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This thesis consists of two separate studies on Pr2−xCexCuO4 (PCCO), a member

of the electron-doped high temperature cuprate superconductor family: specific heat

and the Nernst effect.

We measured the specific heat of PCCO single crystals in order to probe the

symmetry of the superconducting order parameter, to study the effect of oxygen

reduction (annealing) on bulk properties of the crystals, and to determine proper-

ties like the condensation energy and the thermodynamic critical field. The order

parameter symmetry has been established to be d-wave in the hole-doped cuprates.

Experiments performed on electron-doped cuprates show conflicting results. Differ-

ent experiments suggest s-wave symmetry, d-wave symmetry, or a transition from

d-wave to s-wave symmetry with increasing cerium doping. However, most of these

experiments are surface sensitive experiments. Specific heat, as a bulk method of

probing the gap symmetry is essential in order to convincingly determine the gap

symmetry. Our data proposes a way to reconcile all these conflicting results regard-



ing the gap symmetry. In addition, prior specific heat measurements attempting

to determine thermodynamic properties like the condensation energy were not suc-

cessful due to inefficient methods of data analysis or poor sample quality. With

improvements on sample quality and data analysis, we reliably determined these

properties.

The second part of this thesis is a study of the Nernst effect in PCCO thin

films with different cerium dopings. We probed the superconducting fluctuations,

studied transport phenomena in the normal state, and accurately measured Hc2 by

using the Nernst effect. After the discovery of the anomalous Nernst effect in the

normal state of the hole-doped cuprates, many alternative explanations have been

proposed. Vortex-like excitations above Tc, superconducting fluctuations, AFM

fluctuations, and preformed Cooper pairs are some of these proposals. The electron-

doped cuprates, due to their significant differences from the hole-doped cuprates

in terms of coherence length and the phase stiffness temperature (a measure of

superfluid density) are the ideal materials to test these ideas. Our data on the

electron-doped cuprates does not show any anomalous Nernst effect, and hence it

supports the superconducting fluctuations picture among the various proposals.
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Chapter 1

Introduction

Superconductivity was discovered experimentally by H. Kamerlingh Onnes in 1911

on a mercury sample right after 4He was liquified[1]. In the following years many

metals and simple compounds were found to exhibit superconductivity below 23 K.

However, the mechanism of this low temperature phenomenon was not understood

until a microscopic theory was developed by Bardeen, Cooper, and Schrieffer (BCS)

in the 1950’s [2, 3]. BCS theory showed that superconductivity was a result of

the condensation of pairs of electrons (Cooper pairs) into a coherent ground state,

and the pairing mechanism was phonon mediated (the idea of electrons forming

pairs due to electron-phonon interaction was first suggested by Fröhlich before BCS

theory [4]). The Cooper pair formation, which implies an attraction between the

electrons, can be understood as follows: an electron in a solid forms a potential

well around itself by attracting the positive ions around them. When two such

electrons approach each other, they can reduce their energy by sharing each others

potential well (through phonon exchange between the ions), and forming a larger

potential well. By sharing each others potential well they effectively attract each

other. BCS theory made many predictions almost all of which were proven correct

by experiments, which established it as the microscopic theory of superconductivity

by the late 1960’s. For a comprehensive treatment of superconductivity as of 1968

see volumes I and II of the book ”Superconductivity” (collection of review articles
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written by distinguished experts of each field) edited by R. D. Parks [5].

The upper limit for superconductivity was projected from BCS theory to be

around 30-40K since it was thought that lattice instabilities would destroy Cooper

pairing in the strong coupling regime [6]. For many years this prediction was

not challenged experimentally and the highest known transition temperature (Tc)

achieved was Tc=23 K in the A-15 compounds. Then, in 1986 Alex Müller and Georg

Bednorz discovered superconductivity in a ceramic sample of LaBaCuO (LBCO) at

≈30 K [7]. This unexpected discovery was the beginning of a new era in the history

of superconductivity, and researchers around the world started trying every possible

combination of materials to look for superconductivity in these copper oxide ce-

ramics, or cuprates. Six months after the discovery of superconductivity in LBCO,

groups from the University of Alabama-Huntsville and University of Houston syn-

thesized a new superconductor by substituting yttrium for lanthanum in LBCO [8].

The new compound, YBa2Cu3O7 (YBCO), was superconducting at ≈90 K! In the

following years such high transition temperatures were found in many different sys-

tems [8, 9, 10] and the transition temperature of the cuprates has been lifted up

to 138 K by using a mixture of thallium, mercury, copper, barium, calcium, and

oxygen. Clearly 138 K is much higher than 23 K (the highest Tc before cuprates),

which suggests that BCS theory and the phonon induced pairing mechanism may

not the right models to describe superconductivity in these multi-component and

complicated materials. The cuprates are also called high-temperature superconduc-

tors (HTSC) to contrast them with the prior ”low-Tc” materials.

The most important question of high-temperature superconductivity research

today, which is also the motivation for our research, is to understand the mechanism

of high-temperature superconductivity. Such understanding could in turn open the

way for the synthesis of superconductors of even higher transition temperatures.

When making a comparison between the mechanism of superconductivity in high-Tc

cuprates and in the conventional superconductors, the first question to ask is whether

3



superconductivity occurs as a result of condensation of electrons into a coherent

state. In other words ”are there Cooper pairs in cuprate superconductors”? The

answer to this question has been given by experiments measuring flux quantization

in cuprates, and similar to conventional superconductors electron pairs are found to

be responsible for superconductivity in the cuprates.

The next step is obviously to understand if the electron pairs are coupled through

the electron-phonon interaction, or to answer the question ”what is the pairing mech-

anism in cuprates”? The answer to this question has not been firmly established yet,

and there are many proposed answers. However, candidate explanations involving

proximity to an antiferromagnetic (AFM) state have been gaining more support

than the other proposals in the last several years (see references [11, 12, 13, 14] for

detailed reviews about the mechanism of superconductivity in high-Tc cuprates).

There are several reasons for the increased popularity of the models involving the

proximity to an AFM state, most importantly the confirmation of their pairing sym-

metry prediction in one of the cuprate families-the hole-doped cuprates (an overview

of the two cuprate families is given in Section 1.1). Electrons in conventional super-

conductors pair up due to phonons, and therefore the pairing interaction is isotropic,

i.e. there is no preferred direction in k-space. The pairing of the electrons around the

Fermi surface creates a range of energies which are depleted of single electron exci-

tations. This is called the superconducting gap, and it is a fundamental property of

superconductivity in both the low-Tc and high-Tc superconductors. The isotropic

electron-phonon interaction leads to an isotropic superconducting gap (there are

several exceptions to this statement like MgB2 [15]) This type of pairing symme-

try is called s-wave symmetry. However, models involving AFM do not predict

an isotropic pairing symmetry, instead they predict a pairing symmetry in which

the pairing amplitude (superconducting gap) goes to zero on four points (nodes)

around the Fermi surface and in which the phase of the pairing symmetry changes

sign across these nodes. This type of symmetry is called d-wave symmetry (see Fig.

4



-

+

-

+
kX

d-wave symmetrys-wave symmetry

∆∆∆∆ ∆∆∆∆(θθθθ)

kX

kYkY

Figure 1.1: Superconducting gaps with s-wave and d-wave symmetry.

1.1).

The d-wave symmetry has been firmly established experimentally for the hole-

doped cuprates, however the situation is not as clear in the other cuprate family- the

electron-doped cuprates. It is essential to know the symmetry of the electron-doped

cuprates as well. One of the main questions that this thesis deals with is the pairing

symmetry in electron-doped cuprates, and specific heat measurements are used to

probe the gap symmetry of the electron-doped cuprates.

Before discussing the experiments probing the symmetry of the order parameter

in the two families of cuprates, a brief overview of the similarities and differences

between electron and hole-doped cuprates will be made.

1.1 Electron vs hole doping of the cuprates

Despite the absence of any experimental proof, the copper oxide planes are con-

sidered to be responsible for superconductivity in these materials. The cuprate

superconductors are obtained by doping a parent compound which is an antiferro-
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magnetic insulator with holes or electrons. Depending on the type of doping, the

cuprates are called electron-doped cuprates [16] or hole-doped cuprates. For exam-

ple La1.85Sr0.15CuO4 (LSCO) is a superconductor that has a Tc=39K. The parent

compound for LSCO is La2CuO4 (LCO) which is an antiferromagnetic (AFM) in-

sulator (for antiferromagnetism in La2CuO4 see Ref. [17] and references therein).

By replacing La3+ (lanthanum) with Sr2+ (strontium), holes are introduced to the

copper-oxide planes. At about 0.02 extra holes per copper oxide plane, the AFM

is suppressed, and the material enters into a new state, which is still not well-

understood. If the material is doped further with holes superconductivity appears

with a very low transition temperature at 0.06 extra holes per copper oxide plane.

Further doping increases the number of carriers per copper-oxide plane and also

increases Tc. At about 0.15 extra holes per copper oxide plane the Tc reaches a

maximum temperature, and then reduces with further doping. The superconduc-

tivity completely disappears when the carrier density reaches 0.3 extra holes per

copper oxide plane. Hence in a doping versus temperature phase diagram, super-

conductivity occurs under a dome-like structure (see Fig. 1.2). The electron-doped

cuprate NCCO has a very similar phase diagram in which superconductivity is ob-

tained by replacing Nd3+ with Ce4+ and hence doping the copper oxide planes of

an AFM insulator with electrons [18]. The magnetic properties of electron-doped

cuprates and the suppression of AFM with cerium doping have been studied mainly

by neutron scattering [19, 20, 21] and muon spin resonance [22]. Similar to the

hole-doped LSCO where the maximum Tc is obtained at 0.15 extra holes per CuO

plane, the maximum Tc in the electron-doped NCCO (or PCCO) is obtained at 0.15

extra electrons. However, the superconducting dome in electron-doped cuprates is

much narrower in doping, and lower in temperature (see Fig. 1.2).

The crystal structure of electron-doped and hole-doped cuprates is very similar as

can be seen in Fig. 1.3. Fig. 1.3 shows a comparison of the crystal structure in LSCO

and NCCO. LSCO has an orthorhombic structure, whereas NCCO has a tetragonal
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Figure 1.2: The right side on the x-axis is the phase diagram for electron-doped

cuprate superconductor Nd2−xCexCuO4 (NCCO) and the left side is the phase dia-

gram for hole-doped cuprate LSCO. The ”?” on the electron-doped side is due to

the lack of consensus regarding the pseudogap state in the electron-doped cuprates.
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Figure 1.3: Crystal structure of the parent compound for the hole doped cuprate

LSCO, and electron-doped cuprate NCCO.
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Figure 1.4: Schematic Fermi surface of LSCO x=0.15 from Ref [23].

crystal structure [16]. Both LSCO and NCCO have a perovskite structure with one

layer of CuO plane, however unlike LSCO NCCO does not have the apical oxygen.

Our current understanding is that in both of the cuprate families the elements

between the copper-oxide planes act like a charge reservoir for the copper-oxide

planes and they are not otherwise involved in superconductivity.

In addition to the crystal structure the Fermi surfaces are also similar for the

hole and electron-doped cuprates, they both have cylindrical Fermi surfaces. See

Fig. 1.4 for a schematic of the Fermi surface in cuprates, and Fig. 1.5 for ARPES

(Angular Resolved Photoemission Spectroscopy) pictures of the Fermi surface of

electron-doped and hole doped cuprates. An important point that will be referred

to later in the specific heat chapter is the green areas in Fig. 1.5-a. These areas are

the intersecting regions of the magnetic Brillouin zone with the Fermi surface, and

they are the areas in which the AFM fluctuations are strongest. They are called

hot-spots, and they are common in both the electron and hole-doped cuprates (Fig.

1.4 is from Ref. [23], Fig. 1.5-a is from Ref. [24] and Fig. 1.5-b is from Ref. [25]).

The fact that electron-doped and hole-doped cuprates look very similar in terms

of crystal structure, Fermi surface, and phase diagram suggests that whatever mech-

anism makes one of them superconducting is responsible for the superconductivity

in the other as well, and hence the pairing symmetry of both families should be the

9



(a)
(b)

Figure 1.5: (a)-The Fermi surface of electron-doped cuprate NCCO from Ref. [24]

and (b)- hole doped cuprate LSCO from Ref. [25]. Even though the dopings of the

two materials are different, the general features of the Fermi surfaces are similar.
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same. However, even though the general features look alike, the details are quite dif-

ferent between the two families. First of all, the superconductivity occurs in a much

narrower doping range in the electron-doped family compared to the hole-doped

family. In addition Tc’s in the electron-doped family are much lower than in the

hole-doped family. Another main difference between the two families is the doping

range in which AFM is observed; in the electron-doped cuprates the AFM occurs

over a much broader doping range. In order to address the question of whether these

quantitative differences between the two families affect the pairing mechanism, we

studied the pairing symmetry in the electron-doped cuprates and compared it with

the established pairing symmetry, d-wave, of the hole-doped cuprates.

The pairing symmetry of hole-doped cuprates has been well-studied by many ex-

periments which include both surface-sensitive experiments and bulk measurements.

Consistent results from these different experiments have shown that the gap sym-

metry is dx2−y2 in the hole-doped cuprates [26, 27]. The situation is less clear in the

electron-doped cuprates. Early penetration depth [28, 29, 30] and Raman scatter-

ing [31] experiments on electron-doped(n-type) Nd1.85Ce0.15CuO4 (NCCO) suggested

s-wave symmetry. Recent penetration depth [32, 33], tri-crystal [34], photoemis-

sion [24, 35], Raman scattering [36] and point contact tunneling experiments [37]

on NCCO and Pr2−xCexCuO4 (PCCO), mostly x=0.15, favor d-wave symmetry.

In addition to these measurements which show s-wave or d-wave symmetry, there

are penetration depth [38] and point contact tunnelling [37] experiments that have

shown evidence for a change in the order parameter as the doping changes from

under-doped (d-wave) to over-doped (s-wave). The latest penetration depth mea-

surements performed on high quality PCCO thin films showed an anisotropic s-wave

symmetry for all dopings [39]. However, since most of these prior measurements on

the n-type cuprates are surface sensitive, there is a need for bulk measurements

(e.g. specific heat) to convincingly determine the pairing symmetry, as was the case

for the p-type cuprates [40, 41, 42, 43]. Our specific heat study is an attempt to
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Figure 1.6: Density of electronic states for s-wave and d-wave superconductors. This

figure is from Ref. [45].

satisfactorily answer the question of pairing symmetry in electron-doped cuprates.

1.2 Introduction to specific heat

Specific heat in the simplest form is the amount of heat necessary to increase the

temperature of a material by a unit amount. Depending on whether the pressure or

the volume is kept constant, the specific heat is shown by Cp or Cv respectively. In

our measurements the pressure is kept constant, hence Cp is measured. The specific

heat of a metal in general has contributions from electrons, phonons, and possibly

from magnetic structure of the material. For an extensive review of specific heat of

a metal at low temperatures see Ref. [44].

The electronic specific heat of a metal is given by:

Cel ≡ ∂u

∂T
=

∂

∂T

∫
Ef(E)N(E)dE (1.1)

where u is the internal energy, N(E) is the density of states, and f(E) is the

Fermi-Dirac distribution function [46]. As mentioned, the specific heat is sensitive

to low temperature electronic excitations. Different gap symmetries have different

density of electronic states (see Fig. 1.6). Conventional low-Tc superconductors
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Figure 1.7: Electronic specific heat of aluminum in the normal (H>Hc) and super-

conducting states. The low temperature electronic specific heat decays exponentially

to zero. This figure is from Ref. [48].

show an s-wave gap symmetry, i.e the gap is non-zero in every direction on the

Fermi surface (see Fig. 1.1). Since there is a non-zero gap everywhere on the Fermi

surface, the probability of creating a quasiparticle due to thermal fluctuations goes

exponentially to zero as T → 0. This shows up in specific heat as an exponential

temperature dependence as T → 0, Cel ∝ T−1.5e−∆/kT [47], where ∆ is the energy

gap. See Fig. 1.7 for an example of exponential decay of electronic specific heat in a

conventional superconductor aluminum, and references [48, 49, 48, 50] for specific

heat measurements in different low-Tc superconductors.

For a dx2−y2-wave superconductor electronic excitations exist even at the lowest

temperatures (see Fig. 1.6), since the superconducting gap goes to zero in certain

directions (the nodes, i.e. along the 110 direction in k-space). The dx2−y2 super-
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conducting gap can be simply represented as ∆ = ∆0 cos(2θ), where ∆0 is the gap

maximum. Due to the finite slope of the gap as one gets close to the nodes (θ = 45o),

the density of states increases linearly with energy, N(E) ∝ E. At very low tem-

peratures, T ¿ ∆, only the quasiparticle spectrum close to the nodes is populated.

Therefore, for low temperatures one can insert N(E) ∝ E in Eq. 1.1, and integrate

around a kBT of the Fermi energy. This first order approximation results in an

electronic specific heat that is proportional to T 2, Cel ∝ T 2 for T¿Tc [51].

In the mixed state, there are two types of quasiparticle excitations in the bulk

of the superconductor: bound states inside the vortex cores, and extended states

outside the vortex cores. In conventional s-wave superconductors, the in-core bound

states dominate the quasiparticle spectrum. The vortex core and the bound states

in these cores can be modelled like a particle in a box. As is well-known the spacing

between the bound energy levels of a particle in a box is inversely proportional to

the square of the size of the box (ε0 = ~2/mξ2, where ε0 is the spacing between

the energy levels, or as is also called in literature the ”minigap”, and ξ is the

coherence length). As the size of the box gets larger, the population of these energy

levels approaches a continuum. Thus the in-core bound states of a conventional

s-wave superconductor are heavily populated due to their large coherence length,

and therefore dominate the quasiparticle excitation spectrum [52]. Since the core

of the vortices is assumed to be a continuum of quasiparticle excitations, a single

vortex can be considered as a unit for these quasiparticle excitations. The number

of vortices is linearly proportional to the magnetic field H, therefore the electronic

specific heat, which is a measure of the density of these quasiparticle excitations,

is also linearly proportional to the magnetic field [52]. For an example of field

dependence of a conventional superconductor see Ref. [53]. A rigorous derivation

gives:

Cel = κγnT
H

Hc2(T )
, (1.2)

where γn is the Sommerfeld coefficient, κ is a geometrical factor of order 1, and
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Hc2(T ) is the upper critical field at the particular temperature the measurement is

performed. The Sommerfeld constant, γn, is proportional to the density of states at

the Fermi level (N(Ef )) [54]:

γn =
1

3
π2N(Ef )k

2
B. (1.3)

In a superconductor with lines of nodes(i.e. a d-wave superconductor), the ex-

tended quasiparticles outside the vortex core dominate the excitation spectrum.

Volovik et al. [51, 55] showed that the supercurrents around the vortex cores cause

the energy spectrum of these extended quasiparticles to be Doppler shifted by an

amount ~~k.~vs, where ~k is the quasiparticle momentum and ~vs is the superfluid ve-

locity. This energy shift excites the quasiparticles above the small superconducting

gap near the nodes. This mechanism is not important in conventional s-wave su-

perconductors since a magnetic field of the order of Hc2 would be needed to excite

the quasiparticles above the superconducting gap. The Doppler shift is most effec-

tive near the nodes on the Fermi level. It is enough to look at the density of these

excitations at the Fermi level in order to understand the H1/2 dependence of the

electronic specific heat. The quasiparticle DOS at the Fermi level for a single vortex

can be written as:

N(0) =

∫
d3k

(2π)3

∫
d2rδ[E(k, r)− ~~k.~vs] (1.4)

The average superfluid velocity < vs > is inversely proportional to the inter-vortex

spacing R(H). On the other hand, the area integral over r in Eq. 1.4 should be

extended from the core of one vortex until the core of the next vortex since the

extended quasiparticles rather than the vortex cores are the dominant contribu-

tion. This integral results in an area proportional to R2(H). Therefore, N(0) is

proportional to R2(H)× 1/R(H) = R(H).

The inter-vortex spacing R(H) is proportional to inverse square root of the mag-

netic field, R(H) ∝ 1/
√

H. The field dependence of the inter-vortex spacing can be
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qualitatively understood as follows: Since extended quasiparticles are considered,

the vortex can be considered to occupy an area of A0 (not the area of the vortex-

core) which extends up to the next vortex. This area in the simple case of a square

lattice is just equal to R2(H), and in general it is proportional to the square of the

inter-vortex separation. Therefore the total area of the sample is occupied by n

vortices each of which occupies an area of A0. Hence, nA0=Asample=constant. Since

the number of vortices is proportional with H, the total area occupied by each vortex

is proportional to 1/H. Since A0 ∝ R2(H), and A0 ∝ 1/H then R(H) ∝ 1/
√

H. The

number of vortices is linearly proportional to H, therefore the quasiparticle DOS is

proportional to H × 1/
√

H =
√

H [51, 55, 56]. Thus, the electronic specific heat for

a d-wave superconductor is proportional to
√

H at T=0. For non-zero temperatures

there is a temperature dependent minimum field after which the
√

H dependence

should be observed [51, 55]. For more detailed discussions of the quasiparticle DOS

around a d-wave vortex and the influence of d-wave symmetry on the vortex-core

see references [57, 58, 59].

In addition to electronic excitations the specific heat includes the phonon con-

tribution and a possible Schottky contribution. At low enough temperatures the

phonon specific heat has a T 3 temperature dependence [54]:

Cphonon = βT 3 =
12π4

5
nkB(

T

θD

)3 (1.5)

where θD is the Debye temperature and n is the number of atoms per formula unit.

The Debye temperature and β are the two often quoted parameters, and they are

related to each other by the simple relation: θD = 10(1944n
β

)1/3[60], where β is in

units of mJ/moleK4. The phonon specific heat is independent of magnetic field. As

a rule of thumb the phonon specific heat shows this T 3 type temperature dependence

at T < θD/50. At higher temperatures higher order terms of the lattice harmonic

approximation (T 5, T 7, ...etc) should be included [54]. Our experiments are all in

the temperature range that the T 3 type description is valid for the phonon specific
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heat, and the higher order contributions are negligibly small.

The Schottky contribution to the specific heat can have various sources. Ex-

trinsic residual paramagnetic centers (electronic Schottky effect) in the sample or

intrinsic electronic and nuclear moments are some of the possible sources for this

contribution to the specific heat [61]. However, all Schottky contributions have sim-

ilar field and temperature dependencies but on a different scale; i.e. the nuclear

Schottky contribution is usually at lower temperature than electronic Schottky con-

tribution but the two have the same temperature dependence, shown in Fig. 1.8.

