057 10× , 48.76 10−× , and 5.08 for the dotted line respectively. 



 

 46   

 

 

 

 

0

1

2

3

4

5

7 7.5 8 8.5 9

A
xi

al
 S

pe
ct

ra
l I

nt
en

si
ty

λ(X10-5cm)

P
max

=1.322X1011W

P
max

=1.14X1011W

P
max

=1.057X1011W

 

Figure 2.6: Plots of the normalized spectral intensity on axis.  Parameters correspond 

to those of Fig. 2.5.  The dash-dotted line is the initial spectrum ( Rt T  = 0) with 

the same parameters as the solid line. 
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Figure 2.7: Time evolution of the on axis intensity for 11
max 1.19 10P = ×  W, 

0 0.21r = cm, and 135LZ =  cm. 
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Figure 2.8: Distribution of the radially integrated power as function of ξ  (same case 

as Fig. 2.7). 



 

 49   

 

 

 

 

0

5 1014

1 1015

1.5 1015

2 1015

2.5 1015

0 1 2 3 4

on
-a

xi
s 

m
ax

im
um

 d
en

si
ty

 n
e (c

m
-3

)

t/T
R  

Figure 2.9: On-axis maximal electron density as function of time (same case as Fig. 

2.7). 

 



 

 50   

 

 

 

 

 

Figure 2.10: Contour plots of the laser intensity over time with the peak input power 

11
max 2.28 10P = ×  W.  The spot size and pulse length are of the same as Fig. 2.1. 
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Figure 2.11: Radial profiles of the electron density and index coefficient χ  at 

0.7Rt T =  and 0.0113ξ =  cm (same case as Fig. 2.10). 
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Figure 2.12: Evolution of the on axis intensity (same case as Fig. 2.10). 
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Figure 2.13: Distribution of the radially integrated power as function of ξ  for the 

case of Fig. 2.10. 
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Figure 2.14: Contour plots of the laser intensity over time with the peak input power 

12
max 1.5 10P = ×  W, spot size 0 0.21r = cm, and pulse length 135LZ =  cm. 
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Figure 2.15: Radial profiles of the real and imaginary parts of the complex amplitude 

of the vector potential a at 0.2Rt T =  and 0.0066ξ =  cm for the case of Fig. 

2.14. 
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Figure 2.16: Evolution of the radii containing specified fractions of the pulse energy 

as function of time (same case as Fig. 2.13).  The percentage numbers are of the 

total pulse energy contained within that radius.  The average radius is defined by 

( ) ( )
1 22 23, , , ,a r t r drd a r t rdrdξ ξ ξ ξ 

 ∫ ∫ . 
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Figure 2.17: Contour plots of the laser intensity in air at 0.5Rt T =  after considering 

time delayed Raman response.  The input parameters are 11
max 3.87 10P = ×  W, 

0 0.21r = cm, and 67.5LZ =  cm. 
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Figure 2.18: Contour plot of the laser intensity in air at 0.15Rt T =  after considering 

time delayed Raman response with the initial peak power 12
max 1.85 10P = ×  W, 

spot size 0 0.21r = cm, and pulse length 67.5LZ =  cm. 
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Chapter 3: Spectrum Broadening of Laser Pulses Propagating in 

Tenuous Gases 

 

3.1 Introduction 

Propagation of an ultra short, high intensity, high power laser pulse in a 

nonlinear medium can lead to a super-broadened pulse spectrum [1-10].  This 

broadening, known as supercontinuum generation, covers the visible range and may 

even extend to the near infrared and ultraviolet bands [4].  It was first observed in 

dense media [1].  Similar observations in high-pressure gases were reported later 

[6,7,9].  Supercontinuum radiation is used to generate tunable ultrafast light pulses, 

which are needed in ultrafast spectroscopic studies [1], optical pulse compression [1], 

and optical parametric amplification [11].  Various mechanisms have been suggested 

to explain this phenomenon.  Among them are nonlinear self-phase modulation 

(SPM) [1,4,5], four wave mixing [2], and plasma generation [3,8].  But none of these 

factors alone gives a complete description of the evolution of the spectrum.  In fact, 

these mechanisms are strongly coupled. 

 

A laser pulse propagating through a medium induces a time dependent 

polarization of the atoms or molecules in the medium.  At sufficiently low intensity 

the polarization is proportional to the laser field and is described by the relative 

dielectric constant ε  which may depends on laser frequency.  At higher intensity the 

polarization becomes a nonlinear function of the laser field.  When the medium 
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responds rapidly on the time scale of the envelope of the laser field, the response can 

be characterized by a nonlinear dielectric constant ( )21 2NL n Iε ε= + , where 2n  is the 

coefficient of the nonlinear refractive index and I  is the laser intensity.  The 

nonlinearity in the medium’s response modifies the laser pulse characteristics.  One 

effect is that the phase of the laser pulse is modified in a time and space dependent 

way by the profile of the laser intensity.  This is known as self-phase modulation.  

Since the modulation of the phase is time dependent, new frequency components are 

generated in the pulse and the spectrum is broadened.  The transverse profile of the 

intensity results in a spatially dependent phase modulation, which distorts the wave 

fronts, and is responsible for the phenomena of nonlinear self-focusing.  On focusing, 

the pulse shrinks in both spatial and temporal dimensions [12], and the peak intensity 

increases quickly.  This leads to further SPM.  Thus, it is not surprising that the 

threshold power for spectral super broadening coincides with the critical power for 

nonlinear self-focusing [10]. 

 

When the peak intensity increases over the ionization threshold, plasma is 

generated.  Plasma contributes phase changes in two ways.  First, it introduces an 

index change, which is proportional to the free electron density.  Secondly, by 

refracting the pulse, plasma modifies the transverse intensity profile, and affects the 

intensity-dependent refractive index.  Self-phase modulation introduces a chirp.  For 

2 0n >  the front of the pulse is red shifted and the back is blue shifted.  If group 

velocity dispersion (GVD) is present, the pulse shape will then change.  In the case of 

positive GVD, the red shifted portions run ahead and the blue shifted portions fall 
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behind.  This spreads and splits the pulse in time and modifies the intensity-dependent 

refractive index.  Generally, all of these factors are intensively coupled for high 

power laser beams.  To have a complete understanding of super broadening, we 

should consider these mechanisms simultaneously. 

 

In this chapter we study the effect of the initial pulse parameters on the 

spectral broadening.  Pulse propagation is studied numerically using the simulation 

code WAKE [13], which solves the two dimensional, cylindrically symmetric, 

envelope wave equation for the laser pulse.  The propagation model includes group 

velocity dispersion (GVD), self-phase modulation, self-focusing due to the second 

order nonlinear response of the gas, and plasma generation due to multi-photon and 

tunneling ionization [8,14].  The goal of this research is to study these competing 

effects and determine the laser parameters for which each effect is dominant. 

 

This chapter is organized as following.  Section 3.2 gives our theoretical 

model describing the envelope equation for laser propagation.  The effective 

refractive index is also discussed in this section.  In section 3.3, we discuss the 

asymmetric spectrum broadening in the regime of critical power for nonlinear self-

focusing.  Plasma induced blue shift in higher input power regime is discussed in 

section 3.4.  And finally a conclusion is given in section 3.5. 
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3.2 Theoretical Model 

In the frame moving with group velocity vg , the envelope wave equation 

describing the laser pulse propagation is [15] 

2
2 2

0 2 022 aik a a k a
z

β δε
ξ ξ ⊥

 ∂ ∂ ∂
− − +∇ = − ∂ ∂ ∂ 

,    (3.1) 

where a is the dimensionless complex amplitude of the vector potential, which is 

normalized to 2mc q .  To obtain Eq. (3.1), we assume that the high frequency part of 

the vector potential varies as ( )0 0i k z te ω− , 0k  is the laser wavenumber, and 0 0k cω = .  

