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Abstract

MQO is a distributed multiple query processing
middleware that can use resources available on the
Grid to optimize query processing for data analy-
sis and visualization applications. It does so by in-
troducing one or more proxies that act as front-end
to a collection of backend servers. The basic idea
behind this architecture is active semantic caching,
whereby queries can leverage available cached results
in the proxy either directly or through transforma-
tions. While this approach has been shown to speed
up query evaluation under multi-client workloads, the
caching infrastructure in the backend servers is not
well used for query planning and scheduling. Because
this collective caching infrastructure scales with the
number of servers, it is an important asset. In this pa-
per, we describe a distributed multidimensional index-
ing scheme that enables the proxy to directly consider
the cache contents available at the backend servers
for planning and scheduling. This approach is shown
to produce better query plans and faster query re-
sponse times. We experimentally demonstrate that sys-
tem throughput can be improved up to 66%, compared
to either load-based or round-robin scheduling.

1 Introduction

Multiple query optimization has been exten-
sively studied in various contexts including relational
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databases and data analysis applications [1, 6, 7, 18].
The objective is to exploit processing commonality
across a set of concurrently executing queries and re-
duce execution time by reusing previously computed
results. Although finding a globally optimal query
plan was shown to be an NP-complete problem [18],
heuristics can generate good plans. We have devel-
oped middleware aimed at aiding and optimizing the
development of applications that process multi-query
workloads [2]. This middleware is able to efficiently
use computational resources from SMP machines and
clusters of distributed memory parallel machines. The
middleware was also extended with a proxy service [1]
that allows data analysis and visualization applications
to be distributed onto a heterogeneous Grid computing
environment.

The Grid is an ideal environment for running appli-
cations that need extensive computational and storage
resources, as additional resources can be employed in-
crementally as need arises. For example, as new large
scientific datasets are generated as a result of simu-
lations or acquisition of sensor readings or when the
pool of users interested in the data increases, new stor-
age and processing resources are required in order to
keep up with the additional load. Moreover, because of
the demand for storage capacity, bandwidth, and fault
tolerance, datasets are often stored in distributed par-
allel storage systems. For these reasons, in order to
harness the processing power of multiple replicas for
distributing the query workload (potentially from sev-
eral co-existing applications), our middleware proxy
service implements a simple directory service – the
Lightweight Directory Service (LDS). LDS stores and



maintains information about the location of datasets,
the availability of query processing capabilities, and
near-real-time load information on the backend data
servers. When input datasets are available on more
than one backend server, the information maintained
by LDS can be used to distribute the query processing.

Another unique aspect of our middleware is the uti-
lization of an active semantic cache, where intermedi-
ate aggregates used for computing a query are tagged
and stored for future reuse. Applications ported to use
the middleware can then leverage those cached results
by either reusing them directly or by applying data
transformations to them [2]. While the availability of a
distributed cached infrastructure can substantially de-
crease the amount of time required to process a query,
good planning and scheduling becomes harder. That
is, forwarding a query to backend servers with lower
workloads may actually be detrimental to overall per-
formance, since other busier servers may have cached
aggregates that will considerably speed up processing.
Striking a balance between reuse of cached aggregates
and load balancing can be achieved if additional in-
formation is available. For example, if the proxy is
also aware of the cache contents in each of the back-
end servers, it might be better to forward a query to
the server that has portions of the query results in its
semantic cache, even if it is busier than an alternative
server.

There has been extensive research on indexing data
structures in the past, starting with the seminal work
on R-trees [8]. On the other hand, relatively little ef-
fort has been devoted to designing distributed indexing
schemes. Recently we have studied several distributed
multidimensional indexing schemes, including repli-
cated indices, hierarchical indices, and decentralized
indices [14, 15]. For relatively stable configurations
(few index updates), the simplest way to distribute the
index is to replicate it onto multiple servers. For dy-
namically changing index contents, a better method
consists of partitioning the index and storing the pieces
on multiple servers in a hierarchical fashion, as we
will describe in Section 4. Moreover, in order to make
the indexing more scalable, maintenance of the top-
level index for hierarchical indexing can be decentral-
ized [15]. In this paper we describe how we inte-
grated hierarchical distributed indexing in the multi-
query optimization middleware in order to improve

query planning and scheduling performance. We will
also experimentally study this issue in the context of
a computationally expensive computer vision applica-
tion.

