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ABSTRACT

In the control of chemical reactors, it is important to
know the kinetic parameters of the reaction with good
precision. The traditional approach is to try to estimate them
from laboratory experiments or from plant records, where vari-
ations due to control or to disturbances may occur. However,
this may happen only sporadically in the plant history because
the reactor is at steady state for long periods of time. It would
be advantageous to experiment online, so that the estimation of
the kinetic parameters could be made more accurately and
independently of plant changes.

This paper presents such a method which may be appli-
cable to most industrial reactors. A test reactor is installed in
parallel to the main stream and a little side stream to this reactor
is taken from the main reactor stream at any point. In the
simplest possible case, the side stream is led to a batch reactor
where the reaction kinetics may be followed very closely.
From the batch results it is possible to infere the kinetic
parameters and even the order and mechanisms of the
reactions. Such parameters shown here are the parameters in
the Arrhenius type rate expression, the order and the heat of the
reaction.

INTRODUCTION

In many examples where chemical reactors are controlled
by a predictive feed forward algorithm [1,2,3] advantages may
be taken of a front end test reactor in a little side stream from
which the kinetic parameters may be estimated. There are
several modes in which such a test reactor may be operated, in
a steady state flow through mode with varying holding time, in
a batch mode with a given sequence of charging and dis-
charging and finally in a dynamic mode where process con-
ditions like temperature and concentrations are changed as
functions of time. .

A practical case of online kinetic parameter estimation
was implemented by the Borregaard Company [4] about thir-
teen years ago on a pulp bleaching plant. The kinetic model
was used to predict the required consumption of bleaching
chemicals down the line of the complete bleaching process.
The motivation for this was that the kinetic parameters in the
bleaching reaction were found to be functions of the nature and
concentration of the lignin in the pulp, and these properties
were changing with the quality and type of the pulp.

A similar idea was attempted by the DeNoFa Company
and published by Hertzberg and Asbjornsen [5,6] about the
same time for the estimation of kinetic parameters in the hydro-
genation reactions for unsaturated fatty oils. The purpose of
this online batch reactor experimentation was to get the kinetic
parameters for the prediction of the batch time, catz_ilyst concen-
tration and hydrogen pressure to hit the target specification for
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the large scale batchwise hydrogenation reaction for the fatty
oils.

There are several problems related to the general
application of kinetic parameter estimation which will be
touched upon in this paper. Even the simplest single reaction
has at least two possible observations, the temperature and the
concentration of a reactant or a product, but the concentration is
usually much more difficult to measure. The parameters in a
single first order reaction with Arrhenius kinetics [7] are
known to be very strongly correlated [8], their regression
model strongly nonlinear and their estimated values sometimes
ambiguous. Some of these aspects are examined in this paper
without going into the basic details or theoretical discussions.

In a kinetic experiment, there are several sources of
errors and uncertainties. One obvious source is found in the
process itself. If the experiment is assumed to be carried out in
a complete mixing tank, the mixing may be incomplete in
reality and introduce substantial disturbances on the kinetics.
Another source of disturbance is the measurement of the tempe-
rature and concentration themselves which may have sensor
noise or sampling noise.

For a given kinetic expression it is important to figure
out how these disturbances and noise terms are going to affect
the parameter estimates. One way of doing just that is to carry
out simulation studies before the test reactor is actually im-
plemented on the plant site. In such a numerical experiment, it
1s possible to compare the estimate with the correct answers
which are known from the model. In the real life, the problem
is exactly the other way around. However, a simulation study
is indeed powerful in disclosing if a specific method of experi-
mentation or parameter estimation is valuable or not.

A PARALLEL TEST REACTOR.

A small test reactor is mounted close to the main stream
and a little side stream passes through the test reactor as shown
schematically in figure 1. The value of this side stream (q)
makes it possible to adjust the holding time (V/q) of the test
reactor within a wide range. It may even be shut off for regular
periods of time, allowing for the test reactor to operate in batch
mode. The batch mode is likely to be the best mode of ope-
ration from a parameter estimation point of view, as this corre-
sponds to a 0-1 square wave of the flow with a complete
cleaning of the reactor between the batches.