The quantity vgt zξ = −  is the distance back from the head of the pulse.  Group 

velocity dispersion is described by the dimensionless coefficient 2 0ckβ ω ′′= , which 

is evaluated at the central frequency 0ω .  The perturbation of the dielectric constant 

on the right hand side of Eq. (3.1) is given by 

2
2

22
0 0

11 2
2

pk n a n I
k n

δδε
 

= − + − + 
 

,     (3.2) 

which describes the contributions from the time and space varying plasma density 

( )0en n nδ= + , relativistic self focusing ( 2 2a− ) and nonlinear self focusing due to 

the neutral gases ( 22n I ).  Here 2n  is the second order nonlinearity coefficient of the 

gas.  The plasma wave number is given by ( )2 2 2 2 2
04p pk c q n mcω π= = , where 0n  is 

the ambient electron density.  ( ) 22I c mca qπ ω=  is the laser intensity.  The 

ambient electron density 0n  is determined by the rate of ionization of the gas atoms in 



 

 63   

the laser field.  In the laser frame, the evolution of the electron density as well as the 

density of the various ionization stages of the gas atoms is given by [15], 

, , 1 1 ,( ) ( )g i i g i i g ic n a n a nν ν
ξ − +
∂

= −
∂

,     (3.3) 

, 1
1

( )
Z

e i g i
i

c n a nν
ξ −

=

∂
=

∂ ∑ .      (3.4) 

where ,g in  is the density of gas atoms which have been ionized i times, and ( )i aν  is 

the rate at which the ith electron is ionized.  Both multi-photon [14] and tunneling [8] 

ionization are considered in our model.  The perturbed density due to the excitation of 

plasma waves is given by [15] 

0 0
1v v 0z rc n n rn
r r

δ
ξ ξ
∂ ∂ ∂

− + =
∂ ∂ ∂

,     (3.5) 

2
2

0 0v
2r

mcmc n n q a
r r
φ

ξ
 ∂ ∂ ∂

= − − ∂ ∂ ∂ 
,    (3.6) 

and 

( )
2

2
0 0v

2z z
mcmc n n q A aφ

ξ ξ ξ
 ∂ ∂ ∂

= − + ∂ ∂ ∂ 
.   (3.7) 

where vr  and vz  are the radial and axial fluid velocities, which are assumed to be 

first order in the laser intensity. The electromagnetic field of the wake is generated by 

the scalar potential φ  and magnetic vector potential zA .  The wake fields are 

determined by the axial and radial components of Ampere’s law 

( )
2

0 2

1 4 vz
z z

Ar qn A
r r r c

π φ
ξ

∂ ∂ ∂
− = + −

∂ ∂ ∂
,    (3.8) 

and 
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2 2

0
4 vz

r
A qn

r c r
π φ

ξ ξ
∂ ∂

− = −
∂ ∂ ∂ ∂

.      (3.9) 

 

Equation (3.1) accounts for second order GVD, axial flow of laser power, 

transverse diffraction, ionization, plasma defocusing, relativistic self-focusing and 

nonlinear self-focusing.  In the case the input power is greater than the critical power 

for nonlinear self-focusing ( ( )2
0 22crP n nλ π= , where 0n  is the linear index of 

refraction) [16], the unlimited focusing can lead the pulse to a singularity.  It can be 

overcome by the group velocity dispersion, which spreads and splits the pulse in time, 

thus reduces the peak intensity, or by the plasma defocusing in space, if the intensity 

is high enough for ionization. 

 

In the following sections, the initial laser profile is chosen as, 

( ) ( ) ( )
2

max
2

0 0 0

, , 0 exp sin
1 1 LR R

a ra r z
i z Z r i z Z Z

πξξ
   

= = −    − −   
, (3.10) 

where maxa  is the maximum amplitude, and 0r  is the spot size that would be achieved 

in vacuum at the focus, 0z  is the distance to the vacuum focus, and 2
0 0 / 2RZ k r=  is 

the Rayleigh length.  The temporal profile of the pulse envelope is taken to be a half 

sine wave with full width at half maximum of the intensity equal to 2LZ c .  The 

typical parameters we consider are as follows.  The laser wavelength λ is 800 nm and 

the spot size at incidence is fixed at 0.21 cm.  The pulse duration LZ c  is chosen to 

be 450 fs, the corresponding full widths at half maxima (FWHM) is 225 fs.  The 

medium is uniformly distributed 311.6 torr of Argon, with nonlinear coefficient 
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20 2
2 2.275 10 cm /Wn −= ×  for 760 torr of Argon.  For 800λ =  nm, the quantities in 

Eq. (3.1) are 22 20.083fs cmk k ω′′ = ∂ ∂ = , and 6
2 5.87 10β −= × .  Therefore, the 

corresponding GVD is normal.  The constant maxa  will be varied so that phenomena 

corresponding to different input powers can be studied. 

 

3.3 Nonlinearity Induced Red Shift 

To study the effect of the initial pulse parameters on the spectral broadening, 

we fix the initial laser spot size to be 0.21 cm, and vary the distance to focus 0z  and 

the vacuum spot size 0r  in Eq. (3.10).  The peak input power is fixed and the laser 

pulses propagate the same distance for all the cases.  Figure 3.1 shows the evolution 

of the average radius, defined by ( ) ( )
1 22 23, , , ,a r t r drd a r t rdrdξ ξ ξ ξ 

 ∫ ∫ , versus 

the propagation distance z for three cases, where 0z  is the distance the pulse travels 

until vacuum focus reached, 0r  is the corresponding waist.  In each case, the input 

power is fixed at 111.14 10×  W, which is about 14 percent higher than the critical 

power for nonlinear self-focusing in 311.6 torr of Argon [15].  In the case 0 0.21r =  

cm, self-focusing is arrested by the positive GVD [15].  For the other two cases with 

smaller waists at vacuum focus, higher peak intensities are obtained due to the 

focusing, which leads to ionization, as shown in Fig. 3.2, where the evolution of the 

on axis maximum electron density is plotted for these three cases.  There is no plasma 

generation for the case 0 0.21r =  cm, but there is weak ionization and plasma 
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generation for the other two cases, in which the focusing is stopped by plasma 

refraction. 

 

The on axis intensity at 27.71z =  m for the three cases is shown in Fig. 3.3.  

For the case 0 0.21r =  cm, there is no linear focusing of the pulse.  However, the 

nonlinear response of the gas causes the pulse to self-focus initially, the pulse then 

spreads and splits due to GVD (see Ref [15]).  Its intensity has a rather smooth profile 

in time.  For the other two cases, the combination of the nonlinear response of the gas 

and the linear focusing causes the pulse to form a sharp intensity spike.  Group 

velocity dispersion has little effect due to the rather small value of the coefficient 2β .  

This is in contrast to the 0 0.21r =  cm case where the focusing is due just to the 

nonlinearity, and because the power is only slightly above the critical power the 

focusing is arrested by GVD.  The sharp increase in intensity eventually ionizes the 

gas in the two linearly focusing cases.  Plasma then refracts the pulse following the 

spike.  The peak intensity for the case 0 0.0939r =  cm is already very small at 

27.71z = m, this is because the pulse has focused and experienced plasma defocusing 

at an earlier time, as can be seen in Fig. 3.1.  Comparatively, the peak intensity for the 

case 0 0.1878r =  cm is still high at 27.71z =  m. 

