
 

ABSTRACT 
 
 
 
 

Title of Dissertation:  SIMULATED DUST AEROSOL LIFECYCLE IN THE 
NASA GEOS-5 ATMOSPHERIC TRANSPORT MODEL 
AND SENSITIVITY TO SOURCE AND SINK 
MECHANISMS 

 
    Edward Paul Nowottnick, Ph.D., 2011 
 
Directed By:   Zhanqing Li 
    Department of Atmospheric and Oceanic Science 

 
 

 Understanding interactions of mineral dust aerosols with the Earth system remains 

a key uncertainty in assessing global climate change.  A significant portion of this 

uncertainty arises due to an incomplete understanding of the source, transport, and loss 

processes that control the dust aerosol lifecycle.    

Global aerosol transport models compliment traditional observational platforms to 

serve as useful tools for exploring aerosol-Earth system interactions.  However, global 

models are limited by scale, requiring parameterizations to represent the lifecycle of dust.   

Here, the simulated dust lifecycle is explored in versions 4 and 5 of the NASA Goddard 

Earth Observing System (GEOS-4/5) model.  

Different treatments of the mobilizing physics are first explored by considering 

two mobilization schemes in GEOS-4.  Both schemes produced similar distributions of 

aerosol optical thickness (AOT) and extinction that become more comparable with 

observations downwind of the source region.  Despite similarities in the optical 

comparisons, the schemes differ in mass loadings owing to differences in emitted particle 



 

size distributions, suggesting that emission scheme choice is significant for mass budgets 

and particle size distributions.   

 The effect of spatial resolution on source processes was investigated in GEOS-5.  

Model spatial resolution had a significant impact on simulated dust distributions, as 

increased model spatial resolution resolves higher wind speeds used to parameterize dust 

emissions.  Model spatial resolution had regional implications, as simulated dust 

distribution exhibited the greatest sensitivity over the Asian source region.  The 

incorporation of sub-grid wind variability in a coarse resolution simulation led to 

improved agreement with observed AOT magnitude, but did not improve the timing of 

simulated dust events over the Asian source region. 

 GEOS-5 was used to investigate the cause of an observed barrier to dust transport 

across Central America into the Pacific.  The baseline simulation did not develop as 

strong of a barrier when compared to observations.  Better agreement was obtained when 

the parameterization for wet removal was treated as other hydrophilic aerosols.  Analysis 

of the dust transport dynamics and loss processes suggest that while both mechanisms 

play a role in defining the barrier, loss processes by wet removal are about twice as 

important as transport.  
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Preface 

 

 The focus of this dissertation is on investigating the processes that influence dust 

distributions in the Earth system using the NASA GEOS modeling system:  sources, 

transport, and losses.  This dissertation is organized in six chapters.  The first chapter 

outlines the current understanding and importance of mineral dust aerosol interactions 

with the Earth system and discusses the need for investigation into the processes that 

influence the dust aerosol life cycle in a global aerosol transport model.  Chapter 2 

presents the NASA GEOS modeling system and datasets used to evaluate simulated dust 

distributions.    Chapter 3 discusses the physics of dust source and loss processes on Earth 

and how the equivalent processes are parameterized in the NASA GEOS modeling 

system. Chapter 4 is focused on source processes; particularly how mobilization 

parameterizations and model spatial resolution influence simulated dust distributions.  

Chapter 5 investigates dust transport and loss processes, and uses the NASA GEOS 

modeling system to explore the Central American dust barrier.  Chapter 6 outlines future 

work to be carried out as part of a post-doc appointment. 

 The first half of Chapter 4 was published in the Journal of Geophysical Research 

– Atmospheres in 2010.  The second half of Chapter 4 is currently in preparation for 

submission to a peer-reviewed journal.  Chapter 5 has been accepted by Atmospheric 

Chemistry and Physics and is currently in the production process.  
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Chapter 1:  Introduction 

 

1.1   Background 

Aerosols refer to particulate matter that has been suspended in the atmosphere and 

is of natural or anthropogenic origin.  Natural aerosols refer to those inherent to the Earth 

system (e.g. dust, sea salt) and are typically entrained into the atmosphere by near-surface 

winds, while anthropogenic aerosols (e.g. sulfates, smokes) are associated with human 

activity (e.g. combustion).  Individual species of aerosol are characterized by unique 

sources, physical properties, and lifecycles.  Additionally, aerosols have atmospheric 

residence times that are on the order of weeks to months, generally much shorter that 

atmospheric trace gases.  For these reasons, aerosols exhibit heterogeneous spatial and 

temporal distributions within the atmosphere.  Aerosols can interact with the Earth 

system in a variety of pathways:  absorption and scattering of light, modifying cloud 

properties and precipitation, influencing regional air quality, or serving as a nutrient 

source for ecosystems.  In additional to variability in the distribution of aerosols in the 

atmosphere, the current lack of understanding of these interactions introduces many 

uncertainties in quantifying the role of aerosols in the Earth climate system.  For this 

reason, the current understanding of the effects of aerosols on the Earth’s climate remains 

low (Figure 1.1).   
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Figure 1.1.  Global average radiative forcing estimates and uncertainty ranges relative to the pre-industrial 
climate.  Image courtesy of the IPCC Fourth Assessment [Alley et al., 2007].    

 

Natural aerosols that originate from the Earth’s soil are known as mineral dust 

aerosols.  On average, it is estimated that 1,000 – 3,000 Tg of dust is emitted annually 

from the Earth’s soil [Huneeus et al., 2010], predominantly from the major desert regions 

of the world.  Two of the world’s largest sources of dust aerosols are the Saharan desert 

in North Africa and the Taklamakan and Gobi deserts in northern China.  Dust events 

from these regions can span hundreds of kilometers (Figure 1.2) and can be transported 

long distances, having implications for local air quality. While the emission of dust is 

primarily of natural origin, human activities, such as cattle grazing and desertification 

resulting from improper agricultural practices, is thought to contribute less than 10% of 

the atmospheric dust load [Tegen et al., 2004].  However, the anthropogenic contribution 
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to the total dust loading is expected to change depending on future climate scenarios 

[Mahowald et al., 2003].   

 

 

Figure 1.2.  A dust event transported from the Saharan source region on March 11, 2004.  Image was taken 
using the NASA MODIS-Aqua sensor. 

 Once suspended in the atmosphere, dust is known to interact with the Earth 

system.  Dust aerosols directly influence the Earth’s radiation budget through the 

scattering and absorption of light [Haywood et al., 2003; Sokolik and Toon, 1996].  

Specifically, a suspended dust layer can act as an effective Earth surface, acting to absorb 

solar radiation, potentially causing a local warming as large as 10 W m-2 within the dust 

layer [Sokolik and Toon, 1996].  Absorption by dust within the atmosphere acts to reduce 

the available incident solar radiation at the Earth’s surface, leading to a net cooling up to 

–60 W m-2 at the surface [Zhu et al., 2007; Tegen and Miller, 1998; Sokolik and Toon, 
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1996].  Locally, the net radiative forcing of dust can be comparable to clouds [Sokolik 

and Toon, 1996].   

Koretsky et al., [1997] and Twohy et al., [2009] showed that dust aerosols readily 

attract water while suspended in the atmosphere.  Therefore, dust aerosols can indirectly 

influence the atmosphere by serving as cloud condensation nuclei (CCN) [Kumar et al., 

2007; Rosenfeld et al., 2001] and ice nuclei [DeMott et al., 2003], modifying the 

lifetimes of both the aerosols and clouds and the onset, duration, and location of 

precipitation [Yoshioka et al., 2007].  Specifically, dust serving as CCN has been shown 

to reduce the average cloud droplet size, reducing precipitation [Rosenfeld et al., 2001].  

Furthermore, Jenkins [2008] showed that under unstable atmospheric conditions, the 

presence of dust aerosols could act to invigorate precipitation as ice nuclei.   

The radiative effects of dust have been shown to influence the general circulation 

[Miller at al., 2004] and there has been a recent interest in understanding the effects of 

dust aerosols on tropical cyclogenesis. Over the tropical North Atlantic Ocean, dust is 

thought to reduce sea surface temperatures through the absorption of short wave radiation 

[Lau and Kim, 2007], creating a heating dipole with warming aloft and cooling below 

[Reale et al., 2009] acting to reduce available energy for cyclogenesis [Lau and Kim, 

2007].  Additionally, absorption by dust aerosols is thought to modulate tropical 

cyclogenesis by increasing upper level wind shear during development [Dunion and 

Velden, 2004]. 

Dust aerosols have implications for biogeochemical cycling.  Chemically, dust 

aerosols are comprised of both soluble and insoluble forms of iron.  While the iron in 

dust aerosols is primarily insoluble, photochemical and cloud processing can convert it 
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into a soluble form [Hand et al., 2004; Kieber et al., 2003; Desbouefs et al., 2001; Zhu et 

al., 1997].  This is significant for biogeochemical considerations, as soluble iron in dust 

aerosols serves as a nutrient source for aquatic and terrestrial ecosystems, therefore 

influencing the carbon cycle [Mahowald et al., 2005; Jickells et al., 2005; Falkowski et 

al., 2003].   

It is clear that dust has a significant role within the Earth System.  However, 

despite the current level of understanding of the interactions between dust and the Earth 

System, the understanding of many of the interactions is incomplete.  Therefore, mineral 

dust aerosols remain a key source of uncertainty in assessing the impact of aerosols on 

climate change [Alley et al., 2007].   

 

1.2   Statement of the Problem  

Traditionally, understanding the interactions of aerosols with the Earth system 

requires combining observational platforms with global modeling efforts.  In general, 

observations are used to constrain aerosol distributions in global aerosol transport 

models, which are in turn used to simulate complex aerosol – Earth system interactions. 

Used this way, global aerosol transport models can serve as powerful tools for 

understanding aerosol – Earth system interactions.  One advantage of global aerosol 

transport models is that they offer high spatio-temporal coverage.  As an example, 

satellite observations of aerosols are frequently limited by sampling frequency and 

contamination from other phenomena (e.g. clouds or sun glint) that obstruct observations 

of aerosol.  Global aerosol transport models can often compliment observations where 

data is missing.  Additionally, processes are separable in way that an individual aerosols 
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contribution to a simulated quantity or phenomena can easily be determined.  Conversely, 

quantifying the effects of an individual aerosol type using only satellite observations may 

be difficult, as isolating the effects from other aerosol types and clouds may be 

challenging.  In practice, observational techniques are required to infer the effects from 

individual aerosol type.  Similarly, processes can be explicitly modified within a global 

aerosol transport model.  This is particularly useful for quantifying the effects of a 

specific process on simulated aerosol distributions (i.e. sensitivity studies).  

However, global aerosol transport models are limited by how well the 

atmospheric and aerosol processes are represented in the model. A consistent limitation 

across all global models is that the scale of the model grid is typically significantly larger 

than the scale of the aerosol physics, requiring parameterizations to determine simulated 

distributions.  These parameterizations may exhibit sensitivity to characteristics of the 

model, such as driving meteorology, model spatial resolution or and underlying physics 

(ex. convection), therefore having implications for the simulated dust aerosol lifecycle.  

The central problem to be addressed in this thesis is understanding how the 

treatment of dust source, transport, and loss processes influence the dust aerosol lifecycle 

in a global aerosol transport model.  More specifically, these processes will be explored 

in terms of their influence on the atmospheric dust loading.  The current lack of 

understanding of processes associated with the dust aerosol lifecycle serves as a limiting 

factor in furthering our understanding of aerosol-Earth system interactions [Zender et al., 

2004].  Therefore, using a global aerosol transport model as a tool, this thesis investigates 

how source, transport, and loss processes influence the dust aerosol lifecycle.  
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Specifically, the following scientific questions are addressed as they relate to the 

simulated dust aerosol lifecycle: 

 

1. What are the impacts of different treatments of the physics of dust mobilization 

on simulated dust distributions in a global model? 

2. How does model spatial resolution impact the magnitude of dust emissions? 

3. Does model spatial resolution have implications for the timing of dust events? 

4. How does the resolution of the dust source function impact dust emissions? 

5. Are there different regional responses to perturbations to dust source processes? 

6. How well does the model reproduce observed dust transport downwind of the 

source region? 

7. What are the roles of dust transport and removal processes in maintaining and 

establishing the Central American dust barrier? 

8. How are these roles influenced by perturbations to wet removal processes? 

  

1.3   Scope of the Problem 

While understanding the simulated aerosol lifecycle of all aerosol types is 

significant, this work provides an in-depth investigation of the simulated aerosol lifecycle 

specifically for mineral dust aerosols using the NASA Goddard Earth Observing System 

(GEOS) versions 4 and 5 atmospheric general circulation model (AGCM) and 

assimilation system.   

In particular, efforts will be concentrated on the processes that influence 

simulated dust distributions:  sources, transport, and removal.  In addition to 



 8 
 

understanding dust aerosol lifecycle sensitivities, a portion of this work highlights the 

capabilities of a global transport model by exploring the cause of an apparent barrier to 

dust transport located along the Central American coastline. 

 Throughout this analysis, several observational datasets are utilized to evaluate 

model performance and to test perturbations to the processes that influence the simulated 

dust life cycle.  In particular, there is a focus during the time periods of several NASA 

field campaigns, which when combined with traditional satellite and ground-based 

observational datasets, form a suite of observations to thoroughly evaluate the timing, 

magnitude, and spatial distribution of simulated dust events.   
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Chapter 2:  The NASA Goddard Earth Observing 
System Model and Data Sources 
 

 In this section the NASA GEOS modeling system is introduced and descriptions 

of the various satellite, ground-based, and aircraft observational datasets used to evaluate 

the performance of the modeling system are provided. 

 

2.1 The Goddard Earth Observing System Model 

 The GEOS earth system model is an atmospheric general circulation model and 

data assimilation system developed at the NASA Global Modeling and Assimilation 

Office (GMAO).  The GEOS modeling system contains components for atmospheric 

circulation and composition (including data assimilation), ocean circulation and 

biogeochemistry, and land surface processes.  The GEOS earth system model serves as a 

state-of-the-art modeling tool for studying climate variability and change, and provides 

research quality reanalyses for use by NASA instrument teams and the scientific 

community.  In addition to traditional meteorological parameters (winds, temperatures, 

etc.) [Reinecker et al., 2008], the GEOS earth system model includes modules 

representing the atmospheric composition, notably aerosols [Colarco et al., 2010] and 

includes their radiative impact on the atmosphere.   

 The GEOS earth system model can run in climate, data assimilation, or replay 

modes.  In climate mode, initial conditions are set and the model provides a forecast for a 

specified time period.  In assimilation mode, the model is run similarly to climate mode, 

but a meteorological assimilation is performed every 6 h to adjust the model temperature, 

wind, and pressure fields.  For this study, the capability of the GEOS earth system model 
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to “replay” from a prior data assimilation run is utilized.  This functions as a data 

assimilation run in that the model makes a forecast to the analysis time (typically every 

six hours).  However, rather than performing the data assimilation step at that point, the 

model dynamical state (winds, pressure, temperature, and specific humidity) is simply 

replaced by the fields from a previously generated assimilation data set. The replay is 

similar to how an offline chemical transport model (CTM) operates, where dynamical 

fields are updated at specified time intervals.  In contrast to an offline CTM, which 

interpolates the assimilated meteorological fields to the current model time step, the 

meteorology in the replay is generated consistently within the GEOS earth system model 

between updates from the assimilation.   

 During the timeframe of this work, the GEOS earth system model evolved from 

version 4 to version 5. The GEOS version 4 (GEOS-4) AGCM [Bloom et al., 2005] is 

based on the finite volume dynamical core [Lin, 2004] and contains physical 

parameterizations based on the National Center for Atmospheric Research (NCAR) 

Community Climate Model version 3 (CCM3) physics package [Kiehl et al., 1996].  The 

land model used by GEOS-4 is version 2 of the Community Land Model Version 2 

(CLM2) as described by Bonan et al. [2002].  GEOS-4 has the capability to run with 

horizontal resolution ranging from 4° × 5° (latitude × longitude) to 1° × 1.25° and either 

32 or 55 vertical hyrid-eta levels, where the vertical levels are terrain following near the 

surface and transforms to pressure coordinates near 180 hPa, with a model top at about 80 

km.  GEOS-4 replay simulations are run from GEOS-DAS CERES analyses [Bloom et 

al., 2005], available every six hours at 1° × 1.25° spatial resolution. 
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 The release of the GEOS version 5 (GEOS-5) AGCM [Rienecker et al., 2008] 

offers improved physical parameterizations that treat planetary boundary layer 

turbulence, clouds and convection, radiation, and gravity wave drag [Reinecker, 2008].  

These improvements include replacing the previous convective scheme with a version of 

Moorthi and Suarez [1992] and radiative transfer model with one that permits aerosol 

absorption and scattering [Chou and Suarez, 1999], developed at the NASA Goddard 

Space Flight Center (GSFC) [Reinecker, 2008]. Additionally, the land surface processes 

in GEOS-5 are treated with the Catchment Land Surface Model (CLSM) [Reinecker, 

2008].  GEOS-5 has the capability to run at various horizontal spatial resolutions, from 4° 

x 5° latitude by longitude for long climate integrations to ~3 x 3 km2 on 72 vertical 

hybrid-eta levels, with a model top at about 85 km.  GEOS-5 uses the same finite-volume 

dynamical core [Lin, 2004] as previous incarnations of the model, but offers the cubed-

sphere dynamical core [Putman and Lin, 2007] for  resolutions higher than 0.5° x 0.625°. 

For replay simulations, GEOS-5 uses fields form the Modern Era Retrospective Analysis 

for Research and Applications (MERRA) [Rienecker et al., 2011], available every six 

hours at a spatial resolution of 0.5° x 0.625°. 

 The aerosol module in the GEOS-4/5 is a version of the Goddard Chemistry, 

Aerosol, Radiation, and Transport (GOCART) model [Chin, et al., 2002] that has been 

modified to run within the GEOS AGCM framework [Colarco et al., 2010].  The aerosol 

module simulates five non-interacting tropospheric aerosol species:  dust, sea salt, black 

carbon, organic carbon, and sulfate.  An in-depth discussion on the treatment of dust in 

the GEOS earth system model is provided in Chapter 3. 
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2.2 Data Sources 

 

2.2.1 Satellite Datasets 

 

2.2.1.1 Moderate Resolution Imaging Spectroradiometer 

The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched on 

December 12, 1999 aboard the Terra spacecraft. A second MODIS instrument was 

launched on the Aqua satellite as a part of the NASA A-Train on May 4, 2002.  The 

MODIS instruments provide multispectral observations of the Earth system using 36 

channels, crossing the equator at approximately 10:30 AM (Terra) and 1:30 PM (Aqua) 

local time.  MODIS aerosol retrievals are made at a spatial resolution of at 10 x 10 km2 

using separate retrieval algorithms for ocean and land.  Over oceans, the MODIS 

algorithm uses retrieved radiances from six channels (550, 660, 870, 1240, 1630, and 

2130 nm) to provide aerosol information at seven wavelengths, using the six retrieved 

channels and an additional fitted wavelength at 470 nm [Remer et al., 2005].  Over land, 

an empirical relationship between radiance retrievals at two visible channels (470 and 

660 nm) and one near-IR channel (2130 nm) is used to determine the surface reflectivity 

to provide aerosols properties at 470, 550, and 660 nm [Remer et al., 2005].  For 

comparisons to the model, the most recent version (collection 5.1) of the extinction 

aerosol optical thickness (absorption + scattering) (AOT) at 550 nm is used.  MODIS 

provides semi-quantitative quality assurance (QA) flags, where QA ranges in integer 

from QA=0 (low confidence in aerosol retrieval) to QA=3 (high confidence in retrieval).  

Over land only the highest quality (QA=3) retrievals are aggregated, whereas over ocean 
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all retrievals are aggregated but weight them by their respective QA flag value, similar to 

the MODIS canonical Level 3 gridded product [Levy et al., 2009].   

 

2.2.1.2 Multi-Angle Imaging Spectroradiometer 

 The Multi-Angle Imaging Spectroradiometer (MISR) was launched on NASA’s 

Terra satellite on December 18, 1999 [Kahn et al., 2005], providing observations at 

approximately 10:30 AM local time.  MISR contains nine push-broom cameras to 

observe the same point on Earth from nine different angles (nadir, ±26.1°, ±45.6°, 

±60.0°, and ±70.5°) and in four spectral bands (446, 558, 672, and 866 nm).  Aerosol 

retrievals are performed using a look-up table approach with retrievals provided at 17.6 x 

17.6 km2 horizontal resolution, where constraint of angular information from the 

multiangle viewing geometry is used to characterize the aerosols and also permits 

retrievals over bright surfaces [Diner et al., 1998; Abdou et al., 2005]. The MISR swath 

width along the ground is about 360 km, providing global coverage approximately every 

nine days. MISR Level 2 AOT values from the latest version of the MISR aerosol 

retrieval algorithm (v. F12_0022) are used at 558 nm.  

 

2.2.1.3 Ozone Monitoring Instrument 

              The Ozone Monitoring Instrument (OMI) was launched as part of the A-Train 

onboard Aura on July 15, 2004, providing aerosol retrievals at 354 and 388 nm with a 

nadir horizontal resolution of 13 x 24 km2, crossing the equator at approximately 1:30 

PM local time [Torres, 2007].  The use of ultraviolet (UV) aerosol retrievals allows OMI 

to distinguish absorbing dust aerosols from both land and ocean surface, which are both 
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‘dark’ at UV wavelengths.  Thus, unlike MODIS, OMI is able to provide aerosol 

retrievals over bright desert surfaces. OMI calculates a qualitative UV aerosol index (AI) 

at 354 nm using retrievals at 354 and 388 nm.  AI values are sensitive to aerosols with a 

spectrally varying absorbing index of refraction and are positive for absorbing aerosols, 

such as dust.    

 

2.2.1.4 Cloud-Aerosol Lidar with Orthogonal Polarization 

The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) was launched 

onboard CALIPSO on April 28, 2006 as part of the NASA A-Train.  CALIOP is a two-

channel (532 and 1064 nm) spaceborne lidar that provides profiles of cloud and aerosol 

properties along the satellite subpoint [Vaughan, 2005].  CALIOP has a temporal 

resolution of 20.16 Hz and vertical resolution that varies from 30 m in the troposphere up 

to 60 m at higher altitudes.  Because CALIOP is an active instrument, it provides both a 

daytime (approximately 1:30 pm local time at the equator) and nighttime (approximately 

1:30 am local time at the equator) measurement.  CALIOP sends out polarized light at 

532 nm and is equipped with sensors that measure the parallel and perpendicular 

components of the total backscattered signal.  The standard CALIOP retrieval provides 

measurements of total attenuated backscatter at each channel [Vaughan, 2005].  