We believe that the work presented in this paper
makes several contributions and extends the state-of-
the-art in the area of distributed query processing.
The most important contribution is the integration of
distributed query planning with distributed indexing,
which results in improvements both in query process-
ing time as well as increased system throughput. The
rest of the paper is organized as follows. In Section 2
we discuss other research related to distributed index-
ing and multiple query optimization. In Section 3 we
describe the architecture of the MQO middleware. We
discuss how distributed indexing was integrated to the
query evaluation process in Section 4. In Section 5 we
discuss experimental results for several query schedul-
ing approaches, including index-based ones, and ex-
amine the costs and savings of indexing measuring
both query execution and waiting time, as well as batch
execution time. Finally, in Section 6, we make con-
cluding remarks and explore possible extensions to
this work.

2 Related Work

The problem of integrating distributed query plan-
ning with distributed indexing and caching intersects
many research areas. From distributed query process-
ing to earlier efforts on managing distributed indices,
substantial research has been done. In this section, we
highlight some of the work we deem most relevant to
our own effort.

For distributed query processing, Rodrı́guez-
Martı́nez and Roussopoulos [16] proposed database
middleware (MOCHA) designed to interconnect dis-
tributed data sources. The system handles data re-
duction operators by code-shipping, which moves the
code required to process the query to the location
where the data resides and data inflation operators
by data-shipping, which moves the input data to the
client. In many cases, however, data-shipping is not
an option due to the size of datasets. For these sit-
uations, several highly distributed applications have
employed proxy front-ends to great benefit. Beynon
et. al. [4] proposed a proxy-based infrastructure for



handling data intensive applications, which was shown
to reduce the utilization of wide-area network connec-
tions, reduce query response time, and improve system
scalability. On the other hand, Beynon’s approach as
well as other proxy-based approaches, including ear-
lier implementations of web proxies [19], rely on a
single locally available cache. This approach is in-
herently less scalable than relying on a collection of
cache structures available at multiple backend servers,
assuming one can efficiently use them.

In order to seamlessly integrate multiple backend
servers as a single query server, it is necessary to effi-
ciently index the data (cached or otherwise) that each
of them has access to. The R-tree was one of the first
multidimensional object indexing data structures to be
developed [8]. Kamel and Faloutsos [9] extended that
work, by proposing parallel R-trees (Multiplexed R-
trees). One of the limitations of that approach was
that it targets a single CPU with multiple disks. That
limitation was overcome by Master R-trees [11] and
Master Client R-trees [17], both designed for shared
nothing environments (i.e., distributed memory paral-
lel machines). Both approaches assume that datasets
are declustered using a space filling curve and rela-
tive stability of the indexed datasets. Both assump-
tions may not hold true in scenarios where distributed
dynamic caches are indexed and updated frequently.

In order to effectively leverage multiple backend
servers for query processing, methods for load bal-
ancing must be considered as we previously demon-
strated through simulation [20]. In other words, the
savings resulting from reusing a cached result has to
be weighed against the service time and extra load im-
posed on the server where the cached result is located.
One study in this area was conducted by Mondal et al.,
where workload is shifted from heavily loaded servers
to lightly loaded servers in shared nothing environ-
ments [12]. Their approach for load balancing is dif-
ferent from ours in that our work investigates query as-
signment policies instead of transferring input datasets
to improve load balance.

3 Improving the Multiple Query Processing
Middleware

Over the last few years we have designed and built
middleware to support large scale data analysis ap-
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Figure 1. Application Servers with different par-
allel configurations. (a) shared memory, (b) dis-
tributed shared memory, or (c) distributed mem-
ory

plications [2, 4]. The Multi-Query Optimization [2]
middleware (MQO) is one of the results of this ef-
fort. MQO provides an environment based on C++ ab-
stract operators that are customized when new appli-
cations are first developed and implemented or when
existing applications are ported. MQO targets several
types of computational platforms, transparently em-
ploying platform-specific optimizations. From large
SMP machines, to clusters of homogeneous nodes, to
a distributed heterogeneous Grid environment, MQO
is able to use the application-customized operators for
efficient query planning and scheduling. In the rest of
this discussion, we focus on MQO’s Grid configura-
tion, which employs a proxy component referred to as
the Active Proxy-G (or APG, for short). This discus-
sion is necessary to provide the context for the integra-
tion of distributed cache indexing capabilities to the
middleware.