The paramagnetic centers usually act like two-level spin systems (S=1/2). This

type of contribution has been identified in many cuprates and is strongly sample

dependent (due to the different density of paramagnetic centers). The contribution

of these two-level spin systems to the specific heat is given by [61]:

CSch =
Nx2ex

(1 + ex)2
, x =

gµBH

kBT
, (1.6)

where N is the density of the paramagnetic centers, µB is the Bohr magneton, and

H is the effective field on these paramagnetic centers. The Schottky contribution

becomes effective when the thermal energy, kBT , becomes comparable to the level

spacing of the magnetic system, gµBH. This contribution goes to zero when kBT À
µBH since both of the spin levels would be equally populated, and there would be

only a few transitions between them. It also goes to zero when kBT ¿ µBH

since only the level with the lower energy would be populated (see Fig. 1.8). In the

intermediate temperatures there would be transitions between these levels and hence

a significant contribution to the specific heat. Therefore the Schottky contribution

shows up as a hump in the C vs T at constant H, or C vs H at constant T (only

the temperature dependence is shown in Fig. 1.8, but the field dependence looks the

same as temperature dependence). For the electronic Schottky effect the peak of this

hump usually occurs around 1-2 K, and in most experiments the high temperature

tail of this contribution is observed at the measurements above 2 K. This high
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Figure 1.8: Temperature dependence (at a constant field) of a typical Schottky heat

capacity [61].

temperature tail shows a 1/T 2 type temperature dependence. The nuclear Schottky

effect has a peak below 1K (see Fig. 3.8 for an example of nuclear Schottky effect

in a PCCO crystal). For a detailed discussion of the Schottky heat capacity see

Ref. [61].

One last contribution to the specific heat in cuprates is a zero-field residual spe-

cific heat that has a linear temperature dependence γ(0)T . The origin of this contri-

bution is not known, however there have been several suggestions: a band of normal

state-like excitations within the nodal regions of the gap created by impurity scatter-

ing [45], gapless superconductivity [62], or contributions from non-superconducting

regions in the sample [63]. However, none of these explanations has been experi-

mentally proven and has attained broad acceptance yet. This residual specific heat

is highly sample dependent and its magnitude has gradually decreased as the sam-

ple quality improved, however, even in the highest quality samples it has not gone

below 1 mJ/mole-K2. It has also been observed that the magnitude of this contribu-

tion significantly decreases in YBCO upon detwinning and upon oxygenation [64].

Since twins and oxygen vacancies act as scattering centers, this observation was

interpreted as a connection between impurity scattering and the zero field residual
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specific heat [45].

1.3 Pseudogap and the Nernst effect

Gap symmetry is an important ingredient of any model attempting to explain the

mechanism of high temperature superconductivity, however in the last several years

the normal state properties as a precursor to the superconductivity have become the

focus of research in the cuprates. These efforts have resulted in the discovery of a

pseudogap in the normal state. The origin of pseudogap and its connection with the

superconducting gap are some of most intensively studied topics of current research

in the cuprates [65].

One of the possible explanations of the pseudogap is superconducting fluctua-

tions above the transition temperature. Superconducting fluctuations in their sim-

plest form are due to small regions of normal material becoming superconducting

by releasing some of their thermal energy to their vicinity (for reviews of supercon-

ducting fluctuations in conventional superconductors see Ref. [66, 67, 68, 69] and

for superconducting fluctuations in cuprates see Ref. [70, 71, 72, 73, 74]). For this

to be possible the temperature should be close to the transition temperature, and

the limit for closeness is set by the energy required to create Cooper pairs. Since

the superconducting region can not be smaller than the size of a Cooper pair (ξ,

the coherence length), the minimum required energy to create a superconducting

fluctuation is proportional to ξ2, the area of the region becoming superconducting

(2D fluctuations are considered). The coherence length of the cuprates is in turn

very small, usually two orders of magnitude smaller than in the conventional su-

perconductors. In addition, the transition temperature Tc is much higher in the

cuprates which makes fluctuations in the thermal energy larger. For a comparison

of the fluctuation regime in the conventional superconductors and high temperature

superconductors see Ref. [70]. Therefore, it is much easier to create superconducting

19



fluctuations in cuprates compared to the conventional superconductors, and hence

the superconducting fluctuations occur over a much broader temperature region in

cuprates compared to conventional superconductors.

One of the sensitive probes of superconducting fluctuations is the Nernst ef-

fect. The Nernst effect is a thermomagnetic effect, in which a transverse poten-

tial difference is induced in the presence of a longitudinal thermal gradient and a

perpendicular magnetic field [75]. The sensitivity of the Nernst effect is due to

the negligibly small Nernst effect of normal carriers and the relatively large vortex

Nernst signal characteristic of the mixed state in a superconductor [76]. Therefore,

at temperatures above Tc and in the presence of a large enough magnetic field, the

superconducting fluctuations would have vortices in them, and hence would have a

much larger Nernst effect compared to the normal part of the material. In the early

years of high-Tc superconductivity this large Nernst signal was used to determine

the fluctuation region in the cuprates. For example, in optimally-doped YBCO for

example a Nernst signal due to superconducting fluctuations was observed at tem-

peratures as high as 10K above Tc [77, 78, 79]. However, most of the prior Nernst

effect studies were made on the optimally-doped compounds.

Recent Nernst effect measurements [80, 81, 82, 83] on hole-doped cuprates have

shown very surprising results. Especially in the under-doped regime of these cuprates,

an anomalous Nernst signal has been observed to persist to temperatures up to 50-

100 K above Tc, and to magnetic fields much larger than the resistive Hc2 (see Fig.

4.2 and Section 4.3 for a more detailed discussion of this anomalous Nernst effect).

The authors have interpreted this anomalous signal above the conventional Tc or

Hc2 (the Tc or Hc2 of resistivity and magnetization) as evidence for vortex-like ex-

citations above Tc or Hc2. The onset temperature of the anomalous Nernst effect,

Tν , has been defined as the onset of Cooper pair formation. In this picture there is

a temperature (or field) at which the Cooper pairs start to form, and another tem-

perature(or field) below which the Cooper pairs attain phase coherence throughout
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the sample. Therefore, the Tc (or Hc2) of resistivity measurements corresponds to

the temperature (or field) that coherence has been obtained, whereas the onset of

the anomalous Nernst signal corresponds to the temperature (or field) of the Cooper

pair formation. This qualitatively agrees with the phase fluctuation model proposed

for HTSC [84].

The onset temperature of this anomalous Nernst effect increases as the doping is

reduced, which is analogous to the doping dependence of the onset temperature of

the pseudogap, T∗, in these compounds (see Fig. 4.2). However, Tν is significantly

less than T∗. In addition unlike T∗ which continues to increase as the doping is

reduced (T∗ continues to increase down to x≈0.03 in LSCO), Tν peaks at a certain

doping (for example the peak of Tν is at x≈0.1 for LSCO) [81]. Tν goes to zero

at the lowest doping that superconductivity is observed (see Fig. 9 in Ref. [81]).

The similarity between the doping dependence of the pseudogap onset temperature

T∗ and the onset temperature of anomalous Nernst signal Tν has been proposed as

evidence for a relation between the phase fluctuations and the pseudogap. However,

the difference in the magnitude of Tν and T∗ clearly rules out the possibility of

the pseudogap being due to phase fluctuations. For an extensive review on the

pseudogap see Ref. [65].

Electron-doped cuprates have shown two different pseudogaps. Tunnelling spec-

troscopy experiments have shown a low energy gap comparable in size to supercon-

ducting gap when the superconducting state is suppressed with magnetic field [85,

37]. On the other hand optical conductivity (T* > 292 K [86] to T*=110 K [87]),

photoemission [88], and Raman spectroscopy [89] (T*=220 K) experiments have

shown evidence for a high energy gap similar to the pseudogap in the hole-doped

cuprates. Since the previous Nernst effect studies of the electron-doped cuprates

concentrated on temperatures below Tc or at temperatures much higher than Tc,

we decided to study the Nernst effect of the electron-doped cuprates on an extended

temperature, field, and doping range with the question of pseudogap and the extent
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of the superconducting fluctuations in mind. In this chapter a brief introduction

will be made to the Nernst effect in normal metals, superconductors, and in a metal

with two bands of conduction with carriers of different sign. A detailed description

of the Nernst effect using Boltzmann transport theory is given in Appendix-A. A

report of our Nernst effect data and its implications is given in Chapter 4.

1.4 The Nernst effect

As mentioned before the Nernst effect is a thermomagnetic effect, in which a trans-

verse potential difference is induced in the presence of a longitudinal thermal gra-

dient and a perpendicular magnetic field. In a normal metal the charge carriers

moving along a thermal gradient accumulate on the cold side of the sample and

they induce an electric field opposing the thermal force. This electric field in turn

induces an electric current in the opposite direction to the thermal current. In

steady state these two currents are equal in magnitude and opposite in sign, so that

Jx=0(assuming the thermal gradient is in the x̂ direction). In the presence of a

magnetic field along ẑ direction, the carriers moving in +x̂ and −x̂ directions will

be deflected to opposite sides along the y-axis. In the simplest case of a spherical

Fermi surface and one type of carrier, these two currents will be equal to each other,

and no transverse voltage will be induced. However, in general the two currents will

not cancel out exactly because of the energy dependence of the scattering time [90]

(the significance of the energy dependence of the scattering time will become more

clear at the end of this section). In order to satisfy the boundary condition of Jy=0

(since it is an open circuit), a transverse potential has to be induced, which is the

Nernst voltage. The Nernst effect is usually defined in terms of the transverse elec-

tric field, Ey, instead of the transverse voltage Vy in order to eliminate the geometry

dependence. In this thesis the Nernst effect is presented in terms of the the quantity

ey = Ey/|∂xT |. The standard way of representing the Nernst effect in metals is by
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the Nernst coefficient, Q, which is Q = ey/H. Using Q instead of ey does not cause

any confusion for a normal metal due to the linear magnetic field dependence of the

transverse electric field (Lorentz force gives qE = −v ×B). However in the mixed

state of a superconductor the field dependence of the Nernst effect is not linear, and

hence a linear scaling with the magnetic does not have any meaning. In order to

keep a consistent notation in the normal and superconducting states, the Nernst

effect is represented with ey rather than Q, and ey is referred to as the

Nernst signal.

The Nernst effect measurements were made on thin film PCCO samples. In

order to establish a temperature gradient, the sample is attached on one-side to a

thermal sink, and on the other side it is free (like a diving board). A small heater is

attached on the free side of the sample, and two thermometers are attached on the

hot and cold side of the sample in order to monitor the temperature gradient. The

transverse voltage (the Nernst voltage) is measured by a voltmeter with nanovolt

sensitivity (Keithley 2182). For a schematic of the setup see Fig. 1.9.

1.5 Nernst effect in superconductors

For superconductors the thermomagnetic effects have a different mechanism. In

the Meissner state at T=0 the superconducting condensate has a uniform entropy,

and there are no single charge carriers like electrons or holes. Therefore, applying

a thermal gradient does not induce any flow. For T>0 there are quasiparticles

which experience a thermal force and a pinning force. In the case of thermal force

overcoming the pinning force these quasiparticles flow along the thermal gradient.

In the mixed state there are vortices and flux lines that carry additional entropy

compared to the superconducting condensate around them. Vortices also experience

a pinning force, fp, which prevents them from flowing. In the case of an applied

thermal gradient, the flux lines carrying a transport entropy per unit length of Sφ
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Figure 1.9: Schematic diagram of the Nernst effect measurement technique.

experience a thermal force per unit length of:

~fth = −Sφ
~∇T (1.7)

In the absence of pinning this force induces a vortex flow, with velocity vφ, opposite

to the thermal gradient. This in turn causes dissipation and balances the thermal

force:

η~vφ = −Sφ
~∇T, (1.8)

where η is the damping coefficient. This vortex flow induces a transverse electric

field q ~E = −~vφ × ~B [91]. If there is pinning, the viscous flow of vortices is observed

when the thermal gradient and the magnetic field are large enough for the thermal

force to overcome the pinning force. This flow can be represented by:

η~vφ = −(~fp + Sφ
~∇T ) (1.9)

Unlike the single carrier Nernst effect, the vortex Nernst effect is not small, and

it is the dominant thermomagnetic effect in the superconducting state. The vortex
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Figure 1.10: The Nernst effect of a conventional low-Tc superconductor PbIn as a

function of magnetic field. The large peak is the vortex-Nernst peak which dimin-

ishes very quickly to zero above Hc2. The small peak is not related to our discussion

in this thesis. The figure is from Ref. [92].

Nernst effect has a very different magnetic field dependence than the linear field

dependence of the normal state Nernst effect. The vortex Nernst effect is zero until

a certain depinning field in which the vortex lattice transforms to a vortex liquid and

vortices become mobile. With increasing field both the number of vortices and their

mobility increases, and hence the vortex Nernst signal. Above a certain field the

vortex Nernst signal starts to decrease since the mobility of the vortices decreases

due to enhanced vortex-vortex interactions and this dominates the increase in their

number. Therefore the vortex Nernst signal peaks at a certain field and decreases

afterwards, reaching zero at a field close to Hc2 (see Fig. 1.10 for Nernst effect on

a conventional superconductor PbIn). It is in principle easy to separate the vortex

Nernst signal and the normal state Nernst signal because of this very different field

dependence and also because of the large difference between the magnitude of these

signals.
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Chapter 2

Samples and Experimental Setup

2.1 Sample preparation

The specific heat measurements were made on single crystals of PCCO, whereas

the Nernst effect measurements were made on thin film samples. The details of

the crystal growth and sample characterization can be found in original papers

written by our group [93], therefore only a summary of crystal growth and some

details regarding the crystal annealing are given here. However, considerable time

and effort were spent by the author on crystal growth since having high-quality,

well-characterized crystals was crucial for the experiments to be described later. In

particular growing high-quality crystals large enough for specific heat measurements

was one of the major contributions of this work. Another contribution of the author

in terms of crystal growth was to grow over-doped PCCO crystals. The original

crystal growth work on PCCO had concentrated on the optimally-doped compound,

and there were no over-doped crystals. Single crystal PCCO of x=0.16 and x=0.17

concentration have been grown and made superconducting as a result of our work.

In addition to growing crystals with CeO2 as the cerium source, as was used by our

group in the past, crystals using a new cerium source, (NH4)2Ce(NO3)6, have been

grown (the advantages of this cerium source are discussed below).

Single crystals of PCCO are grown using a high temperature directional solidifi-
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cation technique. In this technique a CuO flux is mixed with the reaction powders

in a ceramic crucible and placed in a furnace. The mixture is heated above the

melting point of CuO and the reaction powders form a uniform mixture in liquid

CuO environment. A temperature gradient is created across the crucible when the

furnace temperature is slowly reduced since the the lower parts of the crucible cool

faster than the upper parts (the heating filaments are on the top side of the furnace).

Crystal growth starts when the furnace temperature reduces below the melting point

of the mixture.

Before the crystal growth is started, the powders that will be used are dried

(in air) to remove any water vapor they might have. This is done to get the

weight of the powders more accurately. Pr6O11 is dried at 950 oC for 12 hours, and

(NH4)2Ce(NO3)6 is dried at 110 oC for 2-3 hours. Then the powders are weighed in

the correct amounts and a solid-state mixture of Pr6O11, CeO2 or (NH4)2Ce(NO3)6,

and CuO powders is prepared. If (NH4)2Ce(NO3)6 is used for Ce, the mixture is

stirred in acetone for about 45 minutes in order to dissolve and separate the ammo-

nium from cerium oxide, and obtain smaller particle size for cerium oxide. Smaller

particle size is important in order to get a better mixture, and hence more homoge-

neous samples. If CeO2 is used as the cerium source then a solid state mix is enough.

Usually better mixtures of powders are obtained by stirring them in a ball-milling

machine for several hours.

Next the mixtures are filled into a crucible. Whichever size crucible one uses

it is important to have the crucible around 80-90 % full. This is because molten

flux creeps out of the crucible and a significant portion of it is lost. Therefore it

is important to have some material left behind that will form the crystals. The

initial work on different crucibles (Al2O3, ZrO2, and Pt) showed that all crucibles

were corroded to a certain extent from the melt at high temperatures. The Al2O3

crucibles were the least corroded and therefore Al2O3 crucibles were preferred for

the crystal growth.
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The high melting temperature of the powders require the inclusion of the flux

which reduces the melting point of the compound. The amount of CuO used in

the starting material is chosen to be 4 to 6 times more than the amount needed

by just calculating from the chemical formula. The melting temperature of the

compound decreases as the amount of CuO powder in the mixture is increased and

the melting point of the compound can be changed between 1100oC to 1500oC. In

the particular case of the most common growth conditions used in our group the

growth temperature when 4 times the amount of CuO in the composition of PCCO

is used as flux is roughly 100 K above the growth temperature when 6 times the

amount of CuO in the composition of PCCO is used as the flux.

The most frequently used crucible is the Al2O3 crucible from Coors ceramic

company (CH50, catalog number 65504). The crucible volume is enough to hold

80-85 grams of PCCO mixture. Therefore roughly 70 grams of mixture is usually

used for a single growth. The initial studies on NCCO crystals [93] showed that

in order to get x=0.15 of Ce in Nd2−xCexCuO4 the initial mixture Nd2−yCeyCuO4

should have y=0.08 of Ce and hence 2-y=1.92 of Nd. This is due to the different

solubilities of Nd and Ce in CuO. Similar ratios between the starting composition

and the end composition are also valid for PCCO. Considering all these issues a

typical growth of PCCO x=0.15 has the following amounts of starting material in

the mixture: 40.00±0.01 grams CuO , 27.11±0.01 grams Pr6O11, 1.44±0.01 grams

CeO2.

In order to have a good thermal contact between the crucible and the furnace,

the crucible is inserted in a high-temperature brick, carved in a way as to cover

the crucible except at the top-most 1/3 of the crucible. This is also important to

protect the bottom of the furnace from the creeping flux. Also a lid of the same

high temperature brick is placed on top of the crucible cap to prevent the cap from

falling when the flux creeps out (see Fig. 2.1). This lid protects the mixture from

impurities that might fall from the top of the oven. However this lid should not be
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Figure 2.1: The crucible and the high temperature bricks for crystal growth.

too heavy, since in that case the extra flux would not be able to creep out, and it

might stick to the surface of the crystals. This would require mechanical cleaning of

the crystal surface from this flux after the growth. In a typical growth the crystal

surfaces have a small amount of this flux, and better crystals are mostly clean of

this flux.

The crystals grow in platelet-like structures. The growth starts when the tem-

perature is slowly decreased after the mixture is soaked about an hour at the highest

temperature. The slow cool down introduces a temperature gradient across the mix-

ture and the growth happens from bottom up as the temperature reduces below the

melting point. This gradient is important in order to have a slow and uniform crys-

tal growth. However, the magnitude of the temperature gradient established across

the mixture also depends on the position of the crucible in the furnace. Usually the

position of the crucible is off center, and in the particular case of Lindberg Type
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Figure 2.2: A typical crystal growth sequence.

51333 furnace(furnace with a maximum temperature of 1500oC) used in our group,

the crucible is placed 12.5 cm from the front and 2.5 cm from the left side of the

furnace. The best crystal growth occurs when a gradient of 20 K/cm is established

across the mixture. To get such a gradient a cool down of 4-5 K/hr is required.

A typical growth (in air) follows the procedure shown in Fig. 2.2. This procedure

follows previous work and was developed empirically.

After the crystals are grown big crystals at the top surface are picked up with

tweezers. Otherwise the crucible is broken in order to make extraction of the crystals

easier. After the crystals are selected they must be annealed in order to make them

superconducting. The annealing reduces the oxygen content of the crystals. The

as grown crystals are semiconducting, and reducing the oxygen content changes the

carrier density.

Due to the difficulty of removing oxygen from the T’ structure of PCCO (see

30



Fig. 1.3), the annealing (reduction) is made at quite high temperatures (850 oC-

900 oC), and a very slow flow of argon gas (or any other inert gas) is maintained.

The best annealing results were accomplished by the following sequence: warm up

from room temperature to 900 oC at 5 oC/min, anneal the crystals at 900 oC for 48

hours, cool down to 700 oC at 1.8 oC/min, and then a natural cool down to room

temperature (usually at 5 oC/min). Depending on the thickness of the crystals

the annealing time could be more than 48 hours. This is because of the longer

time needed for the oxygen to diffuse through the crystal. The diffusion constant of

oxygen in PCCO has not been measured, therefore we are not able to say if 48 hours

is enough time to anneal a thick crystal (thickness >30 µm). However no significant

difference in Tc or ∆Tchas been observed at longer annealing times even for crystals

as thick as 50-60 µm. Crystals thicker than this need to be annealed between 5-

8 days at 900 oC. Magnetization measurements (using a Quantum Design SQUID

magnetometer) have shown that crystals thicker than 30 µm tend to have broader

superconducting transitions. This is an indication that oxygen is not uniformly

reduced for these thick crystals. Since specific heat measurements usually require

thick crystals (larger mass), considerable effort was devoted to getting as uniform a

reduction as possible even for thick crystals.

As mentioned before, the annealing furnace has to be sealed to air. However this

is not very easy at such high temperatures. Even though a continuous flow of argon

is maintained, there will still be some air, and therefore some oxygen, leaking into

the system. In order to further reduce this oxygen a small amount of titanium is

kept in a separate alumina boat next to the sample boat. Titanium is very reactive

with oxygen, and it has a high tendency to form TiO2 at such high temperatures.

Therefore, Ti acts like an oxygen sink (getter). Because of such harsh conditions of

annealing, the crystals have to be protected from the non-uniform annealing that

could result from the top surface of a crystal being closer to Ti, or rapidly changing

oxygen partial pressure around the crystal. This is accomplished by placing the
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crystals between two PCCO pellets, and also by covering these pellets with PCCO

powder [94]. After the annealing procedure is over, usually the top layer of the

PCCO powder is seen to be heavily reduced and it changes color. The color of this

layer becomes brownish, unlike the bottom layers which are still black, similar to

the original powder before the annealing is made.

Thermogravimetric analysis (TGA) has shown that the oxygen starts to leave the

sample at 770 oC. Therefore, the annealing temperature should be at least 770 oC.

