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Abstract

It is of interest to understand the tradeoff between the communication resource comsumption and
the achievable system performance in networked control systems. In this paper we explore a general
framework for trade-off analysis and decision making in such systems by studying joint quantization,
estimation, and control of a hidden Markov chain. We first formulate the joint quantization and
estimation problem, where vector quantization with variable-block length is considered. Dynamic
programming (DP) is used to find the optimal quantization scheme that minimizes a weighted com-
bination of the estimation error, the communication cost, and the delay due to block coding. The DP
equation is solved numerically and simulation shows that this approach is able to capture the tradeoffs
among competing objectives by adjusting the cost weights. We then study the joint quantization and
control problem. An example problem is solved analytically, which provides interesting insight into
the approach. In both the joint quantization/estimation problem and the joint quantization/control
problem, we show that the separation principle holds. The approaches to solving these two problems
share the same spirit, and can be combined and extended to accomodate more objectives.

1 Introduction

Networked control systems have applications or potential applications in defense, transportation, scien-
tific exploration, and industry, with examples ranging from automated highway systems to unmanned
aerial vehicles to MEMS sensor and actuator networks. Communication in networked control systems
is often limited due to the large number of subsystems involved, limited battery life and power, and
constraints imposed by environmental conditions. Hence an important concern in the development of
networked control systems is how to deploy and allocate the communication resources. Proper under-
standing of the tradeoff between the communication resource consumption and the system performance
will help to make such decisions. A great deal of effort has been put into the studies of control systems
when communication constraints are present. In particular, stabilization of linear systems with quantized
state/output/input has received much attention (see e.g., [1, 2, 3] and the references therein). Other
problems, such as the state estimation problem and LQG control under communication constraints, have
also been studied [4, 5].

∗This research was supported by the Army Research Office under the ODDR&E MURI01 Program Grant No. DAAD19-
01-1-0465 to the Center for Networked Communicating Control Systems (through Boston University).
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Figure 1: The setup for joint quantization, estimation, and control of an HMM.

In this paper we explore a general framework for trade-off analysis and decision making in networked
control systems, by studying jointly optimal quantization, estimation, and control of a Hidden Markov
chain. Hidden Markov chains form an important family of Hidden Markov Models (HMMs) [6], and have
been widely used in speech processing, computer vision, computational biology, telecommunications, etc.
Another reason for us to choose a hidden Markov chain is that numerical and even analytical solutions
can be obtained relatively easily, which provide insight into the approach.

Figure 1 illustrates the problem setup. Xn is the state of a homogeneous, controlled, hidden Markov
chain taking values in X = {x1, · · · , xS} for some S ≥ 1. The output Yn takes values in Y = {y1, · · · , yM}
for some M ≥ 1. Quantized information qn of the output is sent over a communication channel to a
remote processor, where state estimation and control computation are performed (later on we shall
justify the “separation” of estimation from control shown in Figure 1). The control Un is then sent back
through a communication channel to the HMM. To highlight the main ideas and simplify the analysis, we
assume that communication channel is noise free. The quantizer is allowed to be time-varying; however,
the variation of the quantization scheme should depend only on the information available to the receiver.

The control Un takes values in U = {u1, · · · , uK} for some K ≥ 1. We use the notation Zj
i to denote

the sequence of random variables {Zi, Zi+1, · · · , Zj}. For u ∈ U , 1 ≤ i, j ≤ S, we let

aij(u)
�
= Prob[Xn+1 = xi|Xn = xj, Un = u] = Prob[Xn+1 = xi|Xn = xj, Un = u,Xn−1

0 , Un−1
0 ].

We assume that the output Yn is dependent on Xn only. For 1 ≤ i ≤ S, 1 ≤ j ≤ M , we write

cij
�
= Prob[Yn = yj|Xn = xi] = Prob[Yn = yj|Xn = xi,X

n−1
0 , Un

0 , Y n−1
0 ].

