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markets. Chapter 1 studies the role played by institutional investors in determining

equity option returns. In this chapter, I study whether institutional stock holdings

predict equity option returns. I �nd that institutional concentration in the under-

lying stock negatively predicts the cross-section of corresponding option returns.

Evidence is consistent with a hedging and demand pressure channel: For stocks

with more concentrated ownership, some institutional holders are more likely to

overweight them and demand more of their options to hedge. To absorb the order

imbalances, dealers sell options and charge higher prices, leading to lower option

returns. Using option holdings of U.S. equity mutual funds, I document a posi-

tive correlation between funds' stock concentration and their option share in the

same �rms. In Chapter 2 (joint with Steven Heston), we improve continuous-time

variance swap approximation formulas to derive exact returns on benchmark V IX
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�ve years, and does not reverse.
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Chapter 1: Institutional Stock Holdings and the Cross-Section of Op-

tion Returns

1.1 Introduction

As a popular �nancial derivative, option is widely used for speculation and

hedging purposes. There is a large literature studying whether option trading pre-

dicts stock returns through an information channel. This paper looks at the oppo-

site direction: Could institutional investors' stock holdings predict option returns?

I explore a hedging and demand pressure channel: Financial institutions are major

holders of U.S. stock markets. Their stock holdings, viewed as endowments, should

contain important information on their demands for options, which can be used by

institutions to manage endowment risks. Since options cannot be perfectly hedged,

option market makers will charge premiums for demand imbalances caused by in-

stitutions. If there are heterogeneous institutional hedging demands across �rms,

stock holdings may predict the cross-section of corresponding equity option returns.

In addition to directional risk, stock positions also expose their holders to

stochastic variance risk, which is the focus of this paper. Survey evidence shows

that variance risk is a major concern of institutional investors: 39% of them utilize
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variance derivatives to hedge against variance risk (The Economist Intelligence Unit

2012).1 Since derivatives have embedded leverages, institutional investors use them

as a low cost way to achieve desired risk exposures (Koski and Ponti� [1999]). Chen

[2011] �nds evidence that hedge funds use derivatives to reduce risk-taking; For

mutual funds, derivative use is also negatively related with fund risk pro�le.2 Due to

limited evidence associating derivative use with increased institutional risk-taking3,

this paper focuses on institutional hedging demand for derivatives and abstracts

away from speculating demand.

The e�ect of demand imbalance on option pricing has been documented by

previous literature. Unlike in Black and Scholes [1973] model, option market mak-

ers cannot perfectly hedge their positions due to frictions in real market (Figlewski

[1989]; Green and Figlewski [1999]). Muravyev [2016] �nds that order imbalances at-

tributable to inventory risk have greater predictive power than any other commonly

used option return predictors. Garleanu, Pedersen, and Poteshman [2008] explicitly

model demand pressure e�ects on option prices and empirically document that on

average across �rms, equity options are less used for hedging than index options

are.4 However, their model treats demand imbalance as exogenous and is agnostic

1For example, on 10/31/2000, an equity mutual fund called ClearBridge utilized a collar strategy
to hedge against the potential variance risk originated from its largest equity holdings: it held a
long position on Adobe Inc. stocks worth $137 million and 4.75% of portfolio weight; the fund
also long 1.8 million shares of Adobe puts, worth $17.1 million, with a strike price of 140 and
short 1.8 million shares of calls, worth $9.1 million, with a strike price of 195. Option holdings of
ClearBridge alone amount to 9.71% of Adobe's option market value.

2See Cao, Ghysels, and Hatheway [2011], Cici and Palacios [2015], and Koski and Ponti� [1999].
3The most commonly cited reason for derivative use by institutional investors is hedging (Levich,

Hayt, and Ripston [1999]). In Koski and Ponti� [1999], only 8.5% of mutual funds use derivatives
for speculative purposes.

4They �nd that end-users are net short equity options but are net long index options, espe-
cially for out-of-the-money index puts. Lakonishok, Lee, Pearson, and Poteshman [2007] �nd that
demand for call is larger than that for put in equity option markets.
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about the source of option end-users' demand. This paper speci�cally explores the

hedging demand from institutional investors against variance risks originated from

their stock positions. I also use institutional stock holdings to construct a proxy to

measure heterogeneous option hedging demands across �rms and show that it can

predict cross-sectional option returns.

I measure the expensiveness of options using variance risk premium (VRP

henceforth), calculated as the return of an option portfolio daily hedged by trading

the underlying stock. I call it the VIX portfolio hereafter. The name comes from the

CBOE VIX index, constructed from a portfolio of options whose held-to-maturity

payo� equals the realized variance of the underlying stock return. I apply the CBOE

methodology to individual �rms and calculates returns of �rms' VIX portfolios.

I use the Her�ndahl-Hirschman Index (HHI henceforth) of institutional own-

ership of a �rm's stocks as a �rm-level proxy for institutional investors' hedging

demands against stochastic variance risk originated from their stock positions. This

measure is motivated from a model in Smith [2019]: In a stochastic variance set-

ting, investors' stock positions expose them to variance risk and they hedge the risk

by long VIX portfolio whose payo� equals future realized variance. In equilibrium,

HHI is proportional to investors' aggregate hedging demand for VIX portfolio.5 In-

tuitively, for stocks with more concentrated ownership, some institutional holders

are more likely to overweight them and demand more of their options to hedge.

Empirically, I �nd that HHI negatively predicts the cross-section of option

5Each investor's hedging demand for the variance derivative is a quadratic function of her stock
holding. Summing across investors, the aggregate hedging demand is proportional to HHI.
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returns. Using Morningstar dataset on holdings of U.S. equity mutual funds, I

identify funds that use equity options and show that the predictability of HHI comes

from funds that actually use options, especially from those long puts. I also �nd the

predictability driven by funds that overweight the �rm relative to their benchmark

indexes. After matching option holdings with underlying �rms, I �nd that when

a �rm's HHI increases, its option market becomes more active and mutual funds

take a larger share in this market. Robustness checks show that HHI does not

predict future stock return or variance. Its option return predictability does not

work through an information channel. Also, its predictability cannot be explained

by �rm size or number of �rm's institutional holders.

I construct HHI using individual mutual fund level stock holdings in S12

database and more aggregate level holdings of 13f institution in S34, respectively.

Both measures negatively predict cross-sectional option returns. In a horse race,

individual fund level HHI can subsume the information contained in the institution

level HHI. A possible reason is that due to managerial compensation incentives, fund

managers make hedging decisions based on their own fund holdings and not on the

fund family holdings aggregated into S34. In this case, fund level HHI constructed

from S12 is a better proxy for hedging demand. This paper focuses on the fund level

measure.

For the hedging and demand pressure channel to work, there are two necessary

components: order imbalance and price impact. I check the two parts, respectively,

by testing related theories in the literature. I �nd that the predictability is stronger
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among stocks held by mutual fund holders who su�er recent lower performance6 and

have higher �ow volatilities and portfolio concentrations. This is expected because

those stocks' fund holders are more likely to use options to hedge and cause order

imbalances. The predictability is stronger during periods in which intermediaries

su�er tighter funding liquidity constraint, because intermediaries as option market

makers charge higher compensation for bearing order imbalances when they are

more constrained. The predictability is also stronger among stocks with higher

stochastic volatility risk, jump risk and stock market illiquidity. This is because

options written on those stocks are more di�cult to hedge and have higher price

impact (Garleanu et al. (2008)). A given level of order imbalance can cause a larger

cross-sectional dispersion in those stocks' option returns.

I further examine how HHI is related with the systematic and idiosyncratic

components of VRP. Assuming stock returns follow the market model, I write �rm's

VRP as a weighted average of systematic and idiosyncratic components. Then I use

a cross-sectional regression to estimate the two components jointly and �nd that

HHI is negatively related with both components. If some institutional investors

hold concentrated positions in �rms with higher HHI, they are supposed to be more

sensitive to both systematic and idiosyncratic variances and pay higher premiums

to hedge those risks. This will lead to more negative systematic and idiosyncratic

VRP.

The systematic VRP embedded in equity options is estimated to be 12.3%,

6I �nd a reversed pattern at year-end, consistent with the managerial gaming story in Brown,
Harlow, and Starks [1996] and Chevalier and Ellison [1997]: For window dressing purpose at the
end of year, loser funds increase risk-taking and winners tend to hedge to preserve good results.
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statistically di�erent from that measured by S&P 500 Index options (-23.2%). A

trading strategy that long �rms with high exposure to systematic variance risk and

short those with low exposure generates a monthly return of 17.5% and an annual

Sharpe Ratio of 1.76. The pro�ts cannot be explained by the volatility mispricing

in Goyal and Saretto [2009] and the idiosyncratic volatility e�ect in Cao and Han

[2013]. The underpricing of systematic variance risk in equity options can partially

explain the puzzle that equity options appear cheaper than index options.7

I o�er a partial explanation for the di�erential pricing from the perspective of

di�erent demand patterns and compositions of traders in index and equity option

markets. It has been well documented that equity options are less used for hedg-

ing than index options are8 and that individual investors have a larger impact in

equity option markets than in index option market9. I hypothesize that in equity

option markets, compared with less sophisticated individual investors who are more

likely to chase a �rm's idiosyncratic variance for lottery-like payo�s,10 institutional

investors who hold concentrated positions in the �rm would pay more attention to

systematic variance, which will be priced more consistently with that embedded in

index options. After sorting �rms by HHI, I �nd that systematic VRP estimated

from equity options of higher HHI subgroup becomes less positive and gets closer

to that estimated from index options. This is consistent with the hypothesis.

7See Bakshi and Kapadia [2003b], Bakshi, Kapadia, and Madan [2003], Bollen and Whaley
[2004], Carr and Wu [2009], and Driessen, Maenhout, and Vilkov [2009].

8See Bollen and Whaley [2004], Garleanu, Pedersen, and Poteshman [2008], and Lakonishok,
Lee, Pearson, and Poteshman [2007].

9Lemmon and Ni [2014] show that individual investors' sentiment a�ects the demand and pricing
for equity options but not for index options.

10See Boyer, Mitton, and Vorkink [2010] and Boyer and Vorkink [2014].
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The idiosyncratic VRP is estimated to be -11.2%. The negative price is con-

sistent with the notion that options on stocks with high idiosyncratic volatilities

attract high demand from speculators, and that constrained �nancial intermediaries

charge extra compensation for supplying these options because of their high hedging

costs (Cao and Han [2013]). The �nding complements the literature on the pricing

of idiosyncratic volatility in �nancial markets. Previous studies mainly focus on the

stock market.11

I construct an idiosyncratic VIX portfolio, whose payo� approximates the real-

ized idiosyncratic variance of the �rm's stock return. In a cross-sectional regression,

HHI negatively predicts the return of idiosyncratic VIX portfolio, suggesting that

institutions with concentrated positions in the �rm are sensitive to idiosyncratic

volatility and pay a higher premium to hedge it.

The rest of this paper is organized as follows. Section 2 presents the construc-

tion of VIX portfolio and HHI. Section 3 investigates how HHI a�ects �rm's VRP.

Section 4 presents a decomposition of VRP and explores the e�ect of HHI on the

systematic and idiosyncratic components of VRP. Section 5 reports the pro�tability

of trading strategies. Section 6 o�ers concluding remarks.

1.2 Data Construction

This section presents the data steps to construct VIX portfolio and Her�ndahl-

Hirschman Index (HHI) of the �rm's stocks.

11Ang, Hodrick, Xing, and Zhang [2006] �nd that idiosyncratic volatility negatively predicts
future stock returns in the cross section. An exception is Cao and Han [2013] who �nd that
idiosyncratic volatilities negatively predict the cross-sectional delta-hedged option returns.
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1.2.1 VIX portfolio

I construct the VIX portfolio following Heston and Li [2020]. The payo� of

VIX portfolio closely approximates the realized variance of stock return,12 de�ned as

the sum of squared daily stock return. The return of VIX portfolio directly measures

VRP.

VIX portfolio is composed of two parts: a static position in a portfolio of out-

of-the-money (OTM) options and a daily hedged position in the underlying stock.

The option position is constructed based on CBOE White Paper13 as follows:

V (t, T ) = 2
∑
i

O(Ki, t, T )∆i

K2
i

, (1.1)

where: V (t, T ) is the time t price of option position maturing at T ; O(K, t, T )

represents time t price of an OTM call or put with strike price K and expiration T ;

Ki are the available strike prices of the �rm's option contracts; ∆i is the distance

between adjacent strikes.

To make the VIX re�ect the future 30 days volatility, CBOE does interpolation

using near-term and next-term options. This paper does not follow this standard.

Instead, I form the option position in the VIX portfolio on the third Friday of each

month (t) and hold options to maturity, which is the third Friday of the subsequent

month (T ). By avoiding interpolation, I do not need to hold two option portfolios

with di�erent maturities.

12The detailed proof is in the appendix.
13It can be found at https://www.cboe.com/micro/vix/vixwhite.pdf.
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By augmenting the static option position with a daily hedged stock position

whose current price equals 0, I get the VIX portfolio, whose return equals

rhedged(t, T ) =

V (T, T )− 2
(

S(T )
S(t)(1+rf )T−t − 1

)
+ 2

T∑
u=t+1

(r(u)− rf )

V (t, T )
− 1, (1.2)

where: S(t) is the stock price at time t; rf is the daily risk-free interest rate; r(u)

represents the stock return on day u, which is a day between time t and T .

In order to construct the VIX portfolio, investors need to: 1. take a static

option position formed on time t with price V (t, T ) and held-to-maturity payo�

V (T, T ); 2. short a static hedged stock position with 0 current price and a �nal

payo� of 2( S(T )
S(t)(1+rf )T−t − 1); 3. take a daily hedged stock position with 0 current

price and daily payo� r(u)− rf .

Since I only use options with available strike prices to form VIX portfolio in

(1.1), the payo� of the VIX portfolio only approximately equals realized variance,

with errors caused by discreteness of the strike interval. To gauge the tracking error,

I compare the return in (1.2) with the variance swap return (VSR), de�ned following

Carr and Wu [2009]:

V SR(t, T ) =

T∑
u=t+1

r(u)2

V (t, T )
− 1. (1.3)

I construct VIX portfolios for both individual �rms and the S&P 500 Index.