However, since the reduction would be very slow at this temperature usually higher

temperatures are used. On the other hand, the temperature should not be very

high either, because of two important reasons: crystal dephasing and Cu and Ce

ion migration from the crystal surface. The phase stability temperature of electron-

doped cuprates decreases as the partial oxygen pressure increases [95]. Therefore,

it is very important to seal the furnace very well, and minimize the amount of air

leaking into it.

As discussed later, X-ray measurements show that the crystals are single phase.

However, prior wavelength dispersive spectroscopy (WDX) measurements have shown

that the crystal surface becomes Cu deficient after the oxygen reduction if the an-

nealing time is too long or temperature is too high. Crystals annealed under the

conditions outlined in this section do not have these problems.

2.2 Preparation of polycrystallane samples

As mentioned above, the powders are dried before they are weighed. Pr6O11 is

dried at 950 oC for 12 hours and (NH4)2Ce(NO3)6 is dried at 110 oC for 2-3 hours.

Unlike the single crystal growth every oxide is added in the same proportion as in

the final product, i.e. for an optimally doped polycrystal Pr is 1.85, Ce 0.15, and

Cu 1 in the starting mixture. For example if a pulsed laser deposition (PLD) target

is prepared the following amounts are used:
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12.60±0.01 grams of Pr6O11

3.29±0.01 grams of (NH4)2Ce(NO3)6,

3.18±0.01 grams of CuO.

The weighed amounts of the oxides are put in an agate mortar, and 25 ml of

acetone is added to the mixture. If CeO2 is used as the Ce source then a solid

state mixture with ball-milling machine is enough, and no mixing with acetone is

necessary. The acetone and powder mixture are stirred slowly until the acetone

evaporates. In order to get a better mixture usually another 25 ml of acetone is

added, and the mixture is again stirred until the acetone dries. This mixture, after

it dries completely, could then be mixed in the ball milling machine for several hours

if the amount of material is large enough (larger than about 30 grams).

After this mixing procedure the powders are transferred to the alumina crucibles.

The first heating of the mixture is made at 900 oC for 24 hours. Since temperature

gradients are not desirable for polycrystal sample growth, the powders are placed

in the center of the furnace where the temperature is supposed to be more uniform.

The temperature is ramped up at 100 oC/hr, and the cool down is at 300 oC/hr.

After the temperature cools down to room temperature, the powders are usually

hardened to a solid piece. This solid piece is grounded as finely as possible. Then

the mixture is heated up to 1050 oC with a ramp up rate of 300 oC/hr, and cool

down rate of 300 oC/hr. The mixture is kept at 1050 oC for 24 hours.

After the material cools down, it is usually even harder than it was after the first

heating. This solid piece is again grounded very finely. It is very important at this

stage to get the powder as fine and as uniform as possible, otherwise it is inevitable

that the polycrystalline sample or the target made out of this powder would crack.

After the grinding the fine powder is pressed into pellets. The pressing is made at

20-25 ktons, and the sample is kept at this pressure for a few minutes. Once the

pressure drops down to 10 ktons or so the pressure is increased to 20 ktons again

and kept there for a few minutes. This procedure is repeated at least three times.
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These pellets are then sintered at 1100 oC for 24 hours. Both the ramp up rate

and the cool down rate are 300 oC/hr. In order to make the as grown samples

superconducting the samples should be annealed at 900 oC for 4-10 hours in argon

flow with a ramp up rate of 300 oC/hr, and cool down rate of 100 oC/hr. If the

samples are pulsed laser deposition targets no annealing is necessary.

These procedures, both for single crystal growth and polycrystalline sample

preparation, have been developed empirically. Different procedures have been tested

and the conditions described in this section are the conditions that produced the

best samples.

2.3 Characterizing the samples

There are certain measurements that must be done before a sample can be used

in any of the experiments discussed in this research. Depending on the type of

the sample, the characterization techniques that are used vary. In the first years

of electron-doped cuprate crystal growth in our group, extensive studies have been

made to characterize the samples. For a complete account of these studies see

Ref [93]. However some of these measurements have been repeated for the crystals

that were used in our experiments, and therefore we will summarize these experi-

ments.

For a single crystal, the first check made before the sample is used in any ex-

periment is to measure magnetization vs temperature of the sample with a SQUID

magnetometer (see Fig. 2.3). As is well known superconductors have a strong dia-

magnetic signal at T < Tc, and above Tc there is a weak paramagnetic signal. This

measurement is a quick and non-destructive way of determining Tc and ∆Tc. In

case of a thin-film sample, the Tc and ∆Tc are determined by measuring the ac-

susceptibility of the sample. It is usually the imaginary part of the ac-susceptibility

that determines these parameters. The imaginary part of ac-susceptibility shows a
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peak during the normal-to-superconducting transition. The mid-point of this peak

is the Tc and the full-width at half maximum determines ∆Tc. The magnetization

measurements can in principle be used to calculate the volume fraction of supercon-

ductivity. Dividing the saturation value of the magnetic moment to the volume of

the sample and the magnetic field should result in -1/4π for a sample that is 100%

superconducting. The volume of the sample can be accurately calculated as follows:

multiplying the number of moles (mass/molecular weight) of the sample by Avo-

gadro’s number (6.02×1023) results in the number of unit cells our sample contains,

and multiplying this number of unit cells with the volume of a unit cell results in the

volume of our sample. However, certain conditions have to be satisfied in order to

obtain a reliable estimate for the volume fraction of superconductivity in the sam-

ple. The sample should be cooled in zero field, even a few Oersted of magnetic field

trapped in the magnet could change the saturation magnetization significantly (for

PCCO the magnetization of a sample field-cooled at 5 Oe can be 10-20 % that of

the zero-field cooled magnetization of the same sample). In addition the field in the

magnet should be known accurately, i.e. having 5 Oe instead of 4 Oe in the magnet

would result in 25 % error in the volume fraction of superconductivity. The sample

should be placed such that the demagnetization factor would be minimal, and small

enough magnetic fields should be applied such that only a negligible portion of the

superconducting sample becomes normal because of the applied field.

X-ray diffraction is used to check whether any dephasing has occurred during the

growth or the annealing of the crystals. Both powder samples and single crystals

are studied using a Siemens four-circle x-ray machine. In the case of single crystals

the sample is aligned using the most prominent peak along the 001 direction, the

006 peak. Data for a typical PCCO x=0.15 single crystal is shown in Fig. 2.4. The

absence of any extra peaks shows that the sample has a single-phase.

Another technique used in sample characterization is wavelength dispersive x-ray

spectroscopy (both WDX and WDS are used in the literature). WDS is a technique
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Figure 2.3: Magnetization vs temperature of an optimally doped PCCO single crys-

tal measured at H= 1 Oe.

used to determine the concentration of each element in the sample (for a general

discussion of this technique see Ref. [96]). It works best for elements heavier than

oxygen. In our case this technique is mainly used to determine the cerium doping

and doping uniformity of the crystals. Both WDS and EDS require a clean surface

for accurate measurements. The measurements were made in a JEOL JXA-8900

superProbe machine. This machine has up to 5 wavelength dispersive spectrometers

and an energy dispersive spectrometer (EDS). WDS rather than EDS has been

used in our measurements because of the necessity of high resolution required to

differentiate between Ce and Pr. Due to the close proximity of the energy level

spacings of Pr and Ce (Kα and Kβ energies), the resolution of EDS is not enough

to differentiate between them (the resolution of EDS is 150 eV compared to 5 eV of

WDS). Another advantage of WDS over EDS is the low detection limit ( 0.01 wt %

in WDS compared to 0.1-1.0 wt % in EDS). However, EDS also has its advantages

like fast qualitative analysis that could check for any type of impurity in the samples,

such as Al impurities from the crucibles.
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Figure 2.4: X-ray spectroscopy of an optimally doped PCCO single crystal on (a)-

normal, (b)-logarithmic scale. The absence of any unaccounted peaks shows that

the crystal is single phase.
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The beam diameter in our WDS measurements was 2 µm (but the beam actually

expands while penetrating the sample) and the acceleration voltage was 15 kV.

The beam penetrates about 5 µm into the sample and an average concentration of

approximately 50 µm3 of a volume of the sample is obtained. Due to the narrow

beam diameter both the uniformity in the ab-plane and along the c-axis could be

studied. Our measurements have shown that the cerium concentration changed by

3-5 % between randomly selected points in the ab-plane for the optimally-doped

and over-doped crystals. However, the variation of cerium concentration along the

c-axis for thick crystals (thickness>30µm) has been measured to be larger [97, 93].

For most of our work we use crystals less than 30 µm thick which have uniform

cerium concentration. For optimum doping different crystals of any batch have Ce

concentrations that varied between 0.145 − 0.155. In addition using Pr2CuO4 as

the standard for Pr, and CePO4 as the standard for Ce produced the most reliable

results in terms of Ce concentration.

Another point that should be mentioned about the WDS measurements is the

sample preparation when Ce concentration along the c-axis is measured. Due to

the size of the crystals along the c-axis (10-30 µm), it is not easy to make sure that

the crystals will not move when they are hit by high energy electron beam (the

crystals have to sit on their thin side in order to study the c-axis uniformity). In

particular if the crystals are fixed by just a conducting tape, they would vibrate

when they are hit by the electron beam since the tape holding the crystal would

melt. Therefore, the crystals were inserted in a low viscosity epoxy (from Buehler,

resin part number 20-8140-032 and hardener part number 20-8142-016) and then

the epoxy was polished so that the surface of the crystal would be exposed to the

electron beam. Using low viscosity epoxy is important to assure that the epoxy

would diffuse thoroughly around the crystal. The polishing was made with diamond

polishing compound of various particle sizes changing from 6 µm to 0.25 µm again

from Buehler(part number 40-6249 for 6 µm, part number 40-6246 for 3 µm, part
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Figure 2.5: ac susceptibility vs temperature for a PCCO x=0.15 crystal.

number 40-6122 for 1 µm and 40-6102 for 0.25 µm). The polishing cloth was also

from Buehler (part number 40-7112).

Ac susceptibility is another non-destructive technique used to characterize the

single crystal samples. Susceptibility, χ, is defined as the derivative of the magne-

tization with respect to the applied magnetic field: χ=dM/dH, where M is magne-

tization and H is the applied magnetic field. Depending on the type of the applied

magnetic field the susceptibility is called ac or dc susceptibility. At very low fre-

quencies samples in general have similar responses to the ac and dc magnetic fields.

However, at higher frequencies usually there is a phase difference, φ, between re-

sponse of the sample (in terms of magnetic moment) and the phase of the applied

ac magnetic field. This is mainly due to dynamic effects in the sample. Hence,

the ac susceptibility in general is defined to have two components to represent this

phase difference between the sample moment and the applied field: the in phase

component χ′ = χcos(φ) and the out of phase component χ′′ = χsin(φ). At low
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frequencies χ′ is basically equal to χ and it is the slope of the M-H curve. A non-zero

χ′′ is an indicative of dissipative processes in the sample [98].

In the case of superconductors χ′ ≈0 in the normal state and χ′ ≈-1 in the

superconducting state (since superconductors are perfect diamagnets). χ′′ becomes

non-zero slightly below the superconducting transition temperature since the ap-

plied ac field creates vortices in the superconducting sample, which in turn cause

dissipation. The dissipation depends on the number of vortices and their mobil-

ity [76]. The mobility of vortices is high close to Tc, and at lower temperatures the

vortices get pinned, hence their mobility is reduced. Therefore a peak like structure

is observed in χ′′.

The dependence of ac susceptibility on the frequency and magnitude of the

applied ac magnetic field has been used to extract a wealth of information including

the critical temperature, the irreversibility line [98], the critical current [99], and

the nature of superconductivity in the weak links between the grains of granular

superconductors [100].

In our case χ′′ is just used to determine Tc and ∆Tc of our crystals. A Quantum

Design PPMS ac susceptibility probe is used to study the crystals and a home-made

ac susceptibility setup is used to study the thin films. The midpoint of χ′′ is taken as

the Tc and the FWHM of this peak is taken as ∆Tc (see Fig. 2.5). However one should

be careful when using this technique since the results of the measurements strongly

depend on the frequency and amplitude of the ac signal used for the measurements.

In particular the amplitude of the ac signal should be kept as small as possible for

most accurate results. See Fig. 2.6 for the dependence of Hc2 on frequency and

amplitude (the Tc also has a similar dependence). The location of the peak reduces

to lower temperatures (fields) when the amplitude of the signal is increased, since at

higher amplitudes the pinning becomes effective at lower temperatures (fields). The

frequency dependence is also due to a similar mechanism. The peak in χ′′ appears

when the applied ac field fully penetrates the sample as the vortices move from the
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boundaries of the sample towards the center of the sample. As the frequency of

the applied field is increased less time is available for the vortices reach the center,

and hence a weaker pinning is enough to prevent the vortices from reaching the

center of the sample. Hence higher transition temperatures are observed at higher

frequencies [101, 102]

Resistivity was rarely used to characterize the single crystal samples in this work

since the crystals used for resistivity measurements are usually not usable for any

other measurement (due to the electrical contacts on the crystal). Therefore, it is

generally the last experiment done on a crystal for characterization purposes. All the

thin film samples on the other hand were characterized by measuring their resistivity

prior to the Nernst effect measurements. Four electrical contacts are placed on the

crystal or the thin film sample for this measurement. The outer two contacts are

used for current contacts and the inner two are used for the voltage contacts. In the

case of crystal samples it is important to connect the current contacts to the side of

the crystal in order to get a uniform current distribution. Silver paint is used for the

contacts on the crystals (Leitsilber 200 silver paint from TedPella Inc, part number

16035). The contacts have to be annealed at 500 C for about 1 hour in order to get

contact resistance of about 1 Ω. The contacts on the thin film samples on the other

hand are soldered on them (Ag-In is used to make the contacts).

Both c-axis and ab-plane resistivity have been studied for the optimally-doped

and over-doped crystals (see Fig. 2.8 for a typical c-axis resistivity of an optimally

doped crystal) and ab-plane resistivity has been used to characterize the thin film

samples (see Fig. 2.7). For characterization purposes there are several parameters

that are important to check in order to get an idea about the quality of a sample.

The first two are obviously the Tc and ∆Tc. In addition the value of the residual

resistivity before the sample goes through the superconducting transition is an im-

portant parameter. This resistivity shows the impurity concentration in the sample,

and the smaller it is the better. An optimally doped sample with less than 30 µΩ-
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Figure 2.7: ab-plane resistivity of a PCCO x=0.15 thin film.
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Figure 2.8: c-axis resistivity of a PCCO x=0.15 single crystal.
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cm residual resistivity can be considered a good sample, which suggests that the

thin film shown in Fig. 2.7 is a typical sample rather than a good sample. Another

parameter to check is the ratio of the room temperature resistivity to the residual

resistivity. This ratio gives an idea about how successfully the annealing has been

done. An annealing procedure resulting in a ratio of 5-6 is considered be a successful

annealing.

2.4 Experimental apparatus

Two systems were used for the experiments reported in this thesis: an Oxford

Research cryostat with a home-made probe and related electronics and a Quantum

Design Physical Property Measurement System (PPMS).

The Oxford cryostat has a 9T superconducting magnet, in which the magnetic

field could be increased up to 11T by pumping on the lambda plate. This system

does not have a nitrogen jacket, instead the liquid helium bath is isolated from the

environment by vacuum jackets and a super insulation layer. Cooling below 4.2K

is achieved by collecting liquid helium into the variable temperature insert and re-

ducing the pressure on it by pumping with a mechanical pump. The probe for this

system is home-made, and small changes on the probe design have been made by

the author in order to reduce the thermal load on the sample by better thermalizing

the wires before they make contact with the sample and also by establishing better

thermal contact of the sample with the cold parts of the probe. In addition, the

wiring of the probe has been modified in order to reduce the cross-talk between the

wires by passing the wires through grounded stainless steel tubing. The tempera-

ture of the probe is monitored by a Lakeshore cernox thermometer (cx-1050) and

controlled by a Lakeshore temperature controller (93-CA). Keithley 2182 and 182

nanovoltmeters, and Keithley 220 and 224 current sources are used for the various

experiments performed in this system.
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The other system used was the Quantum Design Physical Property Measurement

System (PPMS). Fig. 2.9 shows the sample holder and the sample space for this

system (the pictures are from the Quantum Design’s PPMS brochure). The system

has multiple thermometers and heaters to monitor and control the temperature.

There are two thermometers at the bottom of the probe close to the sample, and

one thermometer in the top region of the probe close to the neck. The temperature

is monitored by a platinum thermometer above 80 K and by a Lakeshore cernox-

1050 thermometer below 100 K. These thermometers are at the bottom of the probe

close to the sample puck connections. The average of the two thermometers is used

in the crossover region 80 K - 100 K. The thermometer close to the neck of the

probe (Lakeshore cernox 1080) is used to monitor the thermal gradients along the

probe. Unlike most home-made cryostats, the PPMS has a cooling annulus around

the sample space. This annulus is the active region of temperature control. The

cooling of the sample space is achieved by continuously drawing helium gas through

the annulus by pumping on it with a mechanical pump. The sample puck is in

contact with this annulus and also the sample space is kept at a pressure of a few

torr in order to have thermal contact with the cold walls of the sample space (except

when high vacuum is necessary).

This design, continuous low temperature control (CLTC), has some advantages

over the conventional method of temperature control, but also some disadvantages.

In order to cool down the sample below 4.2 K it is not necessary to fill the sample

space with helium and pump on it. This is important since helium goes through

two phase transitions at 4.2 K and 2.2 K, and these phase transitions could make

temperature control difficult around these temperatures. In a CLTC system these

phase transitions are avoided by not letting ”liquid” helium into the cooling annulus

(by passing it through a highly restricted impedance tube).

Another advantage of this method of temperature control is that, in principle,

temperatures below 4.2 K can be maintained indefinitely. In a system where the
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Figure 2.9: Picture of PPMS sample puck and connector. Different measurements

have different pucks but the connections are the same. The picture is from Quantum

Design Online PPMS Catalog.
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cooling below 4.2 K is achieved by pumping on a liquid helium collected in the

sample space, it is usually necessary to refill with liquid helium every hour or so. If

longer times are necessary one needs to refill the pot and pump on it again. However,

in the PPMS CLTC method since no liquid helium is collected in the annulus there

is no such a limit on the time the system could stay below 4.2 K.

Helium condensation on the sample is sometimes a problem for the PPMS (see

Quantum Design web-site for an example). In order to minimize this condensation

problem, it is important to pump out all the exchange gas in the sample space before

cooling down, preferably around or above 300 K. In addition, there is a charcoal bar

provided with the system which should be inserted before every measurement that

is performed in high vacuum. The charcoal bar is placed close to the sample, and

acts as a helium sink.

Particularly for samples of a few mg mass and hence small heat capacity it is

essential to use a backing pump in addition to the PPMS turbo pump. Otherwise

helium accumulation on the sample around 4.2K gives rise to superfluous effects

on the data, like humps around 4.2K. These humps can extend from 3.5K to 5.5K

where helium is absorbed if the sample is cooled down or desorbed if it is warmed

up, hence hysteresis like features appear between warming up and cooling down

of the sample. Such features are completely eliminated if the PPMS Varian turbo

pump is backed up by another mechanical pump-turbo pump assembly.

Even when the PPMS turbo pump is backed up by another turbo pump, there

could be a small helium accumulation if the sample is kept below 4.2 K for several

hours. In that case, the sample should be heated up to 20-30 K and cooled back

down. As a final alternative if the problem is still not solved, the system should

be taken up to room temperature and cooled back down. In some cases it might

be necessary to heat the charcoal bar to several hundred degree Celsius in order to

recharge it. However, we did not encounter any helium condensation problems after

we backed up the PPMS turbo pump with another turbo pump.
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More details regarding the experimental techniques will be given in Chapter 3

and Chapter 4.
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Chapter 3

Specific Heat of Pr2−xCexCuO4

This chapter is a review of our specific heat measurements on optimally-doped and

over-doped PCCO crystals. In addition to the superconducting state, the specific

heat of the normal state (before annealing) is also measured, and the effects of

annealing on the bulk properties are studied. Before presenting our data different

methods of measuring specific heat are explained, and a brief introduction is made

to the dirty d-wave symmetry which was not discussed in Chapter 1.

3.1 Different methods of measuring specific heat

The most common techniques used to measure heat capacity are adiabatic calorime-

try [103], thermal relaxation calorimetry [104], and ac thermal relaxation [105]. In

all the methods that are described in this section the specific heat at a constant

pressure is measured, and this specific heat will be represented by C instead of the

more frequently used CP . The simplest of these methods is adiabatic calorimetry,

in which a pulse of heat, ∆Q is applied to a thermally isolated sample, and the tem-

perature rise is monitored. The heat capacity is just the ratio of the heat applied

to the temperature rise:

C = ∆Q/∆T as ∆T → 0. (3.1)
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In adiabatic calorimetry it is very important to thermally isolate the sample from the

environment, but have some electrical link between the sample and the environment

so that the temperature can be monitored. However, this is not easy to achieve

for small samples of a few milligram mass. Instead relaxation calorimetry and ac

temperature calorimetry are the preferred methods for this type of small samples.

It was shown in 1968 by Sullivan and Seidel [105] that if an ac current of frequency

w
2

is passed through a heater attached to a sample, both of which are weakly linked

to a constant temperature heat bath, the temperature of the stage which includes

the sample and the addenda (the components of the measuring stage other than

the sample are called addenda and the addenda includes a thermometer, a heater,

wires, and thermal grease) in turn oscillates around a temperature slightly above

the bath temperature with a frequency w and amplitude Tac given by:

Tac =
P

2wC
(1 +

1

(wτ1)2
+ (wτ2)

2 + const)1/2, (3.2)

where P is the power applied to the heater, τ1 is the sample to bath relaxation

time, τ2 is the thermal response time of the sample and the addenda to the applied

heat, and C is the total heat capacity of the sample and the addenda. If the

internal thermal response of the sample and addenda, τ2, is much shorter than 1/w

(τ2 ¿ 1/w), and if the sample to bath relaxation, τ1, is much longer than 1/w

(τ1 À 1/w) the oscillation in the temperature can be reduced to:

Tac =
P

2wC
(1 + const)1/2

⇒ C =
P

2wTac

(1 + const)1/2, (3.3)

where the constant is 2Kb/3Ks, Kb is the sample to bath thermal conductance and

Ks is the sample thermal conductance. If Kb ¿Ks then the heat capacity is just

C = P
2wTac

.