MQO’s Grid configuration consists of a proxy ser-
vice (one or more APGs), an application query pro-
cessing service (one or more application backend
servers), and a data caching service (one or more cache
servers) as shown in Figure 21. The APG works as a
front-end to the distributed multiple query optimiza-
tion system. When a query is received by the proxy,
it may be able to process the query directly using its
local cache. If cached aggregates alone cannot be used
to fully compute a query, the proxy server generates

1Backend application servers and cache servers may be melded
and run in the same address space.



sub-queries for the unresolved portions and repeats the
same process for the sub-queries, recursively. If no
processing can be done by the proxy, the query is for-
warded to backend application servers, which then use
its local cache or direct access to the datasets for com-
puting the results. The backend application servers
can run on cluster nodes, shared memory machines,
or distributed shared memory machines with attached
large-scale storage devices. Figure 1 graphically de-
picts these different configurations. APG enables the
backend application servers to be distributed and con-
nected in any hierarchy forming a computational Grid
as shown in Figure 2.

When a client submits a query through the proxy,
the proxy’s main task is to locate a suitable backend
server to process it. The proxy maintains a directory
service (Light Directory Service – LDS), where in-
formation such as the location of datasets as well as
workload performance metrics are stored. Dataset lo-
cations constrain the set of backend servers that can
be used for servicing a query (i.e., in the current pro-
totype a query can only be processed by a backend
server that has direct access to the datasets referred to
by the query). Performance metrics collected by the
proxy can be used for partitioning and balancing the
work when multiple backend servers are able to pro-
cess a query. When replicas exist, the proxy has to
select one of them based on a scheduling policy. The
original MQO implementation could be configured to
use two different policies [1]: (1) round-robin, where a
replica is selected for processing a query based solely
on where the last query was serviced, and (2) load-
based policies where, by actively collecting metrics
such as CPU and disk utilization, the least busy back-
end server with a suitable replica is selected. Note
that clients can also directly submit queries to back-
end servers, if they know where the datasets are lo-
cated, which increases the possibility of load imbal-
ances both. That is imperfect information at the APG
as well as additional load from servers directly submit-
ting queries to backend servers compound the schedul-
ing problem.

With the existing query scheduling policies, the
proxy service could only leverage previously com-
puted results that were part of queries it had seen (i.e.,
queries that have been submitted through the proxy in-
terface). Moreover, the proxy cache contents are only
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Figure 2. Overview of the MQO middleware

related to the query final data product. While we have
previously shown that this approach was indeed able to
provide substantial decreases in query execution time,
it does not permit the utilization of intermediate data
products that are automatically cached as these are
only available at the backend servers. Furthermore,
the proxy cache can only grow in size up to the avail-
able memory in the node hosting the proxy. For these
reasons and in order to generate better query plans that
can take into consideration the contents of remote se-
mantic caches, an efficient distributed index for all the
semantic caches is needed.

The semantic caches available at the backend ap-
plication servers are independent and evict content as
need arises according to their own cache replacement
policies without any global coordination. In general,
strong distributed cache consistency is expensive and
inherently non-scalable. More directly, it is very hard
to keep track of the up-to-date contents of remote se-
mantic caches in distributed systems. On a more posi-
tive note, strong cache consistency is not really neces-
sary for application correctness, as query results can
always be computed directly from the raw datasets,
albeit with a significant performance penalty. There-
fore, it is possible to tolerate cache misses, which may
occur when a query plan is assembled based on stale
information. Typically, if recomputing a query from
scratch is cheap as measured by I/O and CPU process-
ing costs, simple distribution of the load across back-



end servers may perform reasonably well. However,
many scientific and visualization applications are both
data and compute intensive. It is often much faster to
reuse cached aggregates rather than generating them
from scratch [10]. For these applications, more reuse
of cached aggregates and improved load balance will
decrease average query execution time and maximize
overall system throughput. As will be seen in the next
section, we accomplished this through distributed in-
dexing.

4 Distributed Indexing

A multidimensional index enables update and
search operations to be performed in parallel, thus pro-
viding the means for distributing the load across multi-
ple servers. There are several ways to implement a dis-
tributed semantic cache index, depending on workload
characteristics. The best choice depends on the type
of index operations to be performed frequently (e.g.,
lookups, inserts, deletes) as well as the nature of the
expected cache contents. In previous work [14, 15],
we have studied three types of distributed indexing
schemes: index replication, hierarchical indexing, and
decentralized indexing. Each of them addresses dif-
ferent needs. Since cached objects stored in the mid-
dleware backend servers’ semantic caches can poten-
tially change very quickly due to workload character-
istics and eviction requirements, the index replication
approach is not suitable since it incurs significant over-
head in propagating the index changes. Similarly, the
decentralized indexing approach is not suitable either,
because it does not perform well if the index is chang-
ing rapidly. Finally, hierarchical indexing has been
shown to work well in a distributed environment even
when updates are frequent.