Polarization information and spectral variation of the backscatter is used to infer the 

presence of aerosols and their type [Vaughan, 2005] In the CALIOP algorithm, 

backscatter from aerosols is differentiated from clouds by the lidar color ratio (β1064nm / 

β532nm), where β1064nm and β532nm represent the total attenuated backscatter at 1064 nm and 

532 nm, respectively. At visible wavelengths, aerosols exhibit spectral variation while 
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clouds do not, therefore a lidar color ratio that is approximately one is used to identify 

clouds [Vaughan, 2005].  Once aerosols are differentiated from clouds, polarization 

properties can be used to infer aerosol type.  Non-spherical aerosols such as dust are 

depolarizing and contribute to signal return in both the perpendicular and parallel planes.  

Spherical aerosols are not strongly polarizing and scatter predominantly in the parallel 

plane.  Therefore, a depolarization ratio (βperpendicular / βparallel) can be defined to identify 

the presence of non-spherical aerosols.  

 

2.2.2 Ground Based Datasets 

 

2.2.2.1 Aerosol Robotic Network 

Since 1993, The Aerosol Robotic Network (AERONET) of ground-based network 

of over 500 sunphotometers have provided measurements of direct solar beam extinction 

every 15 minutes at 340, 380, 440, 500, 670, 870, and 1020 nm to provide AOT 

measurements at 440, 670, 870, and 1020 nm with an accuracy of +/-0.015 [Holben et al., 

2001].  AERONET utilizes principle plane and almuncantar scans to invert aerosol 

properties and to determine size information [Dubovik and King, 2000]. To determine the 

AERONET AOT at 550 nm for comparison to our model, we first determine the 470-870 

nm Angstrom parameter α, defined: 
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where τ1 and τ2 are AERONET AOT values at λ1 = 470 nm and λ2 = 870 nm, 

respectively.  Once the Angstrom parameter is determined, we use Equation 2.1 to 
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determine τ at λ = 550 nm.  AERONET version 2, Level 2 cloud-screened and quality-

assured daily averaged AOT values [Smirnov et al., 2000] are used to evaluate the GEOS 

modeling system.   

 

Aircraft and In Situ Datasets 

 

2.2.3.1 Langley Aerosol Research Group Experiment 

The Langley Aerosol Research Group Experiment (LARGE) provides airborne 

in-situ measurements of aerosol microphysical properties. Particle size distributions are 

determined using a Droplet Measurement Technologies Ultra High Sensitivity Aerosol 

Spectrometer (UHSAS) for the 0.1 to 0.7 µm diameter range and a TSI Aerodynamic 

Particle Sizer (APS) for the 0.7 to 10 µm range [Chen et al., 2010]. The APS mass-based 

sizes were converted to geometric diameters using the procedures described in Chen et 

al., 2010.  While in air, sampled air is drawn to the instruments through a forward facing, 

isokinetic inlet probe that is mounted to a window plate just ahead of the aircraft 

starboard wing.  During the NASA African Monsoon Multidisciplinary Analyses 

(NAMMA) field campaign (August -  September, 2006), LARGE flew on the NASA 

DC-8 aircraft.   

 

2.2.3.2 Lidar Atmospheric Sensing Experiment  

The airborne Lidar Atmospheric Sensing Experiment (LASE) measures vertical profiles 

of aerosol and water vapor at 815 nm [Browell et al., 2005]. LASE measurements of 

aerosol extinction are retrieved by using the lidar extinction to backscattering ratio values 
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for the aerosol layers from other measurements or using layer aerosol extinction 

measurements, where available, from LASE [Ferrare et al., 2000a,b; Ismail et al., 2009].  

Nominal aerosol extinction ratios are derived with a vertical resolution of 60 m and 

horizontal resolution of 2.1 km.  LASE aerosol extinction profiles have been shown to 

have very good agreement with aerosol extinction profiles derived from simultaneous in 

situ LARGE data [Ismail et al., 2009]. During NAMMA, LASE also flew on the NASA 

DC-8 aircraft. 

 

2.2.3.3 Cloud Physics Lidar 

The Cloud Physics Lidar (CPL) is an airborne multi-pulse lidar that has provided 

observations during several NASA field campaigns [McGill et al., 2004; McGill et al., 

2000].  CPL provides profiles of total attenuated backscatter by measuring backscatter at 

3 wavelengths (355, 532, and 1064 nm) with a frequency of 5 kHz and depolarization 

ratio at 1064 nm [McGill et al., 2002].  Processed CPL data is available with a temporal 

resolution of 1 s and has a spatial resolution of 30 m in the vertical and 200 m in the 

horizontal [McGill et al., 2002].  As part of the NASA Tropical Composition Cloud and 

Climate Coupling (TC4) field campaign (July – August, 2007), CPL flew on the NASA 

ER-2 aircraft.  

 

2.2.3.4 Surface-Sensing Measurements and Atmospheric Radiative 

Transfer and Chemical, Optical, and Micro-Physical Measurements of 

In Situ Troposphere 
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 SMART (Surface-sensing Measurements and Atmospheric Radiative Transfer) 

and COMMIT (Chemical, Optical, and Micro-physical Measurements of In situ 

Troposphere) are two NASA mobile observatories used to measure physical, chemical, 

and optical properties of atmospheric composition and particles in the field.  Included in 

the suite of instruments is a TSI Aerodynamic Particle Sizer spectrometer (APS) that 

provides particle size distributions between 0.5 and 20 µm in diameter and a Cimel 

sunphotometer that provides measurements of AOT similar to AERONET [Li et al., 

2007; Li et al., 2010].   
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Chapter 3:  The Lifecycle and Physical Properties of  
Dust Aerosols 
 
 

 This chapter describes the physics associated with dust aerosol production and 

removal and provides a brief discussion of the basic physical properties of dust. 

Additionally, a description of how the equivalent processes and properties are treated in 

GEOS-4/5 is provided.  

 

3.1   Source Processes 

Dust aerosols originate from erodible soil surfaces that are characteristically dry 

and free of vegetation.  Natural dust sources primarily consist of topographic depressions 

that have accumulated sediment during the Quaternary Period [Prospero et al., 2002].  

Accumulated particles can have a wide range of diameters, spanning from a few microns 

up to several millimeters [Hillel, 1982].  Soil particles are mobilized by surface winds.  

Large particles are too heavy to be mobilized by typical surface winds, and the smallest 

particles are bound to the surface by cohesive forces.  Particles with diameters nearly 100 

µm are large enough for cohesive forces relative to the wind stress to be small, but are 

light enough to become mobilized into a bouncing motion along the surface called 

saltation [Iversen and White, 1982].  During saltation, these soil particles are lifted 

several centimeters by the wind but quickly fall back to the surface, moving in a 

bouncing motion.  Saltating particles impart their kinetic energy back to soil aggregates at 

the surface, displacing tiny non-spherical fragments which become dust aerosols, that 

otherwise were immobile due to cohesive forces.  This process is called sandblasting, and 



 20 
 

serves as the dominant mechanism for dust aerosol injection into the atmosphere [Gomes 

et al., 1990].   A conceptual model of dust source processes is provided in Figure 3.1. 

 

Figure 3.1.  Conceptual model of dust source and loss processes. 

 

Reproducing the dust emission process within the framework of a global aerosol 

transport model is challenging and serves as a major source of uncertainty in models.  A 

dust emission scheme for a global model requires (1) a dust source function that 

represents the location and relative erodibility or strength of dust sources and (2) a 

parameterization of the mobilization process.  The source function is essentially a map of 

possible dust source regions based on surface characteristics (e.g., soil type, topography) 

and specifies the efficiency with which a given surface can emit dust for a given set of 

meteorological parameters.  The mobilization function relates the dust emission to those 

various meteorological parameters (i.e., wind speed, soil moisture) and involves choices 
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in how the physics of dust mobilization is parameterized.  Dust emission in a model is the 

convolution of the source function and mobilization function.  

The source function used by GEOS-4/5 follows from Ginoux et al. [2001] and 

Prospero et al. [2002], where bare soil regions are identified as potential dust sources 

from a 1° × 1° vegetation data set constructed from the advanced very high resolution 

radiometer (AVHRR) [Defries and Townshend, 1994].  For each grid box, the efficiency 

for emitting dust is parameterized in terms of its local topography relative to the 

surrounding grid boxes.  Grid boxes that are in relative topographic depressions are 

assumed to have preferentially collected erodible sediments and serve as stronger dust 

sources than topographically elevated grid boxes.  This approach has shown good 

consistency between the resulting global dust source function map (Figure 3.2) and dust 

aerosol locations observed with the Total Ozone Mapping Spectrometer (TOMS) Aerosol 

Index product [Ginoux et al., 2001] and highlights the major desert regions of the world:  

the Sahara, the Arabian, the Gobi, and the Taklamakan.  Although intra-annual variability 

in desert cover has been documented [Mahowald et al., 2003] it should be noted that the 

dust source function used in GEOS-4/5 is invariant in time, as a major portion of this 

work is on perturbing the dust mobilization process.  By assuming a fixed source 

function, feedbacks between transported particles and topography are neglected.  Source 

region topography (e.g. sand dunes) is both spatially and temporally dynamic, as surface 

winds may influence the location and strength of dust aerosol sources through sediment 

transport.  Dynamic surface topography also has implications for near-surface 

meteorology, as changes to topography will influence roughness heights used to 

determine surface wind speeds that drive dust emission.  However, these effects are likely 
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not significant for dust aerosols, which have a significantly longer atmospheric residence 

time than larger sand-sized soil particles once mobilized.  Using a fixed source function 

also neglects intra-annual variability and seasonal anthropogenic land practices that may 

influence the location and strength of dust sources. 

 

Figure 3.2.  Global dust source function map used in the NASA GEOS-4/5 model. 

 

 One of the major focuses of this work is investigating the effects of varying the 

dust mobilization process on simulated dust distributions.  In this work, several variations 

of the mobilization parameterization are considered and described in depth in Chapter 4.  

Here, the basic components of a mobilization parameterization are presented.   

All mobilization schemes considered in this work parameterize dust emission as 

being proportional to the cube of the surface wind speed relative to a pre-determined 
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threshold wind speed and distribute the emitted aerosol over a size distributions 

discretized by several aerosol size bins. 
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where F(r) is the mass flux of aerosol emitted into a size bin of radius r, C is a tuning 

constant in units of kg m2 m-5 used to set global dust emissions to a desired value, S is the 

spatial dust source function shown in Figure 3.1, s(r) represents that efficiency of soil at 

emitting particles of size r, U is the surface wind speed used to drive the emissions 

relative to a threshold Ut wind speed.  Equation 3.1 is only representative of the natural 

emission of dust aerosols by surface winds. When combined with the spatially invariant 

source function, the current dust emission model in the GEOS modeling system ignores 

any anthropogenic contribution, which have been estimated to comprise 10% of the 

emitted dust mass [Tegen et al., 2004].   

 It should be noted that the tuning constant C, arises due to the challenge of 

reproducing the physics associated with the dust aerosol lifecycle within a global aerosol 

transport model.  As discussed in Chapter 1, one challenge of using a global aerosol 

transport model to simulate aerosol processes is that the grid of the model is significantly 

greater than scale of the physics associated with the dust aerosol lifecycle.  Additionally, 

deficiencies in the parameterizations (i.e., not properly representing a specific process) 

may also require adjustment to the simulated dust mass flux.  Finally, due to the lack of 

global dust emission observations, models are typically not validated in terms of 
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emissions.  Instead, dust emissions in models are adjusted to give either a specified 

annual emission rate or, more pragmatically, a specified dust burden that can be 

compared with observations (e.g., satellite derived AOT retrievals).  

 

3.2   Loss Processes 

 Once mobilized, dust can be lifted several kilometers in the atmosphere by dry 

convection and turbulent eddies where it can be transported by upper-level winds.  

During transport, dust aerosols are subject to removal from the atmosphere through 

several pathways.  These pathways can be characterized in terms of either dry or wet 

removal processes.   

 Dry removal processes include sedimentation and turbulent deposition.  

Sedimentation refers to the settling of dust particles due to the Earth’s gravitational force, 

while turbulent deposition is defined as the transfer of dust aerosols back to the surface of 

the Earth by turbulent eddies within the planetary boundary layer [Seinfeld and Pandis, 

1998].  Dry removal is significant near the dust source regions, as the larger, more 

massive dust particles will fall from the atmosphere first.   

 Dust aerosols may also be removed from the atmosphere by wet processes.   As 

previously mentioned, dust aerosols may act as CCN (Chapter 1.1).  If a dust CCN is 

activated to form a cloud droplet, it may coagulate with other cloud droplets to form a 

hydrometeor.  If the hydrometeor falls to the Earth’s surface, the dust aerosol has said to 

be removed by rainout [Seinfeld and Pandis, 1998].  A similar wet removal process is 

washout [Seinfeld and Pandis, 1998], where a falling hydrometeor may collide and 

coagulate with dust aerosols, depositing the aerosol at the Earth’s surface.  Because dry 
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removal processes dominate near the dust source regions, wet removal processes become 

more significant downwind of the source region.  Figure 3.1 also provides a conceptual 

model of the various loss processes associated with dust aerosol removal.   

 These dry and wet removal processes are parameterized in the GEOS-5 model.  In 

GEOS-4/5, both sedimentation and dry deposition are parameterized as size dependent 

processes.  Following Ginoux et al. [2001] and Chin et al. [2002], Stokes law is used to 

calculate the size-dependent fall velocity vs(r) for sedimentation: 
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where ρp is the density of the dust particle, g is the acceleration due to gravity, µ is the 

viscosity of air, r is the radius of the dust particle, and Ccunn is the Cunningham slip 

correction factor for determining the opposing drag force on the particle [Seinfeld and 

Pandis, 1998]. 

 Ginoux et al. [2001] and Chin et al. [2002] also define the deposition velocity for 

turbulent deposition.  The turbulent deposition velocity, vd is related to exchange of heat 

and moisture between the atmosphere and the Earth’s surface and is parameterized as the 

inverse of sum of the aerodynamic, sublayer, and surface resistances of the lowest model 

layer: 
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         Eq. 3.3 
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where ra is the aerodynamic resistance of the surface layer and is a function of surface 

heat and moisture fluxes, rb is the resistance due to quasi-laminar sublayer resistance 

above the surface, and rs it the resistance from the surface. 

Particles that are deposited at the surface may be re-suspended if the surface soil 

moisture is low and the wind speed is sufficiently high.  To account for this, vd is 

modified as follows: 

 

! 

v
d

(r) =
vd                                                                               otherwise

vd "(w+(1 - w)"exp[-(U10m - Ut (r))]                       if U>Ut{             Eq. 3.4 

  

where w is the surface soil moisture, U10m is the 10-meter wind speed, and Ut(r) is the 

size-dependent dry threshold speed for dust mobilization as described in Ginoux et al. 

[2001].  In this formulation, the dry deposition velocity, vd will be reduced under 

conditions when the wind speed is high and the soil is dry.  

 Wet removal processes in GEOS-4/5 are size independent and include removal by 

rainout (in-cloud scavenging) and washout (below-cloud scavenging) by large scale and 

convective precipitation determined by the model.  It should be noted that GEOS-4/5 

does not currently have the capability for dust aerosols to explicitly serve as CCN.  

Following Chin et al. [2000], the large-scale removal by rainout is parameterized in terms 

of the precipitation frequency and fraction of the model grid box covered by precipitating 

clouds: 

 

! 

"#(k) = fwetls $ #(k) $ f ls(k) $ (1% exp
& ls (k )"t )       Eq. 3.5 
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where Δγ is the change in the dust mass mixing ratio, fwetls is the scavenging efficiency 

of dust removal (i.e., hygroscopicity), γ is the mass mixing ratio of dust, fls is the fraction 

of large-scale precipitating clouds within the grid box, βls is the large-scale precipitation 

frequency for duration Δt at each model level k. Convective removal by rainout follows 

from Balkanski et al. [1993] and is proportional to the convective updraft mass flux: 

 

! 

"#(k) = fwetconv $ #(k) $ Fu(k) $ g $ p(k)
%1      Eq. 3.6 

 

where Δγ is the change in the dust mass mixing ratio, fwetconv is the convective 

scavenging efficiency of dust removal, γ is the mass mixing ratio of dust, Fu is the 

convective updraft mass flux, g is the acceleration due to gravity, and p is the 

atmospheric pressure at each model level k.  

 For both large-scale and convective precipitation, washout is parameterized 

similar to rainout, but occurs only for grid boxes below the largest fraction of 

precipitating clouds (f) [Chin et al., 2000]. 

 

3.3   Physical Properties 

Dust aerosols are non-spherical and have a size range that typically spans 0.1 – 10 

µm in radius [Kok, 2011].  Compared to particle size distributions of anthropogenic 

aerosols, the dust particle size distribution has a greater contribution from particles in the 

coarse mode (i.e., greater than 1 µm) (Figure 3.3).   
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Figure 3.3.  AERONET observed particle size distributions from urban/industrial, biomass burning, dust, 

and sea salt dominated sites from Dubovik et al., 2002. 
 

Dust aerosols are treated as spheres in GEOS-4/5 and are distributed across five 

transported size bins.  Based on Tegen and Lacis [1996] and Ginoux et al. [2001], the 

following radius bins are chosen: 0.1-1, 1-1.8, 1.8-3, 3-6, and 6-10 µm. The sub-bin 

particle size distribution of each bin follows from Tegen and Lacis [1996] in that 

dMass/(dln r) is assumed to be constant.  This determines an effective radius for each bin, 

which is used in emission and sedimentation calculations: 0.73, 1.4, 2.4, 4.5, and 8 µm.   

However, sub-micron particles are significant for optical calculations and therefore, the 

first (smallest) size bin is further divided into four sub-bins, following Tegen and Lacis 

[1996].  Dust optical properties used in GEOS-4/5 follow from the Global Aerosol 

Dataset  (GADS) [Köpke et al., 1997], providing mass extinction coefficients for 

converting the simulated dust mass to AOT.  
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Chapter 4:  Investigation of Dust Source Processes  
 

4.1 Introduction 

To reiterate, simulating dust aerosol emissions in a global model requires (i) a 

source function that represents the relative strength of individual dust sources regions and 

(ii) an emission scheme that parameterizes dust emissions, usually as a function of wind 

speed, surface properties, and soil moisture.  One key area of uncertainty in simulated 

dust distributions lies in the treatment of source processes, where emission scheme choice 

and identification of source regions can have implications for emitted dust fluxes [Zender 

et al., 2004].   

In this chapter, the effect of varying the dust emission scheme in the NASA 

GEOS modeling system is explored by considering two dust emission schemes that 

initiate emission and treat the emitted particle size distribution differently.  The 

simulations were run at the same model spatial resolution with identical source functions 

and loss processes as described in Chapter 3.   

Additionally, this chapter explores the effect of model spatial resolution on both 

the mobilization and source processes.  In particular, the capability of the NASA GEOS 

modeling system is utilized to simulate dust emissions at various spatial resolutions.  

Specifically, in a set of experiments, the source function is allowed to vary with model 

spatial resolution for various considerations of the mobilization process.  The source 

function is then held constant to understand the effect of source function resolution on 

simulated dust emissions.   
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 Throughout this chapter, many observational datasets are employed to validate 

simulated dust distributions.  In particular, the investigations exploit two data-rich time 

periods centered on the NASA NAMMA and SMART - COMMIT field campaigns.   

 

4.2   Investigation of Dust Mobilization Process 

 Here, the sensitivity of simulated dust distributions to dust mobilization function 

choice is explored in the NASA GEOS-4 Earth system model (see Chapter 2.1).  Two 

different dust mobilization functions are considered:  The GOCART scheme based on 

Ginoux et al. [2001] and the Dust Entrainment and Deposition (DEAD) scheme from 

Zender et al. [2003].  To evaluate the simulated dust distributions, the period of the 

NASA African Monsoon Multidisciplinary Analyses (NAMMA) (August – September, 

2006) provides a suite of in situ and remotely sensed aircraft observations, as well as 

remote sensing observations from the space-based MISR, MODIS-Aqua, OMI, and 

CALIOP instruments and ground-based observations from AERONET sunphotometers in 

North as described in Chapter 2.2.  

Previously, Cakmur et al. [2006] showed that for a single choice of mobilization 

function, simulated dust distributions are sensitive to a varying source function.  On the 

other hand, Luo et al. [2003] showed that the choice of mobilization function influence 

simulated dust concentrations, but their analysis was on longer climate scales and did not 

focus on specific events.  Colarco et al. [2003] examined the role of source and 

mobilization function choice on transported dust distributions during the Puerto Rico 

Dust Experiment (PRIDE), but did not unravel separately the effect of mobilization 

function for a given source function. This work builds upon Colarco et al. [2003] and Luo 



 31 
 

et al. [2003] by evaluating the mobilization function choice for a well-observed case 

study (NAMMA) and is the first to do so with particular attention to the impact of 

mobilization function choice on dust vertical dust distributions, which have been 

evaluated with airborne and space-based lidar observations. 

 

4.2.1 Description of Dust Emission Parameterizations 

Wind tunnel experimentation has long been used to obtain an empirical 

expression for the relationship between the surface wind speed and horizontally saltating 

mass flux of soil particles [Greenley and Iversen, 1985].  These experiments found a 

cubic relationship between the horizontally saltating mass flux and the surface friction 

speed relative to a threshold speed.  Iversen and White [1982] found a semi-empirical 

parameterization (Equation 4.1) for the dry threshold speed (u∗) required for particle 

saltation as a function of soil particle diameter (Figure 4.1): 

 

! 

u*t = 0.13 "
#p " g "D

#a
"

1+ 6e
$7

#p " g "D
2.5
"

1

1.928 " (1331" (100 "D)1.56+0.38
)
0.092$1

  Eq. 4.1 

 

where ρp is the soil particle density, g is the acceleration due to gravity, D is the soil 

particle diameter, and ρa is the atmospheric density. 
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Figure 4.1.  Marticorena and Bergametti [1995] surface dry saltating threshold speed vs. soil particle 
diameter. 

