
ABSTRACT

Title of thesis: A STUDY OF SELECTED ASPECTS OF
ELECTROMAGNETIC FORMATION FLIGHT

Peter Nathaniel Gardner, Master of Science, 2008

Thesis directed by: Professor Raymond Sedwick
Department of Aerospace Engineering

Electromagnetic Formation Flight (EMFF) is a technique for electromagnet-

ically controlling the relative position and velocity of satellites in close proximity,

without using propellant.

An optimal design for an EMFF system for clusters of small satellites was

calculated. Trends in parameters were identified, taking into account thermal issues.

A power transfer system, using strongly coupled magnetic resonance, was sim-

ulated, using the same coils as the EMFF system. The efficiencies were calculated

for the same parameters.

A scheme for EMFF control was tested, in which two satellites at a time were

active, with their dipoles aligned with each other on-axis. This system was shown

to keep clusters of four satellites within specified boundaries.



A STUDY OF SELECTED ASPECTS OF

ELECTROMAGNETIC FORMATION FLIGHT

by

Peter Nathaniel Gardner

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2008

Thesis Committee:

Professor Raymond Sedwick, Chair

Professor David Akin

Professor Derek Paley



Acknowledgments

Thank you to everyone who helped.

My family, for everything.

Dr. Raymond Sedwick, for all the advice.

Dr. David Akin, for the rest of the advice.

Dr. Derek Paley, for being on my committee, despite never having met me

before.

DARPA, for paying a contractor to pay a subcontractor to pay another sub-

contractor to pay Dr. Sedwick to pay the department to pay the university to pay

me to write this thesis.

Holy Apostles Orthodox Church, for providing non-thesis-related work to do

now and then.

Typeset with LATEX2ε; figures and calculations done with MATLAB R2007a.

© 2008 Peter Gardner

ii



Contents

1 Introduction 1

1.1 Electromagnetic Formation Flight . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Optimization 5

2.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.4 Optimization Calculations . . . . . . . . . . . . . . . . . . . . 11

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Trends in Spacecraft Geometry . . . . . . . . . . . . . . . . . 12
2.3.2 Trends in Operational Parameters . . . . . . . . . . . . . . . . 25

2.4 Alternative Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 Helical Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.3 Significant Differences . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Power Transfer 38

3.1 Coupled Resonance Power Transfer . . . . . . . . . . . . . . . . . . . 38
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Paired Satellites 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.1 State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iii



4.2.3 Program Architecture . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.3 Paired Satellites — General Case . . . . . . . . . . . . . . . . 65
4.3.4 Tetrahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Interaction with the Earth’s Dipole . . . . . . . . . . . . . . . . . . . 80
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Conclusion 82

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A MATLAB Code — Optimization 85

A.1 timetoheat.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.2 timetocool.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
A.3 findbestconfig.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3.1 colontimefromsec.m . . . . . . . . . . . . . . . . . . . . . . . . 99
A.4 findmultibest.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

B MATLAB Code — Power Transfer 105

B.1 inductionarray.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

C MATLAB Code — Paired Satellites 111

C.1 tstepSat.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.2 plotSat.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
C.3 linearsats.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
C.4 squaresats.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
C.5 pairedsats.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

C.5.1 slice.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
C.6 tetrasats.m . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

References 149

iv



List of Figures

1.1 EMFF Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 1-d model for thermal analysis . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Thermal profile after one heating cycle . . . . . . . . . . . . . . . . . 10
2.3 Thermal profile after fig. 2.2 followed by one cooling cycle . . . . . . 11
2.4 Acceleration capability by mass . . . . . . . . . . . . . . . . . . . . . 12
2.5 Acceleration capability per kilogram . . . . . . . . . . . . . . . . . . 13
2.6 Mass by cross-sectional area of coil . . . . . . . . . . . . . . . . . . . 14
2.7 Acceleration capability by coil cross-sectional area . . . . . . . . . . . 14
2.8 On time, 4-mm radius, 160 turns . . . . . . . . . . . . . . . . . . . . 15
2.9 Off time, 4-mm radius, 160 turns . . . . . . . . . . . . . . . . . . . . 16
2.10 Fraction of cycle time on, 4-mm radius, 160 turns . . . . . . . . . . . 16
2.11 Mass, 4-mm radius, 160 turns . . . . . . . . . . . . . . . . . . . . . . 17
2.12 Acceleration capability, 4-mm radius, 160 turns . . . . . . . . . . . . 18
2.13 Off time, 4-mm radius, 50A . . . . . . . . . . . . . . . . . . . . . . . 18
2.14 On time, 4-mm radius, 50A . . . . . . . . . . . . . . . . . . . . . . . 19
2.15 Fraction of cycle time on, 4-mm radius, 50A . . . . . . . . . . . . . . 19
2.16 Mass, 4-mm radius, 50A . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.17 Acceleration capability, 4-mm radius, 50A . . . . . . . . . . . . . . . 21
2.18 On time, 160 turns, 50A . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.19 Off time, 160 turns, 50A . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.20 Fraction of cycle time on, 160 turns, 50A . . . . . . . . . . . . . . . . 23
2.21 Mass, 160 turns, 50A . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.22 Acceleration capability, 160 turns, 50A . . . . . . . . . . . . . . . . . 24
2.23 Minimum EMFF system mass for various bus masses and separation

distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.24 Minimum EMFF system masses, logarithmic scale . . . . . . . . . . . 26
2.25 Minimum EMFF mass fraction for various bus masses and separation

distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.26 EMFF system parameters for various bus masses and separation dis-

tances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.27 Maximum cycle times for various bus masses and separation distances 28
2.28 Helical geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.29 Acceleration capability by mass, helical geometry . . . . . . . . . . . 30
2.30 Mass, 2.5-mm radius, 160 turns, helical geometry . . . . . . . . . . . 31
2.31 Acceleration capability, 2.5-mm radius, 160 turns, helical geometry . 31

v



2.32 Fraction of cycle time on, 2.5-mm radius, 160 turns, helical geometry 32
2.33 Mass, 4-mm radius, 50A, helical geometry . . . . . . . . . . . . . . . 32
2.34 Acceleration capability, 4-mm radius, 50A, helical geometry . . . . . 33
2.35 Fraction of cycle time on, 4-mm radius, 50A, helical geometry . . . . 33
2.36 Mass, 160 turns, 50A, helical geometry . . . . . . . . . . . . . . . . . 34
2.37 Acceleration capability, 160 turns, 50A, helical geometry . . . . . . . 34
2.38 Fraction of cycle time on, 160 turns, 50A, helical geometry . . . . . . 35
2.39 Minimum EMFF system ass for various bus masses and separation

distances, helical geometry . . . . . . . . . . . . . . . . . . . . . . . . 35
2.40 EMFF system parameters for various bus masses and separation dis-

tances, helical geometry . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Power transfer setup from Kurs et al., 2007 . . . . . . . . . . . . . . . 39
3.2 κ with 20 to 160 turns, 1 m separation . . . . . . . . . . . . . . . . . 42
3.3 κ with 20 to 160 turns, 10 m separation . . . . . . . . . . . . . . . . . 42
3.4 ηmax with 20 to 160 turns, 1 m separation . . . . . . . . . . . . . . . 43
3.5 ηmax with 20 to 160 turns, 10 m separation . . . . . . . . . . . . . . . 43
3.6 κ at 1 to 10 meters apart, 20 turns . . . . . . . . . . . . . . . . . . . 44
3.7 κ at 1 to 10 meters apart, 160 turns . . . . . . . . . . . . . . . . . . . 44
3.8 ηmax at 1 to 10 meters apart, 20 turns . . . . . . . . . . . . . . . . . 45
3.9 ηmax at 1 to 10 meters apart, 160 turns . . . . . . . . . . . . . . . . . 45
3.10 ηmax for mass-optimal designs at 1 to 10 meters apart . . . . . . . . . 46

4.1 Linear configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 Square configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Tetrahedral configuration . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Center of mass frame compared with inertial frame . . . . . . . . . . 54
4.5 Linear configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Motion of satellites in linear formation, thrust at back . . . . . . . . . 56
4.7 Motion of satellites in linear formation, thrust second to back . . . . 57
4.8 Motion of satellites in linear formation, thrust second to front . . . . 58
4.9 Motion of satellites in linear formation, thrust at front . . . . . . . . 58
4.10 Dipole moment strengths, linear formation . . . . . . . . . . . . . . . 59
4.11 Square configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.12 Motion of satellites in square formation . . . . . . . . . . . . . . . . . 62
4.13 Separation distances of satellites in square formation . . . . . . . . . 63
4.14 Motion of satellites in square formation, reverse thrust . . . . . . . . 63
4.15 Position of satellites in square formation, side thrust . . . . . . . . . . 64
4.16 X-Z plane, general case . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.17 X-Y plane, general case . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.18 One half-loop of the satellites, X-Y plane . . . . . . . . . . . . . . . . 66
4.19 Satellite distances, general case . . . . . . . . . . . . . . . . . . . . . 67
4.20 Tetrahedral configuration . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.21 X-Y plane, tetrahedral formation . . . . . . . . . . . . . . . . . . . . 69
4.22 X-Z plane, tetrahedral formation . . . . . . . . . . . . . . . . . . . . 70

vi



4.23 Y-Z plane, tetrahedral formation . . . . . . . . . . . . . . . . . . . . 70
4.24 Rotation of the tetrahedron over time . . . . . . . . . . . . . . . . . . 71
4.25 Satellite velocities, tetrahedral formation . . . . . . . . . . . . . . . . 72
4.26 Satellite dipole magnitudes, tetrahedral formation . . . . . . . . . . . 73
4.27 Satellite distances, tetrahedral formation . . . . . . . . . . . . . . . . 73
4.28 X-Y plane, tetrahedral formation, outward thrust . . . . . . . . . . . 75
4.29 X-Y plane, tetrahedral formation, thrust out to the side . . . . . . . . 75
4.30 X-Z plane, tetrahedral formation, thrust out to the side . . . . . . . . 76
4.31 Y-Z plane, tetrahedral formation, thrust out to the side . . . . . . . . 76
4.32 Rotation of tetrahedron over time, thrust out to the side . . . . . . . 77
4.33 X-Y plane, tetrahedral formation, thrust in from the side . . . . . . . 77
4.34 X-Z plane, tetrahedral formation, thrust in from the side . . . . . . . 78
4.35 Y-Z plane, tetrahedral formation, thrust in from the side . . . . . . . 78
4.36 Rotation of tetrahedron over time, thrust in from the side . . . . . . 79
4.37 Angular velocity, general case . . . . . . . . . . . . . . . . . . . . . . 80

vii



List of Symbols

a Acceleration (m/s2)
A Cross-sectional area (m2)

acons Acceleration due to constant external force (m/s2)
amin Minimum acceptable acceleration (m/s2)
asat Orbit semi-major axis of satellite (km)

AWG Wire gauge
α Thermal diffusivity (m2/s)

αAl Thermal diffusivity of aluminum (m2/s)
αins Thermal diffusivity of insulation (m2/s)

~B2 Magnetic field from coil 2 (T )
c Speed of light (299, 792, 458m/s)

C Capacitance (F )
cp Specific heat (J/kg · K)

din Distance within which the system switches on (too close) (m)
dout Distance outside of which the systems switches on (too far) (m)
dsep Separation distance between two satellites (m)

ǫ Emissivity
ǫo Permittivity of free space (8.85419 · 10−12F/m)

ηmax Maximum achievable power transfer efficiency
f Frequency (Hz)
~F Force vector (N)

ΓD Device (target) decay rate
ΓS Source decay rate
ΓW Load decay rate

h Coil height (m)
I Current (A)
I Moment of inertia tensor (kg · m2)
~J Current density (A/m3)

J2 J2 perturbation constant (1.083 · 10−3)
κ Coupling constant
l Total length of wire (m)

L Inductance (H)
m Mass (kg)
M Effective mutual inductance (H · s)

viii



mbat Mass of battery (kg)
mbus Mass which is not part of the EMFF system (kg)
mins Insulation mass (kg)

mprop Mass of propulsion system (kg)
msol Solar panel mass (kg)

mtotal Total satellite mass (kg)
mwire Wire mass (kg)

~µi Dipole moment of coil i (A · m2)
µo Magnetic constant (4π · 10−7N/A2)
µ⊕ Standard gravitational parameter of the Earth (398600 km3/s2)
N Number of turns of wire in loop
qo Electric charge (C)
q̇ Total heat flow (W )

q̇cond Conductive heat flow (W )
q̇rad Radiative heat flow (W )
q̇res Heat input from resistive heating (W )
r(x) Distance to the center of the wire from point x (m)

~r Position vector (m)
r̂ Direction from one satellite to another
R Resistance (Ω)

rloop Loop radius (m)
Ro Ohmic resistance (Ω)
Rr Radiative resistance (Ω)

rwire Wire radius (m)
R⊕ Radius of the Earth (6378 km)

ρ Mass density (kg/m3)
ρAl Mass density of Aluminum (kg/m3)
ρbat Energy density of battery (J/kg)
ρe Electrical resistivity (Ωm)

ρins Mass density of insulation (kg/m3)
ρq Charge density (C/m3)

ρsol Solar panel mass density (kg/m3)
ρth Thermal resistivity (mK/W )
σ Boltzmann Constant (1.38065 · 10−23J/K)

ton Maximum time magnetic coils can be on (s)
toff Minimum time coils must be off after ton (s)

ton,dark Maximum time shadowed per orbit with the coils on (s)
T Temperature (K)
Tc Background temperature (K)
∆t Time step (s)

∆T Temperature difference (K)
thins Insulation thickness (m)

τ Time constant (s)
~τ Torque vector (Nm)
~v Velocity vector (m/s)

ix



~vt Velocity vector at time t (m/s)
1~v2 Velocity of satellite 2 with respect to satellite 1 (m/s)
V Voltage (V )

vrel Relative velocity between two satellites (m/s)
∆~vcons Change in velocity due to constant external force (m/s)
∆~vJ2 Change in velocity due to J2 perturbation (m/s)

ω Angular frequency (rad/s)
~ω Angular velocity (rad/s)
~x Location vector (m)
~xt Location vector at time t (m)

1~x2 Position of satellite 2 with respect to satellite 1 (m)
x̄ Location of the center of mass of the system (m)

∆x Distance step (m)

x



Chapter 1

Introduction

1.1 Electromagnetic Formation Flight

There are many situations in space where it is useful to keep a small group of

satellites in a relatively close formation. A good example of this is a satellite cluster

behaving as a single modular satellite, but physically separated. This could be done

in order to minimize inert connecting structure, as in a space-based interferometer,

or for ease of switching out non-functioning components. For example, a weather

satellite cluster whose infrared camera satellite had broken could simply replace the

infrared camera satellite without having to replace the perfectly functioning visible

light camera satellite, or the high-gain radio transmitter satellite. There are many

such applications.

The problem with these clusters is that it takes a lot of fuel for station-keeping.

Orbital mechanics dictates that satellites at different distances from the Earth, even

very slight differences, will almost always, over time, drift apart. On top of this,

the J2 perturbation tends to scatter satellites which are together. If propellant is

used to counteract this drift, the propellant will run out eventually, rendering the

satellite, along with the considerable investment inherent in its construction and

1



launch, completely useless.

What satellite clusters need is some way of keeping the satellites together

without expending propellant. In principle, tethers could be used; in tension, they

could keep the satellites from flying apart. Unfortunately, tethers are useless in

compression or shear, and have problems of their own in implementation. Their use

is not straightforward, also, if the formation needs to change. However, magnetism

could, in principle, be used to maintain the formation.

Electromagnets are capable of pulling things (such as satellites) toward each

other, and in addition, can push things apart (for collision avoidance) by means of

inverting one dipole. Also, they can interact with either the Earth’s magnetic field

or other satellites to generate torques, and in concert with reaction wheels, they can

generate usable transverse forces.

The Earth’s magnetic field adds additional complexity. While there is little

translational effect,1 the torque effects from the Earth’s magnetic field must be taken

into account; thus torque rods are currently in use on some satellites for attitude

control.2

If a satellite has loops of wire, these loops can be used to generate controllable

magnetic dipoles. If two such satellites are lined up axially, they can attract or

repel each other. If they are lined up off-axis, there is a torque. If the torque

is canceled out by reaction wheels, an off-axis translational force remains. Thus,

electromagnetism can be used to move the satellites relative to each other in any

way.

A cluster of satellites equipped with controllable magnetic coils can be oper-

ated in such a way as to remain in formation using only magnetic forces. This is

Electromagnetic Formation Flight, or EMFF.

1Translational force from dipoles scales according to the inverse fourth power; torque scales
according to the inverse cube. (Sedwick et al., 2005, 4)

2Sedwick et al., 2005, 3

2



1.2 Previous Research

Much of the work on EMFF has been done at MIT. A significant summation

of the state of Electromagnetic Formation Flight research is in a report by Sedwick,

Miller, et. al.3 In it, the practicality and utility of EMFF, for a wide variety of

applications, is demonstrated.

Aya Sakaguchi, in her 2007 thesis4, studied micro-EMFF systems (EMFF

systems for satellites smaller than about 100 kg), finding that they are practical for

keeping small groups of satellites in close proximity. She implemented an algorithm

for finding the optimum mass configuration for a µ-EMFF system on a small satellite,

which served as a starting point for chapter two of this thesis.

Kwon5, in his master’s thesis, applied EMFF to a deep-space interferometer.

He has also done work on the utility of superconducting wire, including thermal

analysis.

Work has also been done on EMFF dynamics and control. Schweighart6 and

Elias7, in particular, did work on dynamics and control of spacecraft using EMFF.

The analysis is in greater depth than that which is in chapter four of this thesis, but

the control methodology is quite different, as Elias and Schweighart do not limit

satellites to on-axis interaction.

Chapter 3 of this thesis builds on work done at MIT on power transfer through

coupled magnetic resonance. A paper published in Science8 contains the key parts

of their work, on which chapter three depends.

3Sedwick et al., 2005
4Sakaguchi, 2007
5Kwon, 2004
6Schweighart, 2005
7Elias, 2004
8Kurs et al., 2007

3



1.3 Research Goals

This thesis examines three aspects of Electromagnetic Formation Flight. First,

in chapter 2, a minimum-mass design was found for a micro-EMFF system. The

variables involved in this, both geometric and electrical, were studied, and their

trends discussed.

The second portion of this research, chapter 3, deals with power transfer by

inductive coupling. In both the power transfer and in EMFF, helical antennas are

used. Due to similarity of antenna shapes, it has been suspected that the same coils

used to accelerate satellites could be used to transfer power between them. Using

mathematical models, the feasibility of such actions was evaluated. The power

transfer efficiencies can then be factored in to the previous mass optimization as an

additional output variable.

The final problem, chapter 4, is an evaluation of the paired satellites technique

for using EMFF systems. In this technique, rather than dealing with complex

interactions between multiple off-axis dipoles, only two satellites at a time activate

their dipoles, and activate them parallel to each other. Two-body problems are

always more straightforward than three- or four-body problems, and the dipoles

being on-axis eliminates torque from consideration. However, it is important to

ensure that it will suffice to maintain formation against the J2 perturbation, caused

by irregularities in the mass distribution of the Earth, and against one satellite

having an external thrust, such as a rocket motor.

4



Figure 1.1: Artist’s impression of EMFF satellites (Sedwick et al., 2005). Top: satellite
with three orthogonal coils; able to create dipole in any direction (assumed
in chapter 4). Bottom: satellite with one coil; must physically rotate to
change dipole orientation (assumed in chapters 2 and 3).

5



Chapter 2

Optimization

2.1 Goals

One important part of the space field which could benefit from Electromagnetic

Formation Flight is small satellites, on the order of 100 kg. (“Micro-EMFF” being

EMFF on satellites of this scale.) Their size precludes significant fuel reserves. Due

to their cheaper launch and replacement costs, they are at an ideal scale for satellite

clusters. However, without the fuel reserves for station-keeping, any close clusters

will drift apart eventually. Electromagnetic Formation Flight has the potential to

solve this problem.

Small satellites present some rather stringent limitations on the EMFF system

mass. The mass of the coils, the insulation, the solar panels (if that is to be the

power system used), and any batteries that are required, needs to be low in order to

not drive up the total mass unnecessarily, but large enough to effectively maneuver

the satellites.

The coils have to be sized so as to provide sufficient ∆V capability, while

minimizing power consumption and coil mass. Since the micro-EMFF system is

mass-limited, low-temperature superconductors will not be available to reduce power

6



consumption, as the cryogenic systems would also draw power and add mass, in

addition to taking up volume.

2.2 Methodology

2.2.1 Design Space

The design of a micro-EMFF system involves quite a few variables. The most

straightforward are the geometric parameters — the radius of the wire loop, the

radius of the wire itself, the thickness of the wire insulation, and the number of

turns of wire in the coil. For this thesis, it was assumed that the loop radius is

set by the design of the satellite. A one-meter radius was selected, that being a

round number at about the right order of magnitude. The insulation thickness is a

function of the wire radius (see equations 2.3 and 2.4 below), but the wire radius

itself and the number of turns can vary freely.

Connected with the geometric variables are the electric variables: resistance,

current, and voltage. Resistance can be easily found from the geometry — loop

radius (rloop), wire cross-section (A), and electrical resistivity (ρe) — as in equation

2.1,

R =
rloop ρe

A
(2.1)

and resistance with current, of course, determines the voltage required according

to Ohm’s Law, V = IR. In similar manner, the power requirements can be found.

Driving all this is the current variable, which can vary, like the wire radius and

number of turns.

The easiest and most reliable power system for long-term missions in Earth

orbit is solar power; photovoltaic panels are a mature and cost-effective technology,

and have been proved reliable on many satellites throughout the last few decades.

7



They provide a quantity of power that is appropriate for most space missions of this

scale. However, eclipses complicate the matter of the panels: for a satellite orbiting

Earth (especially in low orbit) there will be significant periods of eclipse. Because

of this, it is necessary to have power available that is not directly from solar panels;

thus this micro-EMFF system will include both solar panels and small batteries

to power the system when the satellite is in eclipse. It is necessary to keep these

systems as small as possible, to minimize satellite mass.

In addition, there are thermal issues which must be taken into consideration.

As current flows through the wire bundle, the wire heats up. If the current is on for

too long, the temperature may reach the melting point of the wire insulation. For

sustainable operation of the system, it is necessary to first calculate the maximum

length of time that the coils may be activated, and to calculate how long the wires

take to cool off afterward. These calculations will be discussed in greater detail in

section 2.2.3.

The variables which relate to how the EMFF system is used are separation

distance and mass. The first is the average length between satellites during the

operation of the EMFF system. Separation distance could easily change over the

course of even one pulse, but a typical value is used to ensure that sufficient acceler-

ations can be produced. Since force falls off quite rapidly with increasing distance,

this typical value is approximately an upper bound to separation distance.

The geometry and power requirements yield the mass of the propulsion sys-

tem. Meanwhile, once the system is switched on, a force will be generated; using

the geometry and power, this force will be calculated, but in order to find out if

the acceleration is sufficient, the total mass is needed, including propulsion mass,

structural mass, any reaction wheels, or other such non-EMFF maneuvering devices,

and the mass of the payload and supporting equipment.

Since the total mass of the spacecraft is the sum of the the EMFF system

8



mass and spacecraft bus mass (consisting of everything which is not directly EMFF-

related),

mtotal = mprop + mbus (2.2)

and mprop is known, then if either mtotal or mbus is specified, the other can be found.

For the purposes of this optimization, it was assumed that the spacecraft bus mass

would be known already, the final mass needing to be calculated. The alternative

would be to have the total launch mass known, with the mass constraints for the

spacecraft bus to be calculated. In either case, the necessary work consists of a simple

addition or subtraction; the choice depends on which input datum is available. For

this thesis, the decision was arbitrary, since no specific design constraints were given.

2.2.2 Procedure

The optimization begins with the creation of an three-dimensional array of

potential design points. Six different current levels, eight numbers of turns, and

eight wire radii are combined into a 6 X 8 X 8 array of 384 possible combinations.

These combinations are summarized in table 2.1.

Wire radius varies from the approximate equivalents of AWG 0 to 18. This

range covers wires large enough to carry fairly large currents, but not so large as to

be unwieldy. The number of turns of wire varies from 20 to 160, as larger numbers

of turns, especially with the larger wire gauges, make for overly-heavy bundles of

wire. Current varies from 25 to 50 amps, which is large enough to make thorough

use of the smaller gauge wires, but not so large as to render them useless.

The insulation thickness is calculated for each point from the wire radius, by

way of the wire gauge, as in equations 2.3 and 2.4.1

AWG = 36 − 39 · log ( inches
.005

)

log (92)
(2.3)

1Sullivan, 1999

9



Table 2.1: Design Space

Variable Number studied min max

Wire radius 8 radii studied 0.5 mm 4 mm
Loop radius Fixed by design constraints 1 m (assumed)

Number of turns 8 numbers studied 20 160
Current Six currents studied 25 A 50 A
Voltage Varies with current, wire and loop radii, and turns.

Maximum on-time Time until temperature reaches 360 K
Required off-time Time to cool back to 295 K afterward

thins = 100.518−AWG

44.8 · 2.54 · 10−5 (2.4)

This being done, the maximum cycle time is calculated. To do this, a thermal

model is run at each point, first heating up from room temperature (295 K) to the

maximum temperature (set to 360 K, which is a typical value for the melting point

of rubbers2), and then cooling back down to the starting point. This cycle time

factors in to the calculations of the battery and solar panel masses.

Assuming a ninety-minute orbit, of which approximately one third is in the

Earth’s shadow, the satellite will be in this shadow for approximately 2000 seconds

per orbit. From that time, the amount of time within one orbit in which the system

is likely to be both on and in the shadow of the Earth can be calculated. The

number of dark cycles is calculated by dividing the shadow time by the total cycle

time, rounding up, and that is in turn multiplied by the amount of on-time per

cycle.

ton,dark = tonceil

(

2000s

ton + toff

)

(2.5)

From the cycle times and wire geometry, the masses of the wire (eq. 2.6),

insulation (eq. 2.7), battery (eq. 2.8), and solar panel (eq. 2.9) can be calculated

for each potential design point:

mwire = N · (2πrloop) · (πr2
wire) · ρAl (2.6)

2Mark, 1996

10



mins = (2πrwire) · π((rloop + thins)
2 − r2

loop) · ρins (2.7)

mbat =

(

V 2

R

)

ton,dark

1

ρbat

(2.8)

msol =
ton − ton,dark

toff + ton

(

V 2

R

)

ρsol (2.9)

The total mass of the EMFF propulsion system is the sum of these, equation 2.10.

mprop = mwire + mins + mbat + msol (2.10)

2.2.3 Thermal Analysis

The maximum length of time the system can be on is dependent on how quickly

the wire bundle reaches the melting point of the insulation. After this, some amount

of time is required for the system to return to its original temperature. From the

thermal characteristics of the wire bundle, the maximum heating time and required

cooling time can be found using a numerical simulation.

