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Detection of bone fragments and other physical contaminations in deboned 

poultry meat has become increasingly important to ensure food quality and safety. 

Traditional X-ray imaging detection technologies have significant difficulties detecting 

contaminations because of the meat tissue thickness variation.  

In order to address the thickness variation problem, in this study, a novel vision 

system with combined X-ray and laser 3D imaging technology has been developed for 

accurate physical contamination detection. The X-ray part of the combined system 

captures high resolution X-ray images in real-time, and the laser 3D part provides an 

accurate thickness profile for each piece of meat. In the combined system, the 3D 
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thickness information is used to cancel the thickness variation in the X-ray image, thus 

the process of physical contamination detection is significantly simplified. 

The combined vision system is capable of detecting calcified bones (rib bones and 

pulley bones) at a 95% detection rate, and partially calcified bones (fan bones) at a 90% 

detection rate.  

In order to handle the inspection tasks in real-time, a multithread architecture is 

used in this vision system. Various threads work simultaneously in the system, 

synchronized with each other, taking full advantage of system resources. It is shown that 

real-time capability is achieved due to the multithread framework. 

The result of this study has the potential to promote food safety and quality by 

providing advanced and automated detection techniques to the poultry and food 

industries.  
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CHAPTER 1   

INTRODUCTION 

The United States produces billions of pounds of poultry every year, a large 

portion of which is boneless poultry meat. Physical contamination is one of the major 

types of contamination compromising food safety. In boneless poultry meat, physical 

hazards include plastic, metal, glass, bone fragments, etc., which can lead to serious 

injury if ingested by the consumer. To ensure food quality and food safety, it is necessary 

for poultry processors to inspect each piece of boneless poultry product and make sure 

that bone fragments and any unwanted hazardous materials such as metals and plastics do 

not remain in the product.  

In many poultry processing plants, the inspection of boneless meat is still 

performed manually. The accuracy of manual inspection depends on the sensitivity of 

workers’ fingers. However, the meat products are so cold that the inspectors’ fingers 

become quickly numb and insensitive to possible bone fragments. Additionally, cross-

contamination and high labor costs are also problems of manual inspection. 

X-ray imaging techniques, a noninvasive inspection method, have been used for 

years to detect physical contamination in food products.  However, the traditional X-ray 

inspection systems currently being used to detect bone fragments in meat fillets have a 

high rate of failure (over 30%). As suggested by numerous publications and industrial 

reports, X-ray inspection systems cannot succeed in detecting bone fragments in poultry 

unless the challenge of uneven meat thickness is addressed. Generally, the intensity (or 

grayscale) of an object in an X-ray image reflects the X-ray absorption, which is dictated 
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by the physical characteristics of the material and its thickness. The intensity of X-ray 

imagery I can be described as (Dowsett, et al., 1998): 

)exp(0 dµII −=        (1.1) 

where  

I0 : the incident X-ray intensity,  

µ : X-ray attenuation coefficient of the material of interest (assuming 

homogeneity), and 

d: the length of the X-ray pathway through the object. 

According to equation (1.1), the thickness variation leads to grayscale variation in 

the X-ray image, which has been confirmed by experimentation. In the case of bone 

fragment detection, the X-ray absorption differences are small between normal meat 

tissue and bone fragments, especially when the bone fragments are thin. This weak 

intensity difference in the X-ray image makes it very difficult to distinguish bone 

fragments from meat patterns even using the human eye. Furthermore, typical deboned 

poultry products, such as chicken breasts, have uneven thickness, which means that the 

X-ray intensity of a thicker area could be comparable to a bone fragment in a thinner area. 

The false pattern in the X-ray image caused by uneven thickness could lead to significant 

classification error. 

In order to find and implement an effective solution to address the uneven 

thickness problem, researchers from academia and industry have tried numerous 

approaches (Graves and Batchelor, 2003). It is believed that the discovery of a viable 

solution should start from basic physics and finish by the insight gained through 

mathematics. Thus in this study, the basic approach is to estimate the thickness 
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interference by direct, nondestructive physics methods, and then identify the contaminant 

using computer vision methods. 

 
The methods and results of the combined X-ray and laser range imaging system will 

be presented in this dissertation. Chapter 2 describes the overview of this study along 

with background information of the challenges. In chapter 3, X-ray image quality at 

different energy levels is evaluated, as well as the limitations of solutions based on single 

energy X-ray and dual energy X-ray technologies. Chapter 4 gives an extensive 

description of the combined X-ray and laser 3D imaging approach. Experimental results 

and discussions are provided in chapter 5, followed by chapter 6, the conclusions.  
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CHAPTER 2  

REVIEW OF LITERATURE 

 

2.1 Physical contaminations in deboned poultry 
 

In the poultry processing industry, physical contamination, especially bone 

fragments in deboned poultry products, is a major concern to food safety. Bone fragments 

in presumed boneless poultry products, such as chicken fillets, nuggets, etc., could lead to 

consequences ranging from consumer complaints to health incidents. The USDA listed 

physical contamination as one of the three major types of food safety threatening 

contaminations (USDA, 1996) and it is required by USDA regulations that there be no 

bone fragments or other types of physical contaminations left in deboned products 

(USDA, 2002).   

In practice, the acceptable quality standard for bone fragment occurrences in 

deboned poultry meat varies from plant to plant. According to a recent study on a typical 

poultry processing plant (Smith, 2001), there were approximately three bone fragments 

left in every 10,000 deboned fillets and one bone fragment left in every 10,000 deboned 

tenders. It was also found that the majority of bone fragments left in deboned chicken 

meat were clavicles or fan bones. Bone fragments originating from the clavicle tend to be 

highly calcified, and fan bones tend to be thin and sharp. Both types of bone fragments 

can cause serious medical problems to consumers, especially to children and the elderly.  

A similar study was conducted in the UK, focusing on poultry meat purchased 

from supermarkets. The destructive method was used to inspect chicken meat purchased 

from several leading supermarket retailers in the UK. The results showed that the average 
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number of bone fragments left in the poultry meat was more than 87 per 100 kg (Graves 

and Batchelor, 2003), which is significantly higher than one would expect. The disparity 

between the US and UK studies was due to the difference in inspection methods, i.e., the 

destructive inspection method adopted by the UK study would result in a more accurate 

estimate of bone fragment occurrences. Despite the different numerical results of the two 

studies, both findings highlight the necessity of effective bone fragment detection. 

According to a recent study commissioned by the Food Safety and Inspection 

Service, USDA (Morales, 2002), the majority of meat and poultry processing plants rely 

on manual visual inspection to detect and control physical hazards, including bones and 

metals, in deboned products. In a typical setup of a poultry deboning line, a crew of 24 to 

32 workers sit shoulder to shoulder, working on each passing chicken carcass by cutting, 

pulling off muscles, and detaching skins. At the end of the line, another crew of several 

workers double checks each piece of deboned meat, making sure each is free of bone 

fragments. This re-inspection process is also done by hand, squeezing the chilled chicken 

meat in an effort to feel the embedded bone fragments.  

Certainly, the hand checking approach has several disadvantages. First, lengthy 

manual inspection is a demanding task for the workers, and inevitable muscle and mental 

fatigue could lead to health issues. Secondly, it is labor intensive, and the throughput is 

low compared to automatic approaches. Third, it raises hygiene problems, because in the 

wet and greasy environment, contamination could spread from one worker to another or 

from one piece of chicken meat to another. Finally and most notably, the accuracy of 

bone detection is not ensured, because there is no guarantee that a bone fragment 

embedded in meat tissue can be felt by hand, especially when workers’ fingers have 
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become numb after touching the chilled poultry meat for hours. It is certainly desirable 

for a poultry processing plant to design an automatic technique for bone fragment 

detection, and X-ray imaging seems to be the most viable option.  

2.2 X-ray technology and food inspection 
 
2.2.1 Overview of X-ray imaging  
 

X-ray imaging is a well-established technology and has been widely used for 

numerous non-destructive testing applications, since Dr. Roentgen's discovery of a new 

kind of ray on November 8, 1895 (Selman, 1993).  

X-rays are a form of electromagnetic radiation with a wavelength ranging from 

10-3 nm to 10 nm, with photon energy ranging from 120 eV to 1.2 MeV (Selman, 1993). 

The penetrating nature of X-rays makes them ideal tools to detect the internal structure of 

objects based on the interaction between the X-rays and matter (Hale, 1975). Usually the 

energy range of 40 keV to 120 keV is used for radiography (Selman, 1993). Two 

processes that lead to X-ray attenuation have been studied, namely photo electronic 

absorption and Compton scattering (Dowsett, et al., 1998). The attenuation processes are 

both energy dependent and material dependent. For most materials with small atomic 

numbers (<20), photo electronic absorption dominates at low energies while Compton 

scattering dominates at high energies (Graham and Cloke, 2003). Here the threshold 

between low and high energies could be anywhere from 50 keV to 500 keV, depending 

on the atomic number of the material of interest.  

Typically, X-rays are generated in an X-ray tube by shooting a beam of high-

energy electrons from a heated filament to an anode. X-ray radiation is generally 

classified into two types: Bremsstrahlung radiation and characteristic radiation (Dowsett, 
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et al., 1998). Bremsstrahlung is also called braking radiation, which is emitted when 

electrons lose energy in the form of electromagnetic radiation due to a change in velocity. 

Characteristic radiation is caused when vacancies created in inner electron orbitals are 

filled by the electrons from outer orbitals, which give off a photon of radiation and make 

a quantum jump. The spectrum of Bremsstrahlung radiation is continuous, while 

characteristic radiation forms line spectra, which leads to an overall radiation spectrum 

shown in Figure 2.1 (Hamamatsu, 2000). 

 

     
Figure 2.1 Radiation spectrum of an X-ray tube 

 

A typical X-ray imaging system is depicted in Figure 2.2, where an X-ray beam is 

generated by the X-ray tube, attenuated by the target object, and then intercepted by an 

X-ray imager. The imager can be a radiographic film (Selman, 1993; Thomas, et al., 

1995), a CCD video camera coupled with an image intensifier (Molloi, et al., 1993), a 

linear digital X-ray detector array (Haff and Schatzki, 1997), or an amorphous silicon flat 

X-ray energy (keV)

R
elative intensity (%

)
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panel for X-ray imaging (Fann, et al., 2003). Radiographic films are specially designed to 

be highly sensitive to X-ray radiation. 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Typical setup of an X-ray imaging system 

 

In general, digital imagers are preferred over analogue imagers for many reasons 

including high spatial resolution, rapid image acquisition, and convenient image storage 

and manipulation (Dowsett, et al., 1998). With a digital X-ray imager and sophisticated 

electronic control mechanism, it is possible to calibrate the imaging parameters in real-

time, and to take sequential exposures at different X-ray energies quickly. It is reported 

that a GE digital radiographic system can take two calibrated exposures only 200 ms 

apart. The major benefit of this approach is improved image quality because both 

exposures are calibrated and there is reduced displacement between the snapshots.  This 

also makes it more convenient to infer meaningful information by comparing the two 

images (Dobbins, et al., 2003). 

X-ray tube 

Target  
object 

X-ray imager 
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Image quality of the resultant X-ray image can be assessed from different aspects, 

such as the noise level, spatial resolution, and image contrast. A successful X-ray 

imaging system should deliver images with low noise level, high spatial resolution, and 

high contrast of the object. It is believed that X-ray image noise is caused by insufficient 

photon flux from the X-ray source (Graham and Cloke, 2003) or thermal noise from the 

X-ray imager (Speller, et al., 2001). Spatial resolution is largely limited by the pixel pitch 

of the X-ray imager, while a large focal spot of the X-ray source could also affect the 

image resolution. Image contrast can often be improved by reducing X-ray photon energy, 

but the noise level could also get worse because fewer photons are able to penetrate the 

object at a lower X-ray energy. 

It is well know that X-ray radiation could pose health threat to human body, thus 

it is extremely important to carefully enforce certain protection procedures for X-ray 

imaging personals (Selman, 1993).  

 

2.2.2 Typical applications of X-ray imaging 
 

X-ray imaging has been successfully used in many areas, including medical 

diagnosis, homeland security, material research, and industrial inspections. In medical 

imaging applications, X-ray technology has made enormous progress over the decades. In 

1890s, X-ray films were used to capture skeletal structures but were limited by low 

contrast and slow X-ray exposure. Nowadays, X-ray imaging technologies are serving as 

indispensable diagnosis tools, as shown in Table 2.1.  
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Table 2.1 Medical applications of X-ray imaging (Imaginis, 2000). 

Medical applications Function of X-ray imaging 

Angiography  Imaging of the blood vessels 

Arthrography  
 

Imaging of the joints 

Barium X-ray  
 

Imaging of the gastro-intestinal (GI) tract 

Chest X-ray  
 

Imaging of the thoracic cavity and heart 

Cholangiography  
 

Imaging of the bile ducts 

Cholecystography  
 

Imaging of the gallbladder 

Dental X-rays  
 

Imaging of the teeth and jaw 

Lymphangiography  
 

Imaging of the lymphatic system 

Mammography  
 

Imaging of the breasts 

Myelography  
 

Imaging of the spinal cord 

Pyelography  
 

Imaging of the urinary tract 

Skeletal X-rays  
 

Imaging of bones 

Urography  
 

Imaging of the kidneys and bladder 

  

In terms of technology, computed tomography (CT) is one of the most significant 

achievements in medical X-ray imaging, and has dramatically improved the imaging of 

various body parts, especially soft tissue structures which are challenging to traditional 

radiographic techniques (Selman, 1993). In a typical CT scanner, the patient is scanned 

by a circular array of X-ray detectors and an X-ray tube moving through a circular field 

around the patient. The image data collected by the detector array are recorded by a 

computer synchronized with the moving X-ray tube, and the image of the region of 

interest is then obtained using the fan-beam reconstruction method (Jain, 1989). The 
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spiral scanning technique is used in many modern CT machines, where the patient moves 

longitudinally while the X-ray tube rotates, thus 3-D image reconstruction of body parts 

is obtained (Bovik, 2000). 

There are various forms of X-ray imagers used for different medical applications, 

including traditional X-ray film, film/screen combination, X-ray intensifier-TV system, 

and digital solid state detector. Recently, solid state X-ray imagers based on amorphous 

semiconductors, especially amorphous silicon (A-Si) are of significant interest (Speller, 

et al., 2001). There are several benefits to using an A-Si imager over other types of 

medical X-ray detectors. First, an A-Si imager can be manufactured as a uniform flat 

panel, large enough to cover certain body parts. Secondly, the digital imaging interface 

enables rapid processing of the X-ray image. Thirdly, unlike CCD based imagers, the A-

Si material does not degrade if exposed to X-rays. Finally and most importantly, an A-Si 

imager can provide much better spatial resolution and dynamic range for medical 

applications. A typical A-Si X-ray imaging flat panel of 40 by 30 cm can deliver a spatial 

resolution of 127 µ m (Varian, 2003), and medical imaging systems based on A-Si 

technology are commercially available (Dobbins, et al., 2003).  

Besides medical imaging, security applications are another major field for X-ray 

imaging technology. In airports and other locations where security is critical, X-ray 

scanning has become a routine procedure, with guards looking for firearms, knives, and 

other types of illegal objects. By being safe, non-destructive, accurate and efficient, X-ray 

imaging has been the de facto standard scanning technology for security applications 

(Hallowell, 2001). In many X-ray machines, images at two X-ray energies are acquired at 

the same time, and by combining the images at different energies, it is possible to detect 
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certain materials which are challenging or undetectable by traditional single energy X-ray 

systems (Fainberg, 1992). Another promising X-ray technology for security applications 

is backscatter imaging, which can form an image from the X-rays backscattered from a 

subject. The backscatter X-ray originates from Compton scattering, and the intensity is 

determined by the atomic number and density. Backscatter imaging can provide an image 

of the human surface without showing internal body structures, which makes it an ideal 

tool to detect illicit objects concealed under clothes (Hallowell, 2001). Recently, a mobile 

backscatter imaging system was introduced for rapid X-ray inspection of suspected 

objects without contact, which could dramatically improve the process of cargo screening 

in ports and on ships (AS&E, 2003).  

X-ray imaging is also widely used in industrial applications, and only a few 

examples are listed as follows. A high resolution X-ray diffraction imaging system was 

applied to detect semiconductor wafer defects, and the detectable resolution was 1 µ m2 

(Lubbert, et al., 2000). A portable digital X-ray imaging system was successfully used to 

scan valves and pipes in civil engineering (Sawicka, et al., 1999). Another X-ray system 

was used for printed circuit board (PCB) solder joint inspection, where the final cross-

section image was reconstructed from multiple images projected from different views 

(Roh, et al., 2003).  