When the reactor is operated in a batch mode the problem
of determining the flowrate dissapears and the volume of the
reactor becomes immaterial as long as there are no exchange
with the environment. This is a logical assumption one would
try to meet in the design of the test reactor. In figure 1 is
shown how the reactor is instrumented with a temperature and
a concentration measurement. If there is an appreciable heat of
reaction it would indeed be desirable to follow the reaction by
the temperature alone, because this is a much easier and more
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Fig. 1. A parallel test reactor for analytical purposes.
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accurate measurement. The evaluation of this point is one of
the major tasks in the preliminary simulation study of the
measuring principle.

The batch reactor is also very easy to model for analytical
purposes, but some basic assumptions have to be made. If use
is made of the temperature information the reactor should
preferrably operate in adiabatic mode and this is assumed.
Furthermore it is assumed that the reactor has a thorough and
complete mixing.

A BATCH REACTOR MODEL

The batch reactor is assumed to be the basis for the
estimation of the kinetic parameters, and only one single
reaction is considered. This is by far the most common
situation in industrial practice. The modeling task is then very
simple, as the material balance of the reactant and the energy
balance of the heat are sufficient equations leading to:

de/dt = 1(c,T) eY)
and:

dT/dt = AT(dc/dt) 2)

The most general expression for a single reaction kinetic
would be of the form:

1(c,T) = kc2exp(-E/RT) 3

There are basically four parameters in this kinetic model
to be estimated for later use in feed forward control, the
frequency factor k, the order of the reaction a, the normalized
activation energy E/R and the adiabatic temperature rise per unit

reactant AT. To simplify, the parameters and the state variables
are normalized against their initial values in the batch reactor.
Those values may be obtained a priori with a fairly high pre-
cision when the reactor is charged. The parameters and the
‘state variables are defined:

P = [P1.Py.P3.Pg] = [ke,*La, E/RT,),ATey Tyl (4)
and:

xT = [x},X,] = [clcy, T/T,] )
which give a normalized set of the model differential equations:

dx,/dt = p;x,%exp(p;/x,) 6)

and:
dx,/dt = p,dx,/dt 0]
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At each observation point during the course of the batch
reaction four variables may be established, the rate of change of
the state variables and the state variables themselves. The rate
of change is approximated by:

dx/dt = (x(k) - x(k-m))/(mAt) (8)

where At is the sampling time of the data acquisition system.

The reason why a certain number of samples m are
picked for the calulation of the derivative is that this gives a
balance between the required accuracy of the approximation of
the derivatives and the effect of attenuation of the noise in the
measured variable for their calculation.

MODELING PROCESS DISTURBANCES AND
MEASUREMENT NOISE

In a realistic industrial application the world is different
from the world of models and simulations. The first and major
difference is that a realistic picture of noise and disturbances is
not known or experienced by the model developer. However,
some of these shortcomings may be helped by simulation.
Reasonable assumptions may again be set up for this situation,
and two conditions are considered specifically here. Those are
the conditions related to the process disturbances and the condi-
tions related to the measurement noise.

Process noise in an adiabatic batch reactor is really
related to the turbulent mixing in the reactor giving rise to fluc-
tuations in the reaction rate and in the process state variables.
In order to understand the mechanism of this noise, one may
look at the physical background of the process model.

Equation (1) and (2) are really volume averages which
should be written:

V-ld(fedV)/dt = V-1r(c,T)dV ©)
and:
V-14(fTdVy/dt = -ATV-1d(JedV)/dt (10)

If the assumption of complete mixing is not met in the
physical test reactor, the consequence will be time variations in
the volume averages. Since the root of the variations is found
in the turbulent flow pattern and in the reaction itself, a simple
model for the process disturbance phenomena would be to
assume the fluctuations proportional to the reaction rate.
Hence, all the turbulent effects on concentration may be
incorporated in a stochastic parameter that affects the reaction
rate by a proportionality factor:

dx,/dt = (1 + €,)p,x,2exp(py/x,) (11

Similarly, all the turbulent effects on the temperature may
be incorporated by a another stochastic proportionality factor
that affects the heat of reaction:

dx,/dt = (1 + e,) dx,/dt (12)

Naturally these factors are most likely correlated because
their root is the same family, and that will make the resulting
fluctuations in the concentration and temperature correlated
also. Nevertheless, the disturbance model suggested above is
rational and extremely simple and is adopted for the investi-
gation of the effects of this kind of disturbances on the kinetic
parameter estimation.