This paper is divided into two parts. In the first part we are concerned only with joint quantization
and estimation, i.e., the loop in Figure 1 is not closed. Sequential vector quantization of Markov sources
was considered in [7], where a weighted combination of the entropy rate of the quantized process and
the compression error was minimized. We note that such a “Lagrangian distortion measure” appeared
earlier in [8]. A similar approach for combined classification and compression was proposed in [9]. We
extend the work in [7] to the case of vector quantization with variable block length, and seek the optimal
quantization scheme to minimize a weighted combination of the estimation error, the conditional entropy
of the quantized output, and the delay due to block coding. The problem is recast as a stochastic control
problem and the corresponding value function satisfies a Dynamic Programming (DP) equation of a novel
form. We further investigate numerically solving the DP equation and study the effects of weighting
coefficients on optimal quantization schemes through simulation.

In the second part of the paper we discuss the problem of joint quantization and control. Following
the same spirit as in joint quantization and estimation, we seek the optimal quantization and control
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scheme to minimize a weighted sum of the communication cost and the cost relating to the system
performance. Here we restrict ourselves to sequential vector quantization. For illustrative purposes a
simple example problem is solved analytically, which provides interesting insight into the approach.

In both the joint quantization/estimation problem and the joint quantization/control problem, we
show that the separation principle [10] holds. Either problem is decomposed into an estimation problem,
and a decision (quantization/control) problem based on the state estimation.

The structure of the paper is as follows. In Section 2 we formulate and solve the joint quantization
and estimation problem. The resulting DP equation is numerically solved in Section 3. In Section 4 we
study the joint quantization and control problem. We finally conclude in Section 5.

2 Joint Quantization and Estimation

2.1 Problem formulation

We consider vector quantization with variable block length. Let B ≥ 1 be the maximum block length.
Given the initial condition for X0, we decide the first data block Y n1

1 with n1 ≤ B for quantization as
well as the actual quantization scheme we will use for Y n1

1 . Then at time n1, we send the quantized
Y n1

1 , and decide the next data block Y n2
n1+1 (n1 + 1 ≤ n2 ≤ n1 + B) and the associated quantization

scheme based only on the information available to the receiver (i.e., the initial condition of X0 and the
quantization of Y n1

1 ). This process goes on until the final time N ≥ 1 is reached. Time instants (e.g., 0,
n1 in the previous discussion) that one makes decisions are called decision times. We assume that each
transmission is completed instantly and the delay due to communication is zero.

We now formulate the problem precisely. Let Ω1 be the space of admissible quantization decisions for
Y N

1 . Here by a quantization decision, we mean a scheme for both division of Y N
1 into (variable-length)

blocks and quantization of these blocks. A quantization decision is admissible if at each decision time,
the length of the next data block and the corresponding quantization scheme are decided solely based
on the information available to the remote processor by that time. This makes the sender’s decision
transparent to the receiver, and eliminates the need to transmit the quantization scheme separately. On
the other hand this imposes the requirement of certain computation capability on the sender side.

Let Π0 = (π0(x1), · · · , π0(xS)) be the a priori PMF (probability mass function) for X0, where
π0(xi) = Prob[X0 = xi], 1 ≤ i ≤ S. Given Π0 and ω ∈ Ω1, we define the cost

J(Π0, ω) = E[
N∑

n=1

Jh(n) + λdJ
d(n) + λeJ

e(n)]. (1)

Here λd, λe ≥ 0 are weighting coefficients, and Jh(n), Jd(n), Je(n) are costs relating to the communi-
cation needs, the delay due to block coding, and the estimation error at time n, respectively. To be
specific,

• Jh(n) is the communication cost at time n. In this section we assume that entropy coding [11]
is used, so the (expected) number of bits required to transmit a random vector Z is bounded by
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H[Z] + 1, where H[Z] denotes the entropy of Z. Hence

Jh(n) =
{

0, if no transmission at time n
H[Qn|Rn] + 1, otherwise

, (2)

where Qn is the information transmitted at time n, Rn represents information sent before time n,
and H[·|·] denotes the conditional entropy.

• Jd(n) is the delay cost evaluated at time n. For simplicity, we assume that Jd(n) is equal to
the number of samples being delayed at time n. For instance, if one decided to quantize Y i+1

i−1

as a block, then Jd(i − 1) = 1 (since information about Yi−1 has not been transmitted at time
i − 1), Jd(i) = 2 (since information about both Yi−1 and Yi has not been transmitted at time i),
Jd(i + 1) = 0 (no backlog at time i + 1).