 

Due to the intensity redistribution in time and space, both the intensity 

induced phase change NLδφ , and plasma induced phase change plasmaδφ  are modified 

from what would be predicted based on linear propagation.  These quantities, along 
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with their sum δφ , evaluated at 27.71z =  m are plotted in Fig. 3.4(a), Fig. 3.4(b) and 

Fig. 3.4(c) respectively.  The dashed, solid, and dotted lines correspond to the case 

0 0.0z =  m, 0 0.21r =  cm, the case 0 6.93z =  m, 0 0.1878r =  cm, and the case 

0 6.93z =  m, 0 0.0939r =  cm respectively.  In Fig. 3.4(a), the non-focusing case 

( 0 0.21r =  cm) has a very smooth phase distribution, since GVD arrests the nonlinear 

self-focusing before the pulse can focus to a sharp spike, the nonlinear refractive 

change has a rather smooth profile.  On the other hand, the other two cases exhibit 

sharp intensity spikes.  The corresponding refractive index changes have similar 

rough profiles, and hence the phase changes have larger gradients.  The phase change 

is accumulated over propagation distance.  The sharp spike for the strong focusing 

case ( 0 0.0939r = cm) occurs earlier and lasts a short time, while the intensity spike 

for the weak focusing case ( 0 0.1878r =  cm) increases relatively slowly, so that the 

refractive index change is maintained over a longer distance.  That is why the weak 

focusing case has stronger phase shift variation compared with the strong focusing 

case.  No ionization occurs in the case 0 0.21r =  cm.  So in Fig. 3.4(b), there is no 

plasma induced phase change.  The plasma induced phase change for the weak 

focusing case has a stronger variation in ξ  then for the strong focusing case, because 

the strong focusing case has a shorter plasma duration, as shown in Fig. 3.2.  The sum 

of the intensity induced and plasma induced phase change is plotted in Fig. 3.4(c).  

The non-focused case has a rather smooth profile.  Therefore, its frequency shift will 

be the smallest among these three cases.  The slight focusing case ( 0 0.1878r =  cm), 
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on the other hand, has the largest variation on both the leading and trailing edges of 

its phase change profile, and this will result in the largest frequency shifts. 

 

Figure 3.5 shows the normalized intensity induced and plasma induced 

frequency shift, and their sum, for the case of weak focusing ( 0 0.1878r =  cm).  Since 

the ionization front occurs after the intensity spike, in the leading edge of the pulse, 

we observed red shifted components early.  The maximum is about 00.7ω .  Following 

the spike, both the nonlinearity and the plasma contribute blue shifted components.  

The combination yields a net blue shift with a maximum about 01.2ω . 

 

The on axis spectral intensity, obtained by Fourier transforming the complex 

envelope of the laser pulse, at 27.71z =  m is plotted in Fig. 3.6.  The weak focusing 

case has the broadest spectrum.  For positive GVD ( 0k′′ > ), it is red shift at the 

leading edge and blue shift at the trailing edge [17].  Figure 3.6 considers all of the 

aforementioned contributions. 

 

Generally, supercontinuum generation is associated with an input power 

higher than the critical power for nonlinear self-focusing.  However, if the power is 

only slightly above the critical power and the coefficient of GVD is large enough to 

arrest self-focusing, the pulse maintains a smooth profile, and the frequency shift will 

not be prominent.  If the coefficient of GVD is so small that it cannot stop nonlinear 

self-focusing, the pulse exhibits a sharp intensity spike, followed by ionization and 

plasma refraction.  The corresponding frequency shift has large red and blue 
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components.  The most broadening occurs when the initial intensity spike growths 

most slowly.  For fixed spot size and pulse energy, varying the focusing angle can 

dramatically affect the output spectrum. 

 

3.4 Plasma Induced Blue Shift 

When the input power increases to a higher level ( 2.28 crP= ), the nonlinear 

response of the gas causes the pulse to focus to a sharp spike in its leading edge.  This 

leads to ionization for all of the three cases of focusing angle discussed previously.  

Figure 3.7 shows the evolution of the on-axis maximum electron density for the three 

cases.  The strong focusing case experiences ionization earlier compared with the 

other two cases.  Upon ionization, the plasma density increases quickly, and 

ionization induced plasma defocusing dominates the propagation.  As a result, the on-

axis laser intensity decreases, which in turn weakens the ionization process, as shown 

by the first density wedge in each case of Fig. 3.7.  Since the central portion of the 

pulse still has a power higher than the critical power, the laser pulse refocuses on-axis 

after the ionization stops, as indicated by the second peak in the electron density.  

This is further demonstrated by Fig. 3.8, which shows the contours of laser intensity 

at 27.71z =  m for the case 0 0.21r =  cm.  The trailing edge of the pulse has an 

intensity spike high enough to trigger ionization, which leads to the second density 

wedge associated with each curve in Fig. 3.7. 
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Figure 3.9 plots the on-axis nonlinear phase change (dashed line), plasma 

induced phase change (dotted line), and their sum (solid line) at 27.71z =  m for the 

case 0 0.21r =  cm.  The trailing intensity spikes in Fig. 3.8 account for the second 

bump in the dashed line.  The dotted line has two steps.  The first step is associated 

with ionization at the leading edge, as shown by the first density wedge in Fig. 3.7.  

When the pulse refocuses at later time, only the trailing spike reaches intensity high 

enough to generate plasma.  So the second downward step is located in the trailing 

edge, and is associated with the second electron density wedge in Fig. 3.7.  The step 

depth is proportional to the area under the electron density curve of Fig. 3.7.  The 

time derivative of the phase change yields the local frequency shift, as shown in Fig. 

3.10.  The sharp second downward step in plasma induced phase change in Fig. 3.9 

corresponds to a large blue shift in Fig. 3.10, as shown by the highest peak of the 

dotted line.  The largest blue shift of the pulse, peaked at 01.74 ω , is a contribution 

of both the peak of the plasma induced blue shift and the peak of the nonlinear blue 

shift.  The nonlinear response of the gas makes a contribution to the red components, 

peaked at both the leading and trailing intensity spikes. 

 

Figure 3.11 compares the local frequency shifts for these three cases.  They 

have similar distributions.  However, the case 0 0.0939r =  cm has a smaller peak blue 

shift than the other two cases.  This is partially due to the relatively smaller area 

under its density curve in Fig. 3.7, compared with the areas of the other two cases.  

The image of the spectral intensity as a function of radius at 27.71z =  m is shown in 

Fig. 3.12 for the most broadened case 0 0.21r =  cm.  The striations in the wavelength 
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are the result of the coherence between the intensity spikes in time domain.  The 

spectrum extends from the near infrared to the ultraviolet bands.  The maximum blue 

shift is determined not only by the maximum value of the electron density, but also 

the distance over which the plasma extends.  The higher the value the electron density 

can reach, and the greater the distance the plasma extends, the larger the value the 

plasma induced phase. 

 

3.5 Chapter Summary 

In this chapter, we have numerically studied the spectral broadening of laser 

pulses propagating in tenuous gases.  Several factors affect the spectral broadening.  

Among them are self-phase modulation, nonlinear self-focusing, plasma generation, 

and group velocity dispersion.  In tenuous gases, self-phase modulation, coupled with 

nonlinear self-focusing, accounts for the near infrared spectrum in the critical power 

regime.  However, if group velocity dispersion arrests the nonlinear self-focusing at 

an earlier time, spectrum broadening will be limited.  At higher input power, plasma 

generation introduces blue shifted components.  The maximum blue shift is 

determined by both the maximum value of the electron density, and the distance over 

which the plasma extends. 
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Figure 3.1: Evolution of the average radius versus the propagation distance z, where 

0z  and 0r  are the vacuum focusing location and the corresponding waist. The 

average radius is defined by ( ) ( )
1 22 23, , , ,a r t r drd a r t rdrdξ ξ ξ ξ 

 ∫ ∫ . 
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Figure 3.2: Evolution of the on-axis maximum electron density. 
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Figure 3.3: On-axis intensity distribution in the laser frame at 27.71z =  m. 
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Figure. 3.4 (a): Nonlinearity-induced phase changes at 27.71z =  m.  The dashed, 

solid, and dotted lines correspond to the case 0 0.00z =  m, 0 0.21r =  cm, the case 

0 6.93z =  m, 0 0.1878r =  cm, and the case 0 6.93z =  m, 0 0.0939r =  cm 

respectively. 
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Figure. 3.4 (b): Plasma-induced phase changes at 27.71z =  m.  The dashed, solid, 

and dotted lines correspond to the case 0 0.00z =  m, 0 0.21r =  cm, the case 

0 6.93z =  m, 0 0.1878r =  cm, and the case 0 6.93z =  m, 0 0.0939r =  cm 

respectively. 
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Figure. 3.4 (c): The sum of the nonlinearity-induced and the plasma-induced phase 

changes at 27.71z =  m.  The dashed, solid, and dotted lines correspond to the 

case 0 0.00z =  m, 0 0.21r =  cm, the case 0 6.93z =  m, 0 0.1878r =  cm, and the 

case 0 6.93z =  m, 0 0.0939r =  cm respectively. 
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Figure 3.5: Normalized nonlinearity-induced (circle), plasma-induced (square) 

instantaneous frequencies and their sum (diamond) at 27.71z =  m for the case 

0 6.93z =  m, 0 0.1878r =  cm. 



