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Let λ and µ be weights of G = SL(n, C) such that λ is dominant. Let Vλ

be the irreducible representation of G with highest weight λ, and let Vλ[µ] denote

the µ-th weight space within Vλ. That is, Vλ[µ] is an isotypic component of the

representation Vλ pulled back to the maximal torus T ⊂ G of diagonal matrices.

The vector space

Rλ,µ =
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N=0

VNλ[Nµ]

has a natural structure as a graded ring, which is graded by N . We study the

structure of the rings Rλ,µ. The motivation is that Rλ,µ is the projective coordinate

ring of a Geometric Invariant Theory quotient of the flag space G/B by the natural

left action of T , where B is the Borel subgroup of upper triangular matrices. We

have

T \\(G/B) = Proj(Rλ,µ).
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Chapter 1

Introduction

The geometry (both symplectic and algebraic) of the quotients T \\F have

been extensively studied in recent years; Allen Knutson called them “weight vari-

eties”1 in his thesis [K]. The dependence of the geometry of the quotient on the

choice of linearization was studied by Yi Hu in [Hu] and in a more general setting by

Igor Dolgachev and Yi Hu in [DoHu]. The cohomology of nonsingular weight vari-

eties for G = SL(n, C) was computed by Rebecca Goldin [G]. Special cases of weight

varieties have been studied since the nineteenth century; for example a G.I.T. quo-

tient (CPk−1)n//PGL(k, C) is isomorphic to a G.I.T. quotient T \\Grk(Cn) by the

Gel’fand MacPherson correspondence (here Grk(Cn) denotes the Grassmannian).

The projective invariants of n-tuples of points on projective space are still not un-

derstood today; we do not even know a minimal set of generators for the ring of

projective invariants (see page 8 of [Ha]).

The thesis contains three main theorems about the rings Rλ,µ. The first result

is the discovery of an explicit finite (but not minimal) set of generators for Rλ,µ. In

[LG] a degeneration of partial flag spaces to toric varieties was given. In [FH] Phillip

Foth and Yi Hu observed that these degenerations may be restricted to T invariants

1The term “weight variety” actually refers to more general quotients; they are G.I.T. quotients

of G/P by a maximal torus T in G, where G is a reductive connected complex Lie group and P is

a parabolic subgroup of G containing T .
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and consequently they give flat degenerations of weight varieties to toric varieties.

These toric varieties are defined by polytopes known as Gel’fand Tsetlin polytopes.

A recent theorem of Jesús De Loera and Tyrell McAllister (see [dLMc]) concerns

the vertices of Gel’fand Tsetlin polytopes GT (λ, µ). They find an upper bound on

the denominators of these vertices. Consequently one gets a finite set of generators

for the associated semigroup of integral points in the cone on the Gel’fand Tsetlin

polytopes. According to [FH] there is a filtration F of Rλ,µ for which the associated

graded ring grF (Rλ,µ) is the semigroup algebra of these integral points. The lifts of

the generators of grF (Rλ,µ) to Rλ,µ must generate Rλ,µ. These lifted generators are

far from minimal. In fact the degree bound on the generators is

Mn =
n2 − 3n + 4

2

(
(n− 1)n(n+1)/2−n−1

)
,

a terribly large number in n, though it applies for all pairs (λ, µ) of length n. It

remains an open problem to find a minimal set of generators.

The second theorem is the following. Suppose N > 0 is the minimal integer

such that R
(N)
λ,µ = VNλ[Nµ] is nonzero. Let v1, . . . , vm be a basis for VNλ[Nµ]. Then

for each semistable point p ∈ (G/B) there exists some vi such that vi(p) is nonzero.

In particular, the map T \\(G/B) → CPm−1 given by p 7→ [v1(p), . . . , vm(p)] is

well-defined. This is remarkable since in general the vi’s do not generate the ring.

This result applies a theorem of Gel’fand, Goresky, MacPherson, and Serganova

concerning matroids and momentum images of closures of T -orbits in Grassmannian

spaces Grk(Cn). Each such momentum image is a polytope P for which a matroid

M(P ) is defined in which the bases of M(P ) correspond to the vertices of P . Their
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main theorem is that the edges of P are parallel to roots of G = SL(n, C).

The third theorem addresses the special case where λ is a multiple of the second

fundamental weight $2 connected to the Grassmannian Gr2(Cn). This special case

is of particular interest since the quotient T \\(G/B) is the space of n tuples of

points on the projective line modulo automorphisms of the line. In this case, the

lowest degree T invariants generate Rλ,µ. This was proved in 1894 by Alfred Bray

Kempe [Ke]. However the relations in these generators were not discovered until very

recently in [HMSV1]. They discover that the relations are generated by relations of

degree four and less. If the weight µ is such that all components are even integers,

then the relations are only quadratic. Here it is shown that these quadratic relations

have a very simple form. This result is motivated by [HMSV2] where it is proven

that relations of this sort cut out the projective variety (though perhaps not the

ideal) for any weight µ, except for the case n = 6 and µ = (1, 1, 1, 1, 1, 1).
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Chapter 2

The Geometric Invariant Theory Quotients T \\(G/B)

We begin by defining Geometric Invariant Theory (G.I.T.) quotients of pro-

jective varieties by reductive affine algebraic groups.

2.1 G.I.T. quotients

We refer the reader to [Do] for additional details. Suppose that G is a reductive

algebraic group, V is a quasi-projective variety, and η : G × V → V is a regular

action of G. Let π : L → V be an ample line bundle of V . A G–linearization of L

is a regular action η̃ : G× L → L which is linear on fibers and makes the following

diagram commute:

G× L eη−−−→ L

id×π

y yπ

G× V
η−−−→ V

Given such a linearization, we automatically get linearizations on all tensor

powers L⊗N of L. Thus G has an action on sections s of L⊗N given by (g · s)(x) =

g · s(g−1 · x) = η̃(g, s(η(g−1, x))). Let Γ(V,L⊗N)G denote the G–invariant sections

of L⊗N . The G.I.T. quotient V//eη G is defined as

V//eη G = Proj
( ∞⊕

N=0

Γ(V,L⊗N)G
)
.

If the linearization is understood, sometimes we denote V//eηG by V//G.

If s is a section let Vs = {x ∈ V | s(x) 6= 0}. The set V sseη of semistable points
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of V is defined as

V sseη =
⋃
N≥0

⋃
{Vs | s ∈ Γ(V,L⊗N)G and Vs is affine}.

(Note that when V is affine or projective the distinguished open sets Vs are auto-

matically affine.) If x is a semistable point let cl(G · x) be the (Zariski) closure of

the orbit G · x in V sseη . As a topological space V//eη G is the quotient space of V sseη
where points x, y are identified iff cl(G · x) and cl(G · y) intersect nontrivially.

2.1.1 The Gel’fand-MacPherson correspondence

The Gel’fand–MacPherson correspondence says that a G.I.T. quotient of Grass-

mannian space Grk(Cn) by the torus (C∗)n is isomorphic to a G.I.T. quotient of the

product space (CPk−1)n by the diagonal action of PGL(k, C).

Let L be the trivial line bundle Cn×k×C → Cn×k. Given any group G acting on

Cn×k, a character χ : G → C∗ defines a linearization of L by g ·(A, z) = (g ·A, χ(g)z).

The group GL(k, C) acts on the right of Cn×k by matrix multiplication. The

group T of diagonal matrices in GL(n) acts on the left of Cn×k. Let deta : GL(k, C) →

C∗ be deta(g) = (det(g))a and let χr : T → C∗ be

χr(diag(z1, . . . , zn)) =
n∏

i=1

zri
i

where r = (r1, . . . , rn) ∈ Zn
+. The one–dimensional subgroup K = {(zIn, z

−1Ik) :

z ∈ C∗} of T×GL(k, C) acts trivially on Cn×k. Let G be the quotient of T×GL(k, C)

by K. The character χr × deta descends to G iff |r| =
∑

i ri = ka, and we assume

that is the case so that we have a G–linearization of the trivial line bundle.
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Let Lk,n be the ample generator of the Picard group of Grk(Cn); we may realize

the total space of Lk,n by equivalence classes V n×k × C/ ∼ where V n×k is the open

subset of Cn×k of matrices with independent columns and (A, z) ∼ (Ag, det(g)z)

for g ∈ GL(k, C). Denote the equivalence class (A, z)∼ by [A, z]. The character χr

defines a T–linearization of La
k,n = L⊗a

k,n by

t · [A, z] = [tA, χr(t)z].

Let H be the ample generator of the Picard group of CPk−1, and let Hr be

the ample line bundle over the product (CPk−1)n given by

Hr = H⊗r1 � · · ·�H⊗rn .

We may identify the total space of H with (Ck \{0})×C/ ∼ where (v, z) ∼ (vλ, λz)

for λ ∈ GL(1); let [v, z] denote the equivalence class. There is a unique linearization

of Hr for the (right) diagonal action of PGL(k, C) on (CPk−1)n.

By the First Fundamental Theorem of Invariant Theory [Do, Theorem 2.1],

the homogeneous coordinate ring of the Grassmannian is generated by Plücker co-

ordinates, hence, for any N ≥ 0 we have

Γ(Grk(Cn), (La
k,n)⊗N) ∼= Γ(Cn×k,L⊗akN)GL(k,C)

and consequently

Γ(Grk(Cn), (La
k,n)⊗N)T ∼= Γ(Cn×k,L⊗akN)G.

On the other hand the sections of the outer tensor product of hyperplane section

bundles over n copies of CPk−1 are products of homogeneous polynomials in the
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homogeneous coordinates, that is,

Γ((CPk−1)n, (Hr)⊗N) ∼= Γ(Cn×k,L⊗|r|N)T

and consequently

Γ((CPk−1)n, (Hr)⊗N)PGL(k,C) ∼= Γ(Cn×k,L⊗|r|N)G.

Hence we have an isomorphism of the G.I.T. quotients

Grk(Cn)//χrT
∼= Cn×k//χr×detaG ∼= (CPk−1)n//rPGL(k, C).

2.2 The G.I.T. quotients T \\(G/B)

A weight variety of G = SL(n, C) is a G.I.T. quotient of the flag manifold

F = G/B by the (left) action of the Cartan subgroup T . The construction of such a

quotient involves the choice of a T -linearized line bundle L of F = G/B. Since T acts

by left multiplication, it is more natural to denote the G.I.T. quotient by T \\(G/B)

(or T \\F ) rather than by (G/B)//T . We will keep this notation throughout the

remainder of this thesis.

If L has any nonzero sections, then it’s isomorphism class is determined by a

choice of dominant weight λ. The T -linearization of L will also depend on a choice

of a weight µ, but µ need not be dominant.

2.2.1 Elementary representation theory of SL(n, C)

Since SL(n, C) is simply connected, the set of SL(n, C) weights are the differ-

entials evaluated at the identity element of characters χ : T → C∗, which are holo-
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morphic homomorphisms (that is, the character lattice coincides with the weight

lattice). The differential dχ (evaluated at the identity element of T ) of χ lies within

the dual Lie algebra t∗ of T . On the other hand, if $ ∈ t∗ is a weight, we shall

denote e$ as the unique character e$ : T → C∗ such that d(e$) = $.

A character eλ applied to t = diag(t1, . . . , tn) ∈ T must be equal to
∏n

i=1 tai
i

for some fixed integers ai. Since
∏n

i=1 ti = 1 for all t ∈ T , we have that the n-

tuple of exponents (a1, . . . , an) and (a1 + a, a2 + a, . . . , an + a) determine the same

character. We may thus view the abelian group of characters of T as Zn/∆ where

∆ is the diagonal. On the other hand, the weight λ ∈ t∗ takes a complex vector

(z1, . . . , zn) ∈ t (where z1 +z2 + · · ·+zn = 0) to
∑n

i=1 aizi. Again, adding a constant

to each ai results in the same function, and so again we have that the additive

group of weights is isomorphic to Zn/∆. We shall henceforth identify characters

and weights as n-tuple of integers modulo the diagonal ∆.

The Borel-Weil construction

Let λ be any weight of G = SL(n, C). The character eλ defined on T extends

uniquely to a character χλ : B → C∗. We will abuse notation and denote χλ by eλ

as well. The weight λ determines a holomorphic line bundle Lλ of G/B. The total

space of Lλ is the set of equivalence classes of pairs (g, z) for g ∈ G and z ∈ C, where

(g, z) ∼ (gb, eλ(b)z) for all b ∈ B. The map π from the total space to G/B is given

by π : (g, z) 7→ gB. Each global section of Lλ is given by sf (gB) = (g, f(g)) where

f : G → C is a holomorphic function such that f(gb) = eλ(b)f(g) for all b ∈ B and

8



g ∈ G.

Proposition 2.2.1 (see [BL]) The Picard group of holomorphic line bundles of

G/B (up to isomorphism) is isomorphic to the weight lattice P (R) of G, via the

correspondence

P (R) → Pic(G/B), λ 7→ Lλ.

The vector space H0(G/B, Lλ) = Γ(G/B, Lλ) of global sections is nonzero iff λ

is dominant (this means that if λ = (a1, . . . , an) ∈ Zn/∆ then ai ≥ ai+1 for all

i, 1 ≤ i ≤ n − 1.) Additionally Lλ is very ample iff λ is strictly dominant, i.e.

λ = (a1, . . . , an) satisfies ai > ai+1 for each i, 1 ≤ i ≤ n− 1.

There is a natural action of G on the total space of Lλ, given by g · (g′, z) =

(gg′, z). This defines an action on sections by

(g · s)(g′P ) = g · s(g−1g′P ) = g · (g−1g′, f(g−1g′)) = (g′P, f(g−1g′)).

