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A MULTIGRID METHOD ENHANCED BY KRYLOV SUBSPACEITERATION FOR DISCRETE HELMHOLTZ EQUATIONShoward c. elmany, oliver g. ernstz, and dianne p. o'learyxAbstract. Standard multigrid algorithms have proven ine�ective for the solution of discretiza-tions of Helmholtz equations. In this work we modify the standard algorithm by adding GMRESiterations at coarse levels and as an outer iteration. We demonstrate the algorithm's e�ectivenessthrough theoretical analysis of a model problem and experimental results. In particular, we showthat the combined use of GMRES as a smoother and outer iteration produces an algorithm whoseperformance depends relatively mildly on wave number and is robust for normalized wave numbersas large as two hundred. For �xed wave numbers, it displays grid-independent convergence rates andhas costs proportional to number of unknowns.Key words. Helmholtz equation, multigrid, Krylov subspace methods.AMS subject classi�cations. Primary: 65N55, 65F10, 65N22; secondary 78A45, 76Q05.1. Introduction. Multigrid algorithms are e�ective for the numerical solutionof many partial di�erential equations, providing a solution in time proportional tothe number of unknowns. For some important classes of problems, however, standardmultigrid algorithms have not been useful, and in this paper we focus on developinge�ective multigrid algorithms for one such class, the discrete Helmholtz equation.Our main interest lies in solving exterior boundary value problems of the form��u� k2u = f on 
 � Rd (1.1)Bu = g on � � @
 (1.2)@u@n =Mu on �1 � @
 (1.3)such as arise in the modeling of time-harmonic acoustic or plane-polarized electromag-netic scattering by an obstacle. The boundary � represents the scattering obstacle,and the boundary operator B can be chosen so that a Dirichlet, Neumann or Robinboundary condition is imposed. The original unbounded domain is truncated to the�nite domain 
 by introducing the arti�cial boundary �1 on which the radiationboundary condition (1.3) approximates the outgoing Sommerfeld radiation condition.Depending on what type of radiation condition is chosen, M can be either a (local)di�erential operator or a global integral operator coupling all points on �1 (see [14]).The data for the problem are given by the right hand side f and the boundary datag. In the most common case, f � 0 and �g is the boundary data of an incidentplane wave. The critical parameter is the wave number k, which is positive in thecase of unattenuated wave propagation. Due to the radiation boundary condition,the solution of (1.1){(1.3) is a complex-valued function u : 
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in which the coe�cient matrixA is complex-symmetric, i.e., not Hermitian. Moreover,for large values of the wave number k, it becomes highly inde�nite.It is this inde�niteness that until recently has prevented multigrid methods frombeing applied to the solution of the discrete equations with the same success as thesemethods have enjoyed for symmetric positive de�nite problems. As will be illustratedin Section 2, the di�culties with standard multigrid methods applied to Helmholtzproblems concern both of the main multigrid components: smoothing and coarse gridcorrection. In particular, standard smoothers such as Jacobi or Gau�-Seidel relaxationbecome unstable for inde�nite problems since there are always error components|usually the smooth ones|which are ampli�ed by these smoothers. The di�cultieswith the coarse grid correction are usually attributed to the poor approximation ofthe Helmholtz operator on very coarse meshes, since such meshes cannot adequatelyresolve waves with wavelength � = 2�=k of which the solution primarily consists. Weshow, however, that although the coarse grid correction is inaccurate when coarse-grideigenvalues do not agree well with their �ne-grid counterparts, coarse meshes can stillyield useful information in a multigrid cycle.In this paper, we analyze and test techniques designed to address the di�cul-ties in both smoothing and coarse grid correction for the Helmholtz equation. Forsmoothing, our approach is to use a standard, damped Jacobi, relaxation when itworks reasonably well (on �ne enough grids), and then to replace this with a Krylovsubspace iteration when it fails as a smoother. Earlier work such as in Bank [2]and Brandt and Ta'asan [11] have employed relaxation on the normal equations inthis context. Krylov subspace smoothing, principally using the conjugate gradientmethod, has been considered by a variety of authors [3, 7, 8, 27, 29].For coarse grid correction, we identify the type and number of eigenvalues thatare handled poorly during the correction, and remedy the di�culty by introducing anouter acceleration for multigrid; that is, we use multigrid as a preconditioner for anouter, Krylov subspace, iteration. This approach has been used by many authors, e.g.[28, 31] but only for problems in which the coarse grid is restricted to be fairly �ne.It has also been used in other settings [20, 23]. Any Krylov subspace method is anoption for both the smoother and the outer iteration; we use GMRES [25]. In contrastto many multilevel strategies [2, 6, 9, 31], the resulting algorithm has no requirementsthat the coarse grid be su�ciently �ne. For approaches based on preconditioninginde�nite problems by preconditioners for the leading term, see [4, 5, 15, 32].In more recent work, Brandt and Livshits [10] have developed an e�ective multi-grid approach for the Helmholtz equation based on representing oscillatory error com-ponents on coarse grids as the product of an oscillatory Fourier mode and a smoothamplitude|or ray|function. The standard V-cycle is augmented by so-called ray cy-cles, in which the oscillatory error components are eliminated by approximating theassociated ray functions in a multigrid fashion. This wave-ray methodology has alsobeen combined by Lee et al. [21] with a �rst-order system least-squares formulation forthe Helmholtz equation. These approaches require construction of and bookkeepingfor extra grids associated with the ray functions.An outline of the paper is as follows. In Section 2, we perform a model problemanalysis, using a one-dimensional problem to identify the di�culties encountered byboth smoothers and coarse grid correction, and supplementing these observationswith an analysis of how dimensionality of the problem a�ects the computations. InSection 3, we present the re�ned multigrid algorithms and test their performance ona set of two-dimensional benchmark problems on a square domain. In particular, we2