 

Marticorena and Bergametti [1995] combined the observed cubic relationship 

between particle saltation and the surface wind speed with theoretical assumptions 

regarding the characteristic pathlength of particle saltation to formulate a mass flux 

equation for horizontally saltating particles as a function of the surface wind speed 

relative to a threshold, which serves as basic structure of the parameterization of the dust 

mobilization process in global aerosol transport models.  In this study, two different 

mobilization parameterizations are considered.  The first emission scheme is based on the 

GOCART scheme from Ginoux et al. [2001] and has been serving as the standard dust 

mobilization scheme in the GEOS modeling system.  As an alternative, a version of the 

DEAD scheme based on Zender et al. [2003] has been implemented.  Both schemes 

parameterize dust emission in terms of the surface wind speed and distribute the emitted 

aerosol over a size distributions discretized by several size bins.   
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Both the GOCART and DEAD schemes use the parameterization of the dry 

threshold wind speed for mobilization developed by Iversen and White [1982] (Eq. 4.1), 

but diverge at this point. In the GOCART scheme, the dry threshold wind speed is 

computed as a function of aerosol particle size according to the size bins chosen and 

emissions are then parameterized in terms of the 10 m wind speed, where U10m has 

become U in Equation 3.1: 

 

! 

F(r) = 0                                                         otherwise

C "S"s(r)"U10m
2

"(U10m#Ut
(r,w ))       if U10m>U

t{    Eq. 4.2 

 

where F(r) is the mass flux of aerosol emitted into a size bin of radius r, C is a tuning 

constant in units of kg m2 m-5 used to set global dust emissions to a desired value, S is the 

spatial dust source function shown in Figure 3.2, s(r) represents the efficiency of soil at 

emitting particles of size r, U10m is the 10 m wind speed, and Ut is the size dependent 

threshold wind speed from Iversen and White [1982] (Figure 4.1) that has been modified 

for the presence of soil moisture w (m3 m-3) following Ginoux et al. [2001]. 

 By contrast, the DEAD scheme connects the threshold wind speed to the initiation 

of saltation rather than direct aerosol injection.  Sandblasting caused by saltation is the 

main dust entrainment mechanism for sustained emission [Shao and Raupach, 1993] and 

makes the emissions physics of the DEAD scheme more satisfying.  Unfortunately, 

determining soil grain saltation requires knowledge of the particle size distributions of the 

parent soil bed, which is not well known on global scales.  Following Zender et al. [2003] 

for the implementation of DEAD, the parent soil is assumed to contain a fixed 
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monomodal soil particle size distribution of optimally sized particles of 100 µm in 

diameter with a corresponding dry mobilization threshold ut
*=0.209 m s-1 (Figure 4.1) for 

the computation of the horizontal saltating mass flux.  In this fashion, the threshold 

formulation from Iversen and White [1982] is used to determine the initiation of soil 

particle saltation as a function of surface properties and friction speed.  The aerosol mass 

injected is proportional to the horizontal saltation flux, which is computed in terms of the 

threshold wind speed and the wind friction speed (as opposed to the 10 m wind speed 

used by the GOCART scheme): 
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   Eq. 4.3 

where F(r)′ is the mass flux of aerosol into a size bin of radius r, C′ is a global tuning 

constant that incorporates the efficiency with which the horizontal saltation flux 

translates to a vertical aerosol mass flux, S is the same dust source function used in 

Equation 4.2, and s(r) ′ is the aerosol particle size distribution.  The surface friction speed 

from the land surface model, u* is used to drive dust emissions and it has been increased 

to account for the transfer of momentum to the surface from saltating particles, known as 

the Owen effect [Gillette et al., 1998].  The threshold surface friction speed, ut* is 

increased to account for the loss of atmospheric momentum to nonerodible objects within 

the soil (e.g., rocks, vegetation) by assuming a fixed drag efficiency for all model grid 

cells, following Marticorena and Bergametti [1995] and is increased for the presence of 

soil moisture following Fécan et al. [1999]. 
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  Comparing Equations 4.2 and 4.3, the dust emission fluxes in both schemes have 

a cubic dependence of the surface wind speed relative to some threshold.  Because this is 

an empirical relationship based on observations, it serves as a potential source of error in 

the mobilization parameterization.  The relationship between particle saltation and the 

surface wind speed may exhibit variability under different atmospheric conditions or 

between global source regions.  However, a change to the power relationship (e.g. cubic 

vs. quadratic dependence) would have implications for the magnitude but not the timing 

of dust events.  Moreover, because simulated dust distributions are tuned to match 

observed AOT magnitude, tuning constant may compensate for errors parameterized 

relationship between particle saltation and the surface wind speed.  Perhaps a more 

significant source of error in the dust emission parameterization is the surface wind speed 

and how it is related to the threshold, which will have implications for both the timing 

and the magnitude of simulated dust events.  In the GOCART scheme, the relevant wind 

speed is the 10-m wind speed U10m, while in the DEAD scheme the relevant wind speed 

is the surface friction speed u*.  Both schemes use the same threshold speed 

parameterization of Iversen and White [1982], but apply it differently.   The formulation 

in the GOCART scheme implies that Ut = ut*, with modifications for soil moisture 

content.  This simplification captures observed dust aerosol distributions by requiring 

higher surface wind speeds to mobilize smaller aerosol particles, but neglects the physics 

of saltation and assumes that the parent soil particle distribution is only comprised of 

aerosol sized particles.  This assumption has implications for the simulated mass of 

emitted aerosol, but has been shown to have good agreement with observed AOT values, 

which are used to constrain simulated dust distributions [Ginoux et al., 2001].  The 
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parameterization for mobilizing physics in DEAD is more physically satisfying in that it 

explicitly accounts for saltation and sand-blasting, but it is itself a simplification in that it 

neglects variability in soil particle size distributions, distributions of erodible surfaces 

within grid cells, and differences in the efficiency of horizontal to vertical mass flux 

transfer that depend on soil type.  By assuming a monomodal soil particle distribution of 

optimally sized particles (100 µm), saltation may occur for the lowest wind threshold 

(Figure 4.1).  However, in reality, soil particles may span a wide range of diameters with 

a range of mobilization thresholds.  This assumption will act to initiate dust events more 

frequently and with a greater saltating mass flux magnitude when compared to a 

simulation where a range of soil particle diameters is considered.  Grini and Zender 

[2004] modified DEAD to evaluate the effects of sub-grid scale winds and different soil 

bed particle size distributions, showing that these modifications affect simulated dust 

mass concentrations, optical depths, and the fraction of coarse particles, but not the 

timing of dust events.   

  It should be noted that both mobilization parameterizations neglect certain 

feedbacks to the physical environment.  Anderson and Haff [1988] found that saltating 

mass fluxes influence roughness heights, which in turn modify the wind profile of the 

surface layer, which influences surface winds used to drive dust emissions.  Currently, 

this effect cannot be represented in the model because neither scheme actually simulates 

a horizontally saltating mass flux.  To reiterate, in the GOCART scheme, aerosol-sized 

soil particles are emitted directly into the atmosphere, thereby neglecting the physics of 

saltation.  In the DEAD scheme, the horizontal mass flux is only computed, rather than 

simulated, of which a fraction is emitted in the vertical.    



 37 
 

  For both emission schemes, dust aerosols are removed by dry and wet removal 

processes as described in Chapter 3.2.  Both schemes distribute the emitted aerosol mass 

across the five transport size bins as described in Chapter 3.3.  For the GOCART scheme, 

the mass emitted to each bin is computed independently, based on how the wind speed 

exceeds the threshold for that bin.  The soil particle size distribution enters as s(r) as in 

Equation 4.2 (following Tegen and Fung [1994]), where the mass of emitted clay 

particles (0.1 < r < 1 µm) is assumed to be 1/10 of the total mass of emitted silt (particles 

of radius > 1 µm), that is s = 0.1 for the smallest bin.  The four silt bins (1-1.8, 1.8-3, 3-6, 

and 6-10 µm) are each assigned a mass fraction of s = 0.25.  The emitted particle size 

distribution is dynamically determined in the GOCART scheme in that the threshold is 

computed for each size bin independently.  In contrast, the DEAD scheme imposes a 

fixed tri-modal lognormal distribution on the emitted aerosol that is based on the 

observed background dust particle size distributions near Saharan dust sources 

[D’Almeida, 1987].  Dust optical properties are as described in Chapter 3.3.   

  Table 4.1 summarizes the GOCART and DEAD emission schemes.  Aside from 

the difference in winds used to parameterize the emission process, the major difference in 

the two schemes is that the emitted particle size distribution is fixed in the DEAD 

scheme, while it is dynamically generated in the GOCART scheme depending on the 

difference between the surface wind speed and the size-dependent threshold wind speed.  

However, because of how the threshold wind speed is applied in the GOCART scheme, 

the threshold speeds are generally much smaller than the 10 m wind speed (Ut << U10m), 

so that in practice there is little dynamical variation in the emitted size distribution.  Both 

schemes have a drawback in that they are both in situ parameterizations that have been 
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applied to a model grid.  Box-averaged parameters (i.e., wind speed and soil moisture) 

are used to represent the micro-scale processes that modulate dust emissions and cannot 

account for sub-grid variability.  Because of this, global tuning constants are required to 

set the total global emissions for both schemes when they are applied to the model grid.  

 

SCHEME GOCART DEAD 
Source Function Bare Topographical Depressions - 

Ginoux [2001] 
Bare Topographical Depressions - 

Ginoux [2001] 
Dry Emission 
Threshold Speed 

Wind Tunnel Experiments - 
Marticorena and Bergametti [1995] 

Wind Tunnel Experiments - Marticorena 
and Bergametti [1995] 

Threshold Speed 
Modifications 

Soil Moisture Content – Ginoux 
[2001] 

Soil Moisture Content – Fecan [1999] & 
Non-Erodible Objects – Marticorena and 

Bergametti [1995] 
Wind Parameter Used 
to Determine Emitted 
Mass Flux 

10-meter Wind Speed  Surface Friction Speed 

Flux Equation [F(r), 
F(r)′] 
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Size Distribution Dynamic Static 
Bin Depedendent 
Mass Fractions [s(r), 
s(r)′] 
 
Bin: 
reff = .73µm (.1-1µm) 
reff = 1.4µm (1-1.8µm) 
reff = 2.4µm (1.8-3µm) 
reff = 4.5µm (3-6µm) 
reff = 8µm (6-10µm) 

s(r)  
Tegen and Fung [1994]: 

 
 
 

0.1 
0.25 
0.25 
0.25 
0.25 

s(r)′ 
D’Almeida [1987] 

 
 

 
0.112 
0.232 
0.296 
0.277 
0.064 

Constants [C, C′] C = 0.375e-9 kg s2 m-5 C′ = C′′*α = 1.780e-5 kg s2 m-5 
where C′′ = 3.716-4 kg s2 m-5  

and α=0.0479 is the sandblasting mass 
efficiency after assuming a globally 

uniform mass fraction of clay particles 
of 0.2 

 

Table 4.1.  GOCART and DEAD emission scheme comparison. 

4.2.2   Results 

From August 19th to September 12th, 2006, the NASA African Monsoon 

Multidisciplinary Analyses (NAMMA) field experiment was conducted from the Cape 
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Verde Islands to help understand the evolution of African easterly waves (AEWs), 

precipitation systems, and Saharan dust events over western Africa.  Saharan dust events 

are primarily initiated by dry convection caused by intense solar heating [Carlson and 

Prospero, 1972; Karyampudi et al., 1999].  Atmospheric mixing induced by dry 

convection leads to the formation of a deep boundary layer mixed with dust aerosol and 

can be transported over the Atlantic Ocean to the Caribbean as the Saharan Air Layer 

(SAL) [Karyampudi et al., 1999; Wong et al., 2009].  The SAL is stable, bound by a low-

level temperature inversion atop the marine boundary layer near 1.5 km and radiative 

cooling at the top near 3.7 km [Carlson and Prospero, 1972].  As solar intensity peaks 

during the Northern Hemisphere summer, thermal wind balance leads to the formation of 

the African Easterly Jet (AEJ), which acts to transport the SAL westward on the north 

side of the jet axis [Carlson and Prospero, 1972; Karyampudi et al., 1999].  During 

transport, the thickness, and upper and lower bounds of the suspended dust aerosol layer 

are determined vertical turbulent mixing that transports dust particles upward and 

sedimentation, which transports dust particles toward the surface. 

NAMMA observations included 13 science flights made with the NASA DC-8 

aircraft.  Here, only observations of the SAL obtained with lidar measurements of vertical 

structure [Ismail et al., 2008; 2009] and in-situ measurements of particle size distributions 

[Chen et al., 2009; Clarke et al., 2007; McNaughton et al., 2007] taken aboard the DC-8 

are considered. In addition to the airborne observations of dust, correlated observations 

from ground-based sun photometers and several space-based remote-sensing platforms 

are utilized.  These data sets are used to evaluate the performance of the GOCART and 
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DEAD emission schemes and to identify differences between their simulated dust 

distributions. 

  The model results presented below come from two sets of GEOS-4 simulations of 

global aerosol distributions for the year 2006.  In both simulations, the model was run at 

1o x 1.25o horizontal resolution on 32 hybrid eta vertical levels, with aerosol fields output 

every 6 hours.  The simulations are made in replay mode, driven by the GEOS-4 analysis 

products. Due to the lack of mass-based observations, global transport models are 

typically constrained in terms of observed column AOT distributions.  For these 

simulations, GOCART emissions have been tuned to match the mass budget of emissions 

from Ginoux [2001], which were shown to produce reasonable AOT values as described 

in Colarco et al. [2010].  DEAD emissions were scaled so that the resultant regionally 

averaged AOT over North Africa was the same as the regionally averaged GOCART 

AOT over North Africa during the NAMMA period.  Both simulations were run with the 

full complement of GOCART aerosols, but we vary the dust emission scheme in each. 

Thus, differences in simulated dust distributions can be directly attributed to the varying 

parameterizations of the dust emission process.   

     

4.2.2.1 Emission and Aerosol Optical Thickness Distributions  

Figure 4.2 shows the August-September average dust emissions and 550 nm AOT 

for the GOCART and DEAD emission schemes.  Displayed in the bottom left corner of 

each panel is the August-September average total dust emissions or mean AOT over 

North Africa, depending on the quantity of interest. The distinct difference between the 
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emission schemes is that the DEAD emissions are more geographically sparse in their 

distribution over the continent than the GOCART emissions.  

 

 

Figure 4.2.  August – September (top) average emissions and (bottom) AOT for (left) GEOS-4 GOCART 
and (right) GEOS-4 DEAD emission schemes.  Total region emissions (Tg) and average AOT are 

displayed in the bottom left of each plot. 
 

GOCART emissions typically occur wherever the source function is non-zero, 

because the 10-meter wind speed can be an order of magnitude greater than the bin-

dependent threshold speeds.  Typical NAMMA August-September average 10-meter 

wind speed values over the source region are about 3.5 ms-1, while the GOCART size-

dependent dry threshold speeds range from 2.45 ms-1 (smallest transport bin) to 0.41 ms-1 

(largest transport bin).  In contrast, because typical August-September average surface 

friction speeds and the dry threshold speed are comparable in magnitude (about 0.23 ms-
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1), the spatial distribution of DEAD emissions is sparse.  Additionally, when the 

confounding effect of soil moisture on the threshold speeds is considered (Figure 3.4), 

DEAD emissions are more likely to be modulated by the presence of soil moisture.  The 

GOCART scheme emits a greater average mass of dust (91 Tg) when compared to 

DEAD (54 Tg) during the NAMMA period.  We recall that the magnitude of emissions in 

each scheme was tuned to yield a comparable, regional-average AOT (τ550 = 0.14, Figure 

3.3) that is consistent with Colarco et al. [2010]. 

 

 

Figure 4.3.  GOCART (blue) and DEAD (red) dry threshold increase factor vs. soil moisture content. 

 

Despite the large difference in the emission magnitude, the same regional AOT 

value is obtained because the two schemes emit particles of different sizes, with differing 

optical efficiencies.  Figures 4.4a and 4.4b show the August-September averaged values 

of size-dependent dust emissions (solid), dry deposition (dashed), and the fractional dust 

AOT contribution over North Africa.  The GOCART scheme emits a greater mass of 

particles than the DEAD scheme in all but the first size bin.  This is a consequence of 
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how the threshold equation is applied to determine direct aerosol injection in the 

GOCART scheme instead of to determine the initiation of saltation as in the DEAD 

scheme.  Here, the threshold wind speed is relatively low for large particles (bins 4 and 

5).  However, these large particles settle quickly from the atmosphere (as evidenced by 

the high dry deposition values) and have little contribution to the total AOT.  In contrast, 

in the DEAD scheme the threshold equation determines the onset of saltation, and a static 

aerosol particle size distribution is assumed such that the peak aerosol emission occurs in 

the 3rd transport bin (Table 4.1).  Similar to the GOCART scheme, the fifth transport bin 

has comparable values of emissions and dry deposition, indicating that nearly all emitted 

particles at this size are removed rapidly.  The DEAD scheme emits relatively more 

optically efficient particles in the first transport size bin.  Figure 4.4b shows how this 

corresponds to a larger contribution to the total dust AOT from these particles than in the 

GOCART scheme, and is the explanation for the comparable regional AOT values 

obtained despite the large difference in the emitted aerosol mass.  

 

 

Figure 4.4.  (a) August – September average total emissions (solid), total dry deposition (dashed).  (b) 
August – September average fraction of dust AOT for each transport bin over North Africa for the 

GOCART (black) and DEAD (gray) emission schemes. 
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4.2.2.2   Comparisons of Aerosol Optical Thickness 

 To help validate simulated spatiotemporal dust distributions using the GOCART 

and DEAD emission schemes during NAMMA, comparisons are made to measurements 

of AOT from the space-borne MISR instrument and ground-based AERONET 

sunphotometers.  When making comparison between simulated and observed 

distributions, it is useful to discuss the different methods used to obtain the quantity of 

interest.  In the model, aerosol mass loadings are converted to AOT using a look-up table 

of mass extinction efficiencies provided by aerosol models and are a function of particle 

type, radius, and relative humidity.  For satellite based observations such as MISR and 

MODIS, observed reflectances are used to indirectly determine AOT values.  However, 

this method relies first on removing the surface reflectance in order to determine the 

contribution from aerosols.  The method for determining the surface reflectance is unique 

for each satellite, but in general employs using reflectances from multiple channels to 

estimate the surface reflectance.  Once the aerosol contribution is determined, aerosol 

models that are reflective of the regional aerosol type are used to determine the AOT.  

For AERONET sunphotometer observations, AOT is directly observed by measuring 

direct sun extinction.  While AERONET may provide the purest measurement of AOT 

for model validation, it limited by providing a point measurement that may observe local 

features that are impossible to resolve in a global model.  However, when used together, 

satellite observations are useful to validating simulated spatial aerosol distributions, while 

AERONET is most useful for evaluating the timing of aerosol events.  

 

4.2.2.2.1 Multi-Angle Imaging Spectroradiometer 
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Figure 4.5 shows monthly mean MISR [555 nm], GEOS-4 GOCART [550 nm], 

and GEOS-4 DEAD [550 nm] AOT from all aerosols during August and September.  For 

a consistent comparison, GEOS-4 AOT values have been sampled from grid cells at the 

synoptic time nearest the MISR retrieval.  On each plot, white areas correspond to 

regions where MISR was unable make any retrieval at all (e.g. due to clouds) and 

therefore did not sample the model.  In August, MISR reports moderate AOT values 

(~0.6) over most of the southern Saharan desert, with two AOT hot spots (>1.0) over 

Mauritania and Mali (Box 1) and Lake Chad (Box 2).  Over the tropical North Atlantic 

Ocean, AOT values are moderate off the coastline, but drop off quickly west of 30W 

(Box 3).   In comparison, both GEOS-4 simulations have AOT values that are 30-50% 

less than MISR over the southern Saharan desert and at least 50% less over the hot spots 

(Boxes 1 and 2).  Just off the coastline, GEOS-4 AOT magnitudes are comparable to 

MISR, but drop off more quickly toward the west near 22.5W (Box 3).  Over the tropical 

North Atlantic Ocean, the MISR dust plume extends all the way to the Caribbean, while 

both GEOS-4 plumes are not as pronounced. Comparing the GEOS-4 simulations, both 

emission schemes simulate comparable AOT distributions of North Africa, with the 

GOCART scheme matching MISR better over Mauritania and Mali (Box 1) and the 

DEAD scheme having slightly better agreement with MISR over the Lake Chad region 

(Box 2).  During September, MISR retrieves moderate AOT values (~ 0.6) over the 

southern Saharan desert again, but only has one hot spot over Lake Chad (Box 2).  Over 

the tropical North Atlantic Ocean in September MISR shows somewhat lower AOT near 

the African coast than in August.  In both months, MISR shows long-range transport of 

high dust AOT into the western Atlantic and Caribbean.  Although the dust transport 
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appears to carry further west in August, the peak of the AOT is higher (~ 0.4 – 0.5) and 

appears further west (at about 50° W) than in August (Box 3).  Both GEOS-4 simulations 

capture the lower values near the coastline, but not the apparent extended long-range 

transport in September.  Comparison of the MISR observations to MODIS Aqua AOT 

(not shown) suggests that the pattern of transport MISR shows in September is somewhat 

a sampling artifact.  The MODIS observations provide daily near-global AOT retrievals, 

compared to the MISR narrower swath observations, which obtain global coverage 

approximately every nine days.  In short, the MISR observations emphasize a particular 

event that the model underestimated.  Over North Africa, both GEOS-4 simulations 

produce AOT distributions that are more comparable in magnitude to one another than to 

MISR.  Both schemes simulate maximum AOT values over the Lake Chad region, where 

the DEAD scheme is more comparable with MISR (Box 2).  Again, both schemes 

simulate AOT values that are 50% less than values retrieved by MISR over Mauritania 

and Mali (Box 1).  Over the tropical North Atlantic Ocean, neither scheme captures the 

magnitude and westward extent of the MISR dust plume over the tropical North Atlantic 

Ocean (Box 3).     
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Figure 4.5. (top) MISR AOT, (middle) GEOS-4 GOCART AOT, and (bottom) GEOS-4 DEAD AOT 
during (left) August and (right) September.  Boxes 1 – 3 are regions of interest for model evaluation. 

 

Figure 4.6 shows the day-to-day variation of the MISR and simulated AOT as 

averaged within each of the three boxes illustrated in Figure 4.5.  When compared to 

MISR, both model simulations consistently underestimate the magnitude of AOT in all 

three boxes.  The coefficient of determination correlation (R2) of the model and MISR 

AOT is worst for both simulations in the region of Lake Chad (Box 2: GOCART R2 = 
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0.058, DEAD R2 = 0.259).  Correlation is more modest over Mali and Mauritania (Box 1: 

GOCART R2  = 0.410, DEAD R2 = 0.395) and also over the Tropical North Atlantic (Box 

3: GOCART R2  = 0.560, DEAD R2  = 0.377).  It is evident that the model has difficulty 

with the timing of dust events over Lake Chad, but improves downwind.   While Box 1 

correlates moderately well with MISR, both simulations underestimate the AOT 

magnitude by nearly 50% throughout August.  The simulations compare best over the 

Tropical Atlantic Ocean (Box 3) where AOT magnitudes are most similar to MISR and 

have modest correlations.   