 

2.2.3 Food inspection using X-ray imaging 
 

In the field of food inspection, X-ray technology also provides an invaluable 

means to ensure food safety and to assess food quality. There have been numerous 

studies conducted on X-ray based food inspection, striving to make X-ray imaging 
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systems more efficient, effective, accurate and dependable. Graves, et al (1994) proposed 

a method of analyzing the X-ray imaging system in order to evaluate the contrast 

obtained when viewing small defects, which linked X-ray imaging contrast to the total 

system sharpness. Tollner (1993) developed and investigated a model to interpret X-ray 

imaging pixel standard deviation. Zwiggelaar, et al., (1996) assessed simulation 

techniques with respect to X-ray imaging applications in food inspection, and discussed 

the trade-off between irradiation levels and imaging signal to noise ratio (SNR). 

Zwiggelaar, et al., (1997) also investigated a selective X-ray energy method to improve 

image contrast and spatial resolution for soft material imaging. Thomas, et al., (1995) 

used an X-ray system for detection of seed weevil-infested mango. Schatzki, et al., (1997) 

proposed to use X-ray imaging for defect detection in apples. Statistical (Shahin, et al., 

1999) and neural network (Kim and Schatzki, 2000) approaches were applied to X-ray 

images to detect waterholes in red delicious apples. In both of the apple waterhole studies, 

texture features were extracted from the apple X-ray images and then classified by either 

a Bayes classifier or a neural network. It was reported (Shahin, et al., 2002B) that surface 

bruises of apples could be detected using line-scan X-ray imaging. In this study, spatial 

edge features and select discrete cosine transform (DCT) coefficients comprised the basis 

for bruise detection, and it was found that a neural network classifier performed better 

than the Bayesian classifier. 

It has been shown that X-ray imaging can also be applied to the quality 

assessment of sweet onions (Shahin, et al., 2002A). In this study, features were selected 

using Bayes methods and a Bayes classifier was used to sort the onions into two classes: 

good or defective.  
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A noteworthy study on pistachio nut inspection was conducted using real-time X-

ray imaging and digital image processing methods (Casasent, et al., 2001). In the study, 

line-scan digital X-ray images were acquired by a custom made X-ray machine. The 

digital images and another set of X-ray film images of the same set of nuts were analyzed 

using efficient image processing operations, including histogram adjustment, 

morphological processing, image segmentation, blob analysis and watershed transform. 

Furthermore, for the same application, a radial basis function (RBF) neural network 

classifier along with new training procedures were developed to achieve improved 

classification performance (Casasent and Chen, 2003).  

Significant research efforts have been made to improve meat inspection. In 1996, 

a study was conducted by Schatzki, et al., to test the efficacy of detecting particulate 

contaminants in processed meat samples by using visual observations of X-ray images. 

Visual recognition of contaminants in meat samples were studied and analyzed as a 

function of the thickness, size and shape of the meat as well as the X-ray image texture. It 

was found that inclusions were more difficult to recognize in textured X-ray images, and 

the errors varied with the size, shape, and thickness of the inclusions and samples. The 

processing time required for image acquisition and analysis in this work was seven 

minutes per sample. As a new approach, Morita et al., (1997) proposed an X-ray system 

for detecting foreign materials in food and agricultural products that used soft X-ray 

radiation and a high-resolution image intensifier. A noteworthy study of X-ray imaging 

for the accurate detection of bone and cartilage fragments in poultry meat was presented 

by Papanicolopoulos, et al., (1992, 1995). The research was based on Rayleigh X-ray 

scattering and Compton scattering. The method of detecting bones used the angles of 
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Rayleigh scattering and the ratio of Rayleigh and Compton (R/C) scattering. While the 

theory was plausible, the implementation demanded a very precise angle (0.1 degree 

angle) for the detection, because at slightly different angles, the R/C value indicated 

materials with an atomic number different from bone or meat. The method had inevitable 

signal noises, which made it difficult to achieve the needed resolution and accuracy for 

the application and implementation. More importantly, as in any other method, the 

uneven thickness of each piece of meat (and from one piece to the next) caused vital 

problems such as incident energy variation, transmission field intensity variation, 

detection shifting, and scattering changes as realized by the investigators. These 

variations limited the accuracy, resolution, and application of a real system. The 

suggested X-ray system unit costs nearly $900,000, making it not feasible for the poultry 

processing industry. 

 

2.2.4 Challenge of bone detection   
 

The difficulty of X-ray imaging in the poultry inspection application is that the 

thickness of the poultry meat is not uniform, which makes it difficult to differentiate bone 

fragments and thicker meat portions. This challenge makes the X-ray machines used for 

packed food inspection inadequate in this application.  

Various approaches have been used to address this thickness issue. Research 

shows that by immersing the poultry meat in water, the thickness variation was largely 

smoothed out. It is believed that this success was due to the significant water content in 

poultry meat. Although successful in thickness cancellation, the method is unlikely to be 

acceptable for on-line inspection applications. Sanitation would be a major problem. 
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During the inspection operation, it would be extremely important to prevent microbial 

cross-contamination through water flow and grease deposit. Efficient disposal of dirty 

water should be addressed, and frequent cleaning of the food contact surface. Moreover, 

because the meat products are immersed in water, it would be challenging to implement 

an efficient meat handling and rejection apparatus. 

Another thickness cancellation method adopted by the industry is to press the 

meat mechanically. A pump is used to press the meat into a pipe, compressing it into a 

rectangular block of uniform thickness before it is scanned by an X-ray imager. It was 

reported that the method worked particularly well for ground meat inspection (Hartman, 

2001). However, for products such as poultry fillets, where the preservation of the natural 

shape is desired, this compression method seems unattractive due to inevitable meat 

damage. Furthermore, once the X-ray machine reports a contamination in the pipe, it is 

often difficult for human inspectors to determine the exact location of the defect in the 

chunk of rejected meat (Graves and Batchelor, 2003). 

 
2.2.5 Dual energy X-ray Imaging  
 

Note that all of the above methods for thickness cancellation are based on X-ray 

imaging with a single energy X-ray. It is arguable that by combining X-ray images from 

two energies, more information could be inferred, which could help address the thickness 

variation problem. An experiment using dual energy X-ray was conducted in this study, 

which is described in section 3.2. A brief overview of the background and applications of 

the dual energy X-ray imaging system are presented as follows. 

It is known that the attenuation characteristic of any material changes with X-ray 

energy, and for different materials, the change is different. This difference in changes 
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could make it possible to differentiate two materials based on the images at different X-

ray energies. As mentioned above, X-ray attenuation is the combined processes of photo 

electronic absorption and Compton scattering. It was found that the photo electronic 

absorption process is dependent on the atomic number and dominant at lower energies, 

while Compton scattering is dependent on electron density of the object and dominant at 

higher energies. It has been shown (Lehmann, et al., 1981) that by combining the X-ray 

images at two energies (low and high), two new transformed images can be generated to 

represent the integrated photo electronic and Compton scattering components. The two 

components are energy independent, and can be linearly combined to cancel unwanted 

material or highlight targeted material in the final image.  

The dual energy imaging technology has been widely employed in the medical 

and security fields. Medical applications such as Bone absorptiometry, digital 

mammography, and computed radiography (CR) are discussed below, as well as a brief 

description of explosive detection with dual energy X-ray. 

Dual energy X-ray absorptiometry (DXA) is seen as the single most useful 

method for bone mineral analysis, and the technique of choice to diagnose osteoporosis 

(Genant, et al., 1996, Blake and Fogelman, 2002). In a typical DXA machine, X-ray 

images at two distinct X-ray energies are captured of part of a human body. In both 

images, pixels representing bones are separated visually from the non-bone regions. The 

grayscales of “bone pixels” in the two images are then used to calculate the bone mineral 

density (BMD). The BMD of a specific patient is compared with a population average to 

generate a score, indicating risk of osteoporosis. A DXA scan typically takes several 

minutes, needs only negligible radiation to provide an accurate prediction for 
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osteoporotic fracture, and can be used as an excellent measure of treatment response 

(Moses, 2000). 

Dual energy X-ray imaging can be applied in mammography to enhance the 

contrast of calcified tissues against the background structure caused by soft adipose and 

glandular tissues (Johns, et al., 1985). A recent study showed that digital subtraction 

technology could be applied to dual energy mammograms to detect micro calcifications, 

as well as provide an estimation of noise levels and factors such as X-ray energies, tissue 

composition, and breast thickness (Lemacks, et al., 2002). X-ray sources used in 

traditional mammography are believed to be no longer suitable for dual energy detection, 

and dichromatic X-ray sources were developed to improve the detection performance of 

dual energy mammography (Tuffanelli, et al., 2002). The most significant benefits of 

dual energy mammography are improved sensitivity and reduced radiation dosage. 

For computed radiography, dual energy X-ray imaging serves as a powerful tool 

to enhance images. In a typical application, X-ray posterior-anterior (PA) images of a 

patient’s chest are captured at two different energies. Typically the high energy is 110-

150 keV and the low energy is usually 60-80 keV.  After combining the low and high-

energy images, two new images are generated. One of the new images shows only the 

skeletal and calcified structures, while the other represents only the soft tissue 

information without any bone occultation (General Electric Company, 2003). This 

technology provides radiologists a much better opportunity to diagnose lung cancer in its 

early stage, because it was found that lung cancers that are missed on traditional chest 

radiographs were at least partly obscured by bone (MacMahon, 2001).  
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For aviation security, the dual energy X-ray imaging technology can be used to 

detect explosives and other illicit materials which cannot be identified by signal energy 

X-ray systems (Fainberg, 1992). In a typical dual energy baggage scanner (Tyson, 2003), 

two X-ray detectors are used for the high and low energy X-rays. The two images of 

different energies are then used to categorize the pixels into organic (i.e. explosives, 

drugs, and food), inorganic (i.e. glass and plastic), and metallic materials. Usually a 

color-indexing scheme is used to visually discriminate the different types of materials (so 

called color X-ray), and the human operator can make further decisions based on the 

conveniently displayed information.  

Based on the numerous applications that were successful using dual energy 

imaging, it is presumable that the dual energy X-ray approach would also be a promising 

solution for the thickness variation problem in deboned poultry detection (Graves and 

Batchelor, 2003). Commercial inspection machines using dual energy methods are 

available for bone detection (Jamieson, 2002). The dual energy system can detect ossified 

bone fragment in chicken fillets, thighs and nuggets. However, soft bones are still not 

detectable by the X-rays (Graves and Batchelor, 2003).  

Because in both the high and low energy X-ray images, different materials or 

even the same material with different thickness cause great variations to image intensity 

levels, a neural network is usually used as a classifier to analyze the images based on 

historical training. Human inspectors are required to recalibrate the neural network during 

operation (Graves and Batchelor, 2003).  

Limitations of this dual energy method come from the underlying physics. 

Compared to the human body, poultry fillets are much thinner and softer, thus in order to 
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have high quality X-ray images, it is necessary to use lower energies than those for 

medical radiography. This requirement implies that the difference between the high and 

low energies is small, which leads to insufficient contrast between the images taken at the 

two energies. Certainly this limited contrast can be improved by using a neural network 

in the post-processing stage to extract some information of bone existence. However, it is 

not surprising that the less obvious bones, those that are thinner or softer, would be 

missed due to the imperfect input information. 

In order to address the thickness variation problem, a more plausible method is to 

acquire the thickness information directly, and then compensate for the thickness effects 

in the X-ray images. A brief review of optical methods for range finding is given in the 

next section. 

2.3 Optical range imaging technologies 
 

Optical range imaging refers to the technology of determining three-dimensional 

(3D) information of an object via optical sensing. A range imaging system can provide 

surface geometry measurements in the form of a range image, which is in fact an array of 

3D coordinates for the object surface. 

The optical range imaging methods can be categorized into passive and active 

approaches. Typical passive approaches include structure from shading (Horn and Brooks, 

1986; Zheng and Chellappa, 1991), and passive stereo imaging, also known as stereo 

vision (Grimson, 1981). The passive methods are well established in computer vision 

fields, and can recover high accuracy 3D information about the surface (Godin, et al., 

2002). The passive methods are based on the visible feature points under ambient 

illumination. However, in many cases, the available feature points are often coarsely 
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dispersed over the surface, which prevents the passive methods from achieving sufficient 

spatial resolution. Fortunately, active methods address this issue by introducing active 

illumination (or other excitation methods) to “manufacture” dense features on the object 

surface, thus making it possible to recover high-resolution 3D information. The active 

methods can be divided into two broad categories: time of flight methods and active 

triangulation methods. Due to the advantages of the active approaches, only active range 

imaging methods are described below.  

The time of flight (TOF) method determines the distance from a light source to an 

object by directly measuring the time of light traveling back and forth between the light 

transmitter/receiver and the reflecting object. Due to the similarities with the working 

principles of Radar, laser range imaging that uses the TOF method is often referred as 

Light Detection and Ranging (LIDAR) (Pace, et al., 2003). The TOF method is widely 

used in fields such as military applications, remote sensing, and atmospheric research. In 

applications where high accuracy of distance measurements is desired, strict precision 

requirements are imposed on time measurements. For example, in order to achieve a 

distance accuracy of 0.1 mm, it is necessary to measure time with an accuracy of 0.67 

picoseconds.  

A similar range imaging technique called light in flight holography uses a very 

short light pulse to scan the object. In a typical light in flight system, two short coherent 

laser beams are used, a reference beam and an object beam. The reference beam reaches 

an image screen directly, while the object beam is reflected by the object surface. The 

interference of the two beams on the image sensor is then analyzed to give a full 

reconstruction of the object surface (Abramson, 1991, Carlsson, 1993). Because the 
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method is based on interferometry, superior distance measurement resolution can be 

achieved. For example, coupled with digital reconstruction, the depth resolution reaches 

7 mµ (Carlsson, et al., 2001). 

The range imaging method that takes advantage of Moiré patterns is called the 

Moiré method. A Moiré pattern is the interference pattern created when two uniform 

linear gratings superimpose, and there is an orientation mismatch and/or pitch mismatch 

between the two gratings. The dark and bright bands in a Moiré pattern are called Moiré 

fringes, which can be correlated to the 3D geometry of the object surface (Xu, et al., 

2001). The advantages of the Moiré ranging method are its high accuracy, low cost and 

simple optical setup (Ratnam, et al., 2001).  

The active triangulation method, also referred to as the structured light method, is 

also widely used for 3D reconstruction (Jalkio, et al., 1985; Toyooka and Iwasa, 1986; 

Sorgel and Schalkoff, 1997; Sjodahl and Synnergren, 1999). In a typical structured light 

system, a specially designed lighting pattern is projected on the object, and the deformed 

fringe pattern on the surface is recorded by a camera. If the spatial relation of the light 

source and camera is calibrated beforehand, it is possible to reconstruct the 3D 

information of the points in the fringe pattern using triangulation. This active 

triangulation approach is preferred in many applications over other ranging methods.  

The advantages include its low cost, high 3D resolution, convenient customization, and 

robustness against environment or object variation (Chen, et al., 2000). In this study, a 

structured light system using a laser imaging sheet and two high-speed cameras has been 

developed.  



   
 23 
  
  

2.4 Digital image processing and machine vision 
 

Digital image processing refers to manipulation and analysis of a two dimensional 

picture by a digital computer, or digital processing of any two dimensional data 

(Rosenfeld and Kak, 1982; Jain, 1989). The discipline of digital image processing covers 

many topics including representation, enhancement, compression, analysis, and 

recognition. In this study of deboned poultry product inspection, which can be seen as a 

typical machine vision application, various digital image processing techniques are used 

to ensure reliable and efficient defect detection. In the following parts of this section, 

selected aspects of digital image processing in machine vision applications are briefly 

discussed. 

 

2.4.1 Machine vision 
 

As machines that can “see”, modern machine vision systems have a broad 

spectrum of applications, such as industry, security, and medical diagnosis. For industrial 

applications, machine vision technology often includes the engineering of an integrated 

inspection system with optical, electronics, mechanical and software components. 

Machine vision systems are used to detect defects, improve efficiency and ensure safety 

(Graves and Batchelor, 2003).  

A typical machine vision system consists of one or more image sensors, 

illumination sources appropriate for the specific application, appropriate mechanism for 

presenting the objects, one or more image digitizers, and one or more digital image 

processors or computers. In a typical system, the image of an object is acquired by the 

image sensor, converted to digital format by the digitizer (also known as the video 
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grabber), and processed by the image processor. Then the image processor analyzes the 

image, extracts necessary information, and makes a decision about the object, for 

instance, to pass or reject the product.  

Machine vision and computer vision are closely related in many aspects. However, 

it is necessary to recognize the significant distinctions between these two well-established 

disciplines. Computer vision approaches typically emphasize the analysis of given image 

data, attempting to maximize the insight and make sensible decisions, while machine 

vision approaches tend to control and optimize the image sensing process, which can 

maximize available useful information and ease the subsequent image processing tasks. 