There is also noise on the measurements of concentration




and temperature, partly caused by the sensors themselves but to
a greater extent by the fluctuations at the location of the sensors
or in the sampling device. For simplicity, these fluctuations are
also assumed to follow a proportionality relation between the
sensor output y and the state x:

Y= +edx;; yo=(1+ey)x, (13)

This disturbance and noise modeling also requires an
assumption about the statistics of the stochastic variables.
Again for simplicity in the present paper, the disturbance and
noise phenomena are assumed to be white noise with zero
mean and an amplitude probability density distribution descri-
bed by a cosine distribution [9]:

dP/dx =1 + cos(2nx), -1/2<x < 1/2 (14)
This is realized by a rectangular random number gene-
rator and a quantile function transformation of P(x) in eqn (14).

PARAMETER ESTIMATION FROM THE BATCH
EXPERIMENTS

The model considered is highly nonlinear and known to
pose difficulties for parameter estimation. It is very tempting to
transform the model equation to a logarithmic form, and this is
obviously adequate for a noise free system. Therefore, four
new variables are defined:

z)(k) = In(-(y, (k) - y,(k-m))/(mA1))

(15)
zy(k) = In((y,(k) - y,(k-m))/(mAt))
u, (k) = In(y (k)); uy(k) = Vy,(k) (16)
and the noise free model equations may be written:
zy(k) = In(p;) + pyu (k) - pauy(k) (17
and:
z,(k) = In(p,) + z;(k) (18)

The parameter estimation minimizing the errors intro-
duced by the approximation in eqn (8) is a straight forward
linear regression as described in any textbook [10].

There are indeed some important comments that should
be made at this stage. The logarithmic transformation is only
allowed for monotonous change in temperature or decay of
reactant concentration. This is the consequence of the assump-
tions suggested for the model, and if they are violated the
model and the assumptions are incorrect.

According to the model the reaction is supposed to move
in one direction and hence both k and ¢ must be positive. A
negative derivative or rate of change in the concentration is
unacceptable. Such an observation is taken as an outlayer
violating the model and discarded. Should this ever happen
frequently then the whole basis of the estimation procedure out-
lined here collapses. The inference principle assumes small
errors in the model and in the measurement. If this assumption
is not met then the transformation procedure and the test reactor
are inadequate.

For the temperature the sign of the derivative follows the
sign of the parameter p, but it has to keep the same sign during

the complete course of the batch reaction. This is another con-
sequence of the model formulation which takes it for granted
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that there are only monotonous changes in temperature and
concentration.

Therefore a special precaution is taken for the running
calculation of the derivatives and the selection of the sample
distance m. The introduction of m is equivalent to taking a
mean value of the derivative over a period of time extended
over several samples and this will contribute to avoiding
sporadic outlayers in the derivative caused by measurement
noise. It should be noted that the process disturbances will
never contribute to a negative rate of change. The rate may
fluctuate but never become negative.

Parameter estimation in an error free simulated environment

It may seem trivial to carry out another demonstration of
the comparison between a priori specified parameters and esti-
mated ones in the world of simulated data. However, this is
usually required in the practical applications because one would
like this test to be performed on the algorithm to evaluate the
goodness of the numerical calculations and the soundness of
the various assumptions they are based on, for example given
by eqn (8) above.

The batch reactor is simulated by a straight forward
numerical integration based on a fourth order Runge-Kutta
method [11] given the initial conditions of xoT = [1,1] and the

parameters pT = [2,1.67,-3,-2]. For a given set of sampling
times, the integration is performed between the samples and the
results at the sampling points are presented as the observed
material.

The results are presented in Table 1, and it is seen that
the parameter estimation is pretty insensitive to the sampling
time below 0.05. Above that the adequacy of the derivative
approximation is somewhat in doubt as the correspondance
between estimated and true values of the parameters starts to
deteriorate. At this point one is therefore in a fairly good
position to recommend sampling times for the test reactor and
the estimation method seems reliable if the process disturbances
and the measurement noise can be kept under control.