I call them equity and index VIX portfolios, respectively. For index VIX portfolio,

the correlation between its actual return and VSR is 0.99. Its payo� is very close to

the realized variance over the month. As indicated in Figure 1.1, index VIX return
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closely tracks VSR during the sample period. I calculate returns of VIX portfolios

for all optionable �rms in the OptionMetrics Database, which gives a larger cross-

section than previous studies.14 The median of within-�rm time-series correlation

between the �rm's equity VIX return and VSR equals 0.88. By forming portfolios,

�rm-level approximation errors could be diversi�ed away. The correlation between

the return of cross-sectionally equally weighted (EW) equity VIX portfolio and EW

VSR is 0.91. Since most stocks have the same discrete intervals across strike prices,

the error caused by discrete strike intervals would be di�erenced out when I form

long-short trading strategies.

Option data is drawn from the OptionMetrics Ivy DB database. The dataset

contains information on the entire U.S. equity option market and includes daily

closing bid and ask quotes, open interest, and trading volume of each option. Implied

volatility, option's delta, vega, and other Greeks are computed by OptionMetrics.

The zero-coupon rate of appropriate maturity (interpolated when necessary) from

OptionMetrics is used as the risk-free rate. Option positions in VIX portfolios are

formed on the third Friday of each month and are held to maturity, which is the third

Friday of the subsequent month. Sample period is from January 1996 to December

2017.

I construct VIX portfolios for all optionable �rms in OptionMetrics, with the

following �lters applied: (1) to avoid extremely small and illiquid stocks, the under-

lying stock prices should be at least $5, (2) delete �rm-month observations in which

14Carr and Wu [2009] conduct their study using �ve stock indexes and 35 individual stocks;
Driessen, Maenhout, and Vilkov [2009] look at the VRP of S&P 100 Index and its constituent
�rms.

10



there are stock splits, (3) following Driessen, Maenhout, and Vilkov (2009), I dis-

card options with zero bid prices and with missing implied volatility or delta (which

occurs for options with nonstandard settlement or for options with intrinsic value

above the current mid price), (4) delete options whose ask price is lower than bid

price, (5) �lter option contracts following CBOE White Paper, (6) option contracts

with zero open interest are removed, in order to eliminate options with no liquid-

ity, (7) delete options whose prices violate arbitrage bounds, (8) the midpoint price

of option needs to be at least $0.125, (9) following Conrad, Dittmar, and Ghysels

[2013], to reduce the bias caused by asymmetry in the domain of integration in equa-

tion A1, equal number of OTM calls and puts are used to construct VIX portfolio,

and (10) exclude �rm-month observations if the underlying stock pays a dividend

during the remaining life of the option. Thus, options in my sample are close to the

European style. Also, VIX portfolio assigns a higher weight on OTM puts, whose

early exercise premium is lower. So, the early exercise premium of VIX portfolio is

expected to be low. The �nal sample includes 138,339 �rm-month observations and

5,012 unique stocks over the sample period. To pass the option �lters, stocks in the

sample tend to be relatively large stocks with liquid option markets. Results in this

paper are not driven by small stocks.

Table 1.1 reports summary statistics. There are 526 stocks per month on

average. Equity VIX portfolio consists of 6 option contracts on average. For index

VIX portfolio, the average number of contracts is 84. Index VIX return has a

mean of -23.24% per month. The large negative return re�ects the large negative

VRP embedded in index options documented by Carr and Wu [2009] and Driessen,
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Maenhout, and Vilkov [2009].

The pooled sample mean of equity VIX return is -5.13%. Each month, I

equally weight �rms' equity VIX portfolios. The time-series average of the equally

weighted (EW) equity VIX return is -4.82%, which is much less negative than that

of the index. This is broadly consistent with the result in previous literature stating

that VRP of individual stocks are much less negative than that of the index.

For each �rm, βIndex V IX Return is the exposure of its VIX return to index VIX

return. The average exposure across �rms is 0.33. Corr(Equity VIX Return, Stock

Return) is the �rm-level time-series correlation between equity VIX return and the

underlying stock return. The mean correlation across �rms is -0.26, re�ecting a

leverage e�ect. To calculate the exposure and correlations, �rms are required to

have at least 30 observations. There are 1,389 �rms meeting this requirement.

Other databases are used to extract the information needed later in this paper.

Information about stock returns, accounting data, and analyst forecasts are obtained

from CRSP, COMPUSTAT, and I/B/E/S, respectively. The Fama-French common

risk factors are taken from Kenneth French's website.

1.2.2 HHI of institutional ownership

I use Thomson Reuters S12 Database to construct the quarterly HHI of mutual

fund ownership of the �rm's equity shares. The database includes all registered

domestic mutual funds �ling with the SEC and their equity holdings. A more

aggregate level HHI is constructed using the S34 Database, which covers the holdings
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of entire investment companies, often called 13f institutions. S12 and S34 di�er

in their levels of coverage: almost every fund in the S12 set has a manager in

the S34 set, and the latter reports the aggregated holdings of all funds under the

manager's control. For example, Fidelity reports as a single entity and aggregates

the holdings of all funds and trusts that it manages into its quarterly 13f �lings,

whose information would be included in the S34. Fidelity also reports holdings of

its individual funds, whose information is included in the S12.

For each �rm, its HHI of mutual fund ownership is constructed in the following

steps: First, delete observations whose �le date and report date are not in the same

quarter, in order to avoid stale reports. Second, delete observations with missing

fund assets. Third, for each �rm, calculate the total number of shares owned by all

mutual funds and the share proportion owned by each fund. Fourth, calculate the

�rm's HHI as the sum of squared share proportion owned by each fund i as follows:

Firm′s Mutual Fund HHI =
N∑
i

(
Sharesi

Total SharesMutual Fund

)2

,

where N is the total number of funds that hold the �rm's stocks. The institutional

level HHI could be calculated in the same method using the S34 dataset. It could

also be downloaded directly from the WRDS TR 13-F Stock Ownership database.

The decision to scale the share holding of each fund (institution) by total

mutual fund (institution) share holdings, instead of total shares outstanding of the

�rm, is not arbitrary and depends on whether small retail investors hedge their

equity positions using equity options. Imagine two �rms: Firm A and Firm B. Firm
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A is 100% owned by one fund. 50% shares of Firm B is owned by one fund, with the

other half owned by many small retail investors. Assume that small investors do not

use options to hedge.15 Then, all the hedging demands in equity option markets for

both �rms should come from only the fund that owns the �rm. However, if I scale

by total shares outstanding of the �rm, Firm A's HHI equals 1, while Firm B's HHI

equals 0.25. HHI calculated this way would be misleading as a proxy for hedging

demand.

Panel B in Table 1.1 reports summary statistics of mutual fund and 13f in-

stitution level HHI. The average HHI of mutual funds is 0.139, higher than that of

institutions (0.057). The fund-level HHI has a standard deviation of 0.196, more

variable than that of the institution-level measure (0.069).

1.3 HHI and the Cross-Section of VIX Returns

This section examines how mutual fund HHI predicts cross-sectional equity

VIX returns, which is a direct measure of �rm VRP. HHI is interpreted as a �rm-level

proxy for variance risk hedging demand in equity option markets. Intuitively, an

increase in mutual funds ownership concentration in the underlying equity market

drives up their hedging demand for equity options, and dealers charge a higher

premium to absorb the increased order imbalances. Appendix B presents a simple

model built on Smith [2019] to motivate the HHI measure: In a stochastic volatility

15Lakonishok et al (2007) examine households' holdings from a large discount brokerage �rm.
They �nd that even though account holdings are predominantly common stocks, only 1.3% posi-
tions are equity options, and less than half of those option positions come from accounts that hold
the underlying stock. Therefore, this assumption is relatively innocuous.
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setting, investors' equity positions expose them to variance risk, and they hedge

the risk by purchasing a variance derivative with a payo� of realized variance. In

equilibrium, each investor's hedging demand for the variance derivative is a quadratic

function of her equity holding. Thus, the aggregate hedging demand of the �rm's

equity holders is proportional to HHI.

1.3.1 VIX return predictability of HHI

This section examines and compares the VIX return predictability of mutual

fund and institution level HHI. There is a trade-o� between granularity and coverage:

The fund level measure is constructed from the S12 database, which is more granular

than S34. Due to managerial compensation incentives, fund managers may make

hedging decisions based on their own fund holdings and not on the aggregate fund

family holdings. In this case, fund level HHI is a better proxy for hedging demand

than institution level HHI. On the other hand, S34 has a broader coverage than S12.

In addition to mutual funds, S34 includes the holdings of pension funds, insurance

companies, and endowments. The broader coverage can make institution level HHI

a better proxy.

I run monthly Fama and MacBeth [1973] cross-sectional regression

ri,t+1 = αt + γtHHIi,t + θtXi,t + εi,t+1,

to examine the predictability of HHI on the one-month-ahead equity VIX returns.

As a control variable, holdings of mutual fund (institution) is calculated as the
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�rm's total shares held by all mutual funds (institutions) divided by the �rm's total

number of shares outstanding. Schürho� and Ziegler [2011] �nd that holdings of

mutual fund positively predict cross-sectional equity variance swap returns. The

reason is that mutual funds sell options on average. This supply pressure makes

options cheaper and �rms' VRP less negative.

Table 1.2 reports the regression results. When fund level HHI is used alone as

a predictor, its coe�cient estimate is -0.24, with a t-statistic of -7.17. A standard

deviation increase in HHI decreases the monthly option return by 4.7%. Hedging

demands for equity options are higher among �rms with larger HHI, which would

push up option prices and make �rms' VRP more negative. Controlling for share

proportion owned by mutual funds only slightly changes the coe�cient estimate and

t-statistic of HHI. The coe�cient estimate of holdings of mutual funds is weakly

signi�cant and positive. Institution level HHI exhibits a similar pattern. Unlike

mutual funds, holdings of institutions have a weaker and insigni�cant positive e�ect

on option returns. A possible reason is that 13f institutions other than mutual funds

demand equity options, which counteracts the net selling e�ect of mutual funds. The

story is supported by speci�cation (5): In a multivariate regression, the coe�cient

of holdings of institution is -0.075 with a t-statistic of -3.02. Whereas, the coe�cient

of mutual fund holdings is signi�cantly positive.

To do a horse race between the fund and institution level measure, I run a

multivariate regression including all four variables in Column (5). The coe�cient

estimate of fund level HHI is only slightly a�ected. However, the coe�cient estimate

and t-statistic of institution level HHI are more than halved. This suggests that
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mutual fund HHI constructed from more granular level data is a better proxy for

hedging demand.

Garleanu, Pedersen, and Poteshman [2008] document a net short position of

end-users in equity option markets. Lakonishok et al. (2007) �nd that directional

hedging account for a small fraction of trading in equity option markets. Their

results suggest that hedging demand is less important in determining the overall

level of option activity and returns in equity option market. However, the evidence

documented by the two papers is on an aggregate level. The potential heterogeneity

in hedging demands across �rms can cause a large impact on option returns.

1.3.2 Robustness checks

This section checks whether the predictability of HHI can be explained by

other option return predictors. I also use delta-hedged call and put returns in

Bakshi and Kapadia [2003a] as additional testing assets. The return predictability

of HHI cannot be absorbed by other predictors, size, number of fund holders for the

�rm's stocks, and industry e�ects. I also �nd no evidence supporting that HHI is a

proxy for insider information about future stock return or volatility.

Control variables are as follows: volatility-related mispricing measures includ-

ing idiosyncratic volatility (IVOL) documented in Cao and Han [2013], log dif-

ference between historical volatility and equity VIX (HV-VIX) modi�ed from the

volatility deviation measure in Goyal and Saretto [2009]; �rm characteristics stud-

ied in Cao, Han, Tong, and Zhan [2017], including short-term stock return reversal
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(RETt−1,t), stock return momentum (RETt−12,t−1), long-term stock return reversal

(RETt−36,t−12), size (Ln(ME)), book-to-market (Ln(BM)), analyst earnings fore-

cast dispersion (Analyst Dispersion), cash holdings (CH), pro�tability (Pro�t), new

issues (Issue); higher-order moments of stock returns calculated using historical

one-year daily data: skewness (Rolling Skew) and kurtosis (Rolling Kurt); the risk-

neutral skewness of stock returns inferred from a portfolio of options (RN Skew) is

included as a measure for jump risk (Bakshi, Kapadia, and Madan [2003]); Amihud

illiquidity measure (Amihud) is calculated for each stock as a proxy for the underly-

ing stock's liquidity (Amihud [2002]); the percentage bid-ask spread of equity VIX

portfolio is used as a proxy for option liquidity. Detailed variable constructions are

in the appendix.

Table 1.3 report results of the following Fama-MacBeth regression:

ri,t+1 = αt + γtHHIi,t + θtControlsi,t + εi,t+1.

In speci�cations (1) and (2), fund and institution level HHI both signi�cantly and

negatively predict equity VIX returns. The coe�cient on fund level HHI is -0.21 with

a t-statistic of -4.46; the coe�cient on institution level HHI is -0.279 with a t-statistic

of -4.01. When I include both measures in speci�cation (3), the coe�cient of fund

level HHI remains signi�cant with a t-statistic of -3.52. However, the coe�cient of

institution level HHI becomes insigni�cant, con�rming the early �nding in Table 1.2

that mutual fund HHI constructed from more granular level data is a better proxy.

In Speci�cations (4) and (5), fund level HHI also negatively predicts delta-hedged
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call and put returns with similar t-statistics.

Firm size and HHI are negatively correlated with an average cross-sectional

correlation of -0.38. To control for the potential nonlinear pricing relation between

the two variables, I implement a double-sort procedure, with results reported in

Panel A of Table A1.1. Returns sorted by HHI are signi�cant in every size quintile.

The information contained in HHI cannot be absorbed by size.

Another concern is that the predictability is related with the number of fund

holders in the �rm: when a �rm is owned by fewer funds, HHI becomes larger by

de�nition. In fact, their correlation is -0.43. I implement the same double-sort

procedure: �rst sort �rms into quintiles by the number of fund holders, then further

sort each quintile by HHI. Results are reported in Panel B of Table A1.1. Returns

sorted by HHI are signi�cant in groups with both low and high number of fund

holders. There are no systematic pattern showing that the predictability is related

with the number of fund holders. Adding number of fund holders as a variable in

Table 1.3 does not predict option returns and makes little di�erence in the return

predictability of HHI.

I further check whether option return predictability of HHI comes from its

ability to predict future stock return or variance of the underlying �rm. I run

Fama-MacBeth regression and use HHI to predict one-month-ahead stock return

and realized variance, respectively, controlling for variables in Table 1.3. Panel C in

Table A1.1 reports the results. The coe�cients of HHI are insigni�cant. Therefore,

it is implausible that HHI contains information about future stock return or variance.