• Je(n) is the estimation error for Xn. Assume that information of Yn is contained in the quantized
block Y n+i2

n−i1
denoted by Qn+i2 for i1, i2 ≥ 0. Denote the information sent before time n − i1

by Rn−i1. Let Π̂n be the conditional PMF of Xn given {Π0, Rn−i1, Qn+i2}, and let Π̃n be the
conditional PMF of Xn given {Π0, Rn−i1 , Y

n+i2
n−i1

}. Then we define

Je(n) = ρ(Π̂n, Π̃n),

where ρ(·, ·) is some metric on the space of probabilities on X . In this paper, we take ρ to be the l1
metric on R

S. Other metrics such as the Kullback-Liebler divergence can also be used. Note that
for ease of presentation we have suppressed the dependence of Π̂n and Π̃n on appropriate variables
in the notation, but one should always keep such dependence in mind.

The joint quantization and estimation problem is to find ω∗ ∈ Ω1, such that

J(Π0, ω
∗) = min

ω∈Ω1

J(Π0, ω) := V (Π0). (3)

2.2 The dynamic programming equation

The joint quantization and estimation problem formulated in Subsection 2.1 can be recast as a stochastic
control problem and be solved using dynamic programming. As we shall see, the conditional PMF Π̂n

is the information state for the new stochastic control problem while the quantization decision ω is the
“control”.

As standard in dynamic programming, we first define a sequence of joint quantization and estimation
problems. For 1 ≤ i ≤ N , we let

Ji(Πi−1, ωi) = E[
N∑

n=i

Jh(n) + λdJ
d(n) + λeJ

e(n)], (4)

and
Vi(Πi−1) = min

ωi∈Ωi

Ji(Πi−1, ωi), (5)

where Ωi is the space of admissible quantization decisions for the time period [i,N ], and Πi−1 is the a
priori PMF for Xi−1, i.e., the initial condition for the i-th problem. Clearly for i = 1, we recover the
original problem formulated in the previous subsection.
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We denote by Θj the space of quantization (encoding) schemes for a data block of length j, say,
Y k+j−1

k for k ≥ 1. There are M j possible outcomes for Y k+j−1
k , so each Qj ∈ Θj partitions these M j

outcomes into groups and the group index will carry (compressed) information about Y k+j−1
k . In this

paper we are concerned with estimation of Xn and not reconstruction of Yn; however, considerations of
decoding (to the space Y) and the associated compression error can be easily accomodated in the current
framework once an appropriate metric is defined on the discrete set Y.

A recursive formula exists for Π̂n. Assume that for i ≥ 1, the data block Y i+j−1
i of length j is

quantized with Qj ∈ Θj and transmitted at time i+ j− 1. Let Ri represent the transmitted information
up to time i−1, and Π̂i−1 = (π̂i−1(x1), · · · , π̂i−1(xS)) be the conditional PMF of Xi−1 given Ri. Then the
estimate of Xi+j−1

i given Ri and Qj(Y i+j−1
i ) can be written in terms of Π̂i−1 and Qj(Y i+j−1

i ). Indeed,
by the Bayes rule,

Prob[Xi+j−1
i |Ri,Qj(Y i+j−1

i )] =
Prob[Xi+j−1

i |Ri]Prob[Qj(Y i+j−1
i )|Xi+j−1

i , Ri]

Prob[Qj(Y i+j−1
i )|Ri]

,

and the numerator (the denominator is just a normalizing factor) equals

S∑
s=1

Prob[Xi+j−1
i ,Xi−1 = xs|Ri]Prob[Qj(Y i+j−1

i )|Xi+j−1
i , Ri]

=
S∑

s=1

Prob[Xi−1 = xs|Ri]Prob[Xi+j−1
i |Xi−1 = xs, Ri]]Prob[Qj(Y i+j−1

i )|Xi+j−1
i , Ri]

=
S∑

s=1

π̂i−1(xs)Prob[Xi+j−1
i |Xi−1 = xs]Prob[Qj(Y i+j−1

i )|Xi+j−1
i ],

by the Markovian property.

Therefore we can write the conditional (marginal) PMFs of Xi+j−1
i as


Π̂i
...