Sampling Estimated parameter values

time P P2 “P3 P4
0.01 2.010 1.670 3.008 2.000
0.03 2.029 1.669 3.023 2.000
0.1 2.096 1.668 3.074 2.000
0.3 2.288 1.660 3.220 2.000

Tab. 1. Parameter estimation in a noise free environ-
ment.

It is seen that the deterioration of the estimation algorithm
with increasing sampling time is entirely due to the nonlinear
nature of the model. For the parameter p, which enters a linear
relationship between the temperature and concentration the
sampling time has no observable effect. The effect on the
reaction order is also fairly small. The activation energy and
the frequency factor are known to be very strongly coupled,
and what one sees in table 1 is exactly this effect. A small
increase in the activation energy parameter reduces the expo-
nential term and this is counteracted by an increase in the
frequency factor to give the same response.



Parameter estimation in a noisy environment

If the disturbances and noise terms are relatively small
the logarithmic transformation of the stochastic factors may be
approximated by:

In(l1+e)=¢e (19)

This is indeed logical, because the test reactor would be
very badly designed if the error and noise terms were of any
appreciable magnitude. The model equations may then be
written:

e,(k) = In(p,) + Py (k) + p3u,(K) -z,(K) 20)
and:

&y(K) =y + 2, (K) - ,(k) 1)

The standard least square may be applied if the two noise
terms are uncorrelated. If this is not the case, one should rather
apply the maximum likelihood criterion and minimize the
determinant of the covariance matrix of the residuals [12]:

F = E{e,2}E{e,?} - E{e,e,}? (22)

However, the way the regression equations are formu-
lated, it becomes evident that the partial derivatives of e, with

respect to any of the three first parameters and the derivative e,

with respect to the last parameter are all zero, and the maximum
likelihood for the parameter estimation coincides with the least
square of the first model equation, eqn (20). Hence the
parameter estimation in the noisy environment is identical to
what was shown for the ideal noise free environment. In table
2 are shown some results of the parameter estimation for
various leves of process disturbances and noise. The results
are quite satisfactory for any realistic level of process distur-
bance and noise, and the test reactor may be used as an analy-
tical instrument for kinetic parameter estimation, even with a
very simplified and fast estimation routine.

Process Measurement Parameter estimates
disturbances noise

Conc. Temp. Conc. Temp. p, P2 Py Py
.00001 .00007 2.080 1.669 3.062 2.000
.00001 .00007 .00003 .00022 2.085 1.670 3.065 1.999
.00005 .00034 2.085 1.670 3.065 2.000
.00005 .00034 .00012 .00111 2.113 1.675 3.085 1.989
.00027 .00137 2.110 1.677 3.080 2.001
.00027 .00137 .00062 .00443 2.261 1.687 3.217 1.938
.00136 .00687 2.243 1,709 3.157 2.003
.00136 .00687 .00310 .02210 2.697 1.637 3.644 2.105

Tab. 2. Parameter estimation for a noisy test reactor.

In this table the number of samples used for the
estimation of the time derivative is four everywhere except for
the last case which is very noisy. The estimation of the deri-
vative is here based on twenty samples. This corresponds to a
time span of 0.4. The noise and disturbance levels are indi-
cated as standard deviation in the normalized variables over the
time of batch experimentation which is 6. The systematic bias
errors in the parameter estimates are solely explained by the
nonlinear nature of the model, as the terms e, and e, are sto-

chastically independent.
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Table 2 reconfirms the observation of the tight coupling
between the activation energy and the frequency factor as those
are the parameters strongest affected by the process distur-
bances and the measurement noise. It also becomes evident
what is intuitively obvious, that the measurement noise is more
important than the process disturbances which are attenuated
through the lowpass characteristic of the test reactor.

The time needed for the analysis and estimation is
determined by the time it takes to run a batch reaction
experiment which again is determined by the rate of the reaction
itself. But this is indeed the major variable which determines
the speed at which the process would need analytical infor-
mation of the reaction kinetics for the feed forward control.