Since index funds are unlikely to use equity options, their holdings should not
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contain information about hedging demand. In an unreported test, I calculate HHI

using only stock holdings of index funds and �nd that the index fund HHI does not

predict option return.

To remove industry e�ect, I classify �rms into 10 industries, following the

procedure in Kenneth French's data library. I demean �rms' VIX returns by industry

average each month and run the same regressions. Results (unreported for brevity)

are very similar.

This section shows that fund level HHI cannot be fully absorbed by previously

documented option return predictors. Since institution level HHI loses signi�cance

after including fund level HHI and other controls, the rest of this paper will focus

on the mutual fund level measure.

1.3.3 HHI of option funds and non-option funds

This section examines the explanatory power of HHI of option funds and non-

option funds16 on equity VIX returns, respectively. All HHIs in this and next section

are constructed using Morningstar U.S. equity mutual fund holdings data from 1996

to 2015 (4509 funds in total).17 18 I �nd that the explanatory power of HHI comes

from option funds and especially from funds that long puts. Funds that specialize

in selling options, i.e. covered call strategy, have positive, instead of negative, e�ect

16If a mutual fund has equity options in its portfolio, I call it "option fund". If a fund never
holds equity options, I call it "non-option fund".

17I am especially grateful to David Hunter for sharing this dataset. The dataset is used in
his paper Hunter [2015] "Mind the Gap: The Portfolio E�ects of `Other' Holdings", available at
https://ssrn.com/abstract=3684031.

18A limitation of this dataset is that it does not cover the holdings of alternative funds, which
are heavy option users according to Deli, Hanouna, Stahel, Tang, and Yost [2015].
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on option returns. This is inconsistent with the story that the predictability of

HHI comes from funds with skills in identifying overvalued options and sell them

to generate alpha. Another �nding is that option funds do not have higher alphas

relative to non-option funds. This is inconsistent with the story that funds use

options for informed speculation. I also �nd that the predictability of HHI comes

from funds that overweight the �rm relative to their benchmark indexes, consistent

with a hedging story.

An important advantage of the Morningstar dataset over the CRSP Mutual

Fund database is that it provides non-equity fund holdings, including options. This

allows me to identify mutual funds that actually trade equity options and separately

study the e�ect of their ownership on VRP. However, unlike equity holdings, funds

report option holdings in a nonstandard way: most of the option holdings do not

have common identi�ers like CUSIP; funds usually do not report important char-

acteristics of option contracts, like strike price and maturity; and underlying �rm

names are abbreviated, and sometimes funds use tickers instead of names.

To extract equity option holdings, I follow procedures used in Cici and Palacios

[2015]: I use the security names of fund holdings as the main input, and identify

observations that contain the "Call" or "Put" text strings in the names; I then use

visual inspection to remove misclassi�cation and index options and only keep equity

options. The �nal sample contains 48,664 observations. 607 out of 4509 equity funds

utilized equity options during the sample period.

Next, I classify all equity funds into option funds and non-option funds and

study the e�ects of their stock ownership on VRP, respectively. Panel A in Table 1.4
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reports the average coe�cients of Fama-MacBeth regressions. HHI MStar is con-

structed using only the stock holdings of U.S. equity funds in Morningstar. HHI Non

MStar is constructed from funds in S12 but uncovered by the Morningstar dataset. I

construct this variable to check whether using only U.S. equity funds in Morningstar

would lose information in predicting option returns. HHI Overweight (Underweight)

is constructed using the holdings of funds in Morningstar that overweight (under-

weight) the �rm relative to their benchmark indexes.19 If the predictability comes

from hedging demand, it should be driven by funds that overweight the �rm. HHI

Option Fund is constructed using only the 607 option funds. HHI Put Fund is

constructed using only funds that use puts. If a fund uses volatility strategy like

straddle or collar, it would be classi�ed into this category. HHI Call Fund is con-

structed using funds that only use calls and never use puts. The union of Put Funds

and Call Funds equals total Option Funds. HHI Put Short is constructed using put

funds that only short puts but never long puts. HHI Put Long is constructed using

put funds that long puts. The union of funds in Put Short and Put Long equals

total Put Funds. HHI Call Short is constructed using call funds that only short calls

but never long calls. HHI Call Long is constructed using call funds that long calls.

The union of funds in Call Short and Call Long equals total Call Funds. The sample

includes: 607 option funds, 343 put funds, 264 call funds, 243 long put funds, 100

short put funds, 94 long call funds, and 170 short call funds. In each column, I

control for the corresponding share proportions owned by each fund category. For

19I download benchmarks of mutual funds from the Morningstar Direct platform. I use portfolio
holdings of iShares ETFs to proxy the composition and weights of stocks in the benchmarks.
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brevity, their coe�cients are unreported here.

In Column (1), HHI MStar negatively predicts VIX returns. Column (2) shows

that funds in S12 uncovered by the Morningstar dataset also negatively predict op-

tion returns, controlling for HHI MStar. Thus, by restricting the sample to only

U.S. equity funds, HHI loses some option return predictability. In Column (3), HHI

Overweight negatively predicts VIX returns, while the coe�cient of HHI Under-

weight is insigni�cant. This is consistent with a hedging story.20 In Column (4),

HHI Option Fund crowds out the explanatory power of HHI MStar. This is ex-

pected because it should be the ownership of option funds that a�ects the demand

for options. Results in Columns (5) and (6) both suggest that the negative e�ect

of HHI Option Fund comes from put funds, who are more likely to use options for

hedging, but not from call funds. In Column (6), the coe�cient of HHI Call Fund

is positive and weakly signi�cant. A potential explanation is that many call funds

use covered-call strategy and sell calls, which pushes down option prices. Column

(7) shows that it is the funds that long puts who are driving the option return pre-

dictability. They are the type of funds who are most likely to use options for hedging

purpose. An alternative story for the negative predictability of HHI is that some

funds have skills in identifying overvalued options and sell them to generate alpha,

instead of hedging. The positive coe�cient of HHI Call Short and insigni�cantly

negative coe�cient of HHI Put Short are inconsistent with this story.

To check how long the predictability of HHI lasts, I run a Fama-MacBeth

20In unreported test, I �nd that neither HHI Overweight nor Underweight predicts future stock
returns. This is inconsistent with an information channel.
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regression regressing �rms' VIX returns on the lagged n (1 to 12) month HHI con-

structed from option funds. Figure 1.2 plots the coe�cient estimates of HHI (solid

blue line) and the 95% con�dence intervals (dashed black lines) with respect to

month lags. The coe�cients remain signi�cant for up to 6 months. Contrary to the

demand pressure pattern in stock market, there is no reversal in option market. A

potential explanation is that options expire each month and there will be no reversal

following high demands.

To check whether funds trade options for hedging or speculation, I compare

the risk pro�les of option and non-option funds under three Morningstar investment

categories: Domestic Blend, Domestic Growth, and Domestic Value. For each fund,

I compute its alpha relative to Carhart [1997] four-factor model, standard deviation,

skewness, and kurtosis of monthly fund returns using CRSP mutual funds database.

To get a precise estimate, I delete funds with less than 24 observations during the

sample period. When a fund has multiple share classes, I take average. To check

how concentrated a fund's portfolio is, for each fund, I compute the HHI of its eq-

uity holdings at each quarter and then take time-series average. To compare, I use

a two-sided t-test to check the di�erences in mean estimates of the above fund char-

acteristics between non-option funds and option, put, and call funds, respectively.

All variables are winsorized at 0.5% level.

Table A1.2 reports the di�erences in mean estimates and associated p-values.

Users/Total is the proportion of certain type of funds under a speci�c Morningstar

category. For example, 11.03% (5.71%) in the �rst row means that 11.03% (5.71%)

of domestic blend funds use equity options (puts). In every case, alphas are not
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signi�cantly di�erent among non-option, option, put, and call funds. The �nding is

inconsistent with the story that funds use options to do informational bets.

Among blend and value funds, option funds (speci�cally put funds) hold more

concentrated equity portfolios than non-option funds. The average portfolio HHI

of put funds is 0.32% (0.70%) higher than that of non-option funds in the category

of blend (value) funds. Given that the average fund portfolio HHI is 2.11%, the

di�erences are sizable. The standard deviation of put funds is not signi�cantly

larger than that of non-option funds. Conditional on the fact that put funds hold

more concentrated portfolios, it is possible that they trade options to reduce their

risk pro�les to a similar level of non-option funds.

Overall, results in this section suggest that the negative e�ect of HHI on VRP

comes from funds that actually use equity options, especially long puts. The com-

parison of risk pro�les among funds is inconsistent with the hypothesis that mutual

funds use equity options for informed speculation.

1.3.4 Mutual fund option market activity and HHI

This section directly checks the link between HHI and fund option demands.

I examine the relation between HHI constructed from option funds and fund option

market activity (FOMA). FOMAi,t is de�ned as the aggregate holdings on �rm i's

options across equity funds at the end of quarter t, scaled by the total dollar open

interest of �rm i's option market. FOMAi,t essentially measures �rm i's option

market share held by all U.S. equity funds at quarter t. I �nd that when a �rm's
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HHI increases, FOMA also increases.

I use the Morningstar dataset in last section to construct FOMA. Again, a

caveat of this dataset is that it does not cover alternative funds, which are heavy

option users according to Deli et al. (2015). Thus, FOMA calculated here is a

lower bound for mutual funds equity option market shares, which is a limitation of

this study. To construct FOMA, �rst, I match each option holding with the un-

derlying �rm. Since option holdings do not have common identi�ers, I �rst use a

name-matching algorithm based on spelling distance to match security names with

�rm names. Funds report the security names of option holdings in a nonstandard

way: Most of the times, funds use abbreviations in �rm names. Sometimes funds

use tickers instead of �rm names. For those �rms, I use visual inspections to pick

them out and match their security names with �rm tickers. Then I do �nal visual

inspections to �lter out misclassi�cation. Second, I aggregate holdings on �rm i's

options across equity funds at the end of each quarter. Third, using the Option-

Metrics Database, I calculate the total dollar open interest for each �rm at the end

of each quarter and match with the observations in last step to calculate FOMAi,t.

The �nal sample has 19,932 �rm-quarter observations with non-missing FOMA and

1,793 unique �rms.

To check how HHI is related with FOMA, I sort �rms into deciles by option

funds HHI and report the average FOMA for each decile in Panel A of Table 1.5.

When HHI increases from Decile 1 to Decile 10, FOMA monotonically increases

from 0.38% to 5.34%.
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To control for other variables, I run the following quarterly panel regression:

FOMAi,t = αi + γHHIi,t + δControlsi,t + εi,t,

where: αi is the �rm �xed e�ect. Control variables include: �rm size (Ln(ME)),

book-to-market (Ln(BM)), short-term stock return reversal (RETt−1,t), stock return

momentum (RETt−12,t−1), idiosyncratic volatility (IVOL) calculated from Fama-

French 3-factor model using past one-month daily data, total volatility of stock

return (VOL) calculated using past one-month daily data, number of analysts fol-

lowing the �rm (Analyst Number), and the divergence of analysts' opinions (Analyst

Dispersion). Control variables common to all �rms at quarter t are also included:

Index Returnt−6,t is the return of the S&P 500 Index over the past 6 months; In-

dex VIX is the S&P 500 Index VIX at time t; Index RN Skew is the risk-neutral

skewness of the S&P 500 Index at time t. Standard errors are clustered at �rm and

quarter levels.

Table 1.5 reports the regression results. Controlling for the share proportion

of the �rm owned by all option funds, HHI is positively signi�cant at the 1% level,

with a t-statistic of 4.51. Adding other control variables, HHI remains signi�cant at

the 1% level, with a t-statistic of 2.60. The coe�cient of size is negative. For large

�rms, mutual funds play a less important role in their equity option markets because

there are many other investors demanding options of those �rms. The coe�cient

of idiosyncratic volatility (IVOL) is positive, meaning that funds take larger option

market shares for �rms with higher IVOL. A possible explanation is that funds use
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equity options to hedge �rms' IVOL.

To check whether the positive relation between HHI and FOMA is caused

by �rms with illiquid option markets (the denominator of FOMA), I examine how

HHI is related to the �rm's option market activity. Following Roll, Schwartz, and

Subrahmanyam [2010], I use O/S, the option/stock dollar volume, to measure option

market activity. It is calculated as the option dollar open interest scaled by the

stock's monthly dollar trading volume. I multiply O/S by 100 and convert it to

percent. Then I run the same panel regression using O/S as the dependent variable.

The coe�cient of HHI is positively signi�cant at the 1% level, with a t-statistic

of 2.73. Thus, when a �rm's HHI increases, the �rm's equity option market also

becomes more active.

Overall, this section documents a positive relation between HHI and mutual

funds option market activity, consistent with HHI being a proxy for fund option

demands.

1.3.5 Demand pressure and price impact in equity option markets

If the predictability of HHI21 comes from the increased hedging demand driving

up option prices, there are two necessary components: demand pressure and price

impact in option market. The predictability should be positively related with order

21Last two sections construct HHI using only U.S. equity mutual funds holdings in the Morn-
ingstar Dataset. Starting from this section, I get back to before and use HHI constructed from all
funds in the S12 dataset because of its broader coverage.
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imbalance times the option price impact of demand pressure as follows:

Predictability of HHI ∝ d︸︷︷︸
Demand Pressure

× ∂p

∂d︸︷︷︸
Price Impact

.

Demand pressure is larger when mutual funds are more likely to use op-

tions to hedge. Garleanu et al. (2008) show that the price impact component:

∂p
∂d

= γ(Rf − 1)×Option Unhedgeable Risk, where γ is option dealer's risk aver-

sion. There are three forms of option unhedgeable risks: stochastic volatility risk,

jump risk, and delta-hedging cost. I check whether the pattern of predictability is

consistent with each component by testing some related theories in the literature.