demonstrate the e�ectiveness of an automated stopping criterion for use with GMRESsmoothing, and we show that the combined use of GMRES as a smoother and outeriteration produces an algorithmwhose performance depends relatively mildly on wavenumber and is robust for wave numbers as large as two hundred. In Section 4, we showthe performance of the multigrid solver on an exterior scattering problem. Finally, inSection 5, we draw some conclusions.2. Model Problem Analysis. Most of the de�ciencies of standard multigridmethods for solving Helmholtz problems can be seen from a one-dimensional modelproblem. Therefore, we consider the Helmholtz equation on the unit interval (0; 1)with homogeneous Dirichlet boundary conditions�u00 � k2u = f; u(0) = u(1) = 0: (2.1)This problem is guaranteed to be nonsingular only if k2 is not an eigenvalue of thenegative Laplacian, and we will assume here that this requirement holds. The problemis inde�nite for k2 > �2, which is the smallest eigenvalue of the negative Laplacian.Finite di�erence discretization of (2.1) on a uniform grid containing N interiorpoints leads to a linear system of equations (1.4) with the N � N coe�cient matrixA = Ah = (1=h2) tridiag(�1; 2;�1)� k2I , where h = 1=(N + 1) denotes the meshwidth and I denotes the identity matrix. Under the assumptions on k above, it iswell-known (see [26]) that for su�ciently �ne discretizations, the discrete problemsare also nonsingular. We also assume that all coarse grid problems are nonsingular.The eigenvalues of A are�j = 2(1� cos j�h)h2 � k2 = 4h2 sin2 j�h2 � k2; j = 1; : : : ; N; (2.2)and the eigenvectors arevj = p2h [sin ij�h]Ni=1; j = 1; : : : ; N: (2.3)The choice of Dirichlet boundary conditions in (2.1) allows us to perform Fourieranalysis using these analytic expressions for eigenvalues and eigenvectors. In exper-iments described in Section 3, we will examine how our observations coincide withperformance on problems with radiation conditions, which are nonsingular for all k[18]. Aspects of the algorithm that depend on the dimensionality of the problem willbe considered at the end of this section.2.1. Smoothing. For the smoothing operator, we consider damped Jacobi re-laxation, de�ned by the stationary iterationum+1 = um + !D�1rm = um + !D�1Aem;where rm = f �Aum and em = A�1f � um denote the residual and error vectors atstep m, respectively. D = (2=h2� k2)I denotes the matrix consisting of the diagonalof A, and ! is the damping parameter. The associated error propagation matrixis S! = I � !D�1A, and the eigenstructure of this matrix governs the behaviorof the error em+1 = S!em. Since D is a multiple of the identity matrix, S! is apolynomial in A and hence shares the same system of orthonormal eigenvectors (2.3).The eigenvalues of S! are�j = 1� !�1� cos j�h1� 12k2h2� ; j = 1; : : : ; N: (2.4)3



Thus, the eigenvalue �j of S! is the damping factor for the error component corre-sponding to the eigenvalue �j of A.We now consider the e�ects of damped Jacobi smoothing on three levels of grids:�ne, coarse, and intermediate.2.1.1. Fine Grids. The �ne grid mesh size is determined by accuracy require-ments on the discretization, and this allows us to make certain assumptions on thesize of h versus k on the �ne grid. Recall that the wavelength � associated with atime-harmonic wave with wave number k > 0 is given by � = 2�=k. The quantity�h = 2�kh = 2�k (N + 1)is the number of mesh points per wavelength, and it measures the approximability ofthe solution on a given mesh. A commonly employed engineering rule of thumb [17]states that, for a second-order �nite di�erence or linear �nite element discretization,�=h � 10 or, equivalently, kh � �=5 (2.5)is required, and we will enforce (2.5) in all experiments. We also note that, for reasonsof stability, a bound on the quantity h2k3 is also required [18]; for high wave numbersthis bound is more restrictive than the bound on kh.As a consequence of (2.5), the quantity multiplying the smoothing parameter !in (2.4) will vary between about �1=4 and 9=4 for j = 1; : : : ; N , and plain Jacobismoothing (! = 1) results in a slight ampli�cation of the most oscillatory modes aswell as of the smoothest modes. One can adjust ! so that the most oscillatory modeis damped, and this is the case as long as ! < !1 := (4�2k2h2)=(4�k2h2). For S! tobe an e�ective smoother, ! is usually chosen to maximize damping for the oscillatoryhalf of the spectrum. This leads to the choice!0 = 2� k2h23� k2h2 ; (2.6)which is equal to the familiar optimal value of 2=3 for the Laplacian [22, p. 11] whenk = 0 and equals 0:61 when �=h = 10. But the smoothest mode is ampli�ed for anypositive choice of ! when the discrete problem is inde�nite, and this is the case forthe discrete Helmholtz operator (1.4) when k2 > �2. As can be seen from (2.4), moresmooth-mode eigenvalues of S! become larger than one in magnitude as h is increased,thus making damped Jacobi|as well as other standard smoothers|increasingly moreunstable as the mesh is coarsened.Figure 2.1 shows the damping factors �j for each of the eigenvalues �j of A forwave number k = 3� on a grid with N = 31. The maximal ampli�cation occurs forthe smoothest mode, corresponding to the leftmost eigenvalue of A. When ! = !0this ampli�cation factor is approximately equal to� = �(kh) = 11� 13k2h2 : (2.7)Figure 2.2 shows how � varies with kh. Limiting this largest ampli�cation factor, sayto � � 1:1, would lead to the mesh size restriction kh � 0:52, somewhat stronger than(2.5). One also observes that, for kh > p6, this mode is once again damped.In summary, the situation on the �nest grids is similar to the positive de�nitecase, except for the small number of ampli�ed smooth modes whose number andampli�cation factors increase as the mesh is coarsened.4
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Fig. 2.1. The damping factors for the damped Jacobi relaxation plotted against the eigenvaluesof A (+) for ! = 1, ! = !0 and ! = !1, (N = 31, k = 3�).
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and the spectral radius of S! is minimized for ! = 1. This would permit the use of(undamped) Jacobi as a smoother on very coarse grids, but we shall not make use ofthis.2.1.3. Intermediate Grids. What remains is the di�cult case: values of khfor which the problem is not yet negative de�nite but for which a large number ofsmooth modes are ampli�ed by damped Jacobi relaxation. Jacobi smoothing andother standard smoothers are therefore no longer suited, and it becomes necessary touse a di�erent smoothing procedure. In [11] and [16] it was proposed to replace classi-cal smoothers with the Kaczmarz iteration, which is Gau�-Seidel relaxation applied tothe symmetric positive-de�nite system AA�v = f for the auxiliary variable v de�nedby A�v = u . This method has the advantage of not amplifying any modes, but itsu�ers from the drawback that the damping of the oscillatory modes is very weak. Inthe following section we propose using Krylov subspace methods such as GMRES forsmoothing. These methods possess the advantage of reducing error components onboth sides of the imaginary axis without resorting to the normal equations.2.2. Coarse Grid Correction. The rationale behind coarse-grid correction isthat smooth error components can be well represented on coarser grids, and hencea su�ciently good approximation of the error can be obtained by approximatingthe �ne grid residual equation using the analogous system on a coarser mesh. Thisassumes both that the error consists mainly of smooth modes and that the solutionof the coarse grid residual equation is close to its counterpart on the �ne grid. In thissection, we present an analysis of what goes wrong for the Helmholtz problem.2.2.1. Ampli�cation of Certain Modes. Assume the number of interior gridpoints on the �ne grid is odd, and consider the next coarser mesh, with n = (N �1)=2interior points. We identifyRN and Rn, respectively, with the spaces of grid functionson these two meshes that vanish at the endpoints, and we indicate the mesh suchvectors are associated with using the superscripts h and H. Let eh = u � uh denotethe �ne grid error, let rh = f �Ahuh denote the residual, and let H = 2h denote thecoarse mesh size. Let the coarse-to-�ne transformation be given by the interpolationoperator I hH : Rn! RN�I hHwH�i := (wHi=2; i even,12 [wH(i�1)=2+ wH(i+1)=2]; i odd; i = 1; : : : ; N:The following indication of what can go wrong with the (exact) coarse grid cor-rection was given in [11]: consider a �ne-grid error eh = vh consisting of only thesmoothest eigenvector vh of Ah with associated eigenvalue �h. The �ne-grid residualis thus given by rh = Aheh = �hvh, and, since we are assuming that vh is smooth,its restriction r̂H := IHh rh = �hIHh vh to the coarse grid will again be close to aneigenvector of the coarse-grid operator AH , but with respect to a slightly di�erenteigenvalue �H . The coarse grid version of the correction iseH = (AH)�1r̂H = �h(AH)�1IHh vh � �h�H IHh vh:Hence the error on the �ne grid after the correction iseh � I hHeH � vh � �h�H I hHIHh vh = �1� �h�H �vh; (2.8)6