 

 

Figure 4.6.  MISR (dashed) and sampled GOCART (black) and DEAD (gray) daily AOT for boxes 1 – 3.  
Coefficients of determination are displayed on the top right of each plot. 
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4.2.2.2.2 Aerosol Robotic Network 

Four AERONET sites are located near the dust source regions in North Africa 

during the NAMMA period (Figure 4.7). Sites were chose based on their proximity to the 

source region and availability during the NAMMA period.   

 

Figure 4.7. AERONET site locations and their proximity to the dust source region (contour). 

 

Figure 4.8 compares daily averaged GEOS-4 GOCART and DEAD AOT values 

from all aerosols to AERONET AOT. For each site, the mean AOT for AERONET, 

GOCART, and DEAD on days when AERONET provides retrievals is displayed in the 

upper left corner and the coefficient of determination (R2) correlation of the AERONET 

AOT time series with GOCART and DEAD is displayed in the upper right corner.  In 

general, the two model simulations are well correlated with each other.  At Tamanrasset-
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TMP (nearest to the large-scale dust source regions) we have a generally low correlation 

between the model AOT and the AERONET observations (GOCART R2 = 0.278, DEAD 

R2  = 0.333).  Both simulations fail to capture dust events that occur on 8/10, 8/15, and 

8/28, artificially simulate a dust event from 9/21 - 9/24, but are able to accurately capture 

a dust event that occurred from 9/2 - 9/5.  These results are consistent with MISR in that 

the model has difficulty with the timing of dust events near the source region.   

  Dakar and Banizoumbou are sites peripheral to the dust source region.  Similar 

to Tamanrasset-TMP, the mean AOT is comparable between the model simulations and 

the AERONET observations at both sites.  At Dakar, AERONET reports high AOT 

values from 8/15 - 8/20, 8/25, 9/5 - 9/9, and 9/21, while GEOS-4 values are never higher 

than 0.7.  Despite the differences in magnitude, the timing of GEOS-4 AOT events has 

moderate agreement with AERONET (GOCART R2 = 0.454, DEAD R2 = 0.387).  At 

Banizoumbou, there is poor agreement between AERONET and GEOS-4 AOT time 

records (GOCART R2 = 0.101, DEAD R2  = 0.018).  Often there is a lag between 

simulated and observed AOT values (e.g. 8/20 - 8/25), which result in low correlation 

coefficients.   

Santa Cruz, Tenerife, is downwind of the dust source region and AOT magnitudes 

are correspondingly lower, yet the periodic passing of dust events is evident.  Here, there 

is relatively high correlation in the timing of events between the model and the 

observations (GOCART R2  = 0.583, DEAD R2 = 0.644), but mean AOT values are 

somewhat higher in the model than in the observations.  

The simulations have their greatest correlation with AERONET observations 

downwind of the source region (Santa Cruz, Tenerife), have moderate agreement near the 
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source region at the Tamanrasset-TMP site and peripheral site Dakar, and poor agreement 

at Banizoumbou.  Over the source region, meteorological observations to constrain the 

model are scare, so the wind fields that drive the dust emissions are based on the model 

physics more than on observations.  Further from the dust sources, however, it is 

generally the case that more meteorological observations are available for assimilation 

into the analyses driving the model, and hence the simulated loadings have better 

agreement with the observations.  Additionally, although there are limitations in the dust 

emissions schemes, errors in accurately simulating other aerosol types will play a role in 

the overall fidelity of the simulated AOT with observations.  In particular, at Dakar and 

Banizoumbou inspection of the Angstrom parameter determined from AERONET 

observations suggests that some significant aerosol events are due to aerosols other than 

dust (not shown).  Alternatively, errors in the timing of events may be attributed to either 

model spatial scale or (and related) transport errors. AERONET observations are 

essentially point measurements, while the model grid-boxes are approximately 100 km x 

100 km in size.  Therefore, the model may not be resolving sub-grid scale plumes that 

may be driving the AERONET observations.  This explanation is plausible, as for each 

AERONET site, comparisons to the were made once again by averaging the model over 

the nine grid boxes encompassing and surrounding the site (so considering a box of 

approximately 300 x 300 km2 area) and achieved essentially the same results at all four 

sites (not shown).  Therefore, the differences between the model and observations are not 

simply the result of plume misplacement, but are either a reflection of real errors in the 

model aerosol parameterization or missing sub-grid scale aerosol plumes.  Mean AOT 

comparisons to AERONET are consistent with MISR in that both GEOS-4 simulations 
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have better agreement with one another than with the observations during August and 

September.  However, unlike comparisons to MISR, mean simulated AOT values are not 

consistently low when compared to AERONET.  We see that mean AOT values are very 

comparable to AERONET at Dakar, have good agreement at Tamanrasset-TMP (DEAD) 

and Banizoumbou (GOCART), and are slightly biased high at Santa Cruz Tenerife.   

 

 

Figure 4.8.  AERONET AOT (dashed-diamond), GEOS-4 GOCART AOT (solid black), and GEOS-4 
DEAD AOT (solid gray) during August and September.  Mean AOT values and coefficients of 

determination are displayed in the top left and right, respectively. 
 

4.2.2.3   Particle Size Distributions 

 In this section, modeled dust particle size distributions are evaluated in the 

context of observations from AERONET and airborne measurements.  Recall that the 

initial particle size distribution is dynamically generated for simulations with GOCART 
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emissions (wind – speed dependent) but is prescribed for simulations with the DEAD 

emission scheme.  For both schemes, the particle size distributions will evolve during 

transport as particles are removed via dry and wet removal processes. 

 

4.2.2.3.1   Aerosol Robotic Network 

To measure the ability of each emission scheme to simulate dust particle size 

distributions, simulated size distributions were compared to those retrieved at the 

Tamanrasset-TMP, Santa Cruz Tenerife, Dakar, and Banizoumbou AERONET sites 

(Figure 4.7).  Here, only simulated dust particle distributions are compared to AERONET 

retrievals.  At each site during August and September, the daily averaged AERONET size 

distribution is constructed from observations where the AOT is greater than 0.4 at 440 

nm [Dubovik and King, 2000].  From the daily averaged size distributions, a mean size 

distribution is constructed for the August-September period at each site.  The simulated 

particle size distributions were computed at each vertical level in the model from the 

simulated mass distributions, and the values were integrated in the vertical to produce a 

column-integrated volume distribution, consistent with the AERONET retrieval.    

Shown in Figure 4.9 are the mean August-September volume distributions for 

AERONET and the two model simulations at each site.  On each AERONET volume 

distribution, the standard deviation of each particle size bin is indicated.  In addition to 

the volume distributions, the mean total AOT, coarse mode AOT, and the coarse mode 

volume median diameter (retrieved in AERONET, from the dust mode in the model) are 

shown for the AERONET observations and the GEOS-4 GOCART and DEAD 

simulations, as well as the number of days used to determine the averages.  At 
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Tamanrasset-TMP only one day was available, and both simulations underestimate the 

AOT, and therefore the overall particle volume.  Additionally, the simulations 

underestimate the relative contribution of large particles to the overall volume and the 

model coarse mode median diameter is underestimated relative to the AERONET 

retrieval.  Because there is only one valid day during our time of interest, it is difficult to 

tell if this large discrepancy between the AERONET and GEOS-4 volume distributions is 

a common occurrence.  Moving away from the source region to the Santa Cruz Tenerife, 

Dakar, and Banizoumbou sites, there is better agreement between simulated and 

AERONET coarse-mode distributions.  Due to their location downwind of the dust 

source region, AERONET distributions are narrower and AERONET coarse mode 

median diameters are smaller (at Dakar and Santa Cruz) as larger particles settle 

preferentially from the dust plume.  However, the model coarse mode median diameters 

do not exhibit much variability from one site to the other, which could indicate that the 

simulated removal processes are not reflective of the regional atmospheric environment.   

In the submicron range, AERONET volume distributions have a second mode that 

is not seen in the simulated dust volume distributions at all locations.  This feature is due 

to the presence of smaller, non-dust aerosols (e.g. smoke) that are not being considered in 

the comparison to simulated dust volume distributions.  Regardless of the aerosol type, 

this comparison suggests the current range of aerosol diameters be extended below 0.2 

µm in diameter in future simulations, as this mode will have important implications for 

simulated optical quantities.  Comparing the two simulations in the submicron range, 

there are a greater number of particles in the DEAD volume distributions when compared 

to the GOCART volume distributions, a feature consistent with Figure 4.4.  At all three 
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sites, the AERONET volume distributions peak near 4µm.  Both emission schemes have 

comparable coarse mode volume median diameters, but the DEAD volume distributions 

consistently result in larger median diameters that are more comparable to AERONET. 

 

Figure 4.9.  Mean August – September AERONET (dashed), GEOS-4 GOCART (solid black), and GEOS-
4 DEAD (solid gray) size distributions. 

 

4.2.2.3.2  Airborne In Situ:  Langley Aerosol Research Group 

Experiment 

 During NAMMA, the Langley Aerosol Research Group Experiment (LARGE) 

airborne payload provided in situ measurements (Chapter 2.2.3.1) of particle size 

distributions while flying on the NASA DC-8 aircraft.  The observed dust size 
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distributions exhibited a bi-modal structure that was fitted with two lognormal curves to 

produce the smoothly varying size distributions.  For our analysis, our simulated volume 

distributions are compared to 28 in-situ volume distributions at varying altitudes and 

locations during NAMMA. 

Figure 4.10 shows volume distributions from LARGE and both GEOS-4 

simulations (dust-only) on 8/19/2006 and 8/25/2006.  On each day, the locations of the 

sampled distributions along the DC-8 track and their proximity to the MODIS-Aqua and 

GOCART AOT are shown.  Additionally, the mean fitted distribution as well as the range 

of distributions possible based on the standard deviations of the fitted size parameters for 

a range of altitudes (1.5-2.25, 2.25-3, 3-3.75 km) are shown.  On 8/19/2006, while 

descending into a dust plume, several volume distributions were collected over the 

tropical North Atlantic Ocean in the area of 14-16.5° N, 21-27° W.  With increasing 

altitude, the in situ volume distributions become narrower as the number of large particles 

decrease with altitude.  Both GEOS-4 distributions exhibit little variability in the vertical, 

hinting again that the removal processes may be too relaxed in the model.  Additionally, 

in contrast to the comparison to AERONET, both simulations have peak volumes at 

larger diameters (D ~ 4 µm) than the measurements (D ~ 2 µm).  Because only the dust 

contribution to the total volume distribution is compared to the LARGE data, it is not 

surprising that both simulations do poorly in the submicron range.  However, a 

significant discrepancy exists between all LARGE distributions and the simulated 

distributions in the range of 1 < D < 2 µm, where the DEAD scheme is only marginally 

better.  On 8/25/2006, in situ volume distributions were collected during aircraft ascent in 

the vicinity of 18.5-20° N, 18.5-23° W. On this day, both model simulations better 
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capture the variations in particle size with altitude and show an improved agreement with 

the airborne measurements in the 1 µm < D < 2 µm diameter range, but exhibit modal 

diameters that are about 2 µm greater than seen in the LARGE distributions.   It should 

be noted that the in situ measurements were not corrected for hygroscopic growth or for 

losses within the sample inlet, possibly accounting for a part if not all of the observed 

differences in the coarse mode size range. 

 

 

 

Figure 4.10. (a) In situ volume distribution locations along the NASA DC-8 track (dashed line) over daily 
averaged MODIS Aqua (shaded) and GOCART (contoured) AOT on 19 August 2006 and 25 August 2006.  
Mean in situ (dashed), GOCART (solid black), and DEAD (solid gray) volume distributions as a function 

of altitude on (b) 19 August 2006 and 25 August 2006.   
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4.2.2.4   Aerosol Vertical Profiles 

During NAMMA, the LASE lidar also flew onboard the NASA DC-8 aircraft.  

LASE operated during all 13 NAMMA flights and obtained aerosol measurements where 

cloud attenuation effects were not significant.  LASE aerosol extinction profiles have 

been shown to have very good agreement with aerosol extinction profiles derived from 

simultaneous in situ LARGE data [Ismail et al., 2009].   LASE, along with observations 

from the space-based CALIOP, are used to evaluate the simulated dust vertical profiles 

during the NAMMA field campaign.  The horizontal distribution of aerosols is 

additionally considered in the context of correlated aerosol observations from the 

MODIS-Aqua and OMI satellite sensors.  The CALIOP, MODIS-Aqua, and OMI 

observations are near coincident in time, with all three instruments operating on separate 

satellites flying within a coordinated satellite constellation (the so-called A-Train).  Here 

two case studies are considered where the satellite and airborne observations are 

correlated. 

The NAMMA flight on 8/26/06 (Figure 4.11) is representative of other NAMMA 

flights, as observations are made over the ocean under similar synoptic conditions while 

the NAMMA flight on 9/5/06 (Figure 4.12) is unique as the DC-8 aircraft made way over 

the African continent.  For each NAMMA flight presented, the DC-8 track is shown in 

the top left plot by the black line.  The ‘’ marks the beginning of the flight and an ‘X’ 

marks the end.  In addition to the flight track, the Lidar Atmospheric Sensing Experiment 

(LASE; Chapter 2.2.3.2) extinction [815 nm] is compared to sampled GEOS-4 GOCART 

and DEAD extinction from all aerosols [815 nm] in the left column.  GEOS-4 grid cells 

were sampled at the nearest model synoptic time along the DC-8 track.  The DC-8 
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altitude is indicated in the LASE and GEOS-4 curtain plots with a solid black line.  Also 

shown on the top left plot is the CALIOP nighttime pass (solid red line) that is nearest the 

DC-8 flight track.  The beginning of each CALIOP track is marked by a ‘’ and the end 

is marked by an ‘X’.  In each center column, CALIOP total attenuated backscatter [532 

nm], CALIOP depolarization ratio [532 nm], GEOS-4 GOCART from all aerosols 

extinction [532 nm], and GEOS-4 DEAD extinction from all aerosols [532 nm] are 

shown.  Both GEOS-4 simulations are sampled along the CALIPSO track similar to the 

DC-8 sampling.  In the right column, OMI aerosol index [354 nm], MODIS-Aqua AOT 

[550 nm], GEOS-4 GOCART AOT from all aerosols [550 nm], and GEOS-4 DEAD 

AOT from all aerosols [550 nm] are plotted to identify spatial distributions of observed 

and simulated dust plumes.   

 

4.2.2.4.1   26 August 2006 

At 1300Z on August 26, the NASA DC-8 encountered an intense low-level dust 

plume (Figure 4.11). The aircraft ascended to 10.5 km as it headed in a northwest 

direction.  Upon reaching 20° N, the aircraft maintained a steady altitude of 10.5 km and 

changed course to follow a counterclockwise path above a low-level dust plume over the 

tropical North Atlantic Ocean.  Near 18° N, the aircraft briefly dipped down to 7 km but 

quickly ascended to 11 km for the second half of the flight before returning to Capo 

Verde. 

On this day, simulated extinction profiles from both emission schemes are nearly 

identical.  Both GEOS-4 simulations are very similar and match well with LASE 

extinction beneath 4 km.  Above 4 km, model extinction values continue to be high up to 
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6 km, where LASE is generally capped at 4 km.  While CALIOP appears to show an 

elevated dust plume on its transit, both instances of the model show a dust layer that 

extends to the surface and situated somewhat more to the south.  On the other hand, the 

peak AOT in the model appears to be near the surface and coincident with marine stratus 

clouds CALIOP observations (high backscatter and modest depolarization below about 2 

km altitude extending along the northern portion of the transit), indicating that the model 

is able to capture swelling by hygroscopic aerosols within the humid marine 

environment. Although the OMI and MODIS observations are not time coincident with 

the CALIOP data and apparently miss the DC-8 flight on this day, both instances of the 

model place dust plumes consistently with their observations over North Africa and the 

Canary Islands, but underestimate the AOT.  
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Figure 4.11.  NASA DC-8 (black) and CALIOP (red) (a) tracks, (b) LASE extinction, (c) GEOS-4 DC-8 
sampled GOCART extinction, (d) GEOS-4 DC-8 sampled DEAD extinction, (e) CALIOP total attenuated 

backscatter, (f) CALIOP depolarization ratio, (g) GEOS-4 CALIOP sampled GOCART extinction, (h) 
GEOS-4 CALIOP sampled DEAD extinction, (i) OMI Aerosol Index, (j) MODIS-Aqua AOT, (k) GEOS-4 

GOCART AOT, and (l) GEOS-4 DEAD AOT on 26 August 2006. 
 

4.2.2.4.2   5 September 2006 

On September 5, the NASA DC-8 began a flight at 1200Z (Figure 4.12).  During 

the flight, the aircraft increased altitude to a steady 11 km as it flew northeast to 19° N 

and then maintained constant latitude as it flew over the continent to 10° W over an 

intense dust plume.  The aircraft then spiraled down into the dust plume to 1 km, then 

turned around and followed the same path back Capo Verde while slowly ascending to 8 

km. This flight is unique because it is one of the few NAMMA flights that were 

conducted over land.  
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On this day, both schemes have excellent agreement with the LASE extinction 

profile. Unlike the previous case study illustrated, both emission schemes transport dust 

to altitudes comparable to those retrieved by LASE.  CALIOP total attenuated 

backscatter and depolarization ratio show a strong elevated dust plume extending from 

30° N to 10° N.  We note that the strong backscatter signals seen above 5 km are 

indicative of ice clouds due to their high altitude, heterogeneous structure, polarization of 

the backscatter signal at the feature altitude, and complete attenuation below.  These 

clouds are not shown in the model results.  Both schemes capture the elevation and 

latitudinal extent of the dust plume observed by CALIOP.  OMI AI and MODIS AOT 

show dust plumes over northern Africa and off the coast of Mauritania.  Both simulated 

plumes are positions slightly to the north and east of each observed plume.  MODIS 

tropical North Atlantic AOT spatial distributions and magnitudes are comparable to both 

schemes.  
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Figure 4.12.  NASA DC-8 (black) and CALIOP (red) (a) tracks, (b) LASE extinction, (c) GEOS-4 DC-8 
sampled GOCART extinction, (d) GEOS-4 DC-8 sampled DEAD extinction, (e) CALIOP total attenuated 

backscatter, (f) CALIOP depolarization ratio, (g) GEOS-4 CALIOP sampled GOCART extinction, (h) 
GEOS-4 CALIOP sampled DEAD extinction, (i) OMI Aerosol Index, (j) MODIS-Aqua AOT, (k) GEOS-4 

GOCART AOT, and (l) GEOS-4 DEAD AOT on 5 September 2006. 
 

4.2.3  Summary and Conclusions 

In this chapter, comparisons of simulated dust distributions to several observation 

data sets obtained during the NAMMA field experiment were presented.  GEOS-4 

simulations were conducted with two different dust aerosol emission schemes.  Both 

schemes used the same source function map to locate dust source regions but differed in 

their underlying parameterization of the emission process. The emission schemes were 

tuned so that the regionally averaged dust AOT over North Africa during the August—

September 2006 period was the same for each. 
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The impact of the emission scheme choice is most clearly seen in the mass 

distributions of emitted dust.  The GOCART scheme more broadly distributes emission 

over the source region, whereas the emissions in the DEAD scheme are more localized 

(Figure 4.2).  This difference is related to the differences in the treatment of the dust 

mobilization processes in the schemes. In the DEAD scheme, emissions are highly 

sensitive to the presence of soil moisture and are driven by the wind friction speed, which 

is comparable in magnitude to the wind speed threshold for emissions, and therefore 

emissions are more episodic.  In contrast, the GOCART scheme drives emissions by the 

10-m wind speed, which even when the effects of soil moisture are considered, is 

typically an order of magnitude greater than the threshold wind speed, and so the wind 

speed threshold is more frequently exceeded throughout the domain.  Additionally, 

although the two schemes were tuned to yield the same regional AOT values, differences 

in the choice of emitted particle size distribution result in different emission magnitudes 

(91 Tg/month for GOCART scheme vs. 54 Tg/month for DEAD scheme).  More mass in 

the GOCART scheme is emitted into larger particle sizes that have shorter residence 

times because of removal by gravitational settling, while the DEAD scheme has 

relatively more mass emitted into smaller, more optically efficient particles and fewer 

large particles (Figure 4.4).  Despite these differences in the emitted particle size 

distribution, both schemes evolve similar particle distributions during transport (Figures 

4.9 and 4.10).  Comparing simulated particle size distributions to AERONET 

measurements (Figure 4.9) there is poor agreement between the simulated and retrieved 

distributions near the source region (Tamanrasset-TMP), and the observed relationship 

between smaller particle sizes and the coarse mode with distance downwind of the source 
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regions was not accurately captured. The DEAD scheme had somewhat larger coarse 

mode median diameters, which agreed slightly better with AERONET.  In general, both 

schemes maintained fairly constant particle size distributions during transport.  

Comparisons of GOCART and DEAD AOT values to observations from MISR  

(Figure 4.5) show that both schemes produce similar spatial distributions of dust 

downwind of source regions, but different distributions over the source region.  The 

implication is that while the downwind distributions may evolve similarly in both 

schemes, the radiative forcing due to the dust over the source region might be quite 

different.   

 In comparison to AERONET AOT observations (Figure 4.8), GOCART and 

DEAD AOT are highly correlated with each other in time, but differ somewhat in 

magnitude, especially during high AOT events, which is not inconsistent with the MISR 

observations discussed above.  Both MISR and AERONET show that neither emission 

scheme performs especially well over the source region at capturing specific events.  To 

the south of the source region, daily AERONET AOT correlations with each scheme are 

also poor, but MISR monthly mean AOT values are comparable.  This suggests that the 

timing of specific dust transport episodes to the south of the source region may not be 

correct, but the mean pattern is comparable to the observations.  Both schemes have their 

best agreement with MISR and AERONET AOT farther downwind of the source region 

(Santa Cruz, Tenerife) and over the tropical North Atlantic Ocean.  This suggests that the 

meteorology over the source regions may not be sufficiently accurate to capture specific 

dust lifting events, but that once dust is entrained in the large-scale flow downwind of 

sources the model is adequate to resolving dust transport episodes. This result is 
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consistent with Colarco et al. [2003], who showed that the timing of dust events is more 

sensitive to transport dynamics rather than the dust model chosen. 