The main advantage of ac calorimetry is that it provides the capability of mea-

suring very small changes in the heat capacity by using the sensitivity of a lock-in-
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amplifier to detect small oscillations in the temperature. Tac of the size of a few

millikelvins is detectable with this method.

In order to satisfy the conditions 1/w À τ2, small samples with good internal

thermal conductivity are needed, and also low-frequencies are used in the measure-

ment. The other condition, τ1 À 1/w, requires a lower bound to the frequency. In

the ac heat capacity measurements usually frequencies of the order of f=w/2π ≈1Hz

are used. Today many of the ac heat capacity apparatus use a laser or a diode in

order to heat the sample. Even though this method reduces the addenda by elimi-

nating the heater, it introduces an uncertainty in determining the amount of power

applied to the sample. There is also a minor error that could come from neglecting

2Kb/3Ks in Eq. 3.3. Due to such problems, it is not easy to measure the absolute

value of the heat capacity in this method. Therefore, this technique is most fre-

quently used for measuring physical phenomena like phase transitions in which the

change in the specific heat is more important than its absolute value. For a general

review of the ac calorimetry techniques see Ref. [106].

The other method used for measuring the heat capacity of small samples is ther-

mal relaxation calorimetry. The setup is the same as for ac calorimetry but a dc

power is used to heat the sample. When the power is removed the temperature of

the sample relaxes to the reservoir temperature exponentially, and the heat capacity

of the sample is given by C = k× τ1, where τ1 is the relaxation time constant and k

is the thermal conductance of the weak link between the sample and the reservoir.

Since the heat capacity is determined through the relaxation time of an exponential

decay rather than oscillations in temperature as in ac temperature calorimetry, τ1 is

the important time scale rather than 1/w. The requirement of having temperature

uniformity at time scales less than 1/w, which is required in the ac calorimetry, is not

essential anymore. The important time scale is rather the relaxation time to the en-

vironment, and the internal time constants should be much less than this time scale.

This property makes thermal relaxation calorimetry particularly useful, compared
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to ac calorimetry, for polycrystalline samples which might have relatively poor in-

ternal thermal conductance. Thermal relaxation calorimetry is often preferred over

ac temperature calorimetry for small samples since it is possible to determine the

absolute value of the heat capacity.

We used thermal relaxation calorimetry in our measurements. The sample is

linked to an external heat reservoir through a weak thermal link which in our case is

a Au-7%Cu wire (see Fig. 3.1). The temperature of the sample is raised above the

temperature of the heat reservoir by passing current through a heater that is part of

the addenda. The temperature change of the sample is monitored during warm up

and cool down. By measuring the temperature many times during the relaxation

process, a relaxation time constant can be found.

Now we will summarize the relaxation method using heat flow equations. The

applied power creates a temperature gradient across the thermal link, and raises the

temperature of the sample by ∆T = Ts − T0:

P (t) = k∆T + C(T )
∂∆T

∂t
, (3.4)

where k is the total thermal conductance of the four wires. After steady state is

reached, i.e. a constant ∆T is established, the applied power will only create a

temperature gradient across the wires,

P (t) = k∆T. (3.5)

Using this relation the thermal conductance of the wires can be measured. If the

power is turned off after the steady state is reached the heat transfer equation

becomes:

∂∆T

∂t
= − k∆T

C(T )
. (3.6)

Therefore the sample temperature relaxes exponentially to the base temperature

and the time constant for this relaxation is given by τ = C
k
. By measuring the

thermal relaxation time constant τ , and the thermal conductance of the weak link
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sapphire
substrate

thermometer heater

Au-7%Cu
wires heat reservoir (T0)

Figure 3.1: Schematic diagram of the specific heat setup. The four Au-7%Cu wires

(each of length 6 mm) which are electrically connected to the thermometer and

heater also act as a weak thermal link between the sample and the heat reservoir.

The diameter of the wires varied between 1-3 mil.
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Figure 3.2: Total thermal conductance of four Au-7%Cu wires with 1 mil diameter.

The length of each wire is approximately 6 mm.

the heat capacity of the sample can be found. However, the thermal conductance

of the weak link is temperature dependent and it has to be characterized (for some

wires it could also be magnetic field dependent). In our case the the weak link is a

Au-7%Cu wire and the thermal conductance of the wire is measured at every field

and temperature that the sample specific heat is measured (see Fig. 3.2 for typical

thermal conductance of the 1 mil thick Au-7%Cu wires).

It is important to have good thermal contact between the sample and the ad-

denda and to have all the internal relaxation times related to the addenda and the

sample to be much less than the relaxation time to the heat reservoir. When this

condition is not satisfied there will be two relaxations instead of one, and a fit con-

sisting of two time constants, two-τ , should be used instead of one time constant.

In our setup every data point is fitted to a two-τ type relaxation, and we make sure
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that the second relaxation time constant is small enough to be neglected. For a

review of the two-τ effect see Ref. [107].

3.2 Experimental setup

A home-made specific heat apparatus was used for some of the early measurements.

However, soon it was realized that the Quantum Design PPMS could be improved

to measure smaller samples down to lower temperatures. Therefore, a QD PPMS

commercial chip was modified to enable measurement of smaller samples and to

avoid the magnetic field dependence of the polycrystalline alumina substrate which

is part of the commercial chip.

We have built several chips suitable for use at different temperature ranges and

different sample masses. The chip that was used for the smallest samples(∼ 1 mg

mass) consists of a 3mm× 3mm× 0.125 mm single crystal sapphire piece, a specially

thinned cernox 1030 thermometer (substrate thickness approximately 0.130 mm), a

NiCr thin film heater (resistance about 100 Ω), and four 1 mil diameter Au-7%Cu

wires each of approximately 6 mm length. The chips designed for heavier samples

had thicker wires (3 mils) and a regular Cernox 1030 bare chip thermometer. A

very thin layer of GE 7031 varnish has been used to attach the thermometer to the

substrate. Wakefield thermal compound or Apiezon N grease have been used to

attach the sample to the sapphire substrate.

It is important to know the heat capacity of the addenda accurately, since what is

measured when the sample is mounted is the total heat capacity of the addenda and

the sample. Therefore, before measuring each sample the addenda (including the

grease used to attach the sample) heat capacity is measured and this heat capacity

is subtracted from the total heat capacity (sample plus addenda). It is essential

to minimize the addenda heat capacity in order to minimize the inaccuracy of the

sample heat capacity. Therefore, every component on our setup is a miniature
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version of what is used in commercial setups.

There is a problem in minimizing the addenda too much. When the addenda

is made small, the relaxation time (τ) of the addenda becomes very short at low

temperatures. The relaxation time constant of the addenda should be at least an

order of magnitude larger than the fastest possible sampling rate of the temperature

in order to be able to make a reasonably good exponential decay fit to the relaxation

data. The easiest way to solve this problem is to make the thermal link between

the chip and the reservoir weak enough to get long relaxation times, yet short

enough to be able to take data in reasonable times. Therefore, usually alloys of

good metals are used as weak links. For example, Au-7%Cu wire has a thermal

conductivity roughly two orders of magnitude smaller than pure Au wire around 4

K. By reducing the diameter of these wires the relaxation times can be significantly

increased. It has been shown [104] that roughly one-third of the wire is also part

of the addenda. Therefore, it is clear that using as thin a wire as possible is very

important, especially for measuring small samples. The PPMS uses an ADC card

that can read data every 2.5 ms, and the smallest time constants we get at 2 K are

around 200 ms when 1 mil Au-7%Cu wire is used as the thermal link. For a typical

relaxation time data of 2 mg PCCO sample see the Fig. 3.3.

Another important issue is the magnetic field dependence of the addenda. There

could be field dependence in the addenda because of magnetic impurities in the com-

ponents of the heat capacity chip. If the addenda and the sample have comparable

heat capacities, then any field dependence in the addenda could be significant and

this has to be taken into account. Therefore, it is very important to use single crystal

substrates with high purity when a chip is prepared for specific heat measurements.

Our heat capacity setup does not have a field dependence within the resolution of

our measurements (see Fig. 3.4).

One last point regarding our specific heat setup is the magnetoresistance of the

thermometers on the chip. If the field dependence of the sample heat capacity is
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Figure 3.3: Typical relaxation time of a 2 mg PCCO crystal using 1 mil diameter

Au-7%Cu wires.
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Figure 3.4: (a) C/T vs T2 for the addenda at 0, 1, 2 T magnetic field, (b) addenda

heat capacity vs field at 2 K and 4 K. The 4 K data and the 2 K are from different

addenda measurements (they have different amounts of thermal grease). The 4K

data is from the same addenda measurement shown in (a).
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important, it is essential to have a consistent temperature at different magnetic

fields. The magnetoresistance of the Lakeshore cernox thermometers is known to be

small even at fields as high as 20 tesla. At 2 K the resistance at 10 tesla is usually a

few percent more than that of the zero field resistance. The most important magnetic

field range in our measurements is between 0-2T, and our chip thermometers are

calibrated every 0.5 T in this field range, and every 2 T between 2-12 T. The

PPMS software has an option of calibrating the thermometers automatically at the

desired field. For the home-made system the calibration is made by measuring

the resistance of the thermometers between 2-20 K with respect to a commercially

calibrated cernox thermometer. The temperature range between 2-20 K is divided

into three regions. Each region overlaps with the other one across a temperature

interval of approximately 1 K to make sure that there is no kink in the fit. Then each

region is fitted with a Chebychev polynomial of order 9: T =
∑

9
i=0Ai cos(i arccos x)

where x = lg(R)
lg(Rmax)−lg(Rmin)

− lg(Rmax)+lg(Rmin)
lg(Rmax)−lg(Rmin)

, R is the value of the thermometer

resistance, Rmax is the largest value of the resistance in the region, and Rmin is the

smallest value of the resistance in the region.

As a final test of our setup the specific heat of a conventional superconductor

(niobium), and of a high purity copper piece has been measured. A copper sample of

3 mg mass and 99.999 % purity has been measured down to 2 K, and compared to the

standard data from the CRC Handbook. The comparison is shown in Fig. 3.5. The

two data are consistent within 5 percent, however there seem to be a slight systematic

deviation between the two curves. The reason for this may be a purity difference

between our sample and the sample of the standard data, or a small change in the

thermometer calibration which affects the higher temperature data more seriously

(since the sensitivity of the thermometers decreases as the temperature is increased).

The Nb wire that was measured had a mass of 3.2 mg (see Fig. 3.6). Nb has an

upper critical field, Hc2 ≈ 4000 Oe, and a critical temperature Tc ≈ 9.2 K. Fig. 3.6

shows the downward shift of the Tc with magnetic field, and the vanishing of the
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Figure 3.5: Specific heat of a 3 mg copper sample at ambient field.

jump at Tc around H = 4000 Oe. The jump at Tc in zero field is related to γn by

the relation ∆C = 1.43 γn Tc. If γn=8.8 mJ/mole K2, and ∆C/Tc=10.9 mJ/mole

K2, from the zero field data, are used, ∆C = 1.24 ± 0.2 γn Tc is obtained. The error

results from the uncertainty in determining the magnitude of the jump and the Tc.

These tests on small pieces of copper and niobium show that our specific heat setup

is capable of measurements with an absolute accuracy of ±5%, and relative accuracy

of ±1%.

Before presenting our data, the dirty d-wave symmetry which was not discussed

in Chapter 1 should be briefly explained.
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Figure 3.6: Specific heat of a 3.2 mg niobium wire at different magnetic fields.
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3.3 Dirty d-wave model

In the presence of a magnetic field the quasiparticle spectrum in a superconductor

will be Doppler shifted by the supercurrent flow around the vortex cores. In a nodal

superconductor the Doppler shift of the quasiparticle energy becomes comparable to

the gap magnitude close to the nodes. Therefore, a residual density of quasiparticle

states is created at the Fermi level due to this effect. The limit in which the Doppler

shift is the dominant mechanism of quasiparticle excitation is called the clean d-wave

limit.

On the other hand in the presence of impurities there will be impurity states

created in the superconducting gap, and unlike the case in semiconductors these

states are not localized. If there are enough impurities in the system these non-

localized states form a band of impurity states. Close to the nodes, this impurity

band will set the energy threshold for the quasiparticles to be excited to the single

particle states above the Fermi-level. In the limit where this impurity band is larger

than the Doppler shift energy (particularly at low fields where the Doppler shift

is small), the quasiparticles cannot be excited above the superconducting gap as

was the case in the clean d-wave case. Hence the clean d-wave limit is not valid

anymore. This limit is called the dirty d-wave limit. Mathematically the dirty limit

is expressed as kBT << (H/Hc2)∆0 << γ0 << ∆0, where ∆0 is the gap maximum

and γ0 is the impurity band width.

The
√

H-like magnetic field dependence of the electronic specific heat, discussed

in Section 1.2, is a characteristic of d-wave symmetry in the clean limit. This

magnetic field dependence is modified in the dirty limit, and an H log H type field

dependence is predicted [108]. However the difference between the electronic specific

heat in the clean and dirty limit is usually smaller than the experimental accuracy,

and the experimental data can usually be fit equally well by both models. For

example the YBCO data in Ref. [40] is well-explained by clean d-wave symmetry,
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however Ref. [108] shows that the same data is also consistent with dirty d-wave

symmetry. The situation is not different for LSCO where both clean d-wave and

dirty d-wave model could explain the experimental data [109, 45].

Our specific heat data on PCCO also does not agree significantly better with

any of the two limits of the d-wave symmetry, therefore in the rest of this chapter

only clean d-wave limit is considered. However, one should keep in mind that the

dirty d-wave symmetry is as equally valid as the clean d-wave symmetry. Now we

can start discussing our data.

3.4 Specific heat measurements on the optimally-

doped Pr1.85Ce0.15CuO4 crystals

The specific heat of several crystals of optimal or near optimal doping has been

measured. The mid-point of the superconducting transition temperature was be-

tween 21-24 K for various crystals, with a transition width that changed between

±1K to ±3K. The size of the crystals varied from 1 mg to 7-8 mg. Even though it

is possible to grow larger crystals, the width of the transition usually increased with

increasing crystal size. Since the signal-to-noise ratio was good enough for a few mg

size crystals, the size of the crystals we studied was generally less than 5 mg.

The crystal shown in Fig. 3.7 has a Tc=22±2K, so it is near optimal doping (it

might be slightly over-doped since some of our other optimally-doped crystals had

Tc’s as high as 25K). Fig. 3.7-a shows temperature dependence of the specific heat

at six different fields, 0 T, 1 T, 2 T, 3T, 8 T and 10 T applied perpendicular to the

ab-plane of the crystal, and Fig. 3.7-b shows the 0T and 10T data in a smaller scale

from which γ(0), γn and β were extracted. As Fig. 3.7-a shows the heat capacity has

already saturated to the field-independent normal-state heat capacity at 8T, which

means that Hc2 ≤8 T in the optimally-doped crystal.
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Figure 3.7: (a)-Specific heat of an annealed PCCO x=0.15 crystal with Tc=22±2K

as a function of temperature at different magnetic fields (applied perpendicular to

the ab-plane). (b)- The 10 T and 0 T data is plotted as C/T vs T2 in order to

show how β, γ(0), and γn are extracted from the temperature dependence of the

specific heat. γn is the difference of the intercepts of 10 T and 0 T data (7.4-2.1=5.3

mJ/moleK2).
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An important parameter to extract from this data is γn, which can be obtained

from the difference of the intercepts of 10T and 0T data (see Fig. 3.7-b). A global

fit, which assumes the phonon coefficient, β, constant for all fields and coefficient of

electronic contribution, γ(H), variable for different fields has been used to analyze

the data. The intercept of the 0T data is γ(0)=2.1±0.2mJ/moleK2 and the intercept

of the 10T data is 7.4 ±0.2mJ/moleK2. The Sommerfeld constant γn, which is the

difference between these two intercepts, is obtained to be γn=5.3 ±0.3mJ/moleK2.

These values are consistent with measurements performed on different optimally-

doped crystals with similar Hc2. However, optimally cerium-doped crystals which

had smaller Hc2 than the crystal in Fig. 3.7-b had smaller γn values. For example the

optimally cerium-doped crystal shown in Fig. 3.25 has γ(0)=2.0 ±0.2mJ/moleK2

and γn=4.1±0.3 mJ/moleK2. As will be discussed later γ(0) is not sensitive to

oxygen content, but γn strongly depends on both cerium and oxygen content of the

crystal. Therefore, variation in γn in optimally cerium-doped samples is indicative

of different oxygen dopings in different crystals.

Another intrinsic parameter β was determined from the slope of the global lin-

ear fit to be β=0.23±0.2 mJ/moleK4(see Fig. 3.7-b). Measurements performed

on other crystals yield β values similar to β=0.23±0.2mJ/moleK4 for optimally-

doped PCCO (for another example see Fig. 3.25 which has β=0.24±0.2mJ/moleK4).

Using β=0.23±0.2mJ/moleK4 results in a Debye temperature of θD=390±15K.

These values are in reasonable agreement with the other published data in the

literature(β = 0.244 mJ/mole K4, and θD = 382 K in Ref. [110]). We should also

note that the values of γ(0) we find for PCCO are similar to the γ(0) values found in

the hole-doped superconductors(γ(0) ≈ 1− 2 mJ/mole-K2 for YBCO [40, 41, 42]).

Another common measurement used to characterize the samples in specific heat

measurements is to measure the jump in the specific heat at Tc, which is due to the

more ordered (less entropy) nature of the superconducting state compared to the

normal state. The broad superconducting transitions in the electron-doped cuprates
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nuclear Schottky upturn at T<1.5K. The specific heat was measured by G.Stewart
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have made it very difficult to observe this jump by just analyzing the zero-field data

(the jump is most prominent at zero-field). Instead we took advantage of the low

Hc2 of PCCO to measure the entropy difference between the normal state and the

superconducting state. Fig. 3.9 shows the difference in the specific heat between 5 T

(where the sample is almost completely normal in the measured temperature range)

and 0T. For this measurement two crystals from the same batch with the same Tc are

used. The total mass of the crystals is 5.1 mg, and Tc=22±3K (from magnetization

measurements). The peak of the jump is at 19K which is consistent with the lower

end of the transition from magnetization measurements, at which point the samples

should be completely superconducting. We measured γn=4.2±0.2 mJ/mole K2 and

∆C/Tc=6.1±0.3 mJ/moleK2 for these crystals (considering the peak temperature

as the Tc). This results in ∆C/γnTc=1.4±0.2. As a reference we can compare this

number by the BCS prediction for s-wave superconductors which is ∆C/γnTc=1.43.

Prior attempts to measure the anomaly at Tc for electron-doped cuprates were

mostly unsuccessful due to the difficulty of observing the anomaly by just analyzing

the zero-field data [111] (unlike our case where the phonon and residual electronic

contributions are subtracted out by taking the difference between the zero field and

5 T data). In the studies in which the electronic contribution have been extracted

by some subtraction method, the magnitude of the jump is much smaller than ours

(less than half of what we observe) which is most likely do to the higher volume

fraction of superconductivity in our samples [112]. Similar measurements on hole-

doped cuprates showed different results. The magnitude of the jump is similar to

BCS prediction for LSCO [113, 114], but not in YBCO. For example in Ref [42],

∆C/γnTc=4.1±0.8 has been found for YBCO, which is significantly higher than the

BCS result. The commonly cited BCS result of ∆C/γnTc=1.43 is actually for the

case of weak coupling between the electrons through electron-phonon interaction.

The unusually large ∆C/γnTc ratio in YBCO is attributed to strong coupling effects

of unknown origin.
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Figure 3.9: Difference between the specific heat in the normal state and the super-

conducting state for optimally-doped PCCO.
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From Fig. 3.9 we can also calculate the entropy difference between the super-

conducting state and the normal state. The difference between the superconducting

state entropy (Ss) and the normal state entropy (Sn) is defined as:

Sn(T )− Ss(T ) =

∫ T

0

Cs − Cn

T
dT. (3.7)

By integrating the area under the curve of Fig. 3.9, the entropy difference between

the superconducting and normal states can be calculated (see Fig. 3.10).

Another important parameter that can be calculated from this data is the con-

densation energy, which is the difference between the free energies of the supercon-

ducting and the normal states. This energy is basically the area under the curve in

Fig. 3.10, and by definition it is equal to U0 = H2
c

8π
, where Hc is the thermodynamic

critical field:

U0 =

∫ T

0

(Sn − Ss)dT =
H2

c

8π
. (3.8)

Fig. 3.11 shows the temperature dependence of the condensation energy (obtained

by integrating the area under the curve of Fig. 3.10). The units of the condensation

energy are taken as mJ/mole to be consistent with the rest of the thesis. The con-

densation energy can also be compared with a simple d-wave BCS prediction [115]:

U0 = αN(0)∆2
0/2 ≈ 2.1× 10−5αγn∆2

0/2, (3.9)

where N(0) is the DOS at the Fermi level, which can be written in terms of γn, α ≈
0.4 for d-wave superconductors, γn=4.2 mJ/mole K2, and ∆ ≈ 4 meV for optimally-

doped PCCO. Substituting these numbers yields U0 ≈ 800 mJ/mole for the BCS d-

wave superconductivity prediction for optimally-doped PCCO. In order to calculate

the BCS s-wave condensation energy, α= 1 should be substituted in Eq. 3.9, which

results in U0 ≈ 2000 mJ/mole. The experimental value of U0=568 mJ/mole is in

much better consistency with BCS d-wave prediction, however, it is still significantly

lower than the theoretical value. Similar discrepancies between experimental and

theoretical values for condensation energy are also observed for hole doped cuprates
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Figure 3.10: Entropy difference between the superconducting and normal states for

optimally-doped PCCO. The first point (0,0) is added to the data (both of the

superconducting and normal state entropies have to be zero at zero temperature)

to enable further analysis.
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(see for example Ref. [113] for data on LSCO). These discrepancies are most likely

due to less than 100% volume fraction of superconductivity in the samples.

Fig. 3.12 shows the temperature dependence of the thermodynamic critical field,

which is calculated by using Eq. 3.8. In order to calculate Hc, the condensation

energy should be converted into erg/mole, which is 10−4 mJ/mole. In addition,

H2
c/8π should be multiplied by the molar volume of PCCO, which is 114 cm3. This

calculation yields a thermodynamic critical field of 1116 Oe which is in reason-

able agreement with the rough estimate of Hc ≈
√

Hc1Hc2 ≈
√

100× 60000 ≈2450

Oe [47], where Hc1 ≈ 100 Oe and Hc2 ≈60000 Oe for these samples. The line in Fig.