The hierarchical indexing scheme partitions the in-
dex and distributes them across multiple servers.

This is accomplished by creating a two-level hi-
erarchy, where a global index stores only the mini-
mum bounding rectangles (MBRs2) representing the
root node of each local index.

Typically, data analysis queries have at least two

2An MBR is a multidimensional hypercube that encompasses
all the multidimensional data objects (points or hyper-rectangles)
stored in the subtrees rooted at any given node in the tree-based
index.
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Figure 3. A two-level hierarchical index

components that are part of the query predicate: one
that specifies the kind of processing necessary in order
to generate the desired data product (e.g., sampling,
aggregation, filtering, geometric transformation, etc),
and another that specifies the spatial domain, usually
in the form of an MBR, i.e., a multidimensional pred-
icate (e.g., latitude/longitude ranges, 3-D spatial coor-
dinates, etc). Thus, not only does the final data product
get associated with multidimensional coordinates, but
so do intermediate aggregates computed as a query is
processed. All of these aggregates are automatically
cached and indexed by the middleware.

Figure 3 depicts a sample internal organization of
a hierarchical index. To search the index, the multi-
dimensional predicate of a query is presented to the
global index in order to determine which local index
(or indices) may contain objects relevant to the query.
Each data server has its own index for the data avail-
able locally (local index). The comparison between
the query’s MBR and those MBRs defining the local
indices results in the list of candidate backend servers.

Since the MBR for a local index is just approximate
information about the data stored in a backend server,
it is possible that the search on the global index will
return, in addition to servers that have aggregates sat-
isfying the query, one or more backend servers that do
not have any data objects that overlap the query range.
This may occur for several reasons, for example, the
space within an MBR may not be densely populated
or objects may have been removed.

Integrating distributed indexing with the MQO mid-
dleware consisted of extending the backend applica-



C1
C2

C3

0 1 1 1

0 1 1 1

1 1 1 0

1 1 1 0

Bitmap encoded live space

Root

Root node MBR
In problem space

C1 C2 C3

Sub-trees … Sub-trees … Sub-trees …

Indexing tree structure

Figure 4. Bitmap live space encoding

tion server with a local index that tracks the contents
of its semantic cache. Since the local cache index
needs to be able to quickly insert, delete, and search
the index, we have employed SH-trees (Spatial Hy-
brid trees) for the local index. SH-trees provide the
same functionality as R-trees, but have better insert
and delete performance, without sacrificing search per-
formance [13, 15]. Architecturally, the proxy was ex-
tended in order to host the global index. Note that,
since each proxy has its own semantic cache, it has
both a local index as well as the global index for the
MBRs of the backend application servers. When the
proxy receives queries from clients, it searches its local
index first in order to locate suitable objects in its own
semantic cache. Assuming the query cannot be fully
computed by the proxy, the proxy generates subqueries
for query regions that are not fully computed. These
subqueries are expressed in terms of a query predicate
that also specifies the spatial domain as an MBR. The
MBR for each of the subqueries is then used to search
the global index for locating an application server with
the greatest amount of MBR overlap or for maximizing
some other optimization heuristic as will be discussed
in detail later.

To update the hierarchical index when a new data
object is created (for example, as a result of a query
generating new cacheable intermediate results), the
object’s MBR is compared against the current MBR
for the local index root node. If the new aggregate’s
MBR is outside the current local index MBR, the local
index MBR must be enlarged to include the new data
object. Whenever the MBR of a local index is enlarged

(or shrunk, because an object is no longer indexed), the
MBR update must be forwarded to the global index.
When the global index server receives the update no-
tification, it replaces the old MBR related to the local
index requesting the update. Because in many cases
insert/delete operations may not change the local in-
dex MBR, these operations are done locally without
updates being sent to the global index.

Clearly, the low likelihood of global index updates
comes at the expense of limited knowledge about ob-
jects available in the local indices. For example, global
indices may have a large amount of dead space (i.e.,
the multidimensional areas in which no actual objects
are located, but are indexed as a result of an enlarge-
ment operation made to accommodate a new object)
as shown in Figure 4. In the example, the root node of
the index tree has three descendant tree nodes, whose
MBRs are depicted as gray rectangles. The upper left
corner and lower right corner of the root node MBR
are dead space. Thus, if the global index receives a
query that falls in that area, it will forward the query to
this local server only to find out that the actual dataset
stored in this local server does not overlap the query.