Simulated vertical profiles from both schemes were compared to NAMMA 

airborne observations and space-based CALIOP observations for two case studies.  To 

our knowledge, this is the first time that dust vertical distribution has been explored in the 

same model running with different dust emission schemes.  In both cases, the model did a 

reasonable job of placing the dust plumes from Africa over the tropical north Atlantic, 

and in general there was no apparent difference in the vertical plume placement between 

the schemes.  In one of the cases examined (August 26, Figure 9), although the model 

had located the main dust plume correctly below 4 km altitude, there was considerable 

transport of dust at higher altitudes as well.   There are well known issues of excessive 

vertical diffusion in numerical transport models that result from limited vertical 

resolution.  Further sensitivity studies will be required to isolate that possible cause from 

errors in the vertical mixing by dry convection over the source region or even long-range 

transport of dust from distant source regions as explanations for simulated dust at too 

high an altitude and are outline in Chapter 6.2. 

The GOCART and DEAD emission schemes produce similar AOT distributions 

during the timeframe of the NAMMA field experiment.  From a physical standpoint, the 

DEAD emission scheme poses a more realistic representation of dust emission by 

correctly comparing the surface friction speed to the threshold speed and simulating 

particle saltation.  However, emitted dust distributions are dependent on several 

unknowns such as soil particle size distributions, soil clay content, and model 

assumptions that are used to compute the surface friction speed.  Additionally, the 10-
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meter wind speed used by the GOCART scheme to parameterize dust emission is 

typically is observed more frequently than the surface friction speed, though observations 

over the Saharan source region are sparse.   

Despite the differences in the emission schemes, both simulations become more 

comparable to observations with distance from the source region.  Because observations 

are limited within the source region and dust production is subject to the accuracy of the 

assimilated meteorology, it is not surprising that the largest discrepancies exist in this 

region.  Therefore, for this set of model simulations, errors in the simulated meteorology 

may be more significant than the differences between the emission schemes.  From the 

analysis of observed and simulated dust distributions, emission scheme choice makes a 

small difference when considering the particle size distributions of the load.  Based on 

the available AERONET and airborne in situ size distributions during the NAMMA 

experiment, the fixed particle size distribution chosen for the DEAD scheme produces a 

particle size distribution that is slightly more comparable to observations.  Using optical 

measurements over North Africa during the NAMMA experiment, there were not any 

significant advantages or disadvantages of using either scheme.  However, the significant 

difference in emitted particle size distributions and corresponding mass between the 

emission schemes over the source region may be useful to identify which scheme is more 

preferable for global model use if there are sufficient observations of mass concentrations 

during NAMMA.   Additionally, while changing the region or time period of interest may 

help to differentiate the schemes, it is expected that the most significant difference will be 

seen if the model resolution is increased.  If the micro-scale processes and meteorology 

that control dust emission are better resolved, there can be a large effect on simulated 
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emitted dust distributions owing to the subtle differences of the emission schemes.  These 

effects will be further explored in the next section. 

 

4.3   Sensitivity of The Mobilization Process to Model Physics 

One of the major findings from Section 4.2 was that modifying the physics of the 

dust mobilization process did not have a significant impact on downwind distributions in 

GEOS-4.  This was true despite large differences in the spatial distribution of dust 

emissions and the emitted particle size distributions.  Here, the sensitivity of these 

conclusions to model spatial resolution is explored using the NASA GEOS-5 model 

(Chapter 2.1).  GEOS-5 can be run for various applications at a range of spatial 

resolutions from relatively coarse resolutions typical of long integration climate 

simulations (2°×2.5° and 1°×1.25° latitude by longitude) to higher resolutions more 

useful in data assimilation and short-term operational forecasting (0.5°×0.625° and 

0.25°×0.3125°), hereby referred to as 2°, 1°, 0.5°, and 0.25°. 

 Here, the objective is to investigate the sensitivity of dust emissions and the dust 

aerosol lifecycle to spatial resolution in order to homogenize simulations across this 

range of spatial scale.  Ultimately, the simulated dust aerosol lifecycle will influence 

AOT distributions, which are compared to satellite observations to determine appropriate 

tuning constants (see Chapter 3.1).   

In this section, the effects of changes to the driving dynamics, source function 

resolution, and model spatial resolution on simulated dust emissions, particle size 

distributions, lifetime, and AOT are explored in GEOS-5.  These effects are explored 

globally, as well as over the African (13° N - 35° N, 18° W - 35° W) and Asian (36° N - 



 69 
 

44° N, 77° W - 109° W) source regions (Figure 4.13).  This analysis is focused on the 

month of April 2008, in order to utilize data provided by the NASA SMART-COMMIT 

field campaign near the Gobi Desert in Zhangye, China (Chapter 2.2.3.4) in addition to 

AOT observations from MISR and AERONET (Chapter 2.2.1.2 and 2.2.2.1).   

 

Figure 4.13.  African (a) and Asian (b) source regions indicated by red boxes.     

 

4.3.1   Experiment Setup 

 To explore the sensitivity of dust emissions, lifetime, and AOT, three different 

mobilization schemes are considered:  GOCART, DEAD, and a version of the GOCART 

scheme that uses a constant threshold speed (hereby referred to as GOCART-threshold).  

Both the GOCART and DEAD scheme setups are as described in Chapter 4.2.1. The 

GOCART-threshold setup follows from [Grini and Zender, 2004] and is a somewhat 

more physically based version of the GOCART scheme.  The GOCART-threshold 

scheme extrapolates the surface dry threshold speed of a 100 µm soil particle as used by 

the DEAD scheme (0.2 m s-1, Figure 4.1) to 10 meters (6.5 m s-1), assuming neutral 

atmospheric stability.  In this way, the GOCART-threshold scheme attempts to connect 

dust emissions parameterized in terms of the 10-meter wind speed to the surface by 
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extrapolating the threshold speed required for saltation to the altitude of the driving 

meteorology. Additionally, using this method, the order of magnitude of the winds that 

drive dust emission is the same as the threshold.  The constant dry threshold speed is then 

modified for the presence of soil moisture and uses the same source fractions as the 

original GOCART scheme (Chapter 4.2.1).  

 The three different mobilization schemes (GOCART, GOCART-threshold, and 

DEAD) were run at four different spatial resolutions in order to investigate sensitivity of 

emissions to model spatial scale.  It should be noted that the model time step is a function 

of spatial resolution, as shorter time steps are required at higher spatial resolution in order 

to satisfy stability in physics algorithms used in the model.  Dust emissions and 

meteorological parameters needed to compute dust emissions offline were output at the 

model native time step for each resolution (Table 4.2).  Table 4.2 also shows the number 

of global grid boxes (latitude by longitude) at each, as well as the number of 0.25° grid 

box within a single grid box at each resolution.  In all simulations, a higher resolution 

(0.25°) version of the dust source from Section 3.1 is used, although it is conservatively 

interpolated to the appropriate resolution for each. 

 

Resolution 2°  1°  0.5°  0.25°  

Time Step 30 minutes 30 minutes 20 minutes 15 minutes 
Number of Grid 

Boxes (latitude by 
longitude) 

144 x 91 288 x 181 576 x 361 1152 x721 

# of 0.25°  Grid 
Boxes Contained 

64 16 4 1 

 

Table 4.2.  Model spatial resolutions, output frequency, total number of grid boxes, and number of 0.25° 
grid boxes within a single grid box at each resolution.   
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To summarize, three different simulation setups (GOCART, GOCART-threshold, 

and DEAD) are considered at four different spatial resolutions.  As a baseline, each of the 

mobilization schemes was run for all of 2008 at 2° resolution.  The simulations were 

tuned (see Chapter 3.1) a posteriori so that each had the same global, annually averaged 

dust AOT as the baseline GOCART run. Emissions for simulations at higher spatial 

resolution were determined using the same tuning constants, so that only the resolution of 

driving dynamics, soil moisture, and source function would cause variations in the 

simulated dust emission as the model spatial resolution was increased.  Because 

simulations at higher resolutions require more computational resources, only April 2008 

was simulated at 1°, 0.5°, and 0.25° resolutions to encompass the time period of the 

SMART-COMMIT field campaign in Zhangye, China (Chapter 2.2.3.4).  It should be 

noted that for all sensitivity simulations, only the dust emission process was modified and 

that removal processes and optics for all schemes are the same as described in Chapter 

3.2 and 3.3.  

 

4.3.2   Results 

 

4.3.2.1 Annual Dust Emission and Aerosol Optical Thickness Cycle 

Shown in Figure 4.14 are monthly mean global dust emissions and average AOT 

for the three mobilization schemes.  Globally, emissions from the GOCART and 

GOCART-threshold setups produce the same seasonal cycle, but the GOCART-threshold 
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emissions are lower in magnitude and exhibit slightly more month-to-month variability.  

This is a direct result of the differences in the mobilization parameterizations between the 

two schemes.  Recall that in the GOCART scheme, the threshold speeds required for 

mobilization have a dependence on size.  From Figure 4.1, within the range of simulated 

dust aerosol diameters (0.1 – 10 µm), the dry threshold wind speed decreases with 

particle diameter, therefore favoring the emission of heavier, less optically efficient dust 

aerosols in the GOCART scheme.  Additionally, instances may occur where the emission 

threshold was met for larger particles, but not in the sub-micron range, resulting in 

emission in only a few of the bins.  However, in the GOCART-threshold scheme, the 

threshold does not have a dependence on size and once it is met, emission occurs for all 

dust particle sizes.  Because the dust emissions of each scheme were constrained to 

obtain the same dust AOT, the GOCART scheme must emit more mass in order to 

achieve the same optical efficiency as the GOCART-threshold scheme.     

In contrast, the DEAD scheme has a very different annual cycle of dust emissions 

when compared to the GOCART and GOCART-threshold simulations.  Aside from April 

– June, the DEAD scheme has a very different dust emission seasonal cycle and generally 

emits significantly less mass when compared to the GOCART formulations.  The lower 

magnitude of the DEAD emissions is not surprising as a major result from Chapter 4.2 

was that the DEAD scheme emits a lower magnitude of dust than GOCART for the same 

AOT.  What is more surprising is the large monthly variability in the DEAD emissions, 

ranging from almost 250 Tg in April to less than 10 Tg in November.  However, owing to 

the differences in the treatment of the emitted particle size distributions, the seasonal 
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cycle of dust AOT in each simulation is much more comparable, though the DEAD 

scheme exhibits the most variability.  

 Figure 4.14 also shows the 2008 seasonal dust emission and AOT cycles over the 

African  and Asian source regions.  From this breakdown, it is clear that the global dust 

emission and AOT cycle is dominated by the African source region and again the DEAD 

scheme exhibits the most seasonal variability.  However, over the Asian source region, all 

simulations have very similar seasonal emission cycles, though at different magnitudes, 

reflecting differences in the emitted particle size distributions leading to nearly identical 

seasonal cycles of dust AOT.  
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Figure 4.14. (a) Global, (b) African, and (c) Asian monthly mean dust emissions and AOT for 2008 at 
2°×2.5° resolution. 

 

4.3.2.2 The Effect of Spatial Resolution on Simulated Dust Distributions 

In this section, the effects of model spatial resolution on simulated dust emissions,  

lifetimes, and AOT distributions are explored during April 2008. At different spatial 

resolutions, the simulated parameters that are used to parameterize the dust mobilization 

process (e.g., driving winds) will be resolved differently, potentially having implications 



 75 
 

for the simulate dust lifecycle.   To illustrate this, Figure 4.15a shows the reverse 

cumulative distribution function for all GEOS-5 10-meter wind speeds outputted during 

April 2008, which would be used to parameterize GOCART-based dust emission over the 

African source region (Figure 4.13).   It is clear that as model spatial resolution is 

increased, simulated wind speed extend to higher magnitudes.  Interestingly, the wind 

speed distribution converges at higher spatial resolutions, as the 0.5° and 0.25° 

distributions are nearly identical, possibly due to limitations of the native resolution of 

the MERRA renanalyses (0.5°) or land surface processes that influence simulated surface 

winds.  The reverse cumulative distribution of the surface friction speed over the African 

source region used to parameterize DEAD emissions is shown in Figure 4.15b.  Similar 

to distribution of the 10-meter wind speed, the surface friction speed distribution extends 

to higher magnitudes as the spatial resolution is increased and converges at higher spatial 

resolutions.   

 

Figure 4.15. April 2008 reverse cumulative distribution functions for the 10-meter wind speed (a) and 
surface friction speed (b) for all spatial resolutions.  Minimum dry threshold wind speeds for dust 

mobilization in the GOCART and DEAD schemes are indicated by a solid black line on each plot on (a) 
and (b), respectively. 
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The relationship between the driving wind speeds and spatial resolution is 

significant as both dust emission parameterizations have a cubic dependence on the 

driving winds once the mobilization threshold is met, marked by the solid black line to 

indicate the minimum wind speeds required for GOCART and DEAD dust emission in 

Figures 4.15a and 4.15b, respectively.   Therefore, based on this example, it is expected 

that dust emissions will be sensitive to model spatial resolution and will have 

implications for the simulated dust aerosol lifecycle.  

To this point, sensitivity experiments have focused on modifications to the 

mobilization scheme component of dust emissions.  As a subsequent sensitivity 

experiment, the effect of dust source function resolution on dust emissions is explored.  

In this setup, a coarse (2°) version of the dust source function is used with original 

GOCART mobilization scheme to drive dust emissions at all four spatial resolutions, 

hereby referred to as GOCART-source.  Even though GEOS-5 grids the dust source 

function to the spatial resolution of the model, this is essentially equivalent to using a 

fixed source function that is insensitive to spatial resolution.  In this way, the effect of 

source function resolution can be quantified by comparing the GOCART and GOCART-

source experiments.  Additionally, if dust emissions exhibit a strong response due to 

differences in source function resolution, it will highlight the need for using a source 

function PDF to capture the effects of strong sources that are not present at coarser 

resolutions. 

To reiterate, all tuning constants for each simulation were set so that each setup 

had the same 2008 global dust AOT at 2° resolution.  Therefore, for a given setup, 
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differences only will arise from how parameters within each mobilization 

parameterization are resolved as the model spatial resolution is modified.   

 

 

4.3.2.2.1 Monthly Emissions 

 Figure 4.16 shows the April 2008 global total dust emissions for each experiment.  

It is clear that for all simulation setups, the model spatial resolution has a significant 

effect on the total emissions.  An interesting result is that dust emissions from GOCART-

based simulations are highly sensitive to model spatial resolution as it is increased from 

2° to 0.5°.  However, consistent with Figure 4.15a, GOCART based emissions at 0.25° 

are comparable to those at 0.5°, as there is a convergence in the 10-meter wind speed 

distribution.  Interestingly, despite nearly identical distributions of the surface friction 

speed at 0.5° to 0.25° resolutions, the DEAD scheme does not exhibit this convergence, 

despite a converge of the global surface friction speed (Figure 4.15) and exhibits a linear 

dependence on model spatial resolution.  This suggests that this difference is due to 

controls on emissions other than the friction speed (e.g. soil moisture).  Of all the 

simulations, the GOCART-threshold setup exhibited the most sensitivity to model spatial 

resolution.  This is a result of the higher threshold being met by higher wind speeds as the 

model spatial resolution is increased.   Finally, the spatial resolution of the dust source 

function has little impact of dust emissions.  Globally, as the model spatial resolution is 

increased, the GOCART simulation emits more dust than the GOCART-source scheme, 

though the difference is small and never exceeds 10 Tg.   
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 Also shown in Figure 4.16 are the total dust emissions for April 2008 over the 

African (4.13a) and Asian (4.13b).  It should be noted that other source regions contribute 

to the total global emissions, but are not considered in this analysis.  Because the global 

emissions are dominated by African dust emissions, it is not surprising that the African 

results are similar to the global results.  Again, the GOCART based simulations exhibit 

little sensitivity to model spatial resolution beyond 0.5°, the GOCART-threshold setup is 

the most sensitive to model spatial resolution, and the resolution of the dust source 

function has little effect on the dust emissions. 

 Over Asia, all setups exhibit a strong response to model spatial resolution.  All 

setups have a moderate increase in emissions as the resolution is increased from 2° to 1°, 

but are significantly greater and converge at 0.5° to 0.25°.  This indicates that emissions 

over the Asian source region are more sensitive to model spatial resolution than over the 

African source region and exhibit non-linear behavior from coarse to high spatial 

resolution.   
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Figure 4.16. (a) Global, (b) African, and (c) Asian monthly mean dust emissions for April 2008 at 2°, 1°, 
0.5°, and 0.25° resolutions. 
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4.3.2.2.2 Diurnal Emission Cycle 

 Figure 4.17 shows the April 2008 mean diurnal cycle of African dust emissions.  

For this month, the GOCART (4.17a) and GOCART-source (not shown) simulations 

simulate similar diurnal cycles of dust emission.  Similarly, the DEAD (4.17b) and 

GOCART-threshold (not shown) simulated diurnal cycles of dust emission are 

comparable.  All schemes are similar in that dust emission peaks just before local noon 

and have relative minima around midnight.   

 

 

Figure 4.17. April 2008 mean diurnal emission cycle over the African source region for (a) GOCART and 
(b) DEAD schemes 

 

However, owing to the different formulations of the mobilization process, the 

GOCART and GOCART-source simulations produce different amplitudes of the diurnal 

dust emission cycle when compared to the DEAD and GOCART-threshold simulations.  

This feature is due to the relatively higher thresholds required for emission in the DEAD 

and GOCART-threshold simulations.  Overnight, when winds are generally calmer, the 

DEAD and GOCART-threshold simulations emit very little dust.  Then, during the day, 

dry convection increases the surface winds, allowing for the mobilization of dust.  

Conversely, the GOCART and GOCART-source simulated diurnal dust emission cycles 
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are relatively flat and emit dust overnight, as the 10-meter wind speed easily exceed the 

required threshold for mobilization (Figure 4.15a).  These results are confirmed in Table 

4.3, which shows the ratio of the diurnal dust emission maxima to minima for each 

simulation.  Clearly, the DEAD and GOCART-threshold simulations exhibit the greatest 

diurnal variability.  Additionally, the ratio decreases with model spatial resolution for all 

simulations, indicating that increases to the surface winds are mobilizing dust particles at 

times when the coarse resolution surface winds were too low to meet the threshold.   

 

AFRICA 2°  1°  0.5°  0.25°  

GOCART 3.19 2.85 2.54 2.42 

DEAD 14.2 7.86 7.60 6.98 

GOCART-THRESHOLD 10.51 7.3 6.03 5.35 

GOCART-SOURCE 3.42 2.94 2.90 2.45 

     

ASIA     

GOCART 7.71 5.44 2.04 1.99 

DEAD 9.17 7.08 5.13 4.01 

GOCART-THRESHOLD 8.28 6.78 4.36 3.86 

GOCART-SOURCE 6.48 5.70 2.69 2.18 

 

Table 4.3.  Ratio of diurnal emission cycle maxima to minima for all simulations and resolutions over the 
African and Asian source regions.   
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Over the Asian source region, all simulations exhibit similar diurnal cycles of dust 

emission.  Figure 4.18 shows the diurnal cycle of dust emissions for the GOCART 

scheme over the Asian dust source region for April 2008.  Compared to the African 

diurnal cycle, Asian dust emissions begin later in the morning and extend through the 

early evening.  As the model spatial resolution is increased, the diurnal cycles are 

consistent with Figure 4.17.  The 2° and 1° diurnal cycles are comparable to one another 

and have a significantly lower magnitude when compared to the 0.5° and 0.25° diurnal 

cycles. 

 

Figure 4.18. April 2008 mean diurnal emission cycle over the Asian region for the GOCART emission 
scheme. 
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 Table 4.3 shows the ratio of dust diurnal emission maxima to minima over the 

Asian source region.  For all simulations, the ratio significantly decreases with model 

spatial resolution, indicating that model spatial resolution has a significant effect on dust 

emissions over the Asian source region.  When combined with Figure 4.16, this result 

suggests that simulated dust emissions in GEOS-5 have a greater sensitivity to model 

spatial resolution over the Asian source region when compared to the African source 

region.  Additionally, over the Asian source region, a significant discrepancy exists 

between dust emissions simulated at coarse and high spatial resolutions, which is further 

explored in Section 4.4.  

 

4.3.2.2.3 Lifetime 

The previous section showed that model spatial resolution has a strong effect on 

simulated dust emissions for the various treatments of the dust mobilization process.  

Differences in the emitted dust mass will affect the mass of dust entrained into the 

atmosphere, and therefore the lifetime τ of the dust aerosol, defined by Textor [2006]: 

 

! 

" life =
Burden

Sinkwet+dry
         

 Eq. 4.3 

 

where the burden is defined as the total mass of dust suspended in the atmosphere and the 

sinks represent the total (wet + dry) mass removal rates.   

 Table 4.4 shows the April 2008 mean dust aerosol lifetime for each of the four 

sensitivity experiments at 2° resolution.  The GOCART and GOCART-source 
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simulations have very similar and shorter dust lifetimes when compared to the GOCART-

threshold and DEAD simulations.  This result is a reflection of the differences in how the 

emitted particle size distributions are handled between the different simulations.  To 

reiterate, the GOCART-threshold and DEAD simulations will emit a greater fraction of 

sub-micron sized particles when compared to the GOCART and GOCART-source 

simulations.  Sub-micron particles have a longer atmospheric residence time when 

compared to larger particles and increasing their relative contribution to the dust loading 

will act to extend the simulate dust aerosol lifetime.   

 

Experiment GOCART DEAD GOCART-
threshold 

GOCART-
source 

τ life (days) 4.31 5.70 4.55 4.32 

 

Table 4.4.  April 2008 dust aerosol lifetimes (days) for the 2° GOCART, DEAD, GOCART-threshold, and 
GOCART-source simulations. 

 

Table 4.5 shows the sensitivity of the simulated dust aerosol lifetime to model 

spatial resolution for the GOCART simulation.  Surprisingly, increasing the model spatial 

resolution acts to reduce the dust aerosol lifetime, despite increasing the emissions (see 

Figure 4.16).  This suggests that while increasing the model spatial resolution increases 

the mass of emitted dust, dust removal increases at a greater rate, acting to reduce the 

simulated dust aerosol lifetime.  Offline analysis showed that of the removal processes, 

sedimentation exhibited the most sensitivity to model spatial resolution.  This result has 

implications for dust transport, as it suggests that downwind dust distributions may be 

less sensitive to model spatial resolution despite significant increases in emissions as 

sedimentation is the dominant removal process near the source regions.  This is effect is 
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further explored in the following section where the effect of model spatial resolution on 

AOT is presented. 