 

 79   

 

 

 

 

10-6

10-4

10-2

100

102

6 8 10 12 14 16

z
0
=0.00m

r
0
=0.21cm

z
0
=6.93m

r
0
=0.1878cm

z
0
=6.93m

r
0
=0.0939cm

on
-a

xi
s 

sp
ec

tra
l i

nt
en

si
ty

λ (X10-5cm)  

Figure 3.6: On-axis spectral intensity for the previous three cases at 27.71z =  m.  

The slight focusing case (solid line) has the most broadening spectrum compared 

with the tight focusing case (dotted line) and non-focusing case (dashed line). 
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Figure 3.7: Evolutions of the maximum on-axis electron density when the input 

power increases to 2.28 crP . 
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Figure 3.8: Contour of the laser intensity at 27.71z =  m for the case 0 0.21r =  cm 

with input power 2.28in crP P= .  Pulse refocus at the trailing edge. 
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Figure 3.9: Distributions of the nonlinear phase change (dashed line), plasma induced 

phase change (dotted line), and the summation of them (solid line) at 27.71z =  

m for the case 0 0.21r =  cm with 2.28in crP P= . 
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Figure 3.10: Distributions of local nonlinear frequency (dashed line), plasma induced 

frequency (dotted line), and the summation of them (solid line) according to Fig. 

3.9. 
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Figure 3.11: Local frequency changes at 27.71z =  m when input power is 2.28 crP . 
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Figure 3.12: Image of spectral intensity at 27.71z =  m for the case 0 0.21r =  cm 

when input power is 2.28 crP . 
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Chapter 4: Effective coupling of ultra-intense laser pulse to 

funnel-mouthed plasma waveguides 

 

4.1 Introduction 

The optical guiding of intense laser pulses has many applications, such as x-

ray lasers [1], laser wake-field electron accelerators [2] and harmonic generation.  

Guiding of pulses is needed in these applications so as to prolong the interaction of 

the laser with the propagation medium.  Several approaches to guiding have been 

studied.  One approach is to use the natural self-focusing that occurs in a nonlinear 

medium with a positive second order refractive index.  Such a nonlinearity can arise 

from the response of bound electrons in the atoms of a neutral gas, or from free 

electrons that are quivering relativisticly.  A second approach is to create some sort of 

guiding structure that confines radiation to the interaction region.  Examples include 

high voltage capillary discharges [3], gas filled capillaries [4], and plasma channels 

created by thermally driven plasma expansion [5-10].  In the last approach, a 

waveguide formation pulse is line-focused into backfill [5-7] or gas jet targets [8-10].  

Channels formed in this way have been investigated extensively and found to be 

effective in guiding radiation over many Rayleigh lengths [5-7]. 

 

The coupling efficiency for guiding in a preformed channel in backfill is 

reported to be 70% for moderate intensity (<1015 W/cm2) [5], and 30% for higher 
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intensity ( 155 10×  W/cm2) [6].  Waveguide propagation of a pulse at ~1017 W/cm2 is 

reported in a channel preformed in gas jet clustered gases [10].  Injection of pump 

pulses with intensity >1017 W/cm2 into axicon formed waveguides is hindered by 

poor coupling of the laser pulse to the waveguide entrance in both gas jet and backfill 

gases [6,8].  The poor coupling is a result of both waveguide taper at the entrance (the 

channel radius decreases as the end of the channel is approached) and ionization 

induced refraction of the laser pulse there.  One potential solution to this problem is to 

“graft” a plasma funnel onto the preformed waveguide using an auxiliary formation 

pulse [10].  This funnel formation pulse can precede or follow the waveguide 

generation pulse such that different funnel shapes can be selected.  This “grafted” 

funnel eliminates the neutral gas near the channel entrance and provides a focusing 

element to funnel the high intensity laser pulse into the channel [10]. 

 

The dynamics of laser pulse propagation in gases is affected by diffraction and 

refraction.  Moreover, if the peak intensity is large enough, plasma is generated, 

which causes a decrease in the refractive index, and refracts the pulse itself.  To study 

the effective coupling of an ultra-short pulse into a funnel-mouthed channel, we 

consider in our model transverse diffraction, ionization, plasma induced refraction, 

relativistic self-focusing, and nonlinear self-focusing, as described in Ref. [11].  The 

vehicle for our studies is the simulation code WAKE which solves the two 

dimensional ( ),r z  time dependent scalar wave equation for the complex envelop of 

the laser field.  Included in the code are modules which calculate self-consistently the 
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ionization of the plasma, the generation of plasma waves by the ponderomotive force, 

and the nonlinear modification of the dielectric constant of the background gas. 

 

As mentioned we study the coupling process using the simulation code 

WAKE [12] by examining the coupling efficiency of laser pulses to funnel-mouthed 

guiding channels of a variety of shapes in both backfill and gas jet Helium.  The 

initial profiles for the waveguide and funnel are generated using the waveguide 

formation code of Milchberg et al. [13].  This code determines time dependent radial 

profiles of electron and ion density and temperature.  The rate of production of 

electrons and ions is calculated based on rate equations for tunneling and collisional 

ionization.  The self-consistent absorption of the formation laser pulse is also 

determined based on profiles of electron and ion density and temperature.  Parameters 

of the channel can be varied by varying the gas density, the formation pulse intensity, 

and the timing between the formation pulse and the injected pulse.  The electron and 

ion densities taken from the formation code are then modeled with simple formulas 

that capture their essential features.  This information is imported to WAKE, which 

then simulates the propagation of the short pulse laser.  Properties of the funnel are 

generated by taking the model formulas for the channel and allowing the parameters 

to vary with axial distance.  In this way we determined the requirements for the 

funnel. 

 

Basically, we find that effective coupling can be most easily achieved in gas 

jet targets.  This is because ionization induced refraction is so strong, that 
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unreasonably long entrance funnels (1~2 cm) are required in backfill targets.  In gas 

jet targets the entrance funnel only needs to extend the short distance (1~2 mm) 

between the channel and edge of the gas jet to achieve high coupling efficiency. 

 

The remainder of this chapter is organized as following.  Section 4.2 gives the 

simulation parameters and illustrates a funnel and channel profile for a gas jet target.  

In section 4.3, we study the dependence of the coupling efficiency on the funnel 

parameters for a gas jet target.  We make a similar study in section 4.4 for a backfill 

target.  And finally in section 4.5, conclusions are summarized. 