Π̂i+j−1


 =




f1
j (Π̂i−1,Qj(Y i+j−1

i )
...

f j
j (Π̂i−1,Qj(Y i+j−1

i )


 , (6)

for some functions {f1
j , · · · , f j

j } =: fj. We now work out fj in detail for j = 1, 2.

Example 2.1 For j = 1, we have

π̂i(xl)
�
= Prob[Xi = xl|Q1(Yi), Π̂i−1]

=
(
∑S

s=1 π̂i−1(xs)als)(
∑M

m=1 1(Q1(ym) = Q1(Yi))clm)∑S
t=1(

∑S
s=1 π̂i−1(xs)ats)(

∑M
m=1 1(Q1(ym) = Q1(Yi))ctm)

, (7)

where 1 ≤ l ≤ S, and 1(·) is the indicator function.

Example 2.2 For j = 2, we first derive

π̂i,i+1(xl1 , xl2)
�
= Prob[Xi = xl1 ,Xi+1 = xl2|Q2(Y i+1

i ), Π̂i−1]

=
(
∑S

s=1 π̂i−1(xs)al1sal2l1)(
∑M

m1,m2=1 1(Q2(ym1 , ym2) = Q2(Y i+1
i ))cl1m1cl2m2)∑S

t1,t2=1(
∑S

s=1 π̂i−1(xs)at1sat2t1)(
∑M

m1,m2=1 1(Q2(ym1 , ym2) = Q2(Y i+1
i ))ct1m1ct2m2)

, (8)
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where 1 ≤ l1, l2 ≤ S. Then we have

π̂i(xl1) =
S∑

l2=1

π̂i,i+1(xl1 , xl2), (9)

π̂i+1(xl2) =
S∑

l1=1

π̂i,i+1(xl1 , xl2). (10)

Note that in Examples 2.1 and 2.2 the transition probability matrix (aij) is independent u since the
control is not involved here.

Proposition 2.1 The value functions {Vi}N
i=1 satisfy:

VN (ΠN−1) = 1 + min
Q1∈Θ1

H[Q1(YN )] + λeE[ρ(f1
1 (ΠN−1,Q1(YN )), Π̃N )], (11)

and for 1 ≤ i ≤ N − 1,

Vi(Πi−1) = 1 + min
j∈{1,2,··· ,min(B,N−i+1)}

{j(j − 1)λd

2
+ min

Qj∈Θj
{H[Qj(Y i+j−1

i )]

+λeE[
i+j−1∑
n=i

ρ(fn−i+1
j (Πi−1,Qj(Y i+j−1

i )), Π̃n) + Vi+j(f
j
j (Πi−1,Qj(Y i+j−1

i )))]}}, (12)

where VN+1(·) ≡ 0.

Sketch of proof. For i = N , no delay is possible and one quantizes YN only, which leads to (11).

For i = N − 1, one has the choice to (a) quantize YN−1 alone first and then quantize YN based on
quantized YN−1, or (b) hold on until N and quantize Y N

N−1 in one shot.

1. In choice (a), no delay is introduced so Jd(N − 1) = 0, Jd(N) = 0. Let ωN−1 = (Q1
N−1,Q1

N ) be
an admissible quantization decision, where Q1

N−1,Q1
N ∈ Θ1 are the quantization schemes for YN−1 and

YN , respectively. Then

JN−1(ΠN−2, ωN−1) = E[1 + H[Q1
N−1(YN−1)] + λeρ(Π̂N−1, Π̃N−1)

+ 1 + H[Q1
N (YN )|Q1

N−1(YN−1)] + λeρ(Π̂N , Π̃N )︸ ︷︷ ︸
T1

] (13)

= 1 + H[Q1
N−1(YN−1)] + E[λeρ(Π̂N−1, Π̃N−1)

+ E[1 + H[Q1
N (YN )|Q1

N−1(YN−1)] + λeρ(Π̂N , Π̃N )|Q1
N−1(YN−1)]︸ ︷︷ ︸

T2=JN (Π̂N−1,Q1
N )

]. (14)

Note that Π̂N−1 depends on Q1
N−1(YN−1), and Π̂N depends on both Q1

N−1(YN−1) and Q1
N (YN ). Rewrit-

ing the term T1 in (13) as T2 in (14) translates the requirement that Q1
N depend only on Q1

N−1(YN−1)
into an amenable form. In particular, the optimal Q1

N to minimize T2 will depend on Q1
N−1(YN−1)

through Π̂N−1. Minimizing (14) with respect to ωN−1 and plugging (6) for Π̂N−1 , we get

V a
N−1(ΠN−2)

= 1 + min
Q1∈Θ1

{H[Q1(YN−1)] + λeE[ρ(f1
1 (ΠN−2,Q1(YN−1)), Π̃N−1) + VN (f1

1 (ΠN−2,Q1(YN−1)))]}.
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2. In choice (b), we have Jd(N − 1) = 1 and Jd(N) = 0. Minimizing over Q2 ∈ Θ2, we have

V b
N−1(ΠN−2)

= 1 + λd + min
Q2∈Θ2

{H[Q2(Y N
N−1)] + λeE[

N∑
n=N−1

ρ(fn−N+2
2 (ΠN−2,Q2(Y N

N−1)), Π̃n)]}.

Then VN−1(ΠN−2) = min{V a
N−1(ΠN−2), V b

N−1(ΠN−2)}, which satisfies (12).

Similar arguments can be used to prove the cases for i < N − 2. �

Remark 2.1 In solving (11) and (12) one also obtains the optimal quantization policy for each stage.
Concatenating the optimal quantization schemes (with variable block length) yields the optimal quanti-
zation decision for our original problem (3).

3 Numerical Results

In this section we discuss issues in numerically solving the DP equations (11) and (12), and present
simulation results.

3.1 Partition enumeration

In solving the DP equations, we need to enumerate and compare all partition (encoding) schemes for
the finite, discrete sets Yj, 1 ≤ j ≤ B, where Yj is the product space of j copies of Y. Each partition for
Yj corresponds to an element of Θj. For a discrete set D, the number of partitions grow rapidly with
the cardinality nD of D. How to enumerate all partitions without repetition is an important issue since
repetitions might substantially add to the computational complexity.

We have developed an effective method to eliminate all redundant partitions. The procedure consists
of two steps. In the first step a tree-structured algorithm is used to find all the partition patterns.
Then in the second step we remove remaining redundant partitions by making use of the “characteristic
numbers”. We now describe these two steps in detail.

By the partition pattern for a (disjoint) partition of the set D , we mean a nonincreasing sequence
of positive integers where each integer corresponds to the cardinality of one cluster in the partition. For
example, if we partition a 7-element set into 3 clusters, one with 3 elements and the other two with 2
elements each. Then the partition pattern is (3 2 2). Different partitions may share the same partition
pattern. Our enumeration approach is to first list all partition patterns, then list all corresponding
partitions for each pattern.

To list all patterns we construct a tree as follows. Each node of the tree has two properties, “current
value” and “remainder”. The root node has “current value”= 0 and “remainder” = nD. The root has nD

children whose “current value”s are nD, nD−1, · · · , 1, respectively. The “remainder” of each node equals
its parent node’s “remainder” minus its own “current value”. For a non-root node with “current value”
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Figure 2: Tree-structured pattern generation for partitions.

i1 and “remainder” i2, it will have i0 = min(i1, i2) children whose “current value”s are i0, i0 − 1, · · · , 1,
respectively. A node is a leaf if its “remainder” is 0. Every path from the root to a leaf is identified with
a partition pattern if we read off the “current values” of the nodes (except the root) along the path.

Figure 2 illustrates the pattern generation for nD = 5. For each node the number inside the paren-
thesis is its “remainder” while the number outside is its “current value”. We immediately have all the
patterns: (5), (4 1), (3 2), (3 1 1), (2 2 1), (2 1 1 1), (1 1 1 1 1). We note that if the “current value” of
a node is 1, then either it’s a leaf or it has only one child, and hence there is only one path passing this
node. This observation helps reducing complexity in practice.

Given a pattern, we generate all the corresponding partitions by choosing appropriate numbers of
elements from D and putting them into groups. Take the example for nD = 5 and let (3 2) be the
pattern. By selecting 3 elements for the first group and leaving the rest 2 elements for the second, we
can list all 10 partitions for this pattern, and none of them are redundant.

However, if an integer number greater than 1 occurs more than once in a pattern, repetitive enu-
meration of certain partitions will occur. For the pattern (2 2 1), naive enumeration gives 20 partitions;
however, a more careful investigation reveals that only 15 of them are distinct. Such redundancies can
be virtually removed using the characteristic numbers of partitions. To be specific, we first order all
elements in D and map them one-to-one to elements of {1, 2, · · · , nD} (denoting the map as I), the
latter being called the indices of the former.

Assume that the current pattern of interest contains two ip for some ip > 1 (the method can be
extended easily to the case of more than two ip existing in the pattern). Given a partition P1 consistent
with the pattern, we locate the two clusters C1, C2 that have ip elements. We then let

c1 =
∑
d∈C1

(I(d))3, c2 =
∑
d∈C2

(I(d))3. (15)

We call the pair (c1, c2) (after being ordered) the characteristic numbers of the partition P1. By modifying
the construction method of characteristic numbers if necessary (although the one in (15) works quite well
for the many cases we have tested), the mapping from (C1, C2) to (c1, c2) becomes one-to-one, and we
can determine easily whether the partition being enumerated has been listed before through comparison
of the characteristic numbers.
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In addition to redundancy removal in partitioning, we also observe that in (12) many evaluations
repeat for each i. This also helps to speed up the calculation.

3.2 Simulation results

We have conducted calculation and simulation for a two-state, two-output hidden Markov chain. The
maximum length B for block coding is 2, and N = 10. The matrices (aij) and (cij) we use are

(aij) =
[

0.2 0.4
0.8 0.6

]
, (cij) =

[
0.3 0.7
0.1 0.9

]
,

By varying the weighting constants λd and λe, we compute and store a family of optimal quantization
policies. Then for the initial condition Π0 = (0.9, 0.1), we obtain 50 sample output trajectories by
simulation. Each quantization policy is applied to these output trajectories, and the average accumulative
communication cost J̄h, delay J̄d, and estimation error J̄e are calculated.

In Figure 3(a), each curve shows the variation of combined communication cost and delay vs. the
estimation error as λe is changed (λd is fixed for each curve). The vertical axis is J̄h + λdJ̄

d and the
horizontal axis is J̄e. We have also found that (not seen in the figure), for λd = 5.0, the accumulative
delay cost = 0 (exclusively sequential quantization); for λd = 0.9, the accumulative delay cost = 5.0
(exclusively block-coding of length 2); while for λd = 1.15, variable-length block coding is observed.
Figure 3(b) shows the variation of combined communication cost and estimation error vs. the delay as
λd is changed, where the vertical axis is J̄h + λeJ̄

e and the horizontal axis is J̄d. From the figures we
see that jointly optimal quantization decisions vary with the weighting coefficients, and by appropriately
choosing these coefficients we can achieve the desired tradeoff among different objectives.
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Figure 3: (a) Weighted combination of communication cost and delay vs. estimation error (points with
lower estimation error corresponding to higher λe); (b) Weighted combination of communication cost
and estimation error vs. delay (points with smaller delay corresponding to higher λd).
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4 Joint Quantization and Control

In this section we formulate and solve the joint quantization and control problem.

4.1 Problem formulation

Consider Figure 1. We now restrict ourselves to sequential vector quantization of Yn, i.e., at any time
n, we quantize Yn and transmit it. Denote the quantization scheme at n as Qn ∈ Θ1, and denote
qn = Qn(Yn). Let δn = (Qn, Un). We call {δn} jointly admissible if Un depends only on {Π0, q

n
0 , Un−1

0 },
and Qn depends only on {Π0, q

n−1
0 , Un−1

0 }. Fix N ≥ 1. We denote by ∆0 the space of jointly admissible
quantization schemes and controls from time 0 to time N − 1.

Given the initial condition Π0 for X0 and {δn}N−1
0 ∈ ∆0, we define the cost function

J(Π0, {δn}N−1
0 ) = E[

N−1∑
n=0

λcJ
c(n) + Jp(n)], (16)

and the value function
V (Π0) = min

{δn}N−1
0 ∈∆0

J(Π0, {δn}N−1
0 ), (17)

where λc ≥ 0 is a weighting constant, and Jc(n) and Jp(n) are the costs relating to communication and
performance at time n, respectively. Jc(n) takes the form of Jh(n) in Section 2 if entropy coding for qn

is used, and Jc(n) = log2|qn| if a plain coding for qn is used, where |qn| denotes the number of possible
outcomes of qn. In the following we let Jc(n) = h(qn) for some suitable function h(·). We assume that
Jp(n) depends on the state and the control, Jp(n) = gn(Xn, Un), for some function gn(·, ·).

4.2 The dynamic programming equation

As in solving the joint quantization and estimation problem, we first define a sequence of joint quanti-
zation and control problems. For 0 ≤ i ≤ N − 1, we let

Ji(Πi, {δn}N−1
i ) = E[

N−1∑
n=i

λch(Qn(Yn)) + gn(Xn, Un)], (18)

and
Vi(Πi) = min

{δn}N−1
i ∈∆i

Ji(Πi, {δn}N−1
i ), (19)

where ∆i is the space of jointly admissible quantization schemes and controls from time i to time N − 1,
and Πi is the initial condition for the i-th problem.

We denote by Π̄i = {π̄i(x1), · · · , π̄i(xS)} the conditional PMF of Xi given Π0, qi−1
0 (and the corre-

sponding quantization schemes), and U i−1
0 . We can derive a recursive formula for Π̄i,

Π̄i+1 = f̄(Π̄i, qi, Ui), (20)

10



for some function f̄(·, ·, ·). To be specific, for 1 ≤ l ≤ S,

π̄i+1(xl) =
∑S

s=1 als(Ui)π̄i(xs)(
∑M

m=1 1(Qi(ym) = qi)csm)∑S
t=1 π̄i(xt)(

∑M
m=1 1(Qi(ym) = qi)ctm)

. (21)

Proposition 4.1 For Q ∈ Θ1, we denote by AQ the space of functions mapping the range of Q to U .
The value functions {Vi}N−1

i=0 satisfy:

VN−1(ΠN−1) = min
QN−1∈Θ1

min
αN−1∈AQN−1

E[λch(qN−1) + E[gN−1(XN−1, αN−1(qN−1))|qN−1] ], (22)

where qN−1 = QN−1(YN−1), and for 0 ≤ i ≤ N − 2,

Vi(Πi) = min
Qi∈Θ1

min
αi∈AQi

E[λch(qi) + E[gi(Xi, αi(qi))|qi] + Vi+1(f̄(Πi, qi, αi(qi)))], (23)

where qi = Qi(Yi). From the solutions {(Q∗
i , α

∗
i )}N−1

i=0 to (22) and (23) one can construct the jointly
optimal quantization and control schemes.

Sketch of proof. We sketch the proof for the cases i = N − 1 and i = N − 2, and the rest can be proved
analogously.

For i = N − 1, we have

J(ΠN−1, (QN−1, UN−1)) = E[λch(qN−1) + gN−1(XN−1, UN−1)] (24)
= E[λch(qN−1) + E[gN−1(XN−1, UN−1)|qN−1] ]. (25)

Since UN−1 is measurable with respect to qN−1, it can be expressed as αN−1(qN−1) for some αN−1 ∈
AQN−1. Minimizing over QN−1 and αN−1 thus gives (22).

For i = N − 2, we first rewrite

J(ΠN−2, {δn}N−1
N−2) = E[λch(qN−2) + E[gN−2(XN−2, UN−2)|qN−2] +

E[λch(qN−1) + gN−1(xN−1, UN−1)|qN−2, UN−2]︸ ︷︷ ︸
T3=JN−1(f̄(ΠN−2,qN−2,UN−2),(QN−1,UN−1))

]. (26)

Since UN−2 depends only on qN−2, we have UN−2 = αN−2(qN−2) for some αN−2 ∈ AQN−2. Then it’s
not hard to see that minimization of (26) leads to (23). �

Remark 4.1 By rewriting the cost functions as in (25) and (26), we express the cost in terms of the
“observables” to the receiver. As in the joint quantization/estimation problem, the conditional PMF Π̄n

of Xn turns out to be the information state (or the sufficient statistic), and it determines the optimal
quantization/control scheme.

4.3 An example problem

We take the machine repair problem from [12] (pp. 190) as an example. A machine can be in one of
two states denoted by P (Proper state) and P̄ (Improper state). If the machine starts in P and runs
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for one period, its new state will remain P with probability 2
3 , and if it starts in P̄ , it will remain in

P̄ with probability 1. At the beginning of each time period, one take an inspection to help determine
the machine’s state. There are two possible inspection outcomes denoted G (Good) and B (Bad). If the
machine is in P , the inspection outcome is G with probability 3

4 ; if the machine is in P̄ , the inspection
outcome is B with probability 3

4 .

After each inspection, one of two possible actions can be taken, C (operate the machine for one
period) or S (stop the machine and perform maintenance, then operate the machine for one period).
The running cost for one period is 2 units if the machine is in state P̄ , and is 0 if it is in P . The action
S makes sure that the machine is in P but it costs 1 unit.

To relate this problem to the joint quantization/control problem discussed earlier, we assume that
the inspection outcome needs to be sent to a remote site for action decision. A plain coding scheme
requires one bit to send the information G or B. The only other quantization scheme for {G,B} is to
cluster these two outcomes, in which case no information is sent and 0 bit is required for communication.
The constant λc now carries an interpretation of communication cost per bit. A different interpretation
of λc would be the cost for each inspection if we assume that the inspection is optional.

Given an initial condition of the machine, the problem is to decide at the beginning of each time
period whether to communicate the inspection outcome and what action to take based on the received
information, so that the total cost is minimized. One can show that the value function of this problem
is concave and piecewise linear. We have obtained the explicit solution for N = 2. Now let Prob[X0 =
P ] = 2

3 . Then one of the following four joint quantization/control strategies becomes optimal depending
on the value λc:

(a) At time 0, send the inspection outcome Y0, and let U0 = C(S, resp.) if Y0 = G(B, resp.); At
time 1, send Y1, and let U1 = C(S, resp.) if Y1 = G(B, resp.);

(b) At time 0, send Y0, and let U0 = C(S, resp.) if Y0 = G(B, resp.); At time 1, if Y0 = G, send
Y1 and let U1 = C(S, resp.) if Y1 = G(B, resp.), and if Y0 = B, let U1 = C without transmitting
Y1;

(c) At time 0, send Y0, and let U0 = C(S, resp.) if Y0 = G(B, resp.); At time 1, let U1 = C
without transmitting Y1;

(d) At time 0, let U0 = C without transmitting Y0; at time 1, let U1 = S without transmitting Y1.

The optimal strategy is 


(a) if λc ≤ 1
12

(b) if 1
12 < λc ≤ 5

28
(c) if 5

28 ≤ λc < 11
36

(d) if λc ≥ 11
36

.

In Figure 4, we show the expected accumulative running and maintenance cost vs. the expected bits
of communication for these four strategies. The thresholds of λc for switching of the optimal strategy
correspond to the negative slopes of the line segments connecting the neighboring points in Figure 4.
Hence when the communication cost per bit increases, the optimal strategy tends not to transmit the
inspection outcome.

12



0 0.5 1 1.5 2
1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

Communication bits

R
un

ni
ng

 &
 M

ai
nt

en
an

ce
 c

os
ts

(a) 

(b) 

(c) 

(d) 

Figure 4: Running and maintenance costs vs. communication bits for jointly optimal strategies.

5 Conclusions and Future Work

In this paper we have studied the problem of joint quantization, estimation, and control of a hidden
Markov chain. We first investigated the joint quantization and estimation problem, where vector quanti-
zation with variable-block length was considered. Then we formulated and solved the joint quantization
and control problem. The common theme for these two problems is that a weighted combination of
different costs is minimized. By varying the weighting coefficients, one can obtain a family of optimal
quantization/control schemes that reflect different tradeoff strategies. Simulation and a simple example
have been used to illustrate the results.

The framework presented in this paper can be extended to continuous-range systems. It is also
possible to incorporate the case of noisy communication. Ongoing work involves joint consideration of
quantization of the control input.
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