 

Resolution 2°  1°  0.5°  0.25°  

τ  life (days) 4.31 4.29 3.90 3.42 

 

Table 4.5.  The effect of model spatial resolution on April 2008 simulated dust aerosol lifetimes (days) for 
the GOCART simulation. 

 

4.3.2.2.4 Aerosol Optical Thickness 

Ultimately, differences in simulated dust emissions and lifetimes resulting from 

model spatial resolution will affect the simulated dust loading.  Global models rely on 

look-up tables of mass extinction efficiency to convert simulated dust loadings to 

determine an AOT, which is used to tune the model’s emissions to match observed 

values.  Here, the effect of model spatial resolution on AOT magnitude and timing is 

explored over the African and Asian source regions using ground-based observations 

from AERONET and satellite observations from MISR.  It should be noted that while 

model spatial resolution might have implications for simulated distributions of other 

aerosol species, this analysis is performed over the African and Asian source to limit the 

contribution from other aerosol species so that the effect of model spatial resolution on 

simulated dust distributions may be isolated. 

To evaluate the effect of model spatial resolution on the timing of Saharan dust 

events, simulated GOCART AOT values are compared to all observations from the 

Tamanrasset-INM AERONET site (Figure 4.13) during April 2008 (Figure 4.19).  Due to 

its location within the African source region and number of observations, the AERONET 
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record clearly has diurnal variability.  At 2°, simulated AOT values are well correlated 

(R2=0.535) with AERONET and the mean simulated AOT is comparable in magnitude.  

As the model spatial resolution is increased, simulated AOT values increase, but are 

better correlated, indicating that increasing model spatial resolution improves the timing 

of simulated dust events and the representation of the diurnal emission cycle at this 

location, despite having a high bias in AOT magnitude.  It should be noted that if the 

tuning constant were adjusted, the best representation of AOT would be achieved at 

higher resolutions.  On April 4, a dust event was simulated at all resolutions that was not 

observed by AERONET.  This event is seen in the Level 1 (not cloud screened) 

AERONET AOT product, indicating that it was thought to be a cloud.  A similar 

comparison was made for the DEAD simulations (not shown). Simulated DEAD AOT 

values were significantly higher than those observed by AERONET and simulated by 

GOCART.  Interestingly, despite having differences in the simulated dust emission cycle, 

there were not any substantial differences in the correlations between the GOCART and 

DEAD simulations at each resolution.  
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Figure 4.19. AERONET and GOCART April 2008 AOT at Tamanrasset-INM at 2°, 1°, 0.5°, and 0.25° 
resolution. 

 

Figure 4.20 compares the April 2008 MISR AOT to the standard GOCART 

simulation over the African source region as the model spatial resolution is increased 

from 2° to 0.25°.  At 2°, the GOCART scheme has good agreement with MISR over the 

Saharan source region, though the model is slightly lower in magnitude.   The simulated 

AOT is also slightly lower in magnitude off North African coast and is not transported as 

far west as observed by MISR.  As the model spatial resolution is increased, the model 

picks up the observed dust AOT hot spots, though at a greater magnitude.  In particular, 

some regions of high AOT that were not evident in the 2° and 1° simulations are resolved 

at higher resolutions.  Additionally, as the model spatial resolution is increased, simulated 

AOT values have better agreement with MISR off the North African coast but gains a 
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slight high bias north of 12° N.  The simulated magnitude and extent of transported AOT 

from the Saharan source region across the tropical North Atlantic Ocean also improves, 

though still at a slightly lower magnitude.  Due to effect of model spatial resolution on 

the simulated aerosol lifetime (Table 4.5), transported dust AOT position and magnitude 

is comparable at all resolutions. 

 

Figure 4.20.  MISR and GOCART April 2008 AOT over North Africa at 2°, 1°, 0.5°, and 0.25° resolution. 

 

 Unfortunately, there are not any permanent AERONET sites located within or 

near the Asian source region.  However, from April 17 - June 18, the SMART-COMMIT 
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mobile laboratories were deployed at the Zhangye National Climate Observatory (39° N, 

100° E), 100 km from the edge of the Gobi Desert (Figure 4.13) as part of the U.S. 

Department of Energy’s Atmospheric Radiation Measurement (ARM) Mobile Facility 

deployment [Li et al., 2007; Li et al., 2011], providing sunphotometer observations of 

AOT.  Figure 4.21 compares the observed AOT time series to the GOCART simulations 

as the model spatial resolution is increased.  While the observed record is somewhat 

sparse, it is clear that the higher resolution simulations are better correlated and have 

better agreement with the magnitude of the observed AOT.  A similar comparison was 

made for the DEAD simulations (not shown).  The DEAD simulation exhibited a stronger 

sensitivity to increases to the model spatial resolution, but correlations were slightly 

lower compared to  GOCART simulations. 

 

Figure 4.21. AERONET and GOCART April 2008 AOT at Zhangye at 2°, 1°, 0.5°, and 0.25° resolution. 
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Figure 4.22 shows the effects of increasing model spatial resolution on simulated 

AOT distributions over the Asian source region.  At 2°, the simulated AOT is essentially 

non-existent over the Taklamakan and Gobi deserts when compared to MISR.  As the 

spatial resolution is increased to 0.5° and 0.25°, the model becomes much more 

comparable with MISR over the deserts, though the model obtains a slight high bias. 

Downwind from the Asian deserts the model is biased low at all resolutions.  However, in 

these regions, urban aerosols have a significant contribution to the AOT, suggesting that 

tuning of other simulated aerosols might be considered.    Regardless, it is clear that 

model spatial resolution has a significant effect on simulated dust AOT distributions and 

reaffirms that low resolutions simulations do not provide an accurate representation of the 

dust aerosol lifecycle over the Asian source region.   Additionally, this identifies a need 

for regional dust emission tuning as model spatial resolution clearly has a greater effect 

on simulated AOT distributions over the Asian source region than over the African 

source region.  
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Figure 4.22.  MISR and GOCART April 2008 AOT over Asia at 2°, 1°, 0.5°, and 0.25° resolution. 

 

4.4 Discussion 

Perhaps the most significant result from this analysis has been that simulated dust 

distributions are highly sensitive to model spatial resolution.  This is particularly evident 

over the Asian source region, where both emissions and AOT distributions are anemic at 

course resolutions and display non-linear increases with spatial resolution.   

From Figure 4.21, GEOS-5 simulates a dust event at Zhangye on April 19 – 20 at 

all resolutions, though the higher resolution simulations are greater in magnitude.  
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Unfortunately, the SMART - COMMIT sunphotometer did not observe the event, only 

capturing its end (Figure 4.19).  However, during April, particle number distributions 

were provided by APS on 14 days, including April 20. Observed particle number 

distributions were converted to volume distributions for comparison to GEOS-5.  Figure 

4.23 shows the average observed particle size distributions compared to those simulated 

by GOCART on April 20.  As the model spatial resolution is increased, the simulated 

volume distributions significantly improve when compared to the observed distribution, 

giving credibility to the simulated dust event on April 20 (Figure 4.21). 

 

Figure 4.23.  Observed and simulated volume distributions on April 20, 2008.  

 

Asian dust events from the Taklamakan and Gobi deserts are frequently 

transported to China’s industrial corridor, where dust mixes with industrial aerosols to 

form extreme pollution events.  Figure 4.24 shows how a dust event simulated on April 

19 – 20  evolves as it is transported over Zhangye to Beijing (Figure 4.13).  On April 22, 
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the dust event reaches Beijing, though it is only evident in the 1°, 0.5°, and 0.25° 

simulations, as the dust event was transported south of Beijing in the  2° simulation.  

Therefore, not only does spatial resolution limit the ability of the model to reproduce the 

timing and magnitude of simulated dust events at coarse resolutions, but also transport. 

 

Figure 4.24.  The effect of model spatial resolution on a transported dust AOT.  

 

The Saharan desert is large and relatively flat so that dust events are easily 

mobilized, lifted, and transported away from the source region.  The mobilization of dust 

events over the Taklamakan desert is more complex, as mountains on its southern, 

western, and northern sides surround it.  Mountain winds swirl within the Taklamakan 

valley, occasionally transporting dust out of its eastern edge.  Therefore, the effect of 

model spatial resolution might affect the model topography, which in turn could 

influence the dynamics used to parameterize dust emission in the model.    As a proxy for 

elevation, Figure 4.25 shows the April 2008 average geopotential height over 

Taklamakan as the model spatial resolution is increased.  It is evident that the coarser 

resolution simulations do not resolve the Panir and Tian Shan mountains to the west and 

the south of the Taklamakan, respectively, potentially limiting the model from producing 
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sufficient circulations and wind speeds over the Taklamakan to initialize and transport 

dust events eastward.   

 

Figure 4.25.  The effect of model spatial resolution on mean geopotential height [km] and 10-meter wind 
field over and surrounding the Taklamakan source region (white contour). 

 

Figure 4.26 shows a cross-section at 85° W of the April 2008 mean east-west 

wind across the Taklamakan desert at 2° and 0.5°.  As expected, the Tian Shin mountains 

are better resolved and the surface winds have a greater magnitude at 0.5°.  At 2°, the 

mean wind field is westward over the Taklamakan.  However, at 0.5°, while the wind 

field is primarily westward over the southern ¾ of the desert, an eastward component to 

the wind field is resolved over the northern ¼, suggesting that model spatial resolution 

influences both the magnitude and direction of Taklamakan wind circulation. 
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Figure 4.26.  April 2008 east-west wind field at 85° W at 2° and 0.5° resolution.   

 

In an attempt to overcome this potential limitation, the effect of including sub-

grid wind variability in a 2° simulation is explored following Gillette and Passi [1988], 

Cakmur [2004] and Su et al. [2009].  Justus et al. [1978] found that the observed 

variability in the 10-meter wind speed can be approximated using a Weibull distribution: 
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where f(x) is the wind speed PDF and c and k are the size and shape parameters estimated 

by Justus et al. [1978] and Grini et al. [2005]: 
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where Γ is the gamma function and U is the mean 10-meter wind speed.  Following 

Gillette and Passi [1988], it is assumed that the variability in the 10-meter wind speed lies 

between the 5th and 95th percentiles.  By incorporating the Weibull distribution, dust 

emission can now occur in situations when the 10-meter wind speed does not meet the 

required emission threshold due to the assumed variability in the winds. 

 As a sensitivity test, the Weibull distribution was incorporated into the GOCART 

scheme for a 2° replay simulation of 2008, using the same tuning constant as the baseline 

GOCART scheme.  Incorporating the Weibull distribution acts to significantly increase 

the 2° April 2008 global dust emissions to from 217 Tg to 330 Tg and are very 

comparable to higher resolution simulated emissions.  Over Africa and Asia, dust 

emissions increase to 242 Tg and 10 Tg, compared to 163 and 6 Tg, respectively.  Over 

the Asian source region, the magnitude of the diurnal emission cycle increases and is 

more comparable to that of higher resolutions (Figure 4.18). 

 Figure 4.27 shows the April 2008 total AOT from MISR and the 2° GOCART –

Weibull simulation over the Asian source region.   Incorporating the effects of sub-grid 

wind variability significantly reduces the low bias in simulated AOT magnitude over the 

Taklamakan and Gobi deserts when compared to MISR.  However, over the Saharan, 

incorporating sub-grid wind variability leads to a high bias (Figure 4.28), though the 

magnitude and location of transported AOT has good agreement with MISR, suggesting 

once again that removal processes over the Saharan source region are too strong in 

GEOS-5.  Interestingly, while incorporating sub-grid wind variability influences the 
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magnitude of dust events, the timing of simulated dust events is minimally impacted 

(Figure 4.29).   

 

 

Figure 4.27.  MISR and GOCART-Weibull April 2008 AOT over the Asian source region at 2°.   
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Figure 4.28.  MISR and GOCART-Weibull April 2008 AOT over the African source region at 2°.   

 

 

Figure 4.29.  GOCART (solid, purple) and GOCART-Weibull (dashed, purple) AOT at Zhange (left) and 
Tamanrasset-INM (right).   

 

 Overall, the improvements to the simulated AOT over the Asian source region 

suggest that sub-grid wind variability should be included in coarse resolution simulations.  
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However, further validation is required, specifically evaluating the effects of sub-grid 

wind variability on longer time scales and its effect on 1° simulations.   

 

4.5 Summary and Conclusions 

 This study explored the sensitivity of simulated dust emissions, lifetimes, and 

AOT distributions to the spatial resolution in GEOS-5.  In particular, various treatments 

of the mobilizing physics, as well as the dust source function were considered.  In one 

sensitivity study, a set of simulations that used a high-resolution version of the dust 

source function was compared to an equivalent set of simulations that used a coarse, 

fixed version.  After comparing the two sets of simulations, it was found that the 

resolution of the source function does not have a significant impact on dust emissions.   

 Three different treatments of the physical parameterizations of dust emission were 

considered:  GOCART, DEAD, and a version of the mobilization process that 

extrapolates the minimum threshold speed required for particle mobilization in DEAD to 

10 meters (GOCART-threshold).    Model spatial resolution has a significant impact on 

simulated dust distributions, as increasing the model spatial resolution resulted higher 

wind speeds.  Because simulated dust emissions have a cubic dependence on the wind 

speed, model spatial resolution effects on the simulated wind speeds acted to significantly 

increase the emitted mass.  This effect is particularly evident over Asia, where dust 

emissions were virtually non-existent at coarse resolutions, but increased significantly 

with model spatial resolution.  

 Of the different treatments of the dust emission process, the DEAD scheme 

simulated the longest dust aerosol lifetime at 2°.  This result follows from Chapter 3, 
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where it was found that the DEAD scheme emits a greater fraction of submicron particles 

than GOCART based schemes, which will act to increase the dust aerosol lifetime.  The 

dust aerosol lifetime also showed sensitivity to model spatial resolutions.  As model 

spatial resolution increased, the dust aerosol lifetime decreased, implying that removal 

rates are more sensitive to model spatial resolution than emission rates.   

 Simulated AOT distributions exhibited a strong sensitivity to model spatial 

resolution as well.  Over Africa, increasing the spatial resolution lead to a high bias in 

AOT magnitude when compared to MISR, though higher resolution simulations better 

captured the diurnal variability observed the Tamanrasset-INM AERONET site.  Because 

the simulated aerosol lifetime was found to decrease with model spatial resolution, AOT 

magnitudes downwind of the source region were relatively insensitive to the effects of 

model resolution, despite greater emissions.  Over the Asian source region, the model had 

a significantly low bias at coarse resolutions that improved with model spatial resolution.  

Additionally, similar to over the African source region, the timing of simulated dust 

events improved with model resolution at Zhangye.  Investigation into the effect of 

spatial resolution on the topography that surrounds the Asian source region suggested that 

resolutions has impacts for dynamical circulations that initiate Taklamakan dust events.   

 In an attempt to improve the representation of simulated dust distributions over 

the Asian source region at coarse resolution, Weibull wind distributions were 

incorporated into the GOCART scheme to represent the sub-grid variability of wind 

speeds.  This led to significant improvement when compared to MISR AOT over the 

Asian source region and increased an already high bias over the African source region, 

but did not influence the timing of simulated dust events at Tamanrasset-INM and 
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Zhangye.  This effect is the result of using threshold wind speeds for aerosol-sized 

particles to parameterize dust emission in the GOCART scheme.   Incorporating the 

effects of sub-grid wind variability may have a greater impact for GOCART-threshold 

based simulations, as the threshold is the same order of magnitude as the driving winds 

and should act to initiate more dust events when compared to the GOCART scheme.  

This may act to improve the timing of dust events in addition to AOT magnitude. 

Regardless, due to the improvement to the AOT magnitude over the Asian source region, 

this sensitivity study suggests that the effects of sub-grid wind variability should be 

considered in future implementations of the model after further investigation.  

Ultimately, tuning constants will be determined by evaluating simulated AOT 

distributions using satellite and ground-based observations.  The results of this analysis 

show that simulated dust distributions are highly sensitive to model spatial resolution, 

and therefore, tuning constants should be a function of model resolution. Additionally, 

this work highlights the need for regional tuning constants in global models, as the biases 

and sensitivity to model spatial resolution were different between the African and Asian 

source regions.  Tuning constants will be unique to every global aerosol transport model 

as each model will resolve the parameters that control dust emission differently, but are 

necessary as the aerosol modeling community moves from performing long term climate 

simulations to high-resolution aerosol forecasts.  Finally, while this work was focused 

specifically on dust aerosols, similar analyses should be extended to other aerosol species 

treated in the model, particularly those parameterized in terms of model derived fields 

(e.g. sea-salt).   
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Chapter 5:  Investigation of Dust Transport and 

Loss Processes  

 

5.1 Introduction 

The previous chapter investigated the parameterization of dust source processes in 

the NASA GEOS modeling system.  Here, the other components of the simulated dust 

aerosol lifecycle, namely transport and loss processes are evaluated while exploring their 

contribution to a real world phenomenon:  the Central American dust barrier. 

During boreal summer, Saharan dust is transported to the Caribbean and northern 

South America by the prevailing tropical easterly winds [Karyampudi et al., 1999; 

Carlson and Prospero, 1972]. Satellite observations show an apparent barrier that inhibits 

dust transport from the Caribbean into the eastern Pacific (Figure 5.2).  This barrier is 

also apparent in airborne observations from the recent NASA Tropical Composition 

Cloud and Climate Coupling (TC4) field campaign (July – August, 2007) [Toon et al., 

2010]. The presence of this barrier likely has geochemical implications, insofar as it 

inhibits transport of iron containing Saharan dust to aquatic and terrestrial ecosystems 

west of 80° W.  

While numerous studies have focused on the broader patterns of dust transport 

and deposition into the Caribbean [Kaufman et al., 2005; Mahowald et al., 1999, Tegen 

and Fung, 1995; Duce et al., 1991], none have focused on the mechanisms for the 

observed barrier to dust transport into the Pacific and its representation in global dust 

transport models.  The relative roles of dust transport and loss processes are uncertain in 

establishing and maintaining this barrier.  Furthermore, while dust removal processes 
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such as precipitation scavenging certainly are significant, there are insufficient data to 

fully constrain the representation of these processes in aerosol transport models.  Perhaps 

better constrained are dynamical features, insofar as they are well represented in 

meteorological analyses, to ascertain the relative importance of meteorology in tracer 

transport studies. 

Here, the roles of transport and loss processes in establishing and maintaining the 

Central American dust barrier are explored by running GEOS-5 for July 2007 in order to 

exploit aircraft observations made during the NASA TC4 field campaign.  For this study, 

a 0.5° baseline GEOS-5 replay simulation using the GOCART dust emission scheme was 

performed. Chapter 4 illustrated that while mobilization scheme choice and model spatial 

resolution is significant for dust distributions near the source region, their effects become 

insignificant with distance from the source region.    

 

5.2 Evidence of the Central American Dust Barrier 

In this section observational evidence that suggests there is a persistent barrier to 

dust transport along the Central American coastline is presented.  Additionally, the 

representation of the barrier in GEOS-5 is presented and a transported dust event during 

TC4 is used to evaluated dust transport in GEOS-5.  
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5.2.1 Moderate Resolution Imaging Spectroradiometer Climatology 

 

Figure 5.1.  Dust barrier-averaging regions (shaded). 
 

Figure 5.2 shows the climatology of July MODIS-Aqua (2003-2010) and 

MODIS-Terra (2000-2010) land and ocean AOT averaged over the latitudes of peak 

Caribbean dust AOT (10° N - 20° N, see Figure 5.1).  There is a sharp drop in the 

observed AOT west of 80° W.  This strong gradient in AOT between about 80° and 90° 

W is referred to as the Central American dust barrier, and from the climatology of 

satellite observations, it is a persistent feature in the northern summer. In what follows 

the is narrowed to July 2007 to utilize observations made during the TC4 field campaign.  

Figure 5.2 also shows the MODIS-Terra AOT specifically for July 2007.  There is 
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evidence of the Central American dust barrier during this period, as the mean MODIS-

Terra AOT drops from 0.375 at 80° W down to 0.2 at 90° W.   

 

Figure 5.2. MODIS-Terra/Aqua July climatological (2002-2010) AOT (shading), MODIS-Terra July 2007 
AOT (dashed) and GEOS-5 sampled (solid) July 2007 AOT averaged from 10º-20º N.   

 

Figure 5.2 also shows the July 2007 AOT from the GEOS-5 model averaged over 

the same region.  For this comparison the modeled AOT has been sampled at the times 

and locations of the MODIS observations.  Over the Caribbean (west of 60° W), the 

model AOT is comparable to MODIS-Terra.  Near the Central American coastline, the 

model shows evidence of a barrier to dust transport, although not as strong as observed, 

decreasing from 0.4 at 80° W to 0.3 at 90° W (Figure 5.2).  

For a spatial illustration of the Central American dust barrier, Figure 5.3 shows 

July 2007 monthly means of total AOT from MODIS-Aqua and our simulation (sampled 
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at MODIS-Aqua observations points as described above).  Off the west coast of North 

Africa, the model has the peak AOT in the same location as the sensor, but at a greater 

magnitude.  Moving west across the tropical North Atlantic, the model matches the 

observed dust plume location and width, and the magnitude of AOT becomes more 

comparable with observations. Owing to improvements in the model physics and the 

MERRA analyses, GEOS-5 does better transporting dust from the Saharan source region 

to the Caribbean relative to previous versions of the model [Colarco et al., 2010; 

Nowottnick et al., 2010].  However, consistent with Figure 5.2, the model extends its dust 

plume somewhat into the eastern Pacific (90° – 95° W), while MODIS-Aqua AOT values 

are constrained to the Caribbean.  This feature is also seen in Figure 5.2, where the model 

representation of the Central American dust barrier is not as pronounced as observed by 

MODIS-Terra.  Despite not being as pronounced as observed by MODIS, the model 

shows evidence for a barrier to dust transport that corresponds with the Central American 

coastline. 
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Figure 5.3.  MODIS-Aqua (a) and GEOS-5 sampled (b) July 2007 AOT. 
 

5.2.2  Central American Dust Barrier Case Study:  19 July 2007 

During the TC4 field campaign, a Saharan dust plume was observed over the 

Caribbean on 19 July with the CPL flying on the NASA ER-2 aircraft.  Using CALIOP, 

this dust event was tracked from the Saharan source region (14 July) to the Caribbean (19 

July) to evaluate simulated vertical dust distributions during transport (Figure 5.4).  For 

an accurate comparison, GEOS-5 was along the CALIPSO track at the model synoptic 

time nearest to the daytime CALIOP measurement.  
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Figure 5.4.  Average MODIS-Aqua AOT and CALIPSO track from 7/14-7/19. 
 

Shown in Figure 5.5 are GEOS-5 comparisons to CALIOP 532 nm total 

attenuated backscatter and feature mask from 14 July to 19 July. On 14 July, CALIOP 

observes a thick, elevated dust plume located from 2-5.5 km that extends from 10° - 26° 

N.  The model captures the latitude extent of the dust plume observed by CALIOP, but is 

lower in altitude ranging from 1-5.5 km.  A limitation of CALIOP is that its signal 

becomes attenuated towards the surface when it encounters thick aerosol plumes.  On this 

day, the CALIOP signal might be partially attenuated at low altitudes, so the CALIOP 

data may suggest the lowest edge of the dust plume is at a higher altitude than it actually 

was.  In the CALIOP layer identification product, low-level marine clouds are observed 

north of 15° N below 1 km.  While only extinction from aerosols is shown, the influence 
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of these clouds can be seen in the aerosol total extinction where the aerosols in this region 

have swelled in the marine boundary layer and are marked by high extinction values. 

Moving farther from the Saharan source region, the edge of a dust event is observed on 

15 July.  CALIOP observes an elevated, thick layer of dust that extends from 2-5 km 

between 11° - 24° N, which is well represented in the model. Further downwind on 17 

July, the model matches the observed horizontal extent and altitude of the observed dust 

plume.  The simulated dust plume extends down to the surface into a region where 

CALIOP identifies a thin layer of maritime clouds, making it difficult to determine 

whether the lower extent of the simulated plume is correct.  On 19 July, the model 

captures the narrow north-south width and low-altitude dust plume observed below 3 km 

by CALIOP, although clearly the observations are impacted by the presence of mid- and 

low-level clouds.  For this case, GEOS-5 captures similar dust plume features to the 

CALIOP observations during this time period. 
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Figure 5.5. CALIOP total attenuated backscatter [km-1 sr-1] (a), CALIOP vertical feature mask (b), and 
GEOS-5 extinction [km-1] (c) for a dust event tracked from Africa (7/14) to the Caribbean (7/17). 
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Figure 5.6 shows the composite MODIS-Terra/Aqua and GEOS-5 550nm AOT at 

18Z, with the ER-2 flight track overlaid on 7/19.  On this day, the ER-2 aircraft 

originated from Costa Rica, heading southwest over the Pacific Ocean to 90° W, then 

turned around and headed northeast back towards Costa Rica.  The aircraft continued past 

Central America over the Caribbean Sea to 75° W and then headed southwest back to 

Costa Rica.  During the flight, CPL provided an approximately east-west transect of total 

attenuated backscatter that extends from the Pacific Ocean into the Caribbean.  

Comparing the model to MODIS on this day, the model matches the observed AOT 

location and magnitude over the Caribbean.  Over the Pacific Ocean MODIS is partially 

obscured by precipitating clouds.  Also displayed in Figure 5.6 are the observed daily 

precipitation (mm day-1) from the Global Precipitation Climatology Project (GPCP) 

[Huffman et al., 2009; Adler et al., 2003] and the simulated daily precipitation from 

GEOS-5 with the 700 mb wind field at 18Z overlaid. GPCP provides precipitation data at 

1º x 1º resolution using rain gauges, microwave satellite observations from the Special 

Sensor Microwave Imager (SSM/I), and infrared satellites observations from many global 

geostationary satellites [Adler et al., 2003].  The model shows a majority of the simulated 

AOT confined to the Caribbean and Central America and also simulates precipitation 

over the Pacific Ocean.  Additionally, the simulated 700 mb wind field suggests that the 

direction of dust transport might shift northward over the Central American coastline. 
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Figure 5.6.  MODIS Aqua AOT, GPCP precipitation (blue contour), and ER-2 flight track (red) (a), GEOS-
5 AOT, precipitation (blue contour), 700 mb wind field (red arrows), and ER-2 flight track (red) (b), CPL 
total attenuated backscatter [km-1 sr-1] (c), GEOS-5 extinction [km-1] (d), CPL AOT below 5 km (red) and 

GEOS-5 AOT below 5 km (blue) (e) on 7/19/2007. 
 

The dust barrier is more clearly seen in the CPL profile of the 532 nm total 

attenuated backscatter and column AOT when compared to GEOS-5 profiles of 

extinction and AOT at 550 nm that have been sampled along the ER-2 track at the nearest 

model synoptic time on 7/19 (Figure 5.6).  Although the CPL signal is frequently 

attenuated by clouds over the Pacific and only occasionally over the Caribbean, both CPL 

and GEOS-5 provide an illustration of the Central American dust barrier along the 

eastern coastline of Costa Rica (9° N, 84° W, marked by a mountain).   To avoid cloud 

contributions to the AOT, the column AOT from 5 km to the surface is compared for 

CPL and GEOS-5 (Figure 5.6).  CPL observes high AOT values over the Caribbean, and 
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a sharp decrease in AOT that corresponds with the Central American coastline.  A similar 

feature is seen in the simulated AOT, but at a lower magnitude.  Despite this, it is clear 

that GEOS-5 provides a representation of the Central American dust barrier on this day 

and suggests two processes that may contribute its cause:  removal by precipitation in the 

tropical environment and a directional shift in the wind field near the Central American 

coastline.  

 

5.3  Controls on Saharan Dust During Transport 

To understand the cause of the Central American dust barrier, the roles of the 

controls on dust distributions during transport must be understood.  During the journey 

from the Sahara to the Caribbean, dust distributions are controlled by both dynamical and 

loss processes.  Atmospheric dynamics controls the direction and magnitude of the 

transported dust mass flux or flow, while loss processes control the overall dust burden.  

Therefore, as suggested by Figure 5.6, it is expected that the Central American dust 

barrier is caused by increases in wet removal, a change in transport direction resulting 

from a shift in the prevailing atmospheric dynamics, or some combination of both. 

Ideally, airborne measurements that tracked several dust plumes would help in 

understanding the cause of the Central American dust barrier.  Unfortunately, 

measurements of this sort are extremely limited.  However, from comparisons to 

observations of mean dust plume position and vertical distributions near and downwind 

of the Saharan source region, GEOS-5 provides a reasonable representation of dust 

distributions during the TC4 timeframe, while simulating the aforementioned processes 

that are not easily measured. The accuracy of the simulated wet removal processes are 
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directly linked to our ability to accurately simulate the timing and intensity of 

precipitation events.  Figure 5.7 shows the July 2007 mean precipitation from GPCP (mm 

day-1) and GEOS-5.    The precipitation patterns in GEOS-5 are generally consistent with 

GPCP, matching peak values located over Central and South America.  However, GEOS-

5 produces a broad area of convective precipitation over the Caribbean that is not seen in 

the GPCP data.  Over the Caribbean, the average GEOS-5 precipitation rate is 5 mm day-

1 while the average GPCP precipitation rate is 1.5 mm day-1.  This presents an interesting 

feature of the model.   Figure 5.2 suggests that the removal rates are not aggressive 

enough in removing dust, particularly in the region of the Central American dust barrier.  

However, on average, simulated precipitation rate is greater by a factor of three (Figure 

5.7).  This quandary suggests that the relationship between precipitation and wet removal 

is not strong enough in GEOS-5.  We could, alternatively, simply rescale the dust 

emissions lower, which would remove most of the bias seen in Figure 5.2, but this would 

not produce the abrupt dust barrier evident in the data at approximately 90° W.   
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Figure 5.7.  July 2007 monthly mean GPCP (a) and GEOS-5 (b) total precipitation [mm dy-1]. 
 

In addition to possible errors in the representation of loss processes, the simulated 

dust distributions are sensitive to atmospheric dynamics. By using a replay simulation, 

the model is provided with assimilated winds, so that it will be forced with actual 

dynamics at each synoptic time.  The estimation of dust transport is therefore sensitive to 

the ability to reproduce the actual dynamical state and will be limited by errors in the 

representations of advection, planetary boundary layer mixing, and convective mixing.  

In addition to sensitivities to the internal dynamical processes, simulated dust 

distributions will also be sensitive to the accuracy of observations used in the analysis.  

Despite these potential sources of error, however, the July 2007 simulated dust loading 

over the Caribbean is comparable to observations by MODIS (Figure 5.3).  Therefore, 
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dust distributions from GEOS-5 are used to understand the relative roles of the processes 

that contribute to the Central American dust barrier. 

To investigate the controls on the Central American dust barrier, the vertically 

integrated mass divergence form of the continuity equation for mean values from July 

2007 is employed: 
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Here, γ is the dust mass mixing ratio (kg kg-1), ρa is the atmospheric air density (kg m-3), 

u and v are the east-west and north-south components of the wind field (m s-1), and dz is 

the thickness (m) of each model layer in the vertical column. 

After integrating in the vertical, Equation 1 has three terms:  the storage term 

(
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), the production-loss (P – L) term, and the divergence, or transport, term (
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The storage term represents the net local change in the dust column loading, the P – L 

term is defined as the sum of the column emission fluxes minus fluxes due to dry and wet 

removal, and the transport term represents any dust column convergence and divergence 

resulting from transport. All terms in Equation 5.1 are in flux form and have the units (kg 
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m-2 s-1).  Equation 5.1 can be interpreted as any accumulation of dust mass within an 

atmospheric column results from the sum of the net production minus loss and dust 

import/export via transport. 

To relate the contribution of transport to Equation 5.1, the vertically integrated 

dust mass flux 
!

Q  (kg m-1 s-1 ) is used again (Equation 5.3).  Because dust is typically 

located at low altitudes, 
!

Q  will be weighted toward the mass concentration and the near-

surface wind direction and magnitude.  

Consider the Helmholtz decomposition [Brown, 1991]: 
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The rotational component depicts the recirculation of dust in the atmosphere, while the 

divergent component of the vertically integrated mass flux is associated with the P – L 

process (
!!

"#="# QQ
div

) (Equation 5.1). 

 

5.3.1 Dust Mass Budget 

In this section, the July 2007 monthly mean storage, P – L, and transport terms are 

analyzed.  Each term is analyzed separately to understand their respective influence on 

the simulated dust distributions over the Caribbean.  Equation 5.1 uses instantaneous 

model output at every 3 hours to determine the monthly mean dust mass fluxes; thus, the 

fields examined include both the mean flow and the contribution from transient eddies.   

 

5.3.1.1   Storage Term 

At each grid cell, the storage term represents the mean local change in the column 

dust loading q (kg m-2) (Equation 5.2).  During July 2007, the largest variations in the 

dust column loading occur away from regions of semi-persistent dust flow (Figure 5.8). 

This can be seen north of 20° N off the west coast of North Africa during July 2007, 

where removal rates are small (Figure 5.8).  Eventually, this dust will be removed from 

the atmosphere via loss processes or transport.   Over the Caribbean, the storage term is 

significantly less than the P – L and transport terms, indicating that the other terms are in 

near-balance over this region.  Over longer time periods, the storage term is expected to 

approach zero, as deviations in the mean dust flow will become less significant and 

averaged out.  In this case, the P – L term will balance the transport term.   
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Figure 5.8.  July 2007 storage term (kg m-2 s-1) . 
 

 

5.3.1.2   Production Minus Loss Term 

The mean P – L term for July 2007 shows positive values over the global source 

region and negative values downwind, corresponding to regions where emissions and 

losses prevail, respectively (Figure 5.9).  Once dust is emitted from the source region, the 

total atmospheric burden is controlled by losses through dry and wet removal processes.  

In the Atlantic, losses peak immediately downstream of the source region, although a 

broad area of high dust losses carries into the Caribbean. 
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Figure 5.9.  July 2007 production minus loss (P – L) term  (kg m-2 s-1).  
 

Figure 5.10 shows the relative contributions from modeled dust loss processes 

during transport from the source region.  Dry removal  (dry deposition + sedimentation) 

is the dominant removal process near the Saharan source region, as the largest, most 

massive dust particles fall quickly from the atmosphere.  Dry removal becomes less 

significant further downwind as the largest particles are removed.  Wet removal becomes 

the dominant loss process, first via large-scale precipitation immediately west of the 

source region and then through convective precipitation in the western Caribbean and 

near Central America.  This region where convective removal dominates coincides with 

the location of the Central American dust barrier. 
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Figure 5.10. (a) July 2007 ratio of wet removal to dry removal and (b) ratio of convective to large scale 
scavenging. 

 

5.3.1.3   Transport Term 

Shown in Figure 5.11 are the July 2007 mean streamfunction and velocity 

potential contours with the rotational and divergent dust flow vectors overlaid. Recall that 

the rotational component of the dust flow is proportional to the curl of the 

streamfunction; therefore, rotational flow will be strongest where streamlines are closest.  

By definition, the rotational flow will be cyclonic surrounding relative minima of the 

streamfunction, and anti-cyclonic surrounding the relative maxima.  There is strong 

rotational dust flow leaving the Sahara as part of the SAL and riding on the northern side 

(15° – 25° N) of the AEJ across the Atlantic Ocean.  In this region, the rotational 

component of the dust flow is strong for two reasons: 1) dust concentrations are high 
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within the SAL and 2) strong, non-divergent easterlies within the AEJ persist.  The effect 

is a narrow band (15° – 25° N) of strong rotational flow that transports dust from the 

Sahara to the Caribbean.  Upon reaching the Caribbean, the rotational flow weakens 

because: 1) dust loss processes have reduced the overall dust load during transport and 2) 

easterly wind speeds are reduced.  Additionally, the flow direction shifts from primarily 

westward to north-westward over the Caribbean due to a channeling of the dust flow by 

the topography of northeastern Brazil and the clockwise rotation of the Azores 

subtropical high-pressure system that exists of the Atlantic Ocean.  The rotational dust 

flow eventually turns eastward and returns dust back to the Saharan source region. Thus, 

when following a constant streamline, the rotational component of Saharan dust flow is 

an anti-cyclonic recirculation, where dust leaves the source region as part of the AEJ and 

returns with the westerlies as part of the Azores High.  A similar—but weaker—cyclonic 

feature is seen south of 15° N, transporting dust to South America. 
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Figure 5.11.  July 2007 mean streamfunction (a) and velocity potential (b).  Rotational (top) and irrotational 
(bottom) flows are indicated by vectors. 

 

The divergent component of the flow is proportional to the gradient of the 

velocity potential.  Therefore, regions of divergence correspond to relative minima of the 

velocity potential correspond, while regions of convergence correspond to relative 

maxima.  In Figure 5.11, there is a dipole in the divergent flow field between the Saharan 

source region and the Caribbean.  Over the source region strong divergent flow persists, 

as a divergent component to the dust flow is required for dust to leave the source region.  

During transport, the divergent flow is significantly reduced and there is a broad, region 

of convergence over the Caribbean where loss processes prevail.  The significant 

reduction in the divergent flow can be the result of a weakening of the wind field or a 

reduction in the dust burden caused by the various loss processes during transport. As 
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previously mentioned, the divergence of the divergent flow (
div

Q
!

"# ) is the transport term 

in Equation 5.1.  In Figure 5.12, as expected, the July 2007 transport term is positive 

(divergent) over the source regions, as dust is transported outward from the sources.  

Downwind of the Saharan source region, the transport term is negative (convergent), 

which corresponds with the convergent flow field in Figure 5.11.  One striking feature of 

the divergence field is that it aligns with the P – L term in regions where production and 

loss occur.  Because these regions have a semi-persistent flow of dust for this month and 

the storage term is small, there is a near-balance between the transport and P – L terms.  

Thus, over these regions, regions of dust emission (P – L > 0) correspond with divergent 

outflow (positive transport term) and regions of dust loss (P – L < 0) correspond with 

convergent inflow (negative transport term).  It is expected that convergent flow 

increases dust loss rates in two ways.   First, the convergent flow will accumulate dust 

within the atmospheric column.  This accumulation will increase the potential for 

removal in regions where the storage term is small.  Second, there is vertical motion over 

convergent regions (not shown), which is associated with convection.  This second 

process is more relevant for wet removal as it is related to greater wet deposition and 

scavenging rates in the presence of precipitation and clouds.   
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Figure 5.12.  July 2007 transport term  (kg m-2 s-1). 
 

 

 

Despite the link between P – L and divergent flow, it is clear that rotational flow 

has a greater magnitude and is in a different direction (predominantly westward) than the 

divergent flow (predominantly eastward).  However, this alone does not lend much 

insight into any influences that transport might have on the Central American dust 

barrier.  In addition to the effects of loss processes, the dust barrier could be influenced 

by a slight change to the flow field over the Caribbean or a combination of the rotational 

and divergent components.  To better understand this, the rotational and divergent 

components are further broken into their east-west and north-south components.  Figure 
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5.13 shows the east-west and north-south total, rotational, and divergent flow 

components. Over the Caribbean, the rotational component of the east-west flow is 

strongly westward while the divergent component is weakly eastward.  Despite 

cancellation between the two components near the coast of Costa Rica, the net east-west 

flow is westward and acts to transport dust across Central America.  The north-south flow 

for the rotational component shifts from southward to northward near 12.5° N over the 

Caribbean, while the divergent flow shifts from northward to southward flow at 17.5° N.  

However, the net north-south flow is northward over the entire Caribbean.  Thus, there is 

a northward turning of the dust flow as it enters the Caribbean, which when combined 

with the net westward flow causes a northwestern migration of the overall dust flow and 

serves as a possible explanation of the Central American dust barrier. 
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Figure 5.13.  East-west (top) and north-south components (bottom) of the total (left), rotational (center), 
and divergent (right) flow.   

 

5.3.2 Loss Processes vs. Transport 

The dust mass budget is investigated over the latitude band of peak dust AOT 

(10° – 20° N) to understand the relative roles of dust loss processes and transport in the 

Central American dust barrier.  Figure 5.14 shows the mass of dust removed from loss 

processes, from transport out of the northern (20° N) and southern (10° N) sides of the 

latitude band, and the change in the east-west mass flux (flux in minus flux out) as a 

function of longitude.  To obtain the amount of dust lost via removal, the P – L rates are 

integrated spatially and temporally and sum over the latitude band at each longitude 

(black curves in Figure 5.14).  To quantify the net north-south dust mass flux out of the 

band, the net spatially and temporally integrated north-south dust flux at 20° N is 
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subtracted from that at 10° N at each longitude (Figure 5.14).  To obtain the change in the 

east-west mass flux, the net east-west component of the dust flow is first integrated 

spatially and temporally at each grid box.  The change in the east-west mass flux is then 

determined by differencing the east-west flow in the westward direction and then 

summing along all latitudes (Figure 5.14).  Negative mass values in Figure 5.14 

correspond with net loss via removal processes or transport out of the latitude band, or a 

reduction in the westward mass flux.  It should be noted that the sum of the net north-

south mass flux and the change in the westward mass flux is the divergence term in 

Equation 5.1.  This sum is approximately equal to the mass of dust removed by loss 

processes, with any residual related to the storage term.   

 
 
 

Figure 5.14. 10º-20º N July 2007 mass budget for our baseline (black), no wet removal (red), no large-scale 
scavenging (orange), doubled scavenging (green), wet removal treated as other aerosols (blue) sensitivity 

tests.  Shaded region indicates integration region for the Central American dust barrier. 
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Over the Caribbean, removal from loss processes and northward transport were 

shown to serve as possible causes of the Central American dust barrier.  In Figure 5.14, 

the longitudes of the Central American dust barrier (80° - 90° W) correspond with 

increases in dust mass loss and northward transport.  To quantify their relative 

contributions, the production-loss and north-south transport curves in Figure 5.14 are 

integrated over the region of the Central American dust barrier.  From this, it is estimated 

that loss processes remove 1.67 Tg of dust while the north-south dust flow transports 1.46 

Tg of dust out of the Central American dust barrier region during July 2007.  

Based on these estimations, it is clear that both loss processes and atmospheric 

dynamics have a contribution to the Central American dust barrier.  Of the two processes, 

dust loss from removal processes has a slightly greater contribution (53%) to the Central 

American dust barrier than northward transport (47%).  

 

5.4   Discussion 

Loss processes have a greater contribution towards the Central American dust 

barrier than northward transport for July 2007.  From Figure 5.10, it is clear that wet 

removal by large scale and convective scavenging dominate the loss processes downwind 

of the Saharan source region between 10° – 20° N and serve as the major pathways for 

dust removal over the Caribbean.  However, as discussed in Section 5.2, it was suggested 

that the GEOS-5 wet removal rates are not aggressive enough over the Caribbean and 

serves as the cause of our weaker representation of the Central American dust barrier in 

Figure 5.2.  To explore the controls of wet removal on our transported dust distributions, 



 130 
 

additional simulations of July 2007 were performed where the parameterization of wet 

removal processes was modified relative to our baseline simulation setup.   

Table 5.1 presents a budget analysis for our baseline simulation and the sensitivity 

experiments.  Included are the dust mass removal by loss processes, north-south 

transport, and their contribution to the Central American dust barrier.  Also shown are the 

10° – 20° N net east-west mass transported across the planes at 80° W and 90° W and 

their difference.  This difference, when combined with the north-south transport is the 

mass divergence and should approximately balance the mass removed by loss processes, 

with any residual attributable to the storage term in Equation 5.1.  Table 5.1 lists a dust 

mass barrier efficiency of the Central American dust barrier defined as the difference 

between the 10° – 20° N net east-west transported dust mass at 80° W (flow in) from that 

at 90° W (flow out) divided by the transported dust mass at 80° W (flow in).  

Additionally, after sampling consistently with MODIS-Terra, Table 5.1 lists a total AOT 

barrier efficiency and a coarse mode (dust plus sea salt) AOT efficiency that can be 

compared to the MODIS coarse mode AOT after averaging from 10° – 20° N.   
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Experiment/Satellite Net Northward 
Mass Transport 
(Tg) and Barrier 

Contribution 
(%) 

Net Mass Loss 
from Removal 

(Tg) and Barrier 
Contribution 

(%) 
 
 
 
 

 

80° W,  90° W, 
and Net Change  

in Westward 
Transport (Tg) 

 
 
 

Mass 

Barrier 
Efficiency 

 
Total AOT 

 
 
 
Coarse 
Mode 
AOT 

1.  Baseline -1.46 | 47% -1.67 | 53% 
 

-7.58 | -4.21 | 
3.37 

0.36 0.21 0.17 

2.  Doubled Convective 
Scavenging 

-1.24 | 39% -1.90 | 61% -6.51 | -3.40 | 
3.11 

0.48 0.25 0.21 

3.  Wet Removal Treated As 
Other Aerosols 

-1.02 | 34% -1.97 | 66% -5.42 | -2.60 | 
2.82 

0.52 0.28 0.22 

4.  No Large Scale 
Scavenging 

-1.85  | 59% -0.95 | 41% -9.76 | -6.88 | 
3.87 

0.33 0.19 0.16 

5.  No Wet Removal -3.35 | 78% -1.28 | 22% -18.73 | -13.96 | 
4.77 

0.25 0.17 0.13 

6.  MODIS-Terra     0.37 0.30 

 
Table 5.1.  Net northward mass transport and mass loss from removal and relative contribution, westward 

mass transport at entrance and exit of barrier region, and mass, total AOT, and coarse mode barrier 
efficiencies for all simulations and MODIS-Terra. 

 

The baseline simulation has a dust mass barrier efficiency of 0.36, meaning that 

the Central American dust barrier removes 36% of the dust mass between 80° W to 90° 

W (Table 5.1). The baseline simulation has a total AOT barrier efficiency of 0.21 and a 

coarse AOT efficiency of 0.17.  Comparisons to MODIS-Terra show that the removal 

rates are not aggressive enough, as MODIS-Terra has a total AOT barrier efficiency of 

0.37 and coarse AOT barrier efficiency of 0.30 (Table 5.1). 

Because GEOS-5 does not include a detailed representation of aerosol-cloud-

precipitation interactions, aerosol wet removal is parameterized in terms of the model 

grid box convective updraft mass flux (for convective scavenging) and precipitation rate 

(for large scale wet removal).  An efficiency factor is assigned to each aerosol species 
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that represents its susceptibility to wet removal (i.e., its hygroscopicity) [Colarco et al. 

2010].  For the baseline simulation, the dust wet removal efficiency is assumed to be 

approximately half the efficiency as for hydrophilic carbonaceous and sulfate aerosols.  

In the first sensitivity test, the dust convective scavenging efficiency was doubled so that 

it is equivalent to that for hydrophilic aerosols.  In Figure 5.14, doubling the convective 

scavenging rate increases the mass of dust lost to removal while reducing the north-south 

and east-west dust flow.  After integrating along the longitudes of the Central American 

dust barrier, doubling the convective scavenging rate increases the loss contribution to 

61% (1.90 Tg) and reduces the contribution by northward transport to 39% (1.24 Tg), 

increasing the mass barrier efficiency to 0.48 (Table 5.1).  Figure 5.15 shows the 

MODIS-Terra sampled AOT from the baseline and sensitivity experiments, the ratio of 

the MODIS-Terra and simulated AOT, and the slope of the AOT (Δτ/Δx).  After doubling 

the convective scavenging rate, there is a reduction in the high AOT bias in the model 

and improvement in the slope of AOT as a function of longitude (Figure 5.15).  This 

corresponds with a significant improvement in the representation of the Central American 

dust barrier as the simulated AOT reduces from 0.34 at 80° W to 0.25 at 90° W (Figure 

15).  This corresponds to greater AOT barrier efficiencies of the total (0.25) and coarse 

(0.21) representations of the Central American dust barrier.   
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Figure 5.15.  10° N - 20° N averaged AOT, model to satellite AOT ratio, and AOT slope for MODIS-Terra 
(black-dashed) and sampled baseline (black-solid), no wet removal (red), no large-scale scavenging 

(orange), doubled scavenging (green), and wet removal treated as other aerosols (blue) sensitivity tests.  
The thin black line indicates the one-to-one line for ratio plots. 

 

A second sensitivity test was performed where in addition to doubling the dust 

convective scavenging rate, large-scale scavenging rate was increased so that dust wet 

removal is treated the same as for hydrophilic aerosols.  While this further increases the 

mass of dust lost to removal and reduces the north-south and east-west flow (Figure 

5.14), it is evident that simulated dust distributions are more sensitive to modifications to 

convective scavenging than large-scale scavenging in this region.  However, the 

combined effect of increasing the large-scale and convective scavenging rates consistent 

with other aerosol types corresponds with an increased contribution from loss processes 

(66%, 1.97 Tg), a reduced contribution (34%, 1.02 Tg) from northward transport, and an 
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increase in the barrier mass efficiency (0.52) of the Central American dust barrier (Table 

5.1).  Treating the wet removal of dust the same as other aerosols yields further 

improvement in the representation of the AOT magnitude and slope when compared to 

MODIS-Terra (Figure 5.15).  Over the region of the Central American dust barrier, the 

simulated AOT reduces from 0.31 at 80° W to 0.23 at 90° W (Figure 5.15), 

corresponding with an improved total AOT barrier efficiency of 0.28 and a coarse AOT 

barrier efficiency of 0.22 (Table 5.1).  Although still not as efficient as indicated by 

MODIS-Terra, this result suggests that the baseline dust wet removal rates in GEOS-5 are 

too slow and treating the wet removal of dust in a fashion similar to other (more 

ostensibly hygroscopic) aerosol types yields better comparisons to observations in 

regions where wet removal is dominant.  Because the representation of the dust barrier 

improves with increases to the wet removal rates, the contribution from loss processes to 

the Central American dust barrier is likely greater (66%) than originally estimated from 

our baseline simulation (53%). 

Two additional sensitivity tests were performed, aimed at understanding whether 

the Central American dust barrier persists when the effects of convective and large-scale 

scavenging are not simulated.  In the first sensitivity test, wet removal from the large-

scale scavenging of dust was not simulated, leaving only convective scavenging as a 

source of wet removal.  As shown in Figure 5.14, large-scale scavenging over the 

Caribbean has a small effect on the dust load, as the northward and westward flows are 

slightly increased and losses are reduced when the effects of large-scale scavenging are 

not simulated.  After integrating over the longitudes of the Central American dust barrier, 

there is a shift in the relative significance of northward transport and loss.  Northward 
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flow transports 1.85 Tg of dust out of the region (59% of the total removal) while dust 

losses remove 0.95 Tg of dust (41% of the total removal), corresponding with a barrier 

mass efficiency of 0.33 (Table 5.1).  When the AOT is sampled consistent with MODIS-

Terra, there is a small increase in the magnitude of the AOT and slope from the coast of 

North Africa (20° W) to Central America (80° W), but there is still evidence of a Central 

American dust barrier (Figure 5.15).  When the effects of large scale scavenging are not 

simulated, the total AOT efficiency and coarse AOT efficiency decrease to 0.19 and 0.16, 

respectively (Table 5.1).  This result is consistent with the simulations already discussed 

and suggests that large-scale convective scavenging has a small effect to the Central 

American dust barrier.    

In a final sensitivity test, a simulation was conducted where the effects of all wet 

removal (convective scavenging and large-scale scavenging) were not simulated.  In 

Figure 5.14, there is a large increase in the northward and westward dust flows and a 

significant reduction in the dust loss.  Over the Central American dust barrier region, 

northward transport accounts for 78% (3.35 Tg) of dust removal from the atmospheric 

column, while loss processes account for 22% (1.28 Tg), corresponding with a mass 

barrier efficiency of 0.25 (Table 5.1).  When compared to MODIS-Terra, there is a nearly 

constant increase in the AOT from the coast of North Africa (20° W) to the beginning of 

the Caribbean (60° W) (Figure 5.15).  However, over the Caribbean where convective 

scavenging has the largest contribution to the overall removal (Figure 5.10), the model 

AOT relative to MODIS-Terra increases non-linearly (Figure 5.15) and reduces the total 

and dust AOT barrier efficiency to 0.17 and 0.13, respectively (Table 5.1).  Finally, when 

all wet removal processes are not included, there is no evidence of the Central American 
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dust barrier (Figure 5.15).  Therefore, it can be determined that the Central American dust 

barrier could not exist without convective scavenging.  In practice, however, the Central 

American dust barrier is the result of two processes working in tandem: 1) Loss processes 

significantly reducing the dust loading during transport and 2) Atmospheric dynamics 

redirecting the reduced dust flow northward near the Central American coastline. 

 

5.6   Conclusions 

GEOS-5 was used to understand the processes that contribute to the Central 

American dust barrier during transport from the Saharan source region to the Caribbean 

for the period of the NASA TC4 field campaign (July – August, 2007).  Near the Saharan 

source region, GEOS-5 has a similar plume shape to the MODIS observations, but the 

baseline simulation overestimated the AOT.  Over the Caribbean, our GEOS-5 AOT 

magnitude is comparable to MODIS, but provided a weaker representation of the Central 

American dust barrier.  This result suggested that loss processes be explored and possibly 

adjusted in future implementations of the model.   

In a series of sensitivity analyses with GEOS-5, the relationship between wet 

removal parameterization and transport was explored in defining the Central American 

dust transport barrier.  The best agreement between GEOS-5 and the observations was 

obtained when dust wet removal was treated as the removal of hydrophilic aerosol 

species.  This result is supported by observations of negatively charged silicates [Yu et 

al., 1997] in unprocessed dust aerosols attracting hydrogen in water [Koretsky et al., 

1997] to readily serve as a CCN [Kumar et al., 2009].  Additionally, this result is 

supported by observations of dust aerosols mixing with other hydrophilic aerosol species 
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such as sulfates, sea-salt, and black carbon [Chen et al., 2010, Clarke et al. 2004].  This 

analysis shows that both wet removal and transport play a role in creating a semi-

permeable barrier to dust transport across Central America into the Pacific.  Of the two 

processes, for the best-case simulation, wet removal has a factor of two greater 

contribution toward defining the barrier than northward transport.    Moreover, of the wet 

removal processes, the Central American dust barrier is more sensitive to removal by 

convective scavenging and is not evident when convective scavenging is not simulated. 

These results should be taken with a few caveats.  First, the component analysis is 

valid for July 2007.  While it was shown that the Central American dust barrier is a 

persistent feature in July (Figure 5.2), it can be expected that the barrier will be somewhat 

sensitive to the variability of inter-annual meteorological conditions over the Central 

American region.   Transported dust distributions will be sensitive to variability in 

Saharan dust emissions, AEJ strength, and Inter-Tropical Convergence Zone (ITCZ) 

position.  Prospero and Lamb [2003] showed that dust transported from the Sahara to the 

Caribbean is linked to Sahel precipitation from the previous year.  Additionally, Pfister 

[2010] found that the La Nina conditions in 2007 caused an increase in westward flow 

and a significant reduction in Caribbean cold clouds and corresponding increase in 

Pacific cold clouds during the TC4 field campaign.  This suggests that under normal 

conditions, transported dust would be more confined the Caribbean and the Central 

American dust barrier would have a greater presence.  Inter-annual variability in the 

Central American dust barrier has implications for equatorial aquatic ecosystems located 

to the west of the Central American coastline.  In this region, low phytoplankton growth 

inferred from chlorophyll concentration observations during July [Falkowski et al., 
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1998], suggest that the Central American dust barrier serves as a natural inhibitor of 

carbon sequestration in the Pacific.  Additionally, the Central American dust barrier is 

expected to exist only in summer months.  The AEJ forms during northern hemisphere 

summer and corresponds with peak dust transport from the Sahara to the Caribbean.  

Analysis of the MODIS-Terra 2000 – 2010 monthly climatology suggests that 

transported dust loadings are too low to see evidence of a Central American dust barrier 

during non-summer months.  

Another caveat is that the role of dry removal processes in establishing the 

Central American dust barrier were not explored, though similar to wet removal, dry 

removal rates are not well constrained by data.  Additionally, compensating effects in 

removal rates were neglected when removal processes were modified in the sensitivity 

studies.  However, by mass, dry removal becomes less important with distance from the 

source region.  Offline analysis confirmed this, as dry removal rates from the no wet 

removal simulation increased by a factor of 1.3 when compared to our baseline 

simulation over the region of the Central American dust barrier.   

One final caveat is that the strength of the results is limited by how well transport 

and loss processes are represented in the model.  The effect of transport on the Central 

American dust barrier will be sensitive to the accuracy of the meteorology used to drive 

transport (i.e. MERRA reanalyses), as well as the internal dynamics of the model that 

advect dust in-between analyses.  Therefore, the role of transport towards the Central 

American dust barrier may be different in another global aerosol transport model.  This 

analysis also relies heavily on the ability of the model to provide a realistic representation 

of convection, which subsequently influences wet removal over the Caribbean.  Because 
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wet removal rates are not typically measured in the field, it is difficult to determine 

whether our parameterization of wet removal is accurate and therefore we are limited to 

relying on proxies, such as column AOT.  As previously discussed, the baseline 

simulation provided a weak representation of the Central American dust barrier when 

compared to MODIS-Terra, suggesting that the wet removal rates were too relaxed in the 

model (Figure 5.2).  However, when compared to the GPCP observations, the July 2007 

mean GEOS-5 precipitation was slightly greater over most of the Caribbean (Figure 5.7).  

These results suggest that the connection between wet removal and precipitation should 

be strengthened in GEOS-5, in particular that the simulation which best captured this dust 

barrier was the one that treated dust the same as hygroscopic aerosol species with respect 

to wet removal processes, suggesting that the best representation of dust in our model is 

one which allows that dust has mixed or been processed so as to be more hydrophilic. 

 

 

 

 

 

 

 

 

 



 140 
 

Chapter 6:  Conclusions and Future Work 

 

6.1 Conclusions 

 In this work, the effects of source, transport, and removal processes on the dust 

aerosol lifecycle were investigated.  Using the NASA GEOS modeling system as a tool, 

simulations were performed to understand the sensitivity of simulated dust aerosol 

lifecycle to various treatments of dust mobilization and removal, as well as model spatial 

resolution.  Several results from this analysis have brought insight into the treatment of 

dust aerosols within a global modeling framework and are relevant to the global aerosol 

modeling community as it transitions from coarse, multi-year climate simulations toward 

including aerosols as part of high resolution forecasting efforts.  

 One of the first issues addressed in this work pertained to the treatment of the dust 

mobilization process, specifically testing the implications of using a more physically 

based mobilization parameterization in a global aerosol transport model.  A major result 

from that analysis was that despite using different meteorology to parameterize dust 

emission, the mobilization scheme choice is significant for considerations of the emitted 

dust mass and particle size distribution.  This result was found by comparing simulated 

Saharan dust distributions driven by versions of the GOCART and DEAD mobilization 

schemes.  Due to the lack of global observations of dust emissions, the simulations were 

tuned to achieve the same dust AOT over the Saharan source region during the NAMMA 

field campaign.  It was therefore not surprising that simulated dust AOT magnitudes were 

comparable, however, different meteorology used to parameterize dust emissions did not 

significantly influence the timing of simulated dust events.  For the time period 
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considered, both schemes were more comparable to one another when compared to 

observations and had better agreement with observations with distance from the Saharan 

source region. Because the simulations were tuned to have the same dust AOT, 

differences in the treatment of the emitted particle size distributions led to differences in 

the emitted dust mass and particle size distributions. 

 One of the major limitations of the GOCART scheme is that it parameterizes dust 

emission by comparing 10-meter wind speed to threshold wind speeds that have been 

determined for dust aerosols, rather than soil particles.  Because the 10-meter wind speed 

is an order of magnitude greater than the threshold wind speeds, it freely emits dust over 

regions permitted by the source function.  The mobilizing physics of the DEAD scheme 

is more physically satisfying by comparing the surface friction speed to a threshold for 

soil-sized particles for computing a saltating mass flux, but is limited by neglecting 

variability in the parent soil particle bed.  Both schemes are limited by how well the 

model determines surface wind speeds used to parameterize dust emission.  Neither the 

10-meter wind speed nor the surface friction speed are directly assimilated, but rather are 

computed by the land surface model constrained by the dynamical state provided by the 

analysis.  Future work entails exploring the sensitivity of the results of Chapter 4.2 to 

different meteorological analyses, as discussed further in the next section. 

While exploring the effects of model spatial resolution on parameterizations of 

dust mobilization, a third scheme was introduced that blended aspects of the GOCART 

and DEAD schemes.  Emissions were parameterized by comparing the 10-meter wind 

speed (similar to GOCART) to a soil particle threshold extrapolated to 10-meters (similar 

to DEAD) so that the driving winds and threshold are the same order of magnitude.  
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While this parameterization does not consider the stability of the atmosphere when 

determining the mobilization threshold, it produces a seasonal cycle of dust emissions 

that is similar to DEAD (i.e. more variability) by using winds that are better constrained 

(10-meter wind speed).  However, until observations of dust emission are available to 

constrain simulated dust distributions in terms of both mass and optical properties, 

simulated dust emissions are limited to being tuned in terms of AOT, making it difficult 

to determine which scheme provides a better parameterization of dust emission physics.   

Another major result was that simulated dust distributions are highly sensitive to 

model spatial resolutions and should be considered when tuning dust emissions.  Surface 

wind speeds used to parameterize dust emission were shown to increase with model 

spatial resolution, though there was evidence of convergence at higher spatial resolutions.  

The cubic dependence of dust mobilization on the surface wind speed led to significant 

increases in dust emissions and corresponding AOT magnitudes that were substantially 

greater than those caused by different treatments of the mobilization process.  

Conversely, the resolution of the dust source function was shown to have only a minor 

effect on simulated dust emissions.  Over major dust source regions, increasing the model 

spatial resolution improved the timing of simulated dust events.  However, the effect of 

model spatial resolution did not significantly influence dust distributions downwind of 

the source region as the simulated dust aerosol lifetime decreased with increases in 

resolution. 

A third major result was that dust emissions should be tuned regionally in global 

aerosol transport models. Simulated dust distributions exhibited different biases and 

responses to increases to model spatial resolution over the African and Asian source 
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regions for April 2008.  Over the African source region, simulated AOT values were 

comparable to observations at coarse resolutions and increased almost linearly with 

spatial resolution, obtaining a high bias.  Over the Asian source region, AOT values were 

biased low at coarse resolution, and exhibited a non-linear response at higher resolutions 

that became more comparable with observations.  To improve the representation of dust 

emission at coarse resolutions, the effect of incorporating sub-grid wind variability was 

explored.  This led to improved comparisons with AOT magnitude, though the timing of 

simulated dust events was unaffected.  Because this analysis was only conducted for one 

month, future work involves exploring the sensitivities of dust emissions over different 

regions and various resolutions for longer periods of time. 

Two major results arose while exploring the role of transport and loss processes in 

defining the summertime Central American dust barrier.  Compared to observations, the 

model reproduced the observed location and magnitude of dust transport, but the baseline 

simulation provided a weaker representation of Central American dust barrier, suggesting 

that the parameterization of wet removal be explored in the model.  Through a series of 

sensitivity studies, a better representation of the barrier was achieved when the wet 

removal of dust aerosols was treated as other hydrophilic aerosols. Analysis of the dust 

transport dynamics and loss processes suggest that while both mechanisms play a role in 

defining the dust transport barrier, loss processes by wet removal of dust are about twice 

as important as transport for July 2007.   Perhaps more significant, the Central American 

dust barrier would not exist without removal by convective scavenging over the 

Caribbean, though this analysis should be extended for additional years to explore any 

inter-annual variability in the roles of transport and loss processes related to the barrier.   
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Finally, this work has made several contributions to the NASA GEOS modeling 

system.  The NASA GEOS modeling system is now equipped to simulate dust emission 

using the DEAD scheme in addition to the native GOCART scheme.  Additionally, this 

work will be used to update the current method of dust emission tuning.  Rather than 

using a global tuning constant for all resolutions, this analysis will be used to homogenize 

dust emissions by determining tuning constants that are a function of both spatial 

resolution and source region.  From the investigation of the Central American dust 

barrier, the wet removal of dust is now treated as other hydrophilic aerosols in order to 

capture observed dust transport downwind of the Saharan source region. 

 

6.2 Future Work 

 

 Future work involved with exploring the dust aerosol lifecycle in the GEOS 

modeling system will continue on many fronts.  First, a thorough evaluation of the 

GOCART-threshold emission parameterization is required.  The GOCART-threshold 

setup exhibited intra-annual variability similar to DEAD emissions while using the more 

constrained 10-meter wind speed to parameterize dust emission similar to GOCART 

relative to soil-sized particles, extrapolated to 10 meters.  However, dust distributions 

simulated by the GOCART-threshold simulation need to be evaluated in terms of 

observed dust distributions in order to evaluate its performance relative to the GOCART 

and DEAD schemes.  Additionally, the effect of incorporating sub-grid wind variability 

in GOCART-threshold based emissions will be explored for coarse resolution 

simulations.  Imposing a wind PDF in the GOCART-threshold formulation may impact 
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the timing of dust events in addition to the magnitude, as the driving wind speed and 

threshold speed are the same order of magnitude, which may act to initiate dust events 

that would not occur when using box-averaged wind speeds resolved by the model. 

 Continued efforts will also be made to further investigate the effects of model 

spatial resolution on the simulated dust aerosol lifecycle.  Specifically, the analysis of 

Chapter 4.3 will be applied to different months and regions in order to gain a more 

complete understanding of the effects of resolution on the simulated dust distributions.  

From this analysis, tuning constants that are a function of both region and resolution will 

be determined to replace the current global and resolution independent tuning constant 

used in the NASA GEOS modeling system. 

Next, the effect of driving meteorology on the simulated dust aerosol lifecycle 

will be explored by forcing the model with additional meteorological datasets, such as the 

European Center for Medium-Range Weather Forecasts (ECMWF) reanalyses.  For this 

work, a set of simulations using the GOCART and DEAD emission schemes will be 

conducted to test the sensitivity of the results of Chapter 4.2 to the dynamical state 

provided by the reanalysis.  This simulation may also be used to test the sensitivity of the 

role of dust transport toward the Central American dust barrier to driving meteorology.  

Also related to the Central American dust barrier, a long-term 0.5° resolution simulation 

will be analyzed to determine any inter-annual variability in the roles of transport and 

removal in establishing the Central American dust barrier. 

Throughout this work, a constant it was suggested that sedimentation rates were 

too aggressive over the Saharan source region.  This was particularly evident in GEOS-5 

comparisons with MISR, where the gradient in AOT between the source region and 
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downwind was much greater in the model than observed.  To explore sedimentation rates, 

several case studies of Saharan dust events identified by MODIS will be compared to 

CALIOP to evaluate the vertical placement, regional transport, and timing of dust plumes 

simulated by the 0.25° GEOS-5 operational 5-day forecasting system.  Discrepancies 

(e.g., transport to the wrong altitude) will be used to construct sensitivity experiments 

where sedimentation rates will be explored over the Saharan source region.  

Additionally, the effects of dust absorption on vertical dust distributions will be 

explored over the Saharan source region by varying the single scattering albedo of dust at 

visible wavelengths.  Single scattering albedo is a measure of the contribution of 

scattering to the total extinction and can influence the local thermodynamics of the 

atmosphere.  A more absorbing dust aerosol (smaller SSA) will increase the buoyancy of 

the surrounding air parcel and is favorable for lifting, thereby having implications for the 

lifetime and vertical distribution of the aerosol. 
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