If λ is dominant then the vector space Vλ of global sections is an irreducible repre-

sentation of G; the action of g ∈ G on sf is (g · sf )(g
′P ) = g · sf (g

−1g′P ).

Proposition 2.2.2 (see [FuHa]) There is a one-to-one correspondence between ir-

reducible representations of G and line bundles Lλ where λ is dominant. The cor-

respondence is given by Lλ 7→ Γ(G/B, Lλ).

Choosing a T -linearization of Lλ

There is a canonical T -linearization of Lλ, given by restricting the action of G

on Lλ to T . We shall call this the “democratic” linearization. A weight µ may be
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used to twist the democratic linearization;

t · (g, z) = (tg, µ(t)z).

We shall call this the “µ–linearization”. Indeed the set of all T -linearizations are

given by the characters µ of T .

The µ-twisted action of T on a section sf is given by the formula,

(t · sf )(gB) = (gB, eµ(t)f(t−1g)).

Hence sf is T -invariant iff µ(t)f(t−1g) = f(g) for all t ∈ T . Equivalently, we have

that sf is T -invariant iff for all t ∈ T and g ∈ G,

f(tg) = eµ(t)f(g).

The action on a section sf of L⊗N
λ is given by (t · sf )(gB) = (gB, eNµ(t)f(g)), and

so the T -invariant sections sf of the N -th tensor power of Lλ are those which satisfy

f(t · g) = eNµ(t)f(g).

The G.I.T. quotient T \\(G/B) associated to the pair (λ, µ) is the projective

variety,

T \\(G/B) = Proj

(
∞⊕

N=0

Γ(G/B, L⊗N
λ )T

)
,

where T acts on Lλ via the µ-linearization.

Recall that the set of semistable points F ss ⊂ F is defined by p ∈ F ss iff there

exists some positive integer N and a T -invariant global section s of L⊗N
λ such that

s(p) 6= 0. (Normally there is the additional requirement that Xs = {p ∈ F | s(p) 6=

0} is affine but this is automatic since F is a projective variety.) If we take the

µ-linearization of Lλ, then we shall say that a semistable point is µ-semistable.

10



2.3 Partial flags

If λ is dominant but not strictly dominant, then the line bundle Lλ is not

ample. However, there is a quotient space of G/B consisting of partial flags, which

has a line bundle L′
λ which is very ample, and Lλ is the pullback of L′

λ.

The fundamental weights $i for 1 ≤ i ≤ n − 1 are a basis for the weight

lattice of SL(n, C), where $i = (1, 1, . . . , 1, 0, 0, . . . , 0) has i ones followed by n − i

zeroes. If the dominant weight λ is normalized so that the last component of λ is

zero, then λ =
∑

i ai$i where each ai ≥ 0. The partial flag space corresponding to

λ is then the space of sequences of vector spaces Vi1 , . . . , Vik ∈ Cn where i1, . . . , ik

are the indices for which ai > 0, the dimension of Vit is it for 1 ≤ t ≤ k, and

Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vik . Let Pλ be the largest subgroup of SL(n, C) containing B such

that the character eλ extends to Pλ. Then the partial flag space above is G/Pλ. The

construction of L′
λ is similar to that of Lλ. The total space is given by equivalence

classes of pairs (g, z), where g ∈ G and z ∈ C, such that (g, z) ∼ (gp, eλ(p)z) for all

p ∈ Pλ. The quotient map to G/Pλ is then π′(g, z) = gPλ. Let ρ : G/B → G/Pλ be

the canonical quotient map. In terms of flags, ρ sends a full flag V1 ⊂ V2 · · · ⊂ Vn−1

to Vi1 ⊂ · · · ⊂ Vik . Now, the pullback ρ∗(L′
λ) is Lλ, and the sections of Lλ are all

pulled back from sections of L′
λ. Additionally, the line bundle L′

λ is very ample.

As before, L′
λ has a canonical G-action and a democratic T -linearization of L′

λ

gotten from restricting the action of G to T . As before, we may twist the democratic

linearization by a character eµ of T . The µ-linearization of L′
λ is compatible with the

µ-linearization of Lλ via the pullback map ρ∗. There is an isomorphism of graded
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rings,

Rλ,µ
∼=

∞⊕
N=0

Γ(G/Pλ, L
′
Nλ)

T .

Therefore, we have an isomorphism of G.I.T. quotients,

Proj(Rλ,µ) ∼= Proj
( ∞⊕

N=0

Γ(G/Pλ, L
′
Nλ)

T
)
.
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Chapter 3

A finite set of generators

3.1 Lifting generators and relations from the associated graded ring

of a filtered ring

For background on filtrations and gradings we refer to [Bou1]. Our filtrations

will be increasing and indexed by the natural numbers N = {0, 1, 2, . . .}.

Lemma 3.1.1 Suppose that M is a filtered module over a filtered ring R and that

their filtrations are compatible in the sense that

µ(Fi(R)⊗ Fj(M)) ⊂ Fi+j(M)

where µ is the module structure. Suppose that x1, x2, . . . , xn are elements of M such

that their images xi, 1 ≤ i ≤ n, under the leading term map generate gr(M) as a

gr(R) module. Then the xi, for 1 ≤ i ≤ n generate M .

Remark 3.1.2 An analogous argument shows that if the images in gr(R) of a finite

set of elements w1, w2, . . . , wn of R generate gr(R) then w1, w2, . . . , wn generate R.

Our goal in this section is to prove the statement for relations that is the

analogue of the statement in the remark for generators.

3.1.1. Definition. Let M be a filtered module and x ∈ M . We define the filtration

level (or order) v(x) ∈ N of x to be the smallest n such that x ∈ Fn(M).

13



Assume that R is graded as a vector space and that we have chosen homo-

geneous generators f1, f2, . . . , fn for R such that the images f 1, f 2, . . . , fn of these

generators in gr(R) generate gr(R). We assume that the degree of fi is ei, for

1 ≤ i ≤ n. We obtain two exact sequences,

I
ι−−−→ C[x1, x2, . . . , xn]

π−−−→ R

and

J −−−→ gr(C[x1, x2, . . . , xn])
gr(π)−−−→ gr(R).

Here π sends xi to fi, for 1 ≤ i ≤ n. In the above the polynomial ring C[x1, x2, . . . , xn]

is a weighted polynomial ring, the variable xi has weight ei. We define a filtration

on R by defining the filtration level of r to be the minimum of the degrees of the

polynomials in π−1(r). The reader will verify that this filtration coincides with the

quotient filtration of the standard filtration on C[x1, x2, . . . , xn]. We remind the

reader that the quotient filtration is characterized by the fact that the induced map

on each filtration level is a surjection, see [Bou1], pg. 164.

We note that gr(C[x1, x2, . . . , xn])) is the polynomial ring C[x̄1, x̄2, . . . , x̄n]. We

leave to the reader the task of proving (by induction on the filtration level):

Lemma 3.1.3 Suppose R is a filtered C–algebra which is graded as a vector space

and f1, . . . , fn have the property that their images f 1, . . . , fn generate gr(R). Then

the given filtration on R coincides with the quotient filtration associated to the sur-

jection π : C[x1, x2, . . . , xn] → R given by π(xi) = fi.

Since we give I the filtration induced as a submodule of the polynomial ring

both I and R have the filtrations needed to apply Proposition 2 of [Bou1], pg. 169
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to deduce that we have an exact sequence

gr(I)
gr(ι)−−−→ gr(C[x1, x2, . . . , xn])

gr(π)−−−→ gr(R).

and consequently gr(ι) : gr(I) → J is an isomorphism.

We are now ready to state and prove the result we want on lifting relations

from gr(R) to R. We emphasize that we are assuming that the generators for R

map to generators for gr(R) under the leading term map.

Proposition 3.1.4 Suppose p1, p2, . . . , pk ∈ gr(C[x1, x2, . . . , xn]) generate the ideal

of relations in the given generators for gr(R). Then

1. There exist lifts p̃i, 1 ≤ i ≤ k, to C[x1, x2, . . . , xn] such that for all i the

polynomial p̃i is a relation for R.

2. For any choice of such lifts p̃i, 1 ≤ i ≤ k, the lifts generate the ideal of relations

of R.

Proof. Since we have shown that J ∼= gr(I) the first statement in the proposition is

obvious (since the leading term map is onto by definition of gr(I)). However, the

lift of a homogeneous element will usually not be homogeneous (the ideal I may not

contain any nonzero homogeneous elements). The second statement follows from

Lemma 3.1.1 - the images of the lifts generate the ideal gr(I) so the lifts generate

I. �
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3.2 Gel’fand Tsetlin polytopes and a toric degeneration of Rλ,µ

We shall assume that λ is dominant, and that λ − µ is in the root lattice of

SL(n, C), and that µ lies in the convex hull of the Weyl orbit of λ. We can now

normalize the coordinates of λ and µ so that the last coordinate of λ is zero, and

λ1 + · · ·+λn = µ1 + · · ·+µn. Now it is also true that each µi ≥ 0. If these conditions

do not hold then the degree one part of Rλ,µ is zero.

The Gel’fand Tsetlin polytope GT (λ, µ) is given by the set of triangular arrays

[xi,j], 1 ≤ i ≤ n, 1 ≤ j ≤ i, such that λ = (xn,1, . . . , xn,n), the row sums si =∑i
j=1 xi,j = µ1 + · · ·+ µi for each i, 1 ≤ i ≤ n, together with the inequalities,

1. xi,j ≥ 0 for each i, j (nonnegativity).

2. xi+1,j ≥ xi,j ≥ xi+1,j+1 for each i, j (interlacing).

Illustration of the triangular array:

xn,1 xn,2 xn,3 · · · xn,n

xn−1,1 xn−1,2 · · · xn−1,n−1

. . .
...

x3,1 x3,2 x3,3

x2,1 x2,2

x1,1

The integral points in GT (λ, µ) are in one-to-one correspondence with a basis

of R
(1)
λ,µ, the degree one elements of Rλ,µ. In general, the dimension of R

(N)
λ,µ is equal
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to the number of integral points in GT (Nλ,Nµ) for each N . Let Sλ,µ be the graded

semigroup
⋃∞

N=0 GT (Nλ,Nµ), where the grading is by N and the semigroup oper-

ation is addition. We can think of the elements of Sλ,µ as symbolically representing

a special basis of Rλ,µ as a complex vector space. In fact the usual basis chosen is

that of semistandard tableaux of shape Nλ filled by Nµ for the degree N part of

the ring, but we will not use this explicitly.

Theorem 3.2.1 (Foth and Hu [FH]) There is a one parameter flat degeneration of

Rλ,µ with special fiber a toric ring R′
λ,µ which is isomorphic to the graded semigroup

algebra of Sλ,µ:

R′
λ,µ

∼= C[Sλ,µ].

In fact there is an N-filtration of Rλ,µ such that R′
λ,µ is the associated graded algebra.

Now, as we saw in the previous section, a presentation for the semigroup Sλ,µ

can lifted to a presentation for the ring Rλ,µ. In particular there is a canonical

choice of lifts given the basis for Rλ,µ corresponding to lattice points in the Gel’fand

Tsetlin cone. In particular, if Sλ,µ is generated by elements of degree ≤ m, then

Rλ,µ is also generated by elements of degree ≤ m.

We now illustrate a couple of examples where we apply the above theorem

to study the structure of the ring Rλ,µ. Let n = 4, and λ = (3, 1, 0, 0) and µ =

(1, 1, 1, 1). The G.I.T. quotient is the democratic quotient of the flag space F1,2(C4)

by T . Using the computer program cdd+1 we find that the polytope GT (λ, µ) has

1See http://www.ifor.math.ethz.ch/˜fukuda/cdd home/cdd.html
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three vertices v1, v2, v3:

v1 =

3 1 0 0

2 1 0

1 1

1

v2 =

3 1 0 0

2 1 0

2 0

1

v3 =

3 1 0 0

3 0 0

2 0

1

All of these vertices are integral, and their convex hull GT (λ, µ) is a unimodular

triangle with no interior integral points. Hence the semigroup Sλ,µ is generated by

these three elements. They have no relations since they form a simplex. Let ṽ1, ṽ2, ṽ3

be lifts in Rλ,µ of degree one. Now these three elements will generate Rλ,µ. There

are no relations in these generators ṽ1, ṽ2, ṽ3 since their leading terms v1, v2, v3 have

no relations in them. Therefore, the ring Rλ,µ is the polynomial ring C[ṽ1, ṽ2, ṽ3],

and the G.I.T. quotient is CP2.

Another example is given by n = 6, λ = (2, 2, 2, 0, 0, 0) and µ = (1, 1, 1, 1, 1, 1).

The G.I.T. quotient is the space of six points on CP2 modulo PGL(3, C) via the

Gel’fand MacPherson correspondence. It is known as the Igusa’s quartic I4. It

has an interesting self-duality by association of point sets; see [DO] or [HM] for a

generalization of association of points sets to weight varieties. The Gel’fand Tsetlin
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polytope GT (λ, µ) consists of numbers a, b, c, d, e, f, g in the pattern,

2 2 2 0 0 0

2 2 1 0 0

2 f g 0

c d e

a b

1

Using cdd+ we find there are seven vertices x1, x2, x3, x4, x5, y1, y2, given by

x1

x2

x3

x4

x5

y1

y2



=



1 1 1 1 1 1 1

1 1 2 1 0 1 1

2 0 2 1 0 1 1

2 0 2 1 0 2 0

1 1 2 1 0 2 0

3/2 1/2 3/2 3/2 0 3/2 1/2

3/2 1/2 2 1/2 1/2 3/2 1/2



.