 

4.2 Laser Parameters And Funnel-Mouthed Channel Profiles 

An elongated gas jet can produce longitudinally uniform gas puffs over its 

orifice.  By focusing a formation laser pulse through an axicon to the gas puffs, one 

can produce a longitudinally uniform channel.  Channel profiles from the 1D 

hydrodynamic formation code [13] are displayed in Fig. 4.1.  Displayed as solid lines 

are the electron density ne, and He+ and He+2 ion densities at 0.7 nst = .  The channel 

formation laser pulse has a wavelength 1.064 µm, duration 150 ps (FWHM), and 

peak intensity 14 21.0 10 W cm× , which is focused into 550 torr Helium through an 

axicon at an approach angle of 15 .  As can be seen there is an expanding shock wave 

that has propagated out to a radius of 30 µm, and makes a wall with thickness of 

about 4 µm.  The electron density at the center of the channel for 0.7 nst =  is about 

19 -31.75 10 cm× , and reaches peak density 19 -33.25 10 cm×  at 30µmr = .  The channel 
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is almost fully ionized, with very low He+ density at the channel center.  The He+2 

density profile is quite flat with a drop-off inside the channel wall.  The dashed lines 

in Fig.4.1 are fits to the solid lines that will be used in subsequent WAKE 

simulations. 

 

Even though the gas density is uniform in the puff, at the edges, a drop in gas 

density occurs, creating a density ramp [8].  Since the collisional ionization rate is 

proportional to the density squared, it is difficult for the formation laser pulse to 

generate efficient ionization throughout this region.  The neutral gas that remains in 

this region then hinders the entering of the injected pulse into the channel.  Figure 4.2 

shows radial profiles of electron and ionized Helium densities for the case of channel 

formed in 275 torr of Helium, which would correspond to a point in the middle of the 

density ramp.  The same laser parameters are used as in Fig. 4.1.  Here we have made 

the assumption that the heating and shock generation processes can be treated as 

being one dimensional in radius with parameters that vary with axial distance.  This 

approximation should be valid as long as the radial size of the channel and the 

electron mean free path are much less than the density ramp scale length.  We note 

that the channel radius is smaller in Fig. 4.2 than in Fig. 4.1 indicating that the plasma 

waveguide will taper to a close at the edge of the gas jet.  In addition the center of the 

channel region in Fig. 4.2 is not fully ionized.  Thus, a laser pulse entering the gas jet 

through this channel will have to further ionize the gas and be refracted in the 

process. 
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To “graft” a funnel onto the channel in the gas density ramp, an auxiliary 

Gaussian laser pulse is focused in this region.  Figure 4.3 shows (again as solid lines) 

the funnel profile at the middle of the density ramp for this case.  The auxiliary pulse, 

which leads the channel formation pulse by 0.7 ns , has a duration 100 ps (FWHM) 

and peak intensity 14 22.5 10 W/cm× .  The funnel wall expands to 45 µm at the same 

time as the channel has attained the parameters of Fig. 4.1.  We can see that there are 

still significant amounts of signally ionized Helium in the funnel region, which results 

from the low initial gas density.  This gas will be further ionized when an ultra-

intense laser pulse is injected into the funnel.  However, now there is a channel with a 

tapered opening that will counteract the effects of refraction. 

 

The density profiles from Figs. 4.1, 4.2 and 4.3 will be modeled with simple 

formulas, as shown as dashed lines in the figures.  These are density profiles used in 

our pulse propagation simulation.  The preformed channel (Fig. 4.1) is defined by an 

inner radius (30 µm) and an outer radius (34 µm).  From the axis to half the inner 

radius (15 µm), the transverse electron density is constant, then increases parabolicly 

up to the inner radius (30 µm), and afterward drops linearly to zero at the outer radius 

(34 µm).  The density of He+ is flat up to half of the inner radius, then parabolicly 

increases to the inner radius, from the inner to the outer radius it linearly drops to 

zero.  The He+2 density profile is flat initially, then parabolicly decreases to zero at 

25µmr = . 
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To model a funnel at the end of the channel we take the radial profile of the 

electron density to have the basic form of Fig. 4.3, that is, the funnel is also described 

by two radii.  However, rather than keep these parameters fixed, as in the channel 

region, we allow them to vary with axial distance.  Figure 4.4 shows the variation of 

both radii as a function of axial distance z.  They both parabolicly decrease as axial 

distance increases from the funnel mouth ( 0.1z = −  cm) to the channel entrance 

( 0.0z =  cm).  They remain constant in the channel region.  For the inner radius (solid 

line), this parabolic curve is determined by three points, the inner radius at the 

channel entrance ( 0.0z =  cm), which is 30 µm read from Fig. 4.1, the inner radius at 

the middle of the funnel ( 0.05 cmz = − ), which is 45 µm read from Fig. 4.3, and the 

inner mouth radius at funnel mouth ( 0.1z = −  cm), which is an adjustable input 

parameter (60 µm in this case).  The curve of outer radius (dashed line) has a similar 

determination.  Both the inner mouth radius and the outer mouth radius are adjustable 

in the WAKE simulations, and coupling will be optimized with respect to these 

variables. 

 

We also model the axial profiles of the densities by using data from Fig. 4.1 

and Fig. 4.3.  Figure 4.5 shows the on-axis density profiles of neutral gas, electrons, 

He+, and He+2 ions.  The gas density starts at 0.1 cmz = − , linearly increases with 

axial distance to 0.0 cmz = , and is constant afterward, with gas density ramp of the 

length of 1 mm as measured in the experiment [8].  The plasma channel shown in Fig. 

4.1 is produced in this longitudinally uniform region ( 0 cmz > ).  Correspondingly, 

the on-axis electron density is constant in this region.  In the funnel region 
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( 0.1 cm 0 cmz− ≤ ≤ ), the on-axis electron density increases smoothly to the channel 

density at the channel entrance ( 0.0z =  cm).  Its profile is modeled by 

( ) ( )1
0
x f x

en z x n + −= ⋅ , where 0 1.75n =  is the on-axis electron density inside the channel 

in the units of 19 -310 cm  (Fig. 4.1), the normalized axial distance is ( )x z L L= + , 

where 0.1cmL =  is the length of the ramp.  The constant factor f ( 0.45f =  in this 

case) is adjustable so that at the middle of the ramp, the on-axis electron density 

approaches 19 -30.65 10 cm×  (Fig. 4.3).  The ionization rate increases with gas density, 

so in the funnel region, we let the He+2 density parabolicly increase.  This parabolic 

curve is determined by zero density at the funnel mouth ( 0.1 cmz = − ), the density 

19 -30.225 10 cm×  at the middle ramp (Fig. 4.3), and the density 19 -30.87 10 cm×  at the 

channel entrance (Fig. 4.1).  The on-axis He+ density is extracted from the electron 

density and the He+2 density by considering the particle number conservation law.  In 

this figure, the plasma funnel coincides with the gas density ramp.  In our simulation, 

we can adjust the funnel location such that we can deal with more general cases, 

where the funnel may start somewhere in the ramp, such that some neutral gas is still 

left in front of the funnel. 

 

We show a surface plot of electron density for a funnel mouthed channel in 

Fig. 4.6.  The parameters describing the variation of funnel and channel are given in 

Fig. 4.1, 4.3, 4.4 and 4.5.  The funnel mouth radius is two times the channel radius, as 

demonstrated by Fig. 4.4.  The length of both the funnel and the gas density ramp is 

fixed to 0.1 cm.  Its radial channel profile is shown in Fig. 4.3, and the on-axis density 
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profile in Fig. 4.5.  For comparison, we also show a surface plot of a tapered channel 

corresponding to the situation of a single formation pulse in Fig. 4.7.  Its on-axis and 

radial density profiles in the tapered region are extracted from Fig. 4.1 and Fig. 4.2 in 

the same way as was done for the funnel mouthed channel.  The only difference is 

that both the inner and the outer radii parabolicly increase from zero to the channel 

radii, so that the end of the channel is closed. 

 

4.3 Gas Jet Target 

We first consider the case of injection of a laser pulse into the channel in the 

absence of a funnel.  The radial profiles of density that are selected correspond to Fig. 