First, I test four hypotheses related with when mutual funds tend to use deriva-

tives to hedge and cause demand pressures in option markets: 1. Funds are more

likely to use options to reduce risks following lower performance, which leads to un-

expected fund out�ows and makes fund portfolios riskier (Koski and Ponti� [1999];

Cao, Ghysels, and Hatheway [2011]). What is more, at the end of the year, due to

window dressing purpose, loser funds have lower hedging motives and winners tend

to hedge more in order to preserve good results (Brown, Harlow, and Starks [1996];

Chevalier and Ellison [1997]); 2. Funds with higher �ow volatilities tend to use op-

tions to manage risks because their investor bases are less stable. Hypothesis 1 and

2 are both related with the �ow-based motivation for mutual fund derivative use

proposed by Koski and Ponti� [1999]; 3. When �rms are overweighted by mutual

funds relative to benchmark, their fund holders are more likely to use those �rms'

options to hedge; 4. Mutual funds with higher portfolio concentration tend to take
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hedging positions in option markets. Hypothesis 3 and 4 are both related with fund

managers' career concern discussed in Cohen, Polk, and Silli [2010]: A heavy bet on

a small number of positions can, in the presence of bad luck, cause the manager to

lose her job and the manager tends to be more risk averse.

Second, I test four hypotheses related with option price impacts based on

model predictions in Garleanu et al. (2008): 5. The predictability is stronger during

periods in which intermediaries su�er tighter funding liquidity constraint. Because

intermediaries would be more risk averse and facing higher e�ective risk-free rates.

They charge higher compensation for bearing order imbalances, leading to larger

price impacts. 6. Since options written on stocks with higher idiosyncratic volatil-

ities have potentially higher stochastic volatility risk and are thus more di�cult

to hedge (Cao and Han [2013]), dealers charge higher premiums, leading to larger

price impacts; 7. Options written on stocks with higher jump risk have larger price

impacts; 8. Options written on illiquid stocks have larger price impacts because it is

more costly to do high-frequency delta hedge for those options. In summary, options

mentioned above have larger price impacts and their pricings are more sensitive to

order imbalance. A given level of order imbalance can cause a larger cross-sectional

dispersion in those stocks' option returns.

To test the �rst four hypotheses regarding demand pressure, I sort �rms into

three groups (Low, Medium, and High) at each month t, respectively, by: the av-

erage of past quarter adjusted returns of mutual funds holding �rm i, the average

of past-12-month �ow volatilities of mutual funds holding �rm i, the deviation of

�rm i's weight in fund industry from its market weight, and the average of portfolio
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concentrations (measured as HHI) of mutual funds holding �rm i. Among each sub-

group, I run the Fama-MacBeth regression ri,t+1 = αt + γtHHIi,t + θtXi,t + εi,t+1,

where: ri,t+1 is �rm i's VIX return; Xi,t is a set of control variables as those in Table

1.3.

To construct the above mutual fund characteristics, I �rst �nd all mutual

funds (excluding index funds, ETF, and ETN) that hold �rm i's stock at each

month. I take fund returns from CRSP Mutual Fund database and adjust them by

Morningstar investment category. I calculate fund �ow at month t as:

TNAt − (1 + rt)TNAt−1
TNAt−1

,

where TNAt and rt are the fund's total net asset and monthly return at month

t, respectively. I construct fund portfolio concentrations, measured as HHI, using

equity holdings in S12 database. To calculate how much each �rm is overweighted

by fund industry, I use the aggregate stock market as the benchmark and compute

the deviation of a �rm's weight in total asset of fund industry from its weight in

aggregate stock market.

Panel A shows the coe�cients of HHI in Low, Medium, and High groups. The

patterns are consistent with Hypothesis 1, 2, 3, and 4. The negative predictabil-

ity is concentrated among �rms with mutual fund holders that su�er recent lower

performance and have higher �ow volatilities and portfolio concentrations. The

predictability is also stronger among �rms overweighted by mutual fund industry.

In order to test the year-end e�ect documented by Cao, Ghysels, and Hatheway
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[2011], who �nd that winner funds are more likely to use derivatives to reduce risks

for managerial incentives at year-end, I split sample periods into non-year-end and

year-end (the last quarter of year) when I sort �rms by their fund holders' past

performances. In the row "Year-end", I sort �rms by the average of their fund

holders' up-to-date returns during the year adjusted for investment category. The

predictability is concentrated among �rms held by winner funds at year-end, con-

sistent with the hypothesis.

To test Hypothesis 5, I use TED spread as a proxy for intermediary funding liq-

uidity constraint. TED spread is related with dealers' risk aversion and e�ective risk-

free rate. Data is taken from the Federal Reserve Bank of St.Louis. I split the sample

period into three sub-periods (Low, Medium, and High) based on the level of TED

spread and run monthly cross-sectional regression ri,t+1 = αt + γtHHIi,t + θtXi,t + εi,t+1

among each sub-period.

Panel B in Table 1.6 reports the coe�cients of HHI in the three sub-periods.

The negative predictability of HHI disappears in low TED spread period. As TED

spread increases, the coe�cients become signi�cant. This pattern is consistent with

the story that price impact is stronger during periods in which intermediaries su�er

tighter funding liquidity constraint.

To test Hypothesis 6, 7, and 8 regarding option unhedgeable risk, I sort �rms

into three groups at each month t, respectively, by: �rm i's idiosyncratic volatility,

estimated from Fama-French three-factor model, as a proxy for stochastic-volatility

risk; absolute value of the skewness of �rm i's stock return as a proxy for jump risk,

because both positive and negative jumps make options di�cult to hedge; Amihud
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illiquidity measure as a proxy for high-frequency delta hedging cost. I run the same

Fama-MacBeth regression as before. Results in Panel C display patterns consistent

with Hypothesis 6, 7, and 8: the negative predictability of HHI is stronger among

�rms with higher idiosyncratic volatilities, jump risks, and stock market illiquidities.

Overall, the option return predictability of HHI displays patterns consistent

with �ndings in related literature, adding more validities for HHI being a proxy for

hedging demands.

1.4 HHI and the Price of Systematic and Idiosyncratic Variance

This section estimates the systematic and idiosyncratic VRP in equity option

markets and shows that HHI is negatively related with each component. I �rst show

that systematic variance risk is underpriced in equity options relative to index op-

tions, which helps explain the puzzle that equity options seem cheaper than index

options. The underpricing is related to di�erent demand patterns and composi-

tions of traders in index and equity option markets, and is more pronounced among

�rms with lower HHI. In order to examine how HHI a�ects the idiosyncratic VRP,

I construct a �rm-level idiosyncratic VIX portfolio, whose payo� approximates the

realized idiosyncratic variance of the �rm's stock return. I �nd that HHI negatively

predicts cross-sectional idiosyncratic VIX returns. Intuitively, for �rms with higher

HHI, some institutional investors are more likely to take large positions in those

�rms. They are more sensitive to both systematic and idiosyncratic variances and

pay higher insurance premiums, leading to more negative systematic and idiosyn-
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cratic VRP.

1.4.1 Decomposing VRP in equity option markets

Assuming that individual stock returns follow the market model, I can decom-

pose a stock's total VRP into systematic and idiosyncratic components. I start by

estimating the following market-model regression for each �rm i:

rStocki,t = αi + βirm,t + εi,t, (1.4)

where: rStocki,t is the stock return of �rm i at month t; rm,t is the market return,

proxied by S&P 500 Index return; αi and βi are coe�cients to be estimated for each

�rm i.

The realized variance of stock return at month t+ 1 is

RVi,t+1 = β2
iRVm,t+1 +RVε,i,t+1, (1.5)

where: RVi,t+1 is �rm i's realized variance at month t + 1; RVm,t+1 is the real-

ized variance of S&P 500 Index return; RVε,i,t+1 is the realized variance of �rm i's

idiosyncratic return.

At the end of month t, I take conditional variance of (1.4) under the risk-

neutral measure:

V IX2
i,t = β2

i V IX
2
m,t + V IX2

ε,i,t, (1.6)

where: V IX2
i,t is the expectation of �rm i's total variance at month t + 1 under
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risk-neutral measure; V IX2
m,t is the risk-neutral expectation of market variance at

month t+ 1; V IX2
ε,i,t is the expectation of �rm i's idiosyncratic variance.

Equation (1.5) and (1.6) imply

RVi,t+1 − V IX2
i,t

V IX2
i,t︸ ︷︷ ︸

V RPi,t+1

= β2
i

RVm,t+1 − V IX2
m,t

V IX2
i,t

+
RVε,i,t+1 − V IX2

ε,i,t

V IX2
i,t

. (1.7)

The term on the left-hand side is �rm i's variance risk premium at month t + 1,

denoted as V RPi,t+1. Carr and Wu [2009] use it to measure VRP. To recover the

systematic and idiosyncratic components from V RPi,t+1, I rewrite (1.7) as

RVi,t+1 − V IX2
i,t

V IX2
i,t︸ ︷︷ ︸

V RPi,t+1

=
β2
i V IX

2
m,t

V IX2
i,t

·
RVm,t+1 − V IX2

m,t

V IX2
m,t

+
V IX2

ε,i,t

V IX2
i,t

·
RVε,i,t+1 − V IX2

ε,i,t

V IX2
ε,i,t

= wi,t ·
RVm,t+1 − V IX2

m,t

V IX2
m,t︸ ︷︷ ︸

Systematic V RP (SV RP )

+(1− wi,t) ·
RVε,i,t+1 − V IX2

ε,i,t

V IX2
ε,i,t︸ ︷︷ ︸

Idiosyncratic V RP (IV RP )

= IV RPi,t+1 + wi,t(SV RPt+1 − IV RPi,t+1), (1.8)

where: wi,t =
β2
i V IX

2
m,t

V IX2
i,t

; SV RP is the systematic variance risk premium embedded

in equity options; IV RP is the idiosyncratic variance risk premium. The second

equality holds because V IX2
ε,i,t = V IX2

i,t − β2
i V IX

2
m,t, by (1.6).

I estimate the systematic and idiosyncratic VRP in equity option markets by

running a monthly cross-sectional regression, as follows:

V RPi,t+1 = λ0,t+1 + λ1,t+1wi,t + εi,t+1. (1.9)
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The independent variable in (1.9) is wi,t. To avoid forward-looking bias, βi,t is

estimated by running rolling regression (1.4) at the end of each month t, using

the past year daily stock return.22 V IX2
m,t and V IX2

i,t are calculated following

the construction of VIX portfolio. According to (1.8), the price of systematic and

idiosyncratic variance risk equal

Price of Systematic V ariance = λ0 + λ1,

P rice of Idiosyncratic V ariance = λ0,

(1.10)

where: λ0 and λ1 are the time-series averages of λ0,t and λ1,t, estimated from (1.9).

Panel A of Table 1.7 reports coe�cients of the regression:

ri,t+1 = λ0,t+1 + λ1,t+1 · wi,t + εi,t+1, (1.11)

where ri,t+1 is �rm i's one-month-ahead VIX return.

According to (1.10), the price of systematic variance risk equals

λ0 + λ1 = −11.2% + 23.5% = 12.3%.

λ0,t+1 + λ1,t+1 and index VIX return have a correlation of 0.57. A t-test shows

that λ0,t+1 + λ1,t+1 is statistically positive. This is contrary to the largely negative

index VIX return.23 A detailed explanation for the di�erential pricing is examined

22To ensure the precision of the estimate, I require at least 120 daily observations in the rolling
regression. Changing the rolling window to 6 month or using whole sample realized βi does not
change the qualitative results.

23To make sure that the result is not caused by using �rms not included in the S&P 500 Index,
I rerun the above regression with only �rms included in the index each month. The price of
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in the next section. If the price of systematic variance embedded in equity options,

V IX2
m,t, is priced the same as that in index options, λ0 + λ1 should be negative

instead of positive.

The underpricing of systematic variance risk in equity option markets o�ers

an alternative explanation for the stylized fact that individual �rms' VRP are less

negative than index VRP. To reconcile the di�erence, Driessen, Maenhout, and

Vilkov [2009] decompose index VRP into VRP of constituent �rms and correlation

risk premium. They assume no-arbitrage between index and equity option markets

and attribute the largely negative index VRP to correlation risk premium. The

no-arbitrage assumption can be strong given the documented mispricings in option

market: Eisdorfer, Sadka, and Zhdanov [2017] document that options held from one

expiration date to the next achieve signi�cantly lower returns when there are four

versus �ve weeks between expiration dates because of investor inattention to exact

expiration date; Jones and Shemesh [2018] �nd that option returns are signi�cantly

lower over nontrading periods because of the incorrect treatment of stock return

variance over those periods; Lemmon and Ni [2014] �nd that individual investors'

sentiment a�ects the demand and pricing for equity options but not for index op-

tions. The no-arbitrage assumption can be questionable, especially in equity option

markets given their large presence of less sophisticated individual investors.

Instead, this paper argues that individual �rm's VRP would have been more

negative if systematic variance risk has the same price in the two markets. In

systematic variance is estimated to be 11.15%, close to 12.3%. I also use the method in Fama
and MacBeth [1973] to estimate the systematic VRP: For each �rm, I run a full-sample monthly
time-series regression of equity VIX returns on index VIX return and get each �rm's exposure;
then I estimate systematic VRP via cross-sectional regression. The estimate equals 9.08%.
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a related paper, Barras and Malkhozov [2016] �nd that systematic variance risk

has two prices in index option market and stock market because of the �nancial

constraints faced by intermediaries in supplying index options. This paper focuses on

the di�erence between index option and equity option markets, which are supposed

to be more closely related.

The intercept λ0 equals −11.2%, with a t-statistic of -7.24, suggesting that in-

vestors pay a premium for idiosyncratic variance. This is consistent with the notion

that options on stocks with high idiosyncratic volatility attract high demand and

that constrained �nancial intermediaries charge extra compensation for supplying

these options because of their high hedging costs (Cao and Han [2013]). Ang et

al. (2006) �nd that idiosyncratic volatility negatively predicts future cross-sectional

stock returns. Cao and Han [2013] �nd that idiosyncratic volatility negatively pre-

dicts future cross-sectional delta-hedged option returns. My �nding complements

the literature by showing that idiosyncratic variance has a negative price in equity

option markets.

This section documents a positive price of systematic variance and a negative

price of idiosyncratic variance in equity option markets. The two combined conform

to a close-to-zero and much less negative �rm-level VRP. The �nding that systematic

variance risk has two prices in index and equity option markets helps explain why

equity options seem cheaper than index options.
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1.4.2 HHI and the price of systematic variance risk

This section explores how HHI is related with the price of systematic vari-

ance risk embedded in equity options. I make a conjecture that the underpricing of

systematic variance risk in equity option markets is related with di�erent demand

patterns and compositions of traders in index and equity option markets: Equity op-

tions are less used for hedging purpose than index options are; In addition, Lemmon

and Ni [2014] �nd that individual investors have a larger impact in equity option

markets than in index option market. I hypothesize that in equity option markets,

compared with less sophisticated individual investors who are more likely to chase

a �rm's idiosyncratic variance for lottery-like payo�s,24 institutional investors who

take large positions in the �rm, i.e. �rm with high HHI, pay more attention to

systematic variance, which will be priced more consistently with that embedded in

index options. According to the hypothesis, systematic VRP inferred from �rms

with higher HHI should be closer to that inferred from index options.