In particular two of the vertices are not integral. This shows that the semigroup Sλ,µ

is not generated in degree one. In fact a minimal presentation of the ring Rλ,µ was

given in [DO]. There are lifts of the above vertices, say X1, X2, X3, X4, X5, Y1, Y2,

such that the Xi’s and the difference Y1 − Y2 generate Rλ,µ. Since the xi’s form a

4-simplex we can already see that there can be no relations in the Xi’s. In [DO]

it is shown that there is a single relation, which expresses (Y1 − Y2)
2 as quartic

polynomial in the Xi’s.
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This brings us to the question of how large denominators can be in Gel’fand

Tsetlin polytopes. The following theorem gives an upper bound.

Theorem 3.2.2 (De Loera and McAllister [dLMc]) The denominators of vertices

of the polytope GT (λ, µ) are bounded above by

Dn = (n− 1)C(n+1,2)−n−1,

where C(n, k) is the number of k-sized subsets of {1, 2, . . . , n}, i.e. “n choose k”.

(By denominator of a rational vector v we mean the least integer k such that kv is

integral.)

Now as a quick consequence of the above two theorems we get a finite set of

generators for Rλ,µ.

Theorem 3.2.3 The ring Rλ,µ is generated by elements of degree less than or equal

to (C(n− 1, 2) + 1) Dn.

Proof. Suppose that P is a rational polytope. Let M be a natural number such that

for each vertex v ∈ P there exists a natural number kv ≤ M such that kvv is an

integral vector. Suppose that the dimension of P is d. We claim the integral points

in the convex hull of the origin with the dilation (d+1)M P generate the semigroup

of integral points in the cone CP of P , where CP = {tp | t ∈ R, t ≥ 0, p ∈ P}. First

triangulate P into simplices P1, . . . , P` such that each vertex of each simplex Pi is

a vertex of P (see [Z]). Now fix q ∈ CP such that q is integral. Then q ∈ CPi for

some i, since the Pi’s cover P . Let Πi be the parallelopiped generated by the edges
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[0, kvv] for v a vertex of Pi. That is,

Πi =
{ ∑

v∈vert(Pi)

tvkvv | 0 ≤ tv ≤ 1
}

.

There are natural numbers av for v a vertex of Pi such that q lies in the translate,

Πi +
∑

v∈vert(Pi)

avkvv.

Now, q−
∑

v avkvv is an integral vector q̄ in Πi. The points kvv and q̄ are all in the

convex hull of the origin with the (d+1)M -th dilation of P , since each kv ≤ M and

there are only d + 1 vertices of Pi.

We claim the dimension of GT (λ, µ) is at most C(n−1, 2). Indeed the dimen-

sion of G/B is C(n, 2), and the dimension of T is n − 1. Hence the dimension of

the G.I.T. quotient is at most C(n, 2) − (n − 1) = C(n − 1, 2). Since there is flat

degeneration of Rλ,µ to the semigroup algebra associated to the cone on GT (λ, µ),

we have,

dimR GT (λ, µ) = dimC Proj(Rλ,µ) ≤ C(n− 1, 2).

Now from the DeLoera McAllister bound on denominators of vertices, we get that

the semigroup Sλ,µ is generated by elements of degree at most

(C(n− 1, 2) + 1)
(
(n− 1)C(n+1,2)−n−1

)
.

We may lift these generators to get generators of Rλ,µ. �

Unfortunately this is a terribly large bound on degree. Most likely the ring

is generated by a much smaller set of generators. The advantage to the theorem is

that the bound is not dependent on the pair of weights but only on n.
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Chapter 4

Matroids and semistability of flags

In this chapter1 we apply a theorem of Gel’fand, Goresky, MacPherson, and

Serganova about matroids and matroid polytopes to study semistability of flags

relative to a given T -linearization of Lλ. In this chapter, the space F is meant to be

the space of partial flags associated to the dominant weight λ. The main theorem

of this chapter is the following: if there exists a nonzero T -invariant global section

of Lλ, then for each semistable flag x ∈ F , there exists a T -invariant global section

s of Lλ such that s(x) 6= 0. Hence the global T -invariant sections of Lλ determine a

well-defined map from T \\F to projective space, provided there is at least one such

which is nonzero.

A related result in this note is that the closure of any T -orbit in F is pro-

jectively normal for any projective embedding of F . The proof of this fact uses

essentially the same argument given for the semistability theorem above.

We take one step towards a solution to the generators problem (for G =

SL(n, C)) with Theorem 4.1.1, which implies that the lowest degree T–invariants

in the graded ring of F are sufficient to give a well-defined map from T \\F to

projective space. Consequently these global sections determine an ample line bundle

M of T \\F . We are left with the problem of determining which tensor power of M

1The contents in this chapter are intended for publication; the preprint [H] is available on the

archive.
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is very ample.

The proof of Theorem 4.1.1 involves a simple combinatorial argument involving

Minkowski sums of weight polytopes of flags. These weight polytopes are also known

as flag matroid polytopes, see [BGW]. Two facts are essential to the argument:

• Any subset of SL(n, C) roots which are linearly independent may be extended

to a basis of the root lattice.

• Each edge of a matroid polytope is parallel to a root of SL(n, C) (due to

Gel’fand, Goresky, MacPherson, Serganova).

Remark 4.0.4 The first fact is specific to SL(n, C). The root systems of other clas-

sical complex simple Lie algebras do not have this remarkable saturation property.

However, the second result is a special case of the Gel’fand–Serganova theorem which

is one of the central theorems in the new subject of Coxeter matroids, see [BGW].

It should be noted that Theorem 4.1.1 easily follows from a theorem of Neil White

[W] in the case that F is a Grassmannian.

Additionally, the tools we develop in proving Theorem 4.1.1 also allow us

to show that the closure of a T -orbit cl(T · x) for any x ∈ F (for any projective

embedding of F ) is a projectively normal toric variety. Again Neil White [W] showed

this holds when F is a Grassmannian Grk(Cn). Additionally, R. Dabrowski [Dab]

proved that projective normality holds for closures of certain generic T -orbits in

other homogeneous spaces G/P (he covered the case that G is any semi-simple

complex Lie group).
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4.1 The semistability theorem

The proof of the following theorem will be given in section §4.3. This theorem

allows us to explicitly construct an ample line bundle of T \\F , and to cover T \\F

by explicit affine varieties.

Theorem 4.1.1 (Semistability Theorem) Suppose that λ is a dominant weight and

µ is any weight, such that λ − µ lies in the root lattice of SL(n, C). Then if p ∈ F

is µ–semistable there is a global T -invariant section s of Lλ such that s(p) 6= 0.

Remark 4.1.2 If λ − µ is not in the root lattice, then Γ(F, Lλ)
T is zero. In fact,

Γ(F, Lλ)
T is nonzero if and only if λ− µ is in the root lattice and µ lies within the

convex hull of the Weyl orbit of λ. If µ does not lie in the convex hull of the Weyl

orbit of λ, then Γ(F, L⊗N
λ )T is zero for all N > 0; in this case there are no semistable

points in F , and the quotient T \\F is empty.

The following is taken from [Do], chapter 8. Let s1, . . . , sm be a basis of the

T -invariant sections of Lλ for the µ-linearization. By theorem 4.1.1, the semistable

points F ss are covered by the affine open subsets Xsi
, where Xsi

= {x ∈ F | si(x) 6=

0}. Let Yi be the affine quotient T \\Xsi
; the affine coordinate ring of Yi is O(Xsi

)T .

The Yi’s may be glued together via the transition functions si/sj to form the G.I.T.

quotient T \\F , and simultaneously an ample line bundle M of T \\F , such that

π∗(M) = ι∗(Lλ), where ι : F ss → F is the inclusion map.

As stated in the introduction, it remains an open problem to compute the

minimal integer N such that M⊗N is very ample.
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4.2 Matroid polytopes and weight polytopes

A matroid is a pair M = (E,B) where E is a finite set called the ground set

of M , and B is a nonempty collection of subsets of E called bases that satisfy the

exchange condition, which is that for any two bases B1, B2 ∈ B, if x ∈ B1 \ B2

then there is an element y ∈ B2 \ B1 such that (B1 \ {x}) ∪ {y} ∈ B is a basis.

Necessarily it follows that all bases B ∈ B have the same cardinality, which is called

the rank of M . Matroids are a generalization of finite configurations of vectors,

where the only data known about the set of vectors is which subsets are maximal

independent subsets. The collection of maximal independent subsets satisfies the

exchange condition. Similarly, a linear subspace Λ of dimension k of Cn determines

a matroid M(Λ), given by the vector configuration {πΛ(e1), . . . , πΛ(en)} where πΛ

is orthogonal projection onto Λ (for the standard Hermitian form) and the ei’s are

the standard basis vectors of Cn.

4.2.1 Matroid polytopes

Suppose that M = (E,B) is a matroid, and E = {1, 2, . . . , n}. For each B ∈ B

let vB ∈ Rn/∆ (∆ is the diagonal in Rn) be given by vB
i = 0 if i /∈ B and vB

i = 1 if

i ∈ B. Let PM be the convex hull of {vB | B ∈ B}. We call PM a matroid polytope.

Each vB is a vertex of PM and so M may be recovered from PM .

Theorem 4.2.1 (Gel’fand Goresky MacPherson Serganova [GGMS]) Two vertices

vB1, vB2 of PM form an edge of PM iff vB1 − vB2 = ei − ej for some i 6= j, where

e1, . . . , en are the standard basis vectors of Rn. In other words, edges of PM are
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parallel to roots of SL(n, C). (In fact, the bases B1 and B2 differ by a single element

iff vB1 and vB2 form an edge of PM .)

Conversely, if P is a polytope where all vertices are 0/1 vectors (each compo-

nent is either 0 or 1), and each edge of P is parallel to an SL(n, C) root, then there

is a matroid M such that P = PM .

Remark 4.2.2 A natural way that matroid polytopes arise is by restricting the mo-

mentum mapping ρ : Grk(Cn) → t∗0 for the action of the maximal compact subtorus

T0 in T on the Grassmannian to the closure of an orbit T ·Λ, see [GGMS] or [BGW].

The polytope PM(Λ) is the image of ρ restricted to the closure of T · Λ.

4.2.2 Weight polytopes

Suppose that V is a finite dimensional complex representation of a torus T .

Then V is a direct sum of weight spaces,

V =
⊕

µ

V [µ],

where V [µ] = {v ∈ V | t · v = eµ(t)v for all t ∈ T}. Note that a section s ∈ Vλ =

Γ(F, Lλ) is T -invariant for the µ-linearization of Lλ if and only if s ∈ Vλ[µ].

Given a dominant weight λ let Pλ denote the associated parabolic subgroup.

For each g ∈ G, let

wtλ(g) = {µ | (∃s ∈ Vλ[µ])(s(gPλ) 6= 0)}.

Let the weight polytope wtλ(g) be the convex hull of wtλ(g) (the convex hull is taken

in t∗0, where t0 is the Lie algebra of the maximal compact torus T0 ⊂ T ).
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Lemma 4.2.3 For any two dominant weights λ1 and λ2, we have

wtλ1(g) + wtλ2(g) = wtλ1+λ2(g),

where the summation denotes the Minkowski sum, A + B = {a + b | a ∈ A, b ∈ B}.

Proof. Suppose that µ1 ∈ wtλ1(g) and µ2 ∈ wtλ2(g). Let s1 ∈ Vλ1 [µ1] and s2 ∈

Vλ2 [µ2] such that s1(gPλ1) 6= 0 and s2(gPλ2) 6= 0. Recall there are functions f1, f2 :

G → C such that s1 = sf1 and s2 = sf2 . We have that f1(g) 6= 0 and f2(g) 6= 0.

Hence, f1(g)f2(g) 6= 0. The section sf1f2 lies in Vλ1+λ2 [µ1 + µ2], and is nonzero at

gPλ1+λ2 .

Now suppose that µ ∈ wtλ1+λ2(g). We may identify the irreducible repre-

sentation Vλ as the space of global sections of π∗(Lλ) of G/B where B is the

Borel subgroup of G and π : G/B → G/Pλ. This is justified since the pullback

π∗ : Γ(G/Pλ, Lλ) → Γ(G/B, π∗(Lλ)) is an isomorphism of vector spaces. We shall

also abuse notation and identify Lλ with the pullback π∗Lλ.

The tensor product Vλ1 ⊗ Vλ2 is the vector space of sections of the outer

tensor product Lλ1 � Lλ2 of G/B × G/B, where B is the Borel subgroup. The

irreducible representation Vλ1+λ2 is a direct summand of Vλ1⊗Vλ2 , and the projection

Vλ1 ⊗ Vλ2 → Vλ1+λ2 is realized by pulling back Lλ1 � Lλ2 to the diagonal ∆ ⊂

G/B×G/B. We have assumed there is a section s ∈ Vλ1+λ2 [µ] such that s(gB) 6= 0.

Clearly (Vλ1 ⊗ Vλ2)[µ] surjects onto Vλ1+λ2 [µ]. Furthermore,

(Vλ1 ⊗ Vλ2)[µ] =
∑

µ1+µ2=µ

Vλ1 [µ1]⊗ Vλ2 [µ2].