4.1 in the channel and Fig. 4.2 at half way point in the density ramp.  The profiles are 

jointed as described in the previous section.  The resulting electron density profile in 

the zr −  plane is illustrated in Fig. 4.7.  The injected Gaussian laser pulse has a 

duration 100 fs (FWHM), peak power 117.0 10 W× , and a spot size at vacuum focus 

of 15 µm.  Figure 4.8 shows the total energy (solid lines) and pulse radius (dotted 

line) as a function of propagation distance z.  The radius is defined as the one through 

which a given percentage of the energy passes.  As can be seen, at the beginning of 

the uniform channel ( 0.0z =  cm), only about 25% of the laser energy passes through 

a radius of 20 µm.  In Fig. 4.8 we compare the energy evolution when the plasma 

wave is on (solid line with circles) with that when the plasma wave is off (solid line 

with squares), we see that the energy loss is not due to the excitation of the plasma 

wave.  Rather, energy is lost because the laser pulse energy is refracted outside the 
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channel where it leaves the simulation domain through the radial boundaries.  The 

averaged peak intensity that is achieved on axis in this case is 17 21.61 10 W cm× .  In 

comparison, the peak intensity that is obtained in vacuum for these laser parameters is 

171009.2 ×  W/cm2. 

 

To see the beneficial effects of the funnel, we next consider a case, where 

radial profiles corresponding to Figs. 4.1 and 4.3 are jointed.  The electron density in 

the zr −  plane for this case is shown in Fig. 4.6, where the funnel opening is clearly 

visible.  We again consider a 100 fs Gaussian laser pulse of 70 mJ and vacuum focus 

of 15 µm.  The total energy (solid line) and pulse radius (dotted line) as a function of 

propagation distance z are shown in Fig. 4.9.  We now observe that nearly all the 

energy (90%) is confined inside a radius of 20 µm at the beginning of the channel.  

We also observe an energy loss (solid line with round markers).  To understand the 

reason for the energy loss, we deliberately turned off the plasma wave in the 

simulation and reran the simulation with the same parameters.  The solid line with 

square markers shows the energy evolution for this latter case.  By turning off the 

plasma wave, we note that energy is essentially conserved.  Therefore, the decrease of 

energy observed in the original simulation is due to excitation of the plasma wave, 

which is desired. 

 

The time dependence of the on-axis intensity and electron density perturbation 

at 0.5 cmz =  is shown in Fig. 4.10.  For comparison, the on-axis intensity with the 

plasma wave off is also shown.  We observe that the on-axis intensity has multiple 
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peaks even when turning off the plasma wave.  This phenomenon is due to a time 

dependent transformation of the laser pulse shape as it passes through the funnel 

region where there is further ionization of Helium.  This feature is enhanced by the 

plasma wave.  The sharp intensity spikes, when the plasma wave is on, demonstrate 

the self-modulation instability [14].  The plasma frequency pω  at the channel center 

is 0.236/fs, which leads to the pulse duration plasma frequency product 23.6pω τ = , 

where 100τ =  fs is the FWHM of the pulse.  At this value of the product self-

modulation can occur.  In this high density, non-resonant case, a plasma wave is 

excited, as shown by the electron density perturbation (dashed line).  This excited 

plasma wave, in turn, causes the laser pulse to be axially modulated at the plasma 

frequency. 

 

The evolution of the on-axis peak intensity is shown in Fig. 4.11.  Here the 

peak intensity as a function of time is found for each axial location.  With the plasma 

wave is on, the averaged on-axis peak intensity inside the channel is 

17 26.47 10 W cm× , which is about 3 times higher than the peak intensity at vacuum 

focus, 17 22.09 10 W cm× .  To achieve higher laser intensity inside the channel, we 

need to increase the input power.  However, with higher power relativistic self-

focusing and cavitation occur.  The critical power crP  for relativistic self-focusing in 

a uniform plasma with density 19 -31.75 10 cm×  is about 121.71 10 W× .  In the 

simulations here, the input power is only about 0.41 times of crP .  However, in the 

presence of the channel and funnel there is additional focusing of the laser power that 
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can raise the intensity on axis and lead to cavitation even for powers below the 

critical power.  Our input power is near this limit.  We find that if the peak power is 

raised from 117.0 10 W×  to 111035.7 ×  W then cavitation occurs and the fluid model 

that we are using breaks down.  At this point a kinetic treatment should be used to 

simulate propagation in the channel [15].  The present model is adequate to show that 

the pulse energy propagates through the funnel and into the channel. 

 

The previous simulations have shown that high coupling efficiency can be 

achieved for pulse and plasma channels that are realizable in existing experimental 

settings.  The channel electron density are in the range 19102×  cm-3 on axis.  This 

density is higher than desirable for the given laser pulse because there is excitation of 

the self-modulation instability due to the large value of τω p .  Unfortunately, the 

present formation scheme does not lend itself to forming channels at lower density 

due to the strong dependence of the ionization rate on density.  A potential to form 

low density channels exists if gases of atomic clusters are used instead of gas [16].  

Clusters efficiently absorb laser energy because the interaction and heating occurs at 

near solid density. 

 

To explore the coupling and propagation problem in the low density 

(resonant) regime, we reduce the channel density by 35 times so that the channel 

center has a density 17 -35 10 cm× , and the radial electron density profile is kept 

unchanged (the same as what shown in Fig. 4.1).  We also assume that in the channel 

region ( 30≤r µm), Helium is fully ionized so that He+2 profile is the same as electron 
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profile.  We do not consider the details of the channel formation process in this case.  

The plasma frequency pω  at the channel center is now 23.99 10−× /fs, which leads to 

3.99pω τ =  for the same laser pulse duration as considered previously.  For the given 

radial profile of electron density, the WKB approximation shows the turning point to 

be located at 21.5r =  µm for this ideal lower density channel.  Therefore, for the 

injected laser pulse, we keep pulse duration at 100 fs, but choose the vacuum spot 

size to be 20 µm, and increase the pulse energy from 70 mJ to 120 mJ.  Figure 4.12 

shows the energy and radius for this case.  The constancy of the energy and radius 

curves implies that the laser energy has been efficiently coupled into a single mode of 

the plasma channel.  This is confirmed by surface plots of laser intensity in the ξ−r  

plane (here ct zξ = − ), which show little variation with axial distance for over 10 

Rayleigh lengths of propagation. 

 

Next we consider the variation in the peak intensity on-axis. These are 

displayed in Fig. 4.13.  There are less then %10±  variations of the on-axis peak 

intensity, unlike the high density case of Fig. 4.11.  The basic eigenmode is flatter 

than a Gaussian mode.  Because the channel density profile is not parabolic, the 

incident pulse expands initially in the channel, which causes the decrease of the peak 

intensity.  To see that the optimal channel parameters do not depend on the input peak 

intensity, we vary the input energy.  The line with squares shows the case where input 

energy is doubled.  Although the absolute variation increases, the ratio remains about 

%10± .  This relation breaks down with the occurrence of cavitation when the input 
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energy reaches 1.8 J, the corresponding peak power is 0.3 crP , where the critical 

power for the relativistic self-focusing for this channel is 136.0 10 WcrP = × . 

 

For gas jet targets, the gas density ramp extends only a short distance (1 2∼  

mm).  It is possible to make a funnel that length in an experiment, such that little 

neutral gas is left in front of the funnel.  The pulse then avoids severe ionization 

induced refraction prior to entering the channel.  With almost all the energy entering 

the channel, a high intensity can be obtained.  However, if more gas present in front 

of the funnel, the amount of energy that can enter into the channel is reduced.  Unlike 

the gas jet target, where only a limited amount of neutral gas is outside the funnel, 

there is always uniform neutral gas in front of the funnel for backfill.  This is 

independent of the length of the funnel.  Consequently, before the laser pulse can 

enter the funnel and then the channel, it always encounters uniform neutral gas.  To 

avoid excessive ionization, and consequently severe refraction, the laser intensity 

prior to entering the funnel should be as low as possible.  This requires the laser pulse 

to focus into the funnel.  In the next section, by varying the funnel mouth radius, 

funnel length, and vacuum focus location, we study what a funnel can do in the case 

of backfill. 