To test the hypothesis, I estimate systematic VRP from groups of �rms with

di�erent HHI. Each month, I �rst rank �rms into three groups by their size and

further sort each size group into three subgroups by HHI. Within each size-HHI

subgroup, I run regression (1.11), and report prices of systematic variance risk in

Panel B of Table 1.7.

24See Boyer, Mitton, and Vorkink [2010] and Boyer and Vorkink [2014] for details about the link
between a �rm's idiosyncratic volatility and skewness in stock and option markets. Boyer, Mitton,
and Vorkink [2010] �nd that a �rm's idiosyncratic volatility strongly and positively predicts the
idiosyncratic skewness of its future stock returns. Boyer and Vorkink [2014] �nd a strong negative
relationship between skewness and equity option returns and attribute it to the demand pressure
caused by investors' preference for lottery-like options.
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Within each size tercile, the estimated price is decreasing as HHI increases.

The price inferred from HHI 3, the group of �rms with the highest HHI, is not

statistically positive and closer to that estimated from index options. The pattern

is consistent with the hypothesis and suggests that the underpricing of systematic

variance is more pronounced among �rms with lower HHI.

Size and HHI are negatively correlated with each other. However, they both

have a negative relation with systematic VRP. Therefore, the pattern in Panel B is

not caused by the correlation between size and HHI. The two variables capture dif-

ferent information contents related to systematic VRP embedded in equity options.

1.4.3 Controlling for variance-related option mispricing

This section examines whether the pro�t of trading strategy exploiting sys-

tematic variance risk mispricings can be explained by other variance-related option

mispricing in the literature. I use wi,t, de�ned as
β2
i,tV IX

2
M,t

V IX2
i,t

, to measure �rm i's degree

of systematic variance risk mispricing. The higher wi,t is, the larger is the proportion

of systematic variance in �rm i's total variance under risk-neutral measure.

I use a double-sort procedure to control for variance mispricing measures in

equity options documented by previous studies. Goyal and Saretto [2009] �nd that

the log di�erence between historical realized volatility and ATM implied volatility

predicts cross-sectional option returns. Their option portfolios consist of only ATM

options. Since VIX portfolio includes options with all moneynesses, I modify their

measure as log(
RVi,t−12,t

V IX2
i,t

),25 where RVi,t−12,t is �rm i's historical variance estimated

25Using their original measure yields stronger results.
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using daily stock return over the past 12 months. I call it HV − IV . Another

measure is idiosyncratic volatility (IVOL) documented by Cao and Han [2013].

Each month, I �rst sort �rms into quintiles based on HV − IV or IVOL and

then sort each quintile by wi,t. All portfolios are equally weighted. Alpha is calcu-

lated from the Fama-French 5 factors (Fama and French [2015]), stock momentum,

and index VIX return. Table A1.3 presents average monthly returns. In Panel A,

after controlling for HV − IV , the strategy that long VIX portfolios of �rms with

high wi,t and short those with low wi,t delivers a signi�cantly positive return in every

quintile. The alpha is even higher than the raw return, because the trading strategy

is constructed to have a positive exposure to the negative index VIX return. Panel

B shows the result controlling for IVOL. The pattern is the same as in Panel A.

In unreported diagnostics, I use a Fama-MacBeth regression to check whether

wi,t can be explained by �rm characteristics. After controlling for characteristics,

the coe�cient estimate of wi,t remains highly signi�cant with a t-statistic of 6.50.

It cannot be subsumed by �rm characteristics.

1.4.4 HHI and the price of idiosyncratic variance risk

This section examines the relation between HHI and idiosyncratic VRP. I

construct a �rm-level idiosyncratic VIX portfolio, whose payo� approximates the

realized idiosyncratic variance of the �rm's stock return. Then I use Fama-MacBeth

regression to examine the cross-sectional relation between HHI and idiosyncratic

VRP.
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Firm i's idiosyncratic VIX portfolio is constructed by long 1 unit of �rm i's

VIX portfolio and short β2
i,t unit of index VIX portfolio. Based on equation (1.5),

the portfolio payo� should approximate �rm i's idiosyncratic variance over the next

month.

I �rst check the tracking performance of idiosyncratic VIX portfolios. Table

A1.4 reports summary statistics of idiosyncratic VIX return. Idiosyncratic VIX

returns are quite volatile with a monthly standard deviation of 176.1%, twice of

that of VIX returns. To avoid extreme observations, I apply the following �ltering

rules at each month: Delete �rms with negative idiosyncratic VIX prices and �rms

with idiosyncratic VIX price below the 5 and above the 95 percentile. The average

idiosyncratic VIX return is 10.86%, close to the average idiosyncratic VSR, de�ned

as

Idio V SRi,t,T =

T∑
u=t+1

r2i,u − β2
i,t,T

T∑
u=t+1

r2m,u

V IX2
i,t,T − β2

i,tV IX
2
m,t,T

− 1, (1.12)

where: βi,t,T is the realized β of �rm i during period t to T by running regression

(1.4); βi,t in denominator is rolling 1 year β; ri,u is �rm i's stock return on day u;

rm,u is index return on day u; V IX2
m,t,T and V IX2

i,t,T are the prices of index and

�rm i's VIX portfolio at month t.

To calculate time-series correlation between idiosyncratic VIX return and id-

iosyncratic VSR for each �rm, I require �rms to have at least 30 observations. The

average correlation equals 0.62. The median correlation is 0.72. The tracking error

could be diversi�ed away by forming equally weighted (EW) portfolio each month.

The correlation between the EW idiosyncratic VIX return and VSR equals 0.79.
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The average of idiosyncratic VIX return is positive. This seems to contradict

the negative price of idiosyncratic variance documented before. The seeming con-

tradiction is caused by the underpriced systematic variance risk in equity option

markets: When investors long systematic variance embedded in equity options at a

lower price and short systematic variance at a higher price by selling index options,

they earn a positive return. This cross-market arbitrage turns negative idiosyncratic

VRP into positive portfolio returns.

Table 1.8 reports the results. In a cross-sectional regression, HHI negatively

predicts one-month ahead idiosyncratic VIX returns. The coe�cient of HHI is -0.397

with a t-statistic of -5.90. It remains highly signi�cant after controlling for other

predictors. The negative predictability suggests that for �rms in which institutional

investors take more concentrated positions, institutions are more sensitive to those

�rms' idiosyncratic variances and pay a higher premium on option markets to hedge.

1.5 Trading Strategies

This section explores the pro�tabilities of two trading strategies. The �rst

strategy sorts �rms by mutual fund HHI. The second strategy sorts �rms by wi,t to

exploit the systematic variance risk mispricing. I implement the two strategies with

both VIX portfolios and delta-hedged call and put options.

At each month, I sort �rms into deciles by −HHIi,t or wi,t and equally weight

�rms. I sort by negative HHI in order to generate an increasing pattern of returns.

Alpha is calculated from Fama-French 5 factors, stock momentum, and S&P 500
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Index VIX return. To account for the potential nonnormality of option returns, I

also report the 99% bootstrap con�dence intervals for the risk-adjusted long-short

portfolio returns. Table 1.9 presents average monthly returns.

Panel A reports returns sorted by −HHIi,t. Monthly decile returns of VIX

portfolios increase from -10.87% to -0.91% as −HHIi,t increases. A long-short trad-

ing strategy generates a monthly return of 9.96% with a t-statistic of 5.89. The

annual Sharpe Ratio is 1.26. Trading delta-hedged call and put also yields signi�-

cantly positive returns, equal to 0.88% and 1.17%, respectively.

Panel B reports returns sorted by wi,t. Monthly decile returns of VIX portfolios

monotonically increase from -13.3% to 4.21% as wi,t increases. A long-short trading

strategy generates a monthly return of 17.5% with a t-statistic of 8.23. The Sharpe

Ratio is 1.76. The alpha is 20.8%, even higher than the raw return. This is because

the trading strategy has a positive exposure to the index VIX return, which is largely

negative. Trading delta-hedged call and put also yields signi�cantly positive returns,

equal to 1.50% and 1.75%, respectively.

For previous results, I assume that options can be bought and sold at the

midpoint of bid and ask quotes. To take into account the costs associated with

buying or selling options, I assume the e�ective option spread equals 50%, 75%,

and 100% of the quoted spread. E�ective spread is de�ned as twice the di�erence

between the actual execution price and the midpoint at the time of order entry.

The column "MidP" in Table A1.5 corresponds to zero e�ective spread, i.e., options

are traded at midpoint. An e�ective-to-quoted spread ratio of 50% is equivalent to

paying half of quoted bid-ask spread. De Fontnouvelle, Fishe, and Harris [2003] and
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Mayhew [2002] show that the typical spread ratio is less than 0.5. Muravyev and

Pearson [2019] show that e�ective spreads of traders who time executions are less

than 40% of the conventional measures.

Table A1.5 examines the impact of option bid-ask spreads on the pro�tability

of strategies. Returns in "All" columns are calculated using all �rms at that month.

Returns in "Low Bid-Ask Spread" columns are calculated using �rms with percent-

age bid-ask spread lower than the median bid-ask spread of that month, in order to

avoid illiquid options.

In Panel A, the monthly return of long-short VIX portfolios sorted by −HHIi,t

becomes insigni�cant under 50% ratio case. Delta-hedged ATM call return remains

signi�cant when the ratio is 50% and even signi�cant under the 75% case if only

liquid options with lower-than-median bid-ask spreads are traded. The strategy is

most pro�table for puts: When the ratio is 75%, the mean return is 0.22%, with a

t-statistic of 2.46; by only trading liquid options, the mean return after full bid-ask

spread is 0.32%, with a t-statistic of 3.02.

In Panel B, when the ratio increases to 50%, the monthly return of long-

short VIX portfolios sorted by wi,t decreases to 6.61%, with a t-statistic of 3.15.

It becomes insigni�cant when the ratio raises to 75%. By only trading �rms with

lower-than-median bid-ask spreads, the monthly VIX return remains signi�cant at

6.62%, with a t-statistic of 2.52, under the 75% case. Delta-hedged ATM call and

put returns remain highly signi�cant under the 75% case. By trading only liquid

options, returns are statistically positive even when the whole bid-ask spreads are

considered.
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To conclude, option bid-ask spreads reduce the pro�ts of trading strategies

but do not eliminate them at reasonable estimates of e�ective spreads. By avoid-

ing illiquid options, most strategies deliver statistically positive returns when the

e�ective-to-quoted spread ratio equals 75%.

1.6 Conclusion

This paper �nds that institutional stock holdings negatively predict cross-

sectional option returns. Evidence is consistent with a hedging and demand pressure

channel: In a simple model, HHI of stock holdings is proportional to stock holders'

aggregate hedging demand for options against variance risks originated from their

stock positions. For stocks with more concentrated ownership, some institutions

are more likely to overweight them and demand more of their options to hedge. To

absorb the order imbalances, dealers sell options and charge higher prices, leading to

lower option returns. Using option holdings of U.S. equity mutual funds, I �nd that

the negative predictability of HHI comes from funds that overweight the �rm relative

to their benchmark indexes and funds that use equity options, especially those long

puts. I also document a positive correlation between funds' stock concentration and

their option share in the same �rms, directly linking �rm's HHI with their fund

holders' option demand.

I also validate the channel by testing related theories in the literature. Theories

suggest that the predictability should be stronger when mutual funds are more

likely to use options to hedge and among �rms with higher option price impacts.
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Consistent with predictions, I �nd that the negative predictability is stronger among

�rms with mutual fund holders that su�er recent lower performance and have higher

�ow volatilities and portfolio concentrations, among �rms overweighted by mutual

funds, as well as among �rms with higher option market making costs.

I decompose �rm's total VRP into systematic and idiosyncratic components.

The price of systematic variance risk estimated from equity options is positive,

instead of negative as that implied by S&P 500 Index options. This di�erential

pricing is more pronounced among �rms with lower HHI and can help explain the

puzzle that individual �rm's VRP is less negative than that of the index. This

pattern is related with di�erent demand patterns and compositions of traders in

index and equity option markets: institutional investors who hold concentrated

positions in �rms with higher HHI are more sensitive to systematic variance, which

will be priced more consistently with that embedded in index options.
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This �gure plots the monthly index VIX return (blue solid line) and variance swap return (red
dashed line) de�ned in (1.3). The sample period is from January 1996 to December 2017.
Markers indicate the returns for the October 1997 Mini Crash caused by the Asian economic
crisis, the 1998 collapse of Long Term Capital Management (LTCM), the March 2000 Dot-com
Bubble, the 2008 collapse of Lehman Brothers (Lehman), the April 2010 Greece Debt Crisis,
and the August 2011 Black Monday following the downgrade of the U.S. sovereign debt.

Figure 1.1: Index VIX Return and Variance Swap Return
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In a Fama-MacBeth regression, I regress �rms' equity VIX returns on lagged n (1 to 12) month
HHI constructed from option funds in Morningstar dataset, controlling for other option return
predictors in Table 1.3. The �gure plots the coe�cient estimates of HHI (solid blue line) and
the 95% con�dence intervals (dashed black lines).

Figure 1.2: Option Return Predictability of Lagged HHI Option Fund
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Table 1.1: Summary Statistics

The sample period is from January 1996 to December 2017. I pick all optionable �rms in
the OptionMetrics Database. There are 138,339 �rm-month observations in total. Number
of Firms Each Month is the number of �rms each month in my sample. Number of Option
Contracts is the number of option contracts used to construct equity VIX portfolio for each �rm.
Index (Equity) VIX Return is the actual return of the index (equity) VIX portfolio. Equity
VSR (Variance Swap Return) is de�ned as the realized variance of equity return divided by
the price of equity VIX portfolio minus 1. EW (Equally Weighted) Equity VIX Return is the
cross-sectional average of equity VIX Return at each month. βIndex V IX Return is the �rm-level
exposure of equity VIX return to index VIX return. Corr(Equity VIX Return,Equity VSR) is
the �rm level time series correlation between equity VIX return and equity VSR. Corr(Equity
VIX Return,Stock Return) is the �rm level time-series correlation between the equity VIX
return and stock return. HHI Mutual Fund (Institution) is the Her�ndahl-Hirschman Index
(HHI) of mutual fund (institution) ownership of the �rm's stocks. It measures the ownership
concentration among mutual funds (institutions) that are shareholders of the company.