Hence there must exist weights µ1, µ2 such that µ1 + µ2 = µ and some component

s′ = s1s2 of s such that s1(gB)s2(gB) 6= 0 and s1 ∈ Vλ1 [µ1] and s2 ∈ Vλ2 [µ2]. �
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Corollary 4.2.4 Suppose that λ =
∑n−1

i=1 ai$i is dominant, i.e. each ai is non-

negative and $i denotes the i-th fundamental weight connected to the Grassmannian

Gri(Cn). Then for any g ∈ G,

wtλ(g) =
n−1∑
i=1

ai · wt$i
(g),

where the sum indicates Minkowski sum and ai·wt$i
(g) denotes the ai-fold Minkowski

sum of wt$i
(g).

The weight polytope wtλ(g) is a flag matroid polytope within the more general

setting of Coxeter matroid polytopes, see [BGW]. However, we will only need to

consider standard matroid polytopes, as they are the building blocks for flag matroid

polytopes.

Proposition 4.2.5 Suppose that $k is the k-th fundamental weight. Then wt$k
(g)

is a matroid polytope for any g ∈ G.

Proof. A basis for the sections of L$k
is given by bracket functions [i1, i2, . . . , ik]

where 1 ≤ i1 < i2 < · · · < ik ≤ n. The section s = [i1, i2, . . . , ik] is equal to sf ,

where f : G → C assigns the determinant of the k by k submatrix given by columns

1, 2, . . . , k and rows i1, i2, . . . , ik of g ∈ G. The bracket [i1, i2, . . . , ik] belongs to the

weight space V$k
[µ] where eµ = (a1, a2, . . . , an) ∈ Zn/∆ is given by ai = 1 if i = it for

some t, 1 ≤ t ≤ k, otherwise ai = 0. Now suppose that gP$k
∈ G/P$k

= Grk(Cn).

The linear subspace defined by gP$k
is the span of the first k columns of g. We

have that µ ∈ wt$k
(g) iff µ is a 0/1 vector (mod ∆) with k ones (occuring at

I = (i1, i2, . . . , ik)) and n− k zeros such that the I-th minor is nonzero.
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Let M(g) be the matroid with ground set {1, 2, . . . , n} of the vector configura-

tion r1, r2, . . . , rn ∈ Ck where ri is the i-th row of g restricted to the first k columns,

i.e. ri = (gi,1, gi,2, . . . , gi,k). It is clear that the matroid polytope of M(g) is the

weight polytope wt$k
(g). �

4.3 Saturation properties of weight polytopes

We shall prove the following lemma by a combinatorial argument. The main

theorem 4.1.1 easily follows from this lemma. Neil White proved in [W] the exact

same statement for λ = $k, using a theorem of Edmonds in matroid theory.

Lemma 4.3.1 Suppose g ∈ G and λ is a dominant weight. Suppose µ is a weight

such that λ − µ is in the root lattice. Then Nµ ∈ wtNλ(g) implies µ ∈ wtλ(g) for

all N > 0.

Remark 4.3.2 If G is any complex semisimple group, and λ is a dominant weight,

and λ−µ is in the root lattice of G, then VNλ[Nµ] 6= 0 implies Vλ[µ] 6= 0. However,

the lemma is a much stronger statement than this (and it does not hold for groups

other than SL(n, C)) because g is fixed (i.e., the point gPλ ∈ G/Pλ is fixed).

Let R be the set of SL(n, C) roots. Let Q(R) (resp. P (R)) denote the root

lattice (resp. weight lattice). Convex hulls of subsets of the weight lattice, denoted

by an overline, should take place in t∗0, which is isomorphic to P (R)⊗R = P (R) =

Rn/∆. The map ε : P (R) → Z/nZ given by ε(a1, . . . , an) =
∑

i ai mod n is a

homomorphism of abelian groups, and Q(R) = ker(ε).
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Definition 4.3.3 A finite subset A of Q(R) is called root–saturated if

• the convex hull A is such that each edge ei is parallel to a root γi in R, (i.e.

A is a flag matroid polytope, see [BGW].)

• A = A ∩Q(R).

We will eventually prove that wtλ(g)− λ (the set wtλ(g) translated by −λ) is

root-saturated for any dominant weight λ.

Lemma 4.3.4 Suppose that α1, . . . , αn−1 ∈ R are independent over Q. Then they

are a basis for the root lattice Q(R).

Proof. The proof goes by induction on n. If n = 2 there are only two roots α,−α

and they generate the same lattice. Now suppose that n > 2. Let Z[α1, . . . , αn−1]

be the Z–span of α1, . . . , αn−1. Without loss of generality we may assume that

each αi is a positive root since negating αi does not change the span over Z. Let

σ1, . . . , σn−1 be the standard simple roots of SL(n, C). That is, σi = ei − ei+1.

Note that any positive root ei − ej =
∑j−1

t=i σt is a sum of consecutive simple roots.

Conversely any consecutive sum of simple roots is a positive root. We may choose

some w ∈ W (where W is the Weyl group) such that w(αn−1) = σn−1. In particular

if αn−1 = ei− ej let w be the product of two cycles (n−1 i)(n j). Since elements

of W induce isomorphisms of the lattice Q(R), we have that w(α1), . . . , w(αn−1) is

a basis of Q(R) if and only if α1, . . . , αn−1 is a basis of Q(R). Reassign αi := w(αi).

For each i ≤ n − 2, if αi = es − en = σs + · · · + σn−1 replace αi with αi − σn−1 =

σs + · · ·+σn−2 = es− en−1. Now the roots α1, . . . , αn−2 may be identified with roots
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of SL(n − 1, C). By the induction hypothesis Z[α1, . . . , αn−2] = Z[σ1, . . . , σn−2].

Since αn−1 = σn−1 we have that Z[α1, . . . , αn−1] = Q(R).

�

Lemma 4.3.5 Suppose that A and B are root-saturated, and A ∩ B is nonempty.

Then A ∩B is nonempty.

Proof. The proof is by induction on the dimension of A. If dim A = 0 then A = {a}

for some a ∈ Q(R). Then A ∩B = A ∩B = {a}. Now suppose that dim A ≥ 1.

We have two cases, the first case is that the intersection A ∩ B contains a

boundary point of A. Then there is some facet F of A such that F ∩B is nonempty.

We claim F ∩A is root–saturated. The vertices of F are within F ∩A, so F ∩ A ⊃ F .

On the other hand F ⊂ F ∩ A so F ⊂ F ∩ A; therefore F = F ∩ A. The edges

of F are also edges of A hence they are parallel to roots. Furthermore, for any

x ∈ F ∩A, we have F ∩ A∩Q(R) ⊂ A since A is root–saturated, and it follows that

F ∩ A ∩ Q(R) = F ∩ A since F ∩ A ⊂ A ⊂ Q(R). Since dim F < dim A we may

apply the induction hypothesis to get that F ∩A∩B is nonempty and hence A∩B

is nonempty.

On the other hand suppose that A ∩B contains no boundary point of A. Let

LA(R) be the sub–lattice of Q(R) spanned by the roots which are parallel to some

edge of A. Let a0 ∈ A be a vertex of A. Note that the affine space HA = a0 +LA(R)

is the smallest affine space containing A. We claim HA ∩ B = A ∩ B. Suppose

that z ∈ HA ∩ B. Let a ∈ A ∩ B. Since HA has the same dimension as A, there

are linear inequalities ηi(x) ≤ fi where the interior of A consists of points x ∈ HA
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where the inequalities are strict; that is, ηi(x) < fi for all i if and only if x is an

interior point of A. The boundary points of A are those points x ∈ A such that

ηi(x) = fi for some i. Let c(t) = (1 − t)a + tz for 0 ≤ t ≤ 1. Suppose that z /∈ A.

Then there is some i such that ηi(z) > fi. However a is an interior point of A and

so ηi(a) < fi. Hence there is some t0 such that η(c(t0)) = fi in which case c(t0) is a

boundary point of A. But c(t) ∈ B for each t by convexity of B. This contradicts

that A ∩ B is disjoint from the boundary of A. Hence HA ∩B = A ∩ B. Therefore

(HA ∩Q(R)) ∩B = A ∩B since A ∩Q(R) = A and B ∩Q(R) = B.

We now show by induction on dim B, that for any B which is root-saturated,

that HA ∩ B is nonempty implies (HA ∩ Q(R)) ∩ B is nonempty. Suppose that

dim B = 0. Then B = {b} for some b ∈ Q(R), and so b ∈ (HA ∩ Q(R)) ∩ B. Now

suppose that dim B ≥ 1. We have two cases.

First suppose that HA ∩ B intersects the boundary of B nontrivially. Then

there is a face F of B such that HA∩F is nonempty. Since F ∩B is root–saturated,

F ∩B = F , HA ∩ F is nonempty, and dim F < dim B, we may apply the induction

hypothesis and we’re finished.

Now suppose that HA ∩ B is disjoint from the boundary of B. Let LB(R)

be the sub–lattice of Q(R) spanned by the roots which are parallel to some edge

of B. Let b0 ∈ B be a vertex of B. The affine space HB = b0 + LB(R) is the

smallest affine space containing B. As above, we have that HA ∩ HB = HA ∩ B

and so (HA ∩ Q(R)) ∩ (HB ∩ Q(R)) = A ∩ B. Since HA does not intersect the

boundary of B, we have that HA ∩HB is a single point z0, since if the dimension of

the intersection HA∩HB = HA∩B is greater than zero then HA∩B is unbounded.
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But B is compact since B is finite and this cannot happen. We now show that

z0 ∈ Q(R). We have that z0 = a0 +vA = b0 +vB where a0 ∈ A, b0 ∈ B, vA ∈ LA(R),

vB ∈ LB(R). Let {α1, . . . , αp} ⊂ R be a basis of LA(R) and let {β1, . . . , βq} ⊂ R

be a basis of LB(R). Since the intersection of HA and HB is a point, we have that

LA(R)∩LB(R) = {0}. Hence the set {α1, . . . , αp, β1, . . . , βq} is linearly independent

in Q(R). Choose {γ1, . . . , γr} ⊂ R so that {α1, . . . , αp, β1, . . . , βq, γ1, . . . , γr} is a

basis for Q(R). By the Lemma above this is also a basis for the lattice Q(R). Now

vA =
∑

i ciαi and vB =
∑

j djβj are unique expressions for vA, vB. But also the

difference a0 − b0 = vB − vA = (
∑

j djβj) − (
∑

i ciαi) lies within the lattice Q(R),

and so the coefficients ci and dj must be integers. Hence, z0 is a lattice point and

we’ve finished the proof of the Lemma. �

Theorem 4.3.6 Suppose that A and B are root-saturated. Then the Minkowski

sum A + B = {a + b | a ∈ A, b ∈ B} is root-saturated.

Proof. We show that the Minkowski sum A + B is root-saturated if A and B are

each root-saturated. Clearly A+B is finite, and the elements are within Q(R) since

Q(R) is closed under addition. First we show that the edges of A + B are parallel

to roots. Clearly A + B = A + B. The Minkowski sum of two polytopes P, Q has

edges of the following types:

• (vertex of P) + (edge of Q).

• (edge of P) + (vertex of Q).

• (edge of P) + (edge of Q), providing these edges are parallel.
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We leave the proof to the reader (the proof is easily obtained by observing that the

fan of P + Q is the meet of the fan of P with the fan of Q). In all three cases, the

resulting edge is parallel to an edge of either P or Q or both, and hence it is parallel

to some root in R.

Next we must show that A+B = (A + B)∩Q(R). Suppose that z ∈ (A + B)∩

Q(R). Hence there exists x ∈ A and y ∈ B such that x + y = z. Hence x ∈

(z + −B) ∩ A, where −B = {−b : b ∈ B}. Clearly z + (−B) is root-saturated.

Hence, we may apply the Lemma above to get a lattice point x0 in the intersection.

Since A is saturated, we have that x0 ∈ A. Now we have that z = x0 + y0 where

y0 ∈ B. But since z, x0 ∈ Q(R) we have that y0 = z − x0 ∈ Q(R), and so y0 ∈ B

since B is root-saturated, and we’re finished. �

Lemma 4.3.7 If $k is a fundamental weight and g ∈ G then the translation

wt$k
(g)−$k is root-saturated.

Proof. Note that all elements of wt$k
(g) are 0/1 vectors (mod ∆) having k ones and

n−k zeros. Translating by −$k results in vectors whose first k components may be

either 0 or −1 and last n−k components are 0 or +1, and the sum of all components

is zero. Hence the first k components define a vertex of the negated unit k-cube

[0, 1]k, and the last n − k components are vertices of the (n − k)-cube. Therefore,

there can be no additional lattice points in the convex hull. We already showed that

the convex hull of wt$k
(g) is a matroid polytope, so the edges are parallel to roots.

This property is preserved by translations. �

34



Corollary 4.3.8 For any dominant weight λ and g ∈ G, the set wtλ(g) − λ is

root-saturated.

Proof. We have that λ =
∑n−1

k=1 ak$k, where the ak’s are non-negative integers.

Also, wtλ(g) =
∑n−1

k=1 ak · wt$k
(g) (Minkowski sum). Hence,

wtλ(g)− λ =
n−1∑
k=1

ak · (wt$k
(g)−$k).