Since axial symmetry simplifies calculations considerably, the wire bundle is

modeled as a series of concentric rings, with metal at the center, surrounded by al-

ternating layers of insulation and metal, with insulation always being the outermost

layer. In addition, the coil is dealt with in cross-section, allowing the simulation to

be one-dimensional. The number of layers of metal is calculated from the number

of turns of wire, patterned after centered hexagonal numbers. This is illustrated in

fig. 2.1. The resulting thermal profiles are illustrated in figs. 2.2 and 2.3.

Centered hexagonal numbers are “figurate numbers,” which can be represented

by dots making up a regular pattern. In the case of centered hexagonal numbers,

they can be visualized as a filled hexagon on a triangular lattice (see fig. 2.1)3. One

is the first such number, followed by seven (one surrounded by a hexagon of six, two

3Weisstein, 2008

11



Figure 2.1: 1-d model for thermal analysis

on a side), followed by nineteen (seven surrounded by a hexagon of twelve, three on

a side), and so on, according to the pattern 1 + 3n(n − 1). The number of layers

is found by rounding the number of turns of wire to the nearest centered hexagonal

number.

For the numerical simulation, the wire bundle must be split up into a finite

number of distance steps, and time must progress in discrete time steps. If the

distance steps are larger than the layers, vital detail is lost; if they are a small

fraction of the layers, little detail is added, but the simulation time increases. It

would seem, then, that the insulation thickness, being much smaller than the wire

size, would be the distance step. However, the steps need not all be of identical size,

so each layer, metal or insulation, is treated as one distance step for the numerical

simulation.

Jaluria and Torrance4 showed that in a 1-D finite difference model, as is used

here, the maximum time step that can be used with a given distance step is ∆x2/2α,

where ∆x is the distance step, and α is the thermal diffusivity of the material. The

distance step over the insulation is thins, so the maximum time step found from the

insulation is th2
ins/αins. Meanwhile, in the wire itself, the minimum distance step is

4Jaluria & Torrance, 2003, p. 75

12



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
290

300

310

320

330

340

350

360

370

Distance from center of coil (m)

T
 (

K
)

Figure 2.2: Thermal profile after one heating cycle; N = 100, rw = .003m, I = 40A.
Plateaus are the conductive regions, large slopes correlate with insulation.
Apparent change in slope across insulation is an artifact of distance step
size.

at the center, where the step is rwire/2. The maximum time step found from the

wire is
(

rwire

2

)2
/αAl. The lesser of these two maxima is used as the time step for the

simulation. Whether this lesser maximum is from the metal or from the insulation

depends on the wire radius used.

Radiation only applies to the outermost distance step. It is calculated accord-

ing to equation 2.11.

q̇rad = ǫσA(T 4
c − T 4) (2.11)

where Tc is the ambient temperature, ǫ is emissivity and σ is the Boltzmann constant.

Conduction, on the other hand, is addressed at every distance step. As im-

plemented in equation 2.12, the temperature difference between adjacent points is

divided by the thermal resistivity. At the innermost and outermost points, T (i± 1)

13



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
250

255

260

265

270

275

280

285

290

295

Distance from center of coil (m)

T
 (

K
)

Figure 2.3: Thermal profile after fig. 2.2 followed by one cooling cycle.

is set equal to T (i).

q̇cond =
Ti−1 − Ti

ρth,i−1

+
Ti+1 − Ti

ρth,i

(2.12)

In the heating code, Joule heating is taken into account, and equal to the power loss

over the wire due to resistance, as in equation 2.13, where r(x) is the distance from

a given layer to the center of the wire.

q̇res = I2R = I2 rloop ρe

r(x)∆x
(2.13)

Finally, the various heat flows are summed together, as in equation 2.14, and heat

flow rates are converted into temperature changes, as in equation 2.15.

q̇ = q̇rad + q̇cnd + q̇res (2.14)

∆T =
q̇∆t

ρAcp∆x
(2.15)

14



2.2.4 Optimization Calculations

With the propulsion mass (and cycle time) for each potential design point

calculated, the total spacecraft mass is mtotal = minert + mpropulsion.

The goal of the propulsion system being to counteract the J2 perturbation,

the minimum acceleration requirement can be found as in equation 2.165.

amin = 3J2

(

R⊕

asat

)2
µ⊕

a3
sat

dsep (2.16)

If the orbit is 500 km above the Earth’s surface (asat = R⊕ + 500 km), this comes

out to

amin = 3.4213 · 10−9dsep (2.17)

The system is on for ton

toff +ton
of the cycle, so that time fraction is multiplied by

the maximum acceleration to get the mean. The force from these coils6 is equal to

µoN2I2r2

loop

d2
sep

. That force, times the fraction of the time on, and divided by the mass,

yields the acceleration.

a =
ton

toff + ton

3µoπN2I2r4
loop

2d4
sep(mbus + mprop)

(2.18)

For a given spacecraft bus mass and average separation distance, of all the

potential design points that allow sufficient acceleration, the minimum mass solution

— the lowest mass where a > amin — is selected.

5Sakaguchi, 2007, p. 27
6Sakaguchi, 2007, p. 91

15



0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Mass, kg

A
cc

el
, µ

 m
/s

2

 

 

25 A
30 A
35 A
40 A
45 A
50 A
Min. Accel.

Figure 2.4: Acceleration capability by EMFF system mass. Vertical clusters have com-
mon numbers of turns and wire radii (see fig. 2.6). Compare to fig. 2.7.

2.3 Results

2.3.1 Trends in Spacecraft Geometry

Mass and Cross-sectional Area

The goal of the Electromagnetic Formation Flight system is to effectively pro-

pel the satellites relative to each other. Thus, acceleration capacity is desired. Since

mass is expensive to launch, it is important to keep the mass low and the acceleration

high. The first graphs generated examine this tradeoff.

Mass and acceleration are not related linearly. Figure 2.4 illustrates the in-

crease of acceleration capacity with mass. At the cost of raising the mass somewhat,

more acceleration can be squeezed out of the EMFF system. However, the larger

the mass, the less additional acceleration you can get. Figure 2.5 clarifies this by

showing the acceleration per kilogram of EMFF system mass; this ratio is the key

16



0 50 100 150 200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Mass, kg

A
cc

el
 p

er
 k

ilo
gr

am
, µ

 m
/k

g 
s2

 

 
25 A
30 A
35 A
40 A
45 A
50 A
Min. Accel.

Figure 2.5: Acceleration capability per kilogram. Clusters have common numbers of
turns and wire radii (see fig. 2.6).

tradeoff in EMFF design. The highest acceleration per kilogram comes with very

small systems. In figures 2.4 and 2.5, and also in fig. 2.7, a dotted line indicates the

minimum allowable acceleration for the baseline case, with a spacecraft bus mass of

50 kg and an average separation distance of ten meters between spacecraft.

As shown in fig. 2.6, the wire mass dominates the total mass enough that the

cross-section of the coil is related to mass in an almost constant ratio, with only a

little variation from power use, due to the various current levels given here. Because

of this, fig. 2.4 can be easily modified into fig. 2.7, showing more clearly how the

properties go in ‘clumps’ based on wire radius and the number of turns of wire in

the coil.

17



0 0.5 1 1.5 2 2.5 3

x 10
−3

0

50

100

150

M
as

se
s,

 k
g

Total Wire Cross−section, m2

 

 
25 A
30 A
35 A
40 A
45 A
50 A

Figure 2.6: EMFF system mass by cross-sectional area of coil. Area is equal to πr2
wireN ,

and is directly proportional to wire mass.

0 0.5 1 1.5 2 2.5 3

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
cc

el
, m

/s
2

Total Wire Cross−section, m2

 

 

25 A
30 A
35 A
40 A
45 A
50 A
Min. Accel.

Figure 2.7: Acceleration capability by coil cross-sectional area. Compare to fig. 2.4.

18



Current

As a representative sample of trends from changing current levels, a data set

was selected with the maximum wire radius and number of turns. This extreme end

of the available data has the same trends which are visible elsewhere in the data,

but more pronounced.

The thermal properties of the system vary based on the geometry, but vary

even more with changing current levels. The most readily apparent consequence

of increasing the amount of current flowing through the coil is the decrease —

quadratically — of the amount of time that the system can remain on without the

risk of the insulation melting (see fig. 2.8). As resistive heating increases by the

square of the current, as in equation 2.13, this trend is to be expected.

Faster heating for the higher current levels tends to concentrate the heat to-

ward the center of the coil. This concentration then takes longer to make it to the

surface of the coil, and be radiated away. Thus the cooling time (fig. 2.9) follows the

same pattern as the heating time, as does the fraction of the cycle the system may

be on (figure 2.10), which is approximately equal to ton

toff
. Since the quadratic shape

of toff is mitigated somewhat by the heating taking place throughout the coil, not

just in the center, the quadratic quality of ton comes through.

Somewhat curiously, there is a slight tendency for the lower current levels

to produce higher masses, as seen in fig. 2.11. This is explained by the battery

requirements. Though decreased power requirements lower the required battery

mass, from the calculation used for the size of the battery, a longer ton and a larger

on-time fraction will increase the battery mass slightly more than the lower power

requirements will decrease it.

Lower currents also allow a slightly larger average acceleration (see fig. 2.12).

This is due to the longer periods of time the system can remain active; fig. 2.12

(acceleration) parallels fig. 2.10 (fraction of time on in a cycle) quite closely.

19



25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3
x 10

4

Current, A

T
im

e 
on

, s

Figure 2.8: On time, 4-mm radius, 160 turns

25 30 35 40 45 50
1.85

1.9

1.95

2

2.05

2.1

2.15
x 10

6

Current, A

T
im

e 
of

f, 
s

Figure 2.9: Off time, 4-mm radius, 160 turns

20



25 30 35 40 45 50
2

4

6

8

10

12

14
x 10

−3

Current, A

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.10: Fraction of cycle time on, 4-mm radius, 160 turns

25 30 35 40 45 50
0

50

100

150

Current, A

M
as

s,
 k

g

 

 

Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.11: Mass, 4-mm radius, 160 turns. Solar panel and insulation masses are very
small.

21



25 30 35 40 45 50
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Current, A

A
cc

el
, m

/s
2

Figure 2.12: Acceleration capability, 4-mm radius, 160 turns

Number of turns

A section of the data was also examined at the high end of current and wire

radius, with the number of turns of wire varying. The most interesting resulting

variances were due to the geometric constraints of large bundles of wire — if they are

put into an approximately circular bundle, increasingly large layers will be formed,

as seen in fig. 2.1.

The more layers in the coil of wire there are, the longer it takes for the heat to

move out of the coil through the layers. Thus, cooling takes longer as the number

of coils increases, as in fig. 2.13. There are terrace-like regions of the graph; these

are due to the wire being layered, as in the centered hexagonal numbers, above (see

discussion on page 8).

With the time to heat, on the other hand, there is only a slight effect from

the number of turns of wire (fig. 2.13). If there are few wires in the bundle, they

can radiate a slightly larger percentage of the power away during the heating. The

22



20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Number of turns

T
im

e 
of

f, 
s

Figure 2.13: Off time, 4-mm radius, 50A

20 40 60 80 100 120 140 160
4901.2

4901.4

4901.6

4901.8

4902

4902.2

4902.4

4902.6

Number of turns

T
im

e 
on

, s

Figure 2.14: On time, 4-mm radius, 50A

23



20 40 60 80 100 120 140 160
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of turns

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.15: Fraction of cycle time on, 4-mm radius, 50A

difference, however, is almost negligible — a thousandth of a second out of several

minutes total cycle time. Effectively, ton is constant with respect to the number of

turns.

Since ton is nearly constant, and the fraction of the cycle in which the system is

on is approximately equal to ton

toff
, fig. 2.15, which shows this fraction, approximates

the inverse of fig. 2.13.

The number of turns of wire is linearly related to mass, since the longer the

wire, the heavier it is. This is linear, since only one dimension of the wire is being

changed — the length. Likewise, the longer the wire, the more electrical resistance

it has, so there is again a linear relationship with the power requirements. These

can be clearly seen in fig. 2.16.

The relationship between the number of turns and the acceleration capability

is quite complex, as seen in fig. 2.17. Comparing to fig. 2.13, which shows the

‘terraces’ where the same number of layers of wire are involved, it can be seen that

24



20 40 60 80 100 120 140 160
0

50

100

150

Number of turns

M
as

s,
 k

g

 

 
Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.16: Mass, 4-mm radius, 50A. Solar panel and insulation masses are very small.

20 40 60 80 100 120 140 160
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of turns

A
cc

el
, m

/s
2

Figure 2.17: Acceleration capability, 4-mm radius, 50A

25



0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Wire radius, m

T
im

e 
on

, s

Figure 2.18: On time, 160 turns, 50A

the acceleration capacity decreases as a layer ‘fills up’, and increases with each new

layer. The end result is not strongly varying — acceleration varies from only about

0.35 to 0.55 m
s2 between 20 and 160 turns of wire.

Wire radius

Likewise, a sample of the data was taken with the maximum current and

number of turns, varying the radius of the wire. The wire radius has a dramatic

and regular effect on thermal properties, especially.

As the cross-sectional area of an individual wire increases, the time before it

reaches the maximum temperature increases quadratically. In terms of the variables

studied directly, ton increases with the fourth power of rwire (fig. 2.18). On the other

hand, for the time to cool, the remnants of the heat buildup pattern are quadratic,

since the cooling is dependent on the square of the distance to the outside of the

wire, this distance being rwire (fig. 2.19).

26



0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Wire radius, m

T
im

e 
of

f, 
s

Figure 2.19: Off time, 160 turns, 50A

0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.5

1

1.5

2

2.5

3
x 10

−3

Wire radius, m

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.20: Fraction of cycle time on, 160 turns, 50A

27



0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

50

100

150

Wire radius, m

M
as

s,
 k

g

 

 
Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.21: Mass, 160 turns, 50A. Solar panel and insulation masses are very small.

Since ton is quartal, and toff is quadratic, with respect to rwire, the fraction

of the cycle in which the system is on, ton

toff+ton
≈ ton

toff
(fig. 2.20) is quadratic. The

curve is quite similar in shape to that of toff (fig. 2.19).

The mass of the wires is proportional to the cross-sectional area, which is in

turn proportional to the square of the radius. This is seen clearly in the quadratic

shape of the green line in fig. 2.21. The red line, meanwhile, shows the increasing

battery mass, as the power requirements also increase by the square of the radius.

As radius increases, the acceleration capability also increases, approximately

linearly, as in fig. 2.22. It is not exactly linear, since the relationship between radius

and acceleration is rather complicated. Equation 2.18 includes ton in the numerator

(proportional to the fourth power of rwire), and toff , and mprop in the denominator.

Both of the variables in the denominator are proportional to rwire squared. Thus,

despite some irregularity, acceleration varies linearly with wire radius.

28



0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Wire radius, m

A
cc

el
, m

/s
2

Figure 2.22: Acceleration capability, 160 turns, 50A

29



1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Separation distance, m

M
in

im
um

 p
ro

pu
ls

io
n 

m
as

s,
 k

g

 

 
bus mass = 10
bus mass = 50
bus mass = 100

Figure 2.23: Minimum EMFF system mass for various bus masses and separation dis-
tances. See fig. 2.24 for the same data on a logarithmic scale.

2.3.2 Trends in Operational Parameters

In findmultibest.m (appendix A.4), the optimal design, of the 384 possi-

bilities discussed above, is selected for spacecraft bus masses of 10, 50, and 100

kilograms, and average separation distances between 1 and 10 meters. For each

mass and separation distance, the acceleration capacity is found for each of the

design points, and the lowest-mass solution which is sufficient to counteract the J2

perturbation is selected.

As expected, as the separation distance increases, so too does the necessary

mass of the propulsion system, proportional to the fourth power of the distance (fig.

2.23; fourth-power effects more clearly seen in fig. 2.24). Likewise, increasing bus

mass increases EMFF mass, approximately linearly. The relation between bus mass

and EMFF mass is clearer in fig. 2.25, which relates distance to mass fraction. The

mass fraction is relatively constant across the three bus masses, with the exception

30



10
0

10
1

10
−1

10
0

10
1

10
2

Separation distance, m

M
in

im
um

 p
ro

pu
ls

io
n 

m
as

s,
 k

g

 

 
bus mass = 10
bus mass = 50
bus mass = 100

Figure 2.24: Minimum EMFF system masses, logarithmic scale. Fig. 2.23 has the same
data on a linear scale.

of the 10-kg case. With the small mass, even a minimally-sized EMFF system is

going to be a rather sizable fraction of the total. The graphs show mass in a stair

step pattern; because there are only 384 design points studied, there are only 384

possible masses. Since the best design points can come up more than once, there

tend not to be a large variety in masses.

In figure 2.26, each parameter is looked at individually. As discussed in section

2.3.1, acceleration capacity is dependent mainly on wire radius, while mass is based

on wire radius and the number of turns. Current and number of turns do not vary

much across the different separation distances and bus masses; mainly the wire

radius changes.

On the whole, the EMFF mass and acceleration clusters around each discrete

radius, as seen in fig. 2.4 with the acceleration cutoff coming between clusters.

However, occasionally, it will cut off the list in the middle of a radius cluster, and

thus a different number of turns or current level will be chosen.

31



1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Separation distance, m

P
ro

pu
ls

io
n 

m
as

s 
fr

ac
tio

n

 

 
bus mass = 10
bus mass = 50
bus mass = 100

Figure 2.25: Minimum EMFF mass fraction for various bus masses and separation dis-
tances

0 5 10
0

1

2

3

4
x 10

−3

Separation distance, m

W
ire

 r
ad

iu
s,

 m

0 5 10
0

50

100

150

Separation distance, m

N
um

be
r 

of
 tu

rn
s

0 5 10
25

30

35

40

45

50

Separation distance, m

C
ur

re
nt

, A

0 5 10
0

100

200

300

400

Separation distance, m

V
ol

ta
ge

, V

Figure 2.26: EMFF system parameters for various bus masses and separation distances

32



1 2 3 4 5 6 7 8 9 10
0

2000

4000

6000

8000

10000

12000

Separation distance, m

C
yc

le
 ti

m
e,

 m
in

 

 
bus mass = 10
bus mass = 50
bus mass = 100

Figure 2.27: Maximum cycle times for various bus masses and separation distances

Voltage tends to follow the number of turns very closely. Since V = IR,

voltage is proportional resistance, which in turn is proportional to the length of

wire, and thus to the number of turns. The voltage curve parallels the curve of

the number of turns, but dips where the current level dips. As resistance goes also

by the inverse square of radius, so also voltage drops accordingly with increasing

radius.

The cycle time is strongly affected by separation distance, as seen in fig. 2.27.

Cycle time increases with increasing radius, and increasing separation distance is,

as said above, correlated with increasing wire radius. Thus, the farther apart the

satellites get, the longer the system can remain on without overheating, and the

longer it must stay off afterward to cool down.

33



Figure 2.28: Helical geometry

2.4 Alternative Geometry

2.4.1 Helical Geometry

The hexagonally-bundled configuration above is not the only way of arranging

the wires. Another potential arrangement is to have the wires arranged in a helix,

as in fig. 2.28. In this arrangement, the coil of wire describes a cylinder surrounding

the satellite. This allows each part of the coil surface area to radiate out heat, which

dramatically reduces the cooling time of the system.

2.4.2 Results

In the helical geometry, mass and acceleration capacity are much more strongly

correlated, as seen in fig. 2.29. Their relationship is almost linear. Without the

increased cooling times from the bundled wires, the system can remain on for a

more consistent period of time, thus allowing the thermal factors to have less of an

impact on the mass-acceleration curve.

In this geometry, cooling the wire takes approximately the same amount of

time for any given wire radius. Heating, on the other hand, is dependent on the

current. Because of this, increasing the current tends to quadratically decrease the

34



0 50 100 150 200
0

20

40

60

80

100

120

Mass, kg

A
cc

el
, µ

 m
/s

2

 

 

25 A
30 A
35 A
40 A
45 A
50 A
Min. Accel.

Figure 2.29: Acceleration capability by mass, helical geometry

fraction of the cycle time over which the system is active (fig. 2.32). The quadratic

decrease of active cycle time cancels out the performance increase from increased

current, leading to a fairly constant acceleration capability (fig. 2.31). The non-

flat shape of the graph is due to current and cycle time fraction not canceling out

perfectly. This imprecise cancellation leads to a small increase in battery mass at

35A (fig. 2.30).

The number of turns, in the helical geometry, has no effect on any thermal

issues (see in particular fig. 2.35). Thus, there are no thermal nonlinearities intro-

duced, and the mass (fig. 2.33) and acceleration (fig. 2.34) are linear with respect

to the number of turns.

Increasing the radius increases the wire mass quadratically, as expected (fig.

2.36); the solar panel mass also increases, but the battery mass has an odd peak

around a radius of 3mm. This peak is due to the interaction between the cubic

increase of the fraction of the cycle time on (fig. 2.38) and the almost-quadratic

35



25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

Current, A

M
as

s,
 k

g

 

 

Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.30: Mass, 2.5-mm radius, 160 turns, helical geometry

increase of acceleration capacity (fig. 2.37).

When the mass and separation distances are varied, a similar pattern emerges

with the helical geometry as with the default geometry (see fig. 2.39; compare to

fig. 2.23), the most significant difference being that the helical geometry optima are

significantly lighter in mass than the default geometry optima. A comparison of

figures 2.40 and 2.26 also shows that the patterns taken by the various parameters

are much more regular over the given data set in the helical geometry. While the

wire radius is the most powerful parameter, and increasing it gives the most increase

in acceleration capacity, the lighter masses of the helical geometry make the less

sensitive variable of the number of turns a better way to fine-tune the acceleration

capacity of the satellite. The wire radius is changed only once, for the 100-kg

satellite, at a 9-meter separation distance. It is probable that a different range of

parameters, with smaller wire radii, would have provided data more similar to that

in section 2.3.2.

36



25 30 35 40 45 50
30

30.5

31

31.5

32

32.5

33

33.5

34

Current, A

A
cc

el
, m

/s
2

Figure 2.31: Acceleration capability, 2.5-mm radius, 160 turns, helical geometry

25 30 35 40 45 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Current, A

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.32: Fraction of cycle time on, 2.5-mm radius, 160 turns, helical geometry

37



20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

Number of turns

M
as

s,
 k

g

 

 
Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.33: Mass, 4-mm radius, 50A, helical geometry

20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

80

Number of turns

A
cc

el
, m

/s
2

Figure 2.34: Acceleration capability, 4-mm radius, 50A, helical geometry

38



20 40 60 80 100 120 140 160
−1

−0.5

0

0.5

1

1.5

Number of turns

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.35: Fraction of cycle time on, 4-mm radius, 50A, helical geometry

0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

20

40

60

80

100

120

140

160

180

Wire radius, m

M
as

s,
 k

g

 

 
Total mass
Wire mass
Battery mass
Solar panel mass
Insulation mass

Figure 2.36: Mass, 160 turns, 50A, helical geometry

39



0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

10

20

30

40

50

60

70

80

Wire radius, m

A
cc

el
, m

/s
2

Figure 2.37: Acceleration capability, 160 turns, 50A, helical geometry

0.5 1 1.5 2 2.5 3 3.5 4

x 10
−3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Wire radius, m

F
ra

ct
io

n 
of

 c
yc

le
 ti

m
e 

on

Figure 2.38: Fraction of cycle time on, 160 turns, 50A, helical geometry

40



1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Separation distance, m

M
in

im
um

 p
ro

pu
ls

io
n 

m
as

s,
 k

g

 

 
bus mass = 10
bus mass = 50
bus mass = 100

Figure 2.39: Minimum EMFF system ass for various bus masses and separation dis-
tances, helical geometry

0 5 10
4

6

8

10
x 10

−4

Separation distance, m

W
ire

 r
ad

iu
s,

 m

0 5 10
0

50

100

150

200

Separation distance, m

N
um

be
r 

of
 tu

rn
s

0 5 10
30

35

40

45

50

Separation distance, m

C
ur

re
nt

, A

0 5 10
0

100

200

300

Separation distance, m

V
ol

ta
ge

, V

Figure 2.40: EMFF system parameters for various bus masses and separation distances,
helical geometry

41



2.4.3 Significant Differences

The helical geometry has a lighter mass relative to acceleration than the bun-

dled geometry, due to thermal effects from the bundled packing. However, one

problem that might arise also comes from the geometry: if the wire radius is large

and there are many turns, the helix could get quite high, and could obstruct the

satellite’s line of sight. In the scenarios studied here, this is not a problem; the wire

radius never gets over 1 mm, and there are never more than 160 turns.

The near-linear relationship of mass to acceleration capacity would seem to

make the helical geometry much better for larger satellites. However, with larger

masses and separation distances, the see-over problem could manifest itself and

partially neutralize the benefits.

2.5 Conclusion

The acceleration capacity can be increased by increasing the wire radius, at

the cost of adding mass. Increasing the number of turns also increases acceleration

capacity, but more slowly; however, when the geometry of the coil requires the wire

to be packed closely together, the resulting thermal constraints reduce the advantage

of having many turns of wire.

Using Electromagnetic Formation Flight on small satellites requires a very low

system mass. But in this chapter, it has been demonstrated that the EMFF system

can be effectively implemented in 100-kilogram-scale satellites.

42



Chapter 3

Power Transfer

3.1 Coupled Resonance Power Transfer

In the situation where several satellite components are distributed into several

different satellites, maneuvered relative to each other using EMFF or other means,

it may prove useful to have the power systems on only one or two satellites. If

so, it would be very advantageous to have a method of wireless power transmission

between the satellites. A system of inductive power transfer via strongly coupled

magnetic resonances may be available for these purposes.

While radiative power transfer tends to be rather low-efficiency, a system for

power transfer by means of strongly coupled magnetic resonances has been pro-

posed.1. Inductive power transfer is relatively efficient at close range, but the ef-

ficiency falls off quickly as the separation distance increases. By using resonant

coils, power transfer can remain efficient up through several meters of separation

distance.2

Considering that both the power transfer system and the EMFF system use

coils of wire, it would be convenient for both to use the same coils of wire, thus

1Kurs et al., 2007
2Kurs et al., 2007

43



Figure 3.1: Power transfer setup from Kurs et al., 2007. A is the power supply, connected
inductively or physically to S, the source coil. D, the device coil, connects
physically or inductively to B, the load.

saving mass. It is therefore necessary to determine how efficiently power can be

transmitted over the expected typical separation distance using the coils of wire for

EMFF.