PARAMETER ESTIMATION IN THE ABSENCE OF
A CONCENTRATION MEASUREMENT

It would be very attractive to avoid the concentration
measurement, because the general solution to that problem is
much more complicated than to the temperature measurement.
One is therefore tempted to develop a single observation model
for kinetic parameter estimation and then use the temperature as
the prime variable. One of the conditions for this to be possible
is of course that the reaction has an appreciable heat of reaction
and that the reactor wall heat capacity may be regarded as an
extension of the fluid heat capacity. This means that any
temperature difference between the reactor walls and its con-
tents should be negligible and that the reactor should have
practically perfect insulation.

Provided this is the case, one may calculate the concen-
tration as a linear function of the initial conditions and the
measured temperature. The initial conditions are given by the
a priori charging of the reactor and are usually given with
fairly high precision. The sensitivity between the temperature
and concentration is given by the adiabatic temperature rise for
the reactor and its contents expressed by the previous parameter

Pa:

¥1(k) = py iy, - 1) +1 (23)

The model equation for the regression is now reduced to
one single equation with slightly modified parameters, and may
be written:

zy(k) = p;' + poln(p,’ - yo(k)) + pauy(k) 24)

This equation turns out to involve two of the parameters
in a somewhat complicated nonlinear fashion. As shown by
Asbjornsen and Hertzberg [13], a regression problem of this
nature is partitioned into a linear and a nonlinear subset. The
nonlinear subset contains only two variables, and the parameter
estimation is easily solved by a two-dimensional Newton itera-
tion algorithm [13]:

p; = A~lf1(p2) (25)
and:
Ap, = -[(df,/dp)A I (df,/dp,) + df,/dp,) i, (26)
where the partitioned parameter vector is:
PlT = [p1|’p3]) p2T= [pz’p;t'];
@7)

py = In(py), py'=py+1

 ————



and the functions f;, f,, of,/3p,, of,/0p, and of,/dp, are:
1y = Zzy(k) - p,EIn(p,’ - ¥, (K)); 28)

f1, = Zu,()zy(K) - pZu,(K)In(p,’ - y,(k)) 29

f21 = pl)Zln(p4' - Y2(k)) + P32u2(k)ln(P4' - Yz(k)) +
+ poZ[In(p,’ - ¥o(kN1? - Zz,(K)In(py’ - ¥,(k)) (30)

fy = Pz[Plz(p‘z' - Y2(k))-l + p32u2(k)(p4' - 3’2(1())'1 +
+ p,Zin(p,’ - Y2(k))(P4' - Y2(k))'1

- Zz,(K)(py - Y, ())] 31)

of} 11/0p, = Zin(p,’ - ¥,(k)) (32)
Of) 12/0py = PoZ1/ (P4’ - ¥2(K)) (33)
3f; 5,/8p, = Zuy(K)In(p,’ - yo(k)) (34)
Of} 57/0p," = Zuy (k) (p4' - ¥o(K)) (35)
3fy1/9p," = ZIn(p,' - y5(k)) = 0f 1,/9p, (36)
3, 15/0ps = Zu(0In(pg - y,(0) = 3, 1, BT
af2,2l/apl' = PEV (pg - ¥,(K)) = af1'12/ap4' (38)
af2'22/8p3 = Zuy(k) (py' - y,(K) = af1’22/8p4' (39)
3f, 1,/9p, = Z(In(py’ - y,(K))) (40)

3, 1200 = 1=y - Yo () - pyZuy(R)/(py - v, ()
+ 2p,ZIn(p,' - ¥o(k) / (4’ - ¥2(K))

- Zz,(K)/(pg - yo(K))! (41)
3 1/3p, = 3, 1,/0p, (42)
3f, 30/p4 = - PPy (g’ - Y2 (K

+ Pazuz(k)(m' - Y2(k))-2

+,2(1 - In(py - Y,(KN)(Py' - ¥oK))?

- Z2,(K)(Dy - Y,(0)) 2] (43)

The matrix A is independent of the parameters and given
by the elements:
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2, =21, ay = a;) = Zu,(k); ay, = Tu,y(k)’ (44)
Under the same conditions as the previous parameter

estimations are the results of this particular case of a missing

observation in the concentration summarized in table 3.