where we have assumed that the smooth mode vh is invariant under restriction fol-lowed by interpolation. This tells us that, under the assumption that the restrictionsof smooth eigenvectors are again eigenvectors of AH , the quality of the correctiondepends on the ratio �h=�H . If the two are equal, then the correction is perfect,but if the relative error is large, the correction can be arbitrarily bad. This occurswhenever one of �h, �H is close to the origin and the other is not. Moreover, if �hand �H have opposite signs, then the correction is in the wrong direction.We now go beyond existing analysis and examine which eigenvalues are problem-atic in this sense for �nite di�erences; a similar analysis can also be performed forlinear �nite elements. Consider the coarse-grid eigenfunctions vHj = [sin ij�H]nj=1. Tounderstand the e�ects of interpolation of these grid functions to the �ne grid, we mustexamine both the �rst n �ne-grid eigenfunctions fvhj gnj=1 and their complementarymodes fvhN+1�jgnj=1; these are related by �vhN+1�j�i = (�1)i+1 �vhj �i. As is easilyveri�ed, there holds [12]I hHvHj = c2jvhj � s2jvhN+1�j ; j = 1; : : : ; n; (2.9)with cj := cos j�h=2 and sj := sin j�h=2, j = 1; : : : ; N .If full weighting is used for the restriction operator IHh : RN ! Rn, we havecomponentwise�IHh uh�i := 14 ��uh�2i�1 + 2 �uh�2i + �uh�2i+1� ; i = 1; : : : ; n;and the relation I hH = 2 �IHh �>. The following mapping properties are easily estab-lished: IHh vhj = 8><>:c2jvHj ; j = 1; : : : ; n;0; j = n+ 1;�c2jvHN+1�j ; j = n+ 2; : : : ; N; (2.10)with cj and sj as de�ned above.If AH denotes the coarse-grid discretization matrix, then the corrected iter-ate ~uh := uh + I hH(AH)�1rH possesses the error propagation operator C := I �I hH (AH)�1IHh Ah. Denoting the eigenvalues of Ah and AH by f�hj gNj=1 and f�Hj gnj=1,respectively, we may summarize the action of C on the eigenvectors using (2.9) and(2.10) as follows:Theorem 2.1. The image of the �ne-grid eigenfunctions fvhh gNj=1 under theerror propagation operator C of the exact coarse grid correction is given byCvhj =8>>>><>>>>:�1� c4j �hj�Hj � vhj + s2jc2j �hj�Hj vhN+1�j j = 1; : : : ; n;vhn+1; j = n+ 1;�1� c4j �hj�HN+1�j �vhj + s2jc2j �hj�HN+1�j vhN+1�j ; j = n+ 2; : : : ; N: (2.11)As a consequence, the two-dimensional spaces spanned by a smooth mode and itscomplementary mode are invariant under C : C [vhj ; vhN+1�j ] = [vhj ; vhN+1�j ]Cj withCj := 241� c4j �hj�Hj c2js2j �hN+1�j�Hjs2j c2j �hj�Hj 1� s4j �hN+1�j�Hj 35 ; j = 1; : : : ; n: (2.12)7



The following result shows the dependence of the matrices Cj on kh:Theorem 2.2. Using the notation de�ned above, there holdsCj = 24s2j �1� k2c2j�Hj � c2j �1 + k2c2j�Hj �s2j �1 + k2s2j�Hj � c2j �1� k2s2j�Hj �35 j = 1; : : : ; n: (2.13)Moreover,limkh!0Cj = �s2j c2js2j c2j� ; limkh!1Cj = �s2j (1 + c2j ) s2jc2js2jc2j c2j (1 + s2j )� ; j = 1; : : : ; n:(2.14)Proof. Both (2.13) and (2.14) are simple consequences of (2.12) and the represen-tation (2.2) of the eigenvalues �hj .Application of the error propagation operator to a smooth mode vhj givesCvhj = C [vhj ; vhN+1�j]0@ 10 1A = [vhj ; vhN+1�j ]Cj0@ 10 1A :If the entries of the �rst column of Cj are small, then this mode is damped bythe coarse grid correction. However, if the (1; 1)-entry is large then this mode isampli�ed, and if the (2; 1)-entry is large (somewhat less likely), then the smoothmode is corrupted by its complementary mode. As seen from (2.13), these di�cultiesoccur whenever �Hj is small in magnitude. From the limits (2.14), it is evident that nosuch problems arise in the symmetric positive-de�nite case (a fact that is well-known),but they also do not occur when kh is very large, i.e., when the coarse grid Helmholtzoperator is negative de�nite. These observations can be extended by returning to(2.8) and using (2.2), wherein it holds that�hj�Hj = 4s2j=h2 � k24s2jc2j=h2 � k2 = 1 + s4js2jc2j � (kh=2)2 : (2.15)That is, the coarse-grid correction strongly damps smooth error modes for either verysmall or very large values of kh, but it may fail to do so in the intermediate rangewhere s2jc2j � (kh=2)2 for some index j associated with a smooth mode.We also note that in the limit k = 0 the eigenvalues of Cj are 0 and 1, so thatCj is a projection, and in this case the projection is orthogonal with respect to theinner product induced by the symmetric and positive de�nite operator Ah. Theprojection property is lost for k > 0, since the coarse grid operator as we have de�nedit fails to satisfy the Galerkin condition AH = IHh AhI hH . (The Galerkin condition is,however, satis�ed e.g. for �nite element discretizations with interpolation by inclusion)Moreover, regardless of the type of discretization, the term Ah-orthogonality ceasesto makes sense once k is su�ciently large that Ah is inde�nite.2.2.2. Number of Sign Changes. In this section, we discuss the number ofeigenvalues that undergo a sign change during the coarsening process, and therebyinhibit the e�ectiveness of coarse grid correction. This is the only aspect of thealgorithm that signi�cantly depends on the dimensionality of the problem. Thus, herewe are considering the Helmholtz equation (1.1) on the d-dimensional unit cube (0; 1)d,d = 1, 2 or 3, with homogeneous Dirichlet boundary conditions. We consider standard8