On the tradeoff of performance and speed, computer vision researchers usually pursue 

optimal performance and regard processing time a secondary issue, while machine vision 

engineers push for maximum throughput as long as the system performance is 

satisfactory according to certain criteria (such as a better error rate than human 

inspectors). Both computer vision and machine vision have their own limitations, and 

often times the limitations of one of them can be overcome by the other’s strengths. 

A successful machine vision system should be reliable, fast, and consistent. In the 

application of natural product inspection, product variability is one of the most significant 

challenges to machine vision engineers. Unlike the manufactured parts encountered in 

many industrial applications, it is nearly impossible to find two identical natural products 

even in the same batch. Natural products have different sizes, shapes, colors, and textures 

in the captured images, and the defects on the products vary in terms of severity and 

location. These variability problems, among other challenges, should be addressed by an 

integrated solution of optical, electrical, mechanical and algorithmic approaches. 
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2.4.2 Image representation and acquisition 
 

As mentioned previously, a digital image is a 2D array of real numbers (or rarely, 

complex numbers) represented by a finite number of bits. The basic elements of a digital 

image are called pixels, an abbreviation of the words picture elements. The grayscale of 

each pixel is the incident light intensity at the specific location of the image. In general, 

any image can be seen as the camera sensed result of the interaction of a certain type of 

radiation and some material. By the nature of the interaction, images can be roughly 

classified into reflection images, such as ordinary photographs; emission images, such as 

thermal images; and absorption images, such X-ray images (Bovik, 2000).  

In order for the images to be processed by a digital computer, they should be first 

converted to digital format, i.e., the images should be defined on a discrete space/time 

domain, and should take values from a finite discrete set of values (Bovik, 2000). This 

conversion process is called analogue to digital conversion (ADC), and is comprised of 

two steps, sampling and quantization. In a typical machine vision system, the ADC 

process is usually conducted by the image digitizer, with a high frame rate and sufficient 

quantization bits. 

 

2.4.3 Image enhancement 
 
In most cases, the acquired images need to be enhanced before further processing. 

In general, the goal of image enhancement is to strengthen certain image features for 

subsequent analysis (Jain, 1989). Enhancement involves noise reduction, edge sharpening, 

contrast enhancement, and pixel interpolation. Although the enhanced image is more 
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useful for display or analysis than the original, it is noteworthy that the process of image 

enhancement does not add any information content to the image data. 

There are four types of image enhancement techniques: point operations, spatial 

operations, transform operations, and pseudo coloring (Jain, 1989). In practice, the most 

frequently used enhancement techniques are histogram modeling (a type of point 

operation) and spatial filtering (a subset of spatial operations). 

The histogram of an image represents the relative frequency of occurrence of 

various gray levels in the image. By modeling the histogram, it is possible to improve the 

contrast of the image, or modify the shape of the histogram to meet certain requirements. 

One example is to perform histogram stretching, also known as contrast stretching, where 

the histogram is stretched to fill the full range of the grayscale, for instance, 0-255 for an 

eight-bit image. 

Another example is histogram equalization, also known as histogram flattening, 

which changes the grayscales of the pixels so that a uniform histogram is obtained. It is 

believed that an image with a perfectly uniform histogram has the largest possible 

amount of information. 

Spatial operations are often used to remove or suppress image noise by 

convolving the image with a spatial mask. The spatial mask is usually a small square 

image patch. For instance, the mask for a spatial averaging operation could be a 3 by 3 

mask with value 1/9 at each pixel, suppressing noises in the original image significantly 

after convolution. Other than the convolution based approaches, a spatial operation called 

median filtering is also used to enhance images. With a median filter, the input pixel is 

replaced by the median of the pixels in a small neighborhood of the original pixel. 
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Median filtering is very effective in removing the so-called salt and pepper noises in 

images. 

 
2.4.4 Image segmentation  

 
Image segmentation is the process of dividing an image into a set of 

homogeneous regions, which is a crucial step in image processing. A homogeneous 

region refers to a group of connected pixels that are similar in terms of grayscale, color, 

or texture (Bovik, 2000). In many applications, image segmentation provides a 

convenient starting point for subsequent image manipulation, classification and 

understanding. For instance, to grade fruit quality, the fruit in an image should be 

segmented from the background. 

Among the many segmentation techniques, threshold-based, edge-based, region-

based, and texture-based methods are most frequently used.  In threshold-based methods, 

the segmentation decision of each pixel is made by comparing the grayscale of the pixel 

with a threshold value. Often the threshold value is determined by examining the shape of 

the histogram, and the valley in the histogram could be used as the threshold value (Jain, 

1989). The threshold could also be determined automatically based on the statistical 

distribution of the pixel grayscales. For instance, assume there are two classes of pixels, 

i.e., object pixels and background pixels, then the optimal threshold can be chosen to 

maximize the between class variance (Otsu, 1979). 

Edge-based segmentation is also known as the boundary-based method, which 

focuses on finding the boundaries that separate different regions. Typically, the edges in 

an image are detected and tracked, then an edge linking process is used to obtain a 

tentative boundary of regions, and finally the boundaries are refined to yield a final 
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segmentation. In an image where objects are touching or overlapping, the boundary could 

be broken due to noise, which makes it difficult to segment using edge-based methods.  

Region-based methods often emphasize direct detection of homogenous regions 

in an image according to the spatial similarities of pixels. Common techniques include 

region splitting, region merging, and region growing. In general, if a region is not 

uniform (according to a certain uniformity measure) it is split, and if two adjacent regions 

are similar (again based on a certain similarity measure) they are merged. In the region 

growing approach, a pixel adjacent to an established region is included in the region if the 

pixel shares similar features to the pixels already included in the region. Note that the 

three methods have different starting points.  The region splitting starts by assigning the 

whole image as a single region, region merging starts by assigning each pixel as a region, 

and region growing starts from chosen seed pixels. 

The goal of texture-based segmentation is to partition an image into a set of 

homogeneous textured regions. Texture is a ubiquitous phenomenon in nature, and there 

has been extensive research conducted on texture-based image analysis. Although there is 

not yet a widely accepted definition of the term texture, many methods have been 

proposed to grasp the texture features in images. One widely used method is filtering, 

which filters the image with a group of spatial filters (a filter bank), and the output of the 

filter bank at each pixel is used to assign a label to each pixel (Malik and Perona, 1990).  

 

2.4.5 Blob analysis and feature extraction 

The blob analysis method (Jain, et al., 1995), also known as blob coloring, blob 

labeling, or region analysis, is often used in machine vision image processing. A blob is a 
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group of connected pixels that share similar intensity, color or other properties, which can 

be obtained as the homogeneous region yielded by image segmentation. For each blob, 

features such as area, perimeter, location, and mean grayscale can be conveniently 

calculated. The features can then be used in a classification process to identify the nature 

of the object, for instance, whether it is acceptable or defective. 

One of the advantages of blob analysis over pixel-based analysis is that the image 

processing tasks can be performed on a blob-by-blob basis, instead of on numerous pixels 

in an image, thus leading to the need for less computation power. 

  Another benefit is that the properties of the objects of interest can be conveniently 

represented by expected blob features, such as area and shape, which lead to efficient and 

effective object classification. 

 
2.4.6 Real time implementation issues 
 

In many, if not all, machine vision applications, real-time capability is an essential 

requirement. It is important for the imaging system to respond to the incoming image 

data in a timely manner. In practice, it is recognized that real time image processing 

involves three major tradeoffs: performance vs. image resolution, performance vs. data 

bandwidth, and synchronization vs. number of concurrent tasks (Laplante and Stoyenko, 

1996). Besides adopting faster hardware, it is usually more important to use appropriate 

software architecture to ensure reliability and functionality of the overall system, and 

maximize the potential of the available hardware. Among various useful techniques, 

double buffering and parallel processing are briefly described as follows. 

Double buffering refers to an image processing technique using two image buffers 

to ensure data integrity without interfering with real-time image acquisition. The basic 
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idea of double buffering is to process the image in one buffer while the new image data 

are grabbing into another buffer. It is assumed that the maximum processing time for a 

buffer is shorter than the minimum acquisition time for a buffer; otherwise, the image 

data being processed could be contaminated. Once the image processing of the first 

buffer is complete, the program will start waiting for the second buffer. As soon as image 

acquisition of the second buffer is complete, the program starts processing it, and 

acquisition of the first buffer begins at the same time. This simple mechanism guarantees 

that at any time, the image buffer being processed is not being updated by another source, 

thus data integrity is ensured.  

In order to maximally exploit the hardware computing power, it is often helpful to 

process the images in a parallel manner. In a typical real-time machine vision system, 

image processing throughput is affect by the acquisition frame rate of the camera and 

image grabber, processing speed of the onboard image processor, data bandwidth for 

transferring the image stream to host CPU, processing speed of host CPU and data 

bandwidth between CPU and memory. The speed of image processors is usually faster 

than the data transfer speed in the data buses. If a single thread of image processing is 

active, sometimes the onboard processor and host CPU are idling while the mass of 

image data is being transferred. Computation power of the onboard processor and host 

CPU can be employed more efficiently if there are multiple processing threads working 

in parallel, and the overall throughput and responsiveness of the overall system would be 

improved with the same hardware. 
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CHAPTER 3  

   OBJECTIVES 

 

The overall objective of the research is to develop a combined X-ray and laser 

range-imaging system for sensitive detection of physical contaminants in meat fillets on 

poultry processing lines. The method should be able to overcome the obstacles of 

traditional X-ray technology due to uneven thickness of meat, and enable accurate on-line 

imaging identification of bone fragments in deboned meat. Furthermore, the performance 

of the detection system should be equal to or better than the current industry practice of 

hand checking for ensuring product quality and safety. The specific goals of this research 

are to: 

(1)  Analyze X-ray absorption and determine optimal sensing parameters for detection of 

bones in poultry materials and to configure a high-contrast X-ray imaging system that 

is highly sensitive to bones and other physical contaminants.  

(2)  Develop a combined X-ray and laser range-imaging system to produce integrated and 

thickness-invariant X-ray images for enhanced sensitivity. This will include the 

development of image pattern recognition algorithms to identify bones and make 

rejection decisions.  

(3)  Evaluate the performance of the combined X-ray and laser range-imaging system 

through on-line testing. 



   
 32 
  
  

 

CHAPTER 4  

X-RAY IMAGING WITH SINGLE ENERGY AND DUAL X-RAY 

ENERGIES 

 
In this chapter, two imaging modes were studied for deboned poultry inspection. 

For X-ray imaging with a single energy level, an objective measure was proposed for X-

ray image quality evaluation. For X-ray imaging with dual energies, a least squares based 

method was studied for bone fragment detection.  

4.1 Equipment overview 
 

The inspection system consists of an X-ray imaging system and a motor-driven 

conveyor belt which carries poultry fillets to be inspected. X-ray images were collected 

by a high-resolution line-scan digital X-ray camera (Hamamatsu Photonics Systems, 

Japan), featuring 1280 pixels per line at 0.4 mm resolution (thus the total effective 

reception length is 512 mm). A Genesis imaging board (Matrox Electronic Systems Ltd, 

Canada) grabs the images with an onboard 12-bit digitizer. The imaging board was 

installed on a custom built Pentium 4 PC, which handles real-time acquisition and 

analysis of X-ray images, and interacts with the human operator.  

4.2 Evaluation of X-ray image quality 
 

4.2.1 Objective index for X-ray image quality evaluation 
 

The X-ray image is the foundation of the physical contamination detection. Image 

quality involves many factors, including resolution, contrast, and noise, etc. Image 
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resolution in X-ray imaging is related to the detector pixel pitch and the focal size of the 

X-ray tube, both of which are unchangeable in our system. The quality evaluation and 

enhancement focus the contrast and noise characteristics. 

The image contrast is defined as the intensity difference of the object and its 

background (Dowsett, et al., 1998), or 

C= (I1-I0)/I0        (4.1) 

where  

C: the contrast, and 

I1: the intensity of the object and I0 is the background intensity.   

In the application of bone fragment detection, it is desirable that the difference 

between the bone fragment and normal meat tissue be maximized. Certainly, sufficient 

contrast between the bone fragment and its surrounding meat tissue is crucial in order to 

detect the intrusion. 

Noise level in an image is characterized using the signal to noise ratio (SNR). A 

higher SNR leads to better image quality. SNR is defined by 

SNR=Isignal/σ noise       (4.2) 

where  

Isignal: the signal intensity, and 

 σ noise: the standard deviation of the noise. 

In the field of X-ray imaging, it is known that contrast and SNR are both related 

to X-ray energy. In general, better image contrast can be achieved at lower energies, 

while better SNR can be observed by increasing X-ray energy. Thus in order to choose a 
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suitable X-ray energy for a specific application, both contrast and SNR should be 

considered at the same time, and a tradeoff between these two is usually needed.  

 

A measure called detective quantum efficiency (DQE) is often used to evaluate X-

ray image quality by the medical radiographic community. For an X-ray image sensor, 

the DQE is defined as the ratio of the SNR of output signal to  the SNR of input signal, or  

DQE=SNR2
out/SNR2

in       (4.3) 

where  

SNRout: the signal to noise ratio at the output of the X-ray image detector,  

SNRin: the SNR at the input quantum field at the detector input (Sandborg and 

Carlsson, 1992).  

In practice, the DQE value is often calculated as 

)f(NPS
Φ•)f(MTF•G

=)f(DQE
22

      (4.4) 

where  

f: the spatial frequency (line pairs/mm);  

G: the detector gain, a constant determined by the design of the image  

 detector;  

MTF: the modulation transfer function of the imaging system;  

Φ : the X-ray quanta per unit area, or quantum flux at the input of the image 

detector; and  

NPS: the noise power spectrum in the output X-ray image (Spartiotis, et al., 2003). 

Although DQE has been widely used to evaluate system performance in X-ray 

imaging fields, it is not used for our application. This is because of the difficulty of 
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measuring the X-ray quantum flux in our current X-ray setup, and the fact that DQE is 

not directly linked to image contrast and the SNR.  

As an alternative, the author proposes an new objective image quality measure, 

the combined quality index (CQI), which is defined as 

CQI= SNR•C         (4.5) 

Where  

C: the image contrast, and  

SNR: the signal to noise ratio of the output X-ray image. 

This quality index is solely image based, i.e., it can be derived directly from the X-ray 

image. Therefore, it is not necessary to measure or estimate the input X-ray quantum flux. 

Another advantage of the CQI is that, it combines the effects of image contrast and SNR 

into one measure, thus it is possible to determine an optimal X-ray energy level by 

finding the maximum CQI. 

 

4.2.2 Apply CQI to the X-ray images of sample images 
 

In order to find the optimal X-ray energy level for deboned poultry inspection 

image quality needs to be evaluated at different energy levels. X-ray images of a meat 

sample are taken at different X-ray energies, and the CQI for each image was calculated 

and compared. The meat sample was a deboned chicken breast with a bone fragment 

inside. In the X-ray image, image contrast was calculated in a small region of interest 

containing the bone fragment and the surrounding meat tissue. Refer to equation 4.1, the 

mean intensity of the bone fragment is I1, and the mean intensity of the surrounding meat 

tissue is I0. For the SNR calculation, the mean intensity in the background was used as 
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signal intensity Isignal in equation 4.2, and the standard deviation was calculated in the 

same background region. After the C and SNR were calculated, the combined quality 

index can be determined by following equation 4.5. 

 

4.3 Bone Fragment Detection Using Dual Energy X-ray Imaging 
  

In order to overcome the thickness variation problem with traditional single 

energy X-ray imaging technology, we studied a method based on dual energy X-ray 

imaging. The underlying belief is that, when X-ray energy changes, the attenuation 

properties of different materials change differently. In this section, the physics 

background, experimental setup, and image-processing algorithms are presented.  

 
4.3.1 Physics background: dual energy X-ray imaging 

 
For certain applications, two X-ray images at different energy levels of an object 

are captured and analyzed, yielding valuable information not available when using only 

one energy level. This method is called dual energy X-ray imaging, which is widely used 

in security and medical fields. In some security screening systems deployed in airports or 

other vital locations, dual energy X-ray imaging has been used to scan travel luggage, 

providing enhanced image details for hazardous object detection (Tyson, 2003). In 

medical applications, dual energy X-ray imaging has been widely used to analyze body 

composition, especially for bone mineral density (BMD) measurements, and is often 

referred as dual-energy X-ray absorptiometry (DXA) (Genant, et al., 1996). Recently, 

digital dual energy X-ray technology has been applied to other medical applications such 
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as the chest X-ray (GE, 2003) and mammography (Lemacks, et al., 2002), and has shown 

significant advantages over single energy X-ray systems. 

The physics basis of dual energy X-ray imaging comes from the fact that the X-ray 

absorption coefficient of any specific material is energy dependent. In other words, the 

X-ray absorption coefficient of a material is a function of X-ray photon energy. In the 

application of meat tissue inspection, there are two principle X-ray attenuation processes, 

photoelectric absorption and Compton scattering. It has been found that, at lower X-ray 

energies (usually below 30 keV), photoelectric absorption plays a dominant role, while 

Compton scattering becomes more significant at higher energies (usually above 50 keV). 

The dependency of X-ray attenuation coefficients of certain material upon energy can be 

modeled as (Lehmann, et al., 1981): 

 )E(fa+)E(fa=
ρ

)E(µ
ppcc       (4.6) 

where 

µ(E) : the attenuation coefficient,  

 ρ : the mass density of the material,  

ac and ap :constants determined by the atomic composition of the material, and 

fc(E) and fp(E): functions describing the energy dependencies of Compton 

scattering and photoelectric absorption respectively.  

The term 
ρ

)E(µ
 is often referred to as the mass attenuation coefficient. It has been 

proven that the mass attenuation coefficient of any material can be expressed by the 

linear combination of any two materials with known attenuation properties (Lehmann, et 

al., 1981),  
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where  

1

1

ρ
)E(µ

 and 
2

2

ρ
)E(µ

: the mass attenuation coefficients of materials 1 and 2 

respectively,  and  

a1 and a2 : constants determined by the composition of the materials.  

Materials 1 and 2 are called basis set materials, and are used to span the “space” 

of materials. For instance, in the medical dual energy X-ray absorptiometry applications, 

the basis materials are often aluminum and Lucite, mainly because their atom numbers 

bracket most materials of clinical interest  (Lehmann, et al., 1981). 

Equation 4.7 lays the foundation for dual energy X-ray imaging, making it 

possible to cancel out a certain material in an X-ray image based on attenuation 

characteristics of two known materials. For example, suppose the basis materials are 

aluminum and Lucite, then the two basis images (aluminum image and Lucite image) can 

be derived from the dual energy X-ray images. The derivation is based on the known 

mass attenuation coefficients of the two basis materials at dual energy levels. Finally, a 

linear combination of the two basis images generates a “desired” final image, which can 

be expressed as( Lehmann, et al., 1981) 

C0=A1sin 0Φ + A2cos 0Φ       (4.8) 

where  

A1 and A2 are the two basis images,  

 0Φ is an angle which can be varied to adjust the linear combination, and  

C0 is the resultant combined image, called the basis projection image.  
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It follows that ( Lehmann, et al., 1981), an unknown homogeneous sample of 

material can be canceled in the basis projection image by adjusting 0Φ  in an interactive 

manner. In the bone detection application, this means that the soft tissue of poultry meat 

could be canceled out of the final image regardless of thickness variations, as long as the 

material is approximately homogeneous. 

However, the above rationale is based on the assumption that the X-ray source is 

monochromatic, or that it generates a “pure color” X-ray beam at a single energy level, or 

wavelength. Unfortunately, most of the current available X-ray sources are polychromatic, 

and the only adjustable parameter in this regard is the maximum energy, or equivalently, 

the minimum wavelength of radiation. In order to address this continuous energy issue, 

the X-ray beam can be filtered by a certain material, thus only a small portion of the 

incident X-ray spectrum can reach the image sensor. Alternatively, mathematical 

methods such as the Monte Carlo N Particle model (Batistoni, et al., 2003, Nilsson, et al., 

2002) can be used to decompose the continuous energy distribution and obtain a fairly 

accurate estimate of the material composition.  

 

4.3.2 Selection of high and low energies 
 

To apply the idea of dual energy imaging in practice, the first step is to choose an 

appropriate combination of low and high energy levels. Selection of low and higher 

energy levels depends on the nature of the specific application, especially on the 

radiological characteristics of the relevant material. Theoretically, any two X-ray energies 

can be used in the dual-energy X-ray setup as long as both of them can lead to an 

acceptable image quality for the object. In our imaging system, based on image contrast 
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and noise level, the high energy level selected was 50 keV, and the low energy level was 

30 keV.   

  

4.3.3 System setup 
 

In order to apply dual energy X-ray to online inspection tasks, it is necessary to 

collect X-ray images at different energies in real-time. Some systems have one X-ray 

source and two imagers binned together that are fine-tuned to different energies. Other 

systems have two X-ray sources working at different energy levels and two imagers, each 

of which is synchronized to one of the sources. Obviously the latter setup tends to be 

more accurate, but more expensive as well. 

To explore the potential of dual energy X-ray imaging in industrial poultry 

inspection, we simulate the dual source dual imager setup using a single source single 

imager system, which is coupled with precise image registration procedures. The X-ray 

machine described in section 4.1 was used to conduct the dual energy X-ray imaging 

experiments. For each sample, X-ray images were taken at different energies, and the 

series of images for that sample were recorded for further analysis. 

 

4.3.4 Image analysis 
 

For dual energy X-ray imaging, it is essential to ensure that the sample images at 

different energies are registered to each other at the pixel level. Because our imaging 

system uses a line scan type X-ray imager, it was impossible to precisely control the 

location of the object in the view of each image frame. In order to determine the relative 

translation between image scans, an image based registration method was used. A small 
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reference object in the image was used to register the relative location of the start point of 

an image, thus the translation between different images was recovered, and X-ray images 

at different energy levels were registered to each other.  

After registration, for each pixel, its grayscales in both high energy and low 

energy X-ray images were compiled to form a two-element attenuation vector, which 

carried information of X-ray attenuations of both energy levels at the pixel level. At this 

stage, a region of interest was obtained by segmenting the low energy image using a 

suitable threshold, so that computing power could be focused on the object instead of the 

image background. The attenuation vectors of all the pixels residing in the region of 

interest serve as inputs for the following image-processing tasks. In the classic method 

proposed by Lehmann, et al (1981), the vectors were fed into a nonlinear equation system, 

solved using an iterative fitting approach. The Compton effect tends to be more 

significant when the X-ray energy is high, and in an energy region where the Compton 

effect predominates, the attenuation is approximately material independent (Hale, 1975). 

It follows that, at an appropriate high energy level, the X-ray attenuation is approximately 

solely determined by the thickness of the object, no matter if the object consists of a 

homogeneous material or is a mixture of heterogeneous materials (Jamieson, 2002). 

Assuming that the thickness is represented by high energy attenuation, while low energy 

attenuation is affected by both thickness and material characteristics, a linear polynomial 

model of certain order can be formulated to describe the relationship between the high-

low energy grayscale pair for each pixel as:   

ML=f(MH)=a0+a1MH+a2 MH
 2+a3 MH

 3…+an MH
 n   (4.9) 

where  
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MH and ML: the log attenuations at a certain pixel using the high and low energies 

respectively,  

f(.): the polynomial model, and  

n: the order of the model, which should be determined a priori .  

The assumption is that if the model is accurate and the material is homogenous 

through the object, ML
 at any pixel in the region of interest can be properly estimated 

according to the corresponding MH with negligible error. On the other hand, if there is 

any intrusion embedded in the object, it will be identified as an outlier in the model, and 

thus will be detected by image differentiation between the true ML and the estimated ML.  

In practice, image noises are inevitable in the acquired dual energy X-ray images, 

thus a 3x3 median filter was used to smooth out most of the “salt-and-pepper” noises. 

After noise removal, MH and ML values for each pixel in the region of interest are taken 

from the high and low energy images respectively. Assuming that the total number of 

pixels in the region of interest is N, then the N pairs of (MH, ML) are plugged into 

Equation 4.4, and the model parameters {a0,…, an } can be obtained using least squares 

method.  

Given the model parameters, the estimated version of low energy image LM̂ is 

then calculated using the model expressed by Equation 4.9. The difference image is given 

as  

M∆ =|ML- LM̂ |       (4.10) 

The nonzero pixels in the M∆  image are considered as the abnormal signatures, which 

can be identified using various pattern recognition methods. In this preliminary study the 

greatest interest was whether the dual energy X-ray imaging could provide sufficient 
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information for thickness cancellation, so options of target detection algorithms were not 

explored for this application.  

Test results and analysis of this dual energy X-ray approach are presented in 

chapter 5, nevertheless it should be noted here that thickness variation of the soft chicken 

tissue can only be cancelled to a limited extent. This limited capability is due to the 

underlying physics of X-ray attenuation, which is discussed in chapter 6.               

 Although it is certainly helpful to apply sophisticated machine learning algorithms 

such as artificial neural networks to further suppress thickness interference, it is better to 

have a start point where the explicit thickness information could be acquired physically. 

Thus, in the research of this dissertation, the combined X-ray and laser 3D imaging 

approach was preferred to solve the thickness variation problem. 
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CHAPTER 5  

COMBINED X-RAY AND LASER 3D IMAGING 

 
As mentioned previously, due to the nature of poultry bone fragment detection 

problem, the effectiveness of the detection method depends largely on how well the 

thickness variation is neutralized. In this study, a thickness estimation method based on 

laser 3D imaging was adopted to measure the thickness explicitly in real-time, which 

leads to the possibility of complete thickness cancellation. 

5.1 Overview of combined X-ray and laser 3D imaging 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1 The concept of thickness cancellation for bone detection 
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Figure 5.1 illustrates the conceptual procedure of the sensor fusion scheme. 

Figure 5.1 (a) shows a chicken fillet containing bone fragments (or other physical 

contaminations). Figure 5.1 (b) shows the X-ray image profile. The surface topography is 

obtained using laser range imaging, and then the 3D thickness image is mapped to a 

pseudo X-ray image as shown in Figure 5.1 (c). By combining the mapped image with X-

ray image, the thickness-compensated X-ray image is obtained as shown in Figure 5.1(d). 

Finally, the embedded bone fragments are segmented as shown in Figure 5.1(e). 

Because both X-ray and laser images are function of thickness, a mapping 

relationship exists between them.  The transformation of a depth image T(x, y) to a 

pseudo X-ray image Ipx(x,y) can be obtained by applying a mapping function f(.) as:  

Ipx(x,y) = f(T(x, y))                                                                           (5.1) 

The mapping function is determined by constructing a model between the X-ray image 

and laser image of a chicken meat fillet without bone inclusions (the modeling process is 

described in section 5.4.2). In ideal case, i.e., the meat tissue material of the sample is 

homogenous everywhere, and the constructed model is accurate, the mapping function 

results in: 

Ipx(x,y) = I (x, y)                                                                                 (5.2) 

i.e., the transformed pseudo X-ray image Ipx(x,y) would be the same as the X-ray image 

I(x, y), no bone fragment inclusions show in the pseudo X-ray image. Thus, the grayscale 

variation in the X-ray image due to the uneven meat thickness can be eliminated by 

subtraction: 

Itc(x,y) = Ipx(x,y) – I (x, y)                                                          (5.3)  

where 
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Itc(x,y): the resultant thickness compensated image.  

In principle, if chicken meat contains no bone fragment (or other foreign 

materials), Itc(x,y) should be close to zero for any pixel.  In practice, to eliminate any 

residual or image noises caused by imperfect thickness compensation, Itc(x,y) image can 

be segmented with a small threshold ε. The bright spots in the segmented image would 

indicate possible intrusions, which will be identified by further analysis. Certainly if the 

segmented image is all zero, it can be concluded that the meat sample of interest is free of 

any bone fragment or other physical hazard.  

The image data from both X-ray and laser subsystems are acquired 

simultaneously and then integrated to compensate for the thickness variation. The 

embedded bone fragment, if any, will be identified based on the final combined image.  

The performance of the overall system depends on accuracy of the information 

provided by the individual subsystems, and the synchronization/coordination between 

them. Due to the unique synergism of X-ray imaging and laser 3D imaging in this study, 

special consideration and modification are taken to fit the application of poultry meat 

inspection. 

5.2 Laser 3D imaging 
 

The 3D thickness profiles of the surface of the poultry fillets are acquired online 

using the laser range imaging technique. In general, optical range finding can be defined 

as the process of determining the distance (or depth) from a given observation point to all 

points of consideration in a scene. The technology of optical range finders has been 

widely used in many applications, such as airborne remote sensing survey, medical 

imaging, and reverse engineering, etc., to obtain 3D description for object of interest. 



   
 47 
  
  

Two of the most popular methods for range finding are time-of-flight (TOF) based 

technique (Pace, et al., 2003), which measures the travel time of light to infer distance, 

and structured light based technique (Sjodahl and Synnergren, 1999), which reconstructs 

3D structure based on triangulation.  

In this study, a structured light system (SLS) is used to obtain the 3D profiles for 

poultry samples, because compared with the TOF approach, structured lighting method 

tends to be more accurate, flexible, robust and cost effective (Chen, et al., 2000).  

In general, a SLS uses laser beams to project intense and sharp parallel lines onto 

an object and registers the resultant light pattern with a camera. Once the relative position 

of the camera and the light source are known, the distance from the camera to the object 

can be calculated using triangulation, which leads to the depth information. The complete 

3D surface of the object can then be reconstructed if the entire object has been scanned. 

The schematic setup of a typical system is depicted in Figure 5.2. With a cylindrical lens 

based optical system, a laser projects a light plane onto the object. The thickness variation 

of the object will be registered by the light stripe on its surface. In the demonstration of 

Figure 5.3, the complete 3D surface profile can be estimated from the set of light stripes 

posed on the object over time.  

The geometry of the structured light system is shown in Figure 5.4. The 

coordinates of an image point are given relative to the center of the camera lens. A single 

illumination is represented at angles θ x  and θ y  to the z-axis in the x and y directions, 

respectively.  
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Figure 5.2 Schematic setup of a basic laser based structured light system for thickness 
measurement. 

 

 
 

Figure 5.3 Surface structure reconstruction using multiple light stripe scanning 

 

The stripe illuminates the object at the coordinates (x0,y0), which is given by 
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Figure 5.4 Geometric model of the triangulation procedure in structured light systems 
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The distance between the receiving lens and detector, f, is nearly equal to the focal length 

of the receiving lens. If this image point is compared to the image point produced by a 

calibration object at the reference distance zref, the displacements of the image are given 

by 
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The x displacement can be used to calculate the object distance: 
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The laser 3D imaging subsystem constructed for this study is shown in Figure 5.5. Note 

that two cameras are used in this setup. Part of the cross section curve generated by the 

laser sheet and the meat surface could be invisible to one of the cameras, due to meat 

occultation and/or random light reflections. By using two cameras, as shown in Figure 

5.5, the other camera can obtain a better view of the missed laser reflection, thus the 

robustness against occultation and lighting irregularity of the overall imaging system is 

improved. If in some circumstances neither of the cameras could get a clear view of the 

whole profile, the missed portion will be estimated using interpolation methods. 

 

 

Figure 5.5 Laser 3D imaging subsystem for poultry meat thickness profiling 

 

5.3. X-ray imaging subsystem for the combined approach 
 

The imaging hardware of the X-ray subsystem used in the combined approach is 

essentially the same as the one used in the previous single X-ray and dual energy X-ray 

studies, except for a few but crucial modifications. One of the most important changes on 
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the X-ray imaging part is the triggering mechanism for image acquisition, which is 

described in details as follows.  

5.3.1 External trigger  
 

In order to perform thickness compensation for each pixel in the X-ray image 

correctly, it is crucial to synchronize the X-ray and laser imaging subsystems. For this 

purpose, an encoder is mounted on the shaft of the conveyor rotor and connected to the 

imaging system. The encoder records the movement of the conveyor belt and sends out 

continuous electronic pulses. The frequency of the electronic pulses is proportional to the 

speed of the conveyor belt movement, or more precisely, the number of pulses generated 

during any time period, Npulse , is proportional to the distance of the conveyor belt 

movement, dconveyor ,  

Npulse=kencoder dconveyor       (5.8) 

where  

the parameter kencoder is determined by the specification of the encoder. 

  In our system, the pulse signal from the encoder is transformed to TTL levels, 

divided to an appropriate frequency range (<2kHz) by a set of pulse dividers, and then is 

used to trigger both the X-ray and laser image grabbers, as shown in Figure 5.6. 

Figure 5.6 Synchronizing X-ray and laser image acquisitions using encoder 
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5.3.2 Image artifact 
 

The principle of Figure 5.6 works well to synchronize the X-ray and laser 

subsystems, enabling the two subsystems to share a common location index for any 

moving object on the conveyor belt. However, it leads to significant artifacts in the X-ray 

images due to inconsistent exposure time, which would cause significant classification 

errors.  