Since the root-saturated property is preserved under Minkowski sums, we have that

wtλ(g)− λ is root-saturated. �

Proof of lemma 4.3.1. Proof. Suppose that Nµ ∈ wtNλ(g). Then N(µ− λ) ∈

wtNλ(g) − Nλ. The convex hull of wtNλ(g) − Nλ scaled by 1/N is equal to the

convex hull of wtλ(g) − λ since N · wtλ(g) = wtNλ(g). Therefore µ − λ is in the

convex hull of wtλ(g)−λ. But since µ−λ ∈ Q(R) and wtλ(g)−λ is root-saturated,

we have that µ− λ ∈ wtλ(g)− λ, so µ ∈ wtλ(g). �

Proof of main theorem 4.1.1. Proof. Suppose that gPλ is semistable relative

to the µ-linearization of the line bundle Lλ. This means there is some N > 0 and a

section s ∈ Γ(G/Pλ, L
⊗N
λ )T such that s(gPλ) 6= 0. This means that Nµ ∈ wtNλ(g).

By Lemma 4.3.1 we have that µ ∈ wtλ(g). So there must exist a section s′ ∈

Γ(G/Pλ, Lλ)
T such that s′(gPλ) 6= 0. �

4.3.1 Failure of semistability theorem for G = SO(5, C)

Let B(z, w) be the bilinear form on C5 given by

B(z, w) = z1w5 + z2w4 + z3w3 + z4w2 + z5w1 = 2z1w5 + 2z2w4 + z3w3.

35



Now SO(5, C) ⊂ SL(5, C) is the subgroup preserving B. The maximal torus T

may be taken to the diagonal matrices in SO(5, C). Elements of T have the form

diag(t1, t2, 1, 1/t2, 1/t1) for t1, t2 ∈ C∗. Let $1 denote the first fundamental weight of

SO(5, C). We have e$1(t1, t2, 1, 1/t1, 1/t2) = t1, but the second fundamental weight

does not lift to a character of SO(5, C) - one needs to go the universal cover to find

such a character. Let P$1 ⊂ SO(5, C) be the associated parabolic subgroup. The

quotient space SO(5, C)/P$1 may be identified with the space of isotropic lines in

C5.

Let x be the (isotropic) line through (1,
√
−1, 0,

√
−1, 1). Let gx ∈ SO(5, C) be

such that gxP$1 = x. The set wt$1(gx) is equal to {$1, 2$2−$1,−2$2+$1,−$1}.

Depiction:

wt$1(gx) =

��
��

��
��

�
??

??
??

??
?���������

??
??

??
??

?

•

•

•

• ◦
◦

◦

◦

◦

$2

$1

This set is missing the origin, although V$1 [0] 6= 0 and $1 ∈ Q(SO(5, C)), so

wt$1(gx) − $1 is not root-saturated. Note the origin does belong to wt2$1(gx) =

wt$1(gx) + wt$1(gx). Therefore x is semistable for the democratic linearization

of L$1 . It follows that for the democratic linearization of L$1 , one requires a T -

invariant section of L⊗2
$1

to pick out the semistable point x.

4.4 Projective normality of T -orbits in the space of partial flags

Let H be the group of diagonal matrices in GL(n, C). Hence T ⊂ H is the

set of diagonal matrices with determinant one. Let χ1, . . . , χm be m characters of

H. That is, each χi : H → C∗ is an algebraic homomorphism of groups. Each χi is
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given by a point ai = (ai,1, . . . , ai,n) ∈ Zn, where

χi(h1, . . . , hn) =
n∏

j=1

h
ai,j

j .

These characters determine an action of H on Am by

h · (z1, z2, . . . , zm) = (χ1(h)z1, χ2(h)z2, . . . , χm(h)zm).

Now take any point z ∈ Am, and let X(z) be the Zariski closure of the H-orbit

of z. That is, X(z) = cl(H · z). Certainly X(z) contains a dense torus and there

is a natural action of this torus on X(z); so X(z) is a (possibly non-normal) toric

variety.

But when is X(z) a normal toric variety, i.e. when is the coordinate ring of

X(z) integrally closed in its field of fractions? Some notation: if A is a finite subset

of Zd then let Z(A) be the sub-lattice generated by A, let N(A) be the semigroup

of all non-negative integral combinations of elements of A, and let Q+
0 (A) be the

rational cone in Qd given by all non-negative rational combinations of elements of A.

According to Proposition 13.5 of [St] we have that the semigroup algebra C[N(A)]

is normal iff N(A) = Z(A) ∩Q+
0 (A).

The following proposition is likely well known but we give a proof for lack of

reference.

Proposition 4.4.1 Let supp(z) = {i | zi 6= 0}. Let A(z) = {χi | i ∈ supp(z)}.

Then X(z) is isomorphic to the affine toric variety defined by A(z) ⊂ Zn. That

is, X(z) is isomorphic to the affine variety V ⊂ C#A(n) of the semigroup algebra

C[N(A(z))], where N(A(z)) is the semigroup in Zn generated by A(z). Hence X(z)

is normal if and only if Z(A(z)) ∩Q+
0 (A(z)) = N(A(z)).
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Proof. Let z̄ ∈ Cm be given by z̄i = 1 if i ∈ supp(z) and z̄i = 0 otherwise. Let

si = 1/zi if zi 6= 0 and si = 1 if zi = 0. Then the matrix diag(s1, . . . , sm) defines an

algebraic automorphism of Am which takes X(z) to X(z̄), so X(z̄) is isomorphic to

X(z). Hence we may assume that all components of z are either 0 or 1. Additionally,

X(z) lives entirely within the components i where zi is nonzero. Hence, we may

project X(z) onto the linear subspace given by the components in supp(z), which

defines an isomorphism of X(z) onto its image. Thus, we may assume that each

component of z is equal to one. If χi = χj for some i, j, we may also project away

one of these. Hence we have reduced to the case that the χi’s are distinct, and z

is the vector of all ones. The coordinate ring of X(z) is now easily seen to be the

semigroup algebra C[N(A(z))]. �

A dominant weight λ of SL(n, C) may be lifted to a dominant weight λ̃ of

GL(n, C) by normalizing λ so that the last component is zero. That is, the image

of λ̃ ∈ Zn in Zn/∆ is λ, and λ̃n = 0. Let

|λ̃| =
n∑

i=1

λ̃i.

Now Vλ is also an irreducible representation of GL(n, C), where zIn ∈ GL(n, C) acts

by scaling each vector s ∈ Vλ by z|
eλ|, and so if g̃ = zg where z ∈ C∗ and g ∈ SL(n, C)

then the action of g̃ is defined by g̃ · s = z|
eλ|(g · s). A basis for the representation Vλ

is given by semi-standard tableaux τ of shape λ̃ (with total number of slots equal to

|λ̃|), filled with indices from 1 to n. A section sτ ∈ Vλ[µ] iff the number of times the

index i appears in τ is equal to µi. Here we are treating µ as a weight of GL(n, C).

Note that if Vλ[µ] 6= 0 then |µ| =
∑n

i=1 µi = |λ̃| since |µ| must equal the total
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number of slots in τ , where sτ ∈ Vλ[µ].

Recall that H = C∗(T ) is the maximal torus in GL(n, C) consisting of diagonal

matrices. For each g ∈ GL(n, C) let

wteλ(g) = {µ | (∃s ∈ Vλ[µ])(s(gPeλ) 6= 0)},

where Peλ ⊂ GL(n, C) is the parabolic subgroup C∗(Pλ) associated to λ̃. Each

µ ∈ wteλ(g) ⊂ Zn satisfies |µ| = |λ̃|.

Note that the root lattice of SL(n, C) may be identified with integral vectors

v ∈ Zn whose components sum to zero. Hence, for any g ∈ SL(n, C) we have an

identification of wtλ(g) − λ with wteλ(g) − λ̃. In particular, wteλ(g) − λ̃ is root-

saturated.

Let Neλ be the sub-lattice of Zn given by

Neλ = {v ∈ Zn | |v| =
n∑

i=1

vi ≡ 0 mod |λ̃|}.

Lemma 4.4.2 For any g ∈ SL(n, C),

Q+
0 (wteλ(g)) ∩Neλ = N(wteλ(g)).

Proof. Suppose that v ∈ Q+
0 (wtλ(g)) ∩Neλ. Then |v| = d|λ̃| for some d ∈ N. Hence

v belongs to the convex hull of the d-th dilate of wteλ(g), so v is in the convex hull

of wtdeλ(g), since wtdeλ(g) is the d-fold Minkowski sum of wteλ(g). But wtdeλ(g) − dλ̃

is root-saturated, and since v − dλ̃ ∈ Q(R) we have that v − dλ̃ ∈ wtdeλ(g) − dλ̃.

Equivalently, v ∈ wtdeλ(g). Since wtdeλ(g) is the d-fold Minkowski sum of wteλ(g), we

have that v ∈ N(wteλ(g)). �

Corollary 4.4.3 The semigroup algebra C[N(wteλ(g))] is normal.
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Now suppose that λ is dominant and Pλ is the associated parabolic subgroup.

Choose a basis (s1, s2, . . . , sN) of Vλ = Γ(SL(n, C)/Pλ, Lλ) such that each basis

vector is a generalized eigenvector for the democratic T -action. (Recall the demo-

cratic action is the restriction of the natural action of SL(n, C) on Vλ to T .) Let

ιλ : SL(n, C)/Pλ → P(Vλ) be the projective embedding determined by this choice

of basis. Note that one typically embeds G/Pλ into P(V ∗
λ ) as there is no need for a

choice of basis, but it is more convenient for us to embed into P(Vλ).

The following theorem has been proven by R. Dabrowski for certain generic

T -orbits in G/P for G an arbitrary semisimple complex Lie group, see [Dab]. Herein

lies the first proof for arbitrary T -orbits in the case G = SL(n, C).

Theorem 4.4.4 The Zariski closure of any T -orbit in SL(n, C)/Pλ ↪→ P(Vλ) is a

projectively normal toric variety.

Proof. Let x ∈ SL(n, C)/Pλ ⊂ P(Vλ). Let cl(T · x) denote the Zariski closure of the

orbit T ·x. Let Aff(cl(T ·x)) ⊂ Vλ denote the associated affine cone; it is easy to see

that Aff(cl(T · x)) = cl(H · vx) where vx is any nonzero vector on the line x, since

the scalar matrices in H fill out all nonzero multiples of points in T · vx.

Let g ∈ SL(n, C) be such that gPλ = x. Now wteλ(g) = A(vx). Hence by

Proposition 4.4.1, the affine toric variety Aff(cl(T · x)) is normal if and only if the

semigroup algebra C[N(wteλ(g))] is normal, which we have already shown. This

means that the projective toric variety cl(T · x) is projectively normal. �
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Chapter 5

Evenly weighted points on the Riemann sphere

Here we investigate the special case where λ is a multiple of the second funda-

mental weight $2. Recall that by the Gel’fand MacPerhson correspondence, we are

truly studying SL(2, C) invariants of n-tuples of points on the projective line CP1.

Indeed in this case the ring Rλ,µ will be generated in degree one, by a theorem of

Kempe [Ke] from 1894. The next step is to find the relations in the Kempe gen-

erators. In [HMSV1] it is found that the relations are generated in degree at most

four, for general weighting µ and any number of points. However, if µ has all even

components then it was found that the relations were only quadrics. In this thesis

we will investigate the case that each µi is even in more detail. We find the quadric

relations are given by very natural binomials inherited from simple relations among

graphs. The idea is motivated by the main theorem of [HMSV2] where it is found

that very simple binomial quadrics (together with some linear relations) cut out the

projective variety, though perhaps not the ideal. It was left as on open problem if

the ideal is generated by these simple relations. In this thesis we partially answer

this question by restricting to the case that µ consists of all even integers, and by

broadening the set of quadric binomials.

The condition that µ has even components vastly simplifies the study of the

ring. Indeed in [HMSV1] the problem is studied for general µ by examining the
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degenerated toric ring of [FH]. The toric ring R′
λ,µ is not generated in degree one

unless each µi is even.

We will slightly change notation in this section. Here we denote µ by w (the

notation is taken to mean “weighting”) and if w = (w1, . . . , wn) we shall assume that

each wi is a positive even number. Now we set λ =
∑

i wi/2 so that λ1 + · · ·+ λn =

w1 + · · ·+ wn. Since everything is determined by w, we denote the moduli space by

Mw. We will denote the graded ring Rλ,w simply by Rw.

5.1 A toric degeneration of Mw

In this chapter we will need to know precisely how the degeneration of [FH]

works. Firstly, we will see how generators of Rw may be interpreted as directed

multigraphs on vertex set {1, 2, . . . , n} with valency w.

Let [Xi, Yi] be the i-th point on CP1. We choose the embedding ιw : (CP1)n →

CPN−1, where N =
∏

i(wi + 1), given by sending the n-tuple ([X1, Y1], . . . , [Xn, Yn])

to all monomials
∏

i X
ai
i Y bi

i where ai + bi = wi. Let R̃w denote the subring of

C[X1, Y1, . . . , Xn, Yn] generated by these monomials. Indeed, the coordinate ring of

(CP1)n for the ιw embedding may be identified with R̃w. There is a unique action of

SL(2, C) on R̃w compatible with the standard diagonal action on (CP1)n via linear

fractional transformations. Indeed, for g ∈ SL(2, C), let [X ′
i, Y

′
i ] = [XiYi]g

−1 (right

matrix multiplication). Now the action of g ∈ SL(2, C) on the monomial
∏

i X
ai
i Y bi

i

is given by

g ·
∏

i

Xai
i Y bi

i =
∏

i

(X ′
i)

ai(Y ′
i )

bi .

42



Now we claim,

Rw = (R̃w)SL(2,C).

This is quite easy to see. Let H denote the ample generator of the Picard group

of CP1. Thus the global sections of H are linear combinations of the homogeneous

coordinates X and Y . It is clear that

R̃w =
∞⊕

N=0

Γ((CP1)n, (H⊗w1 � · · ·�H⊗wn)⊗N).