�nite di�erences (second order three-point, �ve-point or seven-point discretization ofthe Laplacian in one, two or three dimensions, respectively), as well as the class oflow order �nite elements consisting of linear, bilinear or trilinear elements.We �rst state the issue more precisely using �nite di�erences. In d dimensions,the eigenvalues of the discrete operator on a grid with mesh size h and N grid pointsin each direction are�hI = dXi=1 4h2 �sin2 ji�h2 �� k2; I = fj1; : : : ; jdg; ji = 1; : : :N: (2.16)For any �xed multi-index I, this eigenvalue is a well-de�ned function of h that con-verges to the corresponding eigenvalue of the di�erential operator as h ! 0. Ourconcern is the indices for which this function changes sign, for these are the trouble-some eigenvalues that are not treated correctly by some coarse grid correction. Asthe mesh is coarsened, the oscillatory modes (ji > N=2 for some i) are not repre-sented on the next coarser mesh, but the smooth-mode eigenvalues f�HI g are slightlyshifted to the left with respect to their �ne-grid counterparts f�hIg, and some of theseeigenvalues change sign at some point during the coarsening process.The following theorem gives a bound, as a function of k, on the maximal numbereigenvalue sign changes occurring on all grids.Theorem 2.3. For �nite di�erence discretization of the Helmholtz equation withDirichlet boundary conditions on the unit cube in d dimensions (d = 1; 2; 3), thenumber of eigenvalues that undergo a change in sign during the multigrid coarseningprocess is bounded above by8>><>>:k �12 � 1� � � 0:18 k d = 1k2 �18 � 14� � � 0:045 k2 d = 2k3 � 124p3 � 16�2� � 0:0072 k3 d = 3: (2.17)For the �nite element discretizations, the number of sign changes is bounded above by8>><>>:k � 1� � 1p12� � :030 k d = 1k2 � 14� � 124� � :038 k2 d = 2k3 � 16�2 � 1216� � :012 k3 d = 3: (2.18)Proof. For �nite di�erences, let ���ne denote the number of negative eigenvalueson some given �ne grid, and let ��lim denote the number of negative eigenvalues ofthe continuous Helmholtz operator. Because eigenvalues (2.16) with the same indexI shift from right to left with grid coarsening, it follows that��lim � ���ne ; (2.19)this is an equality for all �ne enough grids, as the discrete eigenvalues tend to thecontinuous ones. To identify ��lim, consider the continuous eigenvalues�` = �2`2 � k2; ` 2 N; (d= 1);�`;m = �2(`2 +m2) � k2; `;m 2 N; (d= 2);�`;m;n = �2(`2 +m2 + n2)� k2; `;m; n 2 N; (d= 3):9



It is convenient to view the indices of these eigenvalues as lying in the positive orthantof a d-dimensional coordinate system. The negative eigenvalues are contained in theintersection of this orthant with a d-dimensional sphere of radius k=� centered atthe origin. Let N denote this intersection, and let N̂ denote the d-dimensional cubeenclosing N . The number of indices in N̂ is bk=�cd, and the number in N is �bk=�cd,where � = 8><>:� k� � = �k� � = 1; d = 1;14� � k� �2 = �k� �2 = �4 ; d = 2;18 � 43� � k� �3 = � k� �3 = �6 ; d = 3;is the ratio of the volume of N to that of N̂ . It follows that��lim = 8><>:k � 1� ; d = 1;k2 � 14� ; d = 2;k3 � 16�2 ; d = 3: (2.20)Now consider the eigenvalues of discrete problems. Again, since sign changesoccur from right to left with coarsening, the mesh size that yields the maximumnumber of negative eigenvalues is the smallest value h for which the discrete operatoris negative semide�nite. With N mesh points in each coordinate direction, this isequivalent to d sin2 N�h2 = �kh2 �2 ; d = 1; 2; 3:Thus, h = 2pd=k, and��max = � k2pd�d =8><>:k � 12 ; d = 1;k2 � 18 ; d = 2;k3 � 124p3 ; d = 3:Combining (2.19) with the fact that ���ne � ��max, it follows that��max � ���ne � ��max � ��lim:The latter di�erence, shown in (2.17), is then a bound on number of sign changes.For �nite elements, we are concerned with the eigenvalues of the coe�cient matrixAh, but it is also convenient to consider the associated operator Ah de�ned on the�nite element space V h. The eigenvalues of Ah are those of the generalized matrixeigenvalue problem Ahuh = �hM huh (2.21)where M h is the mass matrix. These eigenvalues tend to those of the continuousoperator. Moreover, since V H is a subspace of V h, the Courant-Fischer min-maxtheorem implies that eigenvalues �h and �H with a common index shift to the rightwith coarsening (or to the left with re�nement). In addition, since M h is symmet-ric positive-de�nite, Sylvester's inertia theorem implies that the number of negativeeigenvalues of Ah is is the same as that of (2.21). It follows from these observations10
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Fig. 2.3. Indices of eigenvalues undergoing a sign change during coarsening of an N�N �niteelement grid with kh = �=5, kH = 2�=5 (left), and during further coarsening of the next coarser(n� n) grid with kh = 2�=5, kH = 4�=5 (right).that the maximal number of negative eigenvalues of Ah is bounded above by the �negrid limit ��lim.This is also a bound on the number of sign changes. It can be improved byexamining the eigenvalues of Ah more closely. Using the tensor product form of theoperators, we can express these eigenvalues as�hj1;j2;j3 = �j1�j2�j3 + �j1�j2�j3 + �j1�j2�j3 � k2�j1�j2�j3 (2.22)where h = 1=(N + 1), the indices j1; j2; j3 run from 1 to N and�j = 1h (2� 2 cos j�h); �j = h6 (4 + 2 cos j�h): (2.23)Consider the requirement �hj1;j2;j3 � 0 for all indices j1, j2, j3, so that Ah is negativesemide�nite. This is equivalent to�j1�j1 + �j2�j2 + �j3�j3 � k2:Since the expression �j=�j is monotonically increasing with j, the largest eigenvaluein d dimensions equals zero ifk2 = d � �N�N = d � 6h2 1� cosN�h2 + cosN�h � d � 12h2 ;i.e., h = p12d=k. For this value of h, there are ��max = (k=p12d)d negative eigen-values, and on coarser meshes, the problem remains negative de�nite. Consequently,none of these ��max quantities undergo a sign change, giving the bound ��lim � ��max of(2.18).Figure 2.3 gives an idea of how sign changes are distributed for bilinear elements intwo dimensions. At levels where the changes take place, the indices of the eigenvalues11