 

4.4 Backfill Target 

Figure 4.14 shows the evolution of the total energy with axial distance and the 

dependence of the radii through which various percentage of the power pass for a 
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particular case of a pulse incident on a funnel in backfill.  For this simulation, the 

inner funnel mouth radius is 10 times the inner channel radius, which is fixed to be 30 

µm.  The funnel entrance is located at 2.0z = −  cm.  Funnel and channel connect at 

0.0z =  cm, which leads to a two centimeter long funnel.  The channel has an on-axis 

electron density of 18 35 10 cm−×  with a similar transverse profile as in the previous 

section.  The simulation starts at an axial point ( 4.5z = −  cm) where no ionization 

occurs.  From that point on, the pulse propagates toward its vacuum focus, which is 

located at 0.0z =  cm.  To reduce the simulation distance, we bring down the pulse 

energy to 95 mJ, and keep the laser spot size at vacuum focus at 30 µm.  The pulse, 

funnel and channel parameters were selected because they allow for a non negligible 

amount of energy (~ 40%) to be coupled into the channel.  Shorter funnels resulted in 

substantially lower coupling efficiencies. 

 

Before the pulse enters the funnel ( 2z < −  cm), it experiences ionization and 

refraction.  Then the funnel forces the pulse to focus ( 2 0z− < <  cm).  However, less 

than 50% of the energy is confined in the funnel and channel, the rest is refracted.  

We also observe that we lose energy quickly in our simulation due to part of the pulse 

leaving our simulation box by refraction.  The energy loss reduces the on-axis 

intensity obtained in the channel.  For this case, the averaged on-axis peak intensity 

inside the channel is 171.14 10×  W/cm2, which is less than two times the intensity at 

vacuum focus ( 168.55 10×  W/cm2).  After 2 cm of propagation only about 20% of the 

pulse energy is contained in the simulation region. 
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We next study the effect of the location of the vacuum focus on the intensity 

inside the channel.  The inner funnel mouth radius is fixed at 10 times the inner 

channel radius, and the funnel length is fixed at two centimeters. The vacuum focus 

location is shifted from the funnel entrance toward the channel.  Figure 4.15 shows 

the dependence of the averaged on-axis peak intensity inside the channel on the 

vacuum focus location.  The horizontal axis labels the distance of the vacuum focus 

from the funnel entrance.  If the vacuum focus is near the funnel entrance, the laser 

pulse has a relatively high intensity before entering the funnel, this high intensity 

causes ionization, which, in turn, refracts the laser pulse and hinders it from entering 

the funnel.  On the other hand, if the vacuum focus is located far inside the channel, 

the laser spot size at the funnel mouth may be larger then the mouth radius.  This 

results in the deflection of the laser pulse by the inner funnel wall, and hence, the 

laser pulse cannot be efficiently coupled into the channel.  For the parameters used in 

this figure, the appropriate distance between the vacuum focus and the funnel 

entrance is two centimeters, which is about 5.7 Rayleigh lengths based on the vacuum 

spot size of 30 µm. 

 

The funnel mouth radius doubtlessly affects the coupling efficiency.  The 

dependence of the averaged on-axis peak intensity on the inner funnel mouth radius 

can be clearly seen in Fig. 4.16, where the inner funnel mouth radius is normalized to 

the spot size at vacuum focus.  The funnel length is fixed to two centimeters, and the 

vacuum focus is located at the connection of the funnel and the channel.  The 
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intensity obtained inside the channel increases with the funnel mouth radius, and 

saturates at about 17 21.33 10 W cm× . 

 

Finally the curve of the average on-axis peak intensity in the channel versus 

the funnel length is plotted in Fig. 4.17.  To obtain this plot, we fix the funnel mouth 

radius at 10 times the channel radius.  The vacuum focus is always located at the 

connection of the funnel and the channel.  For a fixed funnel mouth radius, if the 

funnel is too long, the laser pulse deflects on the inner funnel wall.  If the funnel is 

too short, the laser pulse experiences excessive ionization before entering the funnel.  

Both cases reduce the coupling efficiency of the laser pulse into the funnel-mouthed 

waveguide.  For the above simulation, two-centimeter length yields the best coupling 

efficiency. 

 

4.5 Chapter Summary 

We numerically studied the coupling efficiency of laser pulses into funnel-

mouthed waveguides.  Initially, the waveguide formation code is used, which 

provides the parameters for formation laser pulses and gas pressure to make an 

efficient funnel mouthed channel.  The simulations show that a funnel can be made in 

the gas density ramp, and an almost fully ionized channel can be obtained as long as 

the Helium pressure is more than 550 torr in the center of the gas puff.  We then 

import this funnel and channel information to the code WAKE, and simulate the 

propagation of a laser pulse with a duration of 100 fs.  We find that the funnel in this 

case provides for 90% efficient coupling of laser energy into the channel.  We also 
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determine that cavitation occurs for pulse energies above 73 mJ.  In addition, in a 

channel of this density a 100 fs, 70 mJ pulse is subject to the self-modulation 

instability. 

 

We also study propagation in an ideal low density channel.  We find that the 

funnel mouth radius and the location of the gas density ramp are two critical factors 

that affect the laser pulse as it enters into the channel.  For the optimal case, where no 

neutral gas is in front of the funnel, the funnel mouth radius is two times the spot size 

at vacuum focus, and an averaged peak intensity of 17 29.16 10 W cm×  is realized for 

a 120 mJ, 100 fs pulse.  By varying the vacuum spot size, the fundamental mode is 

excited for this low density channel.  For the backfill cases, we cannot eliminate 

neutral gas in front of the funnel, and we must consider long funnels.  To avoid 

excessive ionization prior to the laser pulse entering the funnel, the vacuum focus 

should be located several Rayleigh lengths inside the channel from the funnel 

entrance.  Then the laser spot size at the funnel mouth should be several times the 

spot size at focus.  To avoid deflection and refraction at the funnel wall, the funnel 

mouth radius should be considerably greater than the spot size at vacuum focus.  All 

of these require the funnel to be several centimeters long and the mouth radius to be 

several centimeters large.  These requirements make realization of an effective funnel 

on backfill unlikely. 
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Figure 4.1: Channel density profiles at 7.0=t  ns from the 1D hydrodynamic 

formation code.  The formation pulse is focused into longitudinally uniform 550 

torr Helium with duration 150 ps (FWHM) and peak intensity 14 21 10 W cm×  

through an axicon at an approach angle of 15 .  The solid lines are densities 

output by the 1D hydrodynamic formation code.  The dashed lines are densities 

used in the propagation simulation.  In simulation, two radii determine the 

electron distribution.  From the on-axis to the half of the inner radius (15 µm), 

electron density is constant. Then it parabolicly increases until reaching the inner 

radius (30 µm). Afterward, it linearly decreases to zero at the outer radius (34 

µm).  The density of He+2 is constant up to 25=r  µm, then parabolicly 

decreases to zero at the inner radius.  The density of He+ is extracted by using 

the particle number conservation law. 
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Figure 4.2: Tapered channel profiles produced at the half way of the gas density ramp 

(275 torr Helium) using the same formation pulse and at the same time as in Fig. 