3.12 shows a simple BCS fit of the form Hc(T ) = Hc(0)[1 − ( T
Tc

)2] [47], by using

Hc(0)=1116 Oe, and Tc=20K (a point between the specific heat peak temperature

and where the experimental Hc goes to zero). As is clear from the figure there is

a deviation between the data and the simple BCS relation, particularly close to Tc

where fluctuation effects, which are not included in the BCS relation, are domi-

nating the physics. Another possible reason for the deviation is the spread in the

superconducting transition temperature between the different parts of the sample.

As mentioned before, the field dependence of the electronic specific heat can

be used to differentiate between different pairing (gap) symmetries. In our study,

measuring the field dependence of the electronic specific heat is particularly advanta-

geous since the PCCO crystals that we used in our study do not have an electronic

or nuclear Schottky contribution in the temperature (T>2K) and field range of

our study (unlike another popular n-doped cuprate NCCO that has a large Schot-

tky contribution below ∼5K). However, a nuclear Schottky contribution has been

observed in one of our PCCO x=0.15 superconducting samples at T<1.5K in the

measurements made by G.Stewart et al. at the University of Florida, Gainesville(see

Fig. 3.8, this data is not published). This Schottky contribution, which is due to

the nuclear moments of praseodymium and copper, limits the ideal range of field

dependent specific heat measurements to T>2K.
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Figure 3.11: Temperature dependence of the superconducting condensation energy.
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Figure 3.12: Temperature dependence of the thermodynamic critical field. The line
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Since our addenda does not have a field dependence, the only field-dependent

part in our measurements is the electronic specific heat (also confirmed by our

specific heat vs temperature at constant field measurements). Subtracting the zero

field specific heat from the specific heat at other fields gives the field-dependent part

of the electronic specific heat. Therefore our measurements were mostly taken at a

constant temperature (zero field cooled) while the magnetic field was ramped up.

Fig. 3.13 shows theoretical fits to the 3.4 K data in the field range 0 - 2 T. Only

the field-dependent part of the electronic specific heat is shown in Fig. 3.13 since

the zero-field specific heat, which includes phonon contribution and the zero field

residual heat capacity, is subtracted out. The low field part is important because

the theoretical work on d-wave symmetry(clean or dirty) has focused on the dilute

vortex limit(Hc1 << H << Hc2) to be able to ignore vortex-vortex interactions, so

both Eq. 3.10 and Eq. 3.11 are valid in this limit [51, 55]. The clean d-wave fit is

calculated using the equation [42]:

Cel = γnT

(
8

π

)1/2 (
H

Hc2/a2

)1/2

for

(
TH

1/2
c2

TcH1/2

)
¿ 1 (3.10)

where γn = 5.3 mJ/mole K2, Hc2 = 8T, and a = 0.7 are used( a is a geometrical

factor that depends on the vortex lattice geometry, and the value 0.7 was found

experimentally for YBCO [40]). The dirty d-wave fit is calculated using the Eq.

3.11 with the same parameter values (except for the geometrical constant a which

is defined differently in the dirty d-wave formalism) used for the clean d-wave fit:

Cel(H) = γnT

(
∆0

8~γ0

)(
H

Hc2/a2

)
log

(
πHc2

2a2H

)
, (3.11)

where ~γ0 is the impurity band width, ∆0 is the superconducting gap maximum

(determined from tunnelling spectroscopy experiments [37]), and a is a geometrical

factor taken equal to 1 in dirty d-wave case. In the strong scattering limit (unitarity

limit), γ0 is given by γ0 ≈ 0.61
√

∆0Γ, where Γ is an impurity scattering rate which

can be determined from penetration depth experiments. The clean d-wave fit is
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Figure 3.13: Field dependence of the electronic specific heat at 3.4 K for PCCO

x=0.15 crystal. The magnetic field is applied perpendicular to the ab-plane.
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clearly better than the linear s-wave fit. Given the scatter in our data it is difficult

to differentiate between the clean d-wave and dirty d-wave fits. Therefore, we refer

to the symmetry as d-wave without making a distinction between the clean limit

and the dirty limit.

Based on this analysis it would seem that the optimally-doped PCCO has a d-

wave symmetry. However, measurements performed on crystals of similar dopings

at lower temperatures showed quite interesting results. Fig. 3.14 shows the field

dependence of an optimally-doped crystal (x=0.15, Tc=23±3K, mass=3.4 mg) in

the temperature range 2-4.5 K. A non-linear field dependence is quite clear in this

crystal down to 3.5K, however, a dramatic change in the field dependence is observed

when the temperature is reduced below 3K (see Fig. 3.15-a for a comparison of 2K

and 3.5K data). The 3.5K and 4.5 K data can be very well fit by a d-wave form

Cel = AH1/2 where A = γnT ( 8
π
)1/2 a√

Hc2
. On the other hand the electronic specific

heat has a linear magnetic field dependence consistent with s-wave symmetry at

T=2K.

Before comparing our data with different theoretical models, we should mention

how the parameters used in the fits are determined. We need to determine γn and

Hc2 of the sample in order to estimate the specific heat for different symmetries.

γn is determined in two different ways which produced consistent results. The first

way to determine γn is to take the difference between the intercepts of C(H)/T vs

T2 data for H>Hc2 and H=0. An example of this was shown in Fig. 3.7-b. In

addition to this method, there is also a method which results in a good estimate of

γn (consistent with the results of the first method). At T¿Tc where the bulk of

the sample is superconducting at zero field, γn can be determined by suppressing

superconductivity with a large enough magnetic field (H>Hc2) and using the relation

C(T,H>Hc2)-C(T,H=0)=γnT.

Fig. 3.15-c shows a d-wave fit to the 4.5 K data. In calculating A, the coefficient

of the H1/2 term, γn=4.2 mJ/mole K2, Hc2(0)=7T, and a=0.7 were used. As seen
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in Fig. 3.15-c a reasonably good fit is obtained to our data at T=4.5 K. On the

other hand, the slope of the linear field dependence observed at T=2 K is consistent

with a gapped order parameter, Cel = κγnTH/Hc2(T ). Using γn=4.2 mJ/mole K2

and Hc2 = 7T at T=2 K yield Cel = 1.2κH. On the other hand a linear fit to our

data yields Cel = 2.0H. Since κ is a geometrical factor between 1-2, our data at

T=2K is consistent with s-wave symmetry. This analysis would estimate κ=1.7 for

optimally-doped PCCO.

This type of field dependence, non-linear at high temperatures and linear at

lower temperatures, has been observed on different crystals. The data on two other

crystals will be presented with more emphasis on the qualitative behavior of the

field dependence at low temperature versus higher temperature field scans. A de-

tailed discussion regarding the possible explanations of this behavior follows the

presentation of the data.

Fig. 3.16 shows the field dependence of a PCCO x=0.15 crystal with a Tc=22±3K

and a mass of 2.7 mg. The specific heat saturates to the normal state value at a

lower magnetic field in this crystal compared to the sample shown in Fig. 3.14,

which suggests that the oxygen content of this crystal is different from that of

the other crystal. However, similar to the other crystal there is a change in the

field dependence of the electronic specific heat between 3.5 K and 2 K. The field

dependence at 3.5K is definitively non-linear, while the 2K data shows a linear field

dependence up to at least 2T.

Fig. 3.17 shows another optimally doped crystal with a Tc=23±3K and a mass

of 2.4 mg. The critical field in this crystal is Hc2 ≈7 T at T=2K, and the linear field

dependence in this sample persists up to T≈3K. However, at T=5 K again the field

dependence becomes non-linear.

There are several possible scenarios to explain such an unusual change in the field

dependence of the electronic specific heat: a phase transition in the symmetry of the

order parameter from d-wave at high temperatures to a gapped order parameter at
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Figure 3.16: Field dependence of a different PCCO x=0.15 crystal between 2-3.5K.
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low temperatures, an anisotropic s-wave gap which has a minimum around 3K, or

some flux effect that is not related to the gap symmetry at all. Now we will discuss

each of these scenarios in more detail. The discussion will be based mainly on the

data shown in Fig. 3.14 with the data on the other crystals also taken into account.

In Fig. 3.18 we plot the data of Fig. 3.14 in the form [C(H)-C(0)]/T versus field.

This shows that the change in the field dependence of the electronic specific heat

is accompanied by a suppression of the specific heat, which means that the density

of states is suppressed along with a change in the field dependence. This dramatic

change could be due to opening of a gap on the Fermi surface as the temperature is

reduced, which causes the field dependence to go from non-linear (nodes in the order

parameter) to linear (fully-gapped order parameter). This scenario is also supported

by the quantitative analysis of the data since the d-wave theory is quantitatively

consistent with the 4.5K data and a gapped symmetry is quantitatively consistent

with the 2K data.

A phase transition in the symmetry of the order parameter is an attractive

possibility since it has the potential of reconciling the results of many conflicting

experiments. The experiments that suggested d-wave symmetry in electron-doped

cuprates are almost exclusive performed above 4 K. These experiments are the phase

sensitive SQUID experiment (4.2 K, optimally-doped sample) [34], the Raman spec-

troscopy experiment (4.2 K, optimally-doped sample) [36], and the ARPES exper-

iments (4.2 K, optimally-doped sample) [24]. On the other hand the experiments

that suggested s-wave symmetry are performed at T≤2 K. These experiments are

penetration depth (0.4 K-all dopings) [39] and point contact tunnelling spectroscopy

(1.8 K, optimally and over-doped samples did not show a ZBCP which is a signature

of d-wave symmetry in a superconductor) [37]. However, there is one conflicting ex-

periment with this picture- the penetration depth measurements of Kokales et al.

and Prozorov et al. which showed d-wave symmetry for even T<2K [32, 33].

The phase transition suggested in this scenario is also compatible with a theo-
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retical model proposed by Khodel et al [116]. In their model as the electron-doped

cuprates are doped beyond optimal doping, the hot spots, the intersecting regions

of the magnetic Brillouin zone with the Fermi surface, which are responsible for

the d-wave symmetry, approach each other. At a certain doping they become so

close that it is no longer favorable to switch the sign of the pairing symmetry, as in

d-wave symmetry, and a new fully-gapped order parameter emerges. According to

this model in a certain narrow doping range the transition from d-wave symmetry

to a gapped symmetry should also be observed with a decrease of temperature or

magnetic field (see Fig. 3.19 for a phase diagram predicted by this model). However,

we should also mention that Khodel et al. suggest that the gapped phase symme-

try could be p-wave rather than s-wave. This assertion is not based on the model

itself but rather on the strong doping dependence of the transition temperature

in the over-doped range of the electron-doped cuprates which is unusual for an s-

wave superconductor (for example Tc=22 K in our optimally-doped, x=0.15, crystal

whereas Tc ≈15 K in the over-doped, x=0.17, crystal). In an s-wave superconduc-

tor the transition temperature should not change much with such small changes in

the cerium doping since the phonon spectrum, and electron-phonon coupling do not

change significantly in the corresponding doping range. We find these arguments

very circumstantial and leave the type of the gapped-phase symmetry as an open

question at this moment.

An anisotropic s-wave gap is another possible explanation for the change in the

field dependence of the electronic specific heat as the temperature is reduced. This

anisotropic gap should have a minimum amplitude of 2K (∼0.18 meV). Since the

amplitude of the gap maximum is determined to be ∼ 4meV from tunnelling spec-

troscopy [37], the anisotropy in the magnitude of the gap (∆max/∆min) is around 20,

which is very large. Most anisotropic s-wave superconductors have an anisotropy less

than 2, except the recently measured borocarbide superconductor LuNi2B2C [118]

which has an anisotropy over 10.
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Figure 3.19: Phase diagram suggested by Khodel et al. which involves a transition

in the symmetry of the order parameter [117].
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This scenario has the advantage of being very simple. In addition, there are ex-

periments that reported non-linear field dependence for the electronic specific heat in

superconductors with an anisotropic s-wave symmetry [119], which could explain the

non-linear field dependence we observe at high temperatures without the need for d-

wave symmetry. Another support for this scenario comes from the recent penetration

depth measurements performed on high-quality PCCO thin films [39] which showed

a small gap, the magnitude of which is 1/3 the gap maximum, ∆max/∆min ≈3,

observed in tunnelling measurements, at low temperatures. Hence, the anisotropy

is much less than that observed in our data.

However there is a problem in explaining the linear field dependence of the

electronic specific heat at 2K at such high fields as 2-3T (depending on the Hc2 of

the sample). In the case of an anisotropic s-wave gap the effect of increasing the

magnetic field should be similar to increasing the temperature, since increasing the

magnetic field increases the Doppler shift of the quasiparticles and excites them

across the gap (just like thermal energy). The energy of the quasiparticles is shifted

by an amount ≈ ∆max

√
H/Hc2 in a magnetic field H. This energy corresponds

to several kelvins at 1T (assuming ∆max=4 meV, and Hc2=8 T). Hence, given the

non-linear field dependence even at very low magnetic fields (H>0.1T) at 3.5K, the

field dependence at 2K should not have continued to remain linear to such high

fields as 2-3T.

As a final alternative we consider a vortex-vortex interaction induced change in

the field dependence of the electronic specific heat (Cel). Vortices can interact with

each other via quasiparticle (QP) transfer between their cores. At high magnetic

fields (large number of vortices) or high temperatures (larger vortex-core size) the

quasiparticle wavefunctions in the core of one vortex overlap with the quasiparticle

wavefunctions in neighboring vortices, and hence inter-vortex quasiparticle transfer

becomes possible. These inter-vortex QP transfers result in a shrinking of the vortex

cores [120]. This in turn gives rise to non-linear magnetic field dependence in the
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electronic specific heat. The calculations of Ichioka et al. [121], which took into

account these vortex-lattice effects, showed that Cel ∝H0.67 at T=0.5Tc for an s-wave

superconductors. Calculations of Miranovic et al. [122] at lower temperatures, where

less overlap between vortex-cores reduces these effects and the size of the vortex-

core is approximately constant for H<0.5Hc2, showed that Cel ∝H for H<0.5Hc2 at

T=0.1Tc.

These ideas were experimentally supported by the non-linear field dependence of

the electronic specific heat observed in some s-wave superconductors, e.g. V3Si [123],

NbSe2 [124], and CeRu2 [125] (see Fig. 3.20 for an example in V3Si). Despite some

complications that were discovered after the original work, a vortex-lattice transfor-

mation in V3Si [126] and anisotropic gap in NbSe2 [118], the fundamental mecha-

nism of vortex-core shrinking due to vortex-vortex interaction is still consistent with

the non-linear field dependence observed in these materials [126].

The change in the field dependence of the electronic specific heat in PCCO is in

qualitative agreement with these theories for an s-wave superconductor. However,

in PCCO the change in the field dependence occurs over a very narrow temperature

range Cel ∝H0.5 at T≈0.2Tc and Cel ∝H at T≈0.1Tc) compared to the gradual and

slower change based on vortex-lattice effects predicted in Ref. [121, 122] for a con-

ventional s-wave superconductor (Cel ∝H0.67 at T=0.5Tc and Cel ∝H at T=0.1Tc).

Hence, it is very unlikely that the non-linear field dependence we observe in PCCO

is due to a vortex lattice effect. On the other hand, the linear field dependence that

we observe at T=2K is very similar to what is predicted by Ref. [122] for an s-wave

superconductor (linear up to 0.5Hc2 and non-linear at higher fields), which suggests

that the symmetry of the order parameter is s-wave at T=2K.

Given the difficulty of completely ruling out any of the possible scenarios, at this

stage it is not possible to make a definite conclusion about the reason for the change

in the magnetic field dependence of the PCCO electronic specific heat. However,

the consistent linear magnetic field dependence observed at the lowest temperature
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7.5K

Figure 3.20: (a)-
√

H-like field dependence in a V3Si polycrystal at 7.5K. The dashed

line is taken while the field is ramped down. (b)- a comparison of the field depen-

dence of specific heat at 3.5K and 7.5K. These two graphs are from Ref. [123].
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(T∼2K) in the five crystals (see Fig. 3.27 for two other optimally cerium-doped

crystals in addition to the three crystals presented above which show linear field

dependence at T=2K) from different batches strongly suggests that the symmetry

of the order parameter at the lowest temperature is fully-gapped. Even

though vortex-vortex interaction or some strange flux effect can change a linear field

dependence due to a gapped order parameter to a non-linear field dependence, it

is not possible for a non-linear field dependence to look like linear due to any flux

effect. Therefore the linear field dependence observed in our data means that the

symmetry of the order parameter in the optimally-doped compound is fully-gapped.

3.5 Specific heat measurements on the over-doped

Pr1.83Ce0.17CuO4 crystals

This doping (x=0.17) is the highest over-doping we were able to get by the di-

rectional solidification technique. The mid point of the superconducting transition

temperature for different crystals from this doping varied between 15 K to 12 K, usu-

ally with a transition width of ±1.5K (using the magnetization measurements). The

amount of cerium in the start of the growth was enough to produce x=0.19 composi-

tion crystals, however after the growth WDX analysis showed that the composition

of the crystals was Pr1.83Ce0.17CuO4. The ab-plane resistivity of these crystals also

did not show an upturn at low temperatures in the normal state (H>Hc2) consistent

with the x=0.17 thin films.

The C/T vs T2 data for a x=0.17 crystal at different fields applied perpendicular

to the ab-plane is shown in Fig. 3.21. From this data γn=2.8±0.2 mJ/moleK2

and γ(0)=4.0±0.2 mJ/moleK2 are determined as done previously for the optimally-

doped crystals. As done preciously for the optimally-doped crystals Fig. 3.21-b

shows a linear fit to the 5 T data from which β=0.23±0.05 mJ/moleK4, and hence
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Figure 3.21: a-Specific heat of an annealed PCCO x=0.17 crystal as a function of

temperature between 2-7K. The crossing between the data at different fields is due

to the transition to the normal state. b- A linear fit to the 5 T data results in

β=0.23 mJ/moleK4 similar to the optimally-doped crystals.
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Debye temperature θD=390±15K are determined.

The C/T vs T2 data of these crystals show no Schottky upturn at any magnetic

field. Therefore the only field-dependent contribution to the specific heat is the

electronic specific heat. Fig. 3.22 shows the field dependence of the electronic specific

heat at 2K, 2.5K, and 3K. γn can be extracted from Fig. 3.22 by C(µ0H = 5T, T =

2K)− C(µ0H = 0T, T = 2K) = γnT = 2γn (this equation is valid only for T¿Tc).

γ(0) can be extracted from C(µ0H = 0T, T = 2K) = βT 3 + γ(0)T = 8β + 2γ(0).

If β=0.23 mJ/moleK4 (from the temperature dependence in Fig. 3.21-b) is used,

γ(0) ≈4.0±0.2 mJ/moleK2 is found.

Fig. 3.22 shows the field dependence of the electronic specific heat at 2K, 2.5K,

and 3K. The electronic specific heat has a linear field dependence at T=2K. However,

a very slight non-linearity is observed for T=2.5 K, and this non-linearity becomes

more visible at T=3K.

Fig. 3.23 shows the data on the same sample for 2K, 3K, and 3.5K after the

zero field specific heat is subtracted. Similar to the optimally-doped samples, this

sample also shows a linear field dependence at low temperatures (T≈2 K) and at

higher temperatures (T≈3 K) the field dependence becomes non-linear. Since the

field range is quite narrow in this case no quantitative analysis was made to fit the

data at 3.5 K to the d-wave theory. However the slope of the linear field dependence

at 2 K data is consistent with a fully-gapped order parameter. A linear fit to the

data yields a slope of 2.2 mJ/mole K T, and a s-wave theory predicts 1.4 κ for

the slope (using γn=2.8±0.2 mJ/moleK2 and Hc2=4 T). In this doping also κ is

estimated to be 1.6 (same as the optimally-doped sample).

Our specific heat experiments are consistent with other experiments [127] which

showed that the upper critical field Hc2 is smaller in the over-doped regime compared

to the optimally-doped regime (Hc2 ≈ 4T at T=2K for x=0.17 whereas Hc2 ≈ 7T

at T=2K for x=0.15).

There are some issues that require further study in order to be completely under-
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stood. The first one is the fact that the exponential temperature dependence at low

temperature, which is expected for a gapped superconductor, has not been observed

in our crystals down to 2 K. If there were an isotropic s-wave gap throughout the

Fermi surface large enough to produce a superconducting transition at 15 K, the

exponential temperature dependence should have been observed below 4-5 K (when

compared to conventional s-wave superconductors which show the exponential tem-

perature dependence below roughly Tc/3 [48]). This observation combined with

the penetration depth experiments on similar composition crystals [39], in which

a gap much smaller than the conventional BCS gap is observed, imply that even

if these crystals have an s-wave symmetry the gap is not isotropic throughout the

Fermi surface and the minimum magnitude of the gap is several times smaller than

the maximum amplitude of the gap. In order to completely understand this point,

lower temperature measurements at zero field should be performed to search for the

exponential temperature dependence.

Another point that requires further study is the large value of the residual zero

field specific heat coefficient, γ(0). γ(0) was found to be 1-2 mJ/moleK2 for the

optimally-doped crystals, whereas in the x=0.17 crystals γ(0)=4.0±0.3 mJ/moleK2.

The reason for such a large value of γ(0) is not understood at the moment. However,

the fact that the value of γ(0) has gone down in the hole-doped cuprates with im-

provements in the crystal quality imply that the over-doped Pr2−xCexCuO4 crystals

are not quite as high quality as the optimally-doped crystals. If we attribute the

origin of this residual specific heat to the normal regions in the crystal, we would

conclude that the concentration of these normal regions is higher in the over-doped

crystals compared to the optimally-doped crystals. However, paramagnetic defects

could also be the origin of γ(0) as proposed for YBCO [63].

Another interesting issue that requires further study is the value of the normal

state Sommerfeld coefficient, γn. γn is basically a measure of the density of states (see

Eq. 4.11). Naively one might expect γn to increase as the doping is increased since
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 Optimally-doped (x=0.15) Over-doped (x=0.17) 
β 0.23±0.02 mJ/mole K4 0.23±0.02 mJ/mole K4 

θD 390±15 K 390±15 K 

γ(0) 2.0±0.2 mJ/mole K2 4.0±0.2 mJ/mole K2 

γn 5.3±0.3 mJ/mole K2 2.8±0.2 mJ/mole K2 

Hc2(0) 8.0 ±0.5T 4.0±0.5 T 

 

Table 3.1: Summary of our specific heat measurement results on optimally and

over-doped PCCO.

more carriers are introduced into the system. However, γn=5.3 mJ/moleK2 in the

optimally doped crystals whereas for the x=0.17 crystals γn=2.8±0.2 mJ/moleK2.

This unusual behavior of γn can be understood in terms of the unusual Fermi surface

of the electron-doped cuprates. ARPES studies have shown that electron-doped

cuprates have a hole-like Fermi surface at optimal doping [128], and doping the

parent compound with electrons (replacing Pr3+ with Ce4+ basically reduces the

size of the Fermi surface, effectively reducing the density of states. Our data is

qualitatively consistent with this picture, however, further studies are required to

check if this model quantitatively agrees with our data.

For a summary of our results on the optimally-doped and over-doped samples

see Table 3.1.

3.6 A study of oxygen reduction (annealing) with

specific heat

The as-grown single crystals of electron-doped cuprates are not superconducting.

The crystals have to be oxygen reduced in order to get superconductivity. The
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oxygen reduction is achieved by annealing the crystals at ∼ 900oC for several days

in an inert atmosphere. The early work in our group showed that ≈1% oxygen

reduction is enough to make the semiconducting as-grown sample superconducting.

The effects of oxygen reduction on transport properties such as thermopower,

Hall effect, resistivity have been studied by changing the annealing times and hence

changing the oxygen content of thin film samples of optimally-doped PCCO and

NCCO [129, 130]. In this section the effects of oxygen reduction on parameters such

as the residual linear specific heat γ(0), the phonon contribution β, and bulk Hc2

will be presented by changing the annealing times of single crystals of optimally

doped PCCO samples from the same batch.

The Debye temperature and the zero field residual heat capacity γ(0) are two of

the important parameters that are of interest for different experiments. Hence, we

will start our discussion by presenting these parameters in an unannealed crystal.

The Debye temperature is extracted from the low temperature phonon contribution

to the specific heat βT 3 (see Eq. 1.5). Fig. 3.24 shows the specific heat of an unan-

nealed crystal from 2-10K at 0T and 2T. Since the crystal is not superconducting

there is no observable difference in the specific heat at the two fields. The intercept

γ(0)=2 mJ/moleK2 and the slope β=0.24±0.01 mJ/moleK4 are found for the unan-

nealed crystal. Hence the Debye temperature for the unannealed PCCO x=0.15 is

390±15K.

Now we start our discussion of comparing the bulk properties of a sample before

and after annealing. Fig. 3.25 shows a comparison of C/T vs T2 data for an optimally

cerium-doped sample before and after annealing (the crystal shown in Fig. 3.24 is

now annealed, and a comparison before and after annealing will be made). The

sample is 6.8 mg, and it is annealed at 900oC for two days. Fig. 3.25 shows that the

slopes of the C/T vs T2 data on the annealed sample at 10T and that of the non-

annealed sample are the same. This means that the phonon contribution and hence

the Debye temperatures are the same in the unannealed sample and the annealed
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sample in the normal state. Therefore, the effect of oxygen reduction on the phonon

spectrum is small enough to be ignored. It is also interesting that the slope of the

zero-field data on the annealed crystal starts to deviate from the other two curves at

temperatures as low as 4K. This deviation is due to parts of the sample going through

the superconducting to normal state transition as the temperature is increased. In

other words the bulk of the sample becomes completely superconducting only at very

low temperatures unlike what is observed in magnetization measurements in which

the magnetic moment saturates at much higher temperatures (see the magnetization

data on two day annealed sample in Fig. 3.26 for the magnetization data on this

sample).

This broad superconducting transition of the electron-doped cuprate single crys-

tals is the reason for the difficulty of observing the jump in the specific heat of

these materials unlike the clear jump observed in Fig. 3.6 for niobium where the

superconducting transition is very sharp. The fact that the effects of superconduct-

ing transition become significant at temperatures as low as 4K (at least for large

crystals like this one) means that one should be careful when extracting the phonon

contribution from the low field data, since just fitting a line to C/T vs T2 data

would result in an exaggerated phonon contribution, as is clear in Fig. 3.25.

Another important point to mention is the similarity, if not equality, of the γ(0)

term in the unannealed and annealed samples. As mentioned in Chapter 1 the

origin of this term is not understood and there are several proposals to explain it: a

band of normal state-like excitations within the nodal regions of the gap created by

impurity scattering [45], gapless superconductivity [62], or contributions from non-

superconducting but metallic regions in the sample [63]. Our data is most consistent

with γ(0) being due to non-superconducting regions in the sample. If there were

a band of normal state-like excitations within the nodal regions of the gap created

by impurity scattering in the superconducting state, the γ(0) term should have

become larger when the sample was made superconducting by reducing its oxygen
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content. However, there is no measurable difference in γ(0) between the annealed or

unannealed sample which means that the contribution to γ(0) from normal regions

created by impurity scattering is small or not existent. This is also consistent with a

fully-gapped symmetry which is inferred from our field dependence data since such

excitations would be suppressed due to the superconducting gap. Attributing γ(0)

to normal regions in the sample and the equality of γ(0) before and after annealing

imply that the normal (metallic) regions in the superconducting state also exist

in the semiconducting unannealed samples. This contribution could be due to a

metallic phase which does not become superconducting or change in concentration

upon annealing. Such a phase has not been observed in X-ray spectroscopy (there

are no extra peaks). Hence, if such a phase exists the concentration of it is less

than the resolution of the X-ray measurements (≈ 1%). Another possibility is that

this phase is still PCCO but with a slightly different oxygen content. Such a phase

would not be detected in X-Ray diffraction since it would have the same peaks as

that of the superconducting phase.

It is also worth mentioning that such a residual contribution has not been

observed in thermal conductivity measurements performed on crystals from our

group [131]. The electronic contribution to thermal conductivity goes to a very

small value (almost zero) when T→0. This observation is also consistent with the

non-existence of a delocalized band of normal state-like excitations within the nodal

regions of the gap created by impurity scattering since such delocalized excitations

would be expected to contribute to heat current and hence to thermal conductivity.

The effects of annealing on the bulk Hc2 could also be studied with specific heat

measurements. The electronic specific heat increases as the magnetic field is in-

creased and at Hc2 it saturates to the normal state specific heat, which does not

change with further increase of the magnetic field. By studying crystals from the

same batch but with different annealing times a correlation between the Tc of mag-

netization measurements, the oxygen content, and the bulk Hc2 has been observed.
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Figure 3.27: The field dependence of two PCCO x=0.15 crystals from the same

batch annealed at 900o for two days and five days. The temperature is 2K.

Fig. 3.26 shows Tc from magnetization measurements for two optimally cerium-

doped crystals both of which were annealed at 900oC but one for two days and the

other for five days. The crystals from this batch (LH87) have been studied with

WDX analysis and are known to have cerium variation between different crystals

less than ∆x=0.005. The size of the crystal which was annealed for two days is 6.9

mg, and the size of the crystal which was annealed five days is 2.9 mg. Fig. 3.26

shows that the Tc increases as the annealing time is increased, and the sample gets

closer to optimum oxygen doping. In agreement with the magnetization measure-

ments, the specific heat measurements also show a larger bulk Hc2 for the crystal

with longer annealing time. Fig. 3.27 shows the field dependence of the specific heat
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of these two crystals. The measurement was performed at a constant temperature

of 2K, and the magnetic field was ramped up after zero-field cooling.

It is also interesting to note that the specific heat of the crystals saturates at

different values when driven into the normal state by applying a high enough mag-

netic field. The difference between the normal state specific heat values is mainly

due to the electronic specific heat since we showed that annealing does not change

the phonon contribution (see Fig. 3.25). The equality of the phonon contribution

in the two crystals can also be seen from the equality of the zero field specific heat

of these crystals in Fig. 3.27. A rough estimate of γn in the two crystals can be

obtained by equating the change in the specific heat between 0T and 8T (or 6T in

the case of the lower Hc2 sample) to γnT. Then γn ≈4.6 mJ/moleK2 for the five

day annealed sample, and γn ≈3.1 mJ/moleK2 for the two day annealed sample is

obtained. γn ≈4.6 mJ/moleK2 of the five day annealed sample is similar to γn=5.3

mJ/moleK2 obtained on other optimally doped crystals (see Fig. 3.7-b), the small

difference is due to different oxygen or cerium dopings, and also due to the approx-

imate nature of extracting γn from a field scan at a non-zero temperature (γn=5.3

mJ/moleK2 was obtained by extrapolating the linear dependence in the C/T vs T2

plots at 10 T and 0 T to zero temperature).

These interesting results from Hc2 and γn of crystals with same cerium doping

but different oxygen content show that oxygen and cerium dopings have similar

effects on the bulk properties of the crystal. Hence, it may be possible to extend

the doping range accessible with cerium doping in the electron-doped cuprates by

varying the oxygen content of the crystals.
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3.7 Summary

Our specific heat measurements showed that the magnetic field dependence of the

electronic specific heat is linear at the lowest temperatures in both optimal and

over-doped crystals. At higher temperatures the field dependence is non-linear.

However, the origin of this non-linearity is not clear at this moment. The possible

explanations are d-wave symmetry at high temperatures, anisotropic s-wave sym-

metry, or some vortex effect independent of gap symmetry. The simplest of these

explanations is the highly anisotropic (gap maximum approximately 15 times the

gap minimum) s-wave gap. However, it is difficult to explain the persistence of the

linear field dependence at 2K up to such high fields as a few tesla while non-linear

field dependence dominates at just 3.5K. At this point a first order phase transition

from d-wave to s-wave as the temperature is lowered would be an explanation for

the persistence of the linear field dependence since a latent heat would be required

to make the transition, and this latent heat could be large enough to prevent the

field dependence to become non-linear even at a few tesla. The vortex-vortex in-

teraction was used before in order to explain the non-linear field dependence in the

conventional s-wave superconductor V3Si, and a change in the size of the vortex core

with magnetic field was suggested as the reason for the non-linear field dependence

in NbSe2. Our data qualitatively looks like the V3Si data, however quantitatively

the two data are very different. In our data the transition from non-linear to linear

field dependence occurs within a temperature range (∆T=1.5K=Tc/15) which is

much narrower than the transition in V3Si (∆T>4K=Tc/4), which makes a vortex

scenario unlikely. The absence of hysteresis in the specific heat as the field is ramped

up and then down in our data (unlike the V3Si data which shows a hysteresis) is an

indication of the difference in the sample quality since this hysteresis is attributed

to pinning of the vortices. In addition the non-linear field dependence in V3Si is

not observed when the field is ramped down (i.e. when vortex pinning effects are
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eliminated), whereas in our case there is no difference between ramping the field up

or down.

In addition to the symmetry of the order parameter the effects of oxygen dop-

ing on the bulk properties of crystals have been studied. It has been shown that

variations in the oxygen content have similar effects on the bulk properties of the

crystals as the variations in the cerium content.
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Chapter 4

Nernst Effect of Pr2−xCexCuO4

Introduction

In the last several years the efforts to understand the mechanism of HTSC have

been concentrated on the normal state of these materials. These efforts have resulted

in the discovery of a normal state gap, or pseudogap. Whether the pseudogap is

related to the superconducting gap or is a different and independent gap has been

a very important question for high temperature cuprate superconductors. One of

the proposed explanations for the pseudogap has been in terms of the supercon-

ducting fluctuations. Because of its high sensitivity to superconducting fluctuations

the Nernst effect has been a very important probe of the superconducting and the

pseudogap states. In this chapter an explanation of the Nernst effect in terms of

macroscopic quantities such as electrical and thermal conductivities is given first

(a detailed microscopic picture of carrier transport is given in Appendix-A). This

introduction is followed by a short discussion of the special case of Nernst effect in a

two-band model. The chapter is concluded with our experimental results and their

interpretation.
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4.1 The Nernst effect

The Nernst effect is a thermomagnetic effect, in which a transverse potential differ-

ence is induced in the presence of a longitudinal thermal gradient and a perpendic-

ular magnetic field. In a normal metal the charge carriers moving along a thermal

gradient accumulate on the cold side of the sample and they induce an electric field

opposing the thermal force. This electric field in turn induces an electric current

in the opposite direction to the thermal current. In steady state these two currents

are equal in magnitude and opposite in sign, so that Jx=0 (assuming the thermal

gradient is in the x̂ direction). In the presence of a magnetic field along the ẑ direc-

tion, the carriers moving in +x̂ and −x̂ directions will be deflected to opposite sides

along the y-axis (see Fig. 4.1). In the simplest case of a spherical Fermi surface and

one type of carrier, these two currents will be equal to each other, and no transverse

voltage will be induced. However in general the two currents will not cancel out ex-

actly because of the energy dependence of the scattering time [90] (the significance

of the energy dependence of the scattering time will become clear at the end of this

section). In order to satisfy the boundary condition of Jy=0 (since it is an open

circuit), a transverse potential has to be induced, which is the Nernst voltage.

Mathematically we can summarize these ideas by starting from the general equa-

tion:

~J = σ̄ · ~E + ᾱ · (−~∇T ), (4.1)

where σ̄ is the electrical conductivity tensor and ᾱ is the thermoelectric (Peltier)

tensor. Before starting the derivation of different quantities from this main equation,

we should mention that σxy = σyx and αxy = αyx. Solving Eq. 4.1 for Jx yields:

Jx = σxxEx + αxx(−∂xT ) + σxyEy + αxy(−∂yT ). (4.2)

The first term in Eq. 4.2 is the current due to the electrical potential of the ac-

cumulating charge on the cold side of the sample, the second term is the thermal
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Figure 4.1: Schematic diagram of the Sondheimer cancellation. The dots are elec-

trons.

current due to the applied temperature gradient. The third term can be ignored

since σxy ¿ σxx [132](the ratio σxy

σxx
≈ 0.01) and Ey ¿ Ex for a normal metal. The

fourth term is due to the temperature gradient along y-axis(Righi-Leduc effect). The

Righi-Leduc effect can be ignored for thin film samples since the substrate with its

large phonon thermal conductivity acts as a shorting medium and prevents a trans-

verse temperature gradient from being established. In measurements on crystals

this term can not usually be ignored and it complicates the unambiguous determi-

nation of the Nernst signal. Ignoring the last two terms and imposing the boundary

condition Jx = 0 on Eq. 4.2 results in:

Ex =
αxx∂xT

σxx

. (4.3)

Solving Eq. 4.1 for Jy yields:

Jy = αyx(−∂xT ) + σyxEx + σxxEy + αyy(−∂yT ). (4.4)
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The first two terms in Eq. 4.4 are due to deflection of the carriers moving in the

±x̂ directions (the two terms in Eq. 4.2) by the magnetic field (applied along the ẑ

direction), the third term is the Nernst current, and the fourth term is the Righi-

Leduc effect which is ignored for the thin film samples. Before deriving the equations

for the Nernst effect a few remarks are necessary about the conventional way of

representing the Nernst effect and the representation which will be followed in this

thesis. The standard way of representing the Nernst effect in metals is by the Nernst

coefficient Q ≡ Ey/(
1
B
|∂T
∂x
|). In the normal state of a superconductor, because of

the linear field dependence of Ey (Lorentz force q ~E = −~v × ~B), dividing Ey/|∂xT |
by the magnetic field is just a matter of scaling the signal with the applied field,

and removing the field dependence. In analogy with the Hall effect, which is exactly

the same as the Nernst effect except an electric current is applied along x̂ direction

instead of a thermal gradient, the Nernst coefficient is same as the Hall coefficient.

In both cases the slope of the linear field dependence is used to represent the effect.

However in the mixed state of a superconductor the field dependence of the Nernst

effect is not linear, and hence a linear scaling with the magnetic field does not

have any meaning. In order to keep a consistent notation in the normal and the

superconducting states, the Nernst effect is represented with ey ≡ Ey/|∂xT | rather

than Q, and ey is referred to as the Nernst signal. This Nernst signal has a

linear field dependence in the normal state and a non-linear field dependence in the

superconducting state.

By using Eq. 4.3 and Eq. 4.4 (after ignoring the last term), and the condition

Jy=0, the following equation can be obtained:

Ey = (αyx/σxx)(∂xT )− (σyx/σxx)Ex

⇒ ey =
αyx

σxx

− σyx

σxx

αxx

σxx

. (4.5)

Eq. 4.5 can also be written in the more familiar form:

ey = [αyx/σxx − S tan θ], (4.6)
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in terms of the thermopower S = αxx/σxx and the tangent of the Hall angle tan θ =

σyx/σxx, or just in terms of the thermopower:

ey = S(
αyx

αxx

− σyx

σxx

) (4.7)

In order to further simplify Eq. 4.7, the expressions for αxx and αxy that are

derived from microscopic considerations in Appendix-A (Eq. 5.24 and Eq. 5.25)

should be used. For convenience these expressions will be given here again:

αxx = π2

3

k2
BT

e
(∂σxx

∂ε
)µ

αxy = π2

3

k2
BT

e
(∂σxy

∂ε
)µ,

where µ is the chemical potential and ε is energy. Then the Nernst signal becomes:

ey =
π2

3

k2
BT

e
[
αxy

σxx

− σxy

σxx

αxx

σxx

] =
π2

3

k2
BT

e

σxy

σxx

[
∂σxy

∂ε

σxy

−
∂σxx

∂ε

σxx

] (4.8)

The last simplification that will be made in this discussion is to use the small angle

approximation (this is justified since the Hall angle is usually very small in metals):

tan(θ) ≈ θ ≈ σxy

σxx
and replace σxy

σxx
by θ. This substitution results in:

ey =
π2

3

k2
BT

e
θ[

∂ ln σxy

∂ε
− ∂ ln σxx

∂ε
]|µ =

π2

3

k2
BT

e
θ
∂ ln θ

∂ε
|µ (4.9)

Since the Hall angle depends primarily on the scattering time, the Nernst coefficient

is usually known to give information about the energy dependence of the scattering

time. In normal metals the Hall angle θ, and hence the scattering time, is only

weakly energy dependent at the Fermi energy, therefore the Nernst signal is usually

very small. However, as we will show in Section 4.2 this argument is no longer valid

for a system that has two bands of conduction (two types of carriers). The Nernst

effect for a system that has two bands of conduction is particularly important for

PCCO since the unusual results of the prior transport experiments [133, 130, 132]

were explained in terms of a two band model.
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4.2 The Nernst effect in a two band model

The Nernst effect for a system that has two bands of conduction is particularly

important for PCCO since the unusual results of the prior transport experiments

[133, 130, 132] were explained in terms of a two band model. This means that there is

a band in which electrons are the dominant carriers and another band in which holes

are the dominant carriers. Having two bands for conduction significantly changes

the normal state transport properties of these materials. Defining σ+
xx as the hole

component of the (1,1) element of the conductivity tensor, and σ−xx as the electron

component of the same tensor element, the total conductivity can be written as

σxx = σ+
xx + σ−xx. Similarly the thermopower would be S = α+

xx+α−xx

σ+
xx+σ−xx

. Since Eq. 4.7

is written in terms of electrical and thermoelectric conductivities, just replacing the

single band conductivity with the addition of the conductivities from the two bands

results in:

ey = S(
α+

xy + α−xy

α+
xx + α−xx

− σ+
xy + σ−xy

σ+
xx + σ−xx

) (4.10)

In this case, the Nernst effect can be quite large depending on the relative Peltier and

electrical conductivities of the two bands. Even in the case of compensated bands,

σ+
xy = −σ−xy, only the second term on the right hand side of Eq. 4.10 vanishes. The

first term does not vanish since α+
xy has the same sign as α−xy (since electrons and

holes respond in the same way to a temperature gradient).

It is also instructive to understand the Nernst coefficient for a two band sys-

tem in terms of the mobility of the charge carriers. For this we should start from

Sondheimer’s expression for a two band system (again + is for holes and - for elec-

trons) [90]:

ey(T ) =
e+

y σ+ + e−y σ−

σ+ + σ−
+

σ+σ−(S+ − S−)(σ+R+ − σ−R−)

(σ+ + σ−)2
, (4.11)

where R is the Hall coefficient and S is the thermopower. This formula can be written

in terms of the mobilities by using the formulas µ+ = σ+R+ and µ− = σ−R−. Then
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Eq. 4.11 can be written as:

ey(T ) =
e+

y σ+ + e−y σ−

σ+ + σ−
+

σ+σ−(S+ − S−)(µ+ − µ−)

(σ+ + σ−)2
. (4.12)

The first term in Eq. 4.12 is always small and its value changes smoothly from e+
y

to e−y as σ+/σ− goes from very large to very small. However the second term can

be very large since sign[S+] = −sign[S−] and sign[µ+] = −sign[µ−]. This result

is important because Nernst effect measurements on optimally cerium doped thin

films of NCCO have shown a large change (more than two times) in the Nernst

voltage when the oxygen content of the films was slightly changed (∼ 1%). Such a

small change in oxygen content can not change the carrier density (or the electrical

conductivity) enough as to change the Nernst signal by a factor of two, but it could

change the relative mobility of the carriers significantly by introducing disorder

into the system. Therefore, in a two-band system not only the relative carrier

concentration and the conductivities but also the relative mobilities are important.

A brief summary of the Nernst effect in the superconducting state is given in

Chapter 1, hence it will not be repeated here. This concludes the introduction to

the Nernst effect. The next section is a summary of the recent experimental results

which motivated the work in this thesis.

4.3 Nernst effect as a probe of the superconduct-

ing fluctuations

Recently an anomalously large Nernst effect was reported in under-doped LSCO

where a large Nernst signal persisted up to 100K above Tc [80]. In the following

experiments this anomalous Nernst effect has been observed in almost all hole-doped

cuprates, especially in the under-doped regime [80, 81, 82, 134, 83]. An example of

this effect is shown in Fig. 4.2. Fig. 4.2-a shows the Nernst signal as a function of

magnetic field for three different dopings of Bi2Sr2CaCu2O8 (Bi-2212) [134]. The
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measurements are performed at the respective Tc of each compound: T=50K for the

under-doped compound, T=90K for the optimally-doped compound and T=65K for

the over-doped compound. The Nernst signal does not reduce to the normal state

value (a few nV/K) even at magnetic fields as high as 30T. Fig. 4.2-b shows the

magnetic field dependence of the Nernst effect at different temperatures in the under-

doped Bi-2212. The Tc=50K for this compound but, as seen in the Fig. 4.2-b, 50K

is not a special temperature for the Nernst effect, and the Nernst signal remains

significantly larger than the normal state value up to T=100K. This temperature is

twice the Tc, and it will be referred to as the onset temperature of the anomalous

Nernst effect, Tν . This large Nernst signal has been attributed to phase fluctuations

in the superconducting order parameter [80]. Hence in this picture Tν is the onset

temperature of Cooper pair formation and Tc is the onset of macroscopic phase

coherence between these Cooper pairs.

The onset temperature of this anomalous Nernst effect increases as the doping

is reduced, which is analogous to the doping dependence of the onset temperature

of the pseudogap, T∗, in these compounds (see Fig. 1.2 for the doping dependence

of T∗). However Tν is significantly less than T∗, Tν ≈T∗/2. The similarity be-

tween the doping dependence of the pseudogap onset temperature T∗ and the onset

temperature of anomalous Nernst signal Tν has been proposed as evidence for a

relation between the phase fluctuations and the pseudogap. However the difference

in the magnitude of Tν and T∗ suggests that the pseudogap phenomena can not be

explained solely by phase fluctuations in the superconducting order parameter.

These Nernst effect measurements have inspired a revisit to the theory of su-

perconducting fluctuations in the cuprates. These theoretical studies have proposed

that the anomalous Nernst effect can be explained in terms of various types of fluc-

tuations or in terms of a preformed pair model. Kontani suggests that including

antiferromagnetic fluctuations in addition to superconducting fluctuations in the

under-doped regime would explain the unusually large Nernst signal above Tc [135].
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Figure 4.2: A-The Nernst effect on three different dopings of Bi-2212 hole-doped

sample at their respective Tc’s from resistivity. UD:under-doped, OPT:optimally-

doped, OD:overdoped. The anomalous Nernst effect is most prominent in the under-

doped compound, and in all dopings the anomalous signal persists to very high mag-

netic fields. B- The field dependence of the Nernst signal at different temperatures.

The signal remains anomalously large up to 100K when the resistive Tc=50K. The

data is from Ref. [134].
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Ussishkin et al. [136, 137] suggest that Gaussian, non-interacting, superconducting

fluctuations above Tc are able to explain the Nernst effect for the optimally-doped

and over-doped regimes. For the under-doped regime they suggest that strong non-

Gaussian fluctuations reduce the mean-field transition temperature TMF
c , the theo-

retical transition temperature in the absence of any fluctuations, and therefore the

mean field TMF
c should be used in calculations instead of the actual Tc in order to

take into account the contribution of the non-Gaussian fluctuations to the Nernst

effect [136, 137]. Another proposal came from Tan et al. [138] in which they pro-

posed a preformed pair alternative to the vortex-like excitations scenario to explain

the anomalous Nernst effect in the under-doped hole-doped cuprates. Honerkamp

and Lee [139] suggested that another ordered state (staggered flux state) similar in

energy to the superconducting state should be created in the core of the vortices

upon the destruction of superconductivity in order to explain the anomalous Nernst

effect persisting up to very high temperatures. This would enable the creation of

large numbers of vortices without costing too much energy (since the ground state

in the vortex core and the superconducting state are similar in energy), and hence

result in a large Nernst signal at temperatures significantly higher than Tc. The

theoretical work of Emery and Kivelson [84] which preceded the Nernst effect mea-

surements in under-doped cuprates and the follow-up work of Carlson et al. [11]

are also important studies about the nature of superconducting fluctuations that

should be mentioned. In this study the cuprates are classified in terms of their

pairing strength (a measure of the superconducting gap) and phase stiffness (a mea-

sure of the superfluid density). The formation of the superconducting state requires

both the formation of the Cooper pairs (determined by the pairing strength) and

establishment of phase coherence between different pairs. The destruction of the

superconducting state as temperature is increased is determined by the weaker of

these effects. In conventional low-Tc superconductors the pairing strength is the

weaker effect and, hence, it determines the disappearance of superconductivity. In
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contrast, in the cuprates, it was found that Tc depends linearly on the carrier con-

centration (the Uemura plot [140]), and hence the Tc is determined, at least in the

under-doped regime, by the superfluid density. This theory [11, 84] predicted that in

the hole-doped cuprates the fluctuations in the phase of the order parameter would

dominate the Nernst signal up to a certain temperature above Tc, and at still higher

temperatures there should be contributions to the Nernst effect from fluctuations

both in the phase and the amplitude of the order parameter (Gaussian fluctua-

tions). The same study predicted that these fluctuations should be much smaller

in the electron-doped cuprates. At present, none of the proposed explanations for

the large Nernst signal observed in the hole-doped compounds have gained general

acceptance.

Early measurements on hole-doped cuprates, which were concentrated on the

optimally-doped regime, showed a large Nernst signal below Tc (the well known

vortex Nernst effect) which diminished rapidly close to Tc (Hc2), and merged to

the normal state Nernst signal [78, 79, 77]. This behavior was similar to that ob-

served in conventional superconductors, except for a broader fluctuation regime.

The Nernst effect studies in the electron-doped cuprate superconductors(all previ-

ous measurements were on Nd1.85Ce0.15CuO4−δ(NCCO)) showed the same behavior

in the superconducting state. However, the normal state behavior was quite differ-

ent [133, 130, 132]. An anomalously large Nernst voltage in the normal state was

interpreted as evidence for the existence of two types of carriers, not vortex-like

excitations. The two carrier interpretation has recently been supported for optimal-

doping by ARPES measurements which showed electron pockets on a hole-like Fermi

surface [24]. The doping dependence of the Nernst effect in the electron-doped su-

perconductors was studied by varying the oxygen content of NCCO, but the cerium

doping dependence was not investigated.

In this chapter we report Nernst effect data for the electron-doped supercon-

ductor Pr2−xCexCuO4(PCCO) at different cerium dopings, and discuss some of the
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important issues that were raised by the recent Nernst effect measurements on the

hole-doped compounds. Magnetic field and temperature dependence of the Nernst

voltage, and temperature dependence of Hc2 close to Tc are presented. In addi-

tion, Hc2 values obtained from Nernst effect and resistivity are compared. Unlike

the recent results on some hole-doped compounds [80, 81, 82, 83], our data does

not show an anomalous Nernst signal above Tc(or Hc2) for the optimally-doped

and over-doped compounds. The under-doped compound shows a larger fluctua-

tion regime but it is much narrower in temperature compared to the hole-doped

materials. The Hc2(T) obtained from the Nernst effect follows a conventional linear

temperature dependence close to Tc for all dopings we studied in contrast to an

anomalous curvature found in many previous resistivity determinations of Hc2(T).

The critical field, Hc2(0), and the superconducting energy gap deduced from Hc2(0)

increase with decreasing doping even though Tc has a different doping dependence.

The magnitude of the Nernst signal in the normal state is very similar for different

cerium dopings. It is too large to be explained by a one carrier (one-band) model

and it does not show the temperature dependence to be caused by vortex-like ex-

citations or superconducting fluctuations. This suggests that two types of carriers

(bands) exist in all the cerium dopings we studied and they are the origin of the

large Nernst signal above Tc.

4.4 Samples and experimental setup

The measurements were performed on Pr2−xCexCuO4 (x=0.13, 0.15, and 0.17) thin

films grown by the pulsed laser deposition technique on SrTiO3 (STO) substrates.

The thickness of the films was around 3000 Å. The sample was attached on one end

to a copper block with a mechanical clamp (for better thermal contact), with the

other end left free (see Fig. 4.3 for a similar holder which was used for the Nernst

effect measurements in the PPMS).
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cold-end thermometer
heater

hot-end thermometer
1 cm

Figure 4.3: PPMS resistivity puck was modified to measure the Nernst effect. The

home-made system also had a similar holder. The size of the sample is 5mm×10mm.
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A temperature gradient was created by heating the free end with a small metal

film heater attached on the film. Two Lakeshore cx-1030 cernox thermometers

were attached on the two ends of the sample with a thin layer of GE 7031 varnish

to monitor the temperature gradient continuously. The temperature gradient was

between 1-2.5 K/cm depending on the temperature of the measurement. The tem-

perature of the sample was determined by taking the average of the temperatures

at the hot and cold sides. We calibrated the thermometers on the cold and hot

sides of the samples together under the same conditions with respect to the same

calibrated thermometer. The temperatures of the hot and cold ends of the sample

were measured by continuously monitoring the resistance of the thermometers with

two Keithley 182-nanovoltmeters and two Keithley 220 current sources. The resis-

tance is then converted to temperature by using a Labview program that has the

calibration file for the thermometers. This method of monitoring the temperature is

better than using temperature controllers since the Keithley voltmeters have a much

better GPIB interface than the temperature controllers. Also since the calibration

file is kept in the computer, it is much easier to recalibrate the thermometers, and

there is no limit on the number of points that could be used in the calibration

file (as opposed to the 100 data points limit of the Lakeshore-93CA temperature

controller). The background temperature was controlled by a Lakeshore-93CA tem-

perature controller. All the data acquisition programs were written in Labview. The

measurements were performed under vacuum, and the magnetic field was perpen-

dicular to the ab-plane of the PCCO film. The Nernst voltage was measured with

a Keithley 2182 Nanovoltmeter which has a sensitivity of several nanovolts. The

copper wires that were used to measure the Nernst effect were taken from the top

of the probe to the sample without going through any junction in order to minimize

the stray thermal EMF that could be induced in such junctions. In other words

the four-pin connectors that are usually used for thermalization of the wires coming

from the top of the probe were eliminated and instead the wires were thermalized
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by wrapping them around parts of the probe that have a strong thermal link with

the 4.2 K helium bath. The wires measuring the Nernst voltage were isolated from

the other wires by passing them through grounded copper tubes which is important

for reducing the cross talk between the wires. The measurements were made at

fixed temperatures while the field was scanned slowly at a rate of 20 Oe/sec. The

temperature stability was a few millikelvins during the field scan. The Nernst signal

is measured at positive and negative field polarity, and (1/2) the difference of the

two polarities is taken to remove any thermoelectric power contribution due to the

misalignment of the contacts.

4.5 Data and analysis

Fig. 4.4 shows the resistivity data for the films used in this study. The Tc, the sharp-

ness of the superconducting transition, and the behavior of resistivity in high mag-

netic fields below the zero-field Tc(insulating-like for optimally-doped and under-

doped samples, and metallic for over-doped samples) show the high quality of the

films [129].

Fig. 4.5-a, -b, -c show the low temperature Nernst effect data for the three dop-

ings we studied, and Fig. 4.5-d shows a comparison of the Nernst signal for the three

dopings at T/Tc ≈ 0.7. The superconducting vortex Nernst signal of the over-doped

and optimally-doped samples crosses over to the normal-state Nernst signal(linear

in magnetic field) very close to the resistive Hc2 (for values of Hc2, see Table 4.1) .

In the under-doped sample, the transition from the superconducting state to nor-

mal state occurs over a wider field range suggesting that the fluctuation regime is

broader for the under-doped regime compared to the other dopings. Nevertheless

in all three dopings the Nernst signal behaves very differently from the hole-doped

cuprates in which an anomalous Nernst signal has been observed [80, 81, 82, 83]. In

the electron-doped PCCO the peak of the vortex Nernst signal is quite sharp in all
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Figure 4.4: Resistivity of the optimal, over, and under-doped PCCO as a function

of temperature at zero field (dark symbols) and H=14 T (open symbols). The inset

shows the resistivity of the same samples as a function of field at T=2 K.
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the dopings we studied. However, the hole-doped compounds [80, 81, 82, 83], par-

ticularly the under-doped compounds, show an extended peak for the vortex Nernst

signal that persists to fields much larger than the resistive Hc2 even at temperatures

very close to Tc.

Fig. 4.6-a shows the typical Nernst effect for T>Tc for the optimally-doped

sample. The linear field dependence of the charge carrier Nernst effect is clearly

seen, and no anomalous behavior is observed even at temperatures very close to

the resistive Tc. Under-doped and over-doped samples behave very similarly to the

optimally-doped sample, therefore the data for these dopings is not shown here.

Fig. 4.6-b summarizes the temperature dependence of the Nernst signal at 9 T

for T>Tc. The dome-like behavior that was observed in Nd1.85Ce0.15CuO4−δ for

different oxygen dopings [130, 132] is also observed in PCCO for different cerium

dopings. A quantitative understanding of this temperature dependence is beyond

the scope of this thesis. The large magnitude of the Nernst signal is also similar to

that observed in NCCO for T>Tc. This large magnitude of the Nernst signal and

some other observations that are discussed in detail in Ref. [130] were interpreted

as evidence for the existence of two-types of carriers in electron-doped cuprates.

In consistency with this previous interpretation, our present Nernst effect studies

suggest that two-types of carriers exist in PCCO for all the cerium dopings we

studied. Quantitative analysis of how two types of carriers are introduced in the

system, and the variation of their concentration with cerium and oxygen dopings

requires further systematic studies. We should also mention that the Nernst effect

of some hole-doped compounds (especially at optimal doping) has been measured to

high accuracy in the normal state up to room temperature. These experiments have

shown that the Nernst signal decreases dramatically just above Tc, and remains less

than 50 nV/K for temperatures up to 330 K [141, 142]. These signal levels are

much smaller than what is found in PCCO suggesting one-type of carrier in the

hole-doped cuprates.
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Whether the fluctuation region observed in the under-doped PCCO is related

to the pseudogap state is an important issue. The experiments that studied the

pseudogap state in electron-doped compounds have not yet produced conclusive

results about either the magnitude or the onset temperature (T*) of the pseudogap.

Tunnelling spectroscopy experiments have shown evidence for a low energy gap

of magnitude comparable to the superconducting gap when the superconducting

state is suppressed with the application of a strong enough magnetic field (T* ≤
Tc) [37, 85]. On the other hand, optical conductivity shows evidence for a high

energy gap at 100-300 meV [143]. Other optical experiments (T* > 292 K [86] and

T*=110 K [87]), and photoemission [88], and Raman spectroscopy [89] (T*=220

K) experiments have also shown evidence for a high energy gap. Our Nernst effect

data does not show a strong signal that could be related to a pseudogap. For

example, in the hole-doped compounds where the anomalous Nernst effect has been

observed [80, 81, 82, 83], there is no distinctive feature in the Nernst signal when

crossing Tc (i.e. Tc does not seem to be a special temperature). This suggests

that these excitations, which could originate at the pseudogap temperature (T∗)

dominate the signal around Tc. However, we should mention that this type of

behavior is not found in all hole-doped cuprates. In some cuprates in which a

pseudogap has been observed, the Nernst effect does actually show a transition from

a large mixed state signal below Tc to an almost zero normal state signal just above

Tc [144, 142]. This issue will be discussed more in the summary section. Our Nernst

effect data shows a similar behavior around Tc to these systems, i.e. the distinctive

vortex Nernst signal goes to a minimum and a clear normal state signal (linear in

field) appears just above Tc (see Fig. 4.5 for example). Therefore, we conclude that

there is no pseudogap state with associated superconducting fluctuations in this

regime of the electron-doped superconductors. Of course a pseudogap of some other

origin is possible. Quantitatively for the under-doped sample at T≈ 15K, where an

anomalous signal would be expected, the normal state contribution is around 100

126



nV/K, which is small compared to the vortex-like signal of several µV/K around

Tc for under-doped La2−xSrxCuO4(LSCO) [81].However, we can not rule out the

existence of a weak pseudogap signal in PCCO that is dominated by the normal

state (two-carrier) Nernst signal.

We now discuss the Hc2(T) extracted from the Nernst signal (see Fig. 4.7-a). The

dashed lines in Fig. 4.7-b show our method of extracting Hc2(T). The uncertainty in

the value of Hc2(T) is found from the difference between the point of intersection of

the dashed lines and the point one would get from extrapolating the vortex Nernst

signal to zero. In our case extrapolating the vortex Nernst signal to zero is the same

as extrapolating Sφ, the transport entropy per unit length of flux line, to zero since

the flux flow resistivity is constant in the relevant field range (Sφ = φoey/ρff , where

ρff is the flux flow resistivity and φo is flux quantum). Due to the complications

of extracting the Hc2(T) from Sφ that are detailed in Ref. [132] (usually Hc2(T) is

overestimated in this method), Hc2(T) is not extracted from Sφ. In particular it

was shown that determining Hc2(T) from Sφ does not work at all for under-doped

NCCO [132]. Therefore the errors in the value of Hc2(T) are taken large enough

to take into account this uncertainty. Considering the small difference between the

Hc2(T) values one would get by using different methods to determine it, some of the

important results of this study would be valid in any of the methods used. One of

these results is that Hc2(0) increases with decreasing doping, since for a given T/Tc

the signature of the normal state is seen at a larger field as the doping decreases. The

other conclusion that would not change by the uncertainty in determining Hc2(T)

is that the fluctuation regime becomes narrower as the doping increases. This can

be seen by comparing the close proximity of the vortex Nernst peak and the linear

field dependent normal state contribution in the over-doped sample vs the broad

transition region between these two typical regimes in the under-doped compound.

However, one conclusion that would change for the under-doped compound is the

linear temperature dependence of Hc2(T). Using Sφ to determine Hc2(T) would make
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it very difficult to observe any systematic temperature dependence for Hc2(T) as was

also found in Ref. [132].

The Hc2(T) of the optimally-doped sample shows a linear temperature depen-

dence in the range of our Nernst effect data. Hc2(0) is estimated using the Helfand-

Werthamer formula [145]

Hc2(0) ≈ 0.7× Tc × dHc2

dT
, (4.13)

where dHc2

dT
is measured at Tc. Hc2(0) for optimal doping is found to be 6.3±0.2 T,

and therefore the coherence length of the optimally-doped sample is ξ(0) ≈ 75± 2Å

(from ξ2(0) = φo

2πHc2(0)
) . The Hc2(T) of the over-doped sample also shows a linear

temperature dependence except for T>13 K where the superconducting-to-normal

state transition starts. Using the Helfand-Werthamer formula Hc2(0) is found to be

3.7±0.4 T, and ξ(0) ≈ 109 ± 6Å. Due to the broad fluctuation region, where the

Nernst signal had almost no field dependence, it was more difficult to determine

Hc2(T) for the under-doped sample. However, the fact that the normal state linear

field dependence of the Nernst signal in the under-doped compound is observed at

fields larger than that in the optimally-doped one suggests that Hc2(T) is larger in

the under-doped compound. A Helfand-Werthamer extrapolation to the Hc2(T) vs

T data for the under-doped compound yields Hc2(0)=7.1±0.5 and ξ(0) ≈ 71± 3Å.

For a summary of these results see Table 4.1.

Another important point that we should mention about the upper critical field

is the difference in the sensitivity of the Nernst effect and resistivity in determining

Hc2. The Nernst effect is very sensitive to superconducting fluctuations which are

more difficult to observe in resistivity. This is particularly clear in the under-doped

compound in which the onset of the normal state contribution is preceded by a

wide fluctuation(Fig. 4.5-a) regime in the Nernst effect whereas the resistivity in

the same field range is basically flat (Fig. 4.4). Resistivity measurements on PCCO

and NCCO have shown the Hc2 of the under-doped compound to be smaller than
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Figure 4.7: (a)-The upper critical field Hc2(T ) extracted from the Nernst effect data

of Fig. 4.5 (and other data omitted from Fig. 4.5 for clarity). (b)-Comparison of

Nernst effect and resistivity in terms of Hc2 for x=0.15 sample. The dashed lines

show the method used to extract Hc2.
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sample resistive Tc Hc2(0) ξ0(0) dHc2 /dT

x=0.13 14 K 7.1 T 7.1 nm 0.41 T/K
x=0.15 20.5 K 6.3 T 7.5 nm 0.37 T/K
x=0.17 14.4 K 3.7 T 10.9 nm 0.35 T/K

Table 4.1: A summary of the Hc2(0), ξ(0), and dHc2/dT for different dopings deter-

mined from the Nernst effect.

that of the optimal-doped compound [146] (this can also be seen in the inset of Fig.

4.4). This would imply that the magnitude of the superconducting gap is larger in

the optimally-doped compound (ξ0 ≈ ~vf

∆0
, where vf is the Fermi velocity). How-

ever, point-contact tunnelling experiments on similar samples have shown that the

superconducting gap amplitude is larger in the under-doped compound compared

to the optimally-doped one [37]. Our Nernst effect data explains this contradiction

by the insensitivity of the resistivity to superconducting fluctuations, and implies

that resistivity is not a proper measurement for determining Hc2 in agreement with

the conclusion of Ref. [146].

Resistivity and Nernst effect show similar Hc2(T) for all dopings if the initial

deviation from the normal state resistivity is chosen as a reference for Hc2(T)(see

Fig. 4.7-b). The under-doped compound shows a larger difference between the

Nernst effect and resistivity in terms of Hc2(T), which suggests that the fluctuation

regime is broader in the under-doped compound. A sample curve showing the

superconducting-normal state transition from resistivity and Nernst effect is shown

in Fig. 4.7-b) for the optimally-doped sample.

There are important similarities between our Nernst effect data and the recent

130



Nernst effect data on hole-doped Bi-2212(Bi2Sr2CaCu2O8) and Bi-2201(Bi2Sr2−yLayCuO6) [134].

Similar to our results, Hc2(0) was found to increase with decreasing doping for both

single layer and double layer Bi compounds studied in Ref [134]. These observations

are consistent with other experiments showing an increasing superconducting gap

(∆0 ∝ vf

√
Hc2, where vf is the Fermi velocity) amplitude with decreasing doping

both for the n-doped and the p-doped cuprates [132, 23].

131



Summary

Unlike in the hole-doped cuprates where an anomalous Nernst signal has been

observed, the vortex Nernst signal in the electron-doped PCCO does not persist

above Tc or Hc2 for over and optimal dopings. The Tc and Hc2 extracted from the

Nernst effect measurements for these dopings are similar to those obtained from

resistivity if the start of the resistive superconducting transition is chosen as a

reference for Tc or Hc2(T). The under-doped compound shows a broader fluctuation

regime, and therefore the superconducting to normal state transition look different

in Nernst effect and resistivity. Above Tc the temperature dependence of the Nernst

voltage is very similar for different dopings, and the magnitude of the Nernst signal

is too large to be explained by a one-carrier model. These results are consistent with

previous experiments on NCCO which were interpreted as evidence for the existence

of a two-carrier transport in these materials [130].