lie in a curved strip in the two-dimensional plane of indices. Typically, there is onelevel where the majority of sign changes occur. As k is increased and h decreasedcorrespondingly via (2.5), the shape of these strips remains �xed but the number ofindices contained in them grows like O(h�d) = O(kd). (Note, however, that (2.5) isnot needed for the analysis.) The behavior for �nite di�erences is similar.The remedy suggested in [11] for these di�culties consists of maintaining anapproximation of the eigenspace V H of the troublesome eigenvalues. A projectionscheme is then used to orthogonalize the coarse grid correction against V H , and thecoe�cients of the solution for this problematic space are obtained separately. Sinceit involves an explicit separate treatment of the problematic modes, this approach isrestricted to cases where there are only very a small number of these.3. Incorporation of Krylov SubspaceMethods. In view of the observationsabout smoothing in Section 2.1 and coarse grid correction in Section 2.2, we modifythe standard multigrid method in the following way to treat Helmholtz problems:� To obtain smoothers that are stable and still provide a strong reduction ofoscillatory components, we use Krylov subspace iteration such as GMRES assmoothers on intermediate grids.� To handle modes with eigenvalues that are either close to the origin on allgrids|and hence belong to modes not su�ciently damped on any grid|orthat cross the imaginary axis and are thus treated incorrectly by some coarsegrid corrections, we add an outer iteration; that is, we use multigrid as apreconditioner for a GMRES iteration for (1.4).We will demonstrate the e�ectiveness of this approach with a series of numericalexperiments. In all tests the outer iteration is run until the stopping criterionkrmk=kr0k < 10�6is satis�ed, where rm = f �Aum is the residual of the mth GMRES iterate and thenorm is the vector Euclidean norm. The multigrid algorithm is a V-cycle in all cases;the smoothing schedules are speci�ed below.3.1. GMRES Accelerated Multigrid. We begin with an experiment for theone-dimensional Helmholtz equation on the unit interval with forcing term f = 0 andinhomogeneous Dirichlet boundary condition u(0) = 1 on the left and Sommerfeldcondition on the right. We discretize using linear �nite elements on a uniform grid,where the discrete right hand side f is determined by the boundary conditions. Weapply both a V-cycle multigrid algorithm and a GMRES iteration preconditioned bythe same V-cycle multigridmethod. The smoother in these tests is one step of dampedJacobi iteration for both presmoothing and postsmoothing, using ! = !0 as given in(2.6). The initial guess was a vector with normally distributed entries of mean zeroand variance one, generated by the Matlab function randn.Table 3.1 shows the iteration counts for increasing numbers of levels beginningwith �ne grids containing N = 256 and N = 512 elements and for wave numbersk = 4� and k = 8�, which correspond to two and four wavelengths in the unit inter-val, respectively. We observe �rst that both methods display typical h�independentmultigrid behavior until the mesh size on the coarsest grid reaches kh � �=2. (With256 elements, this occurs for k = 4� with 6 levels, coarsest mesh h = 1=8, and fork = 8� with 5 levels, coarsest h = 1=16). At this point both methods require notice-ably more iterations, the increase being much more pronounced in the stand-alonemultigrid case. When yet coarser levels are added, multigrid diverges, whereas the12



256 elements 512 elementsk = 4� k = 8� k = 4� k = 8�# levels MG GMRES MG GMRES MG GMRES MG GMRES2 7 3 7 4 7 3 7 33 7 5 7 6 7 5 7 54 7 6 9 7 7 5 7 65 7 6 76 10 7 6 8 76 16 8 { 13 7 6 69 107 { 9 { 16 13 8 { 138 { 11 { 16 { 9 { 169 { 11 { 17 { 11 { 1610 { 11 { 17Table 3.1Iteration counts for multigrid V-cycle as a stand-alone iteration and as a preconditioner forGMRES applied to the one-dimensional model Helmholtz problem, with damped Jacobi smoothing.A dash denotes divergence of the iteration.128� 128 elements 256� 256 elementsk = 4� k = 8� k = 4� k = 8�# levels MG GMRES MG GMRES MG GMRES MG GMRES2 12 7 12 7 12 7 12 73 12 7 12 8 12 7 12 74 12 7 21 12 12 7 12 85 13 9 { 35 12 7 21 126 { 17 { 73 13 9 { 347 { 21 { 77 { 17 { 738 { 20 { 76Table 3.2Iteration counts for the two-dimensional problem for �ne grids with k = 4� and k = 8� on128� 128 and 256� 256 meshes. A dash denotes divergence of the iteration.multigrid preconditioned GMRES method again settles down to an h-independentiteration count, which does, however, increase with k.Table 3.2 shows the same iteration counts for the two-dimensional Helmholtzproblem on the unit square with a second order absorbing boundary condition (see[1, 13]) imposed on all four sides and discretized using bilinear quadrilateral �niteelements on a uniform mesh. Since the problem cannot be forced with a radiationcondition on the entire boundary, in this and the remaining examples of Section 3,an inhomogeneity was imposed by choosing a discrete right hand side consisting ofa random vector with mean zero and variance one, generated by randn. The initialguess was identically zero. (Trends for problems with smooth right hand sides werethe same.) In addition, for all two-dimensional problems, we use two Jacobi pre- andpostsmoothing steps whenever Jacobi smoothing is used. The damping parameter !is chosen to maximize damping of the oscillatory modes. For the grids on which weuse damped Jacobi smoothing this optimumvalue was determined to be ! = 8=9. Theresults show the same qualitative behavior as for the one-dimensional problem in thatstand-alone multigrid begins to diverge as coarse levels are added while the GMRES-accelerated iteration converges in an h-independent number of iterations growing with13



No V-Cycle Full V-cycle# elements on coarsest grid 512 256 128 64 32 16 8 4GMRES iterations 152 78 42 25 18 17 16 16Table 3.3As more coarse grid information is used, the number of iterations decreases, for the one-dimensional problem with k = 8� and a �ne grid containing N = 512 elements.k, although with a larger number of iterations than in the one-dimensional case.A natural question is whether corrections computed on the very coarse grids, inparticular those associated with mesh widths larger than 1/10 times the wavelength� = 2�=k, make any contribution at all towards reducing the error. We investigate thisby repeating the GMRES accelerated multigrid calculations for the one-dimensionalproblem with k = 8� and N = 512, and omitting all calculations|be they smoothingor direct solves|on an increasing number of coarse levels. The results are shownin Table 3.3. The leftmost entry of the table shows the iteration counts when nocoarse grid information is used, i.e., for GMRES with preconditioning by two steps ofJacobi iteration. Reading from left to right, subsequent entries show the counts whensmoothings on a succession of coarser grids are included, but no computations aredone at grid levels below that of the coarsest grid. For the rightmost entry, a directsolve was done on the coarsest mesh; this is a full V-cycle computation. The resultsindicate that the computations on all grids down to that at level 2, which has eightelements and only two points per wavelength, still accelerate the convergence of theouter iteration.These results show that, althoughmultigrid by itself may diverge, it is neverthelessa powerful enough preconditioner for GMRES to converge in an h-independent numberof steps. Two additional questions are whether replacing the unstable Jacobi smootherwith a Krylov subspace iteration leads to a convergent stand-alone multigrid method,and how sensitive convergence behavior is as a function of the wave number k. Weaddress the former in the following section.3.2. GMRES as a Smoother. In this section we replace the unstable Jacobismoother with GMRES smoothing. We use GMRES on all levels j where khj �1=2 and continue using damped Jacobi relaxation when khj < 1=2. This choiceis motivated by the discussion at the end of Section 2.1.1, and it ensures that thelargest ampli�cation factor for the Jacobi smoother does not become too large. Theresults of Section 2.1.2 show that we could switch back to Jacobi smoothing for verycoarse meshes, but we have not explored this option.3.2.1. Nonconstant Preconditioners. This introduces a slight complicationwith regard to the outer GMRES iteration when multigrid is used as a preconditioner.The inner GMRES smoothing steps are not linear iterations, and therefore a di�erentpreconditioner is being applied at every step of the outer iteration. A variant ofGMRES able to accommodate a changing preconditioner (known as 
exible GMRES(FGMRES)) is due to Saad [24]. It requires the following minor modi�cation of thestandard (right preconditioned) GMRES algorithm: if the orthonormal basis of the(m+1)st Krylov space Km+1(AM�1; r0) in the case of a constant preconditionerM isdenoted byVm+1 = [v1; : : : ; vm+1], then the Arnoldi relationAM�1Vm = Vm+1 ~Hmholds with an (m+ 1)�m upper Hessenberg matrix ~Hm. If the preconditioning and14