3.2 Methodology

The power transfer efficiency is a function of κ, the coupling constant, and ΓS,

ΓD, and ΓW , the decay rate for the source coil, device coil, and load coil, respectively.

To find these variables, it is first necessary to calculate the inductance and

capacitance of the coils of wire being used. The equations3 for these are eq. 3.1 and

3.2:

L =
µo

4π|I|2
∫∫

d~rd~r ′
~J(~r) • ~J(~r ′)

|~r − ~r ′| (3.1)

1

C
=

1

4πǫo|qo|2
∫∫

d~rd~r ′ ρq(~r)ρq(~r
′)

|~r − ~r ′| (3.2)

In order to calculate these, first a computer model is constructed for each coil:

a helix, with height h = rwire

√
N , radius rloop, N turns, wire radius rwire, and wire

length l = 2πrloopN , as seen in appendix B.1, inductionarray.m.

3Kurs et al., 2007

44



Kurs, et. al. calculate an effective mutual inductance, as in eq. 3.3:

M = − 1

4πISIDω

∫∫

d~rd~r ′

[

µo

~JS(~r ′)

~r ′ − ~r
+

ρq,S(~r ′)

ǫo

~r ′ − ~r

|~r ′ − ~r|3

]

• ~JD(~r ′) (3.3)

in which the S and D subscripts, following the conventions used by Kurs, et. al.,

refer to the “source” and “device” coils, respectively. Equation 3.3 includes the

resonant frequency of the source coil, found with equations 3.4 and 3.5:

f =
1

2π
√

LC
(3.4)

ω = 2πf (3.5)

Once M is known, the coupling coefficient κ can be found using equation 3.6:

κ =
ωM

2
√

LSLD

(3.6)

To find ΓS and ΓD, the coupled-mode theory decay constants, equation 3.7 is

used:

Γ = (Ro + Rr)/2/L; (3.7)

where Ro and Rr are ohmic and radiation resistance, respectively. Kurs, et. al. 4

give the formulas for these as eq. 3.8 and 3.9.

Ro =

√

µo ω

2σ

l

4πrwire

(3.8)

Rr =

√

µo

ǫo

(

πN2

12

(ωrloop

c

)4

+
2

3π3

(

ωh

c

)2
)

(3.9)

Since κ and each Γ are now known, the maximum efficiency can be calculated,

4Kurs et al., 2007

45



through equation 3.10:

ηmax(dsep) =

ΓW

ΓD

κ2(dsep)
ΓSΓD

(

(

1 + ΓW

ΓD

)

κ2(dsep)
ΓSΓD

+
(

1 + ΓW

ΓD

)2
) (3.10)

where ΓW is the decay rate of the load on the target satellite.5 For maximum

efficiency, ΓW needs to be

ΓW

ΓD

=

√

1 +
κ2

ΓSΓD

(3.11)

Since the EMFF power transfer system involves identical coils on the sending

and receiving ends, ΓS = ΓD = Γ. Equation 3.11 reduces to eq. 3.12:

ΓW

Γ
=

√

Γ2 + κ2(dsep)

Γ
(3.12)

3.3 Design Space

In order to mesh well with chapter 2, the geometric parameters were selected

to match those in table 2.1. The electrical and chronological variables (voltage,

current, time on, time off) do not at all affect power transfer, since power will be

transferred only when the EMFF system is inactive. Since loop radius is fixed, the

only remaining variables are the number of turns and the wire radius. Wire radius

does not affect inductance as much as the number of turns, and was thus neglected,

so the only geometric variable that was analyzed was the number of turns, which

again, varies from 20 to 160.

The remaining variables for power transfer are the separation distance and the

angle between the two coils. For this thesis, it is assumed that all interactions are

on-axis, so the angle is fixed at 0◦. The separation distance is varied from 1 to 10

meters, just as in findmultibest.m (Appendix A.4).

5Kurs et al., 2007

46



3.4 Results

Using inductionarray.m (Appendix B.1), coupling coefficients and maximum

power transfer efficiencies were found for separation distances from 1 through 10

meters in steps of 1 meter, and for coils of 20 to 160 turns in steps of 20 turns.

Increasing the number of turns increases the value of the coupling coefficient

κ, as seen in figs. 3.2 and 3.3. This increase is mostly linear, with a few minor

irregularities. With large separation distances, the linear nature is significantly

less obvious; however, κ, in close proximity, is on the order of 106; the coupling

coefficients at a ten-meter distance are in the hundreds, so deviation from the pattern

is far less significant there.

Figures 3.4 and 3.5 show power transfer efficiencies across various numbers of

turns. Increasing the number of turns increases the efficiency. As the turns increase,

additional turns have less effect. When the coils are in close proximity, this effect is

less significant; the efficiencies are very high no matter how many turns there are.

As seen in figs. 3.6 and 3.7, κ falls off quite precipitously with increasing

separation distance. Coupling coefficients are on the order of 106 with one-meter

separations; however, with ten-meter separations, they are on the order of 100.

Power transfer efficiency drops off as distance increases, as seen in figs. 3.8

and 3.9. Larger numbers of turns postpone the dropoff to a more distant point, but

make the fall more precipitous.

Figure 3.10 shows the power transfer efficiencies for the designs found in section

2.3.2, based on the number of turns for each bus mass found at various distances

(see fig. 2.26 for numbers of turns). Since most of the optimal designs have few turns

of wire, the trend tends to follow that of fig. 3.8. There are several notable outliers

here. While most of the mass-optimal designs have low numbers of turns of wire, a

few have higher turn counts, and these have higher power transfer efficiencies than

would otherwise be expected.

47



20 40 60 80 100 120 140 160
2

4

6

8

10

12

14
x 10

6

Number of turns

κ

 

 

d
sep

 = 1 m

Figure 3.2: κ with 20 to 160 turns, 1 m separation

3.5 Conclusion

At close range, an inactive electromagnetic formation flight system can be

used for coupled magnetic resonance power transfer. Larger numbers of turns of

wire increase the range over which the power transfer is efficient. For the mass-

optimal solutions found in section 2.3.2, power transfer is quite efficient within a

range of five meters.

48



20 40 60 80 100 120 140 160
110

120

130

140

150

160

170

180

190

200

Number of turns

κ

 

 

d
sep

 = 10 m

Figure 3.3: κ with 20 to 160 turns, 10 m separation

20 40 60 80 100 120 140 160
0.9997

0.9998

0.9998

0.9999

0.9999

1

Number of turns

η m
ax

 

 

d
sep

 = 1 m

Figure 3.4: ηmax with 20 to 160 turns, 1 m separation

49



20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of turns

η m
ax

 

 

d
sep

 = 10 m

Figure 3.5: ηmax with 20 to 160 turns, 10 m separation

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3
x 10

6

Separation distance (m)

κ

 

 
N = 20

Figure 3.6: κ at 1 to 10 meters apart, 20 turns

50



1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14
x 10

6

Separation distance (m)

κ

 

 
N = 160

Figure 3.7: κ at 1 to 10 meters apart, 160 turns

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Separation distance (m)

η m
ax

 

 
N = 20

Figure 3.8: ηmax at 1 to 10 meters apart, 20 turns

51



1 2 3 4 5 6 7 8 9 10
0.75

0.8

0.85

0.9

0.95

1

Separation distance (m)

η m
ax

 

 

N = 160

Figure 3.9: ηmax at 1 to 10 meters apart, 160 turns

1 2 3 4 5 6 7 8 9 10
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Separation distance (m)

η m
ax

 

 

bus mass = 10
bus mass = 50
bus mass = 100

Figure 3.10: ηmax for mass-optimal designs at 1 to 10 meters apart

52



Chapter 4

Paired Satellites

4.1 Introduction

4.1.1 Problem

Once we have satellites which are capable of using Electromagnetic Formation

Flight technology, it is necessary to develop control techniques for their operation.

One potential technique is to maneuver satellites axially in pairs. Satellite dipoles

are only activated such that they are coaxial. This arrangement minimizes torque,

since magnetic torque comes from off-axis interaction. The use of one pair at a time

also simplifies the control calculations quite a bit.

For this research, formal control theory was not used. The simulations were

set up in such a way as to give general results for feasibility, rather than any specific

control law.

4.1.2 Approach

Four satellites are modeled, among which six pairs of satellites can be made.

One pair of satellites at a time is selected for maneuvering; only their magnetic

dipoles are turned on; the other two satellites remain magnetically inert. This

53



activated pair is selected by identifying which of the six pairs is either farthest away

(and need to get closer) or closest together (and need to move apart). Due to the

importance of collision avoidance, priority is given to satellite pairs which are too

close over pairs which are too far apart. If the closest pair is inside the minimum

distance, or the farthest pair is outside the maximum, a dipole is activated on each

in order to impart an acceleration. It is assumed that a dipole can be established

arbitrarily quickly in any orientation.

The paired satellite simulation was implemented in MATLAB. Three scripts

were used for each scenario: one common display script for output (Appendix C.2),

one common calculation script for updating the state at every time step (Appendix

C.1), and one setup and control script, specific for each scenario (Appendices C.3

through C.6).

4.2 Calculations

4.2.1 State

In the paired satellites control scheme, two satellites at a time need to simul-

taneously activate, and then later deactivate, their dipoles. Because of this, the

state is updated at discrete times, in order to keep everything synchronized. The

new positions and velocities at each time step are found using equations 4.1 and 4.2,

derived from Newton’s second law:

~xj(t + 1) = ~xj(t) + ~vj(t)∆t +
1

2

~Fj

mj

∆t2 (4.1)

~vj(t + 1) = ~vj(t) +
~Fj

mj

∆t (4.2)

Angular velocity is updated using equation 4.3, where I(j) is the moment of

54



inertia tensor1. Though attitude is not simulated in this simulation, angular veloc-

ity is included to ensure that angular velocities do not get beyond the reasonable

capacity of reaction wheels, or other attitude control devices.

~ωj(t + 1) = I(j)−1(~τj − ~ωj(t) × (I(j) ~ωj(t)))∆t + ~ωj(t) (4.3)

The force on each satellite (~Fj) is modeled (as in eq. 4.4) as the sum of the force

from interaction with the other satellites (
∑4

k=1
~Fj,k), the force of the J2 perturbation

(~F
(J2)
j ), and a scalar force (~Fo,j).

~Fj =

4
∑

k=1

(~Fj,k) + ~F
(J2)
j + ~Fo,j (4.4)

The forces and torques are calculated in equations 4.5 and 4.6:2

~Fj,k = ~µj · ∇ ~Bk|j (4.5)

~τj,k = ~µj × ~Bk|j (4.6)

The magnetic field strength ~Bk|j from satellite k at point j is found in eq. 4.7:

~Bk|j =
µo

4πdj,k

(−~µk + 3(~µk · r̂k,j)r̂k,j) (4.7)

where dj,k = ‖~xj − ~xk‖ and r̂j,k =
~xj−~xk

‖~xj−~xk‖
. Thus, we can find equations 4.8 and 4.9.

~Fj,k =
3µo

4πd4
j,k

((~µj · ~µk) r̂k,j + (~µj · r̂k,j) ~µk + (~µk · r̂k,j) ~µj − 5 (~µj · r̂k,j) (~µk · r̂k,j) r̂k,j)

(4.8)

~τj,k = ~mj ×
µo

4πd3
j,k

(3 (~µ2 · r̂k,j) r̂k,j − ~µk) (4.9)

1Pines, 2007
2Elias, 2004, p. 95

55



The first of the two remaining forces from eq. 4.4 is the force from the J2

perturbation. This is calculated as in equation 4.10.3

~F
(J2)
j = mj(~x − x̄ ) 3.25 ·10−9 (4.10)

The other force is a constant acceleration, which in the cases being studied, is

only applied to one satellite, as if there were a constant thrust on it.

~Fo,j = m~acons (4.11)

4.2.2 Control

To control the satellites, it is necessary to determine which, if any, dipoles need

to be activated. A list of the distances between each of the six potential satellite

pairs is generated. First, the minimum distance is checked, to see if it’s too close —

within din. If not, the maximum distance is checked, to see if it’s too far apart —

more than dout. If one of those cases is met, the satellites are checked to see if they

are moving toward the nominal bounds yet. If 2~r1 · 2~v1 > 0 or 1~r2 · 1~v2 > 0, then

the satellites are considered to be moving together; if those conditions are not met,

they are considered to be moving apart.

If a maneuver is needed, the dipole orientation must be found. Where ~r =

~x1 − ~x2,
~r
‖~r‖

yields the dipole direction, unless the satellites are too close, in which

case one of the two satellites orients its dipole − ~r
‖~r‖

, for collision avoidance. The

dipole strength is scaled to produce sufficient force to zero out the satellite’s outward

velocity. Putting eq. 4.8 into scalar form yields

F =
3µo‖~µ‖2

2πd4
sep

(4.12)

3Sakaguchi, 2007, p. 28

56



and therefore

‖~µ‖ =

√

2πd4
sepF

3 · 4π · 10−7
(4.13)

To cancel out the relative velocity of the satellites in τ seconds, F needs to be

mvrel/τ , therefore

‖~µ‖ =

√

mvreld4
sep

τ6 · 10−7
(4.14)

The time constant, giving the time to come to a halt, is arbitrary; a τ of one second

was selected, in order to simplify the calculation.

If dout is used for dsep — since dsep = dout when the system switches on — all

but one of the terms in eq. 4.14 are constant for a given scenario. A “dipole strength

constant”

√

md4
out

6·10−7 can be found, needing only to be multiplied by
√

vrel to produce

the dipole magnitude.

However, due to other pairs possibly taking precedence, it is possible that a

given satellite pair may be well over dout apart before their dipoles have a chance to

be activated. To account for the increased distance, dout can be replaced by dsep by

means of multiplying the “dipole strength constant” by
(

dsep

dout

)2

.

Unfortunately, when dsep > dout, even after the adverse velocity has been

eliminated, the satellite pair tends to drift ever farther apart before the next available

round of magnetic attraction. To counteract this, larger dsep

dout
ratios need somewhat

higher proportional dipole moments. Empirically, multiplying the dipole strength

by an additional dsep

dout
is insufficient to counteract the drift, but

(

dsep

dout

)2

works quite

nicely, leading to the equation used for dipole moments for pairs which are too far

apart,

‖~µ‖ =

√

md4
out

6 · 10−7

(

dsep

dout

)4 √
vrel (4.15)

If the dipoles need to be activated because the satellites are too close, the

dipole strength must be much less. First, the “dipole strength constant” must be

multiplied by
(

din

dout

)2

to cancel out the dout in the constant’s formula. Then, as with

57



the distant case,
(

dsep

din

)2

can translate din into dsep. Finally, one of the two dipoles

is multiplied by −1, so that they repel each other, instead of attracting each other.

Due to magnetic force falling off as the inverse square of distance, at close

range, quite impressively large forces can be had. To further complicate matters,

due to the small distances involved, things happen very quickly, so problems tend

to compound themselves within one or two time steps. If velocities are a little

bit too high, the simulated satellites might pass through each other, for example,

across one time step, or if they are particularly close, interact so as to gain several

thousand meters per second velocity. Because of this, the strength has to be very

carefully adjusted, lest on one hand, satellites fly apart at excessive velocity, or

on the other, they collide. Empirically, it was determined that multiplying by an

additional
(

din

dout

)2

and then dividing by
(

dsep

din

)5

achieves a workable balance. In

effect, the gain has been empirically calibrated. From this, we get equation 4.16:

‖~µ‖ =

√

md4
out

6 · 10−7

(

din

dout

)4(
din

dsep

)3 √
vrel (4.16)

Plugging equations 4.15 and 4.16 back into equation 4.12, we get, for the

resulting force for lost-in-space, eq. 4.19

F =
3µo(

√

md4
out

6·10−7

(

dsep

dout

)4 √
vrel)

2

2πτd4
sep

(4.17)

F =
md4

outvrel

τd4
sep

(

dsep

dout

)8

(4.18)

F =
mvrel

τ

(

dsep

dout

)4

(4.19)

58



and likewise, for collision avoidance, eq. 4.22.

F =
3µo(

√

md4
out

6·10−7

(

din

dout

)4(
din

dsep

)3 √
vrel)

2

2πτd4
sep

(4.20)

F =
md4

outvrel

τd4
sep

(

din

dout

)8(
din

dsep

)6

(4.21)

F =
mvrel

τ

(

din

dout

)4(
din

dsep

)10

(4.22)

Once the dipoles have been set to the appropriate values, the new state is

calculated using equations 4.8 through 4.3.

4.2.3 Program Architecture

The setup and control portions of the scenarios are in the MATLAB m-files

pairedsats.m (see appendix C.5), linearsats.m (see appendix C.3), squaresats.m

(see appendix C.4), and tetrasats.m (see appendix C.6). These scripts consist of

a brief setup section, where initial values are given, followed by the main control

loop, which will be discussed in more detail in section 4.2.2.

The state is updated at each time step using tstepSat.m (see appendix C.1),

which contains the magnetic force equations and the kinematic equations needed

in any scenario. Any constant accelerations or additional forces are added in the

scenario files.

Output is done using plotSat.m (see appendix C.2), which has a selection

of the various diagnostic plots used in the creation and debugging of the code, in

addition to the outputs necessary for understanding the results. linearsats.m and

squaresats.m have additional specialized plots as well, and an additional script,

slice.m (see appendix C.5.1), produces plots of the four satellites at a given point

in time, to supplement the other plots for pairedsats.m.

59



Each satellite was given a mass of 50 kg, and moments of inertia Ixx = Iyy =

Izz = 100 kg·m2. Mass is adjusted for in the force calculations, so changing the

mass does not change the behavior of the satellites. The ratio of mass to moment

of inertia does change the rate of angular momentum buildup somewhat, though.

These masses and moments were chosen as round numbers within the range of

typical satellites in µ-EMFF setups, as in chapter 2.

To simplify calculation the satellite volume was neglected. Since the code has

no collision detection, the main use of volume would be in setting the minimum

allowable separation distance between satellites. In these scenarios, aside from

tetrasats.m, this minimum distance ranges from 0.6 m to 0.2 m, which would

imply a rather small satellite.

In linearsats.m, the satellites are arranged in a line, one meter apart, as

illustrated in fig. 4.1. Satellite A has a forward acceleration imposed, and can be

positioned at any point along this line. All motion in this scenario is along this

line. Since the satellites start out only one meter apart, the minimum separation

distance is quite small in this case, so that the satellites have room to move before

the collision avoidance maneuvers begin.

Going from one dimension to two, squaresats.m has the four satellites ar-

ranged in a square, and moving in that plane, as in fig. 4.2. The initial setup is a

square,
√

2 meters to a side, with the vertices aligned so as to point along the y and

z axes.

pairedsats.m implements a three-dimensional scenario, wherein four satellites

have random starting positions, within ±4m of the origin, and random velocities,

within ±0.04m
s
. Satellite A is given a position and velocity such that the center of

gravity is at the origin, and the average velocity is zero.

tetrasats.m adds to the previous scenario a specific formation — a tetrahe-

dron — which it is to maintain. This is done by increasing the minimum distance

60



Figure 4.1: Linear configuration. See also fig. 4.5

Figure 4.2: Square configuration. See also fig. 4.11

61



Figure 4.3: Tetrahedral configuration. See also fig. 4.20

to just under the maximum distance, thus requiring the separation between the

satellites to be nearly constant. With four satellites, this necessitates a tetrahedron.

This setup is illustrated in fig. 4.3

If one satellite is given a constant acceleration — as from a rocket motor —

the center of gravity of the whole system will begin to move; the resulting plots of

motion would be somewhat hard to read. This situation could come up if a cluster

of satellites leaves each major function, such as propulsion, to one satellite. If the

system is working, all satellites will be accelerating together. In order to clarify the

plots, the center of gravity is kept to the origin of the coordinate system, by giving

the accelerated satellite a constant acceleration of 0.75 · acons, and each of the other

satellites an acceleration of −0.25 · acons, as illustrated in fig. 4.4. This keeps the

output in the center of mass frame.

62



Figure 4.4: Center of mass frame compared with inertial frame

63



Figure 4.5: Linear configurations:
Top left: Driven satellite (A) frontmost (see fig. 4.9).
Top right: Satellite A second (see fig. 4.8).
Bottom left: Third satellite is A (see fig. 4.7).
Bottom right: Sat A in rearmost position (see fig. 4.6).

64



0 50 100 150 200 250 300 350
−1.5

−1

−0.5

0

0.5

1

1.5

time, s

di
st

 fr
om

 c
m

, m

 

 

Satellite A
Satellite B
Satellite C
Satellite D

Figure 4.6: Motion of satellites in linear formation, thrust at back. The red satellite
moves forward relative to the other three, and ultimately pushes them all
forward together.

4.3 Results

4.3.1 Linear

The simplest scenario studied using the paired satellites technique consisted of

a line of four evenly-spaced satellites, constrained to a one-dimensional line. (Control

script linearsats.m in Appendix C.3.) In it, the four satellites are distributed

along a line, and move only along that line. One of these four satellites has a

constant acceleration. The behavior of the four-satellite system varies considerably,

depending on which position the accelerated satellite (satellite A) has.

If satellite A is the rearmost satellite (the satellites being arranged, front to

back, B C D A; in the MATLAB code, this is linearsats(4)), the thrusting satellite

A moves forward until it comes within the minimum distance to the next satellite in

line, D. They rebound, initiating a series of successively smaller bounces with C and

65



0 50 100 150 200 250 300 350
−10

−8

−6

−4

−2

0

2

4

time, s

di
st

 fr
om

 c
m

, m

 

 

Satellite A
Satellite B
Satellite C
Satellite D

Figure 4.7: Motion of satellites in linear formation, thrust second to back. The one
satellite behind red gets left behind, with only one insufficient attempt at
recovery.

B, until finally, all settle down to a separation distance right around the minimum

allowable distance, as in fig. 4.6. At steady state, there is a series of tiny, momentary

pulses (see fig. 4.10, bottom right) pushing the satellites apart, and a steady force

from behind — the satellite with the constant force — pushing them together.

As the position of the accelerating satellite moves forward, the behavior changes

significantly. Fig. 4.7 shows the situation with satellite A being the second from the

back (linearsats(3)). The satellites ahead of the thrust — B and C — behave

as in the rearmost case, coming to a stable arrangement, bouncing along in front,

while the rear satellite — D — never can catch up. The small bounces sufficiently

occupy the system with collision avoidance that only one attempt can be made to

bring the back satellite forward, and it is insufficient. Possibly, were the dipole

strengths increased for the too-far case, the one pulse would be sufficient to bring

them together, and the system could be made stable.

66



0 50 100 150 200 250 300 350
−15

−10

−5

0

5

10

15

time, s

di
st

 fr
om

 c
m

, m

 

 

Satellite A
Satellite B
Satellite C
Satellite D

Figure 4.8: Motion of satellites in linear formation, thrust second to front. The two front
satellites interact so much that neither of the other satellites gets a chance
to catch up.

Fig. 4.8 shows the system with A being the second satellite from the front

(linearsats(2)). The frontmost satellite, B, is continually being pushed on by the

driving satellite, A. Because collision avoidance must take priority in this control

scheme, the dipoles are never given the opportunity to close the rearward gap.

When the thrust is at the front, as in fig. 4.9 (linearsats(1)), the first

maneuver that is done is between the frontmost and rearmost satellites. This slows

the frontmost satellite quite a bit, and accelerates the rearmost satellite, which then

collides with its forward neighbors. The three rear satellites then begin their own

series of tiny bounces, much as the satellites in the rearmost-drive case. These

bounces are punctuated by frequent tugs from the frontmost satellite, which serve

to keep all four together.

The key finding here is that the system remains stable as long as one pair or

triad of satellites does not get locked into a collision-avoidance cycle.

67



0 50 100 150 200 250 300 350
−3

−2

−1

0

1

2

3

4

5

6

7

time, s

di
st

 fr
om

 c
m

, m

 

 

Satellite A
Satellite B
Satellite C
Satellite D

Figure 4.9: Motion of satellites in linear formation, thrust at front. The front satellite
pulls the rear satellites forward, leading to a stable configuration.

68



0 100 200 300 400
0

2

4

6

8
x 10

5 Sat A Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30

40
Sat B Magnitude

time, s
µ,

 J
/T

0 100 200 300 400
0

10

20

30

40
Sat C Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

2

4

6

8
x 10

5 Sat D Magnitude

time, s

µ,
 J

/T
0 100 200 300 400

0

5

10

15

20
Sat A Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

5

10

15

20
Sat B Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
−1

−0.5

0

0.5

1
Sat C Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
−1

−0.5

0

0.5

1
Sat D Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

5

10

15

20

25
Sat A Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

2

4

6
x 10

5 Sat B Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30
Sat C Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

2

4

6
x 10

5 Sat D Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30

40
Sat A Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30

40
Sat B Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30

40
Sat C Magnitude

time, s

µ,
 J

/T

0 100 200 300 400
0

10

20

30

40
Sat D Magnitude

time, s

µ,
 J

/T

Figure 4.10: Dipole moment strengths, linear formation.
Top left: Driven satellite (A) frontmost (see fig. 4.9); primary maneuvering
done by front (A) and rear (D) satellites, corresponding to their stronger
dipole moments.
Top right: Satellite A second (see fig. 4.8); note A and B’s constant
interaction, precluding any other maneuvering.
Bottom left: Third satellite is A (see fig. 4.7); spike in B and D satellites
corresponds to the one attempt at bringing D into formation.
Bottom right: Sat A in rearmost position (see fig. 4.6); initial spikes
correspond to bounces, followed by low-level oscillations.

69



Figure 4.11: Square configurations:
Top left: Driven satellite thrusting forward. Results in figs. 4.12 and 4.13.
Top right: Driven satellite thrusting backward. Results in fig. 4.14.
Bottom: Driven satellite thrusting sideways. Results in fig. 4.15.

70



4.3.2 Square

The next scenario has four satellites, arranged in a plane, in a square formation.

Satellite A, again, is accelerating, in the direction away from the center of the square.

Satellite A is at front, with C opposite A, at the back. Satellites B and D are on

either side.

As can be seen in figure 4.12, satellite C gets pulled forward first. Once it

comes closer to the front, the two side satellites start getting pulled toward the

center. The side satellites B and D, though, do not remain close together, but

repel each other, and bounce outward before being pulled back in again. This

cycle repeats several times. Meanwhile, the front satellite maintains itself near the

maximum separation distance with the other three by dint of a series of continual

small pulses. Eventually, when the side satellites return to the center, being pulled

toward the leading satellite, the interaction of the three following satellites, now

in very close proximity, have sufficient collision-avoidance pulses to let the leading

satellite slip forward.