There is a unique linearization of SL(2, C) on this line bundle, and the action of

SL(2, C) on the global sections is the same as we illustrated above. By the Gel’fand

MacPherson correspondence this is the same as the ring of T invariants of the w-

linearization of the line bundle Lλ of G/B where λ = (1/2)(w1 + · · ·+ wn)$2.

The determinants of two by two minors of the matrix,

X1 Y1

X2 Y2

...
...

Xn Yn


,

generate all the invariants under the action of SL(2, C) acting on the right, by the

first fundamental theorem of invariant theory. We shall denote the determinant

function XiYj −XjYi by a directed edge [i, j] drawn as a directed graph with vertex

set {1, . . . , n}. Now a monomial M =
∏

t[it, jt] in these determinants may be

depicted as the directed multigraph having edges [it, jt] for each t. Given a directed

multigraph Γ with vertex set {1, 2, . . . , n} let the valency of Γ be (e1, e2, . . . , en)
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where ei is the number of edges (counted with multiplicity) containing the vertex i.

It is easy to see that Γ lies in the image of ιw iff the valency of Γ is a multiple of w.

Definition 5.1.1 For each direct multigraph Γ with valency Nw for some N ∈ N,

let XΓ denote the associated element of Rw.

Proposition 5.1.2 The ring Rw is generated by the XΓ for Γ a directed multigraph

on vertex set {1, 2, . . . , n} with valency a multiple of w. Indeed the N th graded piece

R
(N)
w is spanned by the XΓ for which Γ has valency Nw.

Proof. Indeed the monomial XΓ associated to the graph Γ is a T -invariant for the

w–linearization iff the valency of Γ is a multiple of w. In general the subring of

T -invariants is generated by T -invariant monomials, provided the generators are all

generalized eigenvectors of T . �

Theorem 5.1.3 (Kempe [Ke], 1894) The ring Rw is generated by the XΓ for Γ a

directed multigraph with valency w.

Remark 5.1.4 Actually Kempe only handled the case that all wi are equal to one.

For a proof handling general weights see [HMSV1].

Let Gw denote the set of directed multigraphs with valency w. Now let X̃Γ be

formal variables for each Γ of valency w. We now have a short exact sequence,

0 → I → C[X̃Γ]Γ∈Gw → Rw → 0,

where X̃Γ 7→ XΓ ∈ Rw. The remainder of this chapter will be an investigation of

the kernel ideal I.
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The set of directed graphs on the fixed vertex set {1, 2, . . . , n} form a monoidal

semigroup via the operation of disjoint union of their edges. We will use use special

notation Γ1 · Γ2 for this operation:

Definition 5.1.5 Suppose that Γ1 and Γ2 are directed multi-graphs on vertex set

{1, 2, . . . . , n}. Let Γ1 · Γ2 be the directed multi-graph on vertex set {1, 2, . . . , n},

where the edge set of Γ1 · Γ2 is the multi-set union of the edge sets of Γ1 and Γ2.

Note that the graphs Γ whose valency is a multiple of w form a sub-semigroup

under the above operation.

5.1.1 The Lakshmibai-Gonciulea inspired filtration of Rw

We find it useful in defining the filtration to restrict to a linearly independent

subset of the XΓ for Γ ∈ Gw.

Definition 5.1.6 (Kempe graphs) Let the vertices of a regular planar n-gon be de-

noted 1 through n, in clockwise order. Let K(N)
w denote the set of valency Nw multi-

graphs (N ≥ 0), with edges drawn as straight line segments joining the vertices of

the n-gon above, such that:

1. No two edges cross. (If an edge has multiplicity k > 1, then it is to be drawn

as a single edge labelled with multiplicity k.)

2. Each edge [i, j] is oriented such that i < j.

Let Kw = ∪N≥0K(N)
w . We shall call elements of Kw Kempe graphs.
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Since the orientation of each edge of a Kempe graph is determined, it is no

longer necessary to think of Kempe graphs as directed graphs. From now on we

will treat the Kempe graphs as non-directed multi-graphs, and we will use typical

alphabetic characters (for example G) rather than Greek letters (such as Γ) to denote

Kempe graphs.

The proof of the following theorem may be found in [HMSV2]. The proof

is analogous to the proof that semistandard tableaux are linearly independent, for

those familiar with the representation theory of SL(n, C).

Theorem 5.1.7 The set {XG}G∈K(N)
w

is a C-basis for R
(N)
w .

Definition 5.1.8 For each Kempe graph G let

f(G) =
∑

[i, j] an edge of G

i + 2j.

Let

Fm(Rw) = 〈XG〉f(G)≤m.

The following theorem is central:

Theorem 5.1.9 Suppose G1, G2 are Kempe graphs with valencies Nw, Mw re-

spectively. Let the integers cG be the coefficients in the expansion of the product,

XG1XG2 =
∑

G∈K(N+M)
w

cGXG.

There exists an XG occurring on the right hand side with cG = 1, such that f(G) =

f(G1) + f(G2); furthermore if G′ 6= G and cG′ 6= 0 then f(G′) < f(G).
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Proof. We will temporarily extend the domain of f to general multi-graphs Γ with

properly oriented edges (but some edges may cross) by the same rule;

f(Γ) =
∑

[i, j] an edge of Γ

i + 2j.

Let ∆1 be the graph with the two crossing edges, [i, k], [j, l], where i < j < k < l. Let

∆2 be the graph with non-crossing edges [i, l] and [j, k], and let ∆3 be the graph with

non-crossing edges [i, j] and [k, l]. The Plücker relations XΓ′·∆1 = XΓ′·∆2 + XΓ′·∆3

applied two edges at a time are sufficient to enable one to re-express any Γ (with

correctly oriented edges) as a sum of Kempe graphs. However, f(∆1) = f(∆2) >

f(∆3) since i+j+2(k+l) > i+k+2(j+l). Hence with each application of said Plücker

relations XΓ′·∆1 = XΓ′·∆2+XΓ′·∆3 , we have f(Γ′·∆1) = f(Γ′·∆2) > f(Γ′·∆3). Finally

once enough Plücker relations have been applied (starting from the initial XG1XG2)

the final leftmost term XG of the expansion will satisfy f(G) = f(G1) + f(G2), and

if XG′ is any term other than the leftmost term XG then f(G′) < f(G1)+ f(G2). �

Definition 5.1.10 It will be useful to have a notation for the unique G above as a

function of G1, G2. Let this G be denoted G1 ∗ G2. It is obtained from G1 · G2 by

un-crossing crossing pairs of edges [i, k], [j, l], by replacing them with the edges [i, l],

[j, k], until no crossing edges remain.

Corollary 5.1.11 The set of Fm(Rw) form a filtration of Rw, and for each Kempe

graph G ∈ Kw,

f(G) = min{m | XG ∈ Fm(Rw)}.
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Definition 5.1.12 Let gr(Rw) be the associated graded ring, with LG-graded com-

ponents, Fm(Rw)/Fm−1(Rw). Let the “standard” grading be given by

gr(Rw)(N) = 〈YG〉G∈K(N)
w

,

where YG is the image of XG under the surjection

Ff(G)(Rw) → Ff(G)(Rw)/Ff(G)−1(Rw).

Hence gr(Rw) is a bi-graded ring.

Corollary 5.1.13 (to Theorem 5.1.9) The set {YG}G∈K(N)
w

is a basis for gr(Rw)(N).

Corollary 5.1.14 (to Theorem 5.1.9) If G1 and G2 are Kempe graphs then

YG1YG2 = YG1∗G2 .

Corollary 5.1.15 The set of all YG for ranging over Kempe graphs G ∈ Kw form

a graded semigroup. Furthermore the ring gr(Rw) is the graded semigroup algebra,

gr(Rw) = C[{YG | G ∈ Kw}].

Remark 5.1.16 We have called this filtration the LG-filtration since it motivated

by the filtration of the ring of the Grassmannian Gr2(Cn) given by Lakshmibai-

Gonciulea [LG] which was designed to give a flat degeneration of Gr2(Cn) to a toric

variety. (They also constructed flat degenerations for general flag varieties.)

5.1.2 The polygonal semigroup algebra C[Sw]

We will now identify the semigroup {YG | G ∈ Kw} explicitly as the set of

lattice points in a rational cone.
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Definition 5.1.17 Let C(w) in Rn−2 be given by (z, d2, d3, . . . , dn−2) ∈ C(w) iff

z ≥ 0, each di ≥ 0, and

1. di ≤ di+1 + zwi+1

2. di+1 ≤ di + zwi+1

3. zwi+1 ≤ di + di+1

for 1 ≤ i ≤ n− 2, where d1 := zw1 and dn−1 := zwn. Let D(Nw) be intersection of

the hyperplane z = N with the cone C(w).

These are the triangle inequalities that hold for an n-gon with vertices v0 =

vn, v1, . . . , vn−1 with side lengths zwi = |vi−vi−1| and diagonal lengths di = |vi−v0|.

v0 = vn
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d2
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Definition 5.1.18 Let Λ(w) be the lattice in Rn−2 given by the conditions (z, d2, . . . , dn−2) ∈

Λ(w) iff z is an integer, and

di ≡ z(w1 + · · ·+ wi) mod 2,

for each i, 2 ≤ i ≤ n − 2. (Note this is equivalent to the condition that each triple

(di, zwi+1, di+1) sums to an even integer.)

49



Definition 5.1.19 Let Sw be the semigroup of lattice points in C(w),

Sw = C(w) ∩ Λ(w).

Let S
(N)
w be those elements (z, d2, . . . , dn−2) in Sw such that z = N . Hence S

(N)
w

is the set of lattice points within the bounded polytope D(Nw). This gives Sw the

structure of a graded semigroup. Let C[Sw] be the graded semigroup algebra over C.

It should noted here that Sw is isomorphic to Sλ,w, the lattice points in the

cone on the Gel’fand Tsetlin polytope GT (λ,w). The correspondence is given by

the following map:

(N, d2, . . . , dn−2) 7→ x ∈ GT (Nλ,Nw),

where x is the triangular array xi,j, 1 ≤ j ≤ i ≤ n, given by x1,1 = Nw1, xn−1,2 =

N(|w|/2−wn), xn,1 = xn,2 = xn−1,1 = N |w|/2, xi,j = 0 for all j ≥ 3, xi,1− xi,2 = di

for all i, 2 ≤ i ≤ n − 2, and xi,1 + xi,2 = N(w1 + · · · + wi) for all i. For the proof

this is a bijection see [HMSV1].

Definition 5.1.20 For each Kempe graph G ∈ Kw, let

φ(YG) = (N, d2, . . . , dn−2) ∈ Zn−2,

where the degree of G is Nw, and di is the number of edges [k, l] in G such that

k ≤ i and l ≥ i+1. Sometimes we abuse notation and write φ(G) instead of φ(YG).

50



An illustration for w = (2, 2, 2, 2, 2): There are six Kempe graphs of valency

(2, 2, 2, 2, 2), and the following illustrates their images under φ.
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Lemma 5.1.21 For each N ≥ 0 the map φ is a bijection between {YG}G∈K(N)
w

and

S
(N)
w .

Proof. First we will show that the image of φ is contained within the semigroup.

Fix i, 1 ≤ i ≤ n − 1. Let Si be the multi-set of edges [k, l] such that k ≤ i and

l ≥ i + 1, let Si+1 be the multi-set of edges [k, l] such that l ≤ i + 1 and l ≥ i + 2,

and let Wi+1 be the multi-set of edges [k, l] such that k = i + 1 or l = i + 1. We

have di = |Si|, di+1 = |Si+1|, and Nwi+1 = |Wi+1|. It is clear that if any edge

[k, l] ∈ Si∪Si+1∪Wi+1, then it belongs to exactly two of these three sets. From this

the triangle inequalities for the triple di, di+1, Nwi+1 follow easily, and it is also easy

to see that di + di+1 + Nwi+1 must be an even integer, since each edge is counted

twice in the sum.

Next we show that φ is a bijection. We must show there is only one way to

build a Kempe graph G from the data (N, d2, . . . , dn−2). First we will show that
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some graph Γ exists (with properly oriented edges but possibly crossing edges) such

that φ(Γ) = (N, d2, . . . , dn−1) (φ is extended to such graphs using the same rule,

φ(Γ) the sum of i+2j for [i, j] an edge of Γ). The number N forces that the number

of edges containing vertex i must be Nwi. Let a2 be the multiplicity of the edge

[1, 2], let b2 be the total number of edges [2, j] with j ≥ 3, and let c2 be the total

number of edges [1, j] with j ≥ 3. We have the three equations,

a2 + c2 = zw1, b2 + c2 = d2, a2 + b2 = zw2.

Hence,

a2 = (zw1 + zw2 − d2)/2, b2 = (−zw1 + zw2 + d2)/2, c2 = (zw1 − zw2 + d2)/2.

Since the numerators in the above three equations are even, and since the triple

(zw1, zw2, d2) satisfies the triangle inequalities (making all numerators non-negative),

these are valid non-negative integral values for a2, b2, and c2, and they are uniquely

determined by the data (N, d2). In particular we know there must be a2 multiples

of the edge [1, 2]. Now let ai be the number of edges [h, i], bi is number of edges

[i, j], and ci is the number of edges [h, j] with h < i < j, where i ≤ n − 1. The

number di−1 tells us the number of edges [h, j] with h ≤ i− 1 j ≥ i, but the heads

j of these edges have not yet been assigned. The number ai tells us how many of

these end at index i. Similarly as before, we get equations,

ai + ci = di−1, bi + ci = di, ai + bi = zwi,

ai = (di−1 + zwi − di)/2, bi = (−di−1 + zwi + di)/2, ci = (di−1 − zwi + di)/2.