matrix multiplication step zm :=M�1vm; w := Azmis performed with a changing preconditioner M = Mm, this results in the modi�edArnoldi relation AZm = Vm+1 ~Hm;where Zm = [z1; : : : ; zm]. The residual vector is now minimized over the spacespanfz1; : : : ; zmg, which need no longer be a Krylov space. This requires storingthe vectors fzjg in addition to the orthonormal vectors fvjg, which form a basis ofspanfAzj : j = 1; : : :mg.3.2.2. Hand-Tuned Smoothing Schedules. Numerical experiments with a�xed number of GMRES smoothing steps at every level did not result in good perfor-mance. To get an idea of an appropriate smoothing schedule, we proceed as follows.For given k, we calculate the number omax of FGMRES iterations needed with j-level multigrid preconditioning, where we use Jacobi smoothing on all grids for whichkhi < 1=2 and do a direct solve at the next coarser grid, making j grids in all. Wethen replace the direct solve on the coarsest grid of the j-level scheme with GMRESsmoothing on this grid, coupled with a direct solve on the next coarser grid, anddetermine the smallest number mj of GMRES smoothing steps required for the outeriteration to converge in omax steps. For example, for the �rst line of Table 3.4, 6outer FGMRES steps were needed for a 5-level scheme, and then m5 = 13 GMRESsmoothing steps were needed for the outer iteration of the new 6-level preconditionerto converge in 6 steps. When the number mj has been determined, we could �xthe number of GMRES smoothing steps to mj on this grid, add one coarser level,determine the optimal number of GMRES smoothing steps on the coarser grid andcontinue in this fashion until the maximal number of levels is reached. This approachis modi�ed slightly by, whenever possible, trying to reduce the number of smoothingson �ner levels once coarser levels have been added. This is often possible, since replac-ing the exact solve on the coarsest grid with several GMRES smoothing steps oftenhas a regularizing e�ect, avoiding some damage possibly done by an exact coarsegrid correction in modes whose eigenvalues are not well represented on the coarsegrid. This hand-tuning procedure gives insight into the best possible behavior of thisalgorithm.In contrast to classical linear smoothers, whose damping properties for di�erentmodes is �xed, the damping properties of GMRES depend on the initial residual. Inparticular, since GMRES is constructed to minimize the residual, it will most dampthose modes that lead to the largest residual norm reduction. For this reason, wewill favor post-smoothing over pre-smoothing to prevent the unnecessary damping ofsmoother modes that should be handled by the coarse-grid correction. We do includetwo GMRES pre-smoothing steps to avoid overly large oscillatory components in theresidual prior to restricting it to the next lower level, which could otherwise lead tospurious oscillatory error components being introduced by the coarse grid correction.The results are shown in Table 3.4. The entry `D' denotes a direct solve on thecorresponding level and `J' indicates that damped Jacobi smoothing was used on thislevel. Looking at the smoothing schedules, we observe a `hump' in the number ofGMRES smoothing steps on the �rst two levels on which GMRES smoothing is used.Below this, the number decreases and is often zero for the coarsest levels. However,15



256� 256, k = 4�, omax = 6# levels Smoothing schedule MG FGMRES6 J J J J 13 D 8 67 J J J J 13 16 D 8 68 J J J J 13 16 1 D 8 69 J J J J 13 16 1 0 D 8 6128� 128, k = 8�, omax = 7# levels Smoothing schedule MG FGMRES4 J J 25 D 9 75 J J 25 39 D 9 76 J J 25 39 24 D 9 77 J J 25 39 16 2 D 9 78 J J 25 39 16 2 0 D 9 7256� 256, k = 8�, omax = 7# levels Smoothing schedule MG FGMRES5 J J J 23 D 9 76 J J J 23 42 D 9 77 J J J 23 39 0 D 9 78 J J J 23 38 0 0 D 9 79 J J J 23 38 0 0 0 D 9 7256� 256, k = 16�, omax = 10# levels Smoothing schedule MG FGMRES4 J J 34 D 12 105 J J 38 29 D 12 106 J J 35 20 6 D 12 107 J J 35 20 6 3 D 12 108 J J 35 20 6 3 0 D 12 109 J J 35 20 6 3 0 0 D 12 10256� 256, k = 32�, omax = 18# levels Smoothing schedule MG FGMRES3 J 34 D 21 184 J 39 39 D 22 185 J 35 33 5 D 23 186 J 35 33 5 3 D 23 187 J 35 33 5 3 2 D 23 188 J 35 33 5 3 2 0 D 23 189 J 35 32 6 5 3 0 0 D 23 18Table 3.4Manually optimized GMRES smoothing schedule for the two-dimensional model Helmholtz prob-lem: 'J' denotes Jacobi smoothing and 'D' denotes a direct solve. The FGMRES algorithm uses themultigrid V-cycle as a preconditioner.GMRES smoothing still helps on levels which are extremely coarse with regard toresolution of the waves: in the case k = 32�, for instance, performing three GMRESsmoothing steps on level 4 (which corresponds to 1/2 point per wavelength) stillimproves convergence.We remark that the number of outer iterations in all these tests, for both precon-16



ditioned FGMRES and standalone MG, is the same as for the corresponding two-gridversions of these methods, so we cannot expect faster convergence with respect to thewave number k. We also note that the number of iterations for standalone multigridis very close to that that for FGMRES with multigrid preconditioning. We believethis is because the relatively large number of GMRES smoothing steps on interme-diate levels eliminates lower frequency errors, and this mitigates the e�ects of axiscrossings. We will return to this point in Section 3.43.3. A Stopping Criterion Based on L2-Sections. Hand tuning as in theprevious section is clearly not suitable for a practical algorithm. In this section, wedevelop a heuristic for �nite element discretizations that automatically determinesa stopping criterion for the GMRES smoother. This technique is based on an ideaintroduced in [29].We brie
y introduce some standard terminology for multilevel methods appliedto second order elliptic boundary value problems on a bounded domain 
 � R2 (see[30]). We assume a nested hierarchy of �nite element spacesV1 � V2 � � � � � VJ � V = H1(
)in which the largest space VJ corresponds to the grid on which the solution is sought.We require the L2-orthogonal projections Q` : V ! V`, de�ned by(Q`u; v) = (u; v) 8v 2 V` ; ` = 1; : : : ; J;where (�; �) denotes the L2-inner product on 
. Let �` = f�(`)1 ; : : : ; �(`)n` g denote thebasis of the �nite element space V` of dimension n` used in de�ning the sti�ness andmass matrices. By the nestedness property V` � V`+1, there exists an n`+1 � n`matrix I`+1` whose columns contain the coe�cients of the basis �` in terms of thebasis �`+1, so that, writing the bases as row vectors,[�(`)1 ; : : : ; �(`)n` ] = [�(`+1)1 ; : : : ; �(`+1)n`+1 ]I`+1` :The stopping criterion we shall use for the GMRES smoothing iterations is basedon the representation of the residual r` of an approximate solution ~u` of the level-`equation as the sum of di�erences of L2-projections,r` = (I �Q`�1)r` + (Q`�1 �Q`�2)r` + � � �+ (Q2 � Q1)r` + Q1r`;which we refer to as residual sections. The following result for coercive problems,which was proven in [29], shows that the error u` � ~u` is small if each appropriatelyweighted residual section is small:Theorem 3.1. Assume the underlying elliptic boundary value problem is H1-elliptic and H1+�-regular with � > 0. Then there exists a constant c independent ofthe level ` such that the H1(
)-norm of the error on level ` is bounded byku` � ~u`k1 � c0@kQ1r`k+X̀j=2 h�j k(Qj �Qj�1)r`k1A : (3.1)The boundary value problem (1.1){(1.3) under consideration is not H1-ellipticand therefore does not satisfy the assumptions of this theorem. We have found,however, that the bound (3.1) suggests a useful stopping criterion: terminate the17