When the three following satellites finally start to move away from each other,

satellite A is far enough away to require a rather large dipole moment to recapture.

This large moment, on one pair of satellites at a time, breaks the symmetry of the

formation. The motion quickly winds up being a stable, but somewhat chaotic,

oscillation by each satellite, with satellite A out in front in the direction of thrust.

The important thing to note here is that the system can keep the four satellites

together as long as close multi-satellite interactions are not taking place. When

satellites B, C, and D come very close to each other, satellite A begins to slip away.

If the thrust direction is reversed (as in fig. 4.14), with the accelerated satellite

pointed directly inward, the driven satellite hits the opposite satellite head-on, and

the ensuing constant collision-avoidance force distracts the system from keeping

the satellites together. The two side satellites are completely ignored, and the two

71



0 1000 2000 3000 4000
−10

−5

0

5

10

15

20

25

time, s

z 
di

st
 fr

om
 c

m
, m

0 1000 2000 3000 4000
−4

−3

−2

−1

0

1

2

3

4

time, s

y 
di

st
 fr

om
 c

m
, m

Figure 4.12: Motion of satellites in square formation. Upper plots show satellite po-
sition in time by axis; lower plot shows satellite position tracks: during
the symmetrical phase, the two side satellites move in an out in tandem
along the curve shown, equidistant from the leading satellite. Eventually,
symmetry is broken, as one begins to lag behind the other.

72



0 1000 2000 3000 4000
0

10

20

30
Sat A Distances (red)

time, s

di
st

, m

0 1000 2000 3000 4000
0

10

20

30
Sat B Distances (blue)

time, s

di
st

, m

0 1000 2000 3000 4000
0

10

20

30
Sat C Distances (green)

time, s

di
st

, m

0 1000 2000 3000 4000
0

10

20

30
Sat D Distances (black)

time, s
di

st
, m

Figure 4.13: Separation distances of satellites in square formation. Minimum and max-
imum distances marked in cyan dotted lines.

colliding satellites fly off together.

If the thrust is off to the side, as in figure 4.15, the motion quickly winds up

being a stable, but somewhat chaotic, oscillation by each satellite, as in the first

case.

73



Figure 4.14: Motion of satellites in square formation, reverse thrust. A pushes C back-
wards; B and D remain stationary, which is the same as moving forward
relative to the center of gravity.

0 500 1000 1500 2000 2500
−10

−5

0

5

10

15

time, s

z 
di

st
 fr

om
 c

m
, m

0 500 1000 1500 2000 2500
−3

−2

−1

0

1

2

3

time, s

y 
di

st
 fr

om
 c

m
, m

Figure 4.15: Position of satellites in square formation, side thrust. Oscillatory motion
is chaotic, but stable. Symmetry is broken immediately.

74



−4 −2 0 2 4 6

−4

−2

0

2

4

z (m)

x 
(m

)

0 1000 2000

−4

−2

0

2

4

t (s)

−4 −2 0 2 4 6
0

1000

2000

t (
s)

Figure 4.16: X-Z plane, general case; Y-Z plane has a similar appearance.

4.3.3 Paired Satellites — General Case

The stable, but chaotic oscillations are exemplified in the general case. In

pairedsats.m, each of the four satellites is given a random starting location, and

a small, random starting velocity and direction. The results are fairly consistent

— they stay within the bounds set out for them, making looping motions. The

thrusting satellite stays out ahead of the other three, as shown in fig. 4.16.

In the general case, the random initial formation changes into a rotating tetra-

hedron, somewhat squished on one face. The accelerated satellite takes a position

at one vertex, staying at about the maximum distance from each of the other three.

Meanwhile, the other three make up the opposite face; a triangle, albeit one with

continually changing side lengths. (The changing distances are shown in fig. 4.19)

The three remaining faces are isosceles triangles, with the rear edge shorter than the

two that meet the accelerating satellite. The whole tapered tetrahedron then rotates

about an axis which passes near to the accelerated satellite. This is especially visible

75



−4 −2 0 2 4

−3

−2

−1

0

1

2

3

x (m)

y 
(m

)

0 1000 2000

−3

−2

−1

0

1

2

3

t (s)

−4 −2 0 2 4
0

1000

2000

t (
s)

Figure 4.17: X-Y plane, general case, perpendicular to the axis of rotation of the tetra-
hedron. See also fig. 4.18.

in fig. 4.17, which shows the plane perpendicular to the thrust direction. Figure

4.18 shows one half of loop in the same plane, for clarity.

Interestingly, satellite A oscillates with about twice the frequency of the other

three. It may be that while the four satellites revolve about the central axis of

their tetrahedron, the central axis itself nutates about the direction of thrust, at

approximately the same rate. For the three following satellites, this would not be

noticeable, but for the leading satellite, which is very close to the central axis and

to the direction of thrust, the amplitudes would be on the same order of magnitude,

and thus noticeable.

76



−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t = 1800 − 2000 s

A

B

C

D

x (m)

y 
(m

)

Figure 4.18: One half-loop of the satellites, X-Y plane. See also fig. 4.17.

0 500 1000 1500 2000
0

2

4

6

8

10
Sat A Distances (red)

t (s)

di
st

 (
m

)

0 500 1000 1500 2000
0

2

4

6

8

10
Sat B Distances (blue)

t (s)

di
st

 (
m

)

0 500 1000 1500 2000
0

2

4

6

8

10
Sat C Distances (green)

t (s)

di
st

 (
m

)

0 500 1000 1500 2000
0

2

4

6

8

10
Sat D Distances (black)

t (s)

di
st

 (
m

)

Figure 4.19: Satellite distances, general case. The driven satellite (A) stays at a fairly
constant distance ahead of the other three, which loop around each other,
following behind A.

77



Figure 4.20: Tetrahedral configurations:
Top left: Thrusting satellite steered inward, as in figs. 4.21 through 4.27.
Top right: Thrusting satellite steered outward, as in fig. 4.28.
Bottom left: Thrusting satellite steered out and to the side, as in figs.
4.29 through 4.32.
Bottom right: Thrusting satellite steered in and to the side, as in see
figs. 4.33 through 4.36.

78



−6 −4 −2 0 2 4 6
−5

0

5

x, m

y,
 m

0 2000 4000
−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.21: X-Y plane, tetrahedral formation

4.3.4 Tetrahedron

The most complicated test done with the paired-satellite technique was holding

a particular formation. In this case, the simplest four-satellite formation was used:

a regular tetrahedron, with one satellite at each vertex. As before, one of the four

satellites had an acceleration imposed on it.

No attempt was made to maintain the orientation of the tetrahedron; indeed,

it was not maintained, except under very specific thrust direction. However, in every

case, the satellites remained in a tetrahedron, after a brief initial spike in separation

distance (see fig. 4.27). The motion of the four satellites in the three planes are

shown in figs. 4.21, 4.22, and 4.23.

79



−6 −4 −2 0 2 4 6

−5

0

5

z, m

x,
 m

0 2000 4000

−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.22: X-Z plane, tetrahedral formation

−6 −4 −2 0 2 4 6

−5

0

5

y, m

z,
 m

0 2000 4000

−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.23: Y-Z plane, tetrahedral formation

80



−5
0

5

−5

0

5

−8

−6

−4

−2

0

2

4

6

8

x, my, m

z,
 m

Figure 4.24: Rotation of the tetrahedron over time. The lower left node in the red
satellite’s ‘orbit’ points in the (-1,-1,-1) direction, which is the direction of
thrust.

81



0 1000 2000 3000 4000
−0.2

−0.1

0

0.1

0.2

0.3
Sat A Velocity

time, s

v,
 m

/s

0 1000 2000 3000 4000
−0.2

−0.1

0

0.1

0.2
Sat B Velocity

time, s

v,
 m

/s

0 1000 2000 3000 4000
−0.1

−0.05

0

0.05

0.1

0.15
Sat C Velocity

time, s

v,
 m

/s

0 1000 2000 3000 4000
−0.2

−0.1

0

0.1

0.2
Sat D Velocity

time, s

v,
 m

/s

Figure 4.25: Satellite velocities, tetrahedral formation, relative to system center of mass.
Cyan, pink, and black correspond to vx, vy, and vz, respectively. Spikes
correspond to reversals of direction and the extrema of the loops made by
the satellites.

82



0 1000 2000 3000 4000
0

2

4

6
x 10

5 Sat A Magnitude

time, s

µ,
 J

/T

0 1000 2000 3000 4000
0

2

4

6
x 10

5 Sat B Magnitude

time, s

µ,
 J

/T

0 1000 2000 3000 4000
0

1

2

3

4

5
x 10

5 Sat C Magnitude

time, s

µ,
 J

/T

0 1000 2000 3000 4000
0

1

2

3

4

5
x 10

5 Sat D Magnitude

time, s
µ,

 J
/T

Figure 4.26: Satellite dipole magnitudes, tetrahedral formation. Interactions are inter-
mittent, but happen very frequently, with spikes at equal frequency to the
loops.

0 1000 2000 3000 4000
8

8.2

8.4

8.6

8.8

9
Sat A Distances (red)

time, s

di
st

, m

0 1000 2000 3000 4000
8

8.5

9

9.5
Sat B Distances (blue)

time, s

di
st

, m

0 1000 2000 3000 4000
8

8.5

9

9.5
Sat C Distances (green)

time, s

di
st

, m

0 1000 2000 3000 4000
8

8.5

9

9.5
Sat D Distances (black)

time, s

di
st

, m

Figure 4.27: Satellite distances, tetrahedral formation. After some initial divergence,
satellites stay within the allotted distances.

83



If the leading satellite, A, is steered inward, the end result is not a smooth

translation of the formation, but an in-formation tumble. The four satellites move

about as on the surface of a sphere, with the satellite A tracing out a great circle

including the point on a line from the center of the tetrahedron in the direction of

thrust (as shown in fig. 4.24), and the other three tracing out different latitude lines.

Velocities and dipole magnitudes tend to come in wide pulses, as shown in fig. 4.25

and fig. 4.26.

If the driven satellite is steered directly away from the center of the tetrahe-

dron, on the other hand, the shape and orientation are maintained nearly exactly,

as in fig. 4.28. The three following satellites B, C, and D, pair with satellite A in

rapid succession, thus pulling themselves forward. As they are all chasing satel-

lite A, they are also moving toward each other; once they get too close, occasional

follower-to-follower repulsive pulses are mixed in with the leader-follower attractive

pulses, keeping everything stable.

In the case where satellite A starts out on the side of the formation, rather

than the front, the situation is rather different. Rather than making a loop, or

staying in their orientation, the satellites travel in C-shaped arcs. Two cases were

examined; one in which the satellite was driven out and to the side (see figs. 4.29

– 4.32), and the other where the satellite was driven in and to the side (see figs.

4.33 – 4.36). In the out-and-to-the-side case, the arc was noticeably shorter than

the in-and-to-the-side case.

Comparing all four cases, it can bee seen that the satellite thrusting will tend

to follow a circular arc where at the midpoint, the thrust is directed directly away

from the center point, and with the starting point at one end of the arc. Thus, when

the driven satellite starts out at the front, there is no arc, when it starts out at the

back, it makes a great circle, and when it starts out on the side, it makes a C-shape.

84



−4 −2 0 2 4

−3

−2

−1

0

1

2

3

x, m

y,
 m

0 2000 4000

−3

−2

−1

0

1

2

3

time, s

−4 −2 0 2 4
0

2000

4000

tim
e,

 s

Figure 4.28: X-Y plane, tetrahedral formation, outward thrust. Satellites move to the
maximum separation distances, and stay there.

−4 −2 0 2 4 6
−4

−2

0

2

4

x, m

y,
 m

0 2000 4000
−4

−2

0

2

4

time, s

−4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.29: X-Y plane, tetrahedral formation, thrust out to the side. Satellites travel
in C-shapes. The small retrograde motion visible in the time graphs corre-
sponds to the satellites curving back to the end of the arc before turning
around.

85



−4 −2 0 2 4 6
−4

−2

0

2

4

z, m

x,
 m

0 2000 4000
−4

−2

0

2

4

time, s

−4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.30: X-Z plane, tetrahedral formation, thrust out to the side

−6 −4 −2 0 2 4 6

−5

0

5

y, m

z,
 m

0 2000 4000

−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.31: Y-Z plane, tetrahedral formation, thrust out to the side

86



Figure 4.32: Rotation of tetrahedron over time, thrust out to the side. The midpoint of
the red arc points in the direction of thrust, (-1,-1,-1).

−6 −4 −2 0 2 4 6
−5

0

5

x, m

y,
 m

0 2000 4000
−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.33: X-Y plane, tetrahedral formation, thrust in from the side. As before, but
with larger arcs.

87



−6 −4 −2 0 2 4 6

−4

−2

0

2

4

z, m

x,
 m

0 2000 4000

−4

−2

0

2

4

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.34: X-Z plane, tetrahedral formation, thrust in from the side

−6 −4 −2 0 2 4 6

−5

0

5

y, m

z,
 m

0 2000 4000

−5

0

5

time, s

−6 −4 −2 0 2 4 6
0

2000

4000

tim
e,

 s

Figure 4.35: Y-Z plane, tetrahedral formation, thrust in from the side

88



Figure 4.36: Rotation of tetrahedron over time, thrust in from the side. Again, the red
satellite’s arc is centered on the direction of thrust.

89



0 1000 2000
−0.04

−0.02

0

0.02

0.04

0.06
Sat A Angular Velocity

t (s)

ω
 (

r/
s)

0 1000 2000
−0.06

−0.04

−0.02

0

0.02
Sat B Angular Velocity

t (s)

ω
 (

r/
s)

0 1000 2000
−0.05

0

0.05

0.1

0.15
Sat C Angular Velocity

t (s)

ω
 (

r/
s)

0 1000 2000
−0.06

−0.04

−0.02

0

0.02

0.04
Sat D Angular Velocity

t (s)
ω

 (
r/

s)

Figure 4.37: Angular velocity, general case. Cyan, pink, and black correspond to ωx,
ωy, and ωz, respectively.

4.4 Interaction with the Earth’s Dipole

Because, in the paired satellite technique, all interactions are on-axis, there is

no torque generated between satellites in normal operation, except for tiny amounts

due to roundoff errors. However, if the satellites are orbiting the Earth, the terres-

trial magnetic field will interact in some way with the satellite’s dipole, most likely

off-axis. Therefore, the Earth’s own dipole will impart some amount of torque to

the satellites.

When the Earth’s dipole is integrated into tstepSat.m, the angular momen-

tum buildup can be calculated. When pairedsats.m and tetrasats.m are run,

their angular velocities generally stay within 0.1 rad
s

, as can be seen in figure 4.37,

which is well within the capacities of reaction wheels to take care of. For these pur-

poses, the moments of inertia used were 100 kg·m2, and the masses, 50 kg, selected

as round numbers, on the order of magnitude of a micro-EMFF system.

90



4.5 Conclusion

It has been now demonstrated that the paired satellites technique can suc-

cessfully keep four satellites continuously within specified boundaries. It can also

maintain a tetrahedral formation.

In this research, any capacity of the paired satellite technique to maintain an

orientation of the formation was not demonstrated, nor was any ability to perform

complex maneuvers.

There may be some significant impracticalities in some of these scenarios simu-

lated in this section. Notably, the dipoles, in some cases, are on nearly continuously.

In a real system, this would tend to overheat the electrical system. Also, in some

cases, the dipole moment strengths may be higher than practical. However, the

scale of the simulation was arbitrarily chosen, and is not intended to be exclusively

representative of operational conditions.

91



Chapter 5

Conclusion

5.1 Summary

Optimization

The first problem addressed was finding the lowest-mass design of a small-scale

(on a satellite massing less than around 100 kg) Electromagnetic Formation Flight

system. For micro-EMFF systems of various spacecraft bus masses and separation

distances, optimal designs were found. Wire radius, number of turns, and current

in the wire were varied, which in turn affected battery size, solar panel size, and

wire insulation. The key variable was found to be wire radius. When the mass or

separation distances changed, it tended to be the wire radius that changed most to

accommodate the acceleration requirements for the new conditions.

Power Transfer

In the next chapter, an attempt was made to use the coils intended for EMFF

to transmit and receive power via strongly coupled magnetic resonances. The coils

were analyzed, and inductances and capacitances were found; these, in turn, were

used to calculate the power transfer efficiencies. These efficiencies increased with

92



larger numbers of turns, and fell off with increasing distances, but within a few

meters of each other, the coils are quite efficient for power transfer.

For the mass-optimal designs selected in the optimization chapter, all those

which were designed to operate within five meters were found to be highly efficient

at power transmission.

Paired Satellites

The final section sought to identify whether it is feasible to operate an EMFF

system by only activating two satellite dipoles at a time, maneuvering just one pair

of satellites.

The ability of the paired satellites technique to keep four satellites together,

and even to hold a simple formation, was demonstrated. This bodes well for the

possibility of using only two dipoles at a time, thus simplifying the control systems

for the satellite cluster.

Four scenarios were studied: one with four satellites in a line, one with four

satellites starting in a square, one with four satellites in a random configuration, and

one with four satellites in a tetrahedron, each with one satellite of the four being

accelerated.

In the linear case, when the driven satellite was in the middle position, the

cluster did not stay together, since the driven satellite, and those in front, would

tend to get stuck in collision-avoidance mode. However, when there was enough

multi-satellite interaction, each satellite had a chance to maneuver.

In the square case, as soon as symmetry was broken, the four satellites would

begin to oscillate within the appointed range of each other.

The general case, with random initial locations, would tend to stabilize to an

uneven tetrahedron, rotating about the direction of thrust, with the driven satellite

out front.

93



The tetrahedral case, much like the general case, would remain tetrahedral; its

behavior depended on the initial position of the driven satellite, but it would stay

in formation, oscillating in a controlled fashion.

5.2 Future Work

One of the results from the optimization was that the cooling time on the

wires needs to be several times longer than the time the dipoles are active. This

information has not yet been included in EMFF dynamics and control simulations.

While the power transfer efficiencies have been found for the mass-optimized

configurations, the power transfer system has not yet been integrated into the op-

timization. Wireless power transfer could replace the solar panels, and could easily

increase the optimal number of turns of wire; these effects remain to be studied.

The power transfer code itself has been partially validated with the source

paper (Kurs et al., 2007), but not completely. The remaining differences need to be

resolved.

Any capacity of the paired satellite technique to maintain an orientation of

the formation was not demonstrated, nor was any ability to perform complex ma-

neuvers. Also, this technique has not yet been applied to clusters of any number

other than four satellites. This should be demonstrated in order to further prove

the effectiveness of the paired satellite technique.

5.3 Contributions

A mass optimization was found for a micro-EMFF spacecraft, taking into ac-

count the maximum time the coils can be active without overheating, and the neces-

sary cooling time afterwards. A thermal analysis was made on the electromagnetic

coils, and the required cooling times were identified.

94



The coils were further examined to determine if they would be useful for cou-

pled magnetic resonance power transfer. It was found that power transfer would

be quite efficient at close range (within a few meters), particularly when there are

many turns of wire in the coils.

A scheme for controlling satellites through electromagnetic dipoles was devel-

oped and tested, in which two satellites at a time were active, with the dipoles

aligned with each other on-axis. This system was shown to keep clusters of four

satellites within given boundaries, and to maintain a tetrahedral formation.

95



Appendix A

MATLAB Code — Optimization

A.1 timetoheat.m

Calculates the time a system can be on before the insulation begins to melt.

function answer = timetoheat(N, rw, th, I)
%answer = timetoheat(N,rw,th,I)
%
% N −− Number of turns of wire in loop
% rw −− Wire radius in meters (a rather small number)
% th −− Insulation thickness in meters (a smaller number yet)
% I −− Current through each loop of wire in amps
%
% answer −− time, in seconds, for a coil of given parameters to reach a
% temperature of 360K
%
% Global variable T contains the final temperature of the wir e across its
%cross −section.

global T gPaperMode
rl = 1;
t on = 5;

layers = round(.5+sqrt(12 * N−3)/6) −1; %Number of layers, not including the
%innermost, in the nearest centered
%hexagonal number to N.

era = 2.82e −8; %Electrical resistivity of aluminum
err = 0; %1e13; %Electrical resistivity of rubber −− set to zero as an
roa = 2700; %Density of aluminum "ignore" signal
ror = 1500; %Density of rubber
cpa = 897; %Heat capacity of aluminum
cpr = 2000; %Heat capacity of rubber
tra = 1/220; %Thermal resistivity of aluminum
trr = 1/0.16; %Thermal resistivity of rubber

%arrays of the various properties through the cross −section of the bundle
thik = [rw/2 rw/2 th repmat([th rw/2 rw/2 rw/2 rw/2 th],[1 lay ers])];
eres = [era era err repmat([err era era era era err],[1 layers ])];

96



rhos = [roa roa ror repmat([ror roa roa roa roa ror],[1 layers ])];
cpes = [cpa cpa cpr repmat([cpr cpa cpa cpa cpa cpr],[1 layers ])];
tres = [tra tra trr repmat([trr tra tra tra tra trr],[1 layers ])];
rdus = cumsum(thik); %distance from center of bundle to layer
area = 4 * piˆ2 * rl * rdus; %outside surface area per unit length of the layer

dstep = length(thik);
eps = .11; %?
sig=5.6704e −8;
alpha = 1/tra/roa/cpa;
alphr = 1/trr/ror/cpr;
Tc = 250;
T = 295 * ones(1,dstep);

dt = min([t on/2500 min([thˆ2/alphr (rw/2)ˆ2/alpha])]);
t=0;
while max(T) ≤360

t = t + 1; %heat transfer:
qrad = [zeros(1,dstep −1) eps * sig * area( end ) * (Tcˆ4 −T( end)ˆ4)]; %radiative
qcnd = (T([1 1:(dstep −1)]) − T)./tres([1 1:(dstep −1)]) + ...%conductive

(T([2: end dstep]) −T)./tres;
qres = Iˆ2 * rl/rw./thik. * eres; %resistive heating
qdot = qrad + qcnd + qres; %total heat transfer
DT = dt * qdot./rhos./cpes./area./thik; %change in temperature
T = T + DT; %new temperature \
if t * dt ≥ 50000 %if it takes more than about fifteen hours to heat up

break ; %beyond the maximum temperature, cycle time is going
end %to be no problem; cut off the loop.

end

answer = (t) * dt;

if gPaperMode
figure(1)
plot(rdus,T)
xlabel( 'Distance from center of coil (m)' , 'FontSize' ,14)
ylabel( 'T (K)' , 'FontSize' ,14)
set(gca, 'FontSize' ,14)

end
end

A.2 timetocool.m

Calculates the time a system must be off after reaching the point in appendix
A.1 in order to cool down.

function answer = timetocool(N, rw, th, I)
%answer = timetocool(N,rw,th,I)
%
%See timetoheat.m for more information
%

97



%Can use global variable T, from timetoheat.m, which contai ns the final
%temperature of the wire across its cross −section after heating.

global T gPaperMode
rl = 1;
t on = 5;

layers = round(.5+sqrt(12 * N−3)/6) −1; %Number of layers, not including the
%innermost, in the nearest centered
%hexagonal number to N.

era = 2.82e −8; %Electrical resistivity of aluminum
err = 0; %1e13; %Electrical resistivity of rubber −− set to zero as an
roa = 2700; %Density of aluminum "ignore" signal
ror = 1500; %Density of rubber
cpa = 897; %Heat capacity of aluminum
cpr = 2000; %Heat capacity of rubber
tra = 1/220; %Thermal resistivity of aluminum
trr = 1/0.16; %Thermal resistivity of rubber

%arrays of the various properties through the cross −section of the bundle
thik = [rw/2 rw/2 th repmat([th rw/2 rw/2 rw/2 rw/2 th],[1 lay ers])];
eres = [era era err repmat([err era era era era err],[1 layers ])];
rhos = [roa roa ror repmat([ror roa roa roa roa ror],[1 layers ])];
cpes = [cpa cpa cpr repmat([cpr cpa cpa cpa cpa cpr],[1 layers ])];
tres = [tra tra trr repmat([trr tra tra tra tra trr],[1 layers ])];
rdus = cumsum(thik); %distance from center of bundle to layer
area = 4 * piˆ2 * rl * rdus; %outside surface area per unit length of the layer

dstep = length(thik);
eps = .11; %?
sig=5.6704e −8;
alpha = 1/tra/roa/cpa;
alphr = 1/trr/ror/cpr;
Tc = 250;
dt = min([t on/2500 min([thˆ2/alphr (rw/2)ˆ2/alpha])]);
if isempty(T) %heating for five seconds, if there is no initial state given

T = 295 * ones(1,dstep);
steps = min([round(t on/dt) 50000]);
for t=1:(steps −1) %radiative cooling

qrad = [zeros(1,dstep −1) eps * sig * area( end ) * (Tcˆ4 −T( end)ˆ4)];
qcnd = (T([1 1:(dstep −1)]) − T)./tres([1 1:(dstep −1)]) + ...

(T([2: end dstep]) −T)./tres; %conductive cooling
qres = Iˆ2 * rl/rw./thik. * eres; %resistive heating
qdot = qrad + qcnd + qres; %total heat transfer
DT = dt * qdot./rhos./cpes./area./thik; %change in temperature
T = T + DT; %new temperature

end
else

steps = 1;
t = 0;

end
while max(T) >295

t = t + 1;
qrad = [zeros(1,dstep −1) eps * sig * area( end ) * (Tcˆ4 −T( end)ˆ4)]; %radiative

98



qcnd = (T([1 1:(dstep −1)]) − T)./tres([1 1:(dstep −1)]) + ...%conductive
(T([2: end dstep]) −T)./tres;

qdot = qrad + qcnd; %total heat transfer
DT = dt * qdot./rhos./cpes./area./thik; %change in temperature
T = T + DT; %new temperature

end

answer = (t+1 −steps) * dt;

if gPaperMode
figure(2)
plot(rdus,T)
xlabel( 'Distance from center of coil (m)' , 'FontSize' ,14)
ylabel( 'T (K)' , 'FontSize' ,14)
set(gca, 'FontSize' ,14)

end
end

A.3 findbestconfig.m

Script for creating array of thermal characteristics, and identifying the optimal
design point. Also includes parameter plots.

global gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if gPaperMode

set(0, 'defaultTextFontSize' ,14)
sizet = 14;

else
clear all
gPaperMode = 0;
sizet = 10;

end

if 0
if 0 %Warning: calculating bigthermalmatrix.mat takes severa l days

hmax = 6; %when complete, change "if 1" to "if 0"
imax = 8;
jmax = 8;

iterations = hmax * imax * jmax;
thisone = 0;
sofar = 0;
A = zeros(imax,jmax,hmax);
C = zeros(imax,jmax,hmax);
for h=1:6

I = 5 * h+20;
for i=1:imax

n = 20 * i;

99



for j = 1:jmax
r = .0005 * j;
inches = r * 2/.0254; %\ Calculation of
awg = 36−39* log(inches/.005)/log(92); %| insulation
mils = 10ˆ(0.518 −awg/44.8); %| thickness from
th = max([mils * .0254/1000 1e −6]); %/ wire gauge
thisone = thisone + 1;
tic
fprintf([num2str(thisone) '/' num2str(iterations) ...