Mean Std 10% 25% 50% 75% 90%

Panel A: VIX return.

Number of Firms Each Month 526 214 260 335 503 700 831
Number of Option Contracts 6.41 4.53 4.00 4.00 4.00 8.00 10.00
Index VIX Return(%) -23.24 72.66 -67.99 -56.43 -37.18 -13.80 18.44
Equity VIX Return(%) -5.13 91.98 -62.01 -45.20 -21.39 13.83 68.07
EW Equity VIX Return(%) -4.82 28.13 -30.20 -22.25 -11.30 4.05 25.44
βIndex V IX Return 0.33 0.36 -0.02 0.15 0.31 0.50 0.74
Corr(Equity VIX Return,Equity VSR) 0.75 0.31 0.35 0.68 0.88 0.95 0.98
Corr(Equity VIX Return,Stock Return) -0.26 0.23 -0.51 -0.41 -0.29 -0.13 0.04

Panel B: Her�ndahl-Hirschman Index.

HHI Mutual Fund 0.139 0.196 0.024 0.035 0.065 0.142 0.343
HHI Institution 0.057 0.069 0.026 0.032 0.042 0.058 0.089
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Table 1.2: HHI and Equity VIX Returns

This table reports the results of cross-sectional regression:
ri,t+1 = αt + γtHHIi,t + θtXi,t + εi,t+1, where ri,t+1 is the one-month-ahead equity VIX
return of �rm i. HHI Mutual Fund (Institution) is the Her�ndahl-Hirschman Index (HHI) of
mutual fund (institution) ownership of the �rm's stocks. Holdings of Mutual Fund (Institution)
are calculated as the �rm's total shares held by mutual funds (institutions) divided by the
total number of shares outstanding. The associated t-statistics are in parentheses. ***, **, and
* denote signi�cance at 1%, 5%, and 10%, respectively. The sample period is from January
1996 to December 2017.

(1) (2) (3) (4) (5)
HHI Mutual Fund -0.240∗∗∗ -0.232∗∗∗ -0.229∗∗∗

(-7.17) (-6.41) (-5.19)

Holdings of Mutual Fund 0.132∗ 0.299∗∗∗

(1.90) (3.57)

HHI Institution -0.396∗∗∗ -0.383∗∗∗ -0.194∗∗∗

(-7.11) (-6.41) (-2.87)

Holdings of Institution 0.007 -0.075∗∗∗

(0.39) (-3.02)

Intercept -0.024 -0.038∗ -0.025 -0.025 0.004
(-1.24) (-1.69) (-1.36) (-0.96) (0.15)

Adj. R2 0.004 0.006 0.004 0.006 0.008
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Table 1.3: Robustness of HHI

This table reports the average coe�cients of monthly Fama-MacBeth regressions of equity
V IX returns in one month ahead on the latest available institutional and mutual fund hold-
ings. Control variables include idiosyncratic volatility (IVOL, Cao and Han (2013)), log di�er-
ence between historical volatility and equity V IX (HV-VIX, modi�ed from Goyal and Saretto
(2009)), short-term stock return reversal (RETt−1,t), momentum (RETt−12,t−1), long-term
stock return reversal (RETt−36,t−12), size (Ln(ME)), book-to-market (Ln(BM)), risk-neutral
skewness of stock returns (RN Skew, Bakshi, Kapadia, and Madan (2003)), rolling 1 year skew-
ness and kurtosis of stock returns (Rolling Skew and Kurt), analyst dispersion, cash holdings
(CH), pro�tability (Pro�t), new issues (Cao, Han, Tong, and Zhan (2017)), Amihud illiquidity
measure over the previous month (Amihud (2002)), and the percentage bid-ask spread of the
option portfolio (Option Bid-Ask Spread). To check the robustness, results using delta-hedged
ATM call and put option gains until maturity (calculated as Bakshi and Kapadia (2003)) are
also reported. The associated heteroskedasticity-robust t-statistics are in parentheses. ***, **,
and * denote signi�cance at 1%, 5%, and 10%, respectively. The sample period is from January
1996 to December 2017.

Equity VIX Return Delta Call Delta Put

(1) (2) (3) (4) (5)
HHI Mutual Fund -0.210∗∗∗ -0.191∗∗∗ -0.008∗∗∗ -0.012∗∗∗

(-4.46) (-3.52) (-3.32) (-4.54)
Holdings of Mutual Fund 0.208∗∗ 0.168 0.012∗∗∗ 0.015∗∗∗

(2.30) (1.56) (2.62) (3.78)
HHI Institution -0.279∗∗∗ -0.127

(-4.01) (-1.63)
Holdings of Institution 0.042∗∗ 0.015

(2.33) (0.56)
IVOL -1.273∗∗∗ -1.315∗∗∗ -1.348∗∗∗ -0.171∗∗∗ -0.186∗∗∗

(-3.22) (-3.18) (-3.33) (-6.40) (-7.32)
HV-VIX 0.328∗∗∗ 0.333∗∗∗ 0.331∗∗∗ 0.024∗∗∗ 0.025∗∗∗

(11.16) (11.25) (11.09) (11.92) (13.94)
RETt−1,t -0.121∗∗∗ -0.121∗∗∗ -0.117∗∗∗ -0.003 -0.008∗∗∗

(-2.92) (-2.92) (-2.84) (-1.12) (-3.38)
RETt−12,t−1 0.039∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.001 0.002∗∗

(2.90) (2.79) (2.74) (1.17) (2.54)
RETt−36,t−12 0.026∗∗∗ 0.026∗∗∗ 0.025∗∗∗ 0.001 0.001∗

(3.07) (3.15) (2.97) (1.06) (1.76)
Ln(ME) -0.001 0.000 -0.002 -0.000 0.000

(-0.18) (0.08) (-0.36) (-0.52) (1.01)
Ln(BM) 0.014∗∗∗ 0.012∗∗∗ 0.012∗∗∗ 0.001∗∗ 0.001∗∗

(3.12) (2.61) (2.78) (2.30) (2.40)
RN Skew 0.023∗∗ 0.023∗∗ 0.024∗∗ -0.002∗∗∗ 0.001

(2.11) (2.09) (2.14) (-5.28) (1.40)
Rolling Skew 0.001 0.001 0.001 0.000 0.000

(0.21) (0.27) (0.30) (0.01) (0.13)
Rolling Kurt -0.004∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.000∗∗∗ -0.000∗∗∗

(-7.06) (-7.32) (-7.09) (-6.74) (-7.66)
Analyst Dispersion -0.028∗ -0.026∗ -0.026 -0.003∗∗∗ -0.003∗∗∗

(-1.81) (-1.65) (-1.63) (-2.68) (-2.70)
CH 0.044∗∗ 0.048∗∗ 0.046∗∗ -0.000 -0.000

(2.11) (2.32) (2.19) (-0.11) (-0.24)
Pro�t -0.004 -0.005 -0.004 -0.000 -0.000

(-0.67) (-0.81) (-0.73) (-0.49) (-0.72)
Issue 0.046 0.049∗ 0.042 0.001 0.001

(1.56) (1.68) (1.45) (0.61) (0.63)
Amihud 0.517 -0.647 0.230 -0.360∗∗ -0.542∗∗∗

(0.24) (-0.30) (0.11) (-2.50) (-3.50)
Option Bid-Ask Spread 0.024 0.017 0.015 0.009∗∗ 0.006∗∗

(0.62) (0.45) (0.41) (2.32) (2.03)
Intercept -0.048 -0.079 -0.030 -0.003 -0.009∗∗

(-0.57) (-1.04) (-0.37) (-0.78) (-2.30)
Adj. R2 0.058 0.058 0.059 0.087 0.085
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Table 1.4: HHI and Risk Pro�les of Option Funds and Non-option Funds

This table examines the cross-sectional explanatory power of ownership concentration of option
funds and non-option funds on equity VIX returns, respectively. In each column, I control for
the corresponding share proportions owned by each fund category. HHI MStar is constructed
using the holdings of all U.S. equity funds in Morningstar dataset. HHI Non MStar is con-
structed using the holdings of funds in S12 but not covered by Morningstar dataset. HHI
Overweight (Underweight) is constructed using the holdings of funds in Morningstar dataset
that overweight (underweight) the �rm relative to their benchmarks. HHI Option Fund is con-
structed using only funds that use equity options. HHI Put Fund is constructed using funds
that use put options. HHI Call Fund is constructed using funds that only use calls and never use
puts. HHI Put Short is constructed using put funds that only short puts but never long puts.
HHI Put Long is constructed using put funds that long puts. HHI Call Short is constructed
using call funds that only short calls but never long calls. HHI Call Long is constructed using
call funds that long calls. The associated t-statistics are in parentheses. ***, **, and * denote
signi�cance at 1%, 5%, and 10%, respectively.

(1) (2) (3) (4) (5) (6) (7)
HHI MStar -0.086∗∗∗ -0.086∗∗∗ -0.053

(-3.67) (-3.10) (-1.64)

HHI Non MStar -0.048∗∗∗

(-3.02)

HHI Overweight -0.224∗∗∗

(-3.56)

HHI Underweight -0.040
(-1.41)

HHI Option Fund -0.049∗∗ -0.003 -0.098∗∗∗

(-2.53) (-0.11) (-5.00)

HHI Put Fund -0.074∗∗∗

(-3.31)

HHI Call Fund 0.029∗

(1.67)

HHI Put Long -0.071∗∗∗

(-4.23)

HHI Put Short -0.020
(-1.35)

HHI Call Long -0.015
(-0.99)

HHI Call Short 0.018
(1.13)

Intercept -0.057∗∗ -0.044∗ -0.066∗∗ -0.044∗ -0.023 -0.037∗ -0.005
(-2.40) (-1.71) (-2.12) (-1.77) (-1.01) (-1.74) (-0.18)

Adj. R2 0.008 0.011 0.011 0.010 0.009 0.009 0.013
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Table 1.5: Fund Option Market Activity and Option Funds HHI

This table reports the results of quarterly panel regression: FOMAi,t = αi+γHHIi,t+δXi,t+
εi,t, where: FOMAi,t is mutual fund option market activity of �rm i at the end of quarter
t, de�ned as the aggregate funds holdings at �rm i's option market scaled by the total dollar
open interest of �rm i's option market. O/Si,t is �rm i's option/stock dollar volume, de�ned
as option dollar open interest scaled by the stock's monthly dollar trading volume. I multiply
O/S by 100 to convert it to percent. Control variables Xi,t, such as Ln(ME), Ln(BM), IVOL,
RETt−1,t, RETt−12,t−1 and Analyst Dispersion, are the same as in Table 1.3. VOL is the past-
1-month total volatility of stock returns. Analyst Number is the number of I/B/E/S analysts
making one-year forecasts on the �rm. Index Returnt−6,t is the return of S&P 500 Index over
the past 6 months. Index VIX is the S&P 500 Index VIX at the end of month. Index Skew is
the risk-neutral skewness of S&P 500 Index at the end of month. Standard errors are clustered
at �rm and month level. The associated t-statistics are in parentheses. ***, **, and * denote
signi�cance at 1%, 5%, and 10%, respectively. The sample period is from January 1996 to
December 2015.

Panel A: Sort by HHI Option Fund.

1 (Low) 2 3 4 5 6 7 8 9 10 (High)
FOMA (%) 0.38 0.75 1.00 1.70 2.08 2.26 2.78 3.55 4.38 5.34

Panel B: Panel regressions.

(1) (2) (3)
FOMA FOMA O/S

HHI Option Fund 0.0355∗∗∗ 0.0205∗∗∗ 0.4669∗∗∗

(4.51) (2.60) (2.73)
Holdings of Option Fund 0.0224 0.0306 0.7481

(0.47) (0.63) (0.69)
Ln(ME) -0.0094∗∗∗ 0.1248∗∗

(-5.43) (2.05)
Ln(BM) -0.0036∗∗∗ -0.0092

(-2.74) (-0.19)
IVOL 0.4922∗∗∗ -8.9554∗∗

(4.28) (-2.56)
VOL -0.3983∗∗∗ 7.1567∗∗

(-4.50) (2.35)
RETt−1,t 0.0266∗∗∗ -0.1886

(6.11) (-1.26)
RETt−12,t−1 0.0045∗∗ -0.1205∗∗

(2.50) (-2.00)
Analyst Number 0.0001 -0.0078

(0.52) (-1.27)
Analyst Dispersion 0.0002 0.0047

(1.19) (1.11)
Index Returnt−6,t -0.0025 -0.4074∗

(-0.32) (-1.79)
Index VIX 0.0002 -0.0071∗

(1.36) (-1.75)
Index Skew -0.0004 0.0785∗

(-0.37) (1.84)
Observations 19142 17477 17448
adj. R2 0.50 0.53 0.53
Firm FE Yes Yes Yes54



Table 1.6: Option Demand Pressure and Price Impact

This table reports the coe�cients of HHI in the monthly Fama-MacBeth regression:

ri,t+1 = αt + γtHHIi,t + θtXi,t + εi,t+1.

ri,t+1 is �rm i's VIX return. Xi,t is a set of control variables as those in Table 1.3. In Panel A, I
sort �rms into three groups at each month t, respectively, by the average of their fund holders':
past quarter returns adjusted for investment category, past-12-month fund �ow volatilities,
and portfolio concentrations. To test the year-end hypothesis, I split sample periods into non-
year-end and year-end periods when I sort �rms by past fund returns. I also sort �rms by the
deviation of their weights in mutual fund industry from market weights (Benchmark Deviation).
Panel B reports the coe�cients among three sub-periods sorted by TED spread. In Panel C,
I sort �rms by three stock characteristics associated with option unhedgeable risk: �rm i's
idiosyncratic volatility, absolute value of the skewness of stock return, and Amihud illiquidity
measure. The associated t-statistics are in parentheses. The sample period is from January
1996 to December 2017.

Panel A: Mutual fund characteristics.