The tradeoff between the amount of knowledge
available at the global index versus the amount of com-
munication can be controlled by creating additional
hierarchy levels. With this change, the global index
stores the MBRs of the second (or third) level nodes of
the local indexes. Storing finer grained MBR informa-
tion reduces the dead space and, as a consequence, also
reduces the likelihood of cache misses. Alternatively,
in order to mitigate this problem, we have devised a
simpler technique that employs a bitmap live space en-
coding data structure. The bitmap provides the global
index with finer grain information for the root node
MBR of the local indices by partitioning the root node
MBR into several subregions. If any next level tree
node overlaps the partitioned subregion, it is marked
with a 1, otherwise with a 0, as seen in Figure 4. The
additional information can be used to eliminate some
false cache hits. This approach is very economical for
low dimensionality objects, as is common for many
scientific datasets, which typically have fewer than 4
dimensions (i.e., space and time usually). For higher
numbers of dimensions, the bitmap encoding suffers
from the well known curse of dimensionality problem
- the exponential growth of hypervolume as a function



of dimension [3].

4.1 Multiple Query Scheduling Policies

The distributed index address the issue of locating
candidates for executing queries or subqueries on be-
half of the proxy. However, picking the best candi-
date for executing a query requires balancing the po-
tential for reusing aggregates in the semantic cache of
an application server versus the wait to be serviced by
that server. In extreme cases, a server with popular ag-
gregates may be swamped with additional load. Thus,
query scheduling plays an important role in load bal-
ancing and, ultimately, in overall response time and
system throughput.

In the rest of this section, we discuss 5 query
scheduling policies we implemented and experimented
with, as will be shown in Section 5.

Round-Robin: Round-Robin scheduling is our
baseline policy. It assigns a roughly equal number
of queries to each application server. This technique
is simple, well-understood, and generally performs
well when queries and application servers are homoge-
neous. On the other hand, it does not take into consid-
eration any state information, such as semantic cache
contents and backend servers’ individual loads.

Load-based: Load-based scheduling assigns a
backend server to a query based on the load observed
in each of the backend servers. It does so by se-
lecting the least busy backend server. This is done
through MQO’s Workload Monitor Service, which ac-
tively collects performance metrics from each of the
application servers, by polling them periodically (the
polling period is typically set to 15 seconds). Several
individual metrics are collected, such as thread pool
utilization, disk read rate, and the size of the query
wait queue. These metrics can be used to derive the
server load. For simplicity, in this paper, we employed
only the size of the wait queue3 .

Index/Overlap: This policy makes scheduling de-
cisions solely based on the result of a global index
lookup. An exception exists for the initial � queries ( �

3As will be seen in Section 5, we used a volumetric reconstruc-
tion application to provide the workload for our experiments. The
experimental queries are reasonably homogeneous in terms of the
amount of processing and I/O necessary to compute their results,
which makes the queue size a good indication of the system load.

is the number of backend application servers) where
round-robin is used for selecting the backend appli-
cation server. When all the backend servers have re-
ceived at least one query to process, each will have
intermediate results in its cache and an MBR for its lo-
cal cache index. Using these initial MBRs, subsequent
queries are forwarded to the server that requires the
minimum enlargement of its current local MBR (mea-
sured by the difference in volumes of the old and new
MBRs). In other words, this policy tries to keep the
MBR of each backend server as small as possible to
achieve good clustering of queries with MBRs that are
“close” in the multidimensional space.

Index/Distance: This policy makes scheduling de-
cisions based on the result of a global index lookup
similarly to the Index/Overlap policy. However, in-
stead of looking for the backend server whose MBR
has the greatest degree of overlap with a query, the
proxy attempts to locate a server whose local index
root MBR is the closest to the query’s MBR (measured
as the Euclidean distance between the geometric cen-
ters of the two MBRs). This policy also attempts to
assign approximately the same number of queries to
each server. It does so by trying to keep the MBRs of
the backend servers roughly same sizes. For example,
in Figure 5 the query is forwarded to server 2, which
results in enlarging its MBR. For a query whose center
falls between server 1 and 2’s MBR centers, the proxy
may forward the query to either one of them with the
same probability. The intuition behind this policy is
that we expect that relying purely on the amount of
overlap will bias the proxy towards backend servers
whose root MBRs are geometrically large, because a
large MBR is likely to have greater overlap with any
given query. Using the distance method contributes to
removing the bias, while still maintaining the cluster-
ing property expected from Index/Overlap.