The cause of these artifacts is related to the principle of X-ray image integration 

and the jittering nature of the conveyor movements. Integration of the X-ray photons in 

the X-ray detector is a function of the integration time, or exposure time. It follows that 

fluctuations of the exposure time will lead to fluctuations of grayscales in the resultant X-

ray image. In the combined X-ray and laser imaging system, the exposure time of X-ray 

image is determined by the width of encoder pulse, which is further dictated by the 

moving speed of the conveyor belt. Unfortunately, the speed of the conveyor belt is never 

constant. The cause of the speed jitter can be traced to a series of transient mechanical 

and electrical irregularities, which are inevitable in practice. Although some of the 

causing factors can be suppressed to a limited extent, the speed jitter problem can not be 

effectively eliminated.  

Initially, a software-based post-processing method was considered to remove the 

artifacts, which attempted to identify and remove the artifacts in the imperfect images 

based on texture features. However, even when some of the artifacts were cancelled out 

by the algorithm, the sharpness of the X-ray image was also impaired. Furthermore, it is 

possible that some physical contaminations share similar texture characteristics with the 
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artifact pattern, which could be mistakenly smoothed out by the software method. Based 

on these considerations, a hardware method is designed to remove the image artifacts.  

 

5.3.3 Hardware solution for the artifact elimination 
 

Principle 

As mentioned above, the exposure trigger for the X-ray imaging subsystem is 

connected to the encoder mounted on the conveyor rotor via a set of signal amplifying 

and pulse dividing circuitry.  

When the encoder pulse jitters, the exposure time for the X-ray image line 

changes accordingly. In order to eliminate the negative effect of jitter problem, it is 

desirable to add a set of pulse conditioning circuitry between the encoder and X-ray 

detector, which can keep the exposure time constant even if the encoder pulse jitters.  

In order to meet the requirements, an internal timing signal of the X-ray detector, 

HSYNC, is intercepted and combined with the encoder pulse. HSYNC stands for 

horizontal synchronization, and it is the signal initialing photon integration for each line. 

There are two image acquisition modes for the X-ray detector, i.e., internal or external 

modes. According to the detector design, HSYNC signal is generated by the control unit 

of the X-ray detector as digital pulses of a constant frequency, if the image acquisition 

mode is set to “internal”. The frequency of HSYNC can be specified by a human operator 

via a command console in this mode. If the image acquisition mode is set to be “external”, 

the frequency of HSYNC will totally depend on the external trigger, which could jitter 

from time to time. The main idea of the hardware solution is to “trick” the control unit 
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into the internal acquisition mode and for the detector to fabricate a new version of 

HSYNC which is synchronized with the encoder trigger pulse, as shown in Figure 5.7.  

 

Figure 5.7 Diagram of the hardware solution for artifact removal: the black box fabricates 

a new HSYNC based on the encoder trigger pulse and the original HSYNC signal 

Implementation 

The implementation of the design is depicted in Figure 5.7. There are two main 

portions of the pulse conditioning circuitry, one is the pulse tracking module (PTM) 

implemented with a phase locked loop (PLL) and the other is the pulse sampling module 

(PSM) constructed by D flip-flops. The two modules are shown in Figure 5.8 and Figure 

5.9, respectively.   

 

Figure 5.8 Schematics of the pulse tracking module (PTM) 

Encoder trigger 

Original HSYNC 
New HSYNC 

“Black box” 
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Figure 5.9 Schematics of the pulse sampling module (PSM) 

 
As shown in Figure 5.8, the input signal of the PTM is the encoder pulse, 

ENCODER, and the output signal is START, which is then relayed to the PSM. The core 

of the PTM is a PLL IC CD 4046, which traces the ENCODER signal, and generates a 

stabilized signal, START. As shown in Figure 5.10, a typical PLL consists of a phase 

detector (PD), a loop filter (LP), a voltage controlled oscillator (VCO) and a loop divider 

(1/N).  

 

 

 

Figure 5.10 Diagram of a phase locked loop (PLL) 

 
If the PLL is working at locked mode, we have 

 fout= N fin        (5.9) 

fout fin PD LP

1/N

VCO
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where  

fin and fout: the frequencies of the input (reference) and output signal,  

N: a preset positive integer.  

The PLLs are a class of circuits widely used in fields including communication, 

instrumentation, and telemetry, for signal recovery, modulation/demodulation, and signal 

conditioning. For more details on principles and applications of the PLL, please refer to 

literature (Wolaver, 1991). In our application, the PLL was used to generate the START 

signal, which has the same average frequency as the ENCODER signal, but has a more 

stable phase than ENCODER. Refer to Figures 5.8 and 5.12, the PD and the VCO were 

included in the chip CD4046, the LP is implemented with a 741Aµ operational amplifier, 

and the pulse divider (1/N) was realized by a 74LS93 IC.  

As shown in Figure 5.9, the START signal generated by the PTM was used as an 

input for the PSM. The other input signal of the PSM was the HSYNC signal from the X-

ray detector, which in a sense was used to “sample” the START signal and generate a 

new version of horizontal synchronization signal, XHS, for X-ray image acquisition. The 

design ensured that, for each positive pulse of the START, there would be one and only 

one XHS pulse generated. It was also ensured that the XHS pulse coincides with the first 

HSYNC pulse that follows the rising edge of START pulse. 

Refer to Figure 5.9, the working mechanism of the PSM can be described as 

follows. Without losing generality, assume1 that initially the states of the two D flip-flops 

IC1A and IC1B were both 0, meaning the Q port of IC1A and IC1B were both at low 

voltage level. According to the property of the 74LS74 flip-flop, the state of IC1A will 

                                                 
1 It can be shown that the function of PSM is not affected even if this assumption on initial circuit state 
does not hold. 
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change from 0 to 1 if and only if there is a rising edge at its CLK port which is driven by 

the START signal. Once a START rising edge comes, the state of Q port of IC1A will 

change from 0 to 1, and will remain at 1 level for now. If a positive pulse of HSYNC 

arrives at the CLK port of IC1B, the state of IC1B will change from 0 to 1, because the 

rising edge at its CLK port samples a 1 at its D port. Thus the 1 at port Q of IC1B will be 

ANDed with the positive pulse of HSYNC by IC2A, an AND gate, yielding a new 

positive pulse, XHS. The width of the XHS pulse would be the same as HSYNC2. At the 

end of the XHS pulse, its falling edge will trigger the one-shot oscillator IC3B, 

generating a negative pulse at the Q  port of IC3B. As shown in Figure 5.9, the negative 

pulse will be relayed to the CLR ports of IC1A and IC1B, thus will clear both of the D 

flip-flops (i.e., force the Q ports to change from 1 to 0). After IC1A and IC1B are cleared, 

the PSM goes back to its initial state and becomes ready for another round of operations, 

which will be triggered by a new pulse of the START signal. In this way, it was ensured 

that there was one and only one XHS pulse generated for each START pulse, thus the 

location information was retained. On the other hand, because the width of the XHS pulse 

is constant regardless of speed of the conveyor, it is also guaranteed that the photon 

integration time for each line in X-ray image is constant, thus the problem of X-ray image 

artifact is solved. 

                                                 
2 Strictly speaking, the width of XHS is narrower than HSYNC. However the difference is less than 100 ns 
(Texas Instruments, 1988), which is negligible comparing with the width of XHS or HSYNC, which is at 
least 1ms.  
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5.4 Integration of X-ray and laser imaging subsystems 

Once the X-ray and laser imaging subsystems are ready and capable of yielding X-ray 

and laser 3D images with acceptable quality and throughput, the next major task is to 

integrate them into a coherent and efficient system. In this section, various aspects of the 

integration task are discussed, including:  

1. Image registration, which determines the geometric relationship between the 

image obtained by the X-ray subsystem and the one obtained by the laser 

subsystem; 

2. Image modeling, which generates a model describing the relationship between 

grayscales in an X-ray image and those in a laser 3D image, and yields a pseudo 

X-ray image based on the model and a laser 3D image. The thickness variation in 

the X-ray image will then be canceled out by using the pseudo X-ray image; 

3. Defect detection, which searches for the bone fragment or other types of 

abnormality in the compensated image; and 

4. Multithread framework, which makes it possible to finish the image processing 

tasks in real time. 

 

5.4.1 Image registration 
 

In order to perform thickness compensation for the X-ray image, it is crucial to 

first ensure that the pixels in the laser 3D image are mapped correctly to those in the X-

ray image. The spatial relationship between the two images can be described by a 

geometric transformation, and the type and parameters of the transformation needed to be 
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determined for every pair of the X-ray and the laser images. In our system, the X-ray 

source, the X-ray detector, the laser, and the CCD cameras were mounted to a rigid frame, 

so the geometrical relationship between the components of the two subsystems are fixed. 

Because the parameters of the geometric transformation will keep constant over time, we 

can estimate the parameters offline and then apply them for real-time processing. 

 
 
Affine Transform 
 

According to the setup of the imaging systems, the geometric relationship 

between the X-ray and the laser images was approximated by the following affine 

transformation (Forsyth and Ponce, 2003),  
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where (x,y) and (u,v) are the coordinates of a matched pixel in the X-ray image and laser 

image respectively. The matrix A and vector B define the affine transformation. In the 

general affine model of equation (5.10), operations including translation, scaling and 

rotation are described. In our system, the X-ray and laser imaging devices were aligned to 

each other, thus only translation and scaling were considered in this registration stage, 

and equation (5.10) is reduced to 
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Furthermore, the parameter a22, the ratio of trigger frequencies of the X-ray and the laser 

imaging subsystems, was predetermined based on the setting of the trigger electronics 
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(refer to section 5.3.3). According to Figure 5.9, a22 is known to be set to four3. Thus, in 

the model of equation (5.11), there are only three unknowns, a11, b1 and b2, which can be 

solved if given two sets of (x,y,u,v).  

Linear Least Squares Method 

In order to solve the three unknowns in equation (5.11), at least two pairs of 

matched marker pixels from the X-ray and the laser images should be selected. In 

practice, six pairs of the matched anchor points are used, and the affine transformation 

parameters were estimated using a linear least squares method for a best-fit (Forsyth and 

Ponce, 2003). 

Bilinear interpolation 

Once the affine transformation parameters are estimated, they are applied to the 

original laser image according to equation 5.11 to obtain the registered version of the 

laser image, which is used to cancel thickness variations in the X-ray image.  

 
The scaling operation will cause “missing points” in the transformed image. A 

bilinear interpolation method was used to estimate the grayscale of the missing pixels by 

taking an average of the known values at neighboring points. The bilinear interpolation 

takes the weighted average of a 2x2 pixel neighborhood as the assigned value to evaluate 

the interpolated pixel. Weights were determined by measuring the distance from the 

interpolated pixel to its nearest four surrounding pixels. The value of the interpolated 

pixel P in (Figure 5.11) can be evaluated as follows, 

 

 

                                                 
3 According to the specification of 74LS93 IC, the frequency at pin 9 is one fourth of that at pin 14. 
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Figure 5.11 Schematic representation of linear interpolation 
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             4321 )1)(1()1()1( pddpddpddpdd yxyxyxyx −−+−+−+=       (5.12) 

where 1p , 2p , 3p  and 4p  represent the pixel values from a 2x2 pixel neighborhood of the 

interpolated pixel P. p is the value of P. 12p  and 34p  are the intermediate pixel 

values used to derive the value of p .  

 

5.4.2 Image modeling and thickness compensation 
 

In the X-ray image, the grayscale of each pixel is determined by the intensity of 

X-ray transmission to the specific pixel, which is further determined by the total X-ray 

attenuation along the path of transmission. Assume that the X-ray attenuation due to free 
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air and conveyor belt are negligible4, and further assume that the material of chicken 

meat is homogenous, then the X-ray intensity at pixel (x,y) will be 

I(x,y)=I0exp[- µ d(x,y)]      (5.13) 

where  

I0: the incident X-ray intensity,  

 µ :the attenuation coefficient of the meat tissue, and  

 d(x,y): the length of X-ray path inside the meat.  

 The model can be used to cancel out the X-ray image grayscale variation caused 

by thickness variations. According to equation (5.13), the transmitted intensity I(x,y) can 

be modeled based on the characteristics of the material, however, in practice, it is not 

feasible to evaluate the attenuation coefficient for each possible composition of chicken 

meat and X-ray energy setting. In our study, an image based approach was used to 

construct the model.  

As mentioned before, for each sample on the conveyor belt, the laser range 

imaging subsystem yields a 3D thickness image T(x,y). For each pixel in the thickness 

image, its grayscale is proportional to the thickness of the corresponding spot of the 

object (i.e., either the meat sample or the conveyor belt). In other words, let the thickness 

profile of the object be d(x,y), then there exists a positive constant k, which satisfies: 

T(x,y)=k d(x,y)  (5.14) 

In a similar manner, the sample is scanned by the digital X-ray detector, which yields 

I(x,y), an X-ray snapshot of the object. A thickness compensated image can be obtained 

as: 

                                                 
4 The conveyor belt used in this application is a food grade conveyor belt with no internal texture and 
minimum X-ray absorption. 
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Itc(x,y)=Ipx(x,y)-I(x,y)+C(x,y)      (5.15) 

where  

C(x,y): a constant image that keeps Itc(x,y) positive, and  

Ipx(x,y): the pseudo X-ray image defined as (similar to equation 5.15). 

Ipx(x,y)=I0exp[- µ d(x,y)]      (5.16) 

where 

 I0 corresponds to the original intensity of X-ray beam, which is determined by the 

X-ray system; and  

µ : the effective X-ray absorption coefficient of the sample, which is determined 

by the X-ray energy and the material of the sample. Putting everything together, the 

compensated image Xtc(x,y) can be calculated as: 

Itc(x,y)= I0exp[- •
k
µ

T(x,y)] -I(x,y)+C(x,y)    (5.17) 

Ideally, if there is no foreign material in the sample, the compensated image Itc will be 

flat; otherwise the pixels corresponding to the foreign material “stand out”, which can be 

segmented with a simple threshold operation.  

In equation (5.17), I(x,y) and T(x,y) were acquired in real time, and I0 and C(x,y) 

can be predetermined. The difference between I(x,y) and {I0exp[- •
k
µ

T(x,y)]} should be 

small enough and thickness independent, otherwise the resultant thickness compensated 

image Itc(x,y) will suffer significant noise. Theoretically the ratio 
k
µ

 can be determined 

beforehand by exhaustive experiments. However, it is hardly practical to generate a data 

set for the ratio, which could cover each case of the combinations of various X-ray 
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settings and materials. It is desirable to bypass the complex process of finding the ratio
k
µ

. 

Revisiting equation (5.17), the operation can be viewed as canceling I(x,y) with a 

function of T(x,y), and in a sense, the smaller the residual of the cancellation the better. 

Now the problem is reduced to finding a minimum error estimate of I(x,y) based on 

T(x,y), which can be readily solved by the following least squares approach. 

Suppose that the X-ray image I(x,y) and the laser image T(x,y) are registered 

perfectly to each other, i.e., there is no displacement, rotation or scaling issue. Under this 

assumption, {I(x,y)} and {T(x,y)} can be treated as one dimensional vectors of the same 

size, and the thickness compensated equation (5.17) can be rewritten as 

Itc(n)= f(T(n))-I(n),   n=1,…,max(x)*max(y)    (5.18) 

A handy approach to determine the function f() is the least squares polynomial estimation. 

Assume a kth order polynomial estimate is desired, then the f() can be defined as: 

u=f(v)= ∑
=

k

0i

i
iva        (5.19) 

where ai , i=0,…,k are the fitting coefficients. When substituting I(n) and T(n) for u and v 

in equation (5.19) respectively, the ai’s can be solved using a standard least squares 

algorithm. Once the function f() is determined, the pseudo X-ray image Ipx(x,y) can be 

calculated as 

Ipx(x,y)=f(T(x,y))=∑
=

k

0i

i
i y)][T(x,a      (5.20) 

After the pseudo X-ray image Ipx(x,y) is obtained, the thickness variation in the  X-ray 

image can be canceled out using equation (5.15). 
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5.4.3 Detection algorithm 

 
In the thickness compensated image, pixels with nonzero grayscale represent 

either physical contamination or random noise. In practice, the contaminations to be 

detected in the application are highly diversified, ranging from soft and thin bone 

fragments to hard and sharp metal clips. As a result, the signatures of the hazardous 

materials revealed by the synergic X-ray and laser imaging system are also highly 

diversified, which makes it difficult to develop a universal classifier to distinguish the 

hazardous items from the normal meat tissue.  

In order to detect the highly diversified subjects, a rule-based scheme was adopted 

in this study, which enables the system to make complicated classification judgments 

based on a predefined decision tree (Duda, et al., 2000). 

As in most pattern recognition applications, prior to the classification stage, we 

need to define a set of subjects to be classified, and construct a feature vector for each of 

the subjects. In this system, prior to pattern recognition, thickness compensation was 

applied to each X-ray image of chicken fillet (as mentioned in the previous section), 

followed by segmentation of the compensated image, and then the blob analysis.  

 

Automatic threshold selection for image segmentation 

 In a thickness-compensated chicken meat image, if there is no physical 

contamination embedded, the intensity distribution of the image pixels would be uniform.  

When there does exist a foreign material, such as a bone fragment, the intensity levels at 

the region of the bone area present higher values. Based on these properties, the image 
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segmentation method is applied to the thickness-compensated image in order to find the 

contaminants.  

In an ideal case, the simplest approach to segment an image is to select a global 

threshold value, and classify the image into two clusters, as described in equation (5.21), 

If TC (x, y) > T then TC (x, y) =0 else TC(x, y) =255   (5.21) 

Where, 

TC(x,y) represents the intensity value of a pixel at position (x,y) in image TC, and 

T stands for the threshold of intensity level for clustering the objects.   

The threshold value (T) can be selected based on the histogram of the image. If the 

histogram presents a deep and sharp valley, and the two peaks represent the object and 

background in the image, the grayscale of the valley in the histogram can be chosen as 

the threshold. However, in our application, the histogram of the thickness-compensated 

image rarely presents a sharp valley. As shown in Figure 5.12, In Figure 5.12(b), the 

histogram of a typical thickness compensated image is flat and broad, imbued with noise, 

and presents no traceable valley.  

In order to make segmentation more robust for this application, it is desirable that 

the threshold selection can be selected automatically. Three methods have been explored 

and compared in order to find the best strategy for this application.  
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(b) 

Figure 5.12 Histogram characteristics of a typical thickness compensated image. (a) The 

thickness compensated image of a chicken breast (b) The histogram of the image. 

Note that that zero pixels are omitted in this histogram. 
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Otsu’s method 

 Otsu’s method (Otsu, 1979) is an automatic optimal threshold selection method 

based on a two-class discriminant analysis. It assumes that the pixel values in an image fit 

a bi-modal distribution. Under this assumption, the method was designed to select the 

threshold value by maximizing the between-class variance of the two groups of pixels 

separated by the thresholding operator.  

Consider an image with L gray levels and its gray-level histogram is normalized 

and regarded as a probability distribution (Otsu, 1979), 

1,0),1(,/
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i
iiii ppLiwhereNnp L    (5.22) 

where, 

N is the total number of pixels, and LnnnN +++= L21 . 

Assuming that we have set the threshold at T, and the total pixels in the image 

will accordingly be partitioned into two groups: the background (assume when no more 

than T) and the object (when larger than T). The probabilities of the class occurrence are 

given by: 
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where, 

bgP : the probability of background occurrence, and 

objP : the probability of object occurrence.  

The mean gray-level value of the background ( bgµ ) and the object pixels ( objµ ) will be: 
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where, 

bgµ : the mean of the  background gray-level, and  

objµ : the mean of the object gray-level. 

The total mean gray-level value totµ over the whole image (grand mean) is: 
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The variance of the background bg
2σ  and the object obj

2σ  will be: 
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The total variance of the whole image tot
2σ  is, 
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The total variance 2
totσ  can be re-written as follows, 
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Let 2
wσ = 22

objobjbgbg PP σσ +  be the within-class variance and 

222 )()( totobjobjtotobjbgB PP µµµµσ −+−=  be the between-class variance. From equation 

(5.29), the total variance 2
totσ  can then be expressed as the sum of the within-class 

variance and between-class variance, i.e, 2
totσ = 2

wσ + 2
Bσ . In Otsu’s method, the 

“goodness” of selecting T as the threshold value is evaluated by calculating the 

discriminant criteria measurements: 
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The optimal T value is selected when λ or κ or η  reaches their maximum value. 

  Otsu’s method doesn’t work well when the total pixel numbers in both classes 

differ dramatically, which is the case of most samples in this application. In most cases, 

the variances of the two classes are different.  As a result, the unbalanced data inputs 

contribute unequal weights to the within and between variance calculations. Since the 

discriminant criteria are sensitive to the class data distribution homogeneity, the 

unbalanced data distribution will bias the optimal result. 
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Prior knowledge based method 

Embedded bone fragments are relatively small compared with the whole chicken 

meat sample. In most cases bone fragments occupy no more than 5% of the total area of 

the chicken meat sample. Bone fragments in a thickness-compensated chicken breast 

sample image are bright objects against the dark background. Therefore, a prior 

knowledge based method can be used for automatic selection of the threshold. For 

instance, if the bones are known to present the brightest pixels in the compensated images, 

based on the histogram distribution, an appropriate threshold can be chosen by 

partitioning the histogram to 95% over 5%.  

This straightforward method works well and fast when the bone fragments are 

homogenous. However, the major drawback of the method is obvious. If the bone 

fragments present different brightness patterns, this method may miss some of the darker 

bone fragments in the compensated image.  

 

Localized auto-threshold method 

 This method is to partition the image into MxN sub-images, and then calculate the 

threshold values for each sub-image. The threshold of a sub-image is called its sub-

threshold. The sub-threshold values are partitioned into two groups according to their 

magnitudes, and the global threshold is chosen to be the smallest value of the group that 

contains the higher threshold values.  

 For each thickness-compensated chicken meat sample image, nine sub-images 

were generated. Otsu’s method was applied to each sub-image, and both the sub-
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threshold value and the discriminant criteria measurement λ were calculated (see 

equation 5.30). If a sub-image contains bright bone fragments, both the sub-threshold and 

sub λ values are high. On the other hand, if a sub-image doesn’t have any bone fragment, 

both the sub-threshold and sub λ values are very low. If in a thickness-compensated 

chicken meat sample image the bone fragments have different brightness levels, sub-

images that contain the darker bone fragments have relative lower sub-threshold values 

compared with the ones that contain brighter bones. In those sub-images, however, the 

auto-threshold values and sub λ  values are still high enough to be distinguished from the 

sub-images that don’t contain any bone fragments.  A detailed discussion is presented in 

the next chapter.  

 

Blob generation 

When the global threshold value is automatically selected, a thresholding 

operation, as shown in equation (5.31), is applied to partition the thickness-compensated 

image into two groups, and a binary image is generated as 
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    (5.31) 

where  

TC(x,y): the thickness-compensated image, and  

BIN (x,y): for the binary image, and  

gT : the selected global threshold value. 

 The pixels that represent bone fragments are segmented and assigned value “1” in 

the binary image BIN(x,y), so are those representing the noise. Blobs are then formed by 
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grouping the adjacent “1” pixels. In order to eliminate the blobs that are caused by noise, 

morphological operations such as the erode filter and the dilate filter are used.  

 The morphological filters are Boolean filters that are applied to a binary image. 

The most common Boolean operations are AND and OR. The binary erode filter is 

defined by  

E(x,y) = AND [ BIN(x,y)]      (5.32) 

where,  

E(x,y): the resultant eroded image, and  

BIN(x,y): the binary image defined in equation (5.31).  

Similarly, the dilate filter is defined by OR operation applied to the binary image 

BIN(x,y),  

D(x,y) = OR [BIN(x,y)]      (5.33) 

where,  

D(x,y): the resultant dilated image.  

The erode filter shrinks the size of the object blobs. Usually, the isolated object 

blob with very small sizes will be eliminated by applying this operation. Therefore, small 

dot-like noise caused by auto-thresholding can be removed.  

 The morphological operations are simple, yet fast and powerful tools suitable for 

machine vision online applications. In this application, the erode filter is applied first to 

BIN(x,y) to obtain erosion image E(x,y) and to eliminate many small noise related blobs. 

Then, a dilate filter is applied to E(x,y) to expand the remaining blobs (if there is any) 

close to their original sizes. The D’(x,y) image is generated accordingly, 

D’(x,y) = OR [ AND [BIN(x,y)] ]     (5.34)   
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By applying the erode and the dilate filters sequentially to the binary image 

BINS(x,y) we can effectively eliminate the small noise blobs, and smooth the boundaries 

of other blobs as well. Since the two operations are not inverse operations of one another, 

the resultant D’(x,y) is different from B(x,y). However, since the operations are 

performed within the same size of binary windows, to blobs that are big enough to remain 

in D’(x,y), the changes of their sizes and boundaries are trivial, and won’t affect the 

following operations. Beside the bone fragment blobs, there are still relatively “large” 

noise blob left in D’(x,y). In order to reduce the noise effects to identify only the bone 

fragments, further feature extraction methods are applied.  

 

Blob analysis 

  Once the blobs are generated, useful information is extracted to help the machine 

vision system to “recognize” each blob by analyzing each of them. In our application, the 

useful basic blob information includes size (area), mass center, and position range. Also, 

the binary blob image D’(x,y) served as the mask to original thickness-compensated 

image TC(x,y), and some gray level image properties are obtained. The blobs are first 

labeled to identify them from each other, and then processed with blob analysis 

operations. Blob size is defined by 

Bsize(b(n)) = Bsize(b(n))+1,  ∀D’(x,y) =’1’, (x,y) ∈b(n)  (5.35) 
Where,  

b(n) : the blob labeled pixel group. 

Blob mass center is calculated by moments. The X position of the center of 

gravity of a blob is defined by 
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X(b(n) =  MOMENT_X1_Y0(b(n)) / Bsize(b(n)),  ∀D’(x,y) =’1’, (x,y) ∈b(n)  

         ( 5.36) 
Similarly, the Y position of the center of gravity of a blob is defined by 

  Y(b(n) =  MOMENT_X0_Y1(b(n)) / Bsize(b(n)),  ∀D’(x,y) =’1’, (x,y) ∈b(n)  

          (5.37) 
In both equations (5.36),(5.37), MOMENT_X1_Y0(b(n)) and MOMENT_X0_Y1(b(n)) 

are syntaxes of moments of a blob labeled as b(n). MOMENT_Xn_Ym (b(n) are defined 

as: 
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    (5.38) 

where,  

T(b(n)): the total pixel number within blob b(n), and 

ix : X coordinate of pixel i,  

iy : the Y coordinate of pixel i, and 

ip : the pixel value (in binary image ip  equals zero or one) of pixel i. 

All the coordinates used are relative to the image origin (top-left corner). The blob 

position range is defined by the minimum and the maximum values of its X and Y 

coordinates.   

To use blob image D’(x,y) as a mask applied to thickness-compensated image 

TC(x,y) is defined by 


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   (5.39) 

where, 
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 ),(' yxTC  is the resultant gray level blob image.  

For each labeled gray level blob, mean (average grayscale) and standard deviation are 

calculated.  

Based on the basic calculation of these characteristics, additional information can 

be derived. For instance, the distance between any two blobs is obtained by calculating 

the Euclidean distance between blob mass centers. All the direct and indirect 

characteristics of each blob will be used to formulate a set of feature vectors for further 

feature extraction.  

 

Feature Extraction 

The composition of the feature vector was flexible, as well as its organization. A 

typical composition of the feature vector is shown in Figure 5.13. Note that the 

parameters are adjustable and only limited information is covered in this example. In 

practice, our system uses a feature vector consisting of more detailed characteristics of a 

blob, such as shape, location, orientation, distance to other blobs, grayscale in the original 

X-ray image, etc.  

AG: Average Grayscale SD: Standard Deviation A: Area 

Figure 5.13 The feature vector of a blob 

 
 
Classifier design 
 
 Classifier is used in many pattern recognition applications to sort objects into 

different groups. In this application, the purpose was to detect the hazardous objects from 

the chicken meat, and all hazardous materials should be removed from the meat. 

Therefore, to classify the hazardous objects doesn’t seem critically important. However, 
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in practice, in order to analyze the detection abilities of the system to handle various 

types of hazardous objects, as well as to further eliminate noise, classifier design is 

necessary.  

 In the computer vision field, many classification techniques have been further 

explored for different applications. Those methods are categorized into supervised or 

unsupervised, parameter and non-parameter estimations. For this online application, 

parameters of the classification model should be minimized. The supervised training 

approach, which has been found quite robust in the machine vision environment, should 

be used with prior knowledge of the detection problem. In light of these requirements, the 

classifier in this application should be simple and fast. In this machine vision application, 

some elements in the feature vector present logical relationships which can be described 

using certain rules, and are very helpful in sorting. The rule-based method implemented 

using a decision tree, which has been widely used in other online machine vision systems, 

has been found effective in this application. An example of the decision tree structure is 

shown in Figure 5.14. 
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Figure 5.14 Decision tree for a rule-based classifier. 

 
Overall algorithm  

The overall procedure of intrusion detection is shown in Figure 5.15. For each meat 

sample, a pseudo X-ray image was formulated based on the true X-ray image and the 

laser image, and the compensated image was the difference between the pseudo and the 

true X-ray images. Blobs in the compensated image were analyzed and the features of 

each of the blobs were fed to the rule-based classifier, where each of the blobs was 

classified as either normal (meat tissue) or abnormal (bone, metal, etc.) based on a set of 

predefined rules.  
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Figure 5.15 Algorithm block diagram of the synergic inspection system. 

 

Once bone fragments or other types of hazardous objects were found, the system 

would record the locations of those defects along with the location of the meat. The 

location information can be reported to a computer screen for human intervention and/or 

can be forwarded electrically for product tracking and handling.  

 

5.4.4 Multithread framework 

Besides accuracy, real-time capability of a detection system is also vital for 

industrial applications. As mentioned above, tasks to be carried out by the imaging 

system involve complex operations, including synchronizing X-ray and laser subsystems, 
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grabbing and formulating the X-ray and laser range images, compensating the X-ray 

image using the laser range image, identifying subjects in the combined image, and 

presenting the results via an appropriate user interface. If the tasks were conducted in a 

traditional sequential manner for meat streams on a conveyer, the system must finish all 

the imaging and analysis processes for one object before another object can be started. If 

the processing time for an object is long, there could be a substantial waiting time for 

each of the objects, which leads to undesirable low throughput and inefficient use of 

computation power. A much better approach is to conduct the tasks in a parallel manner, 

i.e., the system handles multiple objects simultaneously, and thus the process stage of 

each object could be different. In this study, a parallel processing framework using a 

multithread approach was developed, which enabled concurrent system control and 

image analysis, and maximized the use of imaging hardware, host CPU and I/O channel. 

Single thread vs. multithread 

 

Figure 5.16 Behavior model of a single thread real-time image processing system 

 

In a real-time image-processing environment, images are continuously presented 

to the processor frame by frame endlessly, as shown in Figure 5.16, where processor 

refers to a set of hardware and software dedicated to image processing. The processor 

needs to respond to the input image flow and make decisions accordingly, in a timely 

manner. The crucial time constraint can be represented as 

Tf > Tp         (5.40) 

t1 

Image Processor

t1+tp t5 t5+tp 

tf 
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where,  

Tf: the time interval between the start of the current frame and the start of its 

successor, and  

Tp: the processing time for the current frame.  

The processor must finish the work on one frame before the next frame begins. 

Otherwise the new incoming frame will either be skipped by the processor or be held 

until the processor is free; both of which are undesirable scenarios. The disadvantage of 

skipping means a loss of information and the hold-and-wait approach can lead to an 

accumulating delay between input and output. In this case, a sizeable “waiting room” 

buffer is needed to hold all of the waiting frames, which leads to another difficulty, i.e., 

determining a sufficient and efficient buffer size.  

If the workload of image processing per image frame is not heavy, or the data rate 

of the input image flow is low, the constraint of Equation (5.40) would pose little or no 

real restriction, depending on the specific application. However, in our case, since the 

workload was heavy due to the combined X-ray and laser imaging algorithms, and the 

input data rate was high, a multithread model was designed, as shown in Figure 5.17, in 

order to ensure timely response.  
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Figure 5.17 Behavior model of a multithread real-time image processing system 

 

In this multithread model, the tasks are shared by different units (or threads), i.e., 

a scheduler thread and a set of worker threads. When a new image frame arrives, the 

scheduler will respond first if it is ready, pass the job to a free worker thread, and then get 

ready for the next frame. When a worker thread is called by the scheduler, it will enter 

the busy state and process the assigned image frame. After the frame is finished, the 

worker will feed the processed result back to the scheduler and return to the free state. 

The time constraint is now  

Tf > Tr         (5.41) 

where  

Tf: the time interval between the start of the frame being processed and the start of 

its successor, and  

Tr: the scheduler response time for the current frame, which is far less then Tp.  

The advantage of this multithread model is that the scheduler thread can always 

respond in time to the incoming image frames as long as there are sufficient free worker 

threads. Certainly this space-for-time approach will not guarantee to suffice an infinite 
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throughput requirement; however, comparing with the single thread approach, it 

promotes real-time capability and system resource utilization significantly. 

 

Implementation of Multithread Scheme 

Basic building blocks of the multithread scheme are threads and messages (also 

known as events). A thread is a path of execution within a process (i.e., application, 

program, etc.)(Silberschatz, et al., 2003). Various threads of a process share the same 

resources of the process, while retaining certain operational independence of their own. A 

message (or event) is a carrier of information used for thread communication and 

synchronization. The meaning of a message can be flexible. Depending on its specific 

definition, a message can be used to declare that a scheduler is ready for another image 

frame, notify a worker thread to start or stop working, or declare that a worker is free or 

busy, etc.  