Low Medium High
Fund Past Performance -0.424∗∗∗ -0.205 -0.149

(-3.08) (-1.53) (-1.37)

Non-year-end -0.559∗∗∗ -0.175 -0.100
(-3.24) (-1.19) (-0.73)

Year-end 0.161 -0.200 -0.352∗∗

(0.63) (-0.69) (-2.02)

Fund Flow Volatility -0.056 -0.164 -0.465∗∗∗

(-0.53) (-1.10) (-3.59)

Benchmark Deviation -0.194 -0.178∗ -0.200∗∗

(-1.24) (-1.92) (-2.54)
Fund Portfolio Concentration -0.136 -0.252 -0.275∗∗

(-0.94) (-1.28) (-2.38)

Panel B: TED spread.

Low Medium High
TED spread -0.018 -0.328∗∗∗ -0.295∗∗∗

(-0.30) (-4.01) (-3.14)

Panel C: Stock characteristics.

Low Medium High
Stock Idiosyncratic Volatility -0.107 -0.173 -0.206∗∗

(-0.83) (-1.67) (-2.19)

|Skew| 0.018 -0.276∗∗∗ -0.297∗∗∗

(0.22) (-2.70) (-2.82)

Amihud Illiquidity -0.288∗ -0.200 -0.220∗∗∗

(-1.90) (-1.30) (-3.15)
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Table 1.7: Price of Systematic Variance in Equity Option Markets

Panel A reports the average coe�cients of the monthly Fama-MacBeth regression,
ri,t+1 = λ0,t+1 + λ1,t+1 · wi,t + εi,t+1, where ri,t+1 is the one-month-ahead V IX return and

wi,t is de�ned as
β2
i,tV IX

2
M,t

V IX2
i,t

. Results using delta-hedged ATM call and put option gains until

maturity (calculated as in Bakshi and Kapadia (2003)) are also reported. Panel B reports the
price of systematic variance risk (in percent) inferred from subgroups of �rms with di�erent
sizes and mutual fund HHI. Each month, I �rst rank �rms into three groups by their size; then
�rms within each size group are further sorted into three subgroups by HHI. I run the cross-
sectional regression in Panel A, using only �rms in each size-HHI subgroup. The associated
t-statistics are in parentheses. *** denotes signi�cance at 1%. The sample period is from Jan.
1996 to Dec. 2017.

Panel A: Price of systematic and idiosyncratic variances.

VIX Return Delta-hedged Call Delta-hedged Put
Intercept -0.112∗∗∗ -0.008∗∗∗ -0.012∗∗∗

(-7.24) (-9.96) (-14.07)

wi,t 0.235∗∗∗ 0.019∗∗∗ 0.022∗∗∗

(7.35) (10.65) (12.66)

Adj. R2 0.017 0.014 0.017

Panel B: HHI and price of systematic risk.

HHI 1 (Low) HHI 2 HHI 3 (High)
Size 1 (Low) 24.14 20.72 16.08

(2.61) (2.39) (1.00)
Size 2 19.18 13.41 11.01

(3.31) (2.13) (1.64)
Size 3 (High) 11.33 12.34 5.16

(2.72) (2.13) (1.11)
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Table 1.8: HHI and Idiosyncratic VIX Returns

This table reports the average coe�cients of the monthly Fama-MacBeth regression of one-
month-ahead idiosyncratic VIX returns on the latest available independent variables. The
associated t-statistics are in parentheses. ***, **, and * denote signi�cance at 1%, 5%, and
10%, respectively. The sample period is from January 1996 to December 2017.

(1) (2) (3)
HHI Mutual Fund -0.397∗∗∗ -0.387∗∗∗ -0.326∗∗∗

(-5.90) (-5.55) (-3.57)
Holdings of Mutual Fund 0.335∗∗ 0.507∗∗∗

(2.14) (2.96)
IVOL -4.099∗∗∗

(-5.13)
HV-VIX 0.945∗∗∗

(9.92)
RETt−1,t -0.227∗∗

(-2.43)
RETt−12,t−1 0.046

(1.64)
RETt−36,t−12 0.039∗∗

(2.11)
Ln(ME) 0.020∗∗

(2.35)
Ln(BM) 0.033∗∗∗

(3.95)
RN Skew 0.051∗∗

(2.43)
Rolling Skew 0.003

(0.36)
Rolling Kurt -0.009∗∗∗

(-7.93)
Analyst Dispersion -0.073∗∗∗

(-2.77)
CH 0.079∗∗

(2.09)
Pro�t -0.016

(-1.43)
Issue 0.128∗∗

(2.44)
Amihud 2.735

(0.76)
Option Bid-Ask Spread 0.076

(1.13)
Intercept 0.153∗∗∗ 0.129∗∗∗ -0.239

(5.39) (3.81) (-1.63)
Adj. R2 0.005 0.007 0.071
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1.7 Appendix

1.7.1 The Payo� of VIX Portfolio

This section follows Heston and Li [2020] and proves that the payo� of VIX

portfolio approximately equals the realized variance of stock return.

Eqn (1.1) is a discrete version of the continuous integral in Carr and Madan

(1998), who show that the price of a portfolio whose payo� equals to realized variance

of stock return is

V̂ (t, T ) = 2

∫ ∞
0

O(K, t, T )

K2
dK. (A1)

Given stock price S(T ) at expiration, the option payo�O(K,T, T ) equalsMax(S(T )−K, 0)

for a call option andMax(K − S(T ), 0) for a put option. In the absence of interme-

diate dividends, integrating these option payo�s over strike prices (A1) shows the

terminal payo� of this idealized VIX portfolio with continuous strikes equals

V̂ (T, T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

(
S(T )

S(t)(1 + rf )T−t
− 1

)
, (A2)

where rf is the daily risk-free interest rate, which is assumed to be constant over the

life of the option. The �rst term in the payo� (A2) represents selling two units of the

"log-portfolio". The second term represents a costless static hedge that leverages

(the present value of) two dollars of stock at time t and holds this hedge position

constant until expiration at time T . The combined payo� is a U-shaped function

of the stock price, resembling a squared stock return. Therefore, the price of this
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portfolio represents the risk-neutral variance of stock return.

We can further reduce risk of the idealized VIX portfolio by daily-hedging

instead of using a �xed static hedge just at time t. This replaces the second term

of (A2) with daily delta hedging of the log-portfolio. Due to the special case of

log-payo� (the �rst term on right-hand side in (A2)), the delta of the idealized VIX

portfolio is model-free and equals 1/S(t). Thus, to delta-hedge the log-portfolio at

daily frequency, investors need to buy 1/S(t) shares of stock for a price of S(t) and

rebalance the hedging position each day. The payo� of this daily hedged idealized

VIX portfolio equals

V̂hedged(T, T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

T∑
u=t+1

(r(u)− rf ), (A3)

where r(u) represents the stock return on day u, which is a day between time t and

T . We can replace the stock price in equation (A3) to express the payo� in terms

of a telescoping series of daily stock returns r(u) between t and T as follows:

V̂hedged(T, T ) = −2
T∑

u=t+1

log(
1 + r(u)

1 + rf
) + 2

T∑
u=t+1

(r(u)− rf ). (A4)

When daily stock returns and risk-free rates are small, a second-order Taylor series

expansion shows that the payo� of this daily hedged option portfolio (A4) closely
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approximates the realized variance of stock return over time t to T as follows:

V̂hedged(T, T ) = 2
T∑

u=t+1

[r(u)− rf − log(
1 + r(u)

1 + rf
)] ≈

T∑
u=t+1

(r(u)− rf )2 ≈
T∑

u=t+1

r(u)2.

(A5)

Since the daily risk-free rate is very small, the last approximation holds.26 Combine

Equation (A2) and (A5), it is easy to see that the numerator of Equation (1.2)

approximates realized variance.

1.7.2 Model Linking HHI with Aggregate Hedging Demand for VIX

Portfolio

Building on the model in Smith [2019], I derive a positive relation between

HHI and investors' aggregate hedging demand for the �rm's VIX portfolio. Here I

will give a brief summary of model setup in Smith [2019] and show how HHI could

be extracted as an empirical proxy for hedging demand. Readers can refer to the

original paper for more details.

It is a single-period model with a continuum of investors indexed on [0, 1] with

CARA utility u(W ) = −e−Wτ . Three assets are traded: a risk-free asset with payo�

normalized to one and unlimited supply; a risky asset (stock) that pays o� x̃ at the

end of period, with per-capita endowment of z̄; a variance derivative (VIX portfolio)

with payo� equal to the stochastic variance Ṽ and 0 net supply. De�ne DSi and

DDi as the ith trader's position in the stock and derivative after trade.

26
T∑

u=t+1
(r(u) − rf )2 and

T∑
u=t+1

r(u)2 have a correlation of 1, and the average absolute value of

percentage error is only 0.14%.
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The critical assumption is that both the mean and variance of the stock's

payo�s are unknown to investors: Given the realizations of two independent random

variables, µ̃ and Ṽ , payo� x̃ is normally distributed with mean µ̃ and variance Ṽ :

x̃|µ̃, Ṽ ∼ N(µ̃, Ṽ ). µ̃ is assumed to be Gaussian: µ̃ ∼ N(mµ, σ
2
µ). Assume that

variance Ṽ ∈ {mV − σV ,mV + σV } with ex-ante equal probabilities.

Each investor i receives both a "mean" signal and a "risk" signal regarding µ̃

and Ṽ , respectively: ϕ̃i = µ̃+ ñ+ ε̃i and η̃i = Ṽ + υ̃ + ẽi, where ε̃i ∼ N(0, σ2
ε ), ñ ∼

N(0, σ2
n), ẽi ∼ N(0, σ2

e), and υ̃ ∼ N(0, σ2
υ). To prevent fully revealing equilibrium,

investors have stochastic nontradable endowments of the two components of risk µ̃

and Ṽ . Trader i's endowment of µ̃ equals Z̃µi = z̃µ + z̃µi. Her endowment of Ṽ

equals Z̃V i = z̃V + z̃V i.

To see why investors face variance risk, ignoring endowments for simplicity,

consider investor i's expected utility conditional on Ṽ :

E{−exp[−1

τ
(DSi(x̃− PS) +DDi(Ṽ − PD))]|Φi, Ṽ }

= −exp{−1

τ
[DSi(E(µ̃|Φi)− PS) +DDi(Ṽ − PD)− D2

Si

2τ
(V ar(µ̃|Φi) + Ṽ )]}.

(A6)

In equilibrium, investor i's stock and derivative positions satisfy

DSi = τ
E(x̃|Φi)− PS
V ar(µ̃|Φi) + PD

− Z̃µiV ar(µ̃|Φi)
V ar(µ̃|Φi) + PD

,

DDi =
τ

2σV
[log(

Pr(Ṽ = mV + σV |Φi)
Pr(Ṽ = mV − σV |Φi)

)− log(
−mV + σV + PD
mV + σV − PD

)]− Z̃V i︸ ︷︷ ︸
Speculating Demand

+
1

2τ
D2
Si︸ ︷︷ ︸

Hedging Demand

,

(A7)
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where: Φi ≡ {ϕ̃i, η̃i, Z̃µi, Z̃V i, PS, PD} represent investor i's information set. PS

(PD) is the price of stock (derivative). Investors' hedging demands for the variance

derivative are a quadratic function of their equity holdings, as variance risk has a

higher-order impact on investors' utility.

Above are the results in Smith [2019]. Next, I will show that HHI is propor-

tional to the aggregate hedging demand for the variance derivative and it negatively

predicts VRP.

Since the derivative market is in zero net supply, summing up the second

equation in (A7) across investors in [0, 1] yields

1

2τ

∫ 1

0

D2
Si︸ ︷︷ ︸

Aggregate Hedging Demand

= f(PD), (A8)

where f(PD) is an increasing function in PD. By de�nition, we have

HHI ≡
∫ 1

0
D2
Si

z̄2
(A9)

Combining (A8) and (A9), we can conclude that HHI is proportional to aggregate

hedging demand for variance derivative and is positively related with PD. The

unconditional VRP equals mV
PD

. This means that HHI is negatively related to VRP.

1.7.3 Variable Construction

This section discusses the construction of control variables used in the paper.

� IVOL: idiosyncratic volatility of stock return, estimated from Fama-French 3
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factors using rolling one-month daily data, following Ang, Hodrick, Xing, and

Zhang [2006].

� HV-VIX: di�erence between historical volatility, estimated using rolling one-

year daily stock return data, and equity VIX. It is modi�ed from the volatility

deviation measure in Goyal and Saretto [2009].

� RETt−1,t: short-term stock return reversal, calculated as the past month cu-

mulative stock return (Jegadeesh [1990]).

� RETt−12,t−1: stock return momentum, calculated as the cumulative stock re-

turn over the 11 months ending at the end of previous month (Jegadeesh and

Titman [1993]).

� RETt−36,t−12: long-term stock return reversal, calculated as the cumulative

stock return from the past 36 month to the past 12 month (De Bondt and

Thaler [1985]).

� Ln(ME): �rm size is measured as the natural logarithm of the market value of

equity at June (Fama and French [1992]).

� Ln(BM): value is measured as the natural logarithm of book equity for the

�scal year-end in a calendar year divided by market equity at the end of

December of that year, as in Fama and French [1992].

� RN Skew: risk-neutral skewness of stock returns estimated from a portfolio of

OTM options (Bakshi, Kapadia, and Madan [2003]).
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� Rolling Skew: historical stock return skewness, estimated using rolling one-

year daily stock return data.

� Rolling Kurt: historical stock return kurtosis, estimated using rolling one-year

daily stock return data.

� Analyst Dispersion: analyst earnings forecast dispersion, computed as the

standard deviation of annual earnings-per-share forecasts scaled by the abso-

lute value of the average outstanding forecasts (Diether, Malloy, and Scherbina

[2002]).

� CH: cash-to-assets ratio, de�ned as the value of corporate cash holdings over

the value of the �rm's total assets (Palazzo [2012]).

� Pro�t: �rm pro�tability, as in Fama and French [2006],calculated as earn-

ings divided by book equity, in which earnings is de�ned as income before

extraordinary items.

� Issue: new stock issues, as in Ponti� and Woodgate [2008], measured as the

change in shares outstanding from 11 months ago.

� Amihud: Amihud illiquidity measure (Amihud [2002]) over the past 30 days,

calculated as equation (1) in that paper. Amihud multiplies it by 106 to adjust

the scale. To get a reliable estimate, I require at least 17 observations of daily

stock returns over the past 30 days.

� Option Bid-Ask Spread: for equity VIX portfolio, it is the percentage bid-

ask spread calculated as the absolute bid-ask spread divided by the midpoint
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price of the VIX portfolio; for delta-hedged call (put) portfolio, it is simply

the percentage bid-ask spread of the call (put) option.