': heating... ' ])
A(i,j,h) = timetoheat(n,r,th,I);
fprintf( ' cooling... ' )
C(i,j,h) = timetocool(n,r,th,I);
thistime = toc; sofar = sofar + thistime;
fprintf([colontimefromsec(thistime) ' sec; ' ...

colontimefromsec(sofar) ' elapsed, about ' ...
colontimefromsec(sofar * ((iterations −thisone) ...
/thisone)) ' to go. \n' ]) %See page 99

end
end
save intermediatethermal.mat

end

harray = (1:hmax) * 5+20; %amps
iarray = (1:imax) * 20; %turns
jarray = (1:jmax) * .0005; %m radius

save bigthermalmatrix.mat
else

load bigthermalmatrix.mat
end

else
if 1 %when complete, change "if 1" to "if 0"; took only an hour

hmax = 6;
imax = 8;
jmax = 8;

iterations = hmax * jmax;
thisone = 0;
sofar = 0;
As = zeros(1,jmax,hmax);
Cs = zeros(1,jmax,hmax);
n = 1;
for h=1:6

I = 5 * h+20;
for j = 1:jmax

r = .0005 * j;
inches = r * 2/.0254; %\ Calculation of
awg = 36−39* log(inches/.005)/log(92); %| insulation
mils = 10ˆ(0.518 −awg/44.8); %| thickness from
th = max([mils * .0254/1000 1e −6]); %/ wire gauge
thisone = thisone + 1;
tic
fprintf([num2str(thisone) '/' num2str(iterations) ...

100



': heating... ' ])
As(1,j,h) = timetoheat(n,r,th,I);
fprintf( ' cooling... ' )
Cs(1,j,h) = timetocool(n,r,th,I);
thistime = toc; sofar = sofar + thistime;
fprintf([colontimefromsec(thistime) ' sec; ' ...

colontimefromsec(sofar) ' elapsed, about ' ...
colontimefromsec(sofar * ((iterations −thisone) ...
/thisone)) ' to go. \n' ]) %See page 99

end
end

A = repmat(As,[imax,1,1]);
C = repmat(Cs,[imax,1,1]);

harray = (1:hmax) * 5+20; %amps
iarray = (1:imax) * 20; %turns
jarray = (1:jmax) * .0005; %m radius

save littlethermalmatrix.mat
else

load littlethermalmatrix.mat
end

end

%%%%%%%%%%%%%%%%
%Changable Part%
sat mass = 50; %
s apart = 10; %
%%%%%%%%%%%%%%%%

rl = 1;
dvmin = 3.4213 * 10ˆ −9* s apart; %minimum allowable acceleration for J2
res= 2.82 * 10ˆ −8;

tableofdoom = zeros(hmax * imax * jmax,16);
index = 0;

for h=1:hmax
I = 5 * h+20;
for i=1:imax

N = 20* i;
for j = 1:jmax

rw = .0005 * j;
index = index + 1;

R = N* rl * res/(rwˆ2);
V = I * R;
t on = A(i,j,h);
t off = C(i,j,h);

%insulation mass
inches = rw * 2/.0254;
awg = 36−39* log(inches/.005)/log(92);

101



mils = 10ˆ(0.518 −awg/44.8);
th ins = max([mils * .0254/1000 1e −6]);
ins den = 1500;
m ins = 4 * piˆ2 * rl * ((rw+th ins)ˆ2 −rwˆ2) * ins den;

%wire mass
den = 2750;
m wire = (den * rl * 2* pi * N* pi * rwˆ2);

%battery mass
on time shadowed = t on* ceil(2000/(t on+t off));
bat den = 2e5; %J/kg
m bat = Vˆ2/R * on time shadowed/bat den;

%solar panel mass
sol den = 1/25;
m sol = (Vˆ2/R * (t on−on time shadowed)/(t off+t on) * sol den);

%mass of emff system
mass = m wire + m bat + m sol + m ins; %wire mass + battery

%mass + solar panel mass + insulation mass
%system impulse
accel = (t on/((t off+t on) * (sat mass+mass))) * piˆ2 * 6e−7* ...

Nˆ2 * (V/R)ˆ2 * rlˆ4/s apartˆ4; %acceleration, averaged

%update table of doom
tableofdoom(index,:) = [rl,N,rw,V,I,R,t on,t off,mass, ...

accel * 1e6,accel/dvmin * 100,accel * 1e6/mass,m wire,m bat, ...
m sol,m ins];

end
end

end

if 0
disp([ ' Loop Number Wire Voltage Current Resistance ' ...

' Time Time System Accel Percent Accel' ])
disp([ ' radius of turns radius ' ...

' on off mass DeltaV per kg' ])
disp([ ' (m) (m) (V) (A) (ohms) ' ...

' (s) (s ) (kg) (um/sˆ2) (um/kgsˆ2)' ])
%%%%%[% 1.0000 20.0000 0.0005 112.8000 50.0000 2.2560 '

%' 0.0000 0.0000 0.3657 0.0001 0.1245 0.0000
sortedtable = sortrows(tableofdoom,9);
disp(sortedtable(:,1:12))
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plots by current level
if 1 | | gPaperMode
cur25 = tableofdoom( 1:64, :);
cur30 = tableofdoom( 65:128,:);
cur35 = tableofdoom(129:192,:);
cur40 = tableofdoom(193:256,:);

102



cur45 = tableofdoom(257:320,:);
cur50 = tableofdoom(321:384,:);

figure(1);clf
plot(cur25(:,9),cur25(:,10), '.' ,cur30(:,9),cur30(:,10), '.' ,cur35(:,9), ...

cur35(:,10), '.' ,cur40(:,9),cur40(:,10), '.' ,cur45(:,9),cur45(:,10), ...
'.' ,cur50(:,9),cur50(:,10), '.' ,[0 200],[dvmin dvmin] * 1e6, ':k' )

xlabel( 'Mass (kg)' , 'FontSize' ,sizet)
ylabel( 'Accel ( \mu m/sˆ2)' , 'FontSize' ,sizet)
legend( '25 A' , '30 A' , '35 A' , '40 A' , '45 A' , '50 A' , 'Min. Accel.' , ...

'Location' , 'SouthEast' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
x = 0:200;
y = dvmin * 1e6./x;
figure(2);clf
plot(cur25(:,9),cur25(:,12), '.' ,cur30(:,9),cur30(:,12), '.' ,cur35(:,9), ...

cur35(:,12), '.' ,cur40(:,9),cur40(:,12), '.' ,cur45(:,9),cur45(:,12), ...
'.' ,cur50(:,9),cur50(:,12), '.' ,x,y, ':k' )

xlabel( 'Mass (kg)' , 'FontSize' ,sizet)
ylabel( 'Accel per kilo ( \mu m/kg sˆ2)' , 'FontSize' ,sizet)
legend( '25 A' , '30 A' , '35 A' , '40 A' , '45 A' , '50 A' , 'Min. Accel.' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
%figure(3)
%plot(cur25(:,3),cur25(:,7)/60,'.',cur30(:,3),cur30 (:,7)/60,'.',...
% cur35(:,3),cur35(:,7)/60,'.',cur40(:,3),cur40(:,7) /60,'.',...
% cur45(:,3),cur45(:,7)/60,'.',cur50(:,3),cur50(:,7) /60,'.')
%xlabel('Wire radius (m)','FontSize',sizet)
%ylabel('Max on time (min)','FontSize',sizet)
%legend('25 A','30 A','35 A','40 A','45 A','50 A')
%if gPaperMode
% set(gca,'FontSize',14)
%end

figure(4);clf
plot(cur25(:,2). * cur25(:,3).ˆ2,cur25(:,9), '.' ,cur30(:,2). * cur30(:,3).ˆ2, ...

cur30(:,9), '.' ,cur35(:,2). * cur35(:,3).ˆ2,cur35(:,9), '.' , ...
cur40(:,2). * cur40(:,3).ˆ2,cur40(:,9), '.' ,cur45(:,2). * cur45(:,3).ˆ2, ...
cur45(:,9), '.' ,cur50(:,2). * cur50(:,3).ˆ2,cur50(:,9), '.' )

ylabel( 'Masses (kg)' , 'FontSize' ,sizet)
xlabel( 'Total Wire Cross −section (mˆ2)' , 'FontSize' ,sizet)
legend( '25 A' , '30 A' , '35 A' , '40 A' , '45 A' , '50 A' , 'Location' , 'NorthWest' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(5);clf
plot(cur25(:,2). * cur25(:,3).ˆ2,cur25(:,10), '.' , ...

cur30(:,2). * cur30(:,3).ˆ2,cur30(:,10), '.' ,cur35(:,2). * cur35(:,3).ˆ2, ...
cur35(:,10), '.' ,cur40(:,2). * cur40(:,3).ˆ2,cur40(:,10), '.' , ...
cur45(:,2). * cur45(:,3).ˆ2,cur45(:,10), '.' ,cur50(:,2). * cur50(:,3).ˆ2, ...
cur50(:,10), '.' ,[0 3e −3],[dvmin dvmin] * 1e6, ':k' )

103



ylabel( 'Accel (m/sˆ2)' , 'FontSize' ,sizet)
xlabel( 'Total Wire Cross −section (mˆ2)' , 'FontSize' ,sizet)
legend( '25 A' , '30 A' , '35 A' , '40 A' , '45 A' , '50 A' , 'Min. Accel.' , ...

'Location' , 'SouthEast' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
%figure(6)
%plot(cur25(:,2). * cur25(:,3).ˆ2,(cur25(:,7)+cur25(:,8))/60,'.',...
% cur30(:,2). * cur30(:,3).ˆ2,(cur30(:,7)+cur30(:,8))/60,'.',...
% cur35(:,2). * cur35(:,3).ˆ2,(cur35(:,7)+cur35(:,8))/60,'.',...
% cur40(:,2). * cur40(:,3).ˆ2,(cur40(:,7)+cur40(:,8))/60,'.',...
% cur45(:,2). * cur45(:,3).ˆ2,(cur45(:,7)+cur45(:,8))/60,'.',...
% cur50(:,2). * cur50(:,3).ˆ2,(cur50(:,7)+cur50(:,8))/60,'.')
%ylabel('Maximum time on (min)','FontSize',sizet)
%xlabel('Total Wire Cross −section (mˆ2)','FontSize',sizet)
%if gPaperMode
% set(gca,'FontSize',14)
%end
end

%single −row/column/pillar plots
if 1 | | gPaperMode
rad4mm = tableofdoom(8:8:384,:);
num160 = tableofdoom([57:64 121:128 185:192 249:256 313:3 20 377:384],:);
varcur = num160(8:8:48,:); %160 turns, 4 −mm wire
varnum = rad4mm(41:48,:); %50 A, 4−mm wire
varrad = num160(41:48,:); %50 A, 160 turns

figure(10)
plot(varcur(:,5),varcur(:,7), '. −' )
xlabel( 'Current (A)' , 'FontSize' ,sizet)
ylabel( 'Time on (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(11)
plot(varcur(:,5),varcur(:,8), '. −' )
xlabel( 'Current (A)' , 'FontSize' ,sizet)
ylabel( 'Time off (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(12)
plot(varcur(:,5),varcur(:,9), '. −' ,varcur(:,5),varcur(:,13), 'x −' , ...

varcur(:,5),varcur(:,14), 'o −' ,varcur(:,5),varcur(:,15), '+ −' , ...
varcur(:,5),varcur(:,16), ' *−' )

xlabel( 'Current (A)' , 'FontSize' ,sizet)
ylabel( 'Mass (kg)' , 'FontSize' ,sizet)
legend( 'Total mass' , 'Wire mass' , 'Battery mass' , 'Solar panel mass' , ...

'Insulation mass' , 'Location' , 'East' )
if gPaperMode

set(gca, 'FontSize' ,14)
end

104



figure(13)
plot(varcur(:,5),varcur(:,10), '. −' )
xlabel( 'Current (A)' , 'FontSize' ,sizet)
ylabel( 'Accel (m/sˆ2)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(14)
plot(varcur(:,5),varcur(:,7)./(varcur(:,7)+varcur(: ,8)), '. −' )
xlabel( 'Current (A)' , 'FontSize' ,sizet)
ylabel( 'Fraction of cycle time on' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end

figure(20)
plot(varnum(:,2),varnum(:,7), '. −' )
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( 'Time on (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(21)
plot(varnum(:,2),varnum(:,8), '. −' )
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( 'Time off (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(22)
plot(varnum(:,2),varnum(:,9), '. −' ,varnum(:,2),varnum(:,13), 'x −' , ...

varnum(:,2),varnum(:,14), 'o −' ,varnum(:,2),varnum(:,15), '+ −' , ...
varnum(:,2),varnum(:,16), ' *−' )

xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( 'Mass (kg)' , 'FontSize' ,sizet)
legend( 'Total mass' , 'Wire mass' , 'Battery mass' , 'Solar panel mass' , ...

'Insulation mass' , 'Location' , 'NW' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(23)
plot(varnum(:,2),varnum(:,10), '. −' )
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( 'Accel (m/sˆ2)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(24)
plot(varnum(:,2),varnum(:,7)./(varnum(:,7)+varnum(: ,8)), '. −' )
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( 'Fraction of cycle time on' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end

105



figure(30)
plot(varrad(:,3),varrad(:,7), '. −' )
xlabel( 'Wire radius (m)' , 'FontSize' ,sizet)
ylabel( 'Time on (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(31)
plot(varrad(:,3),varrad(:,8), '. −' )
xlabel( 'Wire radius (m)' , 'FontSize' ,sizet)
ylabel( 'Time off (s)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(32)
plot(varrad(:,3),varrad(:,9), '. −' ,varrad(:,3),varrad(:,13), 'x −' , ...

varrad(:,3),varrad(:,14), 'o −' ,varrad(:,3),varrad(:,15), '+ −' , ...
varrad(:,3),varrad(:,16), ' *−' )

xlabel( 'Wire radius (m)' , 'FontSize' ,sizet)
ylabel( 'Mass (kg)' , 'FontSize' ,sizet)
legend( 'Total mass' , 'Wire mass' , 'Battery mass' , 'Solar panel mass' , ...

'Insulation mass' , 'Location' , 'NW' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(33)
plot(varrad(:,3),varrad(:,10), '. −' )
xlabel( 'Wire radius (m)' , 'FontSize' ,sizet)
ylabel( 'Accel (m/sˆ2)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(34)
plot(varrad(:,3),varrad(:,7)./(varrad(:,7)+varrad(: ,8)), '. −' )
xlabel( 'Wire radius (m)' , 'FontSize' ,sizet)
ylabel( 'Fraction of cycle time on' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%3−d line plots
if 1 && ¬gPaperMode
figure(40)
plot3(tableofdoom(:,2),tableofdoom(:,3),tableofdoom (:,5))
zlabel( 'Current (A)' )
xlabel( 'Number of Turns' )
ylabel( 'Wire Radius (m)' )
figure(41)
plot3(tableofdoom(:,2),tableofdoom(:,3),tableofdoom (:,9))
zlabel( 'Masses (kg)' )

106



xlabel( 'Number of Turns' )
ylabel( 'Wire Radius (m)' )
figure(42)
plot3(tableofdoom(:,2),tableofdoom(:,3),tableofdoom (:,10))
zlabel( 'Accel (um/sˆ2)' )
xlabel( 'Number of Turns' )
ylabel( 'Wire Radius (m)' )
figure(43)
plot3(tableofdoom(:,2),tableofdoom(:,3),tableofdoom (:,7))
zlabel( 'Time On (s)' )
xlabel( 'Number of Turns' )
ylabel( 'Wire Radius (m)' )
figure(44)
plot3(tableofdoom(:,2),tableofdoom(:,3),tableofdoom (:,8))
zlabel( 'Time Off (s)' )
xlabel( 'Number of Turns' )
ylabel( 'Wire Radius (m)' )

figure(45)
plot3(tableofdoom(:,5),tableofdoom(:,3),tableofdoom (:,7))
zlabel( 'Time On (s)' )
xlabel( 'Current (A)' )
ylabel( 'Wire Radius (m)' )
figure(46)
plot3(tableofdoom(:,5),tableofdoom(:,3),tableofdoom (:,8))
zlabel( 'Time Off (s)' )
xlabel( 'Current (A)' )
ylabel( 'Wire Radius (m)' )
end

%plots by number of turns
if 0 && ¬gPaperMode
num020series = [ 1:8 65:72 129:136 193:200 257:264 321:328] ;
num040series = [ 9:16 73:80 137:144 201:208 265:272 329:336 ];
num060series = [17:24 81:88 145:152 209:216 273:280 337:34 4];
num080series = [25:32 89:96 153:160 217:224 281:288 345:35 2];
num100series = [33:40 97:104 161:168 225:232 289:296 353:3 60];
num120series = [41:48 105:112 169:176 233:240 297:304 361: 368];
num140series = [49:56 113:120 177:184 241:248 305:312 369: 376];
num160series = [57:64 121:128 185:192 249:256 313:320 377: 384];

num020 = tableofdoom(num020series,:);
num040 = tableofdoom(num040series,:);
num060 = tableofdoom(num060series,:);
num080 = tableofdoom(num080series,:);
num100 = tableofdoom(num100series,:);
num120 = tableofdoom(num120series,:);
num140 = tableofdoom(num140series,:);
num160 = tableofdoom(num160series,:);

figure(50)
plot(num020(:,3),num020(:,7), '+' ,num040(:,3),num040(:,7), 'o' , ...

num060(:,3),num060(:,7), ' * ' ,num080(:,3),num080(:,7), '.' , ...
num100(:,3),num100(:,7), 'x' ,num120(:,3),num120(:,7), 's' , ...

107



num140(:,3),num140(:,7), 'd' ,num160(:,3),num160(:,7), 'ˆ' )
xlabel( 'Wire radius (m)' )
ylabel( 'Time on (s)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )
figure(51)
plot(num020(:,5),num020(:,7), '+' ,num040(:,5),num040(:,7), 'o' , ...

num060(:,5),num060(:,7), ' * ' ,num080(:,5),num080(:,7), '.' , ...
num100(:,5),num100(:,7), 'x' ,num120(:,5),num120(:,7), 's' , ...
num140(:,5),num140(:,7), 'd' ,num160(:,5),num160(:,7), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Time on (s)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )

figure(52)
plot(num020(:,3),num020(:,8), '+' ,num040(:,3),num040(:,8), 'o' , ...

num060(:,3),num060(:,8), ' * ' ,num080(:,3),num080(:,8), '.' , ...
num100(:,3),num100(:,8), 'x' ,num120(:,3),num120(:,8), 's' , ...
num140(:,3),num140(:,8), 'd' ,num160(:,3),num160(:,8), 'ˆ' )

xlabel( 'Wire radius (m)' )
ylabel( 'Time on (s)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )
figure(53)
plot(num020(:,5),num020(:,8), '+' ,num040(:,5),num040(:,8), 'o' , ...

num060(:,5),num060(:,8), ' * ' ,num080(:,5),num080(:,8), '.' , ...
num100(:,5),num100(:,8), 'x' ,num120(:,5),num120(:,8), 's' , ...
num140(:,5),num140(:,8), 'd' ,num160(:,5),num160(:,8), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Time on (s)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )

figure(54)
plot(num020(:,3),num020(:,12), '+' ,num040(:,3),num040(:,10), 'o' , ...

num060(:,3),num060(:,12), ' * ' ,num080(:,3),num080(:,10), '.' , ...
num100(:,3),num100(:,12), 'x' ,num120(:,3),num120(:,10), 's' , ...
num140(:,3),num140(:,12), 'd' ,num160(:,3),num160(:,10), 'ˆ' )

xlabel( 'Wire radius (m)' )
ylabel( 'Accel (m/sˆ2)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )
figure(55)
plot(num020(:,5),num020(:,12), '+' ,num040(:,5),num040(:,10), 'o' , ...

num060(:,5),num060(:,12), ' * ' ,num080(:,5),num080(:,10), '.' , ...
num100(:,5),num100(:,12), 'x' ,num120(:,5),num120(:,10), 's' , ...
num140(:,5),num140(:,12), 'd' ,num160(:,5),num160(:,10), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Accel (m/sˆ2)' )
legend( '20 turns' , '40 turns' , '60 turns' , '80 turns' , '100 turns' , ...

'120 turns' , '140 turns' , '160 turns' )
end

108



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%plots by radius
if 0 && ¬gPaperMode
rad05 = tableofdoom(1:8:377,:);
rad10 = tableofdoom(2:8:378,:);
rad15 = tableofdoom(3:8:379,:);
rad20 = tableofdoom(4:8:380,:);
rad25 = tableofdoom(5:8:381,:);
rad30 = tableofdoom(6:8:382,:);
rad35 = tableofdoom(7:8:383,:);
rad40 = tableofdoom(8:8:384,:);

figure(60)
plot(rad05(:,2),rad05(:,7), '+' ,rad10(:,2),rad10(:,7), 'o' ,rad15(:,2), ...

rad15(:,7), ' * ' ,rad20(:,2),rad20(:,7), '.' ,rad25(:,2),rad25(:,7), ...
'x' ,rad30(:,2),rad30(:,7), 's' ,rad35(:,2),rad35(:,7), 'd' , ...
rad40(:,2),rad40(:,7), 'ˆ' )

xlabel( 'Number of turns' )
ylabel( 'Time on (s)' )
legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )
figure(61)
plot(rad05(:,5),rad05(:,7), '+' ,rad10(:,5),rad10(:,7), 'o' ,rad15(:,5), ...

rad15(:,7), ' * ' ,rad20(:,5),rad20(:,7), '.' ,rad25(:,5),rad25(:,7), ...
'x' ,rad30(:,5),rad30(:,7), 's' ,rad35(:,5),rad35(:,7), 'd' , ...
rad40(:,5),rad40(:,7), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Time on (s)' )
legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )

figure(62)
plot(rad05(:,2),rad05(:,8), '+' ,rad10(:,2),rad10(:,8), 'o' ,rad15(:,2), ...

rad15(:,8), ' * ' ,rad20(:,2),rad20(:,8), '.' ,rad25(:,2),rad25(:,8), ...
'x' ,rad30(:,2),rad30(:,8), 's' ,rad35(:,2),rad35(:,8), 'd' , ...
rad40(:,2),rad40(:,8), 'ˆ' )

xlabel( 'Number of turns' )
ylabel( 'Time on (s)' )
legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )
figure(63)
plot(rad05(:,5),rad05(:,8), '+' ,rad10(:,5),rad10(:,8), 'o' ,rad15(:,5), ...

rad15(:,8), ' * ' ,rad20(:,5),rad20(:,8), '.' ,rad25(:,5),rad25(:,8), ...
'x' ,rad30(:,5),rad30(:,8), 's' ,rad35(:,5),rad35(:,8), 'd' , ...
rad40(:,5),rad40(:,8), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Time on (s)' )
legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )

figure(64)
plot(rad05(:,2),rad05(:,10), '+' ,rad10(:,2),rad10(:,10), 'o' ,rad15(:,2), ...

rad15(:,10), ' * ' ,rad20(:,2),rad20(:,10), '.' ,rad25(:,2),rad25(:,10), ...
'x' ,rad30(:,2),rad30(:,10), 's' ,rad35(:,2),rad35(:,10), 'd' , ...
rad40(:,2),rad40(:,10), 'ˆ' )

xlabel( 'Number of turns' )
ylabel( 'Accel (m/sˆ2)' )

109



legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )
figure(65)
plot(rad05(:,5),rad05(:,10), '+' ,rad10(:,5),rad10(:,10), 'o' ,rad15(:,5), ...

rad15(:,10), ' * ' ,rad20(:,5),rad20(:,10), '.' ,rad25(:,5),rad25(:,10), ...
'x' ,rad30(:,5),rad30(:,10), 's' ,rad35(:,5),rad35(:,10), 'd' , ...
rad40(:,5),rad40(:,10), 'ˆ' )

xlabel( 'Current(A)' )
ylabel( 'Accel (m/sˆ2)' )
legend( '.5 mm' , '1 mm' , '1.5 mm' , '2 mm' , '2.5 mm' , '3 mm' , '3.5 mm' , '4 mm' )
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if 0 && ¬gPaperMode
figure(70)
plot(tableofdoom(:,9),tableofdoom(:,10), '.' ,[0 200],[dvmin dvmin] * 1e6, 'r' )
xlabel( 'Mass (kg)' , 'FontSize' ,sizet)
ylabel( 'Accel (um/sˆ2)' , 'FontSize' ,sizet)
x = 0:200;
y = dvmin * x* 1e6;
figure(71)
plot(tableofdoom(:,9),tableofdoom(:,12), '.' ,x,y)
xlabel( 'Mass (kg)' , 'FontSize' ,sizet)
ylabel( 'Accel per kilo (um/kg sˆ2)' , 'FontSize' ,sizet)
figure(72)
plot(tableofdoom(:,9),(tableofdoom(:,7)+tableofdoom (:,8))/60, '.' )
xlabel( 'Mass (kg)' , 'FontSize' ,sizet)
ylabel( 'Total Cycle Time (min)' , 'FontSize' ,sizet)

figure(73)
plot(tableofdoom(:,2). * tableofdoom(:,3).ˆ2,tableofdoom(:,9), '.' )
ylabel( 'Masses (kg)' , 'FontSize' ,sizet)
xlabel( 'Total Wire Cross −section (mˆ2)' , 'FontSize' ,sizet)
figure(74)
plot(tableofdoom(:,2). * tableofdoom(:,3).ˆ2,tableofdoom(:,10), '.' , ...

[0 3e −3],[dvmin dvmin] * 1e6, 'r' )
ylabel( 'Accel (m/sˆ2)' , 'FontSize' ,sizet)
xlabel( 'Total Wire Cross −section (mˆ2)' , 'FontSize' ,sizet)
figure(75)
plot(tableofdoom(:,2). * tableofdoom(:,3).ˆ2,(tableofdoom(:,7)+ ...

tableofdoom(:,8))/60, '.' )
ylabel( 'Total Cycle Time (min)' , 'FontSize' ,sizet)
xlabel( 'Total Wire Cross −section (mˆ2)' , 'FontSize' ,sizet)
end

A.3.1 colontimefromsec.m

%This function is used only by findbestconfig.m. It is used o nly in the
%initial creation of the thermal profile matrix, and used on ly as a means
%to keep track of the progress of the calculations, which can take several
%days to complete, depending on processor speed.