Index/Load: This policy considers the results of
the global index lookup in conjunction with the cur-
rent load associated with each of the candidate back-
end servers. Based on the waiting queue size, the
proxy estimates the wait time a new query will prob-
ably experience. For backend servers that the global
index indicates do not have relevant reusable aggre-
gates, the proxy makes a pessimistic assumption that
no new reusable aggregates will be materialized and all
of the waiting queries will be computed from scratch.
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Conversely, for servers which are reported as hav-
ing reusable aggregates, the estimate optimistically as-
sumes that the computation time will be amortized by
directly reusing those cached objects. From those es-
timates, the proxy selects the backend server with the
smallest time estimation to process the query.

5 Experiments

Improvements in planning and scheduling strategies
are typically highly dependent on applications, sys-
tem characteristics, and workloads. In order to shed
light on the magnitude of improvements that can be ex-
pected by adopting distributed indexing, we performed
experimental studies using a computationally intensive
computer vision application, which can be seen as a
representative example for many of the visualization
techniques used by scientific applications.

5.1 A Volumetric Reconstruction Application

The multi-perspective vision studio is a volumetric
reconstruction application used for multi-perspective
imaging. In an environment where multiple cameras
are used for simultaneously shooting scenes from var-
ious perspectives, more views can deliver more infor-
mation about the scene and potentially allow recovery
of interesting 3-dimensional features with high accu-
racy and minimal intrusion into the scene [5].

Users interact with the application by submitting
queries. A query computes a set of volumetric repre-
sentations of objects that fall inside a 3-dimensional

box – one per frame – using a subset of the avail-
able cameras. The query result is a reconstruction of
the foreground objects lying within the multidimen-
sional query region (a pre-processing step removes
background objects from the stored images, producing
silhouettes). The reconstructed volume for a frame,
i.e., the query result, is represented by an octree, which
is computed to a requested depth

�
. Deeper octrees

represent the resulting volume at higher resolutions.

5.2 Experimental Environment

We employed an experimental configuration where
16 independent backend servers – i.e., full-fledged
servers able to compute a volumetric reconstruction
with access to replicas of the entire datasets – and a
single proxy. Backend servers and the proxy were
placed on different nodes of a Linux cluster. Each node
is a Pentium III 650 MHz processor. The nodes are
connected by 100Mb/sec switched Ethernet.

The dataset we used is a multi-perspective sequence
of 2600 frames generated by 13 synchronized color
cameras, each producing 640 � 480 pixel images at 30
Hz [5]. The test dataset is partitioned into 32 silhou-
ette image files (each file is 329 MB in size, producing
a total size of 10 GB). In order to evaluate the schedul-
ing policies we replicated the datasets, thus each of 16
backend servers has the 10 GB dataset. Each of the
32 image files contains a collection of data chunks. A
chunk of data is a single image whose attributes in-
clude a camera index and a timestamp.

We created 8 query batch files that have 100 queries
each, with various query inter-arrival times, simulating
multiple simultaneous users posing queries to the sys-
tem as a Poisson process. The queries in a batch were
constructed according to a synthetic workload model
(since we do not have enough real user traces for the
application). The workload generator emulates a hy-
pothetical situation in which users want to view a 2 to
4-second (at a rate of 10 frames per second) 3D in-
stant replay for hot events in, for example, a basketball
game. The workload generator takes as input parame-
ters a set of “hot frames” (e.g., slam dunks during the
game) that mark the interesting scenes, and the length
of a “hot interval” (i.e., the duration of the scene), char-
acterized by a mean and a standard deviation.

A query in a batch requests a set of reconstructions
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Figure 7. The Effect of Semantic Cache Size

associated with frames selected according to the fol-
lowing model. The center of the interval is drawn ran-
domly with a uniform distribution from the set of hot
frames (10 hot frames were used). The length of the in-
terval is selected from a normal distribution (each hot
frame is associated with a mean video segment length,
statistically varying from 34 to 62 frames). Between
the first and last frame requested by a particular query,
intermediate frames can be skipped, i.e., a query may
process every frame, every 2nd frame, or every 4th
frame. The skip factor is randomly selected. The 3-
dimensional query box was also fixed (queries recon-
structed the entire available volume) and the depth of
an octree was 6, except for the experiments shown in
Figure 8. Queries also used data from all the available
cameras for reconstruction.