52



Again each of ai, bi, ci is a non-negative integer. Of the di−1 edges [h, j] with h ≤ i−1,

j ≥ i, we must assign ai of them so that j = i. But there is only one way to do

this so that the resulting graph has no crossing edges: first we must assign those

edges [h, j] with h = i− 1 to terminate at i (i.e. j := i), then those with h = i− 2,

etc. It is pictorially obvious this leads to no crossing edges, and any other choice of

assignments would lead to an eventual crossing. �

Lemma 5.1.22 If G1 and G2 are Kempe graphs then

φ(YG1YG2) = φ(YG1∗G2) = φ(YG1) + φ(YG2).

Hence φ is an isomorphism of semigroups, and induces an isomorphism (also de-

noted φ) on the semigroup algebras,

φ : gr(Rw) ∼= C[Sw].

Proof. This proof is similar to the proof of Theorem 5.1.9. We will temporarily

extend the domain of φ to general multi-graphs Γ with properly oriented edges (but

some edges may cross) by the same rule;

φ(Γ) = (N, d2, d3, . . . , dn−1),

where N is the degree of XΓ and di is the number of edges [k, l] of Γ such that k ≤ i

and l ≥ i + 1. With this extension of the definition it is clear that φ(G1 · G2) =

φ(G1) + φ(G2).

Let ∆1 be the graph with the two crossing edges, [i, k], [j, l], where i < j <

k < l. Let ∆2 be the graph with non-crossing edges [i, l] and [j, k], and let ∆3 be
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the graph with non-crossing edges [i, j] and [k, l]. We know the Plücker relations

XΓ′·∆1 = XΓ′·∆2 + XΓ′·∆3 applied two edges at a time are sufficient to enable one

to re-express any XΓ (with correctly oriented edges) as a sum of Kempe graphs.

We have that φ(∆1) = φ(∆2), hence with each application of said Plücker relations

XΓ′·∆1 = XΓ′·∆2 + XΓ′·∆3 , we have φ(Γ′ · ∆1) = φ(Γ′ · ∆2). Finally once enough

Plücker relations have been applied (starting from the initial XG1XG2) the final

leftmost term XG of the expansion will satisfy φ(G) = φ(G1 ·G2) = φ(G1) + φ(G2).

�

Corollary 5.1.23 The rings gr(Rw) and C[Sw] are isomorphic as graded rings,

where the grading of gr(Rw) is by the standard grading, not the LG-grading.

5.1.3 Filtrations give flat degenerations

It is well-known that if R is a filtered ring then there is a one-parameter flat

degeneration with special fiber the associated graded ring of R. We sketch one way

to do this, borrowed from [AB], using the Rees algebra. Let t be an indeterminant

and let R be the Rees algebra

R =
∞⊕

m=0

Fm(R)tm ⊂ R[z].

Theorem 5.1.24 (see Alexeev–Brion [AB])

• R is flat over C[t].

• R ⊗C[t] C[t, t−1] ∼= R[t, t−1].

• R ⊗C[t] (C[t]/(t)) ∼= gr(R).
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In [HMSV1] the following theorem was proven.

Theorem 5.1.25 Suppose that each wi is even. Then the semigroup Sw is gener-

ated by degree one elements, and the relations in these elements are only quadrics.

Consequently, the relations among the Kempe generators of Rw are generated by

quadric relations.

We now look more closely at the appearance of these quadric relations.

5.2 Graphic relations generate the ideal of Rw

We suppose that the weights wi are all equal to 2:

w = (2, 2, . . . , 2) ∈ Zn.

Definition 5.2.1 (Graphic binomials) Suppose that a, b, c, and d ∈ S
(1)
w such that

a + b = c + d. Then we say that the quadric binomial relation a + b = c + d

is graphic if there exists graphs Γa, Γb, Γc, Γd of degree w such that the following

holds:

1. The leading terms of XΓa, XΓb
, XΓc, and XΓd

are respectively Xφ−1(a), Xφ−1(b),

Xφ−1(c), and Xφ−1(d).

2. XΓcXΓd
= XΓaXΓb

.

Lemma 5.2.2 Suppose that a,b ∈ S
(1)
w , and [a,b] are such that there exists some

index i such that |ai−bi| ≥ 4. Then there exists c, d in S
(1)
w such that c+d = a+b,∑n−1

i=1 |ci − di| <
∑n−1

i=1 |ai − bi|, and the relation a + b = c + d is graphic.
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Proof. Recall the rules for a point a to be in S
(1)
w . Let ∂ai = ai − ai−1, for 2 ≤

i ≤ n − 1. We have that each |∂ai| ≤ 2 by the first two triangle inequalities. The

lattice condition is that each ai is even. Hence each ∂ai ∈ {−2, 0, +2}. We have that

a1 = an−1 = 2. Finally the third triangle inequality disallows any consecutive pair

of components ai, ai+1 to each be zero. These are necessary and sufficient conditions

for a to be an element of S
(1)
w .

We shall find vectors w′, w′′, a′, a′′, b′, b′′ such that

• w′ + w′′ = w, a′ + a′′ = a, and b′ + b′′ = b.

• a′,b′ ∈ S
(1)
w′ and a′′,b′′ ∈ S

(1)
w′′ .

• c = a′ + b′′ and d = b′ + a′′ will be the desired c,d of the Lemma.

The construction will be in the form of an inductive algorithm.

Step 0: Let

i1 = min{i | |ai − bi| ≥ 4}.

Note that i1 ≥ 2 since a1 = b1 = 2. If neither ai nor bi is zero for all i < i1 then set

i0 = 1. Otherwise, let

i0 = 1 + max{i < i1 | ai = 0 or bi = 0}.

Note in this case that ∂ai0 ≥ 0 and ∂bi0 ≥ 0. Let a′′i = b′′i = 0 for i < i0. Let

a′′i = b′′i = 1 for i0 ≤ i < i1. Assign s := 1.

Step 1: Let

is+1 = min{i > is | |ai − bi| ≤ 2}.
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If ais > bis then let a′′i = 2 for is ≤ i < is+1, and let b′′i = 0 for is ≤ i < is+1. If

bis > ais then let b′′i = 2 for is ≤ i < is+1, and let a′′i = 0 for is ≤ i < is+1.

Step 2: If each of ai and bi is nonzero for all i > is+1 then let is+2 = n. Otherwise,

let

is+2 = min{i > is+1 | ai = 0, or bi = 0, or ∂ai ≤ 0 and ∂bi ≤ 0}.

Let a′′i = b′′i = 1 for is+1 ≤ i < is+2. If is+2 = n then we are finished constructing a′′

and b′′. If ais+2 and bis+2 are each nonzero then let a′′i = b′′i = 0 for all i ≥ is+2, and

we are again finished constructing a′′ and b′′. Otherwise ais+2 or bis+2 is zero, and

we must continue. Note that not each of ais+2 and bis+2 can be zero since otherwise

we would have ∂ais+2 , ∂bis+2 ≤ 0. There are two cases:

Case ais+2 > 0 and bis+2 = 0. Claim ais+2 ≥ 4: we have ∂bis+2 = −2, so

∂ais+2 = +2 is positive. We also have that ais+1 ≥ 2 since ais+1−1 ≥ bis+1−1 + 4 ≥ 4.

Also bis+1 ≥ 2 since ∂bis+1 > ∂ais+1 . By definition of is+2, there is not an i such that

is+1 < i < is+3 where ai or bi is zero. In particular we have that ais+2−1 ≥ 2 and

bis+2−1 ≥ 2. So our claim holds that ais+2 ≥ 4. In particular, ais+2 − bis+2 ≥ 4. Now

re-assign s := s + 2, and go back to Step 1.

Case bis+2 > 0 and ais+2 = 0. As above, we have that bis+2 ≥ 4. Re-assign

s := s + 2 and go back to Step 1.

57



Example:

a = (2, 2, 4, 6, 4, 2, 0, 2, 2, 4, 2)

b = (2, 0, 2, 2, 0, 2, 4, 2, 4, 2, 2)

a′′ = (0, 0, 1, 2, 2, 1, 0, 1, 1, 1, 0)

b′′ = (0, 0, 1, 0, 0, 1, 2, 1, 1, 1, 0)

Let I be the set of indices {i0, i1, . . . , ik} appearing in the construction above.

Let w′′ be given by w′′
i = 1 if i ∈ I and w′′

i = 0 otherwise.

We claim that a′′ ∈ S
(1)
w′′ . The proof that b′′ ∈ S

(1)
w′′ is identical by symmetry of

definition. Note that each a′′i is a non-negative integer. Also, observe that |∂a′′i | = w′′
i

for each i. Hence the parity of components of a′′ change precisely at the indices in

I. Therefore a′′ is in the lattice relative to w′′. We have a′′i−1 ≤ a′′i + w′′
i and

a′′i ≤ a′′i−1 +w′′
i since |∂a′′i | = w′′

i for each i. Also, w′′
i ≤ a′′i−1 +a′′i for the same reason.

Let w′ = w −w′′, a′ = a− a′′, and b′ = b− b′′. We claim that a′ is in S
(1)
w′ .

The proof that b′ ∈ S
(1)
w′ is identical. First we need to show the components of a′

are non-negative. This is equivalent to showing that a′′i ≤ ai for each i. For each

i we have that 0 ≤ a′′i ≤ 2. We claim that a′′i = 0 whenever ai = 0. Suppose that

ai = 0. Then, either is < i < is+1 for some s ≡ 1 mod 2, or i ∈ I, or i < min I,

or i > max I. In the latter three cases a′′i is zero by construction. In the intervals

is < i < is+1 for odd s, the greater of the two sequences a or b remains at least 4

greater than the lesser, and so in particular the greater sequence cannot have a zero
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component in this interval. Since ai = 0, we have that ais + 4 ≤ bis and so a′′i = 0

by definition.

We claim that a′ satisfies the parity conditions to be a lattice point relative

to w′. We have that ∂a′i = ∂ai − ∂a′′i = ∂ai ± w′′
i . But the parity of w′′

i is equal to

the parity of w′
i since w′

i + w′′
i = 2. Since ∂ai is even we have ∂a′i ≡ w′

i mod 2.

Also, we need |∂a′i| ≤ w′
i for all i ≥ 2 (two of three triangle inequalities). We

have that ∂a′i = ∂ai − ∂a′′i . If ∂a′′i = 0 then i /∈ I and w′′
i = 0. Hence w′

i = wi = 2,

and so |∂a′i| = |∂ai| ≤ 2 = wi = w′
i. Suppose that ∂a′′i = ±1. Then i ∈ I and so

w′
i = 1. Suppose i = i0; in this case we have that ∂a′′i = +1. We may exclude the

case i0 = 1 since i ≥ 2. We have that ∂ai0 ≥ 0, as was pointed out in Step 0 of

the construction. Hence |∂a′i0| = |∂ai0 − ∂a′′i0| ≤ 1 = w′
i0
. Now suppose that i = is

and s is odd. First consider the case s = 1. If ∂a′′i1 = +1 then ai1 ≥ bi1 + 4 and

ai1−1 ≤ bi1−1 + 2. Hence ∂ai1 ≥ 0 and so |∂a′i1| = |∂ai1 − ∂a′′i1| ≤ 1 = w′
i1
. Similarly

if ∂a′′i1 = −1 then ∂ai1 ≤ 0 and again |∂a′i1| = |∂ai1 − ∂a′′i1 | ≤ 1. Now suppose

that s ≥ 3 (and s is odd). There are three cases. Either is = n, or ∂ais ≤ 0 and

∂bis ≤ 0, or at least one of ais or bis is zero. We may exclude the case is = n since

i ≤ n − 1. Suppose that ∂ais ≤ 0 and ∂bis ≤ 0. Then ∂a′′is = −1 by definition,

and so |∂a′is | = |∂ais − ∂a′′is | ≤ 1. If on the other hand at least one of ais or bis is

zero, then the situation is identical to the case s = 1 as above. Suppose i = is+1

and s is odd. If ∂a′′is+1
= +1 then a is less than b on the interval [is, is+1), and

∂ais+1 ≥ 0. Thus we have |∂a′is+1
| = |∂ais+1 − ∂a′′is+1

| ≤ 1. Similarly if ∂a′′is+1
= −1

then ∂ais+1 ≤ 0, so again |∂a′is+1
| = |∂ais+1 − ∂a′′is+1

| ≤ 1.

59



We still must show the last inequality w′
i ≤ a′i−1 + a′i. First consider the

case that w′
i = 1 = w′′

i . Then i ∈ I so ∂a′′i 6= 0. Therefore ∂a′i 6= 0 and so

a′i−1 + a′i ≥ 1 = w′
i. Now suppose that w′

i = 2. Then w′′
i = 0, so i /∈ I. Therefore

a′′i−1 = a′′i . The inequality a′i−1 + a′i ≥ 2 is equivalent to ai−1 + ai ≥ a′′i−1 + a′′i + 2.

Hence if a′′i−1 = a′′i = 0 we are done. Suppose that a′′i−1 = a′′i = 1. Then we must

show that ai−1 +ai ≥ 4. We have that is−1 < i < is where s is odd. But a is nonzero

on intervals [is−1, is) where s is odd. Hence ai−1 + ai ≥ 4.

Let

c = a′ + b′′, d = b′ + a′′.