 
 

Figure 5.18 Topology diagram of the multithread system 
 

In our multithread scheme, the threads were organized in a nested manner. As 

shown in Figure 5.18, the threads are grouped into two sets, namely a locator group and 
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probe group, each of which consists of one scheduler thread and multiple worker threads. 

For the worker threads in both groups, the scheduler thread serves as an interface passing 

the input and output data, and as a coordinator managing workloads. The function of the 

locator group is to determine the location of each object, i.e. chicken fillet, in terms of the 

X-Y coordinates and dimensions. The probe group is set to search for physical hazards in 

each object passed by locators, based on the information embedded in the X-ray and laser 

range images. Note that besides the threads mentioned here, there are additional threads 

responsible for tasks such as image grabbing, result display, and user interface, etc., 

which are less technically relevant. 

The control mechanism of the multithread system can be described as the 

following three phases, as shown in Figure 5.19. For convenience, we number the 

scheduler in the locator group as Scheduler L, and that in the probe group as Scheduler P.  

 

 

(a) Initialization phase 
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(b) Processing phase 

 

(c) Termination phase 

Figure 5.19 Message flow of the multithread system at different working phase 
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Initialization phase, as shown in Figure 5.19(a):  

1. Each worker thread finishes its own initialization and sends a READY message to 

its scheduler; 

2. Scheduler thread signals READY to controller when all worker threads are ready.    

Processing phase, as shown in Figure 5.19 (b): 

For locator group 

1. When a new image frame comes, scheduler L immediately selects a free 

locator worker, prepares the private working buffer for the worker and 

sends a START message to it. Then the selected locator worker starts 

working on the image frame, and scheduler L becomes ready for the next 

incoming frame once it is confirmed that the locator worker has started 

working. 

2. Once a locator finishes working on an image frame, it will register the 

result information, send a READY message to scheduler L, and start 

waiting for the next job. If a new object is found, the locator thread will 

send a FOUND message to the scheduler in the probe group (scheduler P) 

before taking a break. 

For probe group 

1. When a FOUND message is received by Scheduler P, it immediately 

selects a free probe worker and prepares the private working buffer for the 

worker and send a START message to it. The selected probe worker will 
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start working on the object, while scheduler P becomes ready for the next 

object. 

2. Similar to the locator case, once a probe worker finished working on an 

object, it will register the resulting information, and send a READY 

message to Scheduler P. If the probe finds one or more physical hazardous 

items, such as a bone fragment, or a metal clip, etc., it will report the 

existence and location of each detected item. 

Termination phase, as shown in Figure 5.19 (c): 

1. User sends STOP message to the scheduler of the locator group (i.e., 

scheduler L). 

2. Scheduler L sends STOP message to each of the locator workers if the 

worker is ready (i.e., has no job in hand) 

3. Scheduler L sends STOP message to scheduler P after all the locator 

workers are stopped. 

4. Scheduler P sends STOP message to each of the probe workers if the 

worker is ready. 

5. Scheduler P sends FINISH message to scheduler L after all the probe 

workers are stopped, and scheduler L will then send FINISH message to 

controller. 

As demonstrated in our application, with appropriate control and synchronization 

mechanism in place, a multithread system can work reliably and achieve much higher 

efficiency than a single thread system.  
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CHAPTER 6  

RESULTS AND DISCUSSION 

 

In this study, a combined machine vision system with both X-ray imaging and 

laser 3D imaging was developed and on-line tested for deboned poultry product 

inspection. As preliminary studies, single energy X-ray and dual energy X-ray imaging 

were also explored. In this chapter, the experimental results of different methods are 

presented and can be categorized into three result sections, 

1. X-ray imaging with single energy  

2. X-ray imaging with dual energy, and  

3. Combined X-ray and laser 3D imaging  

6.1 X-ray inspection with single energy 
 

In order to study the impact of the X-ray energy level on image quality, a series of 

images were taken at different energies of a meat sample with a bone fragment. Because 

the image quality was unacceptable if the energy was lower than 22 keV, and the X-ray 

generator in our imaging system cannot provide an energy level over 50 keV, the X-ray 

energy levels ranging from 22 keV to 50 keV, with a one keV step, were considered in 

this image quality test. 

As mentioned previously, the image quality was evaluated using the CQI, a 

combined quantitative index composed of image contrast and SNR information. The 

experimental results are summarized in Figures 6.1, 6.2 and 6.3 for the 29 energy levels.  
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Image contrast and X-ray energy level
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Figure 6.1 Relation between image contrast and X-ray energy level 
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Figure 6.2 Relation between SNR and X-ray energy level 

 
As shown in Figure 6.1, the image contrast between the bone fragment and the 

surrounding meat tissue is at its highest level when the X-ray energy is 22 keV, the 
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lowest energy, and decreases as the X-ray energy level reaches 50 keV. In Figure 6.2, as 

the X-ray energy increases, the SNR also increases from 41.97 at 22 keV to 114.39 at 50 

keV.  

Despite a few exceptions in both curves, one can conclude that as X-ray energy 

increases, image contrast decreases while SNR increases monotonically. 
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Figure 6.3 Relation between image quality and X-ray energy level, where the image 

quality is evaluated using the combined quality index 

. 

The overall image quality measured by the CQI is shown in Figure 6.3, where the 

peak of the CQI curve resides between 28 keV and 31 keV. This finding implies that a 

valuable tradeoff between image contrast and SNR can be achieved in this energy range.   
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For instance, the images of a chicken breast at 30 keV and 50 keV are shown in 

Figures 6.4(a) and (b) respectively, and the contrast in the 30 keV image is better than the 

50 keV image. In this case, using 30 keV to scan the meat sample makes it easier to 

differentiate the bone fragment from the meat tissue. 

 

 
(a) 

 
                        (b) 

 

Figure 6.4 X-ray images of a chicken breast with a bone fragment at different X-ray 

energies. (a) Image captured at 30keV. (b) Image captured at 50keV. 

 

6.2 X-ray inspection with dual energy 
 

The potential of using on-line dual energy X-ray imaging for deboned poultry 

meat inspection is also explored in this study. The research results show that by 

Bone 
fragment 
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combining images at two different energies, it is possible to cancel the thickness variation 

of meat tissue, and make it easy to detect any embedded bone fragment. 

In the experiment here, two X-ray energy levels were 30 keV and 50 keV were 

selected for use. X-ray images taken at 30 keV have good overall image quality (see 

section 6.1) in terms of bone to meat contrast and signal to noise ratio. However, X-ray 

images taken at the 50 keV energy level lead to the smallest bone to meat contrast but the 

best signal to noise ratio. In other words, by differentiating the 30 keV and 50 keV 

images, the result is likely to compensate for the meat thickness variation and extract the 

bone information.  

An example of bone detection using dual energy X-ray is shown in Figure 6.5. 

The meat sample is a chicken breast with an embedded bone fragment. The bone 

fragment is a small piece of fully calcified rib bone. In this example, the contrast 

difference between the 30 keV and 50 keV images is obvious, thus making it possible to 

compensate for the thickness variation in the 30 keV image by using the 50 keV image. 

After thickness compensation, as shown in Figure 6.5(c), the bone fragment is much 

brighter than the other parts of the meat sample, and can be easily extracted as shown in 

Figure 6.5(d).  

Another example is shown in Figure 6.6, which is a chicken breast with a piece of 

fan bone. Compared with rib bones, fan bones tend to be thin and less calcified. The 

contrast difference between the 30 keV image and 50 keV image is significant. However, 

the compensation is not as successful as in Figure 6.5. Thus, after the thickness 

compensation shown in Figure 6.6(c), the fan bone still can not be differentiated from the 

remaining thickness variation patterns, as shown in Figure 6.6(d). The difficulty of fan 
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bone detection can be explained as follows. Fan bones tend to be less calcified than 

ordinary bones, thus the X-ray attenuation difference between a fan bone and normal 

meat tissues is not as significant as that between a calcified bone and meat tissue. Also, 

fan bones tend to be thin, which make them even more difficult to differentiate from the 

surrounding meat tissues with X-ray imaging methods.  

The previous two examples show both the potential and limitation of dual energy 

X-ray imaging technology in the application of poultry meat inspection. It was evident 

that by using two or more X-ray energies, it was possible to infer more information about 

the meat sample, which could lead to more accurate and robust detection of bone 

fragments. However, there are several inherent difficulties in this approach. First, 

theoretically, a monochromatic X-ray source is needed to cancel the thickness variation 

completely (Lehmann, et al., 1981), while in reality almost all of the commercially 

available X-ray sources are polychromatic. Thus in most cases, thickness compensation 

using dual energy can only be approximated to a certain extent, depending on the X-ray 

spectrum and materials of interest. Secondly, effective thickness cancellation requires a 

sufficient Compton scattering component for at least one of the X-ray energies. Compton 

scattering dominates at high X-ray energies, i.e., over 50keV (Dowsett, et al., 1998). 

However, this energy would be too high to produce sufficient image details for deboned 

poultry products. Finally, because of the explained physics limitations, a neural network 

seems to be the appropriate method to extract the subtle information about thickness 

variation and bone existence from the dual energy X-ray images. However, in this case 

the performance of the overall inspection system could be sensitive to the training 

procedure of the neural network (Graves and Batchelor, 2003). 
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(a) X-ray image at 30keV 

 

(b) X-ray image at 50keV 

 

(c) Compensated image generated by the modeling process 

 

(d) Segmented image showing the bone fragment 

Figure 6.5 Bone fragment detection using dual energy X-ray. 
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(a) X-ray image at 30keV 

 

(b) X-ray image at 50keV 

 

(c) Compensated image generated by the modeling process 

 

(d) Segmented image showing the bone fragment 

Figure 6.6 Limitation of bone fragment detection using dual energy X-ray. 
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6.3 Combined X-ray and laser 3D imaging 
 

In this study, we adopted a laser 3D imaging subsystem to provide thickness 

information for each meat sample in real time, thus making it possible to solve the 

thickness variation problem for X-ray imaging.  

 As mentioned in the last chapter, given an X-ray image and laser 3D image of a 

meat sample, the integration process of these two images involves a series of major steps, 

namely,  

1. Preprocessing, which removes noise and defines a region of interest;  

2. Registration, which establishes geometric correspondences between pixels in 

 the two images; 

3. Modeling, which determines a model to describe the relationship of X-ray 

 intensity and thickness of each meat sample and constructs a pseudo 

 X-ray image based on the model and the laser 3D image; 

4. Compensation, which compensates for the thickness variations in the X-ray 

 image using the pseudo X-ray image; 

5. Segmentation, which highlights the “suspicious” bright regions in the 

 thickness compensated image; 

6. Feature extraction, which extracts certain features for each “suspicious” region 

 using blob analysis; and 

7. Classification, which makes a decision about each blob based on its features 

 and a set of classification criteria and reports the results of the 

 classification.  
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 The findings in each of the above stages are summarized in the following sections, 

and the overall performance of the combined X-ray and laser 3D imaging system is also 

evaluated based on sample test statistics. 

 
6.3.1 Preprocessing 
 

For X-ray images, preprocessing involves noise removal and region of interest 

selection. The noises in the X-ray image are random noise and are modeled as Gaussian. 

In order to suppress the noise, several filters are compared, as shown in Figure 6.7. The 

3x3 averaging and 3x3 Gaussian filters have the best performance in terms of noise 

suppression and detail preservation. 

As shown in Figure 6.7, the 5x5 averaging and 5x5 Gaussian filters can provide 

better noise suppression than their 3x3 counterparts. However, the 5x5 filters lead to 

more blurring effects in the resultant images, which compromise the effective resolution 

of the X-ray image. Compared to the 3x3 averaging and 3x3 Gaussian filters, it was 

found that the Gaussian filter can provide better performance than the averaging filter. 

 

6.3.2 Registration 
 

As mentioned previously, pixels in X-ray and laser images were matched to each 

other using the affine transform model. The experiments showed that the model was 

appropriate and sufficient to describe the geometric relationship between the two images. 

After the coefficients of the affine transform model are determined, the inverse transform 

is applied to the laser image to obtain a pair of registered X-ray and laser image of the 

same dimensions.  
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(a) The original X-ray image  (b) Filtering using 3x3 average filter 

 

       

(c) Filtering using 5x5 average filter     (d) Filtering with 3x3 Gaussian filter 
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(e) Filtering with 5x5 Gaussian filter 

Figure 6.7 De-noising the X-ray image using averaging filters and Gaussian filters 
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(d) 

Figure 6.8 Registration of the X-ray and laser range images. (a) The original X-ray image 

of a chicken breast. (b) The registered laser 3D image of the chicken breast. (c) 

The superimposed image with laser image frame in the red channel and X-ray 

image frame in the blue channel. (d) The grayscale profile along the white line in 

Figure (c). 

Laser 
 
 
X-ray 
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 As shown in Figure 6.8(d), after transformation, the two images are matched to 

each other geometrically. Note that the parameters of the geometric transform model 

were estimated beforehand (see section 5.4.1), and the inverse geometric transform was 

applied to the laser 3D image during the real-time image acquisition. 

 

6.3.3 Modeling 
 
Modeling is the process of determining the grayscale relation between the X-ray and laser 

3D images (see equation 5.20). Once the model is determined, a pseudo X-ray image can 

be generated based on the laser 3D image and the difference between the pseudo X-ray 

and true X-ray images is minimized. In this section, the modeling performance and 

calculation time were evaluated in regards to the model order and decimation issues. 

As mentioned before, the model was estimated using linear polynomial regression 

(see chapter 5.4.2). The fitness of the regression is evaluated by the R2 value, which is 

defined as, 

R2=1-∑ regressionX( -Xi)2/∑ iX( - X )2     (6.1) 

where, 

Xregression: the estimated response variable, and  

Xi: is the explanatory variable, and  

 X : the mean of the explanatory variables.  

In our case, the explanatory variable is the pixel grayscale in the laser 3D image, 

the response variable is the pixel grayscale in the X-ray images, and the regression 

variable is the pixel grayscale in the pseudo X-ray image. 
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The performance of the regression process was particularly affected by the order 

of the model, and a decimation factor. It is found that the performance of the model is 

better for higher orders; however, higher order models require more time to compute, 

which could be undesired in real time applications.  

Note that we can generate the model using decimated (also known as down-

sampled) versions of the images, thus the pixels actually used in the modeling process 

can be significantly reduced. The benefits of this decimation approach include saving of 

computation time, and image noise suppression due to decimation. The drawback of this 

approach is the sacrifice of performance, because not every pixel in the original images 

participates in the formation of the model.  

As shown in the Figures 6.9, 6.10 and 6.11, the performance can be reduced if the 

image is decimated; however the computation time is also reduced. The tradeoff between 

performance and speed is needed here. As shown in Figure 6.9(a), the R2 value can be 

improved by increasing model order however, the pace of improvement slows down after 

the model order reaches 3, as shown in Figure 6.9(b).  
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(b) 

Figure 6.9 Relation of regression performance, decimation factor and model order. (a) 

Plot of regression performance vs. decimation factor for model orders  up to 4. (b) 

Plot of regression performance vs. model order, with decimator factor being 1. 