� Option Bid-Ask Spread: for equity VIX portfolio, it is the percentage bid-ask

spread calculated as absolute bid-ask spread divided by midpoint price of the

VIX portfolio; for delta-hedged call (put) portfolio, it is simply the percentage

bid-ask spread of the call (put) option.

� Leverage Ratio: �rm leverage ratio, calculated as

Book V alue of Debt

Market V alue of Equity +Book V alue of Debt
.

� Treasury Rate: yield on 10-year Treasury. Data is taken from Federal Reserve

Bank of St. Louis.

� Term Spread: slope of the term structure, de�ned as ten-year minus two-year

Treasure yields.
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Table A1.1: Robustness Checks

In Panel A, I �rst sort �rms into quintiles based on �rm size at each month and then further
sort each quintile by −HHI Mutual Fund. In Panel B, I �rst sort by Fund Number, which is
the number of fund holders holding the �rm, and then sort by −HHI Mutual Fund. Firms
are equally weighted. Average monthly returns (in percent) of these portfolios are presented.
In Panel C, I run Fama-MacBeth regression to check the predictability of HHI on future stock
return and variance, respectively. Control variables are the same as those in Table 1.3. The
t-statistics are reported in parentheses. The sample period is from January 1996 to December
2017.

Panel A: Sort �rst by size and then −HHI Mutual Fund.

−HHI

Size 1(Low) 2 3 4 5(High) 5-1

1(Low) -12.13 -8.58 -6.67 -5.18 -2.47 9.66
(4.70)

2 -8.80 -6.46 -3.70 -4.23 -2.63 6.17
(2.60)

3 -8.86 -5.84 -5.57 -3.90 -3.27 5.59
(2.98)

4 -7.08 -4.00 -5.77 -2.72 -1.16 5.92
(3.31)

5(High) -4.36 -2.99 -2.41 -2.77 -0.99 3.37
(2.07)

Panel B: Sort �rst by Fund Number and then −HHI Mutual Fund.

−HHI

Fund Number 1(Low) 2 3 4 5(High) 5-1

1(Low) -11.82 -9.22 -8.77 -5.41 -7.71 4.10
(2.07)

2 -8.29 -5.35 -3.58 -4.90 -1.30 6.99
(3.93)

3 -7.51 -4.09 -4.83 -3.31 -4.82 2.69
(1.12)

4 -6.30 -4.94 -3.62 -3.37 -4.77 1.53
(0.95)

5(High) -5.49 -2.68 -1.56 -0.70 -0.59 4.90
(2.66)

Panel C: Future stock return and variance.

Stock Returni,t+1 V ariancei,t+1

(1) (2) (3) (4)
HHI Mutual Fund -0.005 0.002

(-0.74) (1.30)

HHI Institution 0.001 -0.002
(0.11) (-0.86)

Controls Yes Yes Yes Yes
R2 0.114 0.114 0.278 0.275
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Table A1.2: Characteristics of Option and Non-option Funds

This table reports di�erences in risk pro�les between di�erent types of funds under di�erent
Morningstar investment categories. Users/Total is the proportion of certain type of funds under
a speci�c Morningstar category. Portfolio Concentration is the Her�ndahl Index of the fund's
equity portfolio. Alpha is calculated using Carhart 4-factor model. Std, Skew, and Kurt are the
standard deviation, skewness, and kurtosis of fund returns, respectively. All four variables are
calculated using CRSP monthly mutual fund returns. Option - Non is the di�erence between
option funds and no option funds. Put (Call) - Non is the di�erence between put (call) funds
and no option funds. The p-value associated with a two-sample t-test is reported in parenthesis.

Fund Category Characteristics Option - Non Put - Non Call - Non
Domestic Blend Users/Total 11.03% 5.71% 5.32%

Portfolio Concentration (%) 0.32 (0.02) 0.32 (0.07) 0.32 (0.14)
Alpha (%) 0.01 (0.72) -0.01 (0.86) 0.02 (0.39)
Std (%) 0.15 (0.22) 0.30 (0.12) -0.01 (0.95)
Skew -0.01 (0.85) 0.03 (0.67) -0.05 (0.25)
Kurt 0.35 (0.47) 1.01 (0.25) -0.37 (0.04)

Domestic Growth Users/Total 14.51% 9.08% 5.43%
Portfolio Concentration (%) 0.14 (0.15) 0.13 (0.27) 0.18 (0.32)

Alpha (%) 0.02 (0.40) 0.03 (0.17) -0.01 (0.74)
Std (%) 0.30 (0.03) 0.23 (0.17) 0.40 (0.05)
Skew 0.01 (0.78) 0.02 (0.77) 0.01 (0.93)
Kurt 0.90 (0.03) 0.94 (0.08) 0.83 (0.20)

Domestic Value Users/Total 11.70 % 6.09% 5.61%
Portfolio Concentration (%) 0.28 (0.08) 0.70 (0.01) -0.16 (0.38)

Alpha (%) 0.02 (0.34) 0.03 (0.30) 0.01 (0.77)
Std (%) -0.03 (0.83) -0.02 (0.94) -0.04 (0.79)
Skew -0.01 (0.82) 0.01 (0.92) -0.03 (0.46)
Kurt 0.28 (0.57) 0.80 (0.36) -0.29 (0.26)
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Table A1.3: Double-Sorted VIX Returns

Each month, I �rst sort �rms into quintiles based onHV −IV or idiosyncratic volatility (IVOL).

HV − IV is de�ned as log(
RVi,t−12,t

V IX2
i,t

), where RVi,t−12,t is the realized variance of �rm i's stock

return over the past 12 months. IVOL is the rolling 1-month standard deviation of �rm's
idiosyncratic return calculated from Fama-French 3-factor model. Firms within each quintile
are further sorted into quintiles based on wi,t. All portfolios are equally weighted. Alpha is
calculated from the Fama and French (2015) 5 factors, the Carhart (1997) momentum factor,
and S&P 500 Index VIX return in excess of risk-free rate. Average monthly returns of these
portfolios are presented. The t-statistics are reported in parentheses. Portfolio returns are
expressed in percent. The sample period is from January 1996 to December 2017.

Panel A: Sort by HV − IV and then wi,t.

wi,t

Value 1(Low) 2 3 4 5(High) 5-1 Alpha

1(Low) -21.74 -18.28 -14.34 -12.06 -9.55 12.20 17.36
(5.06) (7.28)

2 -9.77 -6.70 -6.27 -4.47 -4.59 5.18 9.05
(2.42) (4.17)

3 -5.35 -2.51 -1.85 -2.93 -0.95 4.40 9.17
(2.21) (4.95)

4 -4.40 -2.94 -1.50 -1.20 2.18 6.58 8.48
(2.80) (3.37)

5(High) -2.80 -0.69 3.17 1.09 7.55 10.35 11.16
(3.82) (3.80)

Panel B: Sort by IVOL and then wi,t.

wi,t

IVOL 1(Low) 2 3 4 5(High) 5-1 Alpha

1(Low) -15.06 -8.28 -7.42 -3.75 -0.09 14.97 16.21
(6.65) (6.68)

2 -12.55 -8.70 -3.47 -2.04 3.86 16.41 19.90
(6.62) (7.94)

3 -9.02 -6.26 -1.73 -1.49 4.14 13.16 13.65
(5.65) (5.38)

4 -9.68 -4.92 -3.44 -2.15 2.94 12.62 14.92
(5.25) (5.76)

5(High) -13.25 -7.73 -4.63 -2.86 0.16 13.41 16.66
(5.59) (6.52)
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Table A1.4: Summary Statistics of Idiosyncratic VIX Return

Idiosyncratic VIX Return is the return of �rm's idiosyncratic VIX portfolio. The price of
idiosyncratic VIX portfolio of �rm i at month t equals V IX2

i,t − β2
i,tV IX

2
M,t. Idiosyncratic

variance swap return (VSR) is de�ned as the realized idiosyncratic variance divided by the price
of idiosyncratic VIX portfolio minus 1. The equally weighted (EW) idiosyncratic VIX Return
is the cross-sectional average of �rms' VIX returns at each month. Corr(Idio VIX Return,Idio
VSR) is the time-series correlation between idiosyncratic VIX return and idiosyncratic VSR for
each �rm. When calculating the correlations, �rms are required to have at least 30 observations.
Portfolio returns are expressed in percent. The sample period is from January 1996 to December
2017.

Mean Std 10% 25% 50% 75% 90%

Idio VIX Return (%) 10.86 176.1 -70.88 -47.39 -14.45 37.88 123.6
Idio VSR (%) 11.51 179.2 -70.9 -54.40 -25.54 24.89 108.4
Corr(Idio VIX Return,Idio VSR) 0.62 0.32 0.19 0.51 0.72 0.85 0.92

EW Idio VIX Return (%) 11.71 40.95 -18.65 -6.55 6.31 26.70 51.06
EW Idio VSR (%) 10.04 34.87 -26.91 -11.08 2.15 27.34 49.73

Correlation(EW Idio VIX Return , EW Idio VSR) 0.79
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Table A1.5: Impact of Transaction Costs

Portfolios are formed as in Table 1.9. portfolio returns are computed from the midpoint price
(MidP) and from the e�ective bid-ask spread (ESPR), estimated to be 50%, 75%, and 100%
of the quoted spread (QSPR). Returns in "Low Bid-Ask Spread" columns are calculated using
�rms with percentage bid-ask spread lower than the median bid-ask spread of that month.
Returns in "All" columns are calculated using all �rms in that month. Average monthly returns
of these portfolios are presented. The t-statistics are reported in parentheses. Portfolio returns
are expressed in percent. The sample period is from January 1996 to December 2017.

Panel A: Sort by −HHI

All Low Bid-Ask Spread

ESPR/QSPR ESPR/QSPR

MidP 50% 75% 100% MidP 50% 75% 100%

VIX Ret 9.96 -0.40 -6.07 -12.19 8.88 3.07 0.13 -2.85
(5.89) (-0.25) (-3.69) (-7.15) (4.26) (1.50) (0.06) (-1.41)

Delta-hedged Call 0.88 0.22 -0.10 -0.43 0.90 0.51 0.31 0.12
(9.05) (2.34) (-1.10) (-4.52) (7.57) (4.37) (2.71) (1.02)

Delta-hedged Put 1.17 0.54 0.22 -0.10 1.05 0.69 0.50 0.32
(12.69) (5.95) (2.46) (-1.07) (9.66) (6.40) (4.72) (3.02)

Panel B: Sort by wi,t

All Low Bid-Ask Spread

ESPR/QSPR ESPR/QSPR

MidP 50% 75% 100% MidP 50% 75% 100%

VIX Ret 17.50 6.61 0.70 -6.02 15.68 9.66 6.62 3.55
(8.23) (3.15) (0.33) (-2.79) (5.93) (3.68) (2.52) (1.35)

Delta-hedged Call 1.50 0.75 0.39 0.03 1.20 0.85 0.67 0.49
(12.38) (6.35) (3.28) (0.22) (8.51) (6.03) (4.78) (3.51)

Delta-hedged Put 1.75 1.06 0.70 0.35 1.32 0.99 0.83 0.66
(15.69) (9.56) (6.38) (3.16) (9.17) (6.94) (5.80) (4.66)
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Chapter 2: Option Momentum

2.1 Introduction

Early tests of market e�ciency examined autocorrelation of stock returns

(Fama and French [1988]) as well as predictability of market variance (Canina and

Figlewski [1993], Day and Lewis [1992], Lamoureux and Lastrapes [1993], Fleming

[1998], and Christensen and Prabhala [1998]). While autocorrelation of aggregate

stock market returns is weak, Jegadeesh [1990] and Jegadeesh and Titman [1993]

document strong momentum in the cross-section of U.S. stock returns.1 Moskowitz

and Grinblatt [1999] and Grundy and Martin [2001] extended that cross-sectional

predictability to stock industry returns, and Jostova, Nikolova, Philipov, and Stahel

[2013] extended it to bond returns.2 Predictability in the cross-section implies that

at least some assets have predictable returns. Despite the relevance and success

of momentum strategies across asset classes, the literature has not yet investigated

momentum in the cross-section of option returns across di�erent stocks.

In order to investigate option momentum, we need to calculate returns on

1Rouwenhorst [1998] and Gri�n, Ji, and Martin [2003] con�rmed this cross-sectional e�ect in
other countries.

2Asness, Moskowitz, and Pedersen [2013] and Jegadeesh and Titman [2011] also review evidence
of momentum across countries, currencies, and commodity futures. Our focus is on the cross-section
of U.S. stock options.
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benchmark option portfolios. The standard published benchmarks for option volatil-

ity are the Chicago Board of Options Exchange (CBOE) V IX portfolio of S&P 500

index options, and the corresponding equity-V IX portfolios for options on individ-

ual stocks. Carr and Wu [2009] and Britten-Jones and Neuberger [2000] derived

formulas that link V IX to the value of swaps on realized variance. But these for-

mulas are only approximate, because they require a continuum of strike prices, and

because they make additional continuous-time di�usion approximations. For em-

pirical work, it is di�cult to verify the adequacy of these approximations across

hundreds of di�erent stocks.

This paper derives a new formula to calculate exact returns on tradable option

strategies. These strategies employ equity-V IX portfolios of options on individual

stocks, constructed by CBOE's standard "model-free" V IX weighting methodology.

We calculate monthly returns on these portfolios, including daily dynamic hedges in

the underlying stocks. The advantages of our approach are: 1) It provides exact re-

turns on standard benchmark equity-V IX portfolios, 2) It uses a daily "model-free"

hedge that does not require estimating any model parameters, and 3) It explains op-

tion returns with a simple "variance swap" decomposition into realized variance and

option implied-variance. In other words, our methodology is the �rst to translate

continuous-time variance swap intuition into exact predictions for discrete option

data.

This paper explores predictability of monthly returns on equity-V IX portfolios

of options across di�erent S&P 500 stocks. It �nds that positive returns (in the

cross-section) strongly continue for 12 months. Unlike stock returns, option returns
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show no tendency to reverse the gains from momentum (De Bondt and Thaler

[1985, 1987]). Instead, momentum continues periodically for up to 60 months. In

particular, option momentum displays a quarterly pattern of continuation. This

periodic pattern matches the quarterly pattern of stock momentum over the past

year, documented by Heston and Sadka [2008].

Our new methodology allows a variance decomposition of momentum returns.

The cross-section of realized variance is persistent, with a strong quarterