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Department of Mathematics

We study the Turaev torsion of 3-manifolds with boundary; specifically how

certain “leading order” terms of the torsion are related to cohomology operations.

Chapter 1 consists mainly of definitions and known results, providing some proofs

of known results when the author hopes to present a new perspective.

Chapter 2 deals with generalizations of some results of Turaev from [Tur02].

Turaev’s results relate leading order terms of the Turaev torsion of closed, ori-

ented, connected 3-manifolds to certain “determinants” derived from cohomology

operations such as the alternate trilinear form on the first cohomology group given

by cup product. These determinants unfortunately do not generalize directly to

compact, connected, oriented 3-manifolds with nonempty boundary, because one

must incorporate the cohomology of the manifold relative to its boundary. We

define the new determinants that will be needed, and show that with these deter-

minants enjoy a similar relationship to the one given in [Tur02] between torsion



and the known determinants. These definitions and results are given for integral

cohomology, cohomology with coefficients in Z/rZ for certain integers r, and for

integral Massey products.

Chapter 3 shows how to use the results of Chapter 2 to derive Turaev’s results

for integral cohomology, by studying how the determinant defined in Chapter 2

changes when gluing solid tori along boundary components, and also how this

determinant is related to Turaev’s determinant when one glues enough solid tori

along the boundary to obtain a closed 3-manifold. One can then use known gluing

formulae for torsion to derive Turaev’s results relating torsion and cohomology

of closed 3-manifolds to the results in Chapter 2.
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Chapter 1

Definitions and Notations

In this chapter we give definitions and set notations which will be used through-

out. We will largely follow the notation in [Tur02].

1.1 The Algebraic Torsion of a Complex

In this section we define algebraic torsion of a chain complex, which will later

be used to define the topological torsion of a CW-complex. We start with the

easiest to define, the torsion of an acyclic complex over a field, and discuss a

generalization to complexes which may not be acyclic. One may also generalize

to complexes over rings (see [Tur01] or [Mil66]) though we will not need that

here.

1.1.1 The Torsion of an Acyclic Complex Over a Field

First, let V be a finite-dimensional vector space over a field F . Let a and b

be bases for V . We denote by (a/b) the matrix whose rows are obtained from

expressing the vectors of the basis a in terms of the basis b, i.e. row i of (a/b)

is the ith vector of the basis a expressed in the basis b. Symbolically, if ai is
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the ith vector of a, and similarly for b, then ai =
∑
j

(a/b)i,jbj. We denote the

determinant of (a/b) by [a/b]. Then

[a/a] = 1

[a/b] = [b/a]−1 (1.1)

[a/c] = [a/b][b/c].

Furthermore, if a∗, b∗ are the bases of V ∗ = HomF (V, F ) dual to the bases a, b of

V , then

(a∗/b∗) = ((a/b)−1)T (1.2)

where the “T” denotes transpose, so in particular

[a∗/b∗] = [a/b]−1. (1.3)

To prove this, note if a1, . . . , an are the vectors of a expressed in the b basis, and

a∗1, . . . , a
∗
n are the vectors of a∗ expressed in the b∗ basis, we have the defining

equation of a∗, a∗i (aj) = δi,j, the Kronecker delta, so

δi,j = a∗i (aj)

=
n∑

k=1

(a∗/b∗)i,kb
∗
k(aj)

=
n∑

k=1

(a∗/b∗)i,kb
∗
k

(
n∑

`=1

(a/b)j,`b`

)

=
n∑

k=1

(a∗/b∗)i,k

n∑
`=1

(a/b)j,`b
∗
k(b`)

=
n∑

k=1

(a∗/b∗)i,k

n∑
`=1

(a/b)j,`δk,`

=
n∑

k=1

(a∗/b∗)i,k(a/b)j,k.

This means (a∗/b∗)(a/b)T is the identity, proving (1.2).
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The torsion of an acyclic complex generalizes these determinants in much the

same way that Euler characteristic generalizes dimension.

Let C∗ be a finite acyclic complex of finite dimensional F -vector spaces, with

a collection of distinguished bases, ci a basis of Ci for each i. For each i, choose

a sequence of vectors bi in Ci such that ∂ibi is a basis of im(∂i : Ci → Ci−1).

Denote the sequence of vectors obtained by appending the sequence bi to the

end of the sequence ∂i+1bi+1 by simply ∂i+1bi+1bi. Then since the complex C∗ is

acyclic, im(∂i+1) is precisely ker(∂i), so ∂i+1bi+1bi is a basis for Ci, hence we can

make sense of the symbol [(∂i+1bi+1bi)/ci] for each i. Then we define the torsion

of the complex C∗ with distinguished bases c∗ by

τ(C∗, c∗) =
∏

i

[(∂i+1bi+1bi)/ci]
(−1)i+1

. (1.4)

This definition does depend on the distinguished bases c∗, as suggested by

the notation, but does not depend on the choices of b∗. To see why, note if β∗ is

another collection so that ∂iβi bases im(∂i), then

[∂i+1bi+1bi/ci] = [∂i+1βi+1βi/ci] · [∂i+1bi+1bi/∂i+1βi+1βi]

by (1.1). So we need to compute [∂i+1bi+1bi/∂i+1βi+1βi] . To compute this, we

will need a bit more notation: let ki = dim(im(∂i)), and denote the vectors in bi

by b1
i , . . . , b

ki
i , and similarly for βi. Then since ∂i+1βi+1βi is a basis for Ci, we can

write each bj
i as linear combinations from that basis, so we can define matrices

Ai, Bi so that

bj
i =

ki+1∑
`=1

Aj,`
i ∂i+1β

`
i+1 +

ki∑
p=1

Bj,p
i βp

i . (1.5)

Then we can write

(∂i+1bi+1bi/∂i+1βi+1βi) =
(

(∂i+1bi+1/∂i+1βi+1) 0
Ai Bi

)
. (1.6)
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But now, applying ∂i to (1.5) tells us that Bi = (∂ibi/∂iβi), so we can rewrite

(1.6) as

(∂i+1bi+1bi/∂i+1βi+1βi) =
(

(∂i+1bi+1/∂i+1βi+1) 0
Ai (∂ibi/∂iβi)

)
.

Now we can compute the determinant

[∂i+1bi+1bi/∂i+1βi+1βi] = [∂i+1bi+1/∂i+1βi+1] · [∂ibi/∂iβi] .

When we compute the alternating products, we see

Y
i

[(∂i+1bi+1bi)/ci]
(−1)i+1

=
Y

i

[(∂i+1βi+1βi)/ci]
(−1)i+1

· [∂i+1bi+1bi/∂i+1βi+1βi]
(−1)i+1

=
Y

i

[(∂i+1βi+1βi)/ci]
(−1)i+1

·
“

[∂i+1bi+1/∂i+1βi+1] · [∂ibi/∂iβi]
”(−1)i+1

=
Y

i

[(∂i+1βi+1βi)/ci]
(−1)i+1

.

The last equality holds since the product is alternating and each nonunity

[∂ibi/∂iβi] term occurs twice, but with alternately signed powers.

1.1.2 Generalization to Non-Acyclic Complexes

One may similarly define the torsion for a complex which is not acyclic, though

we will not use this much. We must, as before, have a finite complex C∗ = (Cm →

Cm−1 → · · · → C1 → C0) of finite dimensional vector spaces over a field F with

ci a distinguished basis of Ci for each i, but we must also have a distinguished

sequence of vectors hi ∈ ker(∂i) ⊂ Ci so that the sequence hi projects to a basis

of Hi(C∗) under the projection ker(∂i) → Hi(C∗). Then the torsion will depend

on h∗ as well, and we will reflect this in the notation. The rest of the definition

is very similar; choose a sequence of vectors bi ∈ Ci so that ∂ibi is a basis for

im(∂i). Then if we concatenate the sequence ∂i+1bi+1 with the sequence hi and

then the sequence bi, we get a basis for Ci (∂i+1bi+1 together with hi gives a basis

for ker(∂i), and bi is a lift of a basis for the image). Then we define the symbol
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(∂i+1bi+1hibi) to mean the basis of Ci obtained by the concatenation, and define

the torsion to be

τ(C∗, c∗, h∗) = (−1)|C|
m∏

i=0

[(∂i+1bi+1hibi)/ci]
(−1)i+1

(1.7)

where

|C| =
m∑

i=0

[(
i∑

r=0

dim(Cr)

)(
i∑

r=0

dim(Hr(C∗))

)]
(mod 2).

As above, this definition does not depend on the choices of bi, and the proof is

almost identical. The sign is included to guarantee invariance of sign-refined tor-

sions under cellular subdivision (when this definition is used for CW-complexes).

Also note that the sign vanishes for acyclic complexes.

1.2 Topological Torsion of a CW-Complex

Let X be a compact, connected CW-complex. Let X̂ be the maximal abelian

cover of X, i.e. the cover of X corresponding to the commutator subgroup of

π1(X). Then H = H1(X) is the group of deck transformations of the cover.

For each cell in X, choose a single lift in X̂, and order and orient the cells

arbitrarily. Then the chosen cells, with the order and orientations, are a basis

for C∗(X̂) as a Z[H]-complex. For any ring homomorphism ϕ : Z[H]→ F where

F is a field, we can consider F as a right Z[H]-module, and then form the ϕ-

twisted complex of X, Cϕ
∗ (X) = F ⊗ϕ C∗(X̂). If this complex is not acyclic,

we define τϕ(X) = 0 ∈ F . Otherwise, we have an acyclic F -complex with

a distinguished basis coming from our distinguished basis of C∗(X̂), so we can

define τϕ(X) ∈ F× as the torsion of that complex. This torsion is invariant under

cellular subdivisions (see [Mil66]). Note that one can only have a nonzero torsion
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if the Euler characteristic χ(X) = 0, so we will often impose that condition when

we actually want to make a torsion calculation.

1.3 Refinements of the Topological Torsion

Unfortunately, because of the choices involved, ϕ-torsion is only defined up to

sign (due to the arbitrary choices of order/orientation of the cells) and the action

of H on F , due to the arbitrary choice of lifts of cells. We now discuss Turaev’s

refinements of the topological torsion. These refinements can be thought of as

making specific choices which fix the choices of lifts of cells and the sign as part

of the input.

1.3.1 Euler Structures

There are multiple ways one may think of Euler structures, but we will take as our

starting point a definition of Euler structure that lends itself well to performing

computations. Later, we will discuss another equivalent definition. The definition

we choose comes from [Tur01], III.20.

Let X be a finite connected CW-complex. A family ê = {êi} of open cells in

the maximal abelian cover X̂ of X will be called a fundamental family of cells if

each open cell ei of X has exactly one êi in ê lying over it, i.e. ê is a choice of

exactly one lift in X̂ of each cell in X. Given two fundamental families ê, ê′, we

know that for each i, there is a unique element hi ∈ H1(X) with ê′i = hiêi. Then

we will define

ê′/ê =
∏

i

h
(−1)dim(ei)

i ∈ H1(X). (1.8)
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The index i runs over each open cell of X. It is clear that

ê/ê = 1, ê/ê′ = (ê′/ê)−1, ê′′/ê = (ê′′/ê′)(ê′/ê).

This implies that

ê ∼ ê′ ⇔ ê′/ê = 1 (1.9)

is an equivalence relation on the set of fundamental families of cells. The set of

equivalence classes is denoted Eul(X), and we will call its elements combinato-

rial Euler structures on X. Later we will define smooth Euler structures, which

are equivalent to combinatorial Euler structures, and we will use the term Euler

structure when there is no need to specify whether one uses smooth or combina-

torial Euler structures. Let us now note that if we have chosen an Euler structure

e = [ê] with ê = {êi}, and if we construct a new Euler structure e′ as the class of

the fundamental family of cells where we shift each cell of ê by the same element

h ∈ H1(X), i.e. ê′i = hêi for each i, then it is clear that ê′/ê = hχ(X), so e′ = e if

and only if χ(X) = 0.

There is a canonical free and transitive H1(X) action on Eul(X) defined as

follows: h[ê] = [ê]′, where [ê] denotes the equivalence class of the fundamental

family ê in Eul(X), if and only if ê′/ê = h. One may easily show such a thing

exists by shifting a single 0-dimensional cell by h. One may also show (for a

proof, see [Tur01] Lemma 20.1) that if X ′ is a cellular subdivision of X, then

there is a natural H1(X)-equivariant bijection Eul(X) 
 Eul(X ′).

Now if ϕ : Z[H1(X)] → F is a homomorphism to a field, Cϕ
∗ (X) is acyclic,

and e ∈ Eul(X) is an Euler structure, then we define τϕ(X, e) to be the ϕ-torsion

computed with respect to a fundamental family of cells whose equivalence class

in Eul(X) is equal to e. One may easily see from (1.8), (1.9), and (1.4) (and the
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definition in 1.2 of the topological torsion) that the torsion only depends on the

equivalence class in Eul(X) of a fundamental family, and that

τϕ(X, he) = ϕ(h)τϕ(X, e). (1.10)

We can also still define τϕ(X, e) = 0 if Cϕ
∗ (X) is not acyclic, and (1.10) still

holds.

1.3.2 Homology Orientations

A homology orientation of a connected finite CW-complex X is an orientation

of the real vector space
⊕
i

Hi(X; R). Using this, we construct the sign-refined

torsion as follows: choose an Euler structure e ∈ Eul(X), and a fundamen-

tal family of cells ê, with equivalence class e. Also choose an orientation ω

of
⊕
i

Hi(X; R), i.e. a homology orientation of X, and a basis hi of Hi(X; R)

for each i so that (h0, h1, . . . ) is a positively oriented basis with respect to ω.

Then once we choose an order and orientation of the cells in ê, the basis h∗

gives us the data we need to compute τ(C∗(X; R), ê, h∗) via (1.7). Let τ0 denote

the sign of τ(C∗(X; R), ê, h∗) ∈ R. Then for any field F and homomorphism

ϕ : Z[H1(X)]→ F , we can define

τϕ(X, e, ω) = τ0τ
ϕ(X, e)

where we compute τ0 and τϕ(X, e) using the same order and orientation of the

cells of ê. Then a change in the order/orientation will result in the same change

in sign in τ0 and τϕ(X, e), i.e. the sign of τϕ(X, e, ω) is unaffected. One may

easily see that

τϕ(X, e,−ω) = −τϕ(X, e, ω). (1.11)
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As with topological torsion and refinements by Euler structure, sign refined tor-

sions are also invariant under cellular subdivisions.

1.4 The Turaev Torsion

In [Tur02] and [Tur01], Turaev proves that the quotient ring (i.e. the ring ob-

tained by localizing at the multiplicative set of non-zerodivisors) of the integral

group ring of a finitely generated abelian group splits as a direct sum of fields.

This isomorphism provides ring homomorphisms from Z[H1(X)] to various fields.

Specifically, if we denote by Q(H) the quotient ring of Z[H] where H = H1(X)

and X is, as always, a finite CW complex, we have the inclusion Z[H] ↪→ Q(H).

There is an isomorphism Φ : Q(H)
≈→
⊕
i

Fi where each Fi is a field and i ranges

over a finite index set. This isomorphism is defined, for example, in [Tur02],

and is unique up to unique isomorphism (which will decompose along the direct

sum as a component-wise isomorphism Fi → F ′
i ) making the following diagram

commute: ⊕
i

Fi

��

Q(H)

;;xxxxxxxxx

##FFFFFFFF

⊕
i

F ′
i .

Then denote by ϕi the map Z[H] → Fi consisting of the inclusion to Q(H)

followed by the natural projection to Fi. Then for any homology orientation ω

and Euler structure e, we define the Turaev torsion τ(X, e, ω) by

τ(X, e, ω) = Φ−1

(⊕
i

τϕi(X, e, ω)

)
∈ Q(H).
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This definition does not depend on Φ (by the uniqueness of Φ). Henceforth,

the symbol τ(X, e, ω) will refer to the Turaev torsion of (X, e, ω) unless otherwise

specified. The symbol τϕ(X, e, ω) will still refer to ϕ-torsion. It is clear that

τ(X, he, ω) = hτ(X, e, ω) and τ(X, e,−ω) = −τ(X, e, ω) from (1.10) and (1.11).

We will also use the notation τ(X, e) to refer to Turaev torsion without the sign

refinement (hence that symbol does not have a well defined sign).

1.5 Refinements for Three-Manifolds

with Boundary

In this section, all manifolds will be smooth, compact, connected, orientable 3-

manifolds unless otherwise noted. When computing torsion, empty boundary

versus nonempty boundary makes a difference in the cellular structure, so they

will be treated separately. We will often use the notation bi(M) to denote the

ith Betti number of a manifold M . The torsion τ(M, e, ω) ∈ Q(H1(M)) for

e ∈ Eul(M) and ω a homology orientation of M , is defined to be the torsion of a

C1 triangulation of M , and since torsion is invariant under cellular subdivision,

and any two C1 triangulations of M have a common subdivision, this torsion is

actually an invariant of M .

1.5.1 Smooth Euler Structures

We briefly describe smooth Euler structures here; they are not essential for any

constructions to follow, so we will note that all details may be found in [Tur02]

and [Tur01]. The following definition will actually work for any odd compact

connected oriented manifold M of dimension m ≥ 2 and Euler characteristic
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equal to zero. A regular vector field on M is a nonsingular tangent vector field on

M directed outside M on ∂M (transverse to ∂M). Regular vector fields u, v are

homologous if for some point x ∈ M , the restrictions of u and v to M − {x} are

homotopic in the class of nonsingular vector fields on M − {x} directed outside

M on ∂M . The homology class of a regular vector field u is called a smooth Euler

structure and denoted by [u], and the set of homology classes is denoted vect(M).

There is a free and transitive action of H1(M) on vect(M), which we now

describe. For regular vector fields u, v, the Poincaré dual of the first obstruc-

tion to constructing a homotopy from v to u lies in H1(M), and only depends

on their homology classes [u], [v] ∈ vect(M). We will denote this element by

[u]/[v]. One can show (see [Tur02] for an explicit construction) that for any

[u] ∈ vect(M), h ∈ H1(M), there is a unique [v] ∈ vect(M) with [v]/[u] = h,

so we will define h[u] = [v] so that h[u]/[u] = h. This gives the free transitive

H1(M) action on vect(M), and one can construct a canonical H1(M)-equivariant

bijection Eul(M) 
 vect(M) which allows one to identify the two sets (again, see

[Tur01] Theorem 20.2 or [Tur02] III.4.2 for details). Sometimes it is convenient

to think of Euler structures in this way; for example, one can then construct a

canonical H1(M)-equivariant bijection vect(M) 
 spinc(M), see [Tur02] Chap-

ter XI for details. This bijection is important when comparing the Turaev torsion

to the Seiberg-Witten invariant.

1.5.2 Homology Orientations

In dimension three, if M is a closed, connected, oriented manifold, then the orien-

tation on M induces a natural homology orientation (this is true more generally

for any odd dimensional closed, connected, oriented manifold). To see why, note
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that if we choose any bases for H0(M ; R) and H1(M ; R), we may simply choose

the dual bases of H3(M ; R) and H2(M ; R) respectively, with respect to the (non-

degenerate) intersection pairing. So one easily sees that this is independent of

the choices of bases of H0(M ; R) and H1(M ; R), since choosing different bases for

either of these will result in different choices of bases for H2(M ; R) and H3(M ; R),

and the result will be two canceling signs in the orientation. It is also easy to see

how to generalize to any odd dimension greater than 1.

However, for compact oriented 3-manifolds with nonempty boundary, the ori-

entation by itself does not naturally give a homology orientation. This means

that it is not obvious that the sign refinement is useful here, since, to obtain

the refinement, one must make a seemingly arbitrary choice at the beginning of

calculation, rather than at the end. However, we will mention that a choice of ho-

mology orientation may be simply viewed as a choice of orientation of H1(M ; R)

and a choice of orientation of H1(M, ∂M ; R). To see why, note that if we choose

a basis a1, . . . , ab1(M) of H1(M ; R) which is positively oriented with respect to

our chosen orientation, and a basis α1, . . . , αb2(M) of H1(M, ∂M ; R), then let

α∗
1, . . . , α

∗
b2(M) be the basis of H1(M, ∂M ; R) dual to α1, . . . , αb2(M) under eval-

uation, and if we let [pt] be the homology class of a point in H0(M ; R) and

[M ] ∈ H3(M, ∂M, R) be the fundamental class determined by the orientation,

then we may define a homology orientation of M as the orientation determined

by ([pt], a1, . . . , ab1(M), α
∗
1 ∩ [M ], . . . , α∗

b2(M) ∩ [M ]).

On the other hand, the exterior of an oriented link in a rational homology

sphere does have a canonical homology orientation, which we repeat from [Tur02].

If E is the exterior of an oriented link L = L1 ∪ · · · ∪ Lm in an oriented rational

homology sphere N , then the natural homology orientation ωL of E is determined
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by the basis ([pt], t1, . . . , tm, g1, . . . , gm−1) where [pt] ∈ H0(E; R) is the homology

class of a point, t1, . . . , tm are homology classes of meridians, and g1, . . . , gm−1 are

the two-dimensional homology classes of the oriented boundaries of the tubular

neighborhoods of L1, . . . , Lm−1 respectively.

1.5.3 General Computations of Three-Manifold Torsion

Three-Manifolds with Nonempty Boundary

Let M be a connected 3-manifold, with ∂M 6= ∅, and suppose χ(M) = 0.

Note that this is equivalent to χ(∂M) = 0. Then M admits a handlebody

decomposition with 1 0-handle, m 1-handles, m − 1 2-handles, and 0 3-handles.

This is dual to a handlebody decomposition of (M, ∂M) which has 0 0-handles,

m− 1 1-handles, m 2-handles, and 1 3-handle. Now χ(∂M) = 0 is satisfied if all

of the boundary components of M are tori, but if one of the components of ∂M

is not a torus, then at least one of the components must be homeomorphic to a

2-sphere. However, if that is the case, then the torsion is not interesting.

Proposition 1.1. Let M be a compact connected oriented 3-manifold satisfying

χ(M) = 0 and ∂M containing at least one component homeomorphic to S2. Then

for any Euler structure e and homology orientation ω,

τ(M, e, ω) = 0.

Proof. We will prove that for any ϕ : Z[H1(M)]→ F , Hϕ
2 (M) 6= 0, hence Cϕ

∗ (M)

is not acyclic, and thus τϕ(M, e, ω) = 0. We shall prove this by showing that

there is a 2-handle of M the core 2-cell of which has nullhomotopic boundary

map, which means that any lift of that cell to M̂ has boundary equal to zero.
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This implies that the boundary of the associated basis element in Cϕ
2 (M) is also

zero. Since there are no 3-handles, we can conclude Hϕ
2 (M) 6= 0.

First, note that the long exact sequence of the pair (M, ∂M) tells us that

H1(M, ∂M) ≈ im(H1(M)) ⊕ Z`−1, where ` is the number of boundary compo-

nents. The Z`−1 summand is generated by paths connecting distinct boundary

components. We can explicitly see this by sliding handles in the relative decom-

position of (M, ∂M). Choose a base point in some boundary component; for

convenience, choose a component other than the S2 guaranteed by our assump-

tion (there must be other boundary components since χ(M) = 0). Let ∗ denote

the base point chosen, and let (∂M)∗ denote the boundary component contain-

ing ∗. Then since M is path-connected, and each path must be homotopic to

a path factoring through the relative 1-skeleton, the relative 1-skeleton is path-

connected, hence there must be 1-handles connecting the boundary components.

In particular, there is at least a 1-handle connecting (∂M)∗ to another boundary

component. If we consider all of the components connected to (∂M)∗ by a mini-

mum of k 1-handles as components in the “kth level” then we know that the first

level is nonempty. We will now modify our handlebody structure so that every

component is in the first level. If every boundary component is already in the first

level, then we have nothing to do. Otherwise, the second level is nonempty. Then

any component (say Σ′) in the second level is connected to a component in the

first level (say Σ) by one 1-handle, and Σ is connected to (∂M)∗ by one 1-handle

as well. Then slide the handle connecting Σ′ to Σ along the handle connecting Σ

to (∂M)∗ to put Σ′ in the first level. Then any third level components connected

to Σ′ are now second level. Proceed until all boundary components are first level.

Then slide all other 1-handles along the paths connecting boundary components
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to (∂M)∗ to get loops based at ∗. Then we have `− 1 1-handles connecting the

`−1 boundary components other than (∂M)∗ to (∂M)∗, and the rest representing

loops in M based at ∗, so we can explicitly see the decomposition of H1(M, ∂M)

as the direct sum as given above. Now consider the decomposition of M dual to

our new relative decomposition; in particular, notice that the boundary of the

core 2-cell of the 2-handle dual to the relative 1-handle which connects (∂M)∗ to

our given S2 is nullhomotopic, since it is freely homotopic to a loop on S2. The

result follows by the comments above.

This means that the only interesting 3-manifolds with boundary (from the

viewpoint of torsion) have each boundary component homeomorphic to a torus.

Now we give a computation for the Turaev torsion of a 3-manifold with

nonempty boundary. We will choose a specific Euler structure by choosing a

specific fundamental family of cells.

Let M be a 3-manifold with nonempty boundary, and we may as well assume

each boundary component homeomorphic to a torus (the theorem below is true

but trivial if not). Then, as above, M has a handlebody decomposition with 1

0-handle and 0 3-handles, and since χ(M) = 0 it has one fewer 2-handle than

it has 1-handles, so if M has m 1-handles, then it has m − 1 2-handles. The

core cells give us a presentation of π = π1(M) with m generators g1, . . . , gm and

m− 1 relations r1, . . . , rm−1 in the free group generated by g1, . . . , gm. To choose

a fundamental family of cells in M̃ , first choose any 0-handle ∗ lying over the 0-

handle of M . Then choose lifts of the 1-handles of M so that one of the endpoints

of the core 1-cells of each lift is the core 0-cell of ∗. Then the Z[π]-boundary map

of C∗(M̃) from dimension 1 to dimension 0 is given by right multiplication by the

15



column

 g1−1
g2−1

...
gm−1

. Now we may homotope the boundary maps of the core 2-cells

of the 2-handles of M so that they are based maps, and then choose our lifts of

2-handles in M̃ so that they are all based at ∗ and the Z[π]-boundary map of

C∗(M̃) from dimension 2 to dimension 1 is given by right multiplication by the

matrix ∆̃ where ∆̃i,j = ∂ri/∂gj is the matrix of Fox derivatives.

Now let H = H1(M), then the Z[H]-complex of M̂ is simply the projection

of the above complex under the Hurewicz map p : π → H (or, more precisely,

the induced map Z[π]→ Z[H]). So if we let hi = p(gi) and ∆i,j = p
(
∆̃i,j

)
, then

the complex for M̂ is simply

(Z[H])m−1 ∆−−−→ (Z[H])m

0BB@
h1−1
h2−1

...
hm−1

1CCA
−−−−−−→ Z[H].

We are now almost ready to compute the torsion, after we introduce another

notation. Henceforth, we will often need to strike a column from a matrix. We

will use the notation A(r) for the matrix obtained by striking the rth column

from the matrix A.

Theorem 1.1. Let M be a 3-manifold with boundary ∂M 6= ∅ with handlebody

decomposition as above and the Euler structure e equal to the class of the funda-

mental family of cells above, and χ(M) = 0. Then for any homology orientation

ωM , and for any 1 ≤ r ≤ m,

τ(M, e, ωM)(hr − 1) = (−1)m+rτ0 det(∆(r)). (1.12)

Here τ0 = ±1 is the sign of τ(C∗(M ; R)) ∈ R − {0}; this torsion is also

computed using the basis determined by our Euler structure and a positively

oriented basis in homology with respect to our homology orientation.
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Proof. Consider the splitting Q(H) ≈
⊕
i

Fi as a direct sum of fields, let ϕi be

the projection to Fi. It is enough to show that for all i and all 1 ≤ r ≤ m ,

τϕi(M, e, ωM)ϕi(hr − 1) = (−1)m+rτ0ϕi(det(∆(r))). (1.13)

Note that ϕi is a ring homomorphism which extends in a natural way to

matrices and that the extended homomorphism on matrices commutes with de-

terminant and striking out columns, i.e. ϕi(det(∆(r))) = det(ϕi(∆(r))) and

ϕi(∆(r)) = (ϕi(∆))(r). Then for each i, we will have the complex

Fm−1
i

ϕi(∆)−−−→ Fm
i

0BBB@
ϕi(h1−1)
ϕi(h2−1)

...
ϕi(hm−1)

1CCCA
−−−−−−−−→ Fi.

We now proceed by cases:

1. ϕi(hr−1) = 0. The fact that Cϕi
∗ (M) is a complex gives a linear relation on

the columns of ϕi(∆). However, the identity ϕi(hr−1) = 0 tells us that the

rth column is not involved in this relation. Also, the relation is nontrivial,

as we now explain: we know at least one of the hk’s is infinite order in H

since b1(M) ≥ 1 (this is true for any compact 3-manifold with nonempty

boundary and Euler characteristic equal to zero). Let us say hj has infinite

order. Then hj − 1 is a unit in Q(H) (hj is infinite order implies hj − 1

is not a zerodivisor in Z[H]). Then ϕi(hj − 1) 6= 0, so the coefficient of

the jth column is nonzero, hence we have a nontrivial linear relation on the

columns of ϕi(∆(r)), hence det(ϕi(∆(r))) = 0, so in this case (1.13) holds.

2. ϕi(hr − 1) 6= 0, but the complex is not acyclic. This means

τϕi(M, e, ωM) = τ0τ(Cϕi
∗ (M)) = 0
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by definition. Then let x be the row vector in Fm
i whose rth entry is

(ϕi(hr − 1))−1 and all other entries are zero. Then ∂1x = 1, so we have no

0th homology in this complex. Also, dim(ker(∂1)) = m − 1. Our complex

is not acyclic, which can only happen if the map ϕi(∆) is not injective.

Then note dim(im(ϕi(∆(r)))) ≤ dim(im(ϕi(∆))) < m − 1 so ϕi(∆(r)) is

not injective, hence det(ϕi(∆(r))) = 0, so this case also satisfies (1.13).

3. ϕi(hr − 1) 6= 0, and the complex is acyclic. This is actually the interesting

case, when everything is nonzero. Then ϕi(∆(r)) is injective and we have

a vector x as in the previous case; i.e. again let x be the row vector in

Fm
i whose rth entry is (ϕi(hr − 1))−1 and all other entries are zero. Note x

spans a subspace of Fm
i which is a complementary subspace to the image

of ır (ϕi(∆(r))), where ır : Fm−1
i ↪→ Fm

i inserts a zero as the rth coordinate.

Now to compute the torsion we need to pick bases for the images of the

boundary maps; for the image of ∂2 we will just choose the images of the

standard basis of Fm−1
i . Also we will choose 1 = ∂1x for the image of ∂1.

Then the change of basis matrices in the 2 and 0 position will just be the

identity matrix, and we just have to figure out the change of basis matrix

for the 1 position. This matrix will simply be ( ϕi(∆)
x ), i.e. the (m × m)

matrix given by adjoining the row given by x onto the bottom of the matrix

ϕi(∆). Then the torsion is simply given by the determinant of this matrix,

which is clearly (−1)m+r(ϕi(hr − 1))−1 det(ϕi(∆(r))).

In all of these cases,

ϕi(τ(M, e, ωM)) = τ0(−1)m+r(ϕi(h1 − 1))−1 det(ϕi(∆(r)))

ϕi(τ(M, e, ωM))(ϕi(h1 − 1)) = τ0(−1)m+r det(ϕi(∆(r))).

This proves (1.13) for all i which in turn proves (1.12).
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Chapter 2

Torsion vs. Cohomology for 3-Manifolds

In [Tur02] Chapters III and XII, Turaev describes how the Turaev torsion of

closed, oriented, connected 3-manifolds is related to certain “determinants” in

cohomology. Explicit formulae are derived for both integral cohomology and

Mod-r cohomology for certain r ≥ 2 (for example primes). In this chapter,

we give analogues for (compact, connected, oriented) 3-manifolds with non-void

boundary. The general strategy will be to define a purely algebraic determinant

for certain forms on free R-modules, where R is some ring (our applications

will have R = Z or R = Zr = Z/rZ). We then relate the “leading term” of

the Turaev torsion to this determinant arising from the form on H1(M ; R) and

H1(M, ∂M ; R) defined by the particular cohomology product in which we are

interested.

In the following chapter, all manifolds are compact, connected, oriented 3-

manifolds with non-void boundary.

19



2.1 The Integral Cohomology Ring

2.1.1 Determinants

Let M be a 3-manifold with boundary ∂M 6= ∅, and suppose χ(M) = 0. Also

assume b1(M) ≥ 2 (b1 denotes the first Betti number) so that H1(M, ∂M) 6= 0.

We now have a map H1(M, ∂M)×H1(M)×H1(M) −→ Z, defined by (a, b, c) 7→

〈a ∪ b ∪ c, [M ]〉, where [M ] is the fundamental class in H3(M, ∂M) determined

by the orientation. This is alternate in the sense that switching the last two

variables costs a minus sign, i.e. 〈a ∪ b ∪ c, [M ]〉 = −〈a ∪ c ∪ b, [M ]〉. Since we

assume χ(M) = 0, we know H1(M) and H1(M, ∂M) will not have the same

rank; they will differ by one. There is a notion for the determinant (see [Tur02],

chapter III) of an alternate trilinear form (for example, the obvious analogue of

the above form when M is closed), but because of the difference in rank, we must

have a new concept of determinant for a mapping such as the one above. The

determinant of an alternate trilinear form on a free R-module is independent of

basis up to squares of units of R, so if R = Z it is independent of basis. This will

not be true of our determinant; however we will present a sign-refined version

based on a choice of homology orientation. For our usage, this is not more of

a choice than we would normally make; if we want sign-refined torsion, then we

have already chosen a homology orientation, and if we do not care about the sign

of the torsion, we can ignore the sign here as well.

In more general terms, let R be a commutative ring with unit, and let K, L

be finitely generated free R modules of rank n and n − 1 respectively, where

n ≥ 2. For any module N , we can define the symmetric graded algebra S(N) =⊕̀
≥0

S`(N) where S`(N) is the quotient of

` copies︷ ︸︸ ︷
N ⊗N ⊗ · · · ⊗N by the action of the
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symmetric group on ` objects. We note S0(N) = R and S1(N) = N to be precise.

Multiplication in S(N) is the image of tensor multiplication. For our purposes,

we will let S = S(K∗) where K∗ = HomR(K, R). Note if {a∗i }ni=1 is the basis of

K∗ dual to the basis {ai}ni=1 of K then S = R[a∗1, . . . , a
∗
n], the polynomial ring on

a∗1, . . . , a
∗
n, and the grading of S corresponds to the usual grading of a polynomial

ring. So now let {ai}ni=1, {bj}n−1
j=1 be bases for K, L respectively, and let {a∗i } be

the basis of K∗ dual to the basis {ai} as above. Let f : L × K × K −→ R be

an R-module homomorphism which is skew-symmetric in the two copies of K;

i.e. for all y, z ∈ K, x ∈ L, f(x, y, z) = −f(x, z, y). Let g denote the associated

homomorphism L×K −→ K∗ given by (g(x, y))(z) = f(x, y, z). Next we state a

Lemma defining the determinant of f (d in the Lemma), but first we recall some

notation from Chapter 1: [a′/a] ∈ R× is used to denote the determinant of the

change of basis matrix from a to a′, and for a matrix A, we will let A(i) denote

the matrix obtained by striking out the ith column

Lemma 2.1. Let θ denote the (n−1×n) matrix over S whose i, jth entry, denoted

θi,j, is obtained by θi,j = g(bi, aj). Then there is a unique d = d(f, a, b) ∈ Sn−2

such that for any 1 ≤ i ≤ n,

det θ(i) = (−1)ia∗i d. (2.1)

For any other bases a′, b′ of K, L respectively, we have

d(f, a′, b′) = [a′/a][b′/b]d(f, a, b). (2.2)

Proof. Let β denote the (n − 1 × n) matrix with βi,j = g(bi, aj)a
∗
j . The sum of

the columns of β is zero; indeed, for any i, the ith entry (of the column vector

obtained by summing the columns of β) is given by:
n∑

j=1

βi,j =
n∑

j=1

g(bi, aj)a
∗
j =

n∑
j,k=1

f(bi, aj, ak)a
∗
ja

∗
k = 0.
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The last equality follows since the f term is anti-symmetric in j, k and the a term

is symmetric. We now claim (−1)i det β(i) is independent of i.

Claim. Let Z be a (n − 1 × n) matrix with columns ci for 1 ≤ i ≤ n such that
n∑

i=1

ci = 0. Then (−1)i det(Z(i)) for 1 ≤ i ≤ n is independent of i.

The proof of this claim is as follows: think of det as a function on the columns;

det(Z(i)) = det(c1, c2, . . . , ci−1, ci+1, . . . , cn). Let k 6= i, then ck = −
∑
p6=k

cp, hence

det(Z(i)) = det(c1, c2, . . . , ck−1,−
∑
p6=k

cp, ck+1, . . . , ci−1, ci+1, . . . , cn)

=
∑
p6=k

det(c1, c2, . . . , ck−1,−cp, ck+1, . . . , ci−1, ci+1, . . . , cn)

= det(c1, c2, . . . , ck−1,−ci, ck+1, . . . , ci−1, ci+1, . . . , cn).

Here for notational convenience we have assumed k < i, but it clearly makes no

difference. The last equality holds because in each term but the p = i term, we

will have two columns appearing twice. Now to move −ci to the ith column, we

will have to do i− k− 1 column swaps. Doing the column swaps and accounting

for the negative sign of ci, we get det(Z(i)) = (−1)i−k det(Z(k)), which completes

the proof of our claim.

This means (−1)i det β(i) is independent of i. Now let ti = det θ(i) ∈ Sn−1.

It is clear that

det(β(i)) = ti
∏
k 6=i

a∗k.

Then for any i, p ≤ n, we have

(−1)itia
∗
p

n∏
k=1

a∗k = (−1)i det β(i)a∗pa
∗
i

= (−1)p det β(p)a∗i a
∗
p

= (−1)ptpa
∗
i

n∏
k=1

a∗k.
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Now since the annihilators of a∗k in S are zero, we must have

(−1)itia
∗
p = (−1)ptpa

∗
i .

This means that a∗i divides tia
∗
p for all p, hence a∗i divides ti. Define si by ti = sia

∗
i .

Note

(−1)isia
∗
i a

∗
p = (−1)itia

∗
p = (−1)ptpa

∗
i = (−1)pspa

∗
pa

∗
i .

This means (−1)isi is independent of i. Let d = (−1)isi. By definition,

(−1)i det θ(i) = (−1)iti = (−1)isia
∗
i = a∗i d.

This proves (2.1).

Now to prove the change of basis formula, note we do not have to change

both bases simultaneously, but can instead first obtain the formula for d(f, a′, b)

in terms of d(f, a, b), and then do the same for b′ and b. So let {a′i} be another

basis for K. We show d(f, a′, b) = [a′/a]d(f, a, b). Let Si be the (n × n − 1)

matrix obtained by inserting a row of zeroes into the (n − 1 × n − 1) identity

matrix as the ith row. Then one may easily see for any (n − 1 × n) matrix A,

the matrix A(i) (obtained by striking out the ith column) can also be obtained as

A(i) = ASi. Let S+
i denote the (n× n) matrix obtained by appending a column

vector with a 1 in the ith entry and zeroes otherwise on to the right of Si, and

let Ai
+ denote the (n × n) matrix obtained by appending a row vector with a 1

in the ith entry and zeroes otherwise on to the bottom of A. Note

det(S+
i ) = (−1)n+i

det(Ai
+) = (−1)n+i det(A(i))

hence

det(Ai
+S+

i ) = det(ASi) = det(A(i)).
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Now let (a′/a) denote the usual change of basis matrix so that a′i =
n∑

j=1

(a′/a)i,jaj.

Now θi,j = g(bi, aj), so let

θ′i,j = g(bi, a
′
j)

= g(bi,

n∑
k=1

(a′/a)j,kak)

=
n∑

k=1

g(bi, ak)(a
′/a)j,k.

Thus θ′ = θ · (a′/a)T. Now

det
(
θi
+(a′/a)TS+

i

)
= det

(
θi
+

)
det
(
(a′/a)T

)
det
(
S+

i

)
= det

(
(a′/a)T

)
det
(
θi
+

)
det
(
S+

i

)
= det (a′/a) det

(
θi
+ · S+

i

)
= [a′/a] det(θ(i))

= [a′/a](−1)ia∗i d(f, a, b).

Now we will compute the same thing in a much longer way to complete our proof.

Let ei denote the row vector with a 1 in the ith position and zeroes otherwise, i.e.

the ith basis vector of a as expressed in the a-basis, and let ri denote the ith row
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of (a′/a)T and ci denote the ith column. Then

det(θi
+(a′/a)TS+

i ) = det
[(

θ
ei

)
(a′/a)T ( Si eT

i )
]

= det
[(

θ
ei

)
( (a′/a)T(i) ci )

]
= det

(
θ(a′/a)T(i) θci

(a′/a)T(i)i (a′/a)Ti,i

)
= (−1)n−i det

(
θ(a′/a)T

ri

)
= (−1)n−i det

(
θ′
ri

)
= (−1)n−i

n∑
k=1

(−1)n+k(a′/a)T
i,k det(θ′(k))

= (−1)n−i

n∑
k=1

(−1)n+k(a′/a)T
i,k(−1)k(a′k)

∗d(f, a′, b)

= (−1)n−i

n∑
k=1

(−1)n+k(a∗/(a′)∗)i,k(−1)k(a′k)
∗d(f, a′, b)

= (−1)id(f, a′, b)a∗i .

So d(f, a′, b)− [a′/a]d(f, a, b) annihilates a∗i for each i, hence is zero.

The computation for a b change of basis is easier. Let b′ be another basis for L

and let (b′/b) denote the b to b′ change of basis matrix. Let θ′ denote the matrix

g(b′i, aj), then θ′ = (b′/b)θ. So θ′Si = (b′/b)θSi, hence det(θ′(i)) = [b′/b] det(θ(i)).

This proves d(f, a, b′) = [b′/b]d(f, a, b), and completes the proof of (2.2).

In the case, R = Z, our determinant depends on the basis only by its sign. In

this case, we can refine the determinant by a choice of orientation of the R-vector

space (K⊕L)⊗R. Let ω be such a choice of orientation. Then define Detω(f) =

det(f, a, b) where a, b are bases of K, L respectively such that the induced basis

of (K⊕L)⊗R given by {a1⊗ 1, a2⊗ 1, . . . , an⊗ 1, b1⊗ 1, b2⊗ 1, . . . , bn−1⊗ 1} is

positively oriented with respect to ω. Then Detω(f) is well defined, and for any

bases a′, b′, we have det(f, a′, b′) = ±Detω(f) where the ± is chosen depending
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on whether a′, b′ induces a positively or negatively oriented basis of (K ⊕L)⊗R

with respect to ω. Note that for K = H1(M), L = H1(M, ∂M) where M is

a compact connected oriented 3-manifold with non-void boundary, a choice of

homology orientation will determine an orientation for (K ⊕ L) ⊗ R. To see

why, let ωM be a homology orientation for M . Consider {a∗1, . . . , a∗n} a basis for

H1(M ; R) dual to a basis {a1, . . . , an} of H1(M, R), and {b∗1, . . . , b∗n−1} a basis

of H1(M, ∂M ; R). We will say what it means for {a∗1, . . . , a∗n, b∗1, . . . , b∗n−1} to be

a positively oriented basis for H1(M ; R) ⊕ H1(M, ∂M ; R), and this will define

our orientation. Let [M ] denote the fundamental class of M determined by

the orientation of M (not the homology orientation). Then we will define an

orientation of H1(M ; R)⊕H1(M, ∂M ; R) by saying that {a∗1, . . . , a∗n, b∗1, . . . , b∗n−1}

is a positively oriented basis if and only if {[pt], a1, . . . , an, b
∗
1∩[M ], . . . , b∗n−1∩[M ]}

is a positively oriented basis for H∗(M ; R) with respect to ωM . We will denote the

sign refined determinant with respect to this orientation by DetωM
(f) (Note this

is essentially the same thing as refining Det by the paired volume form associated

to ωM , as defined below in (2.11)).

2.1.2 Relationship to Torsion

We use the above to relate the torsion to the cohomology ring structure. Let

T = Tors(H1(M)) denote the torsion subgroup of H1(M). Note that this is

isomorphic to the torsion subgroup of H1(M, ∂M), so we will also denote the

torsion subgroup of H1(M, ∂M) by T . Let G = H1(M)/T , let S(G) denote

the graded symmetric algebra on G and let I denote the augmentation ideal in

Z[H1(M)]. The filtration of Z[H1(M)] by powers of I determines an associated

graded algebra A =
⊕̀
≥0

I`/I`+1. Then there is an additive homomorphism qH1(M) :
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S(G) −→ A defined in [Tur02]. We repeat the definition here: The map h 7→

h− 1 mod I2 defines an additive homomorphism H1(M) −→ I/I2. This extends

to a grading-preserving algebra homomorphism q̃H1(M) : S(H1(M)) −→ A. Any

section s : G −→ H1(M) of the natural projection H1(M) −→ G induces an

algebra homomorphism s̃ : S(G) −→ S(H1(M)); set

qH1(M) = |T |q̃H1(M)s̃ : S(G) −→ A.

Then qH1(M) is grading preserving and is a Z-module homomorphism, and obvi-

ously satisfies the multiplicative formula

qH1(M)(a)qH1(M)(b) = |T |qH1(M)(ab).

qH1(M) does not depend on the choice of section s (see [Tur02]).

We are now ready to state the main result of this section:

Theorem 2.1. Let fM : H1(M, ∂M)×H1(M)×H1(M) −→ Z be the Z-module

homomorphism defined by

fM(x, y, z) = 〈x ∪ y ∪ z, [M ]〉.

Let n = b1(M) ≥ 2, let I be the augmentation ideal of Z[H1(M)], and let e be any

choice of Euler structure on M and ωM be a homology orientation of M . Then

τ(M, e, ωM) ∈ In−2 and:

τ(M, e, ωM) mod In−1 = qH1(M)(DetωM
(fM)) ∈ In−2/In−1. (2.3)

That τ(M, e, ωM) ∈ In−2 is proved in [Tur02], Chapter II, the important thing

here is its image modulo In−1; this is the “leading term” of the torsion in the

associated graded algebra A. This proof is the method of [Tur02] Theorem 2.2

applied to this more general situation.
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Proof. The first step is to arrange a handle decomposition coming from a C1

triangulation to be in a convenient form. We will also arrange the relative handle

decomposition for (M, ∂M) that is Poincaré dual to the handle decomposition

for M . First, we arrange our decomposition for M so that we have (0) 3-handles,

(m − 1) 2-handles, (m) 1-handles, (1) 0-handle, and this is Poincaré dual to a

relative handle decomposition for (M, ∂M) with (0) 0-handles, (m−1) 1-handles,

(m) 2-handles, (1) 3-handle. With these decompositions, we have the following

cellular chain complexes:

C∗(M) : 0 −−−→ Zm−1 −−−→ Zm 0−−−→ Zy≈ y≈ y≈ y≈
C∗(M, ∂M) : 0 ←−−− Zm−1 ←−−− Zm ←−−−

0
Z.

We will refer to the handles as “honest” handles and “relative” handles; honest

handles being from the decomposition of M and relative ones from the relative

decomposition of (M, ∂M). Later, we will explicitly give the (m− 1×m) matrix

for ∂2 of the honest decomposition.

The core 0-cell of the honest 0-handle (of M) is a point, u, which we will

say is positively oriented. At the same time we orient the relative 3-handle (of

(M, ∂M)) with the positive orientation given by the orientation of M . Extend the

core 1-disks of the honest 1-handles to obtain loops in M based at u, representing

x1, . . . , xm ∈ π1(M, u). We can arrange these to be convenient by sliding handles

over each other and possibly reversing orientations of the core disks. Since sliding

the ith honest 1-handle over the jth honest 1-handle replaces xi with xixj, and

reversing orientation of the core 1-disk changes replaces xi with x−1
i , we may

assume that the images of the homology classes of the first n of the xi’s form a

basis of G = H1(M)/T and the rest of the classes end up in T . For i = 1, . . . ,m,

set hi = [xi] ∈ H1(M) and h̃i = hi mod T . Thus h̃1, . . . , h̃n is a basis of G and
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h̃i = 1 for i > n. Denote the dual basis of H1(M) by h∗1, . . . , h
∗
n, by definition,

〈h∗i , h̃j〉 = δi,j, where 〈·, ·〉 is evaluation pairing.

We now want to arrange the relative 1-handles in a similar way; so that the

images of the first n−1 of them form a basis of H1(M, ∂M)/T and the other m−n

of them end up in the torsion group. Let c denote the number of components of

∂M , proceed as in Proposition 1.1 to get the first c − 1 of the relative handles

connecting boundary components and the rest represent loops with a common

base point in one of the boundary components. Then we may proceed as before

in the discussion of honest handles; we may arrange so that the first n−c of these

handles will give us the remaining free generators of H1(M, ∂M)/T and the rest

of them simply end up in T (again by sliding handles, since the only handles that

we need to slide represent loops all based at the same point). We will use similar

notation, ki will denote the homology class of the ith handle and k̃i = ki mod T .

We will denote the dual basis of H1(M, ∂M) by k∗1, . . . , k
∗
n−1. As before, the k̃i’s

for i ≤ n− 1 are generators of H1(M, ∂M)/T and for i > n− 1, k̃i = 1. Also, as

before, 〈k∗i , k̃j〉 = δi,j.

The attaching maps for the honest 2-handles determine (up to conjugation)

certain elements r1, . . . , rm−1 of the free group F generated by x1, . . . , xm. We now

have π1(M) presented by the generators x1, . . . , xm and the relations r1, . . . , rm−1.

Now the cellular chain complex for M is in a particularly convenient form

for our purposes. As usual, we use the notation ∂p to denote the boundary map

from dimension p to dimension p − 1. Clearly ∂1 is given by the zero map. Let

us denote the matrix of ∂2 by (vi,j) where 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m.

Now for 1 ≤ i ≤ n− 1, the core 2-disk of the ith honest 2-handle represents a

cycle in C2(M) (we have arrange for its homology class to be k∗i ∩ [M ] ∈ H2(M)).
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As a homology class, it has boundary equal to zero, so vi,j = 0 for i ≤ n− 1 and

all j. We apply the same argument to the relative handles as follows: the jth

relative 2-handle represents a homology class Poincaré dual to h∗i ∩ [M ], hence

has boundary equal to zero, and vi,j = 0 for all i and j ≤ n. The result is that

vi,j = 0 except for the bottom right hand (m−n×m−n) corner of the matrix; call

this matrix v. This tells us that ∂2 in the complex for M is given by ( 0 0
0 v ). This

v is a square presentation matrix for the torsion group T , thus det(v) = ±|T |.

Furthermore, r1, . . . , rn−1 ∈ [F, F ] since the first n− 1 honest 2-cells are cycles.

Consider the chain complex C∗(M̂) associated to the induced handle decom-

position of the maximal abelian cover M̂ of M . This is a free Z[H1(M)]-chain

complex with distinguished basis determined by lifts of handles of M . For an

appropriate choice of these lifts, we have (as before in Theorem 1.1) ∂1 given by

x 7→ x · w where w is a column of height m whose ith entry is hi − 1. The map

∂2 is (also as before in Theorem 1.1) given by the Alexander-Fox matrix for the

presentation 〈x1, . . . , xm|r1, . . . , rm−1〉 for an appropriate choice of the ri’s in their

conjugacy classes. This is an (m− 1×m) matrix whose (i, j)th entry is given by

η(∂ri/∂xj) where η is the projection Z[F ] −→ Z[π1(M, u)] −→ Z[H1(M)]. Let

eN be an Euler structure determined by the fundamental family of cells which

gives this “nice” cellular structure to M̂ . Clearly the Z[H1(M)]-complex for M̂

must augment to the Z-complex for M , hence aug(η(∂ri/∂xj)) = vi,j, hence

η(∂ri/∂xj) ∈ I for i ≤ n− 1, j ≤ n. We claim for i ≤ n− 1, j ≤ n,

|T |η(∂ri/∂xj) = −|T |
n∑

p=1

〈k∗i ∪ h∗j ∪ h∗p, [M ]〉(hp − 1) mod I2. (2.4)

Here I is the augmentation ideal. To see this, let η̃ denote the composition of η

with the projection Z[H1(M)] −→ Z[G]. Let J denote the augmentation ideal in
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Z[G]. It is enough to show for i ≤ n− 1, j ≤ n,

η̃(∂ri/∂xj) = −
n∑

p=1

〈k∗i ∪ h∗j ∪ h∗p, [M ]〉(h̃p − 1) mod J2. (2.5)

To prove (2.5), note that J/J2 is isomorphic to the free abelian group G of rank

n under the map g 7→ (g−1) mod J2, and is thus generated by h̃1−1, . . . , h̃n−1.

For any g ∈ G, the expansion g =
n∏

p=1

h̃
〈h∗p,g〉
p gives

g − 1 =
n∑

p=1

〈h∗p, g〉(h̃p − 1) mod J2. (2.6)

Also, for any α ∈ F, j ≤ n,

aug(∂α/∂xj) = 〈h∗j , η(α)〉. (2.7)

Now ri ∈ [F, F ] gives an expansion ri =
∏
µ

[αµ, βµ] a finite product of commutators

in F . Then

η(∂ri/∂xj) =
∑

µ

(η(αµ)− 1)η(∂βµ/∂xj) + (1− η(βµ))η(∂αµ/∂xj).

Projecting to Z[G] we get

η̃(∂ri/∂xj) mod J2 =

n∑
p=1

(∑
µ

〈h∗p, η(αµ)〉〈h∗j , η(βµ)〉 − 〈h∗p, η(βµ)〉〈h∗j , η(αµ)〉

)
(h̃p − 1). (2.8)

Now we consider the handlebody U ⊂ M formed by the (honest) 0-handle and

the (honest) 1-handles. The boundary circle of the ith 2-handle lies in ∂U and

represents ri. The expansion ri =
∏
µ

[αµ, βµ] tells us that the circle bounds a

singular surface Σ′
i, in U with meridians and longitudes homotopic to the αµ’s

and βµ’s respectively. Let Σi be Σ′
i capped with the core disk of the ith 2-handle.

The orientation of the disk extends to an orientation of Σi and the fundamental
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class [Σi] is represented in the chain complex for M by the core disk of the ith

2-handle, hence [Σi] = k∗i ∩ [M ]. Now for any 1-cohomology classes ti, t
′
i of Σi,

we have

〈ti ∪ t′i, [Σi]〉 =
∑

µ

〈ti, αµ〉〈t′i, βµ〉 − 〈ti, βµ〉〈t′i, αµ〉. (2.9)

Restricting h∗j to Σi we get a 1-cohomology class whose evaluations on the merid-

ians and longitudes are 〈h∗j , η(αµ)〉 and 〈h∗j , η(βµ)〉 respectively. This proves (ev-

erything modJ2)

η̃(∂ri/∂xj) =
n∑

p=1

〈h∗p ∪ h∗j , [Σi]〉(h̃p − 1) (2.10)

=
n∑

p=1

〈h∗p ∪ h∗j , k
∗
i ∩ [M ]〉(h̃p − 1)

=
n∑

p=1

〈h∗p ∪ h∗j ∪ k∗i , [M ]〉(h̃p − 1)

= −
n∑

p=1

〈k∗i ∪ h∗j ∪ h∗p, [M ]〉(h̃p − 1) mod J2.

This proves (2.5) which in turn proves (2.4).

Recall by [Tur02] II.4.3, we have τ(M, e, ωM) ∈ Z[H1(M)]. We have arranged

our handles so that h1 in particular has infinite order in H1(M), so by (1.12), we

have

(h1 − 1)τ(M, eN , ωM) = (−1)m+1τ0 det(∆(1)).

Recall eN is chosen so that we may use (1.12). We now want to work out τ0. For

now we work in a very specific homology basis:

{[pt], h1, . . . , hn, k
∗
1 ∩ [M ], . . . , k∗n−1 ∩ [M ]}.

Later, when we do the Det(f) calculation, we will use the bases for H1(M) and

H1(M, ∂M) given by {h∗1, . . . , h∗n} and {k∗1, . . . , k∗n−1} respectively. We arbitrar-

ily chose a homology orientation ωM earlier; this basis will either be positively

32



oriented or negatively oriented with respect to that choice of orientation. Using

this homology basis, we compute τ(C∗(M ; R)) = (−1)|C∗(M)|+n(m−n) det v, where

v is defined as above. This is a quick calculation; we may choose our bases of the

images of the boundary maps so that the dimension 2 and dimension 0 change of

basis matrices are the identity matrices. Then the dimension 1 change of basis

matrix will be the block matrix ( 0 v
id 0 ), where id represents the (n × n) identity

matrix. This has determinant (−1)n(m−n) det v. Another quick calculation gives

|C∗(M)| = (mn + m + n) mod 2. Hence τ0 = ±(−1)m sign(det v) where the ±

is chosen depending on whether our (most recently) chosen homology basis is

positively or negatively oriented with respect to ωM , respectively. This gives

(h1 − 1)τ(M, eN , ωM) = ±(−1)m+m+1 sign(det v) det(∆(1)).

Let a denote the submatrix of ∆ comprised of the first n−1 rows and n columns;

thus a is the matrix whose i, j entry is given by η(∂ri/∂xj) for 1 ≤ i ≤ n− 1 and

1 ≤ j ≤ n. Let V denote the lower right hand (m−n×m−n) matrix η(∂ri/∂xj)

for n ≤ i ≤ m− 1 and n + 1 ≤ j ≤ m. Hence

(h1 − 1)τ(M, eN , ωM) = ∓| det v| det a(1) = ∓|T | det a(1) mod In.

Now the minus sign is chosen if our homology basis was positively oriented and

the positive sign is chosen if our homology basis was negatively oriented with

respect to our choice of homology orientations. Define

θi,j =
n∑

p=1

〈k∗i ∪ h∗j ∪ h∗p, [M ]〉h̃p.

Defining qH1(M) as before, we see

(h1 − 1)τ(M, eN , ωM) mod In = ∓qH1(M)(det(θ(1))).
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Recall θ(1) denotes the (n − 1 × n − 1) matrix obtained by striking out the 1st

column of the (n − 1 × n) matrix θ. Again, the minus sign is chosen if our

homology basis chosen above was positively oriented with respect to ωM , and the

positive sign is chosen otherwise.

But now det(θ(1)) = ∓DetωM
(fM)h̃1 where here the plus is chosen if our

homology basis chosen above was negatively oriented with respect to ωM and the

minus is chosen otherwise. Then when we put this together, all of the signs will

neatly cancel out, leaving

(h1 − 1)τ(M, eN , ωM) mod In = (h1 − 1)qH1(M)(DetωM
(fM)).

Then, as in [Tur02], the map
⊕̀
≥0

I`/I`+1 defined by x ∈ I`/I`+1 maps to (h1 −

1)x ∈ I`+1/I`+2 is injective, so

τ(M, eN , ωM) mod In−1 = qH1(M)(DetωM
(fM)).

But now recall τ(M, e, ωM) only differs from τ(M, eN , ωM) by multiplication by

an element of H1(M). They are both in In−2, so mod In−1 they are equal. This

completes the proof.

2.2 The Cohomology Ring Mod-r

In this section, we will prove an analogous result to the one in Section 2.1 using

cohomology modulo an integer r rather than integral cohomology. The integer r

will have to be one such that the first cohomology group with Mod-r coefficients

is a free Zr-module; for instance if r is prime. This will also imply that the first

relative cohomology group is a free Zr-module, so we will still be able to compute

a determinant as in Section 2.1, however will will need to refine that determinant
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slightly. To do so, we will first introduce the concept of a paired volume form,

which will play a similar role to the square volume forms found in [Tur02], III.3

Before anything else, however, let us define the Mod-r torsion. This is defined

when b1(M) ≥ 2 so that τ(M, e, ω) ∈ Z[H1(M)] for any e, ω. Then τ(M, e, ω; r) is

the image of τ(M, e, ω) under the projection Z[H1(M)]→ Zr[H1(M)] induced by

the coefficient projection Z→ Zr. Note that if r = pe1
1 ·pe2

2 · · · p
ek
k where p1, . . . , pk

are primes, then Zr[H1(M)] splits naturally as Zp
e1
1

[H1(M)]⊕ · · · ⊕Zp
ek
k

[H1(M)]

and τ(M, e, ω; r) splits as τ(M, e, ω; pe1
1 ) + · · ·+ τ(M, e, ω; pek

k ), so understanding

Mod-r torsion when r is a power of a prime is sufficient to understand it for any

r.

One may also define the Mod-r torsion when b1(M) = 1 by using Turaev’s

“polynomial part” [τ ] of the torsion; see [Tur02], II.3. Theorem 2.2 is true in this

case as well, and one can use the argument in [Tur02] Theorem III.4.3 when the

first Betti number is 1 (the last paragraph of the proof).

2.2.1 Determinants

Volume Forms

First we recall some definitions from [Tur02], III.3. If N is a finite rank free

module over R, a commutative ring with 1, then a volume form ω on N is a map

which assigns to each basis a of N a scalar ω(a) ∈ R such that ω(a) = [a/b]ω(b)

for any bases a, b. A square volume form is a map Ω which also assigns a scalar

to each basis, but the change of basis formula is Ω(a) = [a/b]2Ω(b). Naturally,

the square of a volume form is a square volume form. This notion is useful

when working with closed manifolds as in [Tur02], III.3, but we must use a

slightly different form in the case of a nonempty boundary, though in the same
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spirit. If K, L are two finite rank free R-modules, then a paired volume form

on K × L is a map µ from (ordered) pairs of bases of K and L to R such that

µ(a′, b′) = [a′/a][b′/b]µ(a, b) where a, a′ are bases of K and b, b′ are bases of L.

Note that the product of a volume form on K with a volume form on L is a paired

volume form on K × L, so this notion is very similar to the notion of a square

volume form. We say a paired volume form is non-degenerate if its image lies in

the units of R, or equivalently if there is a basis a of K and a basis b of L so that

µ(a, b) = 1. Note that we may easily construct a non-degenerate paired volume

form given distinguished bases a, b of K, L respectively by assigning µ(a, b) = 1,

and extending to other bases by the change of basis formula.

Note the following properties of paired volume forms:

1. If B : K × L → R is a bilinear form, where K and L are isomorphic R-

modules, then µ(a, b) = det(Ba,b) is a paired volume form, where Ba,b is

the matrix of B with respect to the bases a and b of K and L respectively,

and µ is non-degenerate if and only if B is a nondegenerate form, i.e. if B

induces an isomorphism K → HomR(L, R).

2. If K, L are free Z-modules of finite rank rK and rL respectively, and ω is an

orientation on (K × L)⊗ R, then there is a non-degenerate paired volume

form µω on K × L such that µω(a, b) = 1 if the basis a1 ⊗ 1, . . . , arK
⊗

1, b1⊗ 1, . . . , brL
⊗ 1 is positively oriented with respect to ω (and obviously

µω assigns -1 to bases which are negatively oriented with respect to ω).

3. If 0 −→ K1 −→ K −→ K2 −→ 0 and 0 −→ L1 −→ L −→ L2 −→ 0 are

short exact sequences of finite rank free R-modules and µ1, µ2 are paired

volume forms on K1×L1, K2×L2, then there is an induced paired volume
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form on K × L, which is non-degenerate if and only if µ1 and µ2 are both

non-degenerate. To construct this, let ai, bi be bases of Ki, Li respectively.

Then we can construct the bases a1a2 and b1b2 of K and L respectively by

concatenating the image of the basis a1 with a lift of the basis a2 in K,

and similarly for b1b2 in L. Then for any bases a and b of K and L, define

µ(a, b) = [a/a1a2][b/b1b2]µ1(a1, b1)µ2(a2, b2).

4. A non-degenerate paired volume form µ on K×L induces a non-degenerate

paired volume form µ∗ on K∗ × L∗ ≈ (K × L)∗ = HomR(K × L, R) by

µ∗(a∗, b∗) = (µ(a, b))−1 where a∗ is the basis of K∗ dual to a basis a of K,

and similarly for b, b∗.

5. If φ : R→ S is a surjection of rings, and µ is a nondegenerate paired volume

form on the free R-modules K ×L, then there is an induced paired volume

form µφ on K ⊗S S × L⊗S S given by µφ(a⊗ 1, b⊗ 1) = 1 if a, b are bases

of K, L such that µ(a, b) = 1.

1 and 2 are clear, and 4 follows from (1.3). To prove 3, we first note that the

constructed µ is clearly non-degenerate if µ1 and µ2 are, so let us show that it is

well defined (and independent of the bases ai, bi). The first step is to notice that

it suffices to show that the definition is independent of the choice of the bases Ki

and the independence on the Li bases will follow by symmetry. First we will show

that this definition is independent of the lift of a2 to K. To show this, suppose

ã1a2 is the concatenation of the image of a1 with another lift of a2 to K. Then let

µ̃ be defined using ã1a2 in the place of a1a2 in the definition of µ. To show that

µ = µ̃, we actually only need to show that [ã1a2/a1a2] = 1. But note (ã1a2/a1a2)

is a block matrix of the form ( id 0
A id ) where A is some matrix and each “id” is
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an identity matrix (we slightly abuse notation here, since they are possibly of

different sizes), so [ã1a2/a1a2] = det ( id 0
A id ) = 1. So now we actually know that

this definition is independent of the splitting K ≈ K1⊕K2. We use this aid in our

proof of the independence of the definition of µ on the bases a1 and a2. Let α1, α2

be bases of K1, K2 and let µα(a, b) = [a/α1α2][b/b1b2]µ1(α1, b1)µ2(α2, b2). Then

by the argument above, µ and µα are independent of the splitting K ≈ K1⊕K2,

so we may use the same splitting when we choose the lift of a2 as when we choose

the lift of α2, i.e. we may arrange so that (a1a2/α1α2) is a block matrix of the

form
(

(a1/α1) 0
0 (a2/α2)

)
, and then [a1a2/α1α2] = [a1/α1][a2/α2] clearly. Now we

compute

µα(a, b) = [a/α1α2][b/b1b2]µ1(α1, b1)µ2(α2, b2)

= [a/a1a2][a1a2/α1α2][b/b1b2]µ1(α1, b1)µ2(α2, b2)

= [a/a1a2][b/b1b2][a1/α1]µ1(α1, b1)[a2/α2]µ2(α2, b2)

= [a/a1a2][b/b1b2]µ1(a1, b1)µ2(a2, b2)

= µ(a, b).

To prove 5, we merely need to note that such bases a, b exist since µ is nonde-

generate, and then we may simply define µφ by the given formula and extend to

other bases by the definition of a paired volume form.

The Refined Determinant

Now given free R-modules K, L of finite ranks n and n− 1 respectively (n ≥ 2),

and given f : L ×K ×K → R an R-map as in Lemma 2.1, and given a paired

volume form µ on K × L, we can construct the µ-refined determinant, Detµ(f),
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to be

Detµ(f) = µ∗(a∗, b∗)d(f, a, b) (2.11)

where d is defined as in Lemma 2.1. We can define this for any bases a, b of

K, L respectively (and a∗, b∗ the dual bases as usual), but by the properties of d

and µ, this is independent of the chosen bases. Note that this will simply be the

determinant taken with respect to any bases a, b with µ(a, b) = 1 if such bases

exist.

Constructing Paired Volume Forms

We now construct a paired volume form in a particular situation, which will be

useful soon. Let H, H ′ be finite abelian groups which are isomorphic, though

we will not fix a particular isomorphism. (These groups will appear later as the

torsion groups Tors(H1(M)) and Tors(H1(M, ∂M)) which are isomorphic, though

not necessarily in any natural way). Let p ≥ 2 be a prime integer dividing |H|.

Let r = ps for some s ≥ 1 such that H/r is a direct sum of copies of Zr, so that

we can think of H/r as a finite rank free Zr-module (and similarly for H ′/r, since

H, H ′ are isomorphic). We will now show how to construct a paired volume form

on H/r ×H ′/r from a bilinear form L : H ×H ′ → Q/Z. First, we repeat some

definitions from [Tur02].

Let H(p) be the subgroup of H consisting of all elements annihilated by a

power of p (similarly for H ′
(p)). A sequence h = (h1, . . . , hn) of nonzero elements

of H(p) is a pseudo-basis if H(p) is a direct sum of the cyclic subgroups generated

by h1, . . . , hn and the order of hi in H is less than or equal to the order of hj for

i ≤ j. In other words, if the order of hi is psi , with si ≥ 1, then s1 ≤ s2 ≤ · · · ≤ sn.

This sequence (s1, . . . , sn) is determined by H(p) and does not depend on h, and
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s ≤ s1 since if we have a summand of order pk for k < s, then projecting to H/r

there is still a summand of order pk, which contradicts our assumption that H/r

is a sum of several Zr’s. Projecting a pseudo-basis to H(p)/r = H/r we get a

basis h of the Zr-module H/r.

Let L : H × H ′ → Q/Z be a bilinear form. We will say L is nondegenerate

if the map induced by L from H → HomZ(H ′, Q/Z) is an isomorphism (since

everything is finite and of the same order, this is equivalent to the map being an

injection or a surjection). Note if z′ ∈ H ′
(p), then z′ has order pk for some k ≥ s,

and for any z ∈ H, L(z, z′) ∈ (p−kZ)/Z, and therefore pkL(z, z′) ∈ Z/(pkZ) (this

is really simply saying that L(z, z′) is in the subgroup of Q/Z isomorphic to

Z/(pkZ)). Projecting this to Zr, we obtain an element which we will call z · z′.

Note we can do something similar if z has order pk and z′ does not necessarily,

and that they clearly agree if both z, z′ have order a power of p. Furthermore,

z · z′ is a Zr pairing on H × H ′. Now we are ready to state the analogue of

Lemma III.3.4.1 in [Tur02] (the proof is a direct generalization of the proof found

there as well).

Lemma 2.2. There is a unique paired volume form µr
L on H/r×H ′/r such that

for any pseudo-bases h = (h1, . . . , hn), k = (k1, . . . , kn) of H(p), H
′
(p) respectively,

µr
L(h, k) = det(hi · kj) ∈ Zr. (2.12)

Also, if L is nondegenerate, then so is µr
L.

Proof. It is clear that given pseudo-bases h, k then we can construct a paired

volume form µ(h,k) by µ(h,k)(a, b) = [a/h][b/k] det(hi · kj) for any bases a, b of

H/r,H ′/r respectively. Then µ(h,k)(h, k) = det(hi · kj), so we would like to define

µr
L = µ(h,k), so we now prove that the definition of µ(h,k) does not actually depend
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on the chosen pseudo-bases. To prove this, it suffices to show that for any other

pseudo-bases x = (x1, . . . , xn) of H(p) and y = (y1, . . . , yn) of H ′
(p),

det(xi · yj) = [x/h][y/k] det(hi · kj). (2.13)

To prove (2.13), we can actually fix one pseudo-basis and check the formula by

varying the other, by the symmetry of the construction, i.e. we only need to show

det(xi · kj) = [x/h] det(hi · kj). (2.14)

Now, x is a pseudo-basis for H(p), so the order of xi is equal to the order of hi

for each i. It is clear that if x is just a permutation of h (the permutation can

only permute elements of the same order), then the basis x of H/r is the same

permutation of the basis h, and then (2.14) is clear. So now, we may assume that

each xi generates the same cyclic subgroup of H(p) as the corresponding hi. Then

for each i, there is some ci ∈ Z, with ci coprime to psi , hence coprime to r = ps

(in fact, coprime to p), with xi = cihi. But then xi · kj = (ci (mod r))hi · kj, so

det(xi · kj) =
∏

i(ci (mod r)) det(hi · kj). But clearly [x/h] =
∏

i ci (mod r), so

the proof of (2.14) is completed, and (2.13) clearly follows from symmetry.

Now if L is nondegenerate, then to show that µr
L is nondegenerate, we just

have to show that det(hi · kj) ∈ Z×
r for any pseudo-bases h, k of H(p), H

′
(p) re-

spectively. Now L nondegenerate means that the map induced by L, L̃ : H →

HomZ(H ′, Q/Z), is a bijection. Then, in particular, the restriction of L̃ to H(p) is

also bijective on its image HomZ(H ′
(p), Q/Z). This means, for k any pseudo-basis

of H ′
(p), for each kj there is an xj ∈ H(p) with L(xi, kj) = δi,jp

−sj , i.e. xi ·kj = δi,j.

Then (2.14) gives us our result, that det(hi · kj) ∈ Z×
r for any pseudo-bases h, k

of H(p), H
′
(p) respectively.
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The Q/Z linking form

There is a linking form on Tors(H1(M)) × Tors(H1(M, ∂M)) defined as follows

(we use a slightly different construction from the one in [Tur02]; our construction

is more like the one in [Bre93] exercise VI.10.8).

From the Universal Coefficient Theorem, there is an exact sequence

0→ H2(M)⊗Q/Z→ H2(M ; Q/Z)→ Tor(H1(M), Q/Z)→ 0

but there is a canonical isomorphism Tors(H1(M)) ≈ Tor(H1(M), Q/Z) given by

Tors(H1(M)) ≈ Tors(H1(M))⊗ Z

≈ Tor(Tors(H1(M)), Q/Z)

≈ Tor(H1(M), Q/Z)

With this in mind, our exact sequence becomes

0→ H2(M)⊗Q/Z→ H2(M ; Q/Z)→ Tors(H1(M))→ 0.

Now choose elements a ∈ Tors(H1(M)) and b ∈ Tors(H1(M, ∂M)); we want to

define their linking LM(a, b) ∈ Q/Z. So choose a ∈ H2(M ; Q/Z) mapping to a,

then let α ∈ H1(M, ∂M ; Q/Z) be Poincaré dual to a, i.e. α ∩ [M ] = a. Then we

define LM(a, b) = 〈α, b〉 ∈ Q/Z. An important question one can ask at this point

is whether there is a difference if we use the exact sequence for the Universal

Coefficient Theorem for H2(M, ∂M ; Q/Z) instead of for H2(M ; Q/Z). We will

defer the answer to this question until the proof of Theorem 2.2, during which we

show why the definition is independent of whether one starts with Tors(H1(M))

or Tors(H1(M, ∂M)).
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Constructing the Paired Volume Form for Cohomology

Let ω be a homology orientation. Then we have split exact sequences

0→ Tors(H1(M))→ H1(M)→ H1(M)/ Tors(H1(M))→ 0,

0→ Tors(H1(M, ∂M))→ H1(M, ∂M)→ H1(M, ∂M)/ Tors(H1(M, ∂M))→ 0.

Both of these sequences split, so they also split modulo r, and H1(M)/r ≈

H1(M ; Zr), and similarly for H1(M, ∂M ; Zr). The homology orientation induces a

nondegenerate paired volume form on the free Z-modules H1(M)/ Tors(H1(M))×

H1(M, ∂M)/ Tors(H1(M, ∂M)) which induces a nondegenerate paired volume

form on (H1(M)/ Tors(H1(M)))/r× (H1(M, ∂M)/ Tors(H1(M, ∂M)))/r, and we

have a nondegenerate paired volume form (induced by the Q/Z-linking form) on

Tors(H1(M))/r×Tors(H1(M, ∂M))/r, which we can then piece together as above

to give a nondegenerate paired volume form on H1(M ; Zr) × H1(M, ∂M ; Zr),

which in turn gives us a canonical nondegenerate paired volume form on the du-

als with which to refine our determinant. We will denote the canonical Mod-r

paired volume form by on H1(M ; Zr) × H1(M, ∂M ; Zr) by µr
M and the refined

determinant of the form f r
M on H1(M, ∂M ; Zr) × H1(M ; Zr) × H1(M ; Zr) by

Detr(f
r
M).

2.2.2 Relationship to Torsion

Now let I denote the augmentation ideal of Zr[H1(M)] instead of the augmen-

tation ideal of Z[H1(M)] as before (the augmentation ideal of Zr[H1(M)] is the

image of the augmentation ideal of Z[H1(M)] under the map induced by the co-

efficient projection Z→ Zr). We now recall a definition from [Tur02] - we define
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qr : S(H1(M)/r)→
⊕̀
≥0

I`/I`+1 by

qr(g1, . . . , g`) =
∏̀
i=1

(g̃i − 1) (mod I`+1) (2.15)

where g̃i is a lift of gi to H1(M) (the proof that this is independent of the lift is

in [Tur02]).

Before we state the main theorem, we need to briefly discuss Mod-r surfaces.

In particular, we need to give equivalent equations to (2.9). Some of the following

statements (in particular Lemma 2.3, below) are used without proof in [Tur02]

Theorem III.4.3, and an equivalent definition of Mod-r surfaces can be found in

[Tur02] Section XII.3 (we use the definition below because it is a bit easier for

our purposes).

Mod-r surfaces

Let G(M,N ; r) be a group generated by αµ, βµ, γν where µ, ν run over finite

indexing sets M,N respectively, with a single relator ρ =
∏
µ

[αµ, βµ]
∏
ν

γr
ν . Let

X(M,N ; r) be a connected CW-complex with a single 0-cell, 1-cells aµ, bµ, cν (so

that we can consider π1(X(M,N ; r)) to be generated by αµ, βµ, γν), and a single

2-cell attached along ρ, so that π1(X(M,N ; r)) ≈ G(M,N ; r) in an obvious

way. Then H2(X(M,N ; r); Zr) ≈ Zr, so let [X(M,N ; r)] be the generator of

H2(X(M,N ; r); Zr) given by the homology class of the two cell (whose boundary

is zero modulo r). Now if t, t′ ∈ H1(X(M,N ; r); Zr), then let us compute

〈t ∪ t′, [X(M,N ; r)]〉 = ε∗ ((t ∪ t′) ∩ [X(M,N ; r)])

where ε∗ : H0(X(M,N ; r); Zr) → Zr is simply augmentation, [pt] 7→ 1. Let

aµ, bµ, cν ∈ H1(X(M,N ; r); Zr) be the homology classes modulo r of αµ, βµ, γν

respectively. We now claim
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Lemma 2.3. Let t, t′ ∈ H1(X(M,N ; r); Zr). If r is odd, then

〈t ∪ t′, [X(M,N ; r)]〉 =
∑

µ

〈t, aµ〉〈t′, bµ〉 − 〈t, bµ〉〈t′, aµ〉. (2.16)

If r is even, then

〈t ∪ t′, [X(M,N ; r)]〉 =
∑

µ

〈t, aµ〉〈t′, bµ〉 − 〈t, bµ〉〈t′, aµ〉+
r

2

∑
ν

〈t, cν〉〈t′, cν〉.

(2.17)

Proof. If we let a∗µ, b
∗
µ, c

∗
ν ∈ H1(X(M,N ; r); Zr) be dual to aµ, bµ, cν under 〈·, ·〉,

then 1 = 〈a∗µ ∪ b∗µ, [X(M,N ; r)]〉 = −〈b∗µ ∪ a∗µ, [X(M,N ; r)]〉. Clearly cν ∪ cν is

2-torsion for any r, and one can also show that all other cup products are zero

(this follows from induction and a relatively simple Mayer-Vietoris argument).

So the claim for r odd is completed. By the same Mayer-Vietoris argument, for

even r, we only need to show the statement forM empty, and N only having one

element, i.e. for even r, and a CW complex X with one 0-cell, one 1-cell c, and

one 2-cell with boundary r · c, we need to show 〈c2, [X]〉 = r
2
. But this follows

from simply noting that X is the 2-skeleton of a K(Zr, 1). A more complete proof

may be found in [Hat02] Chapter 3, Example 3.9.

We are now ready to state the main theorem of this section.

Theorem 2.2. Let r be a power of a prime such that H1(M)/r = H1(M ; Zr) is

a free Zr-module of rank b ≥ 2. Let T denote |Tors(H1(M))|/r. Then for any

Euler structure e and homology orientation ω, τ(M, e, ω; r) ∈ Ib−2, and

τ(M, e, ω; r) = T · qr(Detr(f
r
M)) (mod Ib−1). (2.18)

As in Theorem 2.1, that τ(M, e, ω; r) ∈ Ib−2 is proved in [Tur02] II.4.4, the

important part of the theorem is its residue class modulo Ib−1.
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Proof. The proof is similar to the proof of Theorem 2.1, and again is the method

of the proof of [Tur02] Theorem 4.3 with modifications to apply it to manifolds

with nonvoid boundary. Suppose r = ps, where p ≥ 2 is prime and s ≥ 1. Let

n = b1(M). Then H1(M) splits as Zn × (Tors(H1(M)))(p) ×H ′ and H1(M, ∂M)

splits as Zn−1 × (Tors(H1(M, ∂M)))(p) × H ′′ where the subscript of (p) denotes

the maximal subgroup of a finite group whose order is a power of p and H ′, H ′′

are (isomorphic) subgroups of Tors(H1(M)) and Tors(H1(M, ∂M)) respectively

with |H ′| = |H ′′| = T . We again choose a handle decomposition of M and the

dual relative handle decomposition of (M, ∂M) with 1 honest 0-handle, m honest

1-handles, m− 1 honest 2-handles, and no other handles, where m ≥ b ≥ n. Let

x1, . . . , xm ∈ π1(M) be the generators of π1(M) (based at the 0-cell) given by

the core 1-cells of the honest 1-handles, and let h1, . . . hm denote their homology

classes. Let k1, . . . , km−1 denote the classes in H1(M, ∂M) of the core cells of the

relative 1-handles, and let r1, . . . , rm−1 be the relators in F = 〈x1, . . . , xm〉 given

by the attaching maps of the honest 2-cells. Now, as in the proof of Theorem 2.1,

we want to rearrange handles for a more convenient decomposition.

As in the proof of Theorem 2.1, we can arrange so that h1, . . . , hn are genera-

tors modulo Tors(H1(M)) and hn+1 . . . , hm ∈ Tors(H1(M)). We can also arrange

so that hn+1, . . . , hb is a pseudo-basis of (Tors(H1(M)))(p). The argument, from

[Tur02], is that given a surjection Zm → H1(M) and a splitting of H1(M) as a di-

rect sum of k cyclic groups, we may choose a basis α1, . . . , αm of Zm such that αi

projects to a generator of the ith cyclic group for i ≤ k and to 1 ∈ H1(M) for i > k.

We can realize this basis geometrically by handle moves, so that hn+1, . . . , hb is a

pseudo-basis as desired, and hb+1, . . . , hm ∈ H ′. Let ps1 , . . . , psb−n be the orders

of hn+1, . . . , hb respectively, and we may assume s1 ≤ s2 ≤ · · · ≤ sb−n ≤ s.
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Now we will denote by h̃ the projection of h ∈ H1(M) to H1(M)/r, then

h̃1, . . . , h̃b is a basis for H1(M)/r over Zr and h̃i = 1 for i > b. Let h∗i ∈ H1(M ; Zr)

for i ≤ b such that 〈h∗i , h̃j〉 = δi,j.

Let ki denote the class in H1(M, ∂M) of the ith relative handle, using the

methods in the proof of Theorem 2.1 and the methods above, we can arrange so

that k1, . . . , kn−1 are generators modulo Tors(H1(M, ∂M)), kn, . . . , kb−1 form a

pseudo-basis of (Tors(H1(M, ∂M)))(p) (they also have orders ps1 , . . . , psb−n) and

kb, . . . , km−1 ∈ T ′′. This means, using k̃ to denote projection of k ∈ H1(M, ∂M) to

H1(M, ∂M)/r, that k̃1, . . . , k̃b−1 is a basis for H1(M, ∂M)/r over Zr and k̃i = 1

for i > b − 1. As above, let k∗i ∈ H1(M, ∂M ; Zr) for i ≤ b − 1 be such that

〈ki, k̃j〉 = δi,j.

The matrix for the boundary map from dimension two to dimension one in

C∗(M) decomposes, as in the proof of Theorem 2.1, as ( 0 0
0 v ), where v is a square

presentation matrix for Tors(H1(M)). With the above setup, v can be split as

the direct sum of a diagonal matrix (with ps1 , . . . , psb−n along the diagonal) and

a square matrix v′ which is a presentation matrix for H ′ (and its transpose a

presentation matrix for H ′′), hence det(v′) = ±T . Now let us think about how

the diagonal submatrix of v (consisting of powers of p) arises. Let us take hi for

n + 1 ≤ i ≤ b; hi has order psi−n according to the above argument, and in fact

psi−nhi is the boundary of the 2-cell transverse to ki. This 2-cell has boundary zero

in Q/Z, and its homology class in H2(M ; Q/Z) is Poincaré dual to the class of k∗i

in H1(M, ∂M ; Q/Z). This process is the precise process used in the construction

of the linking pairing, first lifting an element of Tors(H1(M)) to H2(M ; Q/Z)

and then using Poincaré duality to get an element dual (under evaluation) to

an element of Tors(H1(M, ∂M)). The dual process, starting with an element
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of Tors(H1(M, ∂M)) and ending with an element dual under evaluation to an

element in Tors(H1(M)), can also be read off of the submatrix of v with which

we are currently concerned, so now one can easily see that constructing the linking

form by either obvious method gives the same pairing, answering our question

from the discussion of the Q/Z linking form. Furthermore, we can see that for

n + 1 ≤ i ≤ b and n ≤ j ≤ b− 1,

(hi · kj) = δi,j. (2.19)

Now as in the proof of Theorem 2.1, r1, . . . , rn−1 ∈ [F, F ], and the above

argument shows rn, . . . , rb−1 can each be expanded as ri =
∏

µ∈Mi

[αµ, βµ]
∏

ν∈Ni

γr
ν ,

so we need to use Lemma 2.3. Henceforth, we will suppress theMi,Ni notation

for simplicity.

Now let pr : Z[H1(M)] → Zr[H1(M)] be coefficient projection, η : Z[F ] →

Z[H1(M)] be induced by the projection F → H1(M) (through π1(M)), and

p : Zr[H1(M)] → Zr[H1(M)/r] be induced by H1(M) → H1(M)/r. Finally, we

will also denote by ηr = p ◦ pr ◦ η. We now prove the analogue of (2.4) which is,

for i ≤ b− 1, j ≤ b

(pr ◦ η)(∂ri/∂xj) = −
b∑

p=1

f r
M(k∗i , h

∗
j , h

∗
p)(hp − 1) (mod I2). (2.20)

We will prove (2.20) by proving the analogue of (2.5), which is

ηr(∂ri/∂xj) = −
b∑

p=1

f r
M(k∗i , h

∗
j , h

∗
p)(h̃p − 1) (mod J2). (2.21)

Note (2.20) follows from (2.21) since p induces an isomorphism Zr[H1(M)]/I2 →

Zr[H1(M)/r]/J2 (where J is the augmentation ideal in Zr[H1(M)/r]). This fol-

lows from noting for any h ∈ H1(M), hr − 1 ∈ I2 since (hr − 1) = (h − 1)(1 +

h + · · ·+ hr−1), and (1 + h + · · ·+ hr−1) = (h− 1) + (h2 − 1) + · · ·+ (hr−1 − 1)
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in Zr[H1(M)]. To prove (2.21), we need to note that (2.6) and (2.7) can be used

here mutatis mutandis; indeed, for c ∈ H1(M)/r, we may use the same formula

as (2.6) with slightly different meaning to the symbols

c− 1 =
b∑

p=1

〈h∗p, c〉(h̃p − 1) (mod J2). (2.22)

Also, for any α ∈ F, j ≤ b, if we let augr denote aug◦p◦pr◦η, augr : Z[F ]→ Zr,

augr(∂α/∂xj) = 〈h∗j , ηr(α)〉. (2.23)

This follows, as before, from the fact that both sides are homomorphisms F → Zr

sending xi to δi,j for i ≤ b.

For 1 ≤ i ≤ n− 1, we may compute ∂ri/∂xj by

η(∂ri/∂xj) =
∑

µ

(η(αµ)− 1)η(∂βµ/∂xj) + (1− η(βµ))η(∂αµ/∂xj).

For n ≤ i ≤ b− 1, we must add a term for the γν ’s

η(∂ri/∂xj) =
∑

µ

(
(η(αµ)− 1)η(∂βµ/∂xj) + (1− η(βµ))η(∂αµ/∂xj)

)
+
∑

ν

(
η(∂γν/∂xj)(1 + γν + · · ·+ γr−1

ν )
)
. (2.24)

For any r, any c ∈ H1(M), working modulo I2,

r−1∑
`=0

c` =
r−1∑
`=0

(1 + (c− 1))`

=
r−1∑
`=0

∑̀
s=0

(
`

s

)
1`−s(c− 1)s

=
r−1∑
`=0

1 + `(c− 1) (mod I2)

=
r−1∑
`=0

`(c− 1)

= (c− 1)r(r − 1)/2.
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So if r is odd, then each extra γν term is zero modulo I2 in (2.24), and if r is

even (in our case, a power of two), then for each ν (applying (2.22)),

1 + ηr(γν) + · · ·+ ηr(γν)
r−1 = −r

2
(ηr(γν)− 1)

= −r

2

b∑
p=1

〈h∗p, ηr(γν)〉(h̃p − 1) (mod J2)

=
r

2

b∑
p=1

〈h∗p, ηr(γν)〉(h̃p − 1) (mod J2). (2.25)

The last line follows since in Zr for an even r, − r
2

= r
2
.

Now, using maps from Mod-r surfaces (i.e. Lemma 2.3) instead of maps from

surfaces, we can use the proof from Theorem 2.1 since (2.8) holds for odd r, so

(2.10) holds for odd r, proving (2.21) for odd r. For even r, (2.8) holds with an

additional term following from (2.23) and (2.25). Specifically, for an even r,

ηr(∂ri/∂xj) mod J2 =

b∑
p=1

(∑
µ

〈h∗p, ηr(αµ)〉〈h∗j , ηr(βµ)〉 − 〈h∗p, ηr(βµ)〉〈h∗j , ηr(αµ)〉

+
r

2

∑
ν

〈h∗j , ηr(γν)〉〈h∗p, ηr(γν)〉

)
(h̃p − 1).

This term also occurs in (2.10) for even r by Lemma 2.3, so (2.21) holds for even

r as well, hence (2.20) holds for all r.

If we let a be the submatrix of (pr ◦ η)(∂ri/∂xj) consisting of the b × b − 1

upper left submatrix,

(h1 − 1)τ(M, e, ω; r) = | det(v′)| det(a(1)) = T det(a(1)) mod Ib.

Now (2.20) tells us that computing det(a(1)) is simply computing qr(det(Θ(1)))

where Θi,j =
b∑

p=1

f r
M(k∗i , h

∗
j , h

∗
p)h̃p.

det(Θ(1)) = −h̃1d(f r
M , h∗, k∗).
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From here, we may follow the proof from Theorem 2.1, since µr
M(h∗, k∗) will

simply be a sign just as in Theorem 2.1, since the linking form of the pseudo-

bases is equal to the identity matrix, hence has determinant one. This follows

from equation (2.19) which gives for n + 1 ≤ i ≤ b and n ≤ j ≤ b− 1,

det(hi · kj) = det(δi,j) = 1.

2.3 Integral Massey Products

In this section, we give a generalization of Theorem 2.1 where we use Massey

products rather than the cohomology ring. The results of this section are similar

to results in Chapter XII Section 2 of [Tur02] for closed manifolds.

2.3.1 Determinants

First we obtain a new determinant. Let R be a commutative ring with 1, and

let K, N be free R-modules of rank n,n − 1 respectively, with n ≥ 2 and let

S = S(K∗), the symmetric algebra on the dual of K, as in Lemma 2.1. Let

f : N ×Km+1 → R be an R-map, with m ≥ 1. Define g : N ×K → S by

g(x, y) =
n∑

i1,...,im=1

f(x, y, ai1 , . . . , aim)a∗i1 · · · a
∗
im ∈ S

where {ai}ni=1 is a basis for K and {a∗i } is its dual basis. This definition for g

looks dependent on the basis chosen, however note that the independence on the

basis follows from linearity and (1.2).

Let f0 : N → S be defined by

f0(x) =
n∑

i1,...,im+1=1

f(x, ai1 , . . . , aim+1)a
∗
i1
· · · a∗im+1

∈ S.
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Again, f0 does not depend on the chosen basis, by precisely the same argument.

Then we have the following lemma:

Lemma 2.4. Suppose f0 = 0. Let a = {ai}, b = {bj} be bases of K, N respec-

tively, and let θ be the (n− 1× n) matrix over S defined by θi,j = g(bi, aj). Then

there exists a unique d = d(f, a, b) ∈ Sm(n−1)−1 such that

det(θ(i)) = (−1)ia∗i d. (2.26)

Furthermore, if a′, b′ are other bases for K, N respectively, then

d(f, a′, b′) = [a′/a][b′/b]d(f, a, b). (2.27)

Proof. This is very similar to the proof of Lemma 2.1. Let β be the matrix over

S given by βi,j = g(bi, aj)a
∗
j . Then the sum of the columns of β is zero; the ith

entry in that sum is
n∑

j=1

βi,j = f0(bi) = 0 since our assumption is f0 = 0. Now

the same argument as given in Lemma 2.1 to prove (2.1) completes the proof of

(2.26), and the argument given to prove (2.2) can be used to prove (2.27).

Note that as before, over Z the determinant is well defined up to sign, and

that one may also sign-refine this determinant to remove the sign dependence.

We may also define the condition that f is “alternate” in the K variables;

let f0 : N × K → R be the R-map given by f0(x, a) = f(x,

m+1times︷ ︸︸ ︷
a, a, . . . , a). Then

f0(x) = 0 for all x clearly implies f0(x, a) = 0 for all x ∈ N, a ∈ K. The converse

is also true provided that every polynomial over R which only takes on zero values

has all zero coefficients (this is true, for example, if R is infinite with no zero-

divisors). To see why, consider f0(x) as a polynomial over R (f0(x) ∈ S which
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is isomorphic to the polynomial ring R[a∗1, . . . , a
∗
n]) and evaluate on the element

(r1, . . . , rn) ∈ Rn; denote by α the resulting element of R. Then

α =
n∑

i1,...,im+1=1

f(x, ai1 , . . . , aim+1)ri1 · · · rim+1

=
n∑

i1,...,im+1=1

f(x, ri1ai1 , . . . , rim+1aim+1)

= f

x,
n∑

i1=1

ri1ai1 , . . . ,
n∑

im+1=1

rim+1aim+1


= 0.

The last equality holds since all of the entries after the first are identical.

The rest of the argument is very similar to the argument in [Tur02], section

XII.2. Let M be a 3-manifold with nonempty boundary, and for u1, u2, . . . , uk ∈

H1(M), let 〈u1, . . . , uk〉 denote the Massey product of u1, . . . , uk as a subset of

H2(M) (note in general this set may well be empty). See [Kra66] and [Fen83]

for definitions and properties of Massey products. Now assume that m ≥ 1 is an

integer such that

(∗)m: for every u1, . . . , uk ∈ H1(M) with k ≤ m, 〈u1, . . . , uk〉 = 0

Here 〈u1, . . . , uk〉 = 0 means that 〈u1, . . . , uk〉 consists of the single element 0 ∈

H2(M). This condition guarantees that for any u1, . . . um+1 ∈ H1(M), the set

〈u1, . . . , um〉 consists of a single element; see [Fen83] Lemma 6.2.7. Define a

Z-map f : H1(M, ∂M)× (H1(M))m+1 → Z by

f(v, u1, . . . , um+1) = (−1)m 〈v ∪ 〈u1, . . . , um+1〉, [M ]〉 .

The outermost 〈, 〉 is used to denote the evaluation pairing.

Lemma 2.5. f0 = 0, so f has a well-defined determinant (with the sign refine-

ment as above).
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For m = 1, condition (∗)m is void, and in fact the Massey product 〈u1, u2〉 =

−u1 ∪ u2, so this reduces to Lemma 2.1.

Proof. By the argument above, we only need to show that f is alternate. But

this follows from [Kra66] Theorem 15, which gives that for any element a ∈

H1(M), the m + 1 times Massey product of a with itself, 〈
m+1times︷ ︸︸ ︷
a, . . . , a〉, lies in

Tors(H2(M)), hence cupping with an element of H1(M, ∂M) will give an ele-

ment of Tors(H3(M, ∂M)), which is null.

We will call this determinant Det(f), or if we care to introduce the sign-

refined version with a homology orientation ω, Detω(f). Since the change of

basis formula (2.27) is identical to the change of basis formula (2.2), the sign

refinement by homology orientation is the same.

2.3.2 Relationship to Torsion

Theorem 2.3. Let M be a compact connected oriented 3-manifold with ∂M 6=

∅, χ(M) = 0, n = b1(M) ≥ 2, and satisfying condition (∗)m for some m ≥ 1.

Let e be an Euler structure on M , let ω be a homology orientation, and let qH1(M)

be defined as in Section 2.1. Define the form f as above. Then τ(M, e, ω) ∈

Im(n−1)−1 and

τ(M, e, ω) mod Im(n−1) = qH1(M)(Detω(f)) ∈ Im(n−1)−1/Im(n−1). (2.28)

Proof. This proof is very much like the one in Section 2.1. In place of (2.3), we

may use [Tur76] Theorem D, which gives the second line of the following string
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of equalities (all of which are modJm+1)

η̃(∂ri/∂xj) =
n∑

i1,...,im=1

aug(η̃(∂m+1ri/∂xi1 . . . ∂xim∂xj))(h̃i1 − 1) · · · (h̃im − 1)

=
n∑

i1,...,im=1

〈
〈h∗i1 , . . . , h

∗
im , h∗j〉, (−[Σi])

〉
(h̃i1 − 1) · · · (h̃im − 1)

=
n∑

i1,...,im=1

〈
〈h∗i1 , . . . , h

∗
im , h∗j〉, (−k∗i ∩ [M ])

〉
(h̃i1 − 1) · · · (h̃im − 1)

=
n∑

i1,...,im=1

−
〈
k∗i ∪ 〈h∗i1 , . . . , h

∗
im , h∗j〉, [M ]

〉
(h̃i1 − 1) · · · (h̃im − 1)

=
n∑

i1,...,im=1

(−1)m+1
〈
k∗i ∪ 〈h∗j , h∗im , . . . , h∗i1〉, [M ]

〉
(h̃i1 − 1) · · · (h̃im − 1)

(2.29)

=
n∑

i1,...,im=1

(−1)m+1
〈
k∗i ∪ 〈h∗j , h∗i1 , . . . , h

∗
im〉, [M ]

〉
(h̃i1 − 1) · · · (h̃im − 1)

=
n∑

i1,...,im=1

−f(k∗i , h
∗
j , h

∗
i1
, . . . , h∗im)(h̃i1 − 1) · · · (h̃im − 1).

The line marked (2.29) follows from [Kra66] Theorem 8, and the next line is by

symmetry. From here, the proof is identical to the proof of Theorem 2.1 after

(2.10).
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Chapter 3

Gluing Formulae

We now examine the results of Chapter 2 under the gluing of solid tori, since

by Proposition 1.1 the only manifolds of interest have each boundary component

homeomorphic to a torus. Since there are known formulae for the Turaev torsion

under the gluing of solid tori (stated below), we need to study how the determi-

nants act under gluing. This will allow us to derive the results in Chapters III,XII

of [Tur02] from the results of Chapter 2 above.

3.1 Known Gluing Results

First, we state known results, which can also be found in [Tur02]. The major

difference in our approach will be that Turaev largely uses smooth Euler struc-

tures in his gluing constructions, whereas we prefer combinatorial, so there will

be some differences in the constructions in 3.1.2.

3.1.1 Gluing Homology Orientations

This is based on [Tur02] Chapter V, with some changes in notation. Also, for

simplicity, we will consider the solid tori being glued one-at-a-time, i.e. we will
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only give the definition for gluing one solid torus, and will consider the definition

for gluing multiple solid tori to be given inductively; we can do this from [Tur02]

Lemma V.2.3. First, we define a directed solid torus as a solid torus Z = D2×S1

(where D2 is the standard 2-disk) with a distinguished generator of H1(Z) ≈ Z,

i.e. an orientation of the core S1. Now if M is a compact connected 3-manifold

with boundary consisting of tori and one boundary component T picked out, then

we can consider M = M ∪T Z (under some choice of homeomorphism T → ∂Z).

We can consider Z to be homology oriented by setting ωZ to be the orientation of

([pt], d) where d is the distinguished generator of H1(Z) (to be precise, we should

note that we are extending scalars from Z to R). This provides H∗(Z, ∂Z; R) with

an orientation via Poincaré duality by saying a ∈ H2(Z, ∂Z) and b ∈ H3(Z, ∂Z)

give a positively oriented basis (a, b) of H∗(Z, ∂Z) if and only if (b∗∩ [Z], a∗∩ [Z])

is a positively oriented basis of H∗(Z) where [Z] is either orientation class of

Z. It is clear that the resulting homology orientation of H∗(Z, ∂Z; R) does not

depend on the (arbitrarily) chosen orientation of Z, but only depends on the

distinguished direction of Z (i.e. the distinguished generator of H1(Z)). This

then provides H∗(M,M) with an orientation via excision; denote this orientation

ω(M,M). Then we may define ω̃, an orientation of H∗(M), from a given homology

orientation ω of M and our earlier constructed ω(M,M). We define the orientation

ω̃ of H∗(M) by requiring that the torsion of the homology exact sequence with R

coefficients of the pair (M,M) have a positive sign. Then we define the homology

orientation of M induced from ω, ωM , as

ωM = (−1)b3(M)+(b1(M)+1)(b1(M)+1)ω̃. (3.1)

The sign in the equation is needed to guarantee that if we use this definition mul-

tiple times to glue on several directed solid tori, that the end result is independent
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of the order in which we perform our gluing, see [Tur02] Lemma V.2.3.

3.1.2 Gluing Euler Structures

This is based on [Tur02] Chapter VI. We describe the distinguished Euler structure

on a directed solid torus in a slightly different manner from the construction in

[Tur02] VI.2.1, where Turaev uses smooth Euler structures to make the definition.

We present an alternate description here, using combinatorial Euler structures

(the distinguished Euler structure described here is the image of the one described

in [Tur02] under the canonical bijection vect(M) 
 Eul(M)).

Let Z = D2 × S1 be a directed solid torus with distinguished generator h ∈

H1(Z). Then Ẑ, the maximal abelian cover of Z, is actually the universal cover

of Z, given by D2 × R. We can decompose Z as a single 0-handle and a single

1-handle, and then Ẑ consists of all h-multiples of any lifts of the 0-handle and

the 1-handle. The distinguished Euler structure is the equivalence class of any

fundamental family of handles ê0, ê1 (where ê0 lies over the single 0-handle of Z,

and ê1 lies over the single 1-handle) with the property that ∂ê1 = hê0− ê0. Note

that any two fundamental families ê, ê′ with that property have ê′0 = hkê0 and

ê′1 = hkê1 for some k ∈ Z (the property guarantees that ê′0, ê0 and ê′1, ê1 differ

by the same element of H1(M)), and then ê, ê′ have the same equivalence class

in Eul(M), and that equivalence class is the distinguished Euler structure of Z,

denoted eZ .

Now let us note that one may naturally take the Cartesian product of two

fundamental families of cells to obtain a fundamental family of cells on a Cartesian

product of complexes. It is clear that the equivalence relation (1.9) is preserved,

so this tells us how to take a Cartesian product of combinatorial Euler structures.
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Also note that the construction of the distinguished Euler structure on a solid

torus also works for a directed S1, and hence we may obtain a distinguished

Euler structure eT on the torus T 2 = S1 × S1. A simple computation using

[KS65] gives that the Turaev torsion τ(T 2, eT ) = ±1 (this is, again, a slightly

different construction than the equivalent construction in [Tur02] II.2.7).

Now we discuss how to glue Euler structures, in a more general way than we

need. Let M be a compact, connected, oriented 3-manifold with ∂M consisting

entirely of tori, and let T ⊂M −∂M be a finite system of disjoint embedded tori

splitting M into two 3-manifolds M1, M2 such that T = M1 ∩M2 = ∂M1 ∩ ∂M2.

Then we define a gluing map ∪ : Eul(M1)×Eul(M2)→ Eul(M). Choose a cellular

decomposition of M so that M1, M2, T are all subcomplexes. This means, since

M = M1 ∪T M2, that each cell of M is a cell in at least one of M1, M2, T , and

also that T is a subcomplex of each Mi. Now choose a zero cell ∗ of T (hence also

a zero cell of each Mi and of M) to serve as a basepoint. Then choose a lift of ∗,

say ∗̂, in M̂ (the maximal abelian cover of M) to serve as a basepoint of M̂ . Let

p : M̂ → M be the projection, and let M ′
1 ⊂ M̂ be the component of p−1(M1)

containing ∗̂, and similarly for M ′
2, and let T ′ = M ′

1 ∩M ′
2. Then M ′

1, M
′
2, T

′ are

covers of M1, M2, T respectively with abelian deck groups, so M̂i covers M ′
i for

each i. Then, given ei ∈ Eul(Mi), we can choose fundamental families of cells

for M̂1, M̂2 that represent the ei such that the projections of the fundamental

families to M ′
i agree on cells of T ′ over T . Once we have done this, we have

a fundamental family of cells of M , and hence its equivalence class is an Euler

structure of M . Choosing fundamental families like this is reasonably easy due

to the forgiving nature of the equivalence relation (1.9) on fundamental families

giving rise to combinatorial Euler structures.
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Then if we have e and Euler structure on M and M obtained by gluing a

directed solid torus Z onto M along a boundary component of M , we can induce

the Euler structure e to an Euler structure on M using the above constructions.

We will denote the induced Euler structure by eM , and define it as

eM = e ∪ eZ . (3.2)

3.1.3 The Turaev Torsion Under Gluing

Now we are ready to state how the Turaev torsion changes when we glue a solid

torus along a boundary components. This is based on [Tur02] Chapter VII, where

one can find the proof (Turaev gives the statement for multiple gluings at once,

but for our purposes later we will state the theorem for a single torus).

Theorem 3.1 (Turaev, 2002). Let M be a compact connected 3-manifold whose

boundary consists of tori, and let e ∈ Eul(M) be an Euler class and ω be a

homology orientation of M . Let M be a 3-manifold with b1(M) ≥ 1 obtained by

gluing a directed solid torus to M and let h ∈ H1(M) denote the image of the

distinguished homology class of the directed torus in M . Let in : Z[H1(M)] →

Z[H1(M)] be induced by the inclusion M ↪→ M . If b1(M) ≥ 2 then τ(M, e, ω) ∈

Z[H1(M)], and

in(τ(M, e, ω)) = (h− 1)τ(M, eM , ωM). (3.3)

From this theorem, we can deduce quite a bit about how we would like to see

the determinant changing under gluing. Note that the Mayer-Vietoris sequence

for M = M ∪T Z for a solid torus Z shows that H1(M) is obtained from H1(M)

by “killing” the image of the element in H1(T ) that is being identified with
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the meridian of Z. Clearly, multiplication by |Tors(H1(M))| is equivalent to

multiplication by Σ =
∑

σ (where σ runs over Tors(H1(M))) modulo I (the

augmentation ideal of M). Thus if h is finite order in H1(M) then multiplication

by |Tors(H1(M))| kills h−1 modulo I. By either applying Theorem 2.1 if M is not

closed, or [Tur02] Theorem 2.2 if M is closed, one may then suspect that in this

situation, we will see (ıM)∗(Detω(fM)) = 0 for any homology orientation ω, where

we let (ıM)∗ denote the map induced by M ↪→M from the symmetric algebra on

H1(M)/ Tors(H1(M)) to the symmetric algebra on H1(M)/ Tors(H1(M)). Let

g ∈ H1(M) denote the element being killed in H1(M); if g is finite order and h

is not, then b1(M) = b1(M), but the multiplication by (h− 1) in (3.3) will mean

that (ıM)∗(Detω(fM)) will be in a higher power of the augmentation ideal than

DetωM (fM) if M is not closed, but the same power if M is closed. One may then

suspect that (ıM)∗(Detω(fM)) = 0 in this case as well.

If, however, we either have M not closed, and both h, g infinite order elements

in H1(M), H1(M) respectively, or M closed and h of infinite order, we would

expect a interesting formulae relating the determinants. We state these formulae,

and the results of the paragraph above, in a Theorem now, which we will use the

remainder of the Chapter to prove.

Theorem 3.2. Let M be a compact, connected, oriented 3-dimensional manifold

with nonempty boundary consisting of tori and homology orientation ω. Let M

be obtained by gluing a directed solid torus Z along one boundary component T of

M , and let ` denote the image in S(H1(M)/ Tors(H1(M))) of the distinguished

generator of H1(Z). If M is closed, assume b1(M) ≥ 3, and if not assume

b1(M) ≥ 2.
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1. If ∂M 6= T and the image of H1(T ) in H1(M) is not rank 2, then

Detω(fM) = 0.

2. If ∂M = T and b1(M) 6= b1(M) then

(ıM)∗(Detω(fM)) = 0.

3. If ∂M 6= T and the image of H1(T ) in H1(M) is of rank 2, then

|Tors(H1(M))|(ıM)∗(Detω(fM)) = |Tors(H1(M))| · ` ·DetωM (fM).

4. If ∂M = T and b1(M) = b1(M) then let s0 denote the sign of the orientation

ωM with respect to the natural homology orientation of M induced by an

orientation. Then

|Tors(H1(M))|(ıM)∗(Detω(fM)) = s0|Tors(H1(M))| · ` ·Det(fM).

Before the proof, however, we should note that Theorem 3.2 and Theorem 2.1

can be used to obtain [Tur02] Theorem 2.2 (which we used above to motivate

Theorem 3.2, but which will not be used in the proof). We briefly outline the

procedure: Start with a closed connected oriented 3-manifold M with b1(M) ≥ 3.

Then choose an infinite order h ∈ H1(M) and remove the interior of a tubular

neighborhood of an embedded S1 representing h. Call the resulting compact con-

nected oriented 3-manifold with boundary M . Choose a homology orientation

ω of M so that ωM is the canonical homology orientation. Then [Tur02] Theo-

rem 2.2 follows from plugging the results of Theorem 3.2 into Theorem 2.1 and

Theorem 3.1.
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3.2 Integral Cohomology Determinants Under

Gluing - The Proof of Theorem 3.2

3.2.1 General Remarks

Let M be a compact, connected, oriented 3-manifold with ∂M =
∐
i

Ti where

the index i runs over some nonempty finite set, and each Ti is a torus. We will

also consider T = T1 and R =
∐
i>1

Ti so that ∂M = T
∐

R (note if ∂M has one

component T , then R = ∅). We will be gluing a solid torus along the boundary

component T and will use M to denote the result, i.e. M = M
⋃
T

Z for a solid

torus Z (the actual homeomorphism of T to ∂(D2 × S1) will of course matter

in the actual construction of M , but we will not include it in our notation for

simplicity). We will also assume that M , M are given consistent orientations.

Since there is a difference in definition of the determinant for M closed, we will

study the cases R 6= ∅ and R = ∅ separately. Here let us also set some notation

for the rest of this chapter. We will often let λ, µ be a basis of H1(T ) such that

µ is the curve along which we will glue the meridian of our solid torus and λ is

parallel to the distinguished generator of H1(Z). In other words, µ is killed in

H1(M), and λ maps to h ∈ H1(M). The assumptions b1(M) ≥ 2 if ∂M 6= ∅ and

b1(M) ≥ 3 if ∂M = ∅, will guarantee the appropriate ranges for b1(M) so that

we will have well defined determinants for both M and M .

Whether M is closed or not, we must analyze mappings in cohomology; there

is an obvious and natural map H1(M)→ H1(M) induced by the inclusion M ↪→

M . However, ∂M does not map to ∂M under the inclusion, so it does not induce

a map from H1(M,∂M) to H1(M, ∂M). This means we will require a way to

work around this unfortunate detail.
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Before we do so, however, we will give some results that we will be using

throughout the chapter. First, note by excision:

H i(M,M) ≈ H i(Z, ∂Z) ≈

 Z if i = 2, 3

0 otherwise.
(3.4)

Combining (3.4) with the cohomology exact sequence of the pair (M,M)

H1(M,M)→ H1(M)→ H1(M)→ H2(M,M) (3.5)

we see that the cokernel of H1(M)→ H1(M) is rank 0 or rank 1, and the kernel is

0. This means b1(M) can either be b1(M) or b1(M)−1. Intuitively, the two cases

correspond to either killing a finite order element or an infinite order element

when we glue the solid torus along T .

We will also need to know something about how Poincaré duality compares

before and after gluing. Intuitively, one would expect that “away from T” (what-

ever that means), duality should be largely unchanged. We now precisely state

this intuitive idea. To set some convenient notation, we will use ıM to denote the

inclusion M ↪→M , ıR to denote the inclusion R ↪→ ∂M , and finally ı∂M to denote

the inclusion ∂M → ∂M (by itself, this is the same as ıR, but we will use the

notation ı∂M when we want to look at induced maps for the triple (M,∂M, ∂M)

and ıR to look at induced maps for the triple (M, ∂M,R)). Note that the map

induced on cohomology by ıM maps H∗(M,∂M) to H∗(M, R).

Proposition 3.1. For any w ∈ H1(M,∂M), if there is a w′ ∈ H1(M, ∂M) such

that (ıM)∗(w) = (ıR)∗(w′) ∈ H1(M, R), then

w ∩ [M ] = (ıM)∗(w
′ ∩ [M ]).

Proposition 3.1 will allow us to work around the fact that the inclusion

ıM : M ↪→ M does not induce a map ∂M → ∂M , hence does not induce a
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map H3(M, ∂M) → H3(M,∂M). In particular, the inclusion does not induce

anything so convenient as the map [M ] 7→ [M ] of H3(M, ∂M) → H3(M,∂M).

Furthermore, ıM does not induce a nice map H1(M,∂M)→ H1(M, ∂M), so this

Proposition helps us work around that as well.

Proof. Look at the commutative ladder induced by the inclusion M ↪→ M

with rows given by the cohomology sequences of the triples (M, ∂M,R) and

(M,∂M, ∂M) (note ∂M = R and could be empty):

H2(M, M) H2(M, M)x x
H0(∂M, R) −−−−→ H1(M,∂M) −−−−→ H1(M,R) −−−−→ H1(∂M, R)∥∥∥ x x ∥∥∥

H0(∂M, ∂M) −−−−→ H1(M, ∂M) −−−−→ H1(M, ∂M) −−−−→ H1(∂M, ∂M)x x
0 0

(3.6)

A simple diagram chase, assuming a suitable w′ exists, shows that there is a

w̃ ∈ H1(M,∂M) mapping to w ∈ H1(M,∂M) and w′ ∈ H1(M, ∂M). Now note

by Alexander duality, H3(M,∂M) is free of rank 2, and we have the following

diagram with any straight line exact:

H2(∂M, ∂M) H3(M, ∂M)
(ıM )∗

wwnnnnnnnnnnnn
// H2(∂M)

ppppppppppp

ppppppppppp
// H2(M)

yyssssssssss

H3(M,∂M)

hhPPPPPPPPPPPP

vvnnnnnnnnnnnn
// H2(∂M) // H2(M)

H3(M,M) H3(M,∂M)

(ı∂M )∗

ggPPPPPPPPPPPP
// H2(∂M)

ggNNNNNNNNNNN
// H2(M)

KKKKKKKKKK

KKKKKKKKKK

(3.7)

We see H3(M,∂M) is generated by the images of the orientation classes [M ] and

[M ], and the difference of those images maps to (plus or minus) the generator of
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H3(M,M). So we now perform some simple computations:

w̃ ∩ (ıM)∗([M ]) = (ıM)∗ ((ıM)∗(w̃)) ∩ [M ])

= (ıM)∗(w
′ ∩ [M ]).

w̃ ∩ (ı∂M)∗([M ]) = (ı∂M)∗ ((ı∂M)∗(w̃)) ∩ [M ])

= (ı∂M)∗(w ∩ [M ])

= w ∩ [M ].

The last equality follows since the map induced by (ı∂M) on H2(M) is equality

in diagram (3.7).

So we want to compute the cap product of w̃ with the difference of (ıM)∗([M ])

and (ı∂M)∗([M ]) and show that it is zero. The chain complex C∗(M,∂M) consists

of the chain complex C∗(M, ∂M) with an additional two-handle and an additional

three-handle, and the difference we are interested in is the class in H3(M,∂M) of

the additional three-handle. To compute the cap product of w̃ with this homology

class, we evaluate w̃ on a 1-front face, and this is the coefficient of the 2-back

face. But each 1-front face of our 3-handle lies on T , and w̃ ∈ H1(M,∂M) means

w̃ is zero when restricted to ∂M , in particular when restricted to T .

Recall that our determinants lie in the symmetric algebras S = S ((H1(M))∗)

and S = S
(
(H1(M))∗

)
(for M, M respectively), so here we briefly comment

on S, S and the map S → S induced by the inclusion M ↪→ M . First, the

map H1(M) → H1(M) induced by inclusion induces a dual map (H1(M))∗ →

(H1(M))∗, and if we think of (H1(M))∗ as simply H1(M)/ Tors(H1(M)) and

(H1(M))∗ as simply H1(M)/ Tors(H1(M)), then the map S → S is the map

induced by H1(M)→ H1(M) (which maps Tors(H1(M))→ Tors(H1(M))). Now

H1(M) → H1(M) is onto (its cokernel is contained in H1(M,M) = 0), and
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similarly H1(M) → H1(M) is injective with free cokernel of rank 0 or 1. If

the cokernel is rank 0, then H1(M) → H1(M) and H1(M)/ Tors(H1(M)) →

H1(M)/ Tors(H1(M)) are isomorphisms, as is S → S. If the cokernel is rank 1,

then we may choose a basis α1, . . . , αn−1 of H1(M) and then construct a basis

a1, . . . , an of H1(M) with (ıM)∗(αi) = ai for 1 ≤ i ≤ n−1, and an having nonzero

image in H2(M,M). Then the induced map (H1(M))∗ → (H1(M))∗ is the map

a∗i 7→ α∗
i for 1 ≤ i ≤ n− 1, and a∗n 7→ 0 (and similarly S → S). We will slightly

abuse notation and denote the map S → S by (ıM)∗.

3.2.2 R 6= ∅

In this case, we know that M is also a 3-manifold with nonempty boundary, so

we will use the determinant from 2.1.1. First, a preliminary result involving rank

counting.

Lemma 3.1. The following are all equal to zero:

b0(M, T ) = b0(M, R) = b3(M, T ) = b3(M, R) = 0. (3.8)

The following are all equal:

b1(M, T ) = b2(M, T ) = b1(M, R) = b2(M, R). (3.9)

Proof. We first note b0(M, T ) = 0 and b0(M, R) = 0 since H0(T )→ H0(M) and

H0(R)→ H0(M) are both surjective, and then

b3(M, R) = b3(M, R) = b0(M, T ) = 0.

The first equation is by the universal coefficient theorem, the second is by Poincaré

duality. We similarly conclude b3(M, T ) = 0.
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Now b1(M, T ) = b2(M, R) = b2(M, R) by the same reasoning as above, so it

remains to show that b1(M, T ) = b2(M, T ). This follows from counting ranks in

the exact sequence of the pair (M, T ) and noting that since χ(M) = χ(T ) = 0

and b0(M, T ) = b3(M, T ) = 0, we must have b1(M, T ) = b2(M, T ).

Now we will look at (the first few terms of) the exact sequence of the triple

(M, ∂M,R) and the (reduced) exact sequence of the pair (M, T ) (both in coho-

mology):

0→ H0(∂M,R)→ H1(M, ∂M)→ H1(M, R)→ H1(∂M,R), (3.10)

0→ H1(M, T )→ H1(M)→ H1(T ). (3.11)

Note that H1(∂M,R) ≈ H1(T ) and in fact we can form a commutative square

with the last two terms each of (3.10) and (3.11), where the right vertical arrow

is an isomorphism:
H1(M, R) −−−→ H1(∂M,R)y y
H1(M) −−−→ H1(T ).

(3.12)

Since H1(T ) ≈ Z2, the maximum rank of the image of each horizontal ar-

row is two, and by commutativity and the fact that the right vertical arrow

is an isomorphism, the rank of the image of H1(M, R) in H1(∂M,R), which

we will denote by s = rankZ(im(H1(M, R) → H1(∂M,R))), is less than or

equal to the rank of the image of H1(M) in H1(T ), which we will denote by

r = rankZ(im(H1(M) → H1(T ))) (i.e. r ≥ s). Now if n = b1(M) then

n− 1 = b1(M, ∂M). Note H0(∂M,R) ≈ Z so counting ranks in (3.10) gives

b1(M, R) = n− 2 + s. (3.13)
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Case 1: r = 2

First, note that this can occur; for example the exterior of the Hopf link, where

T is either boundary component, has H1(M)→ H1(T ) an isomorphism. So this

case is not vacuous.

In this case, b1(M, T ) = n − 2, so by (3.13) and Lemma 3.1, s = 0. Each

group in both (3.10) and (3.11) is free, and H1(M, ∂M) → H1(M, R) is onto

hence splits, so given a basis β1, . . . , βn−2 of H1(M, R), we may choose a basis

b1, . . . , bn−1 of H1(M, ∂M) such that bi 7→ βi for 1 ≤ i ≤ n − 2 and bn−1 is dual

(under evaluation) to a path connecting T to one of the components of R. If we

let ıT : T ↪→M be the inclusion, then (ıT )∗([T ]) = bn−1 ∩ [M ].

We now similarly compare H1(M) to H1(M, T ). Since r = 2, for any basis

α1, . . . , αn−1 of H1(M, T ), we can choose a basis a1, . . . , an of H1(M) with αi 7→ ai

for 1 ≤ i ≤ n − 2, and an−1, an mapping to linearly independent elements in

H1(T ). Thus if we choose any basis c1, c2 of H1(T ), then ı∗T (an−1) = a1,1c1+a1,2c2

and ı∗T (an) = a2,1c1 + a2,2c2 where A = (
a1,1 a1,2
a2,1 a2,2 ) is an integral matrix with

det(A) = D 6= 0.

Now we look at the matrix over S((H1(M))∗) given by cup product as in

Lemma 2.1. There will be a n− 2× n− 2 square matrix in the upper left hand

corner composed of the cup products of the α’s and β’s, let us call this matrix

M, and then the last two columns will be for cup products of the bi with an−1, an

and the last row for bn−1 cup the aj. Recall the matrix θ from Lemma 2.1,

θi,j = g(bi, aj); θ will have the form M v1 v2

w ±Da∗n ∓Da∗n−1

 . (3.14)

Above, v1, v2 are dimension n − 2 column vectors and w is a dimension n − 2
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row vector, and the signs are chosen depending on whether c1 ∪ c2 is dual, under

evaluation, to ±[T ]. Now since (ıT )∗([T ]) = bn−1 ∩ [M ], for any u, v ∈ H1(M),

we can compute

〈u ∪ v ∪ bn−1, [M ]〉 = 〈u ∪ v, bn−1 ∩ [M ]〉 = 〈ı∗T (u) ∪ ı∗T (v), [T ]〉.

This explains the ±D terms in the matrix, and also allows us to note that if

ai ∪ bn−1 6= 0 for some i, then there is some v ∈ H1(M) such that

〈ai ∪ v ∪ bn−1, [M ]〉 6= 0,

so ı∗T (ai) 6= 0. This means that the row vector w is equal to 0, since ı∗T (αi) = 0

for 1 ≤ i ≤ n− 2. And now it is easy to compute the determinant,

det(θ(n)) = (±Da∗n) det(M). (3.15)

Now we know b1(M, R) = n − 2, and we must have b1(M,∂M) = n − 2 as

well since we must have b1(M) = b1(M) − 1. Geometrically, this means if each

generator of H1(T ) is infinite order in H1(M) (which corresponds to r = 2),

then by gluing a solid torus on T we must kill an infinite order element. Since

H1(M,∂M) injects into H1(M, R) with a free cokernel and they have the same

rank, H1(M,∂M)→ H1(M, R) an isomorphism,

We also look at the triple (M,M, T ), using the following commutative diagram

with exact rows and columns (we abuse notation and let T denote the image of
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T in M):

H2(M,M) H2(M,M)x x
0 −−−→ H1(M, T ) −−−→ H1(M) −−−→ H1(T )x x ∥∥∥
0 −−−→ H1(M,T ) −−−→ H1(M) −−−→ H1(T )x x

0 0

(3.16)

This diagram is obtained by “pulling apart” (along the equalities) the braid

diagram that gives rise to the exact sequence of the triple. By commutativity, we

note that the image of H1(M) in H1(T ) has rank 1, and thus H1(M,T ) has rank

b1(M)−1 = n−2 = b1(M, T ) and the map H1(M,T )→ H1(M, T ) is an injection

with free cokernel of free Z-modules of the same rank, hence is an isomorphism.

So we may choose a basis of H1(M) by choosing a basis of H1(M,T ) and a

preimage of the generator of the image of H1(M) in H1(T ), let us denote this

element by αn−1 ∈ H1(M).

We now have chosen bases of H1(M) and H1(M,∂M) which are very similar

to the bases of H1(M) and H1(M, ∂M), and the matrix we will want to study

for the purposes of constructing the determinant, which we will call θ, will have

the square n − 2 × n − 2 block in the upper left corner (ıM)∗(M) (this follows

from Proposition 3.1). This means

det(θ(n− 1)) = (ıM)∗(det(M)). (3.17)

Now recall our notation of λ, µ as the basis of H1(T ) introduced in 3.2.1.

Then λ∗, µ∗ is a basis of H1(T ), and let k ∈ Z such that ı∗T (αn−1) = kλ∗ (we

have no multiples of µ since 〈ı∗T (αn−1), µ〉 = 〈αn−1, (ıT )∗(µ)〉 = 0 since µ is killed
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in M). We can take (ıM)∗(αn−1) to be one of our generators in H1(M) with

nonzero image in H1(T ) by commutativity of (3.16) and the fact that (ıM)∗ has

free cokernel. Choose any suitable an for the final generator of H1(M), and let

m ∈ Z such that 〈an, (ıT )∗(µ)〉 = m, so that the D given in (3.14) is simply k ·m

and note that since µ is killed in H1(M), we are introducing new m-torsion to

H1(M), i.e. we have |Tors(H1(M))| = m · |Tors(H1(M))|. Also, for simplicity, if

the D appearing in (3.15) is negative, we can change an to −an to force the sign

of D to be positive.

Now we are finally ready to compare the determinants of the forms fM and fM .

Let a be the basis of H1(M) consisting of a1 = (ıM)∗(α1), . . . , an−2 = (ıM)∗(αn−2),

followed by an−1 = (ıM)∗(αn−1) and then an. Let b be the basis of H1(M, ∂M)

consisting of b1, . . . , bn−2 with (ıR)∗(bi) = (ıM)∗(βi) (for i ≤ n − 2), followed by

bn−1. Then with θ expressed in this basis, det(θ(n)) = (−1)na∗nd(fM , a, b) by

Lemma 2.1. But by (3.15), we have (recalling we chose an so that D is positive)

Da∗n det(M) = (−1)na∗nd(fM , a, b).

This means

d(fM , a, b) = (−1)nD det(M). (3.18)

Furthermore, by (3.17) and Lemma 2.1, if we choose the basis α of H1(M) to be

α1, . . . , αn−2 followed by αn−1, and the basis β of H1(M,∂M) to be β1, . . . , βn−2,

then

(ıM)∗(det(M)) = det(θ(n− 1))

= (−1)n−1α∗
n−1d(fM , α, β). (3.19)

Now plugging (3.19) into (3.18) we obtain

(ıM)∗(d(fM , a, b)) = −Dα∗
n−1d(fM , α, β).
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We have constructed this so that 〈αn−1, λ〉 = k meaning kα∗
n−1 7→ ` in the

canonical isomorphism (H1(M))∗ → H1(M)/ Tors(H1(M)) where ` is the image

of λ in H1(M)/ Tors(H1(M)), so this means

(ıM)∗(d(fM , a, b)) = (−1)m · ` · d(fM , α, β). (3.20)

To complete the proof of Theorem 3.2 Item 3, we must see how the sign refined

determinants work out using the induced homology orientation on M . To do so,

we first take the sign of the torsion of the exact sequence

H3(M, M ; R)→ H2(M ; R)→ H2(M ; R)→ H2(M, M ; R)→ H1(M ; R)→ H1(M ; R).

We do not need the end of the sequence since it contributes no sign. Note

the sign in (3.1) is trivial, so ωM is simply an orientation of H∗(M) making the

torsion of the above sequence positive. A simple calculation shows us that if

a, b, α, β are bases as above and we use them to compute the sign of the torsion

of the above sequence, we obtain a negative answer. This means if a and b

are bases such that d(fM , a, b) = Detω(fM), then α and β are bases such that

d(fM , α, β) = −DetωM (fM). This proves Theorem 3.2 Item 3.

Case 2: r = 1

As in the earlier case, we first note that this case is not vacuous. An example

would be the exterior of two disjoint unlinked S1’s embedded in S3, with T as

either boundary component. However, we will shortly see that the determinants

in this case are as uninteresting as in our example.

We will first analyze the decompositions of H1(M, ∂M) and H1(M) with

respect to H1(M, R), H1(M, T ), and H1(T ) as before. Note if r = 1, then by

(3.10) we know that b1(M, T ) = n − 1 and hence s = 1 as well. So now choose
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α1, . . . , αn−1 a basis of H1(M), and we can choose a basis of H1(M) with αi 7→ ai

for 1 ≤ i ≤ n− 1 and ı∗T (an) 6= 0.

Now H1(M, ∂M) still has a free summand of rank one generated by the dual

of a path connecting T to any component of R, but now H1(M, R) splits as the

image of H1(M, ∂M) plus another free generator, which must map to an under

H1(M, R) → H1(M) since the cokernel of that map is free and everything else

in H1(M, R) maps to zero in H1(T ). So choose bases b1, . . . , bn−1 of H1(M, ∂M)

where bn−1 is as above, dual to a path connecting T to a component of R, and

bi 7→ βi for 1 ≤ i ≤ n−2 where β1, . . . , βn−2, γ is a basis of H1(M, R) and γ 7→ an

under H1(M, R)→ H1(M). Note we still have (ıT )∗([T ]) = bn−1 ∩ [M ].

In addition, we have, just as in our earlier case, for any u, v ∈ H1(M),

〈u ∪ v ∪ bn−1, [M ]〉 = 〈ı∗T (u) ∪ ı∗T (v), [T ]〉.

Since 1 = r = rankZ(im(ı∗T )), we know ı∗T (u), ı∗T (v) are both multiples of the same

element in H1(T ), so their cup product is zero. This means that the last row of

the matrix θ consists entirely of zeros, so det(θ(i)) = 0 for any 1 ≤ i ≤ n, proving

Theorem 3.2 Item 1.

Case 3: r = 0

Unlike the first two cases, this case is vacuous; it cannot occur since r = 0

means b1(M, T ) = b1(M) = n hence b1(M, R) = n, and then (3.13) gives s = 2,

contradicting our earlier claim that r ≥ s. Geometrically, this would correspond

to the case that H1(T ) → H1(M) has image entirely in Tors(H1(M)). One can

verify that this cannot happen by letting M ′ denote the result of gluing solid

tori along each component of R in any way one likes, thus T = ∂M ′. Note the

following commutative diagram (the cokernel of H1(M) → H1(M
′) is contained
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in H1(M
′, M), which is zero by the homology analogue of (3.4), and similarly for

H1(M, T )→ H1(M
′, T )):

H1(T ) −−−→ H1(M) −−−→ H1(M, T )∥∥∥ y y
H1(T ) −−−→ H1(M

′) −−−→ H1(M ′, T )y y
0 0

From this diagram, we note that the image of H1(T ) cannot be rank zero in

H1(M), because it is rank one in H1(M
′).

3.2.3 R = ∅

In this case, we must compare the determinant from 2.1.1 (when we are looking

at M , before the gluing) to the determinant from [Tur02] III.1. First, we know

H1(M, ∂M)→ H1(M) is an injection with free cokernel, which must be of rank

1 since b1(M, ∂M) = b1(M)− 1; we will still use n to denote b1(M). Now we still

have H i(M,M) ≈ H i(D2 × S1, S1 × S1), so we still have b1(M) either equal to

n or n− 1 depending on whether the element in H1(M) killed is finite or infinite

order, and each of these cases can occur. So let us examine both. Also note that

the reasoning from above (in Case 2: r = 1) that led us to conclude that θ had a

row consisting entirely of zeroes does not apply here, since that row corresponded

to an element of H1(M, ∂M) connecting T to another boundary component, and

such a thing does not exist if ∂M = T (in fact, the image of [T ] is zero in H2(M),

so we will not be pulling back cohomology elements along the inclusion of T into

M at all).
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Case 1: b1(M) = b1(M)

If b1(M) = n, then we have (ıM)∗ : H1(M) → H1(M) is an isomorphism, and

H1(M, ∂M) → H1(M) has kernel of rank 1. If we choose a basis b1, . . . , bn−1 of

H1(M, ∂M), we can choose an so that the images of the bi, which we will call ai,

in H1(M) combined with an forms a basis of H1(M), and we will let αi ∈ H1(M)

with (ıM)∗(αi) = ai. Then the matrix (ıM)∗(θ) will be all but the last row of the

matrix θ by Proposition 3.1, and (ıM)∗(det(θ(n))) = det(θ(n, n)), and hence

(ıM)∗((−1)na∗nd(fM , a, b)) = (ıM)∗(det(θ(n)))

= det(θ(n, n))

= α∗
nα

∗
nd(fM , α, α).

Since α∗
n = (ıM)∗(a

∗
n), the conclusion for determinants is that

(ıM)∗(d(fM , a, b)) = (−1)n(ıM)∗(a
∗
n)d(fM , a, a).

Now if we have chosen λ, µ as above, a basis of H1(T ) so that µ is the basis

element along which the meridian of our solid torus is glued, then (ıT )∗(µ) is

finite order in H1(M) since gluing does not change the first Betti number, so let

us say that (ıT )∗(µ) has order k ∈ H1(M); this means

Tors(H1(M)) · k = Tors(H1(M)).

Then since Tors(H1(M)) ≈ Tors(H1(M, ∂M)), and (ıT )∗(µ) maps to zero in

H1(M, ∂M), we must have a kth root of (ıT )∗(λ) in H1(M), which we can choose

an to be dual to i.e. 〈an, λ〉 = k. Finally, if we let ` denote the image of λ

in H1(M)/ Tors(H1(M)), and since (H1(M))∗ is (as discussed above in 3.2.1)

naturally isomorphic to H1(M)/ Tors(H1(M)), then we can write kα∗
n = `, so
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multiplying through by k we have

k · (ıM)∗(d(fM , a, b)) = (−1)n(kα∗
n)d(fM , α, α)

= (−1)n` · d(fM , α, α).

To complete the proof of Theorem 3.2 Item 4, we must once again analyze signs.

First, the sign of ωM is equal to (−1)n times the sign of an orientation ω′ of

H∗(M) giving positive torsion of the exact sequence

H2(M)→ H2(M)→ H2(M, M)→ H1(M)→ H1(M).

This time, we have truncated the sequence both on the left and right since the

truncated parts did not contribute to the sign. Another simple torsion calculation

tells us that the sign s0 in Theorem 3.2 Item 4 is simply (−1)n times the sign of

d(fM , a, b) with respect to Detω(fM). This proves Theorem 3.2 Item 4.

Case 2: b1(M) = b1(M)− 1

In this case, we may use the diagram (3.16), with T = ∂M , and we see that

H1(M,∂M) → H1(M, ∂M) is an isomorphism, as is H1(M,∂M) → H1(M).

So we may choose a basis b1, . . . , bn−1 of H1(M, ∂M) and additional element

an ∈ H1(M) with the images of the bi, which we call ai, combined with an is

a basis of H1(M), and then θ = (ıM)∗(θ(n)). Now we can choose α1, . . . , αn−1

a basis of H1(M) with (ıM)∗(αi) = ai for 1 ≤ i ≤ n − 1. Using this basis, we

compute the determinant det(θ(1)) = (−1)a∗1d(fM , a, b) by running down the nth
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column:

(ıM)∗(det(θ(1))) =
∑
i<n

(−1)i+n(ıM)∗(g(bi, an))(ıM)∗(det((θ(1))(i, n)))

=
∑
i<n

(−1)i+n(ıM)∗(g(bi, an)) det(θ(i, 1))

=
∑
i<n

(−1)i+n(ıM)∗(g(bi, an))(−1)i+1α∗
i α

∗
1d(fM , α, α)

= (−1)n+1α∗
1d(fM , α, α)

∑
i<n

(ıM)∗(g(bi, an))α∗
i

= (−1)n+1(ıM)∗(a
∗
1)d(fM , α, α)

∑
i<n

n−1∑
k=1

(ıM)∗(fM(bi, an, ak)a
∗
k)α

∗
i

= (−1)n+1(ıM)∗(a
∗
1)d(fM , α, α)

∑
i<n

n−1∑
k=1

〈bi ∪ an ∪ ak, [M ]〉α∗
kα

∗
i

= (−1)n+1(ıM)∗(a
∗
1)d(fM , α, α)

n−1∑
i=1

n−1∑
k=1

−〈bi ∪ ak, an ∩ [M ]〉α∗
kα

∗
i

= (−1)n+1(ıM)∗(a
∗
1)d(fM , α, α)

n−1∑
i,k=1

−〈bi ∪ bk, an ∩ [M ]〉α∗
kα

∗
i

= 0.

The last equality is true since we are summing over i, k and the bi∪bk is antisym-

metric in i, k and α∗
kα

∗
i is symmetric. The line before that follows from noting

that ak is the image of bk under H1(M, ∂M)→ H1(M).This proves Theorem 3.2

Item 2, and in fact completes the proof of Theorem 3.2.
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