110



function result = colontimefromsec(seconds)
minutes = floor(seconds/60);
seconds = floor(mod(seconds,60) * 100)/100;
hours = floor(minutes/60);
minutes = mod(minutes,60);
days = floor(hours/24);
hours = mod(hours,24);
result = '' ;
if days >0

result = [result num2str(days) ':' ];
end
if hours >0

if minutes ≥ 10
result = [result num2str(hours) ':' ];

else
result = [result num2str(hours) ':0' ];

end
end
if seconds ≥ 10

result = [result num2str(minutes) ':' num2str(seconds)];
else

result = [result num2str(minutes) ':0' num2str(seconds)];
end

end

A.4 findmultibest.m

Finds optimal design points for an array of spacecraft masses and average
separation distances.

global gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if gPaperMode

set(0, 'defaultTextFontSize' ,14)
sizet = 14;

else
clear all
gPaperMode = 0;
sizet = 10;

end

%load bigthermalmatrix.mat
load littlethermalmatrix.mat

sepfac = 4; %number of points checked per meter
minima = zeros(10 * sepfac −sepfac+1,10,3);

rl = 0.5; %%%%%loop radius is preset here
res= 2.82 * 10ˆ −8;

111



muo = 4e−7* pi;
light = 299792458;
sig = 37.8e6;
eps = 1/muo/lightˆ2;

for sat mass = [10 50 100];

switch sat mass
case 10

whichmass = 1;
case 50

whichmass = 2;
otherwise

whichmass = 3;
end

for sepdist = 1:(10 * sepfac+1 −sepfac)
s apart = sepdist/sepfac+(1 −1/sepfac);
Dvmin = 3.4213 * 10ˆ −9* s apart;

tableofdoom = zeros(hmax * imax * jmax,10);
index = 0;

for h=1:hmax
I = 5 * h+20;
for i=1:imax

N = 20* i;
for j = 1:jmax

rw = .0005 * j;
index = index + 1;

R = N* rl * res/(rwˆ2);
V = I * R;
t on = A(i,j,h);
t off = C(i,j,h);

%insulation mass
inches = rw * 2/.0254;
awg = 36−39* log(inches/.005)/log(92);
mils = 10ˆ(0.518 −awg/44.8);
th ins = max([mils * .0254/1000 1e −6]);
ins den = 1500;
m ins = 4 * piˆ2 * rl * ((rw+th ins)ˆ2 −rwˆ2) * ins den;

%wire mass
den = 2750;
m wire = (den * rl * 2* pi * N* pi * rwˆ2);

%battery mass
on time shadowed = t on * ceil(2000/(t on+t off));
bat den = 2e5; %J/kg
m bat = Vˆ2/R * on time shadowed/bat den;

112



%solar panel mass
sol den = 1/25;
m sol = (Vˆ2/R * t on/(t off+t on) * sol den);

%mass of emff system
mass = m wire + m bat + m sol + m ins;

%masses of wire + battery + solar panel + insulation

%system impulse
∆v = (t on/((t off+t on) * (sat mass+mass))) * piˆ2 * ...

6e−7* Nˆ2 * (V/R)ˆ2 * rlˆ4/s apartˆ4; %∆−v, averaged

%update table of doom
tableofdoom(index,:) = [rl,N,rw,V,I,R,mass, ...

∆v* 1e6, ∆v/Dvmin * 100,t on+t off];
end

end
end

tableofdoom = sortrows(tableofdoom,7);
thebest = find(tableofdoom(:,9) >100);
thebest = thebest(1,1);
minima(sepdist,:,whichmass) = tableofdoom(thebest,:);

end
s apart = 1:1/sepfac:10;
if 1 && ¬gPaperMode

disp([ 'System mass = ' num2str(sat mass)])
disp([ ' Separation Loop Number Wire Voltage ' ...

' Current Resistance System DeltaV' ])
disp([ ' distance radius of turns radius ' ...

' mass' ])
disp([ ' (m) (m) (m) (V) ' ...

' (A) (ohms) (kg) (um/s)' ])
%%%%%%% 1.0000 0.5000 20.0000 0.0005 56.4000 '...
% ' 50.0000 1.1280 0.2003 1.0607 710.4068 0.9277
disp([s apart' minima(:,1:8,whichmass)])

end
end

save( 'multibest.mat' , 'minima' , 's apart' )

figure(1)
plot(1:1/sepfac:10,minima(:,7,1), 'x:' ,1:1/sepfac:10,minima(:,7,2), 'o:' , ...

1:1/sepfac:10,minima(:,7,3), '+:' )
legend( 'bus mass = 10' , 'bus mass = 50' , 'bus mass = 100' , 'Location' , 'NW' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Minimum propulsion mass (kg)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
else

title( 'Minimum Masses' )
end

113



figure(2)
plot(1:1/sepfac:10,minima(:,7,1)./(minima(:,7,1)+10 ), 'x:' ,1:1/sepfac:10, ...

minima(:,7,2)./(minima(:,7,2)+50), 'o:' ,1:1/sepfac:10,minima(:,7,3)./ ...
(minima(:,7,3)+100), '+:' )

legend( 'bus mass = 10' , 'bus mass = 50' , 'bus mass = 100' , 'Location' , 'NW' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Propulsion mass fraction' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
else

title( 'Minimum Masses' )
end

figure(3)
loglog(1:1/sepfac:10,minima(:,7,1), 'x:' ,1:1/sepfac:10,minima(:,7,2), ...

'o:' ,1:1/sepfac:10,minima(:,7,3), '+:' )
legend( 'bus mass = 10' , 'bus mass = 50' , 'bus mass = 100' , 'Location' , 'NW' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Minimum propulsion mass (kg)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
else

title( 'Minimum Masses' )
end

figure(4)
subplot(2,2,1)
plot(1:1/sepfac:10,minima(:,3,1), '. −' ,1:1/sepfac:10,minima(:,3,2), '. −' , ...

1:1/sepfac:10,minima(:,3,3), '. −' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Wire radius (m)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end

subplot(2,2,2)
plot(1:1/sepfac:10,minima(:,2,1), '. −' ,1:1/sepfac:10,minima(:,2,2), '. −' , ...

1:1/sepfac:10,minima(:,2,3), '. −' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Number of turns' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end

subplot(2,2,3)
plot(1:1/sepfac:10,minima(:,5,1), '. −' ,1:1/sepfac:10,minima(:,5,2), '. −' , ...

1:1/sepfac:10,minima(:,5,3), '. −' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Current (A)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)

114



end

subplot(2,2,4)
plot(1:1/sepfac:10,minima(:,4,1), '. −' ,1:1/sepfac:10,minima(:,4,2), '. −' , ...

1:1/sepfac:10,minima(:,4,3), '. −' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Voltage (V)' , 'FontSize' ,sizet)
if gPaperMode

set(gca, 'FontSize' ,14)
end

figure(5)
plot(1:1/sepfac:10,minima(:,10,1)/60, 'x:' ,1:1/sepfac:10,minima(:,10,2)/ ...

60, 'o:' ,1:1/sepfac:10,minima(:,10,3)/60, '+:' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( 'Cycle time (min)' , 'FontSize' ,sizet)
legend( 'bus mass = 10' , 'bus mass = 50' , 'bus mass = 100' , 'Location' , 'NW' )
if gPaperMode

set(gca, 'FontSize' ,14)
end

115



Appendix B

MATLAB Code — Power Transfer

B.1 inductionarray.m

Calculates coupling coefficient κ and efficiency ηmax for various separation
distances and numbers of turns in the coil.

function bigarray = inductionarray()
global gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if gPaperMode

set(0, 'defaultTextFontSize' ,14)
sizet = 14;

else
clear all
gPaperMode = 0;
sizet = 10;

end

if 0 %warning: takes several days to run
kappa = zeros(8,10);
etaMax = zeros(8,10);
rl = 0.5;
rw = .003;
for loopnum=1:8

N = 20* loopnum;
height = sqrt(N) * rw;
sections = ceil(120 * N);
leng = N * 2* pi * rl;
%Compute Inductance and Capacitance
disp([num2str(loopnum) '/8: ' ])
it = GenerateHelix(leng,N,rl,rw,height,sections);
save([num2str(N) 'loops.mat' ], 'it' )
freq = 1/2/pi/sqrt(it.L * it.C); %resonant frequency
w = 2* pi * freq; %angular frequency
for distnum=1:10

116



dist = distnum;
%Compute Mutual inductance
fprintf([num2str(dist) '/10: ' ])
M=ComputeM(it,it,dist,w); disp([ 'M = ' num2str(M)])
kappa(loopnum,distnum)=w * abs(M)/2/sqrt(it.Lˆ2);

end
%Compute eta
coupling = kappa(loopnum,:).ˆ2/it.Gammaˆ2;
ratio = sqrt(it.Gammaˆ2+kappa(loopnum,:).ˆ2)/it.Gamma ;
etaMax(loopnum,:) = ratio. * coupling./((1+ratio). * coupling+ ...

(1+ratio).ˆ2);
save([ 'LCarray' num2str(loopnum) '.mat' ], 'kappa' , 'etaMax' )

end
bigarray = [kappa etaMax];
save( 'LCarray.mat' , 'kappa' , 'etaMax' )

else
load LCarray.mat

end

if ¬gPaperMode
distances = repmat((1:10), 8, 1);
numbers = repmat((20:20:160)',1,10);
figure(1);clf
mesh(distances,numbers,kappa)
xlabel( 'Distance (m)' )
ylabel( 'Number of turns' )
zlabel( ' \kappa' )
figure(2);clf
mesh(distances,numbers,etaMax)
xlabel( 'Distance (m)' )
ylabel( 'Number of turns' )
zlabel( ' \eta {max}' )
end

loops = 20:20:160;
dists = 1:10;
figure(3);clf
plot(loops,kappa(:,1))
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( ' \kappa' , 'FontSize' ,sizet)
legend( 'd {sep } = 1 m' , 'Location' , 'SE' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(4);clf
plot(loops,etaMax(:,1))
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( ' \eta {max}' , 'FontSize' ,sizet)
legend( 'd {sep } = 1 m' , 'Location' , 'SE' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(5);clf
plot(loops,kappa(:,10))

117



xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( ' \kappa' , 'FontSize' ,sizet)
legend( 'd {sep } = 10 m' , 'Location' , 'SE' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(6);clf
plot(loops,etaMax(:,10))
xlabel( 'Number of turns' , 'FontSize' ,sizet)
ylabel( ' \eta {max}' , 'FontSize' ,sizet)
legend( 'd {sep } = 10 m' , 'location' , 'SE' )
if gPaperMode

set(gca, 'FontSize' ,14)
end

figure(7);clf
plot(dists,kappa(1,:))
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( ' \kappa' , 'FontSize' ,sizet)
legend( 'N = 20' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(8);clf
plot(dists,etaMax(1,:))
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( ' \eta {max}' , 'FontSize' ,sizet)
legend( 'N = 20' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(9);clf
plot(dists,kappa(8,:))
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( ' \kappa' , 'FontSize' ,sizet)
legend( 'N = 160' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
figure(10);clf
plot(dists,etaMax(8,:))
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( ' \eta {max}' , 'FontSize' ,sizet)
legend( 'N = 160' , 'Location' , 'SW' )
if gPaperMode

set(gca, 'FontSize' ,14)
end

load multibest.mat
distpoints = zeros(1,10);
for i=1:10

distpoints(i) = find(s apart==i,1, 'last' );
end
turns = zeros(3,10);

118



turns(1,:) = minima(distpoints,2,1);
turns(2,:) = minima(distpoints,2,2);
turns(3,:) = minima(distpoints,2,3);
turns = turns/20;

etae = zeros(3,10);
for i=1:10

etae(1,i) = etaMax(turns(1,i),i);
etae(2,i) = etaMax(turns(2,i),i);
etae(3,i) = etaMax(turns(3,i),i);

end

figure(11);clf
plot(1:10,etae(1,:), 'x:' ,1:10,etae(2,:), 'o:' ,1:10,etae(3,:), '+:' )
xlabel( 'Separation distance (m)' , 'FontSize' ,sizet)
ylabel( ' \eta {max}' , 'FontSize' ,sizet)
legend( 'bus mass = 10' , 'bus mass = 50' , 'bus mass = 100' , 'Location' , 'SW' )
if gPaperMode

set(gca, 'FontSize' ,14)
end
end

function answer = ComputeM(Source,Device,dist,w)
mu0=pi * 4e−7;c=299792458;epsilon0=1/mu0/cˆ2;
Device.Pos(:,3) = Device.Pos(:,3)+dist;
m=0;
for i=1:(Source.N)

for j=1:(Device.N)
dM=sin(pi * Source.CumLen(i)/Source.leng) * sin(pi * ...

Device.CumLen(j)/Device.leng) * Source.LenSeg(i) * ...
Device.LenSeg(j) * dot(Source.Seg(i,:),Device.Seg(j,:)) ...
/norm(Source.Pos(i,:) −Device.Pos(j,:));

dM2=(Source.leng/(pi * wˆ2)) * sin(pi * Source.CumLen(i)/ ...
Source.leng) * cos(pi * Device.CumLen(j)/Device.leng) * ...
Source.LenSeg(i) * Device.LenSeg(j) * dot(Source.Seg(i,:), ...
(Source.Pos(i,:) −Device.Pos(j,:)))/norm(Source.Pos(i,:) ...
−Device.Pos(j,:))ˆ3;

m = m + mu0* dM/(4 * pi) + dM2/(4 * pi * epsilon0);
end

end
answer = m;

end

function it = GenerateHelix(leng,turns,radius,rw,h,N)
dtheta=2 * pi * turns/N;
dz=h/N;
theta = (0:dtheta:dtheta * (N−1))';
currentz = (0:dz:dz * (N−1))';

Pos = [radius * cos(theta) radius * sin(theta) currentz];
Seg = [ −radius * cos(theta) radius * sin(theta) repmat(dz,N,1)]./ ...

sqrt(radiusˆ2+dzˆ2);
LenSeg = repmat(sqrt((dtheta * radius)ˆ2+dzˆ2),N,1);

119



CumLen = cumsum(LenSeg);

%Now make the current and charge distributions along the loo p
Curr = Seg. * sin(pi. * [CumLen CumLen CumLen]./leng);
qDens = (pi./leng). * cos(pi. * CumLen./leng);

it = struct( 'Pos' ,Pos, 'Seg' ,Seg, 'LenSeg' ,LenSeg, 'CumLen' ,CumLen, ...
'leng' ,leng, 'Curr' ,Curr, 'qDens' ,qDens, 'rw' ,rw, 'N' ,N, 'L' ,0, 'C' , ...
0, 'Gamma' ,0);

it.L = ComputeL(it,0); disp([ 'L = ' num2str(it.L)])
it.C = ComputeC(it,0); disp([ 'C = ' num2str(it.C)])

muo = pi * 4e−7;light=299792458;eps=1/muo/lightˆ2;
res = 1.72e −8; %copper resistivity%2.82e −8%aluminum resistivity%
freq = 1/2/pi/sqrt(it.L * it.C); %resonant frequency
w = 2* pi * freq; %angular frequency
Ro = sqrt(muo * w* res/2) * leng/4/pi/rw; %ohmic resistance
Rr = sqrt(muo/eps) * (pi/12 * turnsˆ2 * (w * radius/light)ˆ4+2/3/piˆ3 * ...

(w * h/light)ˆ2); %radiative resistance
it.Gamma = (Ro+Rr)/2/it.L;

end

function L=ComputeL(it,IntTech)
rw = it.rw;
N = it.N;
Curr = it.Curr;
Pos = it.Pos;
LenSeg = it.LenSeg;

mu0 = pi * 4e−7;

l=0;
for i=1:N

for j=1:N
if IntTech==1 %SimpsonRuleIntegration())

dL11 = Curr(i −1) * Curr(j −1) * LenSeg(i −1) * LenSeg(j −1) ...
/norm((Pos(i −1,:) + offset1) − (Pos(j −1,:) + offset2));

dL12 = Curr(i −1) * Curr(j) * LenSeg(i −1) * LenSeg(j)
...

/norm((Pos(i −1,:) + offset1) − (Pos(j,:) + offset2));
dL21 = Curr(i) * Curr(j −1) * LenSeg(i) * LenSeg(j −1) ...

/norm((Pos(i,:) + offset1) − (Pos(j −1,:) + offset2));
dL22 = Curr(i) * Curr(j) * LenSeg(i) * LenSeg(j)

...
/norm((Pos(i,:) + offset1) − (Pos(j,:) + offset2));

dL=(dL11+dL12+dL21+dL22)/4;
else %(IntTech==SimpleIntegration())

dL = dot(Curr(i,:),Curr(j,:)) * LenSeg(i) * LenSeg(j)/ ...
max([norm(Pos(i,:) −Pos(j,:)) rw/2]);

if norm(Pos(i,:) −Pos(j,:)) ≤rw/2
dL = 0;

end

120



end
l = l + mu0 * dL/(4 * pi);

end
end
L = l;

end

function C=ComputeC(it,IntTech)
leng = it.leng;
CumLen = it.CumLen;
LenSeg = it.LenSeg;
Pos = it.Pos;
rw = it.rw;
N = it.N;

epsilon0 = 1/(pi * 4e−7)/299792458ˆ2;

OneOverC=0;
for i=1:N

for j=1:N
if IntTech==1 %(SimpsonRuleIntegration)

dC11 = (pi/leng)ˆ2 * cos(pi * CumLen(i −1)/leng) * cos(pi * ...
CumLen(j −1)/leng) * LenSeg(i −1) * LenSeg(j −1)/norm(( ...
Pos(i −1,:)+offset1) −(Pos(j −1,:)+offset2));

dC21 = (pi/leng)ˆ2 * cos(pi * CumLen(i) /leng) * cos(pi * ...
CumLen(j −1)/leng) * LenSeg(i) * LenSeg(j −1)/norm(( ...
Pos(i,:) +offset1) −(Pos(j −1,:)+offset2));

dC12 = (pi/leng)ˆ2 * cos(pi * CumLen(i −1)/leng) * cos(pi * ...
CumLen(j) /leng) * LenSeg(i −1) * LenSeg(j) /norm(( ...
Pos(i −1,:)+offset1) −(Pos(j,:) +offset2));

dC22 = (pi/leng)ˆ2 * cos(pi * CumLen(i) /leng) * cos(pi * ...
CumLen(j) /leng) * LenSeg(i) * LenSeg(j) /norm(( ...
Pos(i,:) +offset1) −(Pos(j,:) +offset2));

dC = (dC11+dC12+dC21+dC22)/4;
else %(IntTech==SimpleIntegration)

dC = (pi/leng)ˆ2 * cos(pi * CumLen(i)/leng) * cos(pi * CumLen(j) ...
/leng) * LenSeg(i) * LenSeg(j)/max([norm(Pos(i,:) −...
Pos(j,:)) rw/2]);

if norm(Pos(i,:) −Pos(j,:)) ≤rw/2
dC = 0;

end
end
OneOverC = OneOverC + dC/(4 * pi * epsilon0);

end
end
C = 1/OneOverC;

end

121



Appendix C

MATLAB Code — Paired

Satellites

C.1 tstepSat.m

Kinematics file for paired satellite simulation.

function newplacenewspeed = tstepSat(oldplaceoldspeed,masses, ...
moments,dipoles,dt)

%newplacenewspeed = tstepSat(oldplaceoldspeed,masses, moments,dipoles,dt)
%
% Inputs are of the form [A B C D] with each satellite's data in a column.
% [A B C D]
% [A B C D]
% [A B C D]
% [ &c. ]
%
% oldplaceoldspeed:
% rows 1:3 −− position (x;y;z) [m]
% rows 4:6 −− velocity (vx;vy;vz) [m/s]
% rows 7:9 −− angular velocity (wx;wy;wz) [rad/s]
%
% masses −− array of satellite masses [mA mB mC mD] in kilograms
%
% moments −− array of satellite moments of inertia [kg mˆ2], in the form
% [Ixx;Iyy;Izz;Iyz;Ixz;Ixy], with each column correspond ing to
% a satellite, as before.
%
% dipoles −− magnetic dipoles (ux;uy;uz) in ampere −meters −squared.
%
% dt −− time step in seconds
%
%The output, newplacenewspeed, is in the same format as oldp laceoldspeed.
%
%Subfunctions:
%
% Bforce(m1,m2,r1,r2)

122



% Using dipole moments m1 and m2, with positions r1 and r2, the force
% between them is found using the dipole force equation.
%
% Btorque(m1,m2,r1,r2)
% Using dipole moments m1 and m2, with positions r1 and r2, the
% torque between them is found using the dipole torque equati on.
%
% tensorify(list)
% Takes the list of moments passed as a parameter to tstepSat( ) and
% turns them into the moment of inertia tensor.
%
% newposition(p,v,f,dt,m)
% Uses basic kinematic equations to find the new position and
% velocity given the old position and velocity (p and v), the f orce
% (f), the time interval (dt), and the mass (m).
%
% newattitude(w,t,dt,I)
% Uses basic rotational kinematics to find the new angular ve locity
% given the old velocity (w), torque (t), time (dt), and the mo ment
% of inertia tensor (I).

global gEarthDipoleOn
if isempty(gEarthDipoleOn)

gEarthDipoleOn = 1;
end

position = oldplaceoldspeed(1:3,:);
velocity = oldplaceoldspeed(4:6,:);
angvel = oldplaceoldspeed(7:9,:);

uA = dipoles(:,1); %magnetic dipole moments
uB = dipoles(:,2);
uC = dipoles(:,3);
uD = dipoles(:,4);
mA = masses(1);
mB = masses(2);
mC = masses(3);
mD = masses(4);
iA = tensorify(moments(:,1)); %moments of inertia
iB = tensorify(moments(:,2));
iC = tensorify(moments(:,3));
iD = tensorify(moments(:,4));
pA = position(:,1); %positions
pB = position(:,2);
pC = position(:,3);
pD = position(:,4);
vA = velocity(:,1); %velocities
vB = velocity(:,2);
vC = velocity(:,3);
vD = velocity(:,4);
wA = angvel(:,1); %angular velocities
wB = angvel(:,2);
wC = angvel(:,3);
wD = angvel(:,4);

123



uE = gEarthDipoleOn * [0;0;8e22]; %dipole of the Earth's magnetic field
height = 500; %orbit height (km) if gEarthDipoleOn = 0, dipole is off.
pE = [ −1000 * (6378+height);0;0]; %location of the Earth's center.

%Forces from Magnets
fMagA = −Bforce(uA,uB,pA,pB) + −Bforce(uA,uC,pA,pC) + ...

−Bforce(uA,uD,pA,pD) + −Bforce(uA,uE,pA,pE);
fMagB = −Bforce(uB,uA,pB,pA) + −Bforce(uB,uC,pB,pC) + ...

−Bforce(uB,uD,pB,pD) + −Bforce(uB,uE,pB,pE);
fMagC = −Bforce(uC,uA,pC,pA) + −Bforce(uC,uB,pC,pB) + ...

−Bforce(uC,uD,pC,pD) + −Bforce(uC,uE,pC,pE);
fMagD = −Bforce(uD,uA,pD,pA) + −Bforce(uD,uB,pD,pB) + ...

−Bforce(uD,uC,pD,pC) + −Bforce(uD,uE,pD,pE);

%Torques from Magnets
tMagA = Btorque(uA,uB,pA,pB) + Btorque(uA,uC,pA,pC) + ...

Btorque(uA,uD,pA,pD) + Btorque(uA,uE,pA,pE);
tMagB = Btorque(uB,uA,pB,pA) + Btorque(uB,uC,pB,pC) + ...

Btorque(uB,uD,pB,pD) + Btorque(uB,uE,pB,pE);
tMagC = Btorque(uC,uA,pC,pA) + Btorque(uC,uB,pC,pB) + ...

Btorque(uC,uD,pC,pD) + Btorque(uC,uE,pC,pE);
tMagD = Btorque(uD,uA,pD,pA) + Btorque(uD,uB,pD,pB) + ...