GMRES smoothing iteration on level ` as soon as the residual section (Q` �Q`�1)r`has become su�ciently small. To obtain a formula for the computation of thesesections, assume the residual r` is represented by the coe�cient vector r` in terms ofthe dual basis of �`. The representation of Q`�1r` with respect to the dual basis of�`�1 is then given by the coe�cient vector I`�1` r` 2 Cn`�1 , where I`�1` := (I `̀�1)>.Returning to the representation with respect to the basis �`�1 requires multiplicationwith M�1`�1, so that we obtainkQ`�1r`k2 = (Q`�1r`; Q`�1r`) = (I`�1` r`)>M�1`�1I`�1` r`:If the sequence of triangulations underlying the �nite element spaces V` is quasi-uniform, then the mass matrix of level ` is uniformly equivalent to the identity scaledby hd, where d denotes the dimension of the domain. For the case d = 2 underconsideration, this means that the Euclidean inner product on the coordinate spaceCn` , denoted by (�; �)E, when scaled by h2̀, is uniformly equivalent (with respect tothe mesh size) to the L2-inner product on V`. Therefore, the associated norms satisfych2̀kv`k2E � kv`k2 = v >̀M`v` � Ch2̀kv`k2E; 8v` 2 V`;where v` is the coordinate vector of v` with respect to �`. Using this norm equivalenceit is easily shown thatck(I � h2̀=h2̀�1I `̀�1I`�1` )r`kE � h`k(I �Q`�1)r`k� Ck(I � h2̀=h2̀�1I `̀�1I`�1` )r`kEfor some constants c and C uniformly for all levels `. As a result, the residual sectionsmay be computed su�ciently accurately without the need for inverting mass matrices.In [29], it was suggested that the GMRES smoothing iteration for a full multigridcycle be terminated as soon as the residual section on the given level is on the orderof the discretization error on that level. For the problem under consideration here, weshall use the relative reduction of L2-sections as a stopping criterion, so that roughlyan equal error reduction for all modes is achieved in one V-cycle. On the �rst levelon which GMRES smoothing is used, we have the additional di�culty that manyeigenvalues may be badly approximated on the next-coarser level. For this reason,it is better to also smooth the oscillatory modes belonging to the next lower leveland base the stopping criterion on the residual section (I � Q`�2)r` instead; we willuse this `safer' choice on all levels. Numerical experiments with optimal smoothingschedules have shown the relative reduction of this residual section to scale like kh`,so that we arrive at the stopping criterionkr � h2̀h2̀�2I `̀�1I`�1`�2(I `̀�1I`�1`�2)>rkE � 
kh`: (3.2)A complete description of the multigrid V-cycle algorithm starting on the �nestlevel ` is as follows:Algorithm 3.1. ~u` = MG(u (0)` ; f`). Multigrid V-cycle with GMRES smoothingon coarse levelsif ` = 1~u` := A�1` f`else 18



if kh` < 1=2perform m1 steps of damped Jacobi smoothing to obtain u (1)`elseperform 2 steps of GMRES smoothing to obtain u (1)`endifu (2)` := u (1)` + I `̀�1MG(0; I`�1` (f` �A`u 1̀))if kh` < 1=2perform m2 steps of damped Jacobi smoothing to obtain ~u`elseperform GMRES smoothing until stopping criterion (3.2) is satis�edor m = mmax to obtain ~u`endifendifIn the standalone multigrid V-cycle, Algorithm 3.1 is used recursively beginningwith the �nest level and iterated until the desired reduction of the relative residual isachieved on the �nest level. In the FGMRES variant, Algorithm 3.1 represents theaction of the inverse of a preconditioning operator being applied to the vector f`.3.4. Experimentswith Automated StoppingCriterion. We now show howthe multigrid solver and preconditioner perform with the automated stopping criterionfor GMRES smoothing. Each method is applied to the two-dimensional Helmholtzproblem on the unit square with second-order absorbing boundary condition andrandom right hand side data. In these tests, we used 
 = 0:1 in (3.2), and wealso imposed an upper bound mmax on the number of GMRES smoothing steps,terminating the smoothing if the stopping criterion is not satis�ed after mmax steps;we tested two values, mmax = 40 and mmax = 20. At �ne grid levels, where dampedJacobi smoothing is used, the number of pre-smoothings and post-smoothings wasm1 = m2 = 2. Standalone MG MG-preconditioned FGMRESNnk 2� 4� 8� 16� 32� 64� 2� 4� 8� 16� 32� 64�mmax = 4064 12 12 13 7 8 9128 12 12 13 16 7 8 9 13256 12 12 13 17 27 7 8 9 13 20512 12 12 13 16 27 78 7 8 9 13 21 36mmax = 2064 12 12 13 7 8 9128 12 12 13 21 7 8 9 16256 12 12 13 21 > 100 7 8 10 16 37512 12 12 13 21 > 100 > 100 7 8 9 16 36 781Table 3.5Iteration counts for standalone multigrid and multigrid-preconditioned FGMRES for various�ne grid sizes and wave numbers. In all cases, GMRES smoothing is performed on levels for whichkh > 1=2 and the smoothing is terminated by the L2-section stopping criterion or when mmaxsmoothing steps are reached.1This count was extrapolated from the maximum of 47 steps that memory constraints permitted.19