To measure the performance, we considered the
following metrics: Query Wait and Execution Time
(QWET), Query Execution Time (QET), and Total
Batch Query Time (TotalBQT). QWET is the amount

of time from the moment a query is submitted to the
system until it completes. That is, QWET includes the
delay (due to the proxy being busy servicing another
query) plus the actual processing time. QET mea-
sures the elapsed time for a query to complete from
the moment a backend server is selected until com-
pletion measured at the proxy. Hence QET depends
on the local cache hit ratio, while QWET, at a greater
degree, depends on load-balancing across the back-
end application servers. Finally, TotalBQT measures
the total execution time for one query batch. From
a user standpoint, lower QET and lower QWET im-
plies faster query turnaround time. Lower TotalBQT
implies higher query server throughput.

It should be noted that the MQO middleware has
several control knobs. In order to focus on measur-
ing the performance of the different scheduling poli-
cies without the influence of caching at the proxy, we
disabled the semantic cache in the proxy.



5.3 Performance

Figure 6 depicts the system performance when we
employ different query scheduling policies and vary
the number of backend servers. For this experiment,
we fixed the size of the semantic cache at 256MB and
used LRU as the cache replacement policy on all back-
end servers. Each application server employed a sin-
gle thread for processing queries, since all the cluster
nodes are uni-processors and would only marginally
benefit from additional threads. However, for the
front-end proxy, we varied the number of concurrent
threads according to the number of application servers.
For example, when 16 application servers are used, up
to 16 threads are allowed in the proxy, which enables
up to 16 queries to be simultaneously processed. Note
that this does not imply that all 16 backend servers will
be busy, i.e., multiple queries may be assigned to the
same application server, depending on how good the
scheduling policy is at load balancing.

In general, as the number of application servers in-
creases, frequently used cache objects are dispersed
through the multiple backend server caches and the
per server cache hit ratio drops. As a consequence,
the average QET increases as more queries are com-
puted from scratch without the benefit of caching as
seen in Figure 6(a). Round-robin shows the worst per-
formance in most cases. Load-based scheduling also
does not show good performance, since neither policy
considers the contents of the application server caches.
As server caches get populated, the three index-based
scheduling policies start to reap the benefits of in-
creased cache hit rates, which causes decreased query
execution time. An interesting result in Figure 6(a) is
that the Index/Overlap policy does not show consis-
tent performance due to load imbalance. As we dis-
cussed earlier, when the top-level MBR for a partic-
ular local index gets enlarged, the proxy becomes bi-
ased and chooses the backend server with the largest
overlapping MBR. Thus, a majority of queries are for-
warded to a single application server, which results in
that server having a longer wait queue, increasing both
QET and QWET. Note that QET includes the time
waiting in backend servers’ queue, but not the time in
proxy’s queue. Unlike Index/Overlap, the other two
index-based policies – Index/Distance and Index/Load
– manage to avoid such a load imbalance problem. Al-

though Index/Load does not suffer from load imbal-
ance, it tends to enlarge the local index MBRs leading
to an increase in false hits, as the proxy does not take
into consideration the clustering of cached aggregates.
Occasionally, it creates large amount of dead space as
opposed to Index/Distance and Index/Overlap, which
typically do not, as they both favor not increasing the
MBR. On the other hand, Index/Load benefits from
bitmap encoding, which acts to mitigate the dead space
problem as previously explained.

Figure 6(b) shows the query wait and execution
time for the same experiment. As the number of
servers increases, the average QWET seen by the
proxy decreases as more queries can be executed con-
currently. Note that while the QET improvements
are on the order of tens of seconds, hundreds of sec-
onds are saved when measuring QWET and QBT
due to more reuse. Similarly to the QET result, In-
dex/Overlap outperforms the other policies consis-
tently, except when using only a small number of ap-
plication servers (2 or 4). As seen in Figure 6(c), the
total batch query time when using Index/Distance is
around 60% to 88% of the time when round-robin is
employed.

Figure 7 shows the performance for the scheduling
policies as a function of the application servers’ se-
mantic cache sizes. For this experiment, we used 8
application servers and the proxy was configured with
8 threads. When the cache size is smaller than 24 MB,
all policies suffer from a high rate of cache misses,
since the cache cannot simultaneously accommodate
many data products. In other words, the cache size is
much smaller than the workset. In the experiments,
the total size of the most frequently used cached ag-
gregates was about 24 MB. Therefore, when the cache
size is smaller than that, queries may fail to find any
cached aggregates altogether. Because the round-robin
and load-based policies are not targeted at maximiz-
ing reuse (although they may occasionally benefit from
cache hits “by accident”), relatively speaking they are
not severely impacted by small cache size ( ����� MB)
nor do they particularly benefit from additional cache
space. Since Index/Distance and Index/Overlap do
not consider the size of the waiting queue, the cache
misses due to reduced cache size make the queries wait
longer, which hurts the overall system throughput. In
such a case, Index/Load shows both the fastest query
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Figure 9. Workload Comparison

response time and the highest system throughput.