We claim that
∑n−1

i=1 |ci − di| <
∑n−1

i=1 |ai − bi|. Whenever is ≤ i < is+1 where s is

odd, then |ai − bi| ≥ 4. Suppose without loss of generality that ai ≥ bi + 4. Then

a′′i = 2 and b′′i = 0. Hence, ci = ai − 2 and di = bi + 2 thus |ci − di| = |ai − bi| − 4.

Now suppose that i is not in any interval [is, is+1) where s is odd. Then a′′i = b′′i .

Hence ci = (ai−a′′i )+ b′′i = ai and di = (bi− b′′i )+a′′i = bi, and so |ci−di| = |ai− bi|.

Since the intervals [is, is+1) exist (in particular [i1, i2)) the claim follows.

Let G(a′) = φ−1(a′), G(a′′) = φ−1(a′′), G(b′) = φ−1(b′), and G(b′′) = φ−1(b′′)

be the associated Kempe graphs. Let

Γa = G(a′) ·G(a′′), Γb = G(b′) ·G(b′′), Γc = G(a′) ·G(b′′), Γd = G(b′) ·G(a′′).

Then, the polynomial

X̃ΓaX̃Γb
− X̃ΓcX̃Γd

is a lift of the quadric relation Ỹφ−1(a)Ỹφ−1(b)−Ỹφ−1(c)Ỹφ−1(d) for the toric ring gr(Rw).

�
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Lemma 5.2.3 Suppose that a, b, c, and d are in S
(1)
w and a + b = c + d is

a nontrivial relation, and that each of [a,b] and [c,d] satisfy |ai − bi| ≤ 2 and

|ci − di| ≤ 2 for each i. Then there exists â and b̂ in S
(1)
w such that a + b = â + b̂

is graphic, [â, b̂] satisfies that |âi − b̂i| ≤ 2 for each i, and

n−1∑
i=1

|âi − ci| <
n−1∑
i=1

|ai − ci|,

n−1∑
i=1

|b̂i − di| <
n−1∑
i=1

|bi − di|.

Proof. Let i1 be the first i such that ai 6= ci. Note that i1 is also the first i such

that bi 6= di since a + b = c + d. Let i0 = 1 if all ai and bi are nonzero for i < i1.

Otherwise, let

i0 = 1 + max{i < i1 | min(ai, bi) = 0}.

Without loss of generality, suppose that ai1 > ci1 . Let i2 be the first i > i1 such

that ai ≤ ci. Let a′′i = b′′i = 0 for i < i0. Let a′′i = b′′i = 1 for i0 ≤ i < i1. Let a′′i = 2

and b′′i = 0 for i1 ≤ i < i2.

Case ai2 > 0. Let i3 = n if all ai and bi are nonzero for i > i2. Otherwise let

i3 be the first i > i2 such that min(ai, bi) = 0. Let a′′i = b′′i = 1 for i2 ≤ i < i3, and

let a′′i = b′′i = 0 for i ≥ i3.

Let i′2 be the first i ≥ i2 such that min(ai, bi) ≥ 2. Let a′′i = 0 and b′′i = 2 for

i− i2 even and i2 ≤ i < i′2. Let a′′i = 2 and b′′i = 0 for i− i2 odd and i2 ≤ i < i′2. Let

i3 = n if each ai and bi is nonzero for i ≥ i′2. Otherwise let i3 be the first i > i′2 such

that min(ai, bi) = 0. Let a′′i = b′′i = 1 for i′2 ≤ i < i3. Let a′′i = b′′i = 0 for i ≥ i3.

Let I = {i0, i1, i2, . . . , i′2, i3} (the ellipsis means that i ∈ I if i2 ≤ i ≤ i′2). Let

w′′
i = 0 for all i /∈ I. Let w′′

i = 1 if i ∈ I and i < i2 or i ≥ i′2. Let w′′
i = 2 if i ∈ I and
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i2 ≤ i < i′2. Let w′′ = (w′′
1 , . . . , w

′′
n), and let w′ = w −w′′. Let a′′ = (a′′1, . . . , a

′′
n−1)

and let b′′ = (b′′1, . . . , b
′′
n−1). Let a′ = a − a′′ and let b′ = b − b′′. We claim that

a′,b′ ∈ S
(1)
w′ and a′′,b′′ ∈ S

(1)
w′′ .

First we check that a′′,b′′ ∈ S
(1)
w′′ . Suppose that i /∈ I.

It is clear that it is enough to check the inequalities and parity conditions

at the special indices i ∈ I. The argument for i ∈ {i0, i1, i′2, i3} is similar to the

argument given in the proof of Lemma 5.2.2. Now suppose that i′2 > i2. Then,

the components of a and b alternate between 0 and 2 respectively on the interval

[i2, i
′
2). Similarly the components of c and d alternate between 0 and 2 on the

interval [i2, i
′
2). By definition a′′ = a, b′′ = b, and w′′ = w on the this interval, so

there can be no problems.

Now we must show that a′,b′ ∈ S
(1)
w′ . We will just check the special indices

i ∈ I. The argument for i ∈ {i0, i1, i′2, i3} is essentially the same as in the proof of

Lemma 5.2.2.

Let

â = a′ + b′′, b̂ = b′ + a′′.

It is easy to check that |âi − ci| ≤ |ai − ci| for all i, and |âi1 − ci1| < |ai1 − ci1|.

Similarly, |b̂i − di| ≤ |bi − di| for all i, and |b̂i1 − di1| < |bi1 − di1|.

Let G(a′) = φ−1(a′), G(a′′) = φ−1(a′′), G(b′) = φ−1(b′), and G(b′′) = φ−1(b′′)

be the associated Kempe graphs. Let

Γa = G(a′) ·G(a′′), Γb = G(b′) ·G(b′′), Γâ = G(a′) ·G(b′′), Γb̂ = G(b′) ·G(a′′).

62



Then, the polynomial

X̃ΓaX̃Γb
− X̃Γâ

X̃Γb̂

is a lift of the quadric relation Ỹφ−1(a)Ỹφ−1(b)−Ỹφ−1(â)Ỹφ−1(b̂) for the toric ring gr(Rw).

�

Theorem 5.2.4 Suppose that each weight wi is even. Then the ring Rw (using

generators XΓ where Γ is a directed graph of degree w) is cut out by the following

relations:

• The sign relations,

XΓ′·[i,j] = −XΓ′·[j,i].

• The linear Plücker relations,

XΓ′·[i,k]·[j,l] = XΓ′·[i,l]·[j,k] + XΓ′·[i,j]·[k,l].

• The graphical quadrics,

XΓ1XΓ2 = XΓ3XΓ4 ,

whenever Γ1 · Γ2 = Γ3 · Γ4.

Proof. First we assume that each wi = 2. The graphic quadric relations generate all

the quadric relations in the toric ring. They each lift to relations of type XΓ1XΓ2 =

XΓ3XΓ4 , so the linear combinations of these give all the quadratic relations in Rw.

Since the quadratic relations generate the ideal of Rw, the claim follows.

If not all the wi = 2 then let w̃ = (2, 2, . . . , 2) ∈ Zm where m =
∑

wi/2.

It is shown in [HMSV2] that Mw is a linear section of Mew, given as a subspace
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cut out by relations XΓ = 0 whenever Γ is a graph which connects vertices in the

same “clump”. The first w1/2 points form a clump, and the next w2/2 points form

another clump, etc. From the point of view of points on the projective line, it is

described as the subspace corresponding to those point configurations where all the

points in a given clump are equal to each other. Hence there is a surjection π from

Rew onto Rw, such that the generator XΓ is mapped to XΓ where Γ is Γ collapsed

so that all the vertices in the same clump are identified. If two vertices in the same

clump are joined by an edge in Γ, then Γ will then contain a loop, and will therefore

be zero by a sign relation. The map π was first introduced in [HMSV1] as the

“side-splitting map”.

The map π lifts (by the above description) to the polynomial rings in the X̃Γ

and the X̃Γ. In [HMSV2] it is shown that Iw = π(Iew), where Iew and Iw are the

kernels of the exact sequences:

0 → Iew → C[X̃Γ]Γ → Rew → 0,

0 → Iw → C[X̃Γ]Γ → Rw → 0.

Also, it is easy to see that π takes graphical quadrics to graphical quadrics, and the

sign and Plücker relations are mapped into analogous sign and Plücker relations. �

Embedding into a toric variety

Theorem 5.2.4 implies that if each wi is even, then Mw embeds into a certain

toric variety as a linear subspace. Let Gw denote the set of directed multigraphs of

degree a multiple of w. The binary operation Γ1 · Γ2 gives Gw the structure of a
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graded semigroup. Let C[Gw] denote the associated semigroup algebra.

This semigroup is also the set of lattice points in a rational cone. Let the vari-

ables xi,j for 1 ≤ i, j ≤ n represent the multiplicity of the edge [i, j]. The condition

that a graph has degree a multiple of w translates into a set of rational linear equal-

ities in the xi,j’s. Also we have the inequalities xi,j ≥ 0. The semigroup Gw may be

interpreted as the set of integral solutions to these equalities and inequalities.

Since each wi is even, by the Petersen decomposition theorem, any graph of

degree Nw may be factored into subgraphs each of degree w. Hence the degree one

elements generate the semigroup, so C[Gw] is projectively normal.

By Theorem 5.2.4 the linear sign and Plücker relations cut out a subspace of

the above toric variety which is isomorphic to Mw.
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[FH] P. Foth and Y. Hu, Toric degeneration of weight varieties and applications,

Travaux mathmatiques, proceedings of Poisson 2004 conference, to appear.

[Fu] W. Fulton, Introduction to Toric Varieties, Princeton University Press, 1993.

[FuHa] W. Fulton and J. Harris, Representation Theory, A first course, Graduate

Texts in Math. 129, Springer Verlag, 1991.

[GGMS] I. M. Gel’fand, R. M. Goresky, R. D. MacPherson, V. V. Serganova, Combi-

natorial Geometries, Convex Polyhedra, and Schubert Cells, Advances in Math-

ematics, 63 (1987), 301-316.

[G] R. Goldin, The cohomology ring of weight varieties, PhD thesis, M.I.T., 1999.

[GH] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and

sons, 1978.

[Ha] J. Harris, Algebraic Geometry, Graduate Texts in Mathematics, Springer, 133,

1992.

[HK] J.-C. Hausmann and A. Knutson, Polygon spaces and Grassmannians, En-

seign. Math. 43 (1997), 173-198.

[H] B. Howard, Matroids and Geometric Invariant Theory of torus actions on flag

spaces, preprint 2006, http://lanl.arXiv.org math.AG/0511608.

67



[HMM] B. Howard, C. Manon and J. Millson, The toric geometry of polygons in

Euclidean space, in preparation.

[HM] B. Howard, J. Millson, The Chevalley involution and a duality of weight va-

rieties, Asian J. Math, 8 vol. 4 (2004), 685-732.

[HMSV1] B. Howard, J. Millson, A. Snowden and R. Vakil, The projective in-

variants of ordered points on the line, preprint 2005, http://lanl.arXiv.org

math.AG/0505096.

[HMSV2] B. Howard, J. Millson, A. Snowden and R. Vakil, The space of n points

on the line is cut out by quadrics when n is not six, in preparation.

[Howe] R. Howe, The Classical Groups and invariants of bilinear forms, AMS Proc.

of Symposia in Pure Math, The Mathematical Heritage of Hermann Weyl, 48

(1980), 132-166.

[Hu] Hu, Y., The Geometry and Topology of Quotient Varieties of Torus Actions,

Duke Mathematical Journal 68 No. 1 (1992), 151 – 184.

[KY] Y. Kamiyama, T. Yoshida, Symplectic Toric Space Associated to Triangle

Inequalities, Geometriae Dedicata 93 (2002), 25-36.

[KM] M. Kapovich, J. Millson, The symplectic geometry of polygons in Euclidean

space, J. Diff. Geom. 44 (1996), no. 3, 479-513.

[Ke] A. Kempe, On regular difference terms, Proc. London Math. Soc. 25 (1894),

343-350.

68



[Kly] A. Klyachko, Spatial polygons and stable configurations of points on the pro-

jective line, Algebraic geometry and its applications (Yaroslavl, 1992), 67-84.

[K] A. Knutson, Weight Varieties, PhD thesis, M.I.T., 1996.

[KR] J. P. S. Kung and G.- C. Rota, The invariant theory of binary forms Bull.

Amer. Math. Soc. 10 (1984), 27-85.

[LG] V. Lakshmibai and N. Gonciulea, Flag Varieties, Hermann, 2001.

[M] D. Mumford, Geometric Invariant Theory, Ergebnisse der Mathematik und

Ihrer Grenzgebiete 34, Springer-Verlag, Berlin, 1965.

[MFK] D. Mumford, F. Kirwan, and J. Fogarty, Geometric Invariant Theory (3rd

enlarged edition), Ergebnisse der Mathematik und Ihrer Grenzgebiete 34,

Springer-Verlag, Berlin, 1994.

[MS] D. Mumford and K. Suominen, Introduction to the theory of moduli, in Al-

gebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.),

pp. 171–222, Wolters-Noordhoff, Groningen, 1972.

[Ox] J. G. Oxley, Matroid Theory, Oxford University Press, 1992.

[Sam] H. Samelson, Notes on Lie algebras, van Nostrand Reinholt Mathematical

Studies 22, 1969.

[Se] C. S. Seshadri , Geometry of G/P , I, in C. P. Ramanujam - a tribute, Studies

in Math. 8 (1978), 207–239.

69



[Sh] T. Shioda On the graded ring of invariants of binary octavics, Amer. J.

Math.,Springer, 89 (1967), 1022-1046,
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