Btorque(uD,uC,pD,pC) + Btorque(uD,uE,pD,pE);

%actual incrementation of state

pvA = newposition(pA,vA,fMagA,dt,mA);
pvB = newposition(pB,vB,fMagB,dt,mB);
pvC = newposition(pC,vC,fMagC,dt,mC);
pvD = newposition(pD,vD,fMagD,dt,mD);
qwA = newattitude(wA,tMagA,dt,iA);
qwB = newattitude(wB,tMagB,dt,iB);
qwC = newattitude(wC,tMagC,dt,iC);
qwD = newattitude(wD,tMagD,dt,iD);

newplace = [pvA pvB pvC pvD];
newpoint = [qwA qwB qwC qwD];
newplacenewspeed = [newplace;newpoint];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function B = Btorque(u1,u2,r1,r2)
R = r2−r1;
r = norm(R);
muo = pi * 4e−7;
if r==0

B = cross(u1,2/3 * muo* u2);
else

B = cross(u1,muo/(32 * pi * rˆ3) * (3 * dot(u2,R/r) * R/r − u2));
end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

124



function F = Bforce(u1,u2,r1,r2)
R = r2−r1;
r = norm(R);
muo = pi * 4e−7;
if r == 0

F = 0;
else

F = 3* muo/64/pi/rˆ4 * (dot(u1,u2) * R/r+dot(u1,R/r) * u2+...
dot(u2,R/r) * u1−5* dot(u1,R/r) * dot(u2,R/r) * R/r);

end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function moment = tensorify(list)
moment = [list(1) list(6) list(5);

list(6) list(2) list(4);
list(5) list(4) list(3)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function pv = newposition(p,v,f,dt,m)
P = p + v* dt + f/m/2 * dtˆ2; %new position
V = v + f/m * dt; %new velocity
pv = [P;V];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function W = newattitude(w,t,dt,I)
W = I\(t −cross(w,I * w)) * dt+w; %changed angular rate

end

C.2 plotSat.m

Output file for paired satellite simulation.

function plotSat(A,B,C,D,dt,plon,dScale)
%plotSat(A,B,C,D,dt,plon,dScale)
%
% A,B,C,D −− arrays giving the state of the four satellites through time;
% columns are time steps, rows 1 −3 are x,y,z coordinates, rows
% 4−6 are dipole vectors, rows 7 −9 are velocity vectors, and
% rows 10−12 are angular velocity vectors.
%
% dt −− time step
%
% plon −− 12−cell boolean array telling which of the following outputs
% to activate:

125



%
% 1: Main plot −− x−y plane, showing dipole vectors at each moment.
% Side plots −− x and y axes over time.
% 2: Main plot −− x−z plane, showing dipole vectors at each moment.
% Side plots −− x and z axes over time.
% 3: Main plot −− y−z plane, showing dipole vectors at each moment.
% Side plots −− y and z axes over time.
%
% (In the preceeding three plots, the two side plots are
% arranged so that the axis in question is lined up with the
% main plot, and time increases perpendicularly to the main
% plot.)
%
% 4: 3−d plot of the satellites through time. (Formerly showing
% dipole moments at each point; to save rendering time, only t he
% locations are now shown.)
% 5: 3−d dipole moments of each satellite through time; satellite
% positions are not shown.
% 6: Angular velocities of each satellite in time, in four sub plots.
% 7: Satellite velocities in time; vx is red, vy is blue, vz is g reen;
% in four subplots.
% 8: Satellite dipole magnitudes in time, in four subplots. Y −axis
% labels show magnitude scaled to the dipole strength at the o uter
% bound.
% 9: Distances of each satellite to the other three. For examp le, the
% A graph shows distances AB, AC, and AD; the B graph shows
% distances BA, BC, and BD, and so on. Specific scenario scrip ts
% can call figure(9) and draw in lines showing the distances a t
% which the dipoles activate.
% 10: Plots of x vs. vx, y vs. vy, and z vs. vz.
% 11: Distances of the four satellites over time to the CG of th e
% system, along with the mean of the four distances (in pink).
% 12: Text output of the state of each satellite in time (mainl y for
% debugging purposes.)
%
% (When multiple satellites have outputs in one plot, satell ite
% A (which has the additional thrust) is red, B is blue, C is
% green, and D is black.)
%
% dScale −− Dipole magnitude scaling factor for plots 1 −4. Most input
% files use the nominal dipole strength at the outer limit of
% allowable distance, which makes most dipole magnitudes ma x
% out in the general vicinity of 0.75.

global gPaperMode %how big will the text be?
if isempty(gPaperMode) | | gPaperMode == 0

tsize = 10; %normal size if it's regular debugging
else

tsize = 14; %larger size if it's for the paper
end

times = 0:dt:dt * size(A,2) −dt; %vector of times at each time step
wun = ones(size(times));
A(4:6,:)=A(4:6,:)/dScale; %In order to make most graphs readable, the dipole

126



B(4:6,:)=B(4:6,:)/dScale; %moments need to be on the same order of magnitude
C(4:6,:)=C(4:6,:)/dScale; %as the distances; in the case of the test values,
D(4:6,:)=D(4:6,:)/dScale; %that order is one. Thus, it is scaled to dScale.

if plon(1) %X−Y Plane
figure(1)
clf
title( 'XY Plane' )
subplot(3,3,[4 5 7 8]) %Main subplot −− plane, with dipole vectors shown
hold on
quiver(A(1,:),A(2,:),A(4,:),A(5,:),0, 'r' )
quiver(B(1,:),B(2,:),B(4,:),B(5,:),0, 'b' )
quiver(C(1,:),C(2,:),C(4,:),C(5,:),0, 'g' )
quiver(D(1,:),D(2,:),D(4,:),D(5,:),0, 'k' )
plot(A(1,:),A(2,:), ':r' ,B(1,:),B(2,:), ':b' , ...

C(1,:),C(2,:), ':g' ,D(1,:),D(2,:), ':k' )
xlabel( 'x (m)' , 'FontSize' ,tsize)
ylabel( 'y (m)' , 'FontSize' ,tsize)
hold off
set(gca, 'FontSize' ,tsize)
axis equal
limx = xlim;
limy = ylim;
subplot(3,3,[6 9]) %Side plot showing Y location over time
hold on
plot(times,A(2,:), 'r' )
plot(times,B(2,:), 'b' )
plot(times,C(2,:), 'g' )
plot(times,D(2,:), 'k' )
xlabel( 't (s)' , 'FontSize' ,tsize)
ylim(limy)
hold off
set(gca, 'FontSize' ,tsize)
subplot(3,3,[1 2]) %Side plot showing X location over time
hold on
plot(A(1,:),times, 'r' )
plot(B(1,:),times, 'b' )
plot(C(1,:),times, 'g' )
plot(D(1,:),times, 'k' )
ylabel( 't (s)' , 'FontSize' ,tsize)
xlim(limx)
hold off
set(gca, 'FontSize' ,tsize)
end

if plon(2) %X−Z Plane
figure(2)
clf
title( 'XZ Plane' )
subplot(3,3,[4 5 7 8]) %Main subplot −− plane, with dipole vectors shown
hold on
quiver(A(3,:),A(1,:),A(6,:),A(4,:),0, 'r' )
quiver(B(3,:),B(1,:),B(6,:),B(4,:),0, 'b' )
quiver(C(3,:),C(1,:),C(6,:),C(4,:),0, 'g' )

127



quiver(D(3,:),D(1,:),D(6,:),D(4,:),0, 'k' )
plot(A(3,:),A(1,:), ':r' ,B(3,:),B(1,:), ':b' , ...

C(3,:),C(1,:), ':g' ,D(3,:),D(1,:), ':k' )
xlabel( 'z (m)' , 'FontSize' ,tsize)
ylabel( 'x (m)' , 'FontSize' ,tsize)
hold off
set(gca, 'FontSize' ,tsize)
axis equal
limx = xlim;
limy = ylim;
subplot(3,3,[6 9]) %Side plot showing X location over time
hold on
plot(times,A(1,:), 'r' )
plot(times,B(1,:), 'b' )
plot(times,C(1,:), 'g' )
plot(times,D(1,:), 'k' )
xlabel( 't (s)' , 'FontSize' ,tsize)
ylim(limy)
hold off
set(gca, 'FontSize' ,tsize)
subplot(3,3,[1 2]) %Side plot showing Z location over time
hold on
plot(A(3,:),times, 'r' )
plot(B(3,:),times, 'b' )
plot(C(3,:),times, 'g' )
plot(D(3,:),times, 'k' )
ylabel( 't (s)' , 'FontSize' ,tsize)
xlim(limx)
hold off
set(gca, 'FontSize' ,tsize)
end

if plon(3) %Y−Z Plane
figure(3)
clf
title( 'YZ Plane' )
subplot(3,3,[4 5 7 8]) %Main subplot −− plane, with dipole vectors shown
hold on
quiver(A(2,:),A(3,:),A(5,:),A(6,:),0, 'r' )
quiver(B(2,:),B(3,:),B(5,:),B(6,:),0, 'b' )
quiver(C(2,:),C(3,:),C(5,:),C(6,:),0, 'g' )
quiver(D(2,:),D(3,:),D(5,:),D(6,:),0, 'k' )
plot(A(2,:),A(3,:), ':r' ,B(2,:),B(3,:), ':b' , ...

C(2,:),C(3,:), ':g' ,D(2,:),D(3,:), ':k' )
xlabel( 'y (m)' , 'FontSize' ,tsize)
ylabel( 'z (m)' , 'FontSize' ,tsize)
hold off
set(gca, 'FontSize' ,tsize)
axis equal
limx = xlim;
limy = ylim;
subplot(3,3,[6 9]) %Side plot showing Z location over time
hold on
plot(times,A(3,:), 'r' )

128



plot(times,B(3,:), 'b' )
plot(times,C(3,:), 'g' )
plot(times,D(3,:), 'k' )
xlabel( 't (s)' , 'FontSize' ,tsize)
ylim(limy)
hold off
set(gca, 'FontSize' ,tsize)
subplot(3,3,[1 2]) %Side plot showing Y location over time
hold on
plot(A(2,:),times, 'r' )
plot(B(2,:),times, 'b' )
plot(C(2,:),times, 'g' )
plot(D(2,:),times, 'k' )
ylabel( 't (s)' , 'FontSize' ,tsize)
xlim(limx)
hold off
set(gca, 'FontSize' ,tsize)
end

if plon(4) %3−d space plot
figure(4)
clf
hold on
%Quiver plot showing locations and dipole moments at each po int
%−−Takes forever to render in large graphs
%quiver3(A(1,:),A(2,:),A(3,:),A(4,:),A(5,:),A(6,:), 0,'r')
%quiver3(A(1,:),A(2,:),A(3,:),A(7,:),A(8,:),A(9,:), ':r')
%quiver3(B(1,:),B(2,:),B(3,:),B(4,:),B(5,:),B(6,:), 0,'b')
%quiver3(B(1,:),B(2,:),B(3,:),B(7,:),B(8,:),B(9,:), ':b')
%quiver3(C(1,:),C(2,:),C(3,:),C(4,:),C(5,:),C(6,:), 0,'g')
%quiver3(C(1,:),C(2,:),C(3,:),C(7,:),C(8,:),C(9,:), ':g')
%quiver3(D(1,:),D(2,:),D(3,:),D(4,:),D(5,:),D(6,:), 0,'k')
%quiver3(D(1,:),D(2,:),D(3,:),D(7,:),D(8,:),D(9,:), ':k')

%Alternative plot 4: same plot, no vectors shown
%−−much faster to render; not much useful information lost
plot3(A(1,:),A(2,:),A(3,:), 'r' )
plot3(B(1,:),B(2,:),B(3,:), 'b' )
plot3(C(1,:),C(2,:),C(3,:), 'g' )
plot3(D(1,:),D(2,:),D(3,:), 'k' )
xlabel( 'x (m)' , 'FontSize' ,tsize)
ylabel( 'y (m)' , 'FontSize' ,tsize)
zlabel( 'z (m)' , 'FontSize' ,tsize)
hold off
set(gca, 'FontSize' ,tsize)
axis equal
end

if plon(5) %3−d dipole plot
figure(5) %Arrows point in the direction of the dipole. Starting point s
clf %of each vector are a bit more complicated: the X −location shows
hold on %time. Y and Z locations, and colors, indicate the satellite :
quiver3(times, wun, wun,A(4,:),A(5,:),A(6,:),0, 'r' ) %Sat A at (t,+1,+1)
quiver3(times, wun, −wun,B(4,:),B(5,:),B(6,:),0, 'b' ) %Sat B at (t,+1, −1)

129



quiver3(times, −wun, wun,C(4,:),C(5,:),C(6,:),0, 'g' ) %Sat C at (t, −1,+1)
quiver3(times, −wun, −wun,D(4,:),D(5,:),D(6,:),0, 'k' ) %Sat D at (t, −1, −1)
plot3(times,wun,wun, 'r' ,times,wun, −wun, 'b' , ...

times, −wun,wun, 'g' ,times, −wun, −wun, 'k' )
xlabel( 'time' , 'FontSize' ,tsize)
hold off %colors are the standard A −red, B −blue, C −green, D −black
set(gca, 'FontSize' ,tsize)
end

if plon(6) %angular velocity plot
figure(6) %one subplot per satellite
subplot(2,2,1) %cyan −− wx; magenta −− wy; black −− wz
plot(times,A(12,:), 'k' ,times,A(11,:), 'm' ,times,A(10,:), 'c' )
title( 'Sat A Angular Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( ' \omega (r/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,2)
plot(times,B(12,:), 'k' ,times,B(11,:), 'm' ,times,B(10,:), 'c' )
title( 'Sat B Angular Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( ' \omega (r/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,3)
plot(times,C(12,:), 'k' ,times,C(11,:), 'm' ,times,C(10,:), 'c' )
title( 'Sat C Angular Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( ' \omega (r/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,4)
plot(times,D(12,:), 'k' ,times,D(11,:), 'm' ,times,D(10,:), 'c' )
title( 'Sat D Angular Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( ' \omega (r/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
end

if plon(7) %velocity plot
figure(7) %one subplot per satellite
subplot(2,2,1) %cyan −− vx; magenta −− vy; black −− vz
plot(times,A(9,:), 'k' ,times,A(8,:), 'm' ,times,A(7,:), 'c' )
title( 'Sat A Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'v (m/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,2)
plot(times,B(9,:), 'k' ,times,B(8,:), 'm' ,times,B(7,:), 'c' )
title( 'Sat B Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'v (m/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,3)
plot(times,C(9,:), 'k' ,times,C(8,:), 'm' ,times,C(7,:), 'c' )
title( 'Sat C Velocity' , 'FontSize' ,tsize)

130



xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'v (m/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,4)
plot(times,D(9,:), 'k' ,times,D(8,:), 'm' ,times,D(7,:), 'c' )
title( 'Sat D Velocity' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'v (m/s)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
end

if plon(8) %dipole magnitude plot
figure(8) %one subplot per satellite
subplot(2,2,1)
plot(times,sqrt(sum(A(4:6,:).ˆ2,1)) * dScale, 'r' )
title( 'Sat A Magnitude' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'u (J/T)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,2)
plot(times,sqrt(sum(B(4:6,:).ˆ2,1)) * dScale, 'b' )
title( 'Sat B Magnitude' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'u (J/T)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,3)
plot(times,sqrt(sum(C(4:6,:).ˆ2,1)) * dScale, 'g' )
title( 'Sat C Magnitude' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'u (J/T)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,4)
plot(times,sqrt(sum(D(4:6,:).ˆ2,1)) * dScale, 'k' )
title( 'Sat D Magnitude' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'u (J/T)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
end

if plon(9) %distance plots
figure(9)
dr = sqrt(sum((A(1:3,:) −B(1:3,:)).ˆ2,1)); %first, distances between each
de = sqrt(sum((A(1:3,:) −C(1:3,:)).ˆ2,1)); % pair of satellites are found
dl = sqrt(sum((A(1:3,:) −D(1:3,:)).ˆ2,1));
re = sqrt(sum((B(1:3,:) −C(1:3,:)).ˆ2,1));
rl = sqrt(sum((B(1:3,:) −D(1:3,:)).ˆ2,1));
el = sqrt(sum((C(1:3,:) −D(1:3,:)).ˆ2,1));
subplot(2,2,1) %AB AC and AD
plot(times,dr, 'b' ,times,de, 'g' ,times,dl, 'k' )
title( 'Sat A Distances (red)' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'dist (m)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,2) %AB BC and BD

131



plot(times,dr, 'r' ,times,re, 'g' ,times,rl, 'k' )
title( 'Sat B Distances (blue)' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'dist (m)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,3) %AC BC and CD
plot(times,de, 'r' ,times,re, 'b' ,times,el, 'k' )
title( 'Sat C Distances (green)' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'dist (m)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,4) %AD BD and CD
plot(times,dl, 'r' ,times,rl, 'b' ,times,el, 'g' )
title( 'Sat D Distances (black)' , 'FontSize' ,tsize)
xlabel( 't (s)' , 'FontSize' ,tsize)
ylabel( 'dist (m)' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
end

cm = (A(1:3,:)+B(1:3,:)+C(1:3,:)+D(1:3,:))/4; %center of mass
Aoff = A(1:3,:) −cm; %separation distances from center of mass for each sat
Boff = B(1:3,:) −cm;
Coff = C(1:3,:) −cm;
Doff = D(1:3,:) −cm;

if plon(10) %position −velocity graphs
figure(10) %distance from cm plotted against velocity −− stable if it loops
subplot(2,2,1) %X−Vx
plot(Aoff(1,:),A(7,:), 'r' ,Boff(1,:),B(7,:), 'b' , ...

Coff(1,:),C(7,:), 'g' ,Doff(1,:),D(7,:), 'k' )
xlabel( 'x' , 'FontSize' ,tsize)
ylabel( 'vx' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,2) %Y−Vy
plot(Aoff(2,:),A(8,:), 'r' ,Boff(2,:),B(8,:), 'b' , ...

Coff(2,:),C(8,:), 'g' ,Doff(2,:),D(8,:), 'k' )
xlabel( 'y' , 'FontSize' ,tsize)
ylabel( 'vy' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
subplot(2,2,3) %Z−Vz
plot(Aoff(3,:),A(9,:), 'r' ,Boff(3,:),B(9,:), 'b' , ...

Coff(3,:),C(9,:), 'g' ,Doff(3,:),D(9,:), 'k' )
xlabel( 'z' , 'FontSize' ,tsize)
ylabel( 'vz' , 'FontSize' ,tsize)
set(gca, 'FontSize' ,tsize)
end

if plon(11) %distances from center of mass over time
figure(11)
Aoff = sqrt(Aoff(1,:).ˆ2+Aoff(2,:).ˆ2+Aoff(3,:).ˆ2);
Boff = sqrt(Boff(1,:).ˆ2+Boff(2,:).ˆ2+Boff(3,:).ˆ2);
Coff = sqrt(Coff(1,:).ˆ2+Coff(2,:).ˆ2+Coff(3,:).ˆ2);
Doff = sqrt(Doff(1,:).ˆ2+Doff(2,:).ˆ2+Doff(3,:).ˆ2);
offness = (Aoff+Boff+Coff+Doff)/4; %average distace from center of mass

132



plot(times,offness, '.m' ,times,Aoff, 'r' , ...
times,Boff, 'b' ,times,Coff, 'g' ,times,Doff, 'k' )

xlabel( 'Time (s)' , 'FontSize' ,tsize) %(average distance is useful for
ylabel( 'Distance from CG' , 'FontSize' ,tsize) % determining if the trend is to
set(gca, 'FontSize' ,tsize) % move together or apart)
end

if plon(12) %numerical dump to command window. Useful mainly for debugg ing.
disp(A)
disp(B)
disp(C)
disp(D)
end

C.3 linearsats.m

Setup and control file for satellites in a linear formation.

function linearsats(arrangement)
%linearsats(arrangement)
% arrangement −− the number, 1 −4, corresponding to satellite A's position
% in the line.
%
% Runs simulation of EMFF satellites starting in a linear for mation
% See tstepSat.m for state calculation; see plotSat.m for ou tput
% This script contains the initial setup, the control laws, a dditional
% thrust on satellite A, and the J2 perturbation on all satell ites.
%
% Figure 9 is modified showing activation distances, inner a nd outer, for
% the dipoles.
%
% An additional plot is made (fig. 12) showing position vs. ti me.

global gEarthDipoleOn gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if ¬gPaperMode %text size for graphs:

tsize = 10; %normal size if it's regular debugging
else

tsize = 14; %larger size if it's for the paper
end
gEarthDipoleOn = 0;

%Satellite characteristics
mA = 50;
mB = 50;
mC = 50;
mD = 50;

iA = [100;100;100;0;0;0];

133



iB = [100;100;100;0;0;0];
iC = [100;100;100;0;0;0];
iD = [100;100;100;0;0;0];

%parameters
iter = 10000;
dt = .03125;
outon = 8;
inon = 0.20;

mTrgt = max([mA mB mC mD]);
dTrgt = outon;
strength = sqrt(8 * dTrgtˆ4 * mTrgt/3e −7);
innerfac = (outon/inon)ˆ4;

rocket = .001;

%initial setup
switch arrangement

case 1
pA = [0;0;0];
pB = [0;0; −1];
pC = [0;0; −2];
pD = [0;0; −3];

case 2
pA = [0;0; −1];
pB = [0;0;0];
pC = [0;0; −2];
pD = [0;0; −3];

case 3
pA = [0;0; −2];
pB = [0;0;0];
pC = [0;0; −1];
pD = [0;0; −3];

otherwise
pA = [0;0; −3];
pB = [0;0;0];
pC = [0;0; −1];
pD = [0;0; −2];

end

vA = [0;0;0];
vB = [0;0;0];
vC = [0;0;0];
vD = [0;0;0];

wA = [0;0;0];
wB = [0;0;0];
wC = [0;0;0];
wD = [0;0;0];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];

134



bD = [0;0;0];

A = zeros(12,iter+1);
B = zeros(12,iter+1);
C = zeros(12,iter+1);
D = zeros(12,iter+1);

%actual program
A(:,1) = [pA;bA;vA;0;0;0];
B(:,1) = [pB;bB;vB;0;0;0];
C(:,1) = [pC;bC;vC;0;0;0];
D(:,1) = [pD;bD;vD;0;0;0];

for i=1:iter
distances = [norm(pA −pB);

norm(pA −pC);
norm(pA −pD);
norm(pB −pC);
norm(pB −pD);
norm(pC −pD)];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];
for j=6: −1:1 %Collision avoidance phase

if ordinal(distances,j) <inon %starting with the closest pair, check
mdist = ordinal(distances,j); %to see if they are:
switch mdist %1. too close, and

case distances(1) %2. moving toward each other
if togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both; %if so, activate the
bB = −strength/innerfac * both; %dipoles opposite each

end %other, for repulsion.
case distances(2)

if togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(3)

if togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bD = −strength/innerfac * both;

end
case distances(4)

if togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;

135



bC = −strength/innerfac * both;
end

case distances(5)
if togethering(pB,pD,vB,vD)

vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bD = −strength/innerfac * both;

end
otherwise

if togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bC = strength/innerfac * both;
bD = −strength/innerfac * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end
for j=1:6

if (ordinal(distances,j) >outon) && ( ¬any([bA;bB;bC;bD]))
mdist = ordinal(distances,j); %starting with the furthest pair,
switch mdist %1. check if they're too far apart

case distances(1) %2. & moving away from each other
if ¬togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bB = strength * both;

end
case distances(2)

if ¬togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bC = strength * both;

end
case distances(3)

if ¬togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bD = strength * both;

end
case distances(4)

if ¬togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bC = strength * both;

end

136



case distances(5)
if ¬togethering(pB,pD,vB,vD)

vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bD = strength * both;

end
otherwise

if ¬togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bC = strength * both;
bD = strength * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end

placespeed = [pA pB pC pD;vA vB vC vD;wA wB wC wD];
placespeed = tstepSat(placespeed,[mA mB mC mD],[iA iB iC iD ], ...

[bA bB bC bD],dt);

%update position
pA = placespeed(1:3,1);
pB = placespeed(1:3,2);
pC = placespeed(1:3,3);
pD = placespeed(1:3,4);

%J2 perturbation
cm = (pA+pB+pC+pD)/4;
j2A = (pA −cm) * 3.4213e −9* dt;
j2B = (pB −cm) * 3.4213e −9* dt;
j2C = (pC −cm) * 3.4213e −9* dt;
j2D = (pD −cm) * 3.4213e −9* dt;

%update velocity, including J2 and rocket thrust
vA = placespeed(4:6,1)+[0;0; rocket * dt * .75]+j2A;
vB = placespeed(4:6,2)+[0;0; −rocket * dt * .25]+j2B;
vC = placespeed(4:6,3)+[0;0; −rocket * dt * .25]+j2C;
vD = placespeed(4:6,4)+[0;0; −rocket * dt * .25]+j2D;
%though theoretically, only satellite A is accelerated, th e other three
%satellites are here given an acceleration as well so that th e center
%of mass remains in one place, for ease of comparison.

%update angular velocity
wA = placespeed(7:9,1);
wB = placespeed(7:9,2);
wC = placespeed(7:9,3);
wD = placespeed(7:9,4);

%update state matrix

137



A(1:3,i+1) = pA;
B(1:3,i+1) = pB;
C(1:3,i+1) = pC;
D(1:3,i+1) = pD;
A(4:6,i+1) = bA;
B(4:6,i+1) = bB;
C(4:6,i+1) = bC;
D(4:6,i+1) = bD;
A(7:9,i+1) = vA;
B(7:9,i+1) = vB;
C(7:9,i+1) = vC;
D(7:9,i+1) = vD;
A(10:12,i+1) = wA;
B(10:12,i+1) = wB;
C(10:12,i+1) = wC;
D(10:12,i+1) = wD;

end

if gPaperMode
plotSat(A,B,C,D,dt,[0 0 0 0 0 0 0 1 0 0 0 0],strength);

else
plotSat(A,B,C,D,dt,[0 0 1 0 0 0 1 1 1 1 1 0],strength);

figure(9)
subplot(2,2,1)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,2)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,3)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,4)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off

end %¬gPaperMode
figure(12)
clf
hold on
times = 0:dt:dt * iter;
plot(times,A(3,:)+1.5, 'r' )
plot(times,B(3,:)+1.5, 'b' )
plot(times,C(3,:)+1.5, 'g' )
plot(times,D(3,:)+1.5, 'k' )
xlabel( 't' , 'FontSize' ,tsize)
ylabel( 'dist from cg (m)' , 'FontSize' ,tsize)
legend( 'Satellite A' , 'Satellite B' , 'Satellite C' , 'Satellite D' , ...