4.1.  The solid lines are densities output by the 1D hydrodynamic formation 

code.  The dashed lines are densities used in the propagation simulation. 
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Figure 4.3: The funnel profiles produced at the half way of the gas density ramp (275 

torr Helium).  The auxiliary funnel formation pulse (Gaussian) leads the channel 

formation pulse by 0.7 ns with a duration 100 ps and peak intensity 

14 22.5 10 W/cm× .  The solid lines are densities output by the 1D hydrodynamic 

formation code.  The dashed lines are densities used in the propagation 

simulation. 
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Figure 4.4: Schematic plots of the inner and outer funnel and channel radii.  The inner 

funnel radius parabolicly decreases from an inner mouth radius (60 µm) at 

0.1z = −  cm to a constant inner channel radius (30 µm) at the channel entrance 

0.0z =  cm.  This parabolic curve is determined by the inner channel radius at 

the channel entrance, the inner funnel radius at the half way of the density ramp, 

and the adjustable inner funnel mouth radius.  The outer funnel radius has a 

similar variation from 61 µm to 34 µm. 
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Figure 4.5: On-axis densities by jointing Fig.4.1 and Fig. 4.3.  The electron density 

curve is selected so that it reaches the on-axis density at the half way of the ramp 

shown in Fig. 4.3, and reaches on-axis density at the channel entrance shown in 

Fig. 4.1.  The He+2 density parabolicly increases from zero to the half way 

density in Fig. 4.3 and finally reaches the channel He+2 density in Fig. 4.1.  The 

He+ density is extracted by obeying the particle number conservation law.  The 

gas density ramp starts at 1.0−=z  cm, ends at 0.0=z  cm with a length of 0.1 

cm. 
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Figure 4.6: Surface plot of a funnel mouthed channel by jointing Fig. 4.1 and 4.3 

using method stated in Fig. 4.4 and 4.5. 
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Figure 4.7: Surface plot of a tapered channel by jointing Fig. 4.1 and 4.2 using similar 

method stated in Fig. 4.4 and 4.5. 
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Figure 4.8: The evolution of the total laser energy and radius of percentage energy 

confined for a laser pulse propagation in the tapered channel shown in Fig. 4.7.  

The injected pulse has a vacuum spot size of 15 µm, duration of 100 fs, and 

energy of 70 mJ. 
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Figure 4.9: The evolution of the total laser energy and radius of percentage energy 

confined for a laser pulse propagation in the funnel mouthed channel shown in 

Fig. 4.6.  Same injected pulse is used as in Fig. 4.8.  The solid line with squares 

demonstrates the evolution of pulse energy when the plasma wave is turned off.  

The solid line with circles is that when the plasma wave is on. 
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Figure 4.10: The fine dependences of the on-axis intensity and electron density 

perturbation at 0.5 cmz = .  The bottom figure shows the on-axis intensity with 

the plasma wave off.  The upper figure shows both the on-axis intensity (solid 

line) and electron density perturbation (dashed line). 
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Figure 4.11: The evolution of the on-axis peak intensity in the funnel and channel.  

The same channel and laser pulse are used as those in Fig. 4.9. 
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Figure 4.12: The evolution of the total laser energy and radius of percentage energy 

confined for a laser pulse propagation in an ideal optimal low density channel, 

which has a similar profile shown in Fig. 4.6, but has a low on-axis electron 

density of 17 -35 10 cm× .  The injected pulse has a vacuum spot size of 20 µm, 

duration of 100 fs, and energy of 120 mJ. 
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Figure 4.13: The variation in the peak intensity on-axis for the pulse propagation in 

Fig. 4.12.  A %10±  variation of the on-axis peak intensity is observed (solid 

line with circles) even when the input energy is doubled (solid line with 

squares). 
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Figure 4.14: The evolution of the total laser energy and radius of percentage energy 

confined for backfill.  The funnel mouth radius is 10 times the channel radius.  

The laser pump enters the funnel at 2.0z = −  cm and the channel at 0.0z =  cm.  

The vacuum focus is located at channel entrance. 
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Figure 4.15: The dependence of the averaged on-axis peak intensity inside the 

channel on the location of the vacuum focus for backfill.  The funnel mouth 

radius is fixed to ten times the channel radius, and funnel length fixed to two 

centimeters. 
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Figure 4.16: The relation between the averaged on-axis peak intensity inside the 

channel and the normalized funnel mouth radius for backfill.  The funnel length 

is fixed to two centimeters, and the vacuum focus is located at the channel 

entrance. 
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Figure 4.17: Varying of the averaged on-axis peak intensity inside the channel with 

the funnel length for backfill.  The funnel mouth radius is fixed to 10 times the 

channel radius, the vacuum focus is always located the connection of the funnel 

and the channel. 
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Chapter 5: Conclusion 

In this dissertation, we have numerically studied the propagation of high 

power, initially large spot size, laser pulses in tenuous gases.  Propagation is affected 

by gas ionization, plasma defocusing, nonlinear self-focusing, and group velocity 

dispersion (GVD).  The instantaneous electronic response and time delayed Raman 

response of the gas are also considered.  The propagation properties have been 

studied at different input power levels.  For peak input power near the critical power 

for nonlinear self-focusing, the pulse behavior is dominated by nonlinear self-

focusing and GVD.  No plasma or very tenuous plasma is generated in this regime.  

The nonlinear response of the gas makes the pulse self-focus very quickly, however, 

it is effectively stopped by GVD.  Group velocity dispersion spreads the pulse, lowers 

the power, and arrests the self-focusing collapse.  For moderate input power, plasma 

is generated and plasma defocusing overwhelms GVD.  The peak region of the pulse 

is refracted due to the high gradient of plasma.  The trailing part of the pulse is then 

trapped just outside the plasma region, and it can be off-axis guided for a remarkably 

long distance.  For higher input power, the pulse behavior is dominated by plasma 

defocusing.  However, part of the pulse is initially trapped in the plasma.  Filaments 

then appear as pulse energy is refracted from the plasma and interference with the 

part of the laser pulse not trapped occurs.  At higher levels of power we can expect 

three dimensional effects to be important.  These will be studied in more detail in the 

future. 
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In this dissertation, we have also numerically studied the spectral broadening 

of laser pulse in tenuous gases.  Several factors affect the spectral broadening.  

Among them are self-phase modulation, nonlinear self-focusing, plasma generation, 

and group velocity dispersion.  In tenuous gases, self-phase modulation, coupled with 

nonlinear self-focusing, accounts for the near infrared spectrum in the critical power 

regime.  However, if group velocity dispersion arrests the nonlinear self-focusing at 

an earlier time, spectrum broadening will be limited.  At higher input power, plasma 

generation introduces blue shifted components.  The maximum blue shift is 

determined by both the maximum value of the electron density, and the distance over 

which the plasma extends 

 

Finally, we numerically studied the coupling efficiency of laser pulses into 

funnel-mouthed waveguides.  The waveguide formation code is used to provide the 

parameters for formation laser pulses and gas pressure to make an efficient funnel 

mouthed channel.  The simulations show that, as long as the Helium pressure is more 

than 550 torr in the center of the gas puff, a funnel can be made in the gas density 

ramp, and an almost fully ionized channel can be obtained.  We import this funnel 

and channel information to the code WAKE, and simulate the propagation of a laser 

pulse with a duration of 100 fs.  We find that the funnel in this case provides for 90% 

efficient coupling of laser energy into the channel.  We also determine that cavitation 

occurs for pulse energies above 73 mJ.  In addition, in a channel of this density a 100 

fs, 70 mJ pulse is subject to the self-modulation instability. 
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For the backfill cases, we cannot eliminate neutral gas in front of the funnel, 

and we must consider long funnels.  To avoid excessive ionization prior to the laser 

pulse entering the funnel, the vacuum focus should be located several Rayleigh 

lengths inside the channel from the funnel entrance.  Then the laser spot size at the 

funnel mouth should be several times the spot size at focus.  To avoid deflection and 

refraction at the funnel wall, the funnel mouth radius should be considerably greater 

than the spot size at vacuum focus.  All of these require the funnel to be several 

centimeters long and the mouth radius to be several centimeters large.  These 

requirements make realization of an effective funnel on backfill unlikely. 
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