 

The computation time for the modeling process of the same image was compared 

at different model orders, as shown in Figure 6.10, where the computation time increases 



   
 104 
  
  

monotonically with increasing model order. Considering the computation time with 

decimation factors, as shown in Figure 6.11, it was confirmed that the less pixels 

involved in the modeling process, the less time it takes to compute the model. It was also 

verified that, higher order models take more time to compute.  
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Figure 6.10 Computation time for generating the model at full resolution (i.e., the 

decimation factor is 1) with different model orders 
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Figure 6.11 Relation between computation time with the decimation factor for model 

orders 1 to 4. 
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6.3.4 Segmentation and blob analysis 

 
After thickness compensation, the thickness variations of the meat sample are 

canceled out, and the remaining bright regions in this compensated image represent either 

physical contaminants or image noises. A typical compensated image is a uniform image 

with most pixels approaching a zero value. An automatic threshold selection method is 

applied to the thickness compensated image for image segmentation. However, due to 

brightness differences among hazard objects, such as different types of bone fragments or 

metal objects, automatic selection of a global threshold value for different situations 

becomes complicated. In this study, the localized Otsu’s method is used. The original 

thickness-compensated image is partitioned into sub-images, and Otsu’s method is 

applied to each of the sub-image. For each sub-image, a sub-threshold value and sub- 

discriminant ratio λ  is calculated. The sub-threshold values and sub-discriminant ratios 

are then partitioned into two groups. One group contains the lower sub-threshold values 

and lower discriminant ratios, while the other contains the remaining higher values. The 

global threshold is determined by choosing the lowest value from the second group. In 

order to illustrate the effectiveness of this method, images that represent different on-line 

situations were selected. 
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       (a)      (b) 

Image One    Image Two 

  

 

 

     (c)      (d) 

Image Three    Image Four 

Figure 6.12 Thickness-compensated images for different situations: (a) no hazardous 

objects in the chicken meat image, (b) One fan bone and one rib bone, as 

highlighted, existed in the chicken meat image, (c) One fan bone and two metals, 

as highlighted, presented in the chicken meat image, (d) One rib bone, as 

highlighted, presented in the chicken meat image. 
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Sub 1          Sub2   Sub3   Sub4     Sub5 

       

Sub 6          Sub7   Sub8   Sub9 

(a) Selected nine sub-images of Image One 

 

         

Sub 1          Sub2   Sub3   Sub4     Sub5 

        

Sub 6          Sub7   Sub8   Sub9 

(b) Selected nine sub-images of Image Two
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Sub 1          Sub2   Sub3   Sub4     Sub5 

       

Sub 6          Sub7   Sub8   Sub9 

(c) Selected nine sub-images of Image Three 

         

Sub 1          Sub2   Sub3   Sub4     Sub5 

       

Sub 6          Sub7   Sub8   Sub9 

(d) Selected nine sub-images of Image Four 

Figure 6.13 Selected nine sub-images for Image One, Image Two, Image Three and 

Image Four shown in Figure 6.12. 
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Figures 6.12(a) – (d) show different types of situations. Figure 6.12(a) shows an 

image with no hazardous objects inside, (b) is an image with uniformed brightness bone 

fragments, (c) shows an image with bright metal clips (big and small) and relatively dark 

fan bone fragments and (d) is an image with high edge noise and a big hard bone 

fragment. Each of the four images was partitioned into sub-images. Figure 6.13 shows the 

selected nine sub-images for each of the four images. When Otsu’s method is applied to 

the sub-images, the background pixels are excluded. Table 6.1 lists the results of the 

localized Otsu’s method. 

Table 6.1 Sub-threshold values and sub-discriminant ratios of test images 

 
Image One Image Two Image Three Image Four  

Threshold λ  Threshold λ  Threshold λ  Threshold λ  

Sub1 15 14 47 856 48 348 51 892 

Sub2 13 7 69 1240 79 1138 31 62 

Sub3 7 11 68 2401 10 107 71 1122 

Sub4 2 3 46 261 10 59 69 162 

Sub5 2 2 45 251 19  159 69 199 

Sub6 2 4 14 92 17 137 12 64 

Sub7 2 3 21 174 20 137 6 19 

Sub8 2 2 42 256 15 116 5 14 

Sub9 2 4 13 110 12 120 11 18 

 

 Table 6.1 shows that, if the pixel values in the sub-images present clear bimodal 

distributions, the discriminant ratios λ in Otsu’s method are very high and the threshold 
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values are selected accurately, as in Image (b) Sub2 and Sub3. However, if the bimodal 

distribution is not obvious, such as the case for most of the noise sub-images, the values 

of λ are low. On the other hand, when the pixels in the sub-images are bimodal, but the 

two classes have very unequal pixel numbers, the λ  value would also drop to very low, 

as shown in Image (d) Sub4.   

Table 6.2 Partition result of sub-threshold values and λ ratio 

 
Image One Image Two Image Three Image Four Group 

Num Sub-

index 

Thres. λ  Sub-

index 

Thres. λ  Sub-

index 

Thres. λ  Sub-

index 

Thres. λ  

Sub1 22 14 Sub1 47 856 Sub1 48 348 Sub1 51 892 

Sub2 19 7 Sub2 69 1240 Sub2 79 1138 Sub3 71 1122

   Sub3 68 2401    Sub4 69 162 

 

Group 

Two 

         Sub5 69 199 

Sub3 7 6 Sub4 46 261 Sub3 10 107 Sub2 31 62 

Sub4 2 3 Sub5 45 251 Sub4 10 59 Sub6 12 64 

Sub5 2 2 Sub6 14 92 Sub5 19  159 Sub7 6 19 

Sub6 2 4 Sub7 21 174 Sub6 17 137 Sub8 5 14 

Sub7 2 3 Sub8 42 256 Sub7 20 137 Sub9 11 18 

Sub8 2 2 Sub9 13 110 Sub8 15 116    

 

 

Group  

One 

Sub9 2 4    Sub9 12 120    

 

After partitioning the sub-threshold values into two groups (the λ  ratio is used 

when the auto-threshold value is around the valley of the two peaks), the partitioned 
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result is shown in table 6.2, where the global threshold values selected for each of the 

four images are highlighted. After thresholding, the resultant binary images are shown in 

Figure 6.14. In contrast, binary images obtained by using global Otsu’s thresholding 

method and the prior knowledge based thresholding method are presented in Figure 6.15. 

 Morphological operations were applied to binary images of Figures 6.14 and 6.15 

to obtain blob images, as shown in Figures 6.16-6.18.  It shows that global Otsu’s method 

breaks down in most of the cases.  Prior knowledge based method works better.  

However, in an image where hazard objects present obvious difference of brightness 

levels, the prior knowledge method will lead to miss-detection of bones with lower 

intensities, such as in Image(c).  Also, a potential problem of this method is that when the 

total area of hazard objects is large, this method tends to cause miss-detection. The 

localized Otsu’s method shows the best performance in the sampled images. However, 

more parameters are to be determined, such as the sub-image size and the two group 

partition rules (ratios).  In this application, the sub-image size was 60-by-60, and two 

group partition rules were: 

1. Partition the sub-threshold values by calculating the distances between two 

extreme sub-thresholds.  

2. For the sub-threshold values around the middle of the two extreme sub-thresholds, 

judge the λ  value to determine its group number.  
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(a)         (b)      (c)       (d) 

Figure 6.14 Binary Images obtained by using local Otsu’s method for global threshold 

selection. (a) Binary image of Image One. (b) Binary image of Image Two.(c) 

Binary image of Image Three. (d) Binary image of Image Four. 
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 (a)         (b)      (c)       (d) 

       

(e)         (f)      (g)       (h) 

Figure 6.15 Binary Images obtained by using Otsu’s method and prior knowledge based 

method for global threshold selection.  (a)-(d) Using Otsu’s method to obtain 

binary images. (a) Binary image of Image One. (b) Binary image of Image Two.(c) 

Binary image of Image Three. (d) Binary image of Image Four. (e)-(f) Using prior 

knowledge method to obtain binary images. (e) Binary image of Image One. (f) 

Binary image of Image Two.(g) Binary image of Image Three. (h) Binary image 

of Image Four. 
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(a)               (b)       (c)       (d) 

Figure 6.16 Blob Images generated based on the binary images obtained by using local 

Otsu’s method. (a) Blob image of Image One. (b) Blob image of Image Two. (c) 

Blob image of Image Three. (d) Blob Image of Image Four. 

 

        

(a)               (b)       (c)       (d) 

Figure 6.17 Blob Images generated based on the binary images obtained by using global 

Otsu’s method. (a) Blob image of Image One. (b) Blob image of Image Two. (c) 

Blob image of Image Three. (d) Blob Image of Image Four. 
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(i)               (j)       (k)       (l) 

Figure 6.18 Blob Images generated based on the binary images obtained by using prior 

knowledge based method. (a) Blob image of Image One. (b) Blob image of Image 

Two. (c) Blob image of Image Three. (d) Blob Image of Image Four. 

 
6.3.5 Classification 

  
The blobs are examined based on their feature vectors and a set of classification 

rules. In this final stage, a rule-based classifier was used to make an accept/reject decision 

on each blob. In this section, four groups of sample image are used to illustrate the 

detection process, and then statistics of the overall detection system is presented.  

Sample 1 is a piece of chicken breast without a bone fragment inside. As shown in 

Figure 6.19(b), the bumpy thickness profile of the sample leads to dramatic grayscale 

variations in the X-ray image. If only the X-ray image is considered in the inspection 

process, some of the bumpy regions, such as the circled area, would probably be 

misclassified as abnormal, such as a bone fragment or some other type of physical hazard. 

Fortunately, the thickness information of the whole sample was captured in the laser 

image (Figure 6.19(a)), and a pseudo X-ray image (Figure 6.19(c)) could be formulated, 

which was similar to the true X-ray image. The compensated image (Figure 6.19(d)), the 

difference between Figures 6.19 (b) and 6.19 (c), is flat, except for some minor noise on 
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the sample boundary. Since there was no qualifying blob in the compensated image, the 

rule-based classifier finds no abnormities in the sample, so the resultant image (Figure 

6.19(e)) is empty, i.e., labeled zero everywhere. 

The second sample was a piece of chicken breast with two bones inside, as shown 

in Figure 6.20(e). The triangle shaped abnormality is a thin fan bone (thickness less than 

0.5mm), and the boot-shaped one is a pulley bone. Similar to the last sample, a pseudo X-

ray image (Figure 6.20(c)) was formulated to yield a compensated image (Figure 6.20 

(d)), where the thick meat areas were canceled out and the bones emerge. There is still 

some noise in the compensated image. Some of the noises were removed by standard 

filtering and/or morphology operations and the rule-based classifier will eliminate the 

remaining noises and identify the true abnormalities. As shown in the resulting image 

(Figure 6.20 (e)), the two bones were highlighted and all of the noises are successfully 

suppressed.   

As shown in Figure 6.21, the third sample contains a small rib bone and a fan 

bone, along with a meat protrusion. If we look at only the X-ray image (Figure 6.21(b)), 

the meat protrusion would be classified as a large bone fragment. In the laser 3D 

image(Figure 6.21(a)), the thickness variation was reflected. Comparing the true X-ray 

image (Figure 6.21(b)) with the reconstructed pseudo X-ray image (Figure 6.21(c)), the 

meat protrusion appears in both images, while the bone fragments appear only in the true 

X-ray image. Similar to the previous samples, thickness variations were compensated 

(Figure 6.21(d)) and the bone fragments were extracted (Figure 6.21(e)). 

The last sample presented in Figure 6.22 was a piece of chicken breast with a 

small bone fragment along with four metal clips. Two of the metal clips was very small 
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and could be missed with image noises. In this example, the compensated image (Figure 

6.22(d)) was obtained the same way as the previous examples, and then it was segmented 

into blobs. The mean values of metal clip blobs were much higher than those of bone or 

image noise, thus the metal clips would be identified even if its size were very small. In 

the final image (Figure 6.22(e)), four of the metal clips were extracted, and the bone 

fragment was also identified. 

 

 
(a )         (b)           (c) 

 
(d) (e) 

Figure 6.19 Images of a sample without bone. (a)-(e) are respectively the laser 3D image, X-ray image, 

pseudo X-ray image, compensated image and the result . 
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(a )   (b)   (c) 

 
(d) (e) 
 

Figure 6.20 Images of a sample with two bones. (a)-(e) are respectively the laser 3D 

image, X-ray image, pseudo X-ray image, compensated image and the result 

image. 
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(a)   (b)   (c) 

  
        (d)                    (e) 

 

Figure 6.21 Images of a sample with a fan bone, a small rib bone and a meat protrusion. 

(a)-(e) are respectively the laser 3D image, X-ray image, pseudo X-ray image, 

compensated image and the result image. 
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(a )         (b)    (c) 

  
(d) (e) 

 

Figure 6.22 Images of a sample with a bone fragment and four metal clips. (a)-(e) are 

respectively the laser 3D image, X-ray image, pseudo X-ray image, compensated 

image and the result image. 

 



   
 121 
  
  

 The classification results were different for different types of physical 

contamination. We tested the inspection system with 131 pieces of chicken breast 

samples. According to a post test destructive inspection, there were altogether 152 pieces 

of rib bones and 53 pieces of fan bones in the samples. Rib bones are fully calcified while 

fan bones are only partially calcified, which makes fan bone less detectable by the 

imaging system.  

The detection rates of the two types of bone fragment are summarized in Figure 

6.23 and 6.24.  For rib bone detection, 95.37% detection rate can be achieved for bones 

larger than 114 pixels. In this system, the pixels 0.4mm by 0.4mm squares, so the bone 

fragment of 114 pixels in the image plane would occupy an area of 18mm2 in real world. 

For fan bones, it is found that for bones larger than 109 pixels, or 17.5 mm2, the detection 

rate can reach as high as 91.67%. This fan bone detection rate is significant, because fan 

bones have much lower detectability than rib bones under X-ray imaging since they are 

usually thin and not fully calcified. The detection performance for rib bones, fan bones 

and their mixture is further summarized in table 6.3.   
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Figure 6.23 Detection rate of the rib bone fragment 
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Figure 6.24 Detection rate of fan bone fragment. 

 

Table 6.3 Statistical results of the rib bone and fan bone detection 

# of bones Detected bones False negative rate (%) Size of 
bone(pixels)5 rib 

bone 
fan 

bone 
mixed rib 

bone 
fan 

bone 
mixed rib 

bone 
fan 

bone 
mixed 

≥300 39 2 41 39 2 41 0 0 0 
≥200 92 8 100 89 8 97 3.26 0 3 
≥70 119 34 153 110 29 139 7.56 14.71 9.15 
≥20 137 50 187 117 36 153 14.60 28 18.18 
 
 

Another important measure of the inspection system was the overall type II error 

rate, or false positive rate. According to the experiment results, the type II error rate of 

the inspection system was 9.78%. The cause of the false alarms is twofold. Firstly, the 

laser scattering effect on the meat surface could cause information loss in the images. As 

shown in Figure 6.25, scattering effects can cause artifacts on the meat boundary in the 

resultant combined image, and these artifacts are not differentiable from bone fragments. 

Secondly, the random image noises could also lead to false patterns in the thickness 

                                                 
5 There are 15 rib bones and 3 fan bones with size smaller than 20, all of which were not detected by the 
imaging system and not included in this table. 
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compensated image. The sources of the image noises include thermal noise of the X-ray 

and laser imaging devices, random X-ray photon emission, and the scattering effects of 

the laser. 

 

  
(a )         (b)    (c) 

 

  
(d)                    (e) 

 

Figure 6.25 False positive caused by scattering effect in laser 3D image. (a)-(e) are 

respectively the laser 3D image, X-ray image, pseudo X-ray image, compensated 

image and the result image. 

artifacts 

Bone 
fragments 
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CHAPTER 7  

CONCLUSIONS 

 

It was shown that the combined X-ray and laser 3D imaging method can 

successfully overcome the thickness variation issue and detect the embedded physical 

contaminations in deboned poultry meat. A synergic inspection system was developed 

using this combined method for the challenging problem of deboned poultry product 

inspection, which can detect rib bones, fan bones and other intrusions such as metal clips. 

The optimal X-ray energy range suitable for deboned poultry product inspection 

has been determined to be 28 keV to 31keV, which leads to satisfactory contrast and a 

satisfactory signal to noise ratio (SNR) with the X-ray imaging system used in this study. 

Although the optimal X-ray energy range would be different for a different X-ray system, 

or for a different detection problem, the idea of evaluating the energy level by 

considering both contrast and the SNR is still valid. 

Results showed that the dual energy X-ray method can address the thickness issue 

to a certain extent; however, the inherent physical limitations make it difficult to cancel 

out the thickness variation using the dual energy method. In this sense, the combined X-

ray and laser 3D approach is better because the thickness information of the meat was 

acquired directly by the system, and can be used to completely compensate for the 

thickness variation. 

It is shown in this study that, in order to integrate the X-ray and laser 3D parts 

into a coherent functioning system, certain key challenges have been overcome. The 
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registration between the two subsystems was crucial for the data fusion tasks, and results 

confirm that the X-ray and laser subsystems have been correctly registered to each other, 

or in other words, the coordinates association between the two imaging subsystems has 

been established. Another important task was determining the grayscale relationship 

between pixels in the X-ray and laser 3D images, and it was shown that a least squares 

based method can be used to estimate the relationship, which makes it possible to 

compensate for the thickness variation in the X-ray images. 

It has been shown that this combined X-ray and laser 3D imaging system has real-

time capability. A multithread architecture was constructed in this system, which can 

initiate and synchronize various image processing jobs at the same time. The multithread 

framework can enhance the efficiency of the available computing hardware and data 

bandwidth in the system, promote the overall throughput, and improve system 

responsiveness.  
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CHAPTER 8  

FUTURE STUDIES 

 
 

In order to further improve the combined X-ray and laser 3D technology, future 

studies can be conducted in areas including: 

1. Updating the X-ray image sensor and/or the X-ray source, which can lead to 

lower noise levels in the X-ray images. 

2. Exploring more robust and effective algorithms for image segmentation, 

feature extraction and pattern classification. 

3. Managing errors that come from laser scattering effects. 
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