Figure 8 shows the performance for the scheduling
policies as the octree depth increases. The higher the
depth, the more computationally expensive a query is
due to the increased resolution of the volumetric re-
construction. Increased resolution translates into more
space needed to compute and cache the results. Note
that the computational cost and memory requirement
increase exponentially with octree depth. We ran 8
application servers, each with a 256 MB semantic
cache. While we expected that the benefits from cache
hits would have an exponential impact on the perfor-
mance, because we kept the cache size fixed, we only
observed it as a minor effect. Note that increased
depth creates increased data product sizes, causing in-
creased cache eviction activity and additional cache
misses. In measuring system throughput, the perfor-
mance gap between non-index based and index based
policies increases slightly as the computation time in-
creases. When the depth is 5, the total query batch time

(QBT) with Index/Distance scheduling is 72% that of
load-based scheduling, but it is 63% that of load-based
scheduling when the depth is 7.

Finally, using the synthetic workload generator we
described earlier, we created 8 different query work-
loads with different mean inter-arrival times, to con-
trol the amount of concurrent load presented to the
system. Note that the results for different workloads
depicted in Figure 9 are not directly comparable, as
not only are the inter-arrival times different, but so
are the the queries and the induced workset as far
as caching. In other words, different queries have
different cache hit rates, causing differences in pro-
cessing time, which is unlikely to be a function of
query inter-arrival time. In this experiment, 8 appli-
cation servers were used. As seen in Figure 9, the
Index/Distance policy shows the best performance in
most cases, with the other two index-based policies
outperforming round-robin and the load-based policy.
In Figure 9(a), as expected, we see that QET is not



greatly affected by the inter-arrival time. In measur-
ing query waiting time, when the proxy server receives
queries at a very fast rate ( � 2 seconds on average be-
tween queries in Figure 9(b)), Index/Load shows better
performance than Index/Overlap and Index/Distance
because of better load balancing. The query wait
and execution time drops dramatically when the inter-
arrival time is greater than 10 seconds, because the
inter-arrival time becomes larger than average query
execution time (10 seconds � 8 servers = 80 � QET).
With large inter-arrival times, QWET has almost the
same value as QET for a query, since almost no queries
have to wait. In Figure 9(c), when the average inter-
arrival time is greater than 12 seconds, we see that the
total query batch time tends to hover around the same
value, irrespective of the scheduling policy employed.
This is because QBT only depends on the QET of the
few last queries.

To summarize, we have learned the following
lessons from the experimental study. First, distributed
indexing helps improve overall query processing per-
formance, measured both as system throughput and
query response time. Second, load balancing is as
important a factor in overall performance as cache
hit rates for the distributed semantic caching infras-
tructure. Third, index-based scheduling that consid-
ers both load balancing and clustering properties (In-
dex/Distance) tends to outperform less informed poli-
cies. Furthermore, it is more stable, rarely performing
badly compared to the policies that use less informa-
tion.

6 Conclusion

In this paper, we have described how a distributed
multidimensional indexing scheme can be used by a
distributed multiple query optimization middleware to
generate better query plans, leveraging information
about the contents of remote semantic caches. Exper-
imental results obtained using a visualization applica-
tion show that employing this information for query
scheduling results in both faster query response times
and better system throughput than round-robin or load-
based scheduling. To the best of our knowledge, this is
the first work that shows that distributed multidimen-
sional indexing helps improve query processing per-
formance for a real distributed query processing sys-

tem.
While we believe we have made progress in dis-

tributed query planning and scheduling and demon-
strated this experimentally, ultimately, planning and
scheduling in conjunction must be used in order to
be able to keep a set of cached intermediate results
that better represent the relevant working set in a dis-
tributed fashion. We intend to extend this work using
different data analysis applications as well as different
workload profiles. We postulate that under many cir-
cumstances data migration techniques and, possibly,
pre-computation of frequently used cached aggregates
by idle backend servers can help to further improve
query processing performance. By disseminating the
workset of reusable aggregates, wait times can be de-
creased as it allows the proxy to use several backend
servers for a larger percentage of queries.
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