As it is seen from this table, the estimation of the kinetic
parameters has not at all deteriorated due to the lack of
observation of the concentration. On the contrary, the range of
apparently useful estimation has been extended and the largest
systematic error due to the nonlinearity has been shifted from
the activation energy and the frequency factor to the order of
the reaction.

The time range for the estimation of the temperature
derivative is four samples except for the last where the esti-
mation algorithm collapses. The noise is now so large that it
took 40 samples, or a time span of 0.4, to get a reasonable
estimate of the time derivative of the temperature. The results
in the last line of table 3 are not reliable.

Process Measurement Parameter estimates
disturbances noise

Conc. Temp. Conc. Temp. p,; Py Py Py
.00001 .00007 2.027 1.619 3.027 1.979
.00001 .00007 .00003 .00022 2.018 1.599 3.013 1.969
.00005 .00034 2.020 1.613 3.018 1.977
.00005 .00034 .00012 .00111 1.990 1.506 2.972 1.915
.00027 .00137 1.982 1.582 2.990 1.964
.00027 .00137 .00062 .00443 1.924 1.302 2.911 1.813
.00136 .00687 1.805 1.439 2.855 1.904
00136 .00687 .00310 .02210 3.052 1.584 3.686 1.936
Tab. 3. Parameter estimation where the concentration is not

observed.

As it is seen from this table, the estimation of the kinetic
parameters has not at all deteriorated due to the lack of
observation of the concentration. On the contrary, the range of
apparently useful estimation has been extended and the largest
systematic error due to the nonlinearity has been shifted from
the activation energy and the frequency factor to the order of
the reaction.

The time range for the estimation of the temperature
derivative is four samples except for the last where the esti-
mation algorithm collapses. The noise is now so large that it
took 40 samples, or a time span of 0.4, to get a reasonable
estimate of the time derivative of the temperature. The results
in the last line of table 3 are not reliable.

CONCLUSION

A general concept of an online batch reactor for the
estimation of the kinetic parameters in a process stream has
been suggested. Fairly successful applications of this simple
analytical instrument rely heavily on the design of the reactor
and the adequacy of the model. If the suggested principle is
tried out in industrial practice one should take the following
precausions.

The mixing disturbances and noise in the batch reactor
itself should be minimal. The design of the feed to the reactor
and the mixing device should be given careful consideration.
However, the mixing noise does not seem to be as important as
the measurement noise.

The measurement noise is shown to be critical for the



inference of the reaction kinetic parameters. This is basically
due to the nonlinear characteristics of the temperature sensitive
rate constant. The well known interaction between the
frequency factor and the activation energy is reconfirmed in this
numerical experiment as well. Measurement noise should be
kept to a lowest practical minimum, and this includes sensor
noise, turbulent noise at the sensor location and eventual
sampling noise by varying representativity of eventual samples.

For a single reaction with an appreciable heat of the reac-
tion, it is shown that a simple temperature measurement for the
inference of kinetic parameters is just as good as a principle
where measurements of both temperature and concentration are
involved. This is a result of such a great practical significance
for industrial use that the principle should be given a thorough
and careful investigation, both from a statistical side and from
an experimental side.

The data processing involved in the inference of the
reaction kinetic parameters avoids any nonlinear programming
for optimization but solves the unconstrained parameter
optimization as a standard set of nonlinear equations. The total
set of optimality condition is shown to be partitioned into a
linear and a nonlinear set. The algorithm is so simple that it is
very well implemented on a small Personal Computer. The test
version for this paper was run on an HP 9816 and programmed
in HP BASIC.

SYMBOLS

A constant matrix a exponent
a matrix coefficients c concentration
AT  adiabatic temperature rise ~ ~ ¢ error
E{} expectation operator E/R activation energy
F determinant criterion f,f general functions
k frequency factor k running index
m  number of samples p,p parameters
P probability T reaction rate
T temperature t time
u,u regression variables v volume
x,Xx  normalized state variable Y,y sensor output
z,z logarithm of the derivative
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