'Location' , 'Best' )
set(gca, 'FontSize' ,tsize)

138



hold off
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function R = lineup(p1,p2)
r = p1 −p2;
R = r/norm(r);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function whether = togethering(p1,p2,v1,v2)
r12 = p1 −p2;
r21 = p2 −p1;
v21 = v1 −v2;
v12 = v2 −v1;
whether = (dot(r12,v12) >0) |(dot(r21,v21) >0);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function result = ordinal(vector,number)
list = sort(vector, 'descend' );
result = list(number);

end

C.4 squaresats.m

Setup and control file for satellites in a square formation.

function squaresats()
%squaresats()
% Runs simulation of EMFF satellites starting in a square for mation
% See tstepSat.m for state calculation; see plotSat.m for ou tput
% This script contains the initial setup, the control laws, a dditional
% thrust on satellite A, and the J2 perturbation on all satell ites.
%
% Figure 9 is modified showing activation distances, inner a nd outer, for
% the dipoles.
%
% Two additional plots are made (fig. 12 & 13) showing positio n vs. time,
% first y −t and then z −t.

global gEarthDipoleOn gReverseThrust gSideThrust gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if isempty(gReverseThrust)

gReverseThrust = 0;
end

139



if isempty(gSideThrust)
gSideThrust = 0;

end
if ¬gPaperMode

tsize = 10; %text size for graphs:
sizet = 10; %normal size if it's regular debugging

else
tsize = 14; %larger size if it's for the paper
sizet = 20; %even larger for some graphs

end
gEarthDipoleOn = 0;

%Satellite characteristics
mA = 50;
mB = 50;
mC = 50;
mD = 50;

iA = [100;100;100;0;0;0];
iB = [100;100;100;0;0;0];
iC = [100;100;100;0;0;0];
iD = [100;100;100;0;0;0];

%parameters
if gSideThrust

iter = 80000;
else

if gReverseThrust
iter = 5000;

else
iter = 100000;

end
end
dt = .03125;
outon = 8;
inon = 0.60;

mTrgt = max([mA mB mC mD]);
dTrgt = outon;
strength = sqrt(8 * dTrgtˆ4 * mTrgt/3e −7);
innerfac = (outon/inon)ˆ4;

if gReverseThrust
rocket = −.001;

else
rocket = .001;

end

%initial setup
if gSideThrust

pA = [0;1;0];
pB = [0;0;1];

else
pA = [0;0;1];

140



pB = [0;1;0];
end
pC = [0;0; −1];
pD = [0; −1;0];

vA = [0;0;0];
vB = [0;0;0];
vC = [0;0;0];
vD = [0;0;0];

wA = [0;0;0];
wB = [0;0;0];
wC = [0;0;0];
wD = [0;0;0];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];

A = zeros(12,iter+1);
B = zeros(12,iter+1);
C = zeros(12,iter+1);
D = zeros(12,iter+1);

%actual program
A(:,1) = [pA;bA;vA;0;0;0];
B(:,1) = [pB;bB;vB;0;0;0];
C(:,1) = [pC;bC;vC;0;0;0];
D(:,1) = [pD;bD;vD;0;0;0];

for i=1:iter
distances = [norm(pA −pB);

norm(pA −pC);
norm(pA −pD);
norm(pB −pC);
norm(pB −pD);
norm(pC −pD)];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];
for j=6: −1:1 %Collision avoidance phase

if ordinal(distances,j) <inon %starting with the closest pair, check
mdist = ordinal(distances,j); %to see if they are:
switch mdist %1. too close, and

case distances(1) %2. moving toward each other
if togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bB = −strength/innerfac * both;

end
case distances(2)

141



if togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both; %if so, activate the
bC = −strength/innerfac * both; %dipoles opposite each

end %other, for repulsion.
case distances(3)

if togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bD = −strength/innerfac * both;

end
case distances(4)

if togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(5)

if togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bD = −strength/innerfac * both;

end
otherwise

if togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bC = strength/innerfac * both;
bD = −strength/innerfac * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end
for j=1:6

if (ordinal(distances,j) >outon) && ( ¬any([bA;bB;bC;bD]))
mdist = ordinal(distances,j); %starting with the furthest pair,
switch mdist %1. check if they're too far apart

case distances(1) %2. & moving away from each other
if ¬togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bB = strength * both;

end
case distances(2)

if ¬togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);

142



both = lineup(pA,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bC = strength * both;

end
case distances(3)

if ¬togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bD = strength * both;

end
case distances(4)

if ¬togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bC = strength * both;

end
case distances(5)

if ¬togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bD = strength * both;

end
otherwise

if ¬togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bC = strength * both;
bD = strength * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end

placespeed = [pA pB pC pD;vA vB vC vD;wA wB wC wD];
placespeed = tstepSat(placespeed,[mA mB mC mD], ...

[iA iB iC iD],[bA bB bC bD],dt);

%update position
pA = placespeed(1:3,1);
pB = placespeed(1:3,2);
pC = placespeed(1:3,3);
pD = placespeed(1:3,4);

%J2 perturbation
cm = (pA+pB+pC+pD)/4;
j2A = (pA −cm) * 3.4213e −9* dt;
j2B = (pB −cm) * 3.4213e −9* dt;
j2C = (pC −cm) * 3.4213e −9* dt;

143



j2D = (pD −cm) * 3.4213e −9* dt;

%update velocity, including J2 perturbation and rocket thr ust
vA = placespeed(4:6,1)+[0;0; rocket * dt * .75]+j2A;
vB = placespeed(4:6,2)+[0;0; −rocket * dt * .25]+j2B;
vC = placespeed(4:6,3)+[0;0; −rocket * dt * .25]+j2C;
vD = placespeed(4:6,4)+[0;0; −rocket * dt * .25]+j2D;
%though theoretically, only satellite A is accelerated, th e other three
%satellites are here given an acceleration as well so that th e center
%of mass remains in one place, for ease of comparison.

%update angular velocity
wA = placespeed(7:9,1);
wB = placespeed(7:9,2);
wC = placespeed(7:9,3);
wD = placespeed(7:9,4);

%update state matrix
A(1:3,i+1) = pA;
B(1:3,i+1) = pB;
C(1:3,i+1) = pC;
D(1:3,i+1) = pD;
A(4:6,i+1) = bA;
B(4:6,i+1) = bB;
C(4:6,i+1) = bC;
D(4:6,i+1) = bD;
A(7:9,i+1) = vA;
B(7:9,i+1) = vB;
C(7:9,i+1) = vC;
D(7:9,i+1) = vD;
A(10:12,i+1) = wA;
B(10:12,i+1) = wB;
C(10:12,i+1) = wC;
D(10:12,i+1) = wD;

end

if gPaperMode
plotSat(A,B,C,D,dt,[0 0 0 0 0 0 0 1 1 0 0 0],strength);

else
plotSat(A,B,C,D,dt,[0 0 1 0 0 0 1 1 1 1 1 0],strength);

end %gPaperMode

figure(9)
subplot(2,2,1)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,2)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,3)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )

144



hold off
subplot(2,2,4)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off

figure(12)
clf
hold on
times = 0:dt:dt * iter;
plot(times,A(2,:), 'r' )
plot(times,B(2,:), 'b' )
plot(times,C(2,:), 'g' )
plot(times,D(2,:), 'k' )
xlabel( 't (s)' , 'FontSize' ,sizet)
ylabel( 'y dist from cg (m)' , 'FontSize' ,sizet)
%legend('Satellite A','Satellite B','Satellite C','Sat ellite D')
hold off
set(gca, 'FontSize' ,sizet)
figure(13)
clf
hold on
plot(times,A(3,:), 'r' )
plot(times,B(3,:), 'b' )
plot(times,C(3,:), 'g' )
plot(times,D(3,:), 'k' )
xlabel( 't (s)' , 'FontSize' ,sizet)
ylabel( 'z dist from cg (m)' , 'FontSize' ,sizet)
%legend('Satellite A','Satellite B','Satellite C','Sat ellite D',...
% 'Location','Best')
hold off
set(gca, 'FontSize' ,sizet)
figure(14)
clf
plot(A(2,:),A(3,:), 'r' ,B(2,:),B(3,:), 'b' , ...

C(2,:),C(3,:), 'g' ,D(2,:),D(3,:), 'k' )
axis equal
xlabel( 'y (m)' , 'FontSize' ,tsize)
ylabel( 'z (m)' , 'FontSize' ,tsize)
hold on
if gSideThrust

plot(1,0, '.r' )
text(1,0, 'A' )
plot(0,1, '.b' )
text(0,1, 'B' )

else
plot(0,1, '.r' )
text(0,1, 'A' )
plot(1,0, '.b' )
text(1,0, 'B' )

end
plot(0, −1, '.g' )
text(0, −1, 'C' )
plot( −1,0, '.k' )

145



text( −1,0, 'D' )
hold off
set(gca, 'FontSize' ,tsize)
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function R = lineup(p1,p2)
r = p1 −p2;
R = r/norm(r);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function whether = togethering(p1,p2,v1,v2)
r12 = p1 −p2;
r21 = p2 −p1;
v21 = v1 −v2;
v12 = v2 −v1;
whether = (dot(r12,v12) >0) |(dot(r21,v21) >0);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function result = ordinal(vector,number)
list = sort(vector, 'descend' );
result = list(number);

end

C.5 pairedsats.m

Setup and control file for satellites in a random formation.

function pairedsats()
%pairedsats()
% Runs simulation of EMFF satellites starting in a random for mation
% See tstepSat.m for state calculation; see plotSat.m for ou tput
% This script contains the initial setup, the control laws, a dditional
% thrust on satellite A, and the J2 perturbation on all satell ites.
%
% Figure 9 is modified showing activation distances, inner a nd outer, for
% the dipoles.

global gEarthDipoleOn gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
gEarthDipoleOn = 1;

%Satellite characteristics
mA = 50;

146



mB = 50;
mC = 50;
mD = 50;

iA = [100;100;100;0;0;0];
iB = [100;100;100;0;0;0];
iC = [100;100;100;0;0;0];
iD = [100;100;100;0;0;0];

%parameters
iter = 8000;
dt = .25;
outon = 8;
inon = 0.5;

mTrgt = max([mA mB mC mD]);
dTrgt = outon;
strength = sqrt(8 * dTrgtˆ4 * mTrgt/3e −7);
innerfac = (outon/inon)ˆ4;

rocket = .01;

%initial setup
pB = random( 'unif' , −4,4,3,1);
pC = random( 'unif' , −4,4,3,1);
pD = random( 'unif' , −4,4,3,1);
pA = −(pB+pC+pD); %random('unif', −4,4,3,1);

vB = random( 'unif' , −.04,.04,3,1);
vC = random( 'unif' , −.04,.04,3,1);
vD = random( 'unif' , −.04,.04,3,1);
vA = −(vB+vC+vD); %random('unif', −.04,.04,3,1);

wA = [0;0;0];
wB = [0;0;0];
wC = [0;0;0];
wD = [0;0;0];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];

A = zeros(12,iter+1);
B = zeros(12,iter+1);
C = zeros(12,iter+1);
D = zeros(12,iter+1);

%actual program
A(:,1) = [pA;bA;vA;0;0;0];
B(:,1) = [pB;bB;vB;0;0;0];
C(:,1) = [pC;bC;vC;0;0;0];
D(:,1) = [pD;bD;vD;0;0;0];

147



for i=1:iter
distances = [norm(pA −pB);

norm(pA −pC);
norm(pA −pD);
norm(pB −pC);
norm(pB −pD);
norm(pC −pD)];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];
for j=6: −1:1 %Collsion avoidance phase

if ordinal(distances,j) <inon %starting with the closest pair, check
mdist = ordinal(distances,j); %to see if they are:
switch mdist %1. too close, and

case distances(1) %2. moving toward each other
if togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both; %if so, activate the
bB = −strength/innerfac * both; %dipoles opposite each

end %other, for repulsion.
case distances(2)

if togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(3)

if togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bD = −strength/innerfac * both;

end
case distances(4)

if togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(5)

if togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bD = −strength/innerfac * both;

end
otherwise

if togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/inon)ˆ −3* sqrt(vrel);

148



bC = strength/innerfac * both;
bD = −strength/innerfac * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end
for j=1:6 %making sure they aren't too far apart

if (ordinal(distances,j) >outon) && ( ¬any([bA;bB;bC;bD]))
mdist = ordinal(distances,j); %starting with the furthest pair,
switch mdist %1. check if they're too far apart

case distances(1) %2. & moving away from each other
if ¬togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bB = strength * both;

end
case distances(2)

if ¬togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bC = strength * both;

end
case distances(3)

if ¬togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bD = strength * both;

end
case distances(4)

if ¬togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bC = strength * both;

end
case distances(5)

if ¬togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bD = strength * both;

end
otherwise

if ¬togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bC = strength * both;
bD = strength * both;

149



end
end

end
if any([bA;bB;bC;bD])

break
end

end

placespeed = [pA pB pC pD;vA vB vC vD;wA wB wC wD];
placespeed = tstepSat(placespeed,[mA mB mC mD], ...

[iA iB iC iD],[bA bB bC bD],dt);

%update position
pA = placespeed(1:3,1);
pB = placespeed(1:3,2);
pC = placespeed(1:3,3);
pD = placespeed(1:3,4);

%J2 perturbation
cm = (pA+pB+pC+pD)/4;
j2A = (pA −cm) * 3.4213e −9* dt;
j2B = (pB −cm) * 3.4213e −9* dt;
j2C = (pC −cm) * 3.4213e −9* dt;
j2D = (pD −cm) * 3.4213e −9* dt;

%update velocity, including J2 and rocket thrust
vA = placespeed(4:6,1)+[0;0; rocket * dt * .75]+j2A;
vB = placespeed(4:6,2)+[0;0; −rocket * dt * .25]+j2B;
vC = placespeed(4:6,3)+[0;0; −rocket * dt * .25]+j2C;
vD = placespeed(4:6,4)+[0;0; −rocket * dt * .25]+j2D;
%though theoretically, only satellite A is accelerated, th e other three
%satellites are here given an acceleration as well so that th e center
%of mass remains in one place, for ease of comparison.

%update angular velocity
wA = placespeed(7:9,1);
wB = placespeed(7:9,2);
wC = placespeed(7:9,3);
wD = placespeed(7:9,4);

%update state matrix
A(1:3,i+1) = pA;
B(1:3,i+1) = pB;
C(1:3,i+1) = pC;
D(1:3,i+1) = pD;
A(4:6,i+1) = bA;
B(4:6,i+1) = bB;
C(4:6,i+1) = bC;
D(4:6,i+1) = bD;
A(7:9,i+1) = vA;
B(7:9,i+1) = vB;
C(7:9,i+1) = vC;
D(7:9,i+1) = vD;
A(10:12,i+1) = wA;

150



B(10:12,i+1) = wB;
C(10:12,i+1) = wC;
D(10:12,i+1) = wD;

end

if gPaperMode
plotSat(A,B,C,D,dt,[1 1 1 0 0 1 1 1 1 1 0 0],strength);

else
plotSat(A,B,C,D,dt,[1 1 1 1 1 1 1 1 1 1 1 0],strength);

%draw in upper and lower bounds on distance plots
figure(9)
subplot(2,2,1)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,2)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,3)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,4)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off

end %gPaperMode

%plot motion for approximately one loop
slices = [(iter −iter/10);iter];
slice(A,B,C,D,slices,1,dt)

end %function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function R = lineup(p1,p2)
r = p1 −p2;
R = r/norm(r);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function whether = togethering(p1,p2,v1,v2)
r12 = p1 −p2;
r21 = p2 −p1;
v21 = v1 −v2;
v12 = v2 −v1;
whether = (dot(r12,v12) >0) |(dot(r21,v21) >0);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

151



function result = ordinal(vector,number)
list = sort(vector, 'descend' );
result = list(number);

end

C.5.1 slice.m

Output file supplement to show the relative positions of the satellites at a
specified time.

function slice(A,B,C,D,slices,planes,dt)
%provides graphs of the positions of the four satellites at g iven times on
%a single plane. Documentation will be completed by the fina l revision

global gPaperMode
if isempty(gPaperMode)

gPaperMode = 0;
end
if ¬gPaperMode

tsize = 10; %text size for graphs:
else

tsize = 20; %larger size if it's for the paper
end

switch planes
case 1 %xy

alfa = 1;
beta = 2;
gama = 7;
dlta = 8;
labelx = 'x (m)' ;
labely = 'y (m)' ;

case 2 %yz
alfa = 2;
beta = 3;
gama = 8;
dlta = 9;
labelx = 'y (m)' ;
labely = 'z (m)' ;

otherwise %xz
alfa = 1;
beta = 3;
gama = 7;
dlta = 9;
labelx = 'x (m)' ;
labely = 'z (m)' ;

end

for i = 1:size(slices,2)
figure(i+14);clf
if slices(2,i) == 0

152



slice = slices(1,i);
hold on
quiver(A(alfa,slice),A(beta,slice),A(gama,slice),A( dlta,slice), 'r' )
quiver(B(alfa,slice),B(beta,slice),B(gama,slice),B( dlta,slice), 'b' )
quiver(C(alfa,slice),C(beta,slice),C(gama,slice),C( dlta,slice), 'g' )
quiver(D(alfa,slice),D(beta,slice),D(gama,slice),D( dlta,slice), 'k' )
text(A(alfa,slice),A(beta,slice), 'A' , 'FontSize' ,tsize)
text(B(alfa,slice),B(beta,slice), 'B' , 'FontSize' ,tsize)
text(C(alfa,slice),C(beta,slice), 'C' , 'FontSize' ,tsize)
text(D(alfa,slice),D(beta,slice), 'D' , 'FontSize' ,tsize)
hold off
xlabel(labelx, 'FontSize' ,tsize)
ylabel(labely, 'FontSize' ,tsize)
title([ 't = ' num2str(slice * dt) ' s' ], 'FontSize' ,tsize)
axis equal
set(gca, 'FontSize' ,tsize)

else
slice = slices(1,i):slices(2,i);
plot(A(alfa,slice),A(beta,slice), 'r' ,B(alfa,slice), ...

B(beta,slice), 'b' ,C(alfa,slice),C(beta,slice), 'g' , ...
D(alfa,slice),D(beta,slice), 'k' )

title([ 't = ' num2str(slice(1) * dt) ' − ' num2str(slice( end ) * dt) ...
' s' ], 'FontSize' ,tsize)

slice = slices(2,i);
text(A(alfa,slice),A(beta,slice), 'A' , 'FontSize' ,tsize)
text(B(alfa,slice),B(beta,slice), 'B' , 'FontSize' ,tsize)
text(C(alfa,slice),C(beta,slice), 'C' , 'FontSize' ,tsize)
text(D(alfa,slice),D(beta,slice), 'D' , 'FontSize' ,tsize)
xlabel(labelx, 'FontSize' ,tsize)
ylabel(labely, 'FontSize' ,tsize)
axis equal
set(gca, 'FontSize' ,tsize)

end
end

C.6 tetrasats.m

Setup and control file for satellites in a tetrahedral formation.

function tetrasats()
%tetrasats()
% Runs simulation of EMFF satellites starting in a tetrahedr al formation
% See tstepSat.m for state calculation; see plotSat.m for ou tput
% This script contains the initial setup, the control laws, a dditional
% thrust on satellite A, and the J2 perturbation on all satell ites.
%
% Figure 9 is modified showing activation distances, inner a nd outer, for
% the dipoles.

global gEarthDipoleOn gReverseThrust gSideThrust gPaperMode
if isempty(gPaperMode)

153



gPaperMode = 0;
end
if isempty(gReverseThrust)

gReverseThrust = 0;
end
if isempty(gSideThrust)

gSideThrust = 0;
end
gEarthDipoleOn = 1;

%Satellite characteristics
mA = 5;
mB = 5;
mC = 5;
mD = 5;

iA = [10;10;10;0;0;0];
iB = [10;10;10;0;0;0];
iC = [10;10;10;0;0;0];
iD = [10;10;10;0;0;0];

%parameters
iter = 8000;
dt = .5;
outon = 8.6;
inon = 8.3;

mTrgt = max([mA mB mC mD]);
dTrgt = outon;
strength = sqrt(8 * dTrgtˆ4 * mTrgt/3e −7);
innerfac = (outon/inon)ˆ4;

rocket = −.001;

%initial setup
if gSideThrust

pA = 3* [ −1; −1; 1];
pB = 3* [ 1; 1; 1];

else
pA = 3* [ 1; 1; 1];
pB = 3* [ −1; −1; 1];

end
pC = 3* [ −1; 1; −1];
pD = 3* [ 1; −1; −1];

if gReverseThrust
pA = −1* pA;
pB = −1* pB;
pC = −1* pC;
pD = −1* pD;

end

vA = [0;0;0];
vB = [0;0;0];

154



vC = [0;0;0];
vD = [0;0;0];

wA = [0;0;0];
wB = [0;0;0];
wC = [0;0;0];
wD = [0;0;0];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];

A = zeros(12,iter+1);
B = zeros(12,iter+1);
C = zeros(12,iter+1);
D = zeros(12,iter+1);

%actual program
A(:,1) = [pA;bA;vA;0;0;0];
B(:,1) = [pB;bB;vB;0;0;0];
C(:,1) = [pC;bC;vC;0;0;0];
D(:,1) = [pD;bD;vD;0;0;0];

for i=1:iter
distances = [norm(pA −pB);

norm(pA −pC);
norm(pA −pD);
norm(pB −pC);
norm(pB −pD);
norm(pC −pD)];

bA = [0;0;0];
bB = [0;0;0];
bC = [0;0;0];
bD = [0;0;0];
for j=6: −1:1 %Collision avoidance phase

if ordinal(distances,j) <inon %starting with the closest pair, check
mdist = ordinal(distances,j); %to see if they are:
switch mdist %1. too close, and

case distances(1) %2. moving toward each other
if togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both; %if so, activate the
bB = −strength/innerfac * both; %dipoles opposite each

end %other, for repulsion.
case distances(2)

if togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(3)

155



if togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);
both = lineup(pA,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bA = strength/innerfac * both;
bD = −strength/innerfac * both;

end
case distances(4)

if togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bC = −strength/innerfac * both;

end
case distances(5)

if togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bB = strength/innerfac * both;
bD = −strength/innerfac * both;

end
otherwise

if togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/inon)ˆ −3* sqrt(vrel);
bC = strength/innerfac * both;
bD = −strength/innerfac * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end
for j=1:6

if (ordinal(distances,j) >outon) && ( ¬any([bA;bB;bC;bD]))
mdist = ordinal(distances,j); %starting with the furthest pair,
switch mdist %1. check if they're too far apart

case distances(1) %2. & moving away from each other
if ¬togethering(pA,pB,vA,vB)

vrel = norm(vA −vB);
both = lineup(pA,pB) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bB = strength * both;

end
case distances(2)

if ¬togethering(pA,pC,vA,vC)
vrel = norm(vA −vC);
both = lineup(pA,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bC = strength * both;

end
case distances(3)

if ¬togethering(pA,pD,vA,vD)
vrel = norm(vA −vD);

156



both = lineup(pA,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bA = strength * both;
bD = strength * both;

end
case distances(4)

if ¬togethering(pB,pC,vB,vC)
vrel = norm(vB −vC);
both = lineup(pB,pC) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bC = strength * both;

end
case distances(5)

if ¬togethering(pB,pD,vB,vD)
vrel = norm(vB −vD);
both = lineup(pB,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bB = strength * both;
bD = strength * both;

end
otherwise

if ¬togethering(pC,pD,vC,vD)
vrel = norm(vC −vD);
both = lineup(pC,pD) * (mdist/outon)ˆ4 * sqrt(vrel);
bC = strength * both;
bD = strength * both;

end
end

end
if any([bA;bB;bC;bD])

break
end

end

placespeed = [pA pB pC pD;vA vB vC vD;wA wB wC wD];
placespeed = tstepSat(placespeed,[mA mB mC mD], ...

[iA iB iC iD],[bA bB bC bD],dt);

%update position
pA = placespeed(1:3,1);
pB = placespeed(1:3,2);
pC = placespeed(1:3,3);
pD = placespeed(1:3,4);

%J2 perturbation
cm = (pA+pB+pC+pD)/4;
j2A = (pA −cm) * 3.4213e −9* dt;
j2B = (pB −cm) * 3.4213e −9* dt;
j2C = (pC −cm) * 3.4213e −9* dt;
j2D = (pD −cm) * 3.4213e −9* dt;

%update velocity, including J2 and rocket thrust
vA = placespeed(4:6,1)+rocket * dt * .75/sqrt(3) * [1;1;1]+j2A;
vB = placespeed(4:6,2) −rocket * dt * .25/sqrt(3) * [1;1;1]+j2B;
vC = placespeed(4:6,3) −rocket * dt * .25/sqrt(3) * [1;1;1]+j2C;
vD = placespeed(4:6,4) −rocket * dt * .25/sqrt(3) * [1;1;1]+j2D;

157



%though theoretically, only satellite A is accelerated, th e other three
%satellites are here given an acceleration as well so that th e center
%of mass remains in one place, for ease of comparison.

%update angular velocity
wA = placespeed(7:9,1);
wB = placespeed(7:9,2);
wC = placespeed(7:9,3);
wD = placespeed(7:9,4);

%update state matrix
A(1:3,i+1) = pA;
B(1:3,i+1) = pB;
C(1:3,i+1) = pC;
D(1:3,i+1) = pD;
A(4:6,i+1) = bA;
B(4:6,i+1) = bB;
C(4:6,i+1) = bC;
D(4:6,i+1) = bD;
A(7:9,i+1) = vA;
B(7:9,i+1) = vB;
C(7:9,i+1) = vC;
D(7:9,i+1) = vD;
A(10:12,i+1) = wA;
B(10:12,i+1) = wB;
C(10:12,i+1) = wC;
D(10:12,i+1) = wD;

end

if gPaperMode
plotSat(A,B,C,D,dt,[1 1 1 1 0 0 1 1 1 0 0 0],strength);

else
plotSat(A,B,C,D,dt,[1 1 1 1 1 1 1 1 1 1 1 0],strength);

end

figure(4)
hold on
quiver3(5,5,5, −12, −12, −12, ' −−m' ) %clearly show thrust direction
hold off

%draw in upper and lower bounds on distance plots
figure(9)
subplot(2,2,1)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,2)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
subplot(2,2,3)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off

158



subplot(2,2,4)
hold on
plot([0 dt * iter],[outon outon], ':c' ,[0 dt * iter],[inon inon], ':c' )
hold off
end %function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function R = lineup(p1,p2)
r = p1 −p2;
R = r/norm(r);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function whether = togethering(p1,p2,v1,v2)
r12 = p1 −p2;
r21 = p2 −p1;
v21 = v1 −v2;
v12 = v2 −v1;
whether = (dot(r12,v12) >0) |(dot(r21,v21) >0);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function result = ordinal(vector,number)
list = sort(vector, 'descend' );
result = list(number);

end

159



References

Elias, Laila Mireille. 2004. Dynamics of Multi-Body Space Interferometers Includ-

ing Reaction Wheel Gyroscopic Stiffening Effects: Structurally Connected and

Electromagnetic Formation Flying Architectures. M.S. Thesis, Massachusetts
Institute of Technology.

Jaluria, Yogesh, & Torrance, Kenneth E. 2003. Computational Heat Transfer. 2 edn.
Taylor & Francis.

Kurs, André, Karalis, Aristeidis, Moffatt, Robert, Joannopoulos, J. D., Fisher, Pe-
ter, & Soljačić, Marin. 2007. Wireless Power Transfer via Strongly Coupled
Magnetic Resonances. Science, July.

Kwon, Daniel W. 2004. Electromagnetic Formation Flight of Satellite Arrays. M.S.
Thesis, Massachusetts Institute of Technology.

Mark, James E. (ed). 1996. Physical Properties of Polymers Handbook. Woodbury,
NY: AIP Press.

Pines, Darryl. 2007. ENAE 602. Class Notes.

Sakaguchi, Aya. 2007. Micro-Electromagnetic Formation Flight of Satellite Systems.
M.S. Thesis, Massachusetts Institute of Technology.

Schweighart, Samuel A. 2005. Electromagnetic Formation Flight Dipole Solution

Planning. Ph.D. thesis, Massachusetts Institute of Technology.

Sedwick, Raymond J., Miller, David W., Elias, Laila M., Schweighart, Samuel A.,
Neave, Matthew D., Kwon, Daniel, Ahsun, Umair, & Lee, Sang-il. 2005 (Au-
gust). Electromagnetic Formation Flight. Tech. rept. Massachusetts Institute
of Technology.

Sullivan, Charles R. 1999 (March). Optimal Choice for Number of Strands in a Litz-
Wire Transformer Winding. Pages 283–291 of: IEEE Transactions on Power

Electronics, vol. 14.

Weisstein, Eric W. 2008. Hex Number. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/HexNumber.html.

160