We present three sets of results. Table 3.5 shows iteration counts for a varietyof wave numbers and mesh sizes. Table 3.6 examines performance in more detailby showing the automatically generated smoothing schedules for two wave numbers,k = 8� and k = 32�. Finally, to give an idea of e�ciency, Table 3.7 shows an estimatefor the operation counts required for the problems treated in Table 3.6.k = 8�, mmax = 40Grid # levels Smoothing schedule IterationsFGMRES 64� 64 6 J 21 16 11 2 D 9128� 128 7 J J 18 17 11 2 D 9MG 64� 64 6 J 17 17 11 2 D 13128� 128 7 J J 17 17 11 2 D 13k = 8�, mmax = 20Grid # levels Smoothing schedule IterationsFGMRES 64� 64 6 J 19 17 12 2 D 9128� 128 7 J J 19 17 11 2 D 9MG 64� 64 6 J 16 17 11 2 D 13128� 128 7 J J 17 17 11 2 D 13k = 32�, mmax = 40Grid # levels Smoothing schedule IterationsFGMRES 256� 256 8 J 32 37 22 1 0 0 D 21512� 512 9 J J 33 37 23 1 0 0 D 21MG 256� 256 8 J 33 37 18 1 0 0 D 27512� 512 9 J J 31 37 18 1 0 0 D 27k = 32�, mmax = 20Grid # levels Smoothing schedule IterationsFGMRES 256� 256 8 J 20 20 18 1 0 0 D 37512� 512 9 J J 20 20 18 1 0 0 D 36MG 256� 256 8 J 20 20 16 1 0 0 D > 100512� 512 9 J J 20 20 16 1 0 0 D > 100Table 3.6Smoothing schedules with automated stopping criterion, for selected parameters.We make the following observations on these results:� For low wave numbers, the number of iterations of standalone multigrid isclose to that for FGMRES. The di�erence increases as the wave number in-creases, especially for the case mmax = 20. For large enough k, multigrid failsto converge whereas MG-preconditioned FGMRES is robust. This behavioris explained by the results of Section 2.2.2. For large wave numbers, the in-creased number of ampli�ed modes eventually causes standalone multigrid tofail; a larger number of smoothing steps mitigates this di�culty, presumablyby eliminating some smooth errors. The (outer) FGMRES iteration handlesthis situation in a robust manner.� The automated stopping criterion leads to smoothing schedules close to thoseobtained by hand tuning (see Table 3.4), and correspondingly similar outeriteration counts.� The operation counts shown in Table 3.7 suggest that MG-preconditionedFGMRES is more e�cient than standalone multigrid even when the latter20



k = 8� k = 32�Grid MG FGMRES MG FGMRES64� 64 13.2 13.3128� 128 24.0 22.1256� 256 61.2 43.2 1091.2 971.1512� 512 196.6 148.1 1418.1 1377.8Table 3.7Operation counts (in millions) for selected parameters, with mmax = 40.method is e�ective.� For �xed wave number, outer iteration counts are mesh independent, so thatstandard \multigrid-like" behavior is observed. Moreover, because Jacobismoothing is less expensive than GMRES smoothing, during the initial stagesof mesh re�nement the costs per unknown are increasing at less than a linearrate.� The growth in outer iteration counts with increasing wave number is slowerthan linear in k. The operation counts increase more rapidly, however, be-cause of the increased number of smoothing steps required for larger wavenumbers.4. Application to an Exterior Problem. As a �nal example we apply thealgorithm to an exterior scattering problem for the Helmholtz equation as given in(1.1){(1.3). The domain 
 consists of the exterior of an ellipse bounded externally bya circular arti�cial boundary �1 on which we impose the exact nonlocal Dirichlet-to-Neumann (DtN) boundary condition (see [19]). The source function is f = 0; forcingis due to the boundary condition on the boundary � of the scatterer, given byu(x; y) = g(x; y) or @u(x; y)@n = @g(x; y)@n ; (x; y) 2 �;with data g(x; y) = �eik(x cos�+y sin�) representing a plane wave incident at angle �to the positive x-axis. The solution u represents the scattered �eld associated with theobstacle and incident �eld g; the resulting total �eld u+g then satis�es a homogeneousDirichlet or Neumann boundary condition on �, respectively. An angle of incidence� = �=4 was chosen to avoid a symmetric solution. The problems were discretizedusing linear �nite elements beginning with a very coarse mesh which is successivelyre�ned uniformly to obtain a hierarchy of nested �nite element spaces. The �nestmesh, obtained after �ve re�nement steps, contains 32768 degrees of freedom. Severalcombinations of k and h were tested, where in each case kh < 0:5 on the �nestmesh. Figure 4.1 shows a contour plot of the solution u of the Dirichlet problem fork = 8�. The computations make use of the PDE Toolbox of the Matlab 5.3 computingenvironment.The problems were solved using both the standalone and FGMRES-acceleratedversions of multigrid, with GMRES smoothing using the residual section stoppingcriterion with 
 = 0:1, outer stopping criterion requiring residual reduction by afactor of 10�6 as in Section 3, and zero initial guess. In all examples, we used themaximal number of levels with the exception of the Dirichlet problem for k = 8�,where we also varied the number of levels from six down to two. The results areshown in Table 4.1. The table gives the wave number k and the length of the ellipseE in wavelengths � = 2�=k. The third column gives the maximum value of kh on21



k size E[�] (khmax)�ne # levels MG FGMRESDirichlet problem2� 1 .10 6 36 13.21 5 27 12.42 4 26 124� 2 .21 6 38 16.42 5 27 148� 4 .42 6 41 205 | 284 100 263 41 162 41 13Neumann problem2� 1 .10 6 >100 21.21 5 37 15.42 4 21 124� 2 .21 6 >100 28.42 5 53 218� 4 .42 6 >100 32Table 4.1Iteration counts for the exterior scattering problem with Dirichlet or Neumann plane wave dataon the boundary of an ellipse for various wave numbers, grid sizes and numbers of levels.the �nest mesh and the fourth column indicates the number of levels used in eachcomputation. The last two columns list the iteration counts.We observe that the preconditioned iteration performs well in all cases, with agrowth in number of iterations slower than linear in k. The standalone multigridvariant performs less well in comparison, requiring more than 100 steps to convergein several cases and even diverging in one case. This is particularly the case for theNeumann problem, where the superiority of the preconditioned variant is even morepronounced. For the Neumann problems we also notice a slight growth in iterationcounts for �xed k and decreasing h.5. Conclusions. The results of this paper show that the addition of Krylovsubspace iteration to multigrid, both as a smoother and as an outer acceleratingprocedure, enables the construction of a robust multigrid algorithm for the Helmholtzequation. GMRES is an e�ective smoother for grids of intermediate coarseness, in thatit appears not to amplify any error modes and in addition tends to have a regularizinge�ect on the contribution to the coarse grid correction coming from smoothing on agiven level. The combination of our multigrid algorithm as a preconditioner withFGMRES is e�ective in handling the de�ciencies of standard multigrid methods forthe Helmholtz equation, and the outer FGMRES acceleration is necessary particularlyfor high wave numbers. In addition, results in the paper indicate that grids too coarseto result in a meaningful discretization of the Helmholtz equation may still providesome useful information for coarse-grid corrections. Using an automated stoppingcriterion based on L2-sections of the residual leads to smoothing cycles that are closeto hand-tuned optimal smoothing schedules.An important aspect of our algorithm is that it consists of familiar building blocksand is thus easily implemented. For very large wave numbers for which the discretiza-22
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