The different behavior of the Nernst effect beyond the resistive Tc (or Hc2) for

n-doped and the p-doped cuprates in which an anomalous Nernst signal is observed

in the optimal and over-doping is a puzzling problem that remains to be resolved.

However, it is clear that the large Nernst signal seen in the normal state (T>Tc)

of the n-doped cuprates has a different origin than the anomalous Nernst signal

observed in the p-doped compounds. In our data we see a clear distinction between

the vortex Nernst effect contribution (a peak in the superconducting state) and

the normal state contribution which is linear in magnetic field and which increases

with temperature for T>Tc up to ∼ 30 K above Tc. In contrast, the anomalous

Nernst signal observed in some of the p-doped compounds is not distinct (there is

no feature at or around Tc that would distinguish the two contributions) from the

vortex Nernst contribution, and the signal decreases with temperature for T>Tc up

to 50 K above Tc [81].

In conclusion, we see a possible explanation in terms of superconducting fluctua-

tions that can reconcile the n-doped and p-doped Nernst experiments. Non-Gaussian
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fluctuations in the phase of the superconducting order parameter are dominant be-

tween Tc and the mean field critical temperature TMF
c , but between this TMF

c and

the onset of the anomalous Nernst signal, Tν , fluctuations both in amplitude and

phase of the order parameter should be considered in order to explain the anoma-

lous Nernst effect [136]. Vortex-like excitations above Tc might be an ambiguous

way of describing this phenomenon since at such conditions (high density of fluc-

tuations) the idea of a vortex becomes unclear. And also at temperatures T>TMF
c

fluctuations in the amplitude of the order parameter are also important. Hence, this

would make a vortex description of such fluctuations questionable since a certain

amplitude stability is required for a vortex to be created. These fluctuations are

smaller in the electron-doped cuprates due to two main reasons:

1. The effect of amplitude fluctuations is smaller in the n-doped cuprates because

of a larger coherence length (∼ 5 times larger in PCCO compared to LSCO).

2. The phase fluctuations that dominate around Tc for the hole-doped cuprates are

smaller in electron-doped compounds since the phase stiffness temperature is com-

parable to the superconducting gap amplitude in these materials. For more details

about this issue see Ref [11].

Another important issue that should be reconciled with the results of other

experiments is the relation of the anomalous Nernst signal to the pseudogap. This

issue will be discussed first for the hole-doped cuprates and then for the electron-

doped cuprates.

In the hole-doped cuprates, the onset temperature (Tν) of the anomalous Nernst

signal is still much less than the pseudogap onset temperature observed in NMR [147,

148] or optical conductivity experiments [65, 149] for all the hole-doped cuprates in

which an anomalous Nernst signal has been observed. This could imply two things:

the anomalous Nernst signal is not related to the pseudogap or there is more than

one source for a pseudogap like behavior which give rise to different gaps observed

in NMR and the Nernst effect (i.e. multiple pseudogaps).
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The fact that the anomalous Nernst signal is more pronounced in the under-

doped regime, similar to the pseudogap observed in other experiments, suggests

that the two phenomena are related. However, the variation of the strength of the

pseudogap and anomalous Nernst effect with doping are not exactly the same. The

strength of the pseudogap continues to increase even when the hole doping gets

very small [65]. However, the strength of the anomalous Nernst effect peaks at a

certain low hole doping (x≈0.1 in LSCO [81]), and decreases when the doping is

further reduced. This difference suggests that even though the anomalous Nernst

effect is related to the pseudogap, it can not account for all the pseudogap like

behavior observed in hole-doped cuprates. The larger value of T∗ compared to

Tν also supports the idea of a pseudogap different from that which gives rise to

the anomalous Nernst effect. Another important fact that would support this idea

is that the anomalous Nernst signal has not been observed in all the hole-doped

cuprates that show evidence for a pseudogap above Tc (optimally-doped YBCO is

one of these [79]).

The pseudogap detected in different experiments and the anomalous Nernst effect

in electron-doped cuprates should also be reconciled. Tunnelling studies on electron-

doped PCCO show a pseudogap that has an onset temperature T*<Tc [37, 150,

85]. It is not clear at this moment if this behavior can be reconciled with the

other experiments that suggest a pseudogap at temperatures much higher than Tc.

However, the pseudogap observed in tunnelling experiments does not conflict with

the absence of a pseudogap in electron-doped cuprates since T*<Tc. This would

mean that even if there is an additional Nernst effect due to a pseudogap, it would

be mixed with the large vortex Nernst effect, and it would not be detectable above

Tc.

Clearly, more work on the nature of the pseudogap state in the n-doped cuprates

needs to be done before any conclusive explanation of the n-doped and p-doped

Nernst effect data can be made. At the present time a superconducting fluctuation
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induced anomalous Nernst effect would appear to be most consistent with all the

known experimental data.
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Chapter 5

Conclusion

This chapter summarizes the contributions of this thesis to our understanding of

high temperature superconductivity in electron-doped cuprates. First a summary

of our results for specific heat then for Nernst effect measurements are given. The

chapter is concluded with possible new experiments that would further advance our

understanding of the electron-doped cuprates.

5.1 Summary of results for the specific heat mea-

surements

Several important parameters have been determined for a member of the electron-

doped family, Pr2−xCexCuO4. The Debye temperature θD, Sommerfeld constant γn,

and the coefficient of residual specific heat contribution at zero field γ(0) are listed

in Table 3.1.

The conventional method of studying the field dependence of the electronic spe-

cific heat is to measure the specific heat as a function of temperature at different

fields. This data is then fit to a function of the form C = [γ(H) + γ(0)]T + βT 3 +

CSchottky, and γ(H) is extracted for different fields. We have shown that the Schot-

tky contribution, which has been an important obstacle in reliably extracting the
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electronic contribution to the specific heat in the hole-doped cuprates, can be made

negligibly small (for T>2K) in PCCO with properly prepared single crystals. This

in turn eliminates the need for studying the temperature dependence of the specific

heat at different fields (and the elaborate fitting required for each field), and makes

it possible to study the field dependence of the electronic specific heat by just sweep-

ing the field at a constant temperature. It is possible to take many more data points

in the field range of interest (0-2T) in a reasonable time and the analysis of this data

is much simpler in this method. Keeping in mind that the electronic contribution is

often dominated by the phonon contribution and the Schottky contribution in most

materials in the temperature range of this study, the advantage of our analysis is

very clear.

By using these simple methods of data acquisition and analysis, the field de-

pendence of the electronic specific heat is determined to be linear at the lowest

temperatures studied (≈2K). This result is valid for both optimal and over-

doped crystals, and it is consistent in all the crystals we studied. Such

a field dependence is consistent qualitatively and quantitatively with a

fully-gapped order parameter in both the optimal and over-doped crys-

tals of PCCO at low enough temperatures (T≈2K). At higher temperatures

both optimal and over-doped crystals show a non-linear field dependence which

could have several different explanations: anisotropic s-wave gap, a phase transition

from d-wave symmetry to s-wave symmetry, or a vortex effect independent of the

gap symmetry. It is not possible at this moment to conclusively determine the cor-

rect explanation for this unusual field dependence or to completely rule out any of

the possibilities.

Besides the gap symmetry of the electron-doped cuprates, the effects of oxygen

reduction on the bulk properties of PCCO were studied. Our data shows that

the as grown sample (unannealed, not superconducting) and the annealed sample

(same sample but made superconducting after annealing) have the same Debye
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temperature θD, and the same residual zero field specific heat coefficient γ(0). On

the other hand it is found that the bulk upper critical field Hc2 and the Sommerfeld

coefficient γn significantly vary between superconducting samples which are annealed

differently and hence have different Tc’s. In addition Hc2 and γn are both smaller

while γ(0) is larger in the over cerium doped crystals. θD is the same in the optimal

and over-doped crystals. It is also interesting to note that γn depends both on

cerium concentration and oxygen concentration. Since γn is a measure of the density

of states, this result suggests that oxygen reduction has similar effects on the density

of states as the cerium doping.

5.2 Summary of results for the Nernst effect mea-

surements

Our Nernst effect measurements do not show any anomalous Nernst effect. This

result and the large anomalous Nernst effect of the hole-doped cuprates suggest

that the superconducting fluctuations are responsible for the large Nernst signal

observed above Tc in the hole-doped cuprates. However, unlike the fluctuations that

are observed in conventional superconductors these fluctuations have a significant

contribution from phase fluctuations. Particularly for the under-doped compounds

the effect of these phase fluctuations has to be taken into account in order to explain

the anomalous Nernst effect.

The upper critical field Hc2 is determined from the Nernst effect. Hc2 increases

as the doping is decreased, and it has a linear temperature dependence for all dop-

ings(for a summary of Hc2 and the coherence length values in different dopings of

PCCO see Table 4.1). The fluctuation regime in PCCO gets broader as the doping

is reduced. In particular the broad fluctuation regime of the under-doped compound

which is undetectable in the resistivity measurements shows that resistivity is not a
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good probe of Hc2.

The magnitude of the Nernst effect in the normal state is too large to be explained

by a one-band model. A two-band model in which each band has a different type of

dominant carrier (electrons in one band and holes in the other) is required in order

to explain the Nernst effect data in the normal state.

5.3 Future research

The current specific heat experiments suggest s-wave symmetry at low tempera-

tures. However at high temperatures it is not clear whether the symmetry of the

order parameter makes a phase transition to d-wave symmetry or remains s-wave

(anisotropic s-wave). A possible experiment to clarify this issue is to observe the

response of the electronic specific heat to non-magnetic impurities. An s-wave su-

perconductor responds very differently from a d-wave superconductor to increasing

concentration of impurities. Non-magnetic impurities induce pair breaking in a d-

wave superconductor, but not in an s-wave superconductor (they merely reduce the

size of the gap). This in turn increases the residual zero field specific heat in a d-

wave superconductor but not in an s-wave superconductor [119]. In an anisotropic

s-wave superconductor which has a non-linear field dependence similar to
√

H in

the clean-limit, the non-magnetic impurities induce a linear field dependence. In

a d-wave superconductor with
√

H type field dependence at the clean limit, the

field dependence becomes H ln H type in the dirty limit. These distinctly different

responses should make it possible to distinguish between anisotropic s-wave and

d-wave symmetries.

Another possible experiment to distinguish the two possible scenarios of a phase

transition in the order parameter and anisotropic s-wave symmetry is to check for

latent heat (assuming the phase transition is first order) in the temperature range

where such a phase transition is expected. In the optimally doped-sample such a
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phase transition should occur around 3K. If this phase transition is of first order,

which it is predicted to be [116], there should be a latent heat associated with this

transition. The best way to test this idea is to measure the ac-heat capacity of the

optimally doped sample at zero field. Zero field is important in order to eliminate

any possible vortex effect, and ac-heat capacity is ideal method due to its sensitivity

to phase transitions.

The correlation established between oxygen reduction and cerium doping on the

bulk properties of crystals suggests that it might be possible to study the doping

dependence of the gap symmetry and of the bulk properties of the crystal by varying

the oxygen content. In particular under-doped crystals which proved to be very

difficult to grow with cerium doping might be possible to obtain with oxygen doping.

This idea could be tested by studying the same optimally-cerium doped sample

before annealing, after a short annealing (like a few hours), then after optimal

annealing time (5 days or more depending on the size of the sample), and finally

after annealing the optimally-annealed sample in oxygen-rich environment. In this

way it might be possible to study all the phase diagram on the same sample.

Another possible experiment is to study the specific heat of a crystal when

the magnetic field is rotated within the ab-plane. This experiment is particularly

important since for a d-wave superconductor depending on the orientation of the

magnetic field (whether the field is along the nodal or antinodal direction) there

is an anisotropy in the specific heat since the number of nodes contributing to the

Doppler shift changes. When the magnetic field is along the antinodal direction

all four nodes contribute to the specific heat while only two nodes contribute when

the field is along the nodal direction, and hence there should be an anisotropy of
√

2 in the specific heat [45]. The interpretation of the results of this experiment

could be complicated due to a possible anisotropic s-wave gap, nevertheless finding

an anisotropy of
√

2 in the specific heat would be a strong evidence for d-wave

symmetry.
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The Nernst effect measurements could be expanded to study the evolution of the

two-band conduction with doping. The Hall effect measurements on different dop-

ings of PCCO have suggested that only in a certain doping range around the optimal

doping should the two band effects be significant, and outside of this doping range

the conduction should be dominated by one band. The conduction is dominated by

the electron band in under-doped PCCO, and by holes in the over-doped PCCO.

Measuring the Nernst effect, which has a distinctively different magnitude for one-

band transport and two-band transport, and the Hall effect on the same samples

should tell us the evolution of these bands on the Fermi surface with doping. In

addition, the results of these measurements could be compared to the predictions

of a model which attributes the formation of the two bands to opening of a spin

density gap that separates the Fermi surface into two separate parts. This model

predicts that the peak observed in the normal state in the Nernst effect around

50K-60K would shift to higher temperatures as the doping is reduced. This shift in

temperature is due to the proximity to the AFM phase that is thought to be the

reason for opening of a spin density gap.
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Appendix A

Boltzmann Transport Theory

Boltzmann theory is the classical model that describes the transport properties of

a system in steady state. This definition includes two of the important shortcomings

of the theory. The first one is that it describes classical particles, therefore at best

it can be used to describe a system in which the excitations can be represented with

wave packets. More specifically the corresponding mean free path of the classical

particles of Boltzmann theory should be larger than the wavelength of the quantum

mechanical wave packet. The other shortcoming of the theory is that the system

should be in steady state. Therefore it is assumed that if a system in equilibrium is

somehow disturbed, another state will be reached in which the number of particles

entering a small region is equal to the number of particles going out of that region.

The following treatment of the Boltzmann equation will basically be a summary

and collection of the treatment from several chapters of J.M. Ziman’s ”Electrons

and Phonons” [75].

The number of particles in a small region around ~r with a wave vector ~k is

described by a distribution function f~k(~r). The distribution function can change

due to several reasons: diffusion, external fields, and scattering centers. Diffusion

is the movement of particles in and out of a small region around ~r due to their

diffusion velocity, ~v. The time change of the distribution function due to diffusion
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is given by:
∂f~k

∂t
|diff = −∂f~k

∂~r

∂~r

∂t
= −∂f~k

∂~r
~v (5.1)

External electric and magnetic fields can also change the distribution function of

the particles. They change the momentum of the carriers through the Lorenz force:

~~̇k = e( ~E +
1

c
~vk × ~H). (5.2)

The number of particles with a given wave vector will change due to this change in

momentum by:

∂f~k

∂t
|field = −∂f~k

∂~k

∂~k

∂t
= − e

~
( ~E +

1

c
~v~k × ~H)

∂f~k

∂~k
. (5.3)

Another effect that can change the number of carriers entering or exiting a region

is scattering with impurities or with other carriers. The effect of these collisions will

be represented by :
∂f~k

∂t
|scat.

The total change in the distribution function is:

ḟ~k = ḟ~k|diff + ḟ~k|field + ḟ~k|scat, (5.4)

where the dot is used for the time derivative. In the steady state the number

of particles entering a region should be equal to the number of particles exiting it:

ḟ~k = 0. Usually the scattering term is the most difficult term to determine, therefore

the Boltzmann equation in steady state is written as:

ḟ~k|diff + ḟ~k|field = −ḟ~k|scat. (5.5)

Or

−∂f~k

∂~r
~v − e

~
( ~E +

1

c
~v~k × ~H)

∂f~k

∂~k
= −ḟ~k|scat. (5.6)

The experimentally accessible and practically important transport properties such as

conductivity, Hall coefficient, thermoelectric power, etc can be calculated by solving
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for f~k. For example the current density is calculated by:

J =

∫
e~v~kf~kd

~k. (5.7)

Unfortunately these very general and simple ideas are not easily applicable to a

complicated system like a metal in their most general form. Therefore some as-

sumptions have to be made in order to simplify the problem. The most fundamental

of these approximations is to assume that the mechanisms that were mentioned in

the beginning of this section (diffusion, scattering, external fields) do not change

the distribution function grossly, and that the steady state distribution function, f~k

can be expanded around the equilibrium distribution function f 0
~k
: f~k = f 0

~k
+ g(~k),

where g(~k) is a small disturbance on the equilibrium distribution function. Another

common assumption is to assume that there is a characteristic relaxation time, τ ,

over which the carriers do not interact with the scattering centers like other carriers

or impurities. In other words the system should exponentially relax to a steady

state in the absence of any scattering processes. The relaxation time approximation

can be mathematically summarized as:

ḟ~k|scat = −g(~k)

τ
. (5.8)

In general it is almost impossible to justify this assumption, and therefore the results

of an analysis involving a relaxation time approximation should be considered only

as an order magnitude type estimate of the real system.

Keeping these approximations in mind we can now study the Nernst effect start-

ing from the Boltzmann theory. In the case of Nernst effect there is a longitudinal

temperature gradient and a perpendicular magnetic field applied the sample. The

temperature gradient has a diffusive effect and can be explicitly considered in the

diffusion term:

~v~k ·
∂f~k

∂r
= ~v~k ·

∂f~k

∂T
∇T. (5.9)

Assuming that the temperature gradient is uniform throughout the sample and that
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at any given point the distribution function, f~k, deviates only slightly from a local

equilibrium distribution function, f 0
~k
(r), the previous equation can be simplified as:

~v~k ·
∂f~k

∂~r
= ~v~k ·

∂f~k0

∂T
∇T. (5.10)

The magnetic field on the other hand has a more complicated effect. The previous

approximation of substituting f 0
~k

instead of f~k does not work:

e

c
(~v × ~H) · ∂f~k0

∂~k
=

e

c
(~v × ~H) · ∂ε~k

∂~k

∂f~k0

∂ε~k

=
e

c
(~~v × ~H) · ~v∂f~k0

∂ε~k

= 0 (5.11)

The magnetic field does not have any net effect on the equilibrium distribution.

Therefore we should go to the next step in the approximation: f~k = f~k
0 + g(~k).

Then the Boltzmann equation becomes:

~v~k ·
∂f~k

0

∂T
∇T = −ḟ~k|scat +

e

c~
(~v × ~H) · ∂g

∂~k
(5.12)

Using the relaxation time approximation for the scattering term, ḟk|scat = −g(k)
τ

, the

Boltzmann equation can be further simplified. In addition it is more conventional,

also easier, to measure the deviation from equilibrium in terms of the group velocity

of the carriers, rather then its wave vector. This adjustment can be made by:

e

c~
(~v × ~H) · ∂g

∂~k
=

e

c
(~v × ~H) · ∂~v

∂~~k
· ∂g

∂~v
(5.13)

The Boltzmann equation can now be written as:

~v~k ·
∂f~k0

∂T
∇T = (

1

τ
+

e

c
(~v × ~H) · ∂~v

~∂~k

∂

∂~v
)g(~v) (5.14)

This equation has the term

M−1 =
∂~v

~∂~k
(5.15)

which is the inverse mass tensor (has the units of inverse mass). This term represents

the response of a charge carrier to an applied field, and the sign of it determines

whether holes or electrons are the charge carriers. In order to simplify our equation
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further we assume that M−1 is constant over a constant energy surface (but it can

be different at different energy surfaces) and replace it by a scalar mass 1/m*:

~v~k ·
∂f~k0

∂T
∇T = (

1

τ
+

e

m∗c
(~v × ~H) · ∂

∂~v
)g(~v). (5.16)

It is more conventional to look at the energy dependence of the distribution function

rather than the temperature dependence. Hence the left hand side of the equation

can be written as:

~v~k ·
∂f~k0

∂T
∇T = ~v~k ·

∂f~k0

∂ε

∂ε

∂T
∇T ≈ ~v~k ·

∂f~k0

∂ε
(
ε− µ

T
)∇T, (5.17)

where µ is the chemical potential. The Boltzmann equation can then be written as:

~v~k ·
∂f 0

~k

∂ε
(
ε− µ

T
)∇T = (

1

τ
+

e

m∗c
(~v × ~H) · ∂

∂~v
)g(~v) (5.18)

This equation can further be simplified by looking at the low magnetic field limit.

For this we should first define a differential operator:

Ω ≡ eτ

c~
~v × ~H · ∂

∂~k
. (5.19)

The Boltzmann equation can then be written as:

(1 + Ω)g(~v) = −τ~v~k ·
∂f~k0

∂ε
(
ε− µ

T
)∇T

⇒ g(~v) = −(1 + Ω)−1τ~v~k ·
∂f~k0

∂ε
(
ε− µ

T
)∇T. (5.20)

In small magnetic field limit we can expand (1 + Ω)−1 as: (1 + Ω)−1 ≈ 1−Ω + Ω2−
Ω3 + ... If we substitute this back into the Boltzmann equation and keep only the

first two terms of the expansion:

g(~v) = −(1− Ω)τ~v~k ·
∂f~k0

∂ε
(
ε− µ

T
)∇T

= −(1− eτ

c~
~v × ~H · ∂

∂~k
)τ~v~k ·

∂f~k0

∂ε
(
ε− µ

T
)∇T (5.21)
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This solution is equivalent to determining g(v) accurate up to successive powers of

~H and ∇T . The zeroth order solution which is linear in ∇T would be:

g(0)(~v) = τ~v~k ·
∂f~k0

∂ε
(
ε− µ

T
)∇T. (5.22)

Since the magnetic field is zero and only a thermal gradient is considered in this

situation, g(0) is the deviation of the distribution function from the equilibrium for

the diagonal component of the Peltier coefficient αxx. By the same reasoning the

first order term which is linear in ∇T and ~H gives the distribution function for the

off-diagonal Peltier coefficient αxy:

g(1)(v) =
eτ

c~
~v × ~H · ∂g(0)(v)

∂~k
(5.23)

αxx and αxy can be found by integrating the distribution functions g(0)(v) and

g(1)(v), respectively, around the Fermi surface. For two-dimensional systems like

the cuprates these integrals would result in:

αxx =
π2

3

k2
BT

e
(
∂σxx

∂ε
)µ (5.24)

αxy =
π2

3

k2
BT

e
(
∂σxy

∂ε
)µ (5.25)

These expressions for Peltier coefficients αxx and αxy are used in the previous section

to derive the an expression for the Nernst effect using this microscopic treatment.

These expressions for the Peltier coefficients are as far as we need from the micro-

scopic treatment of the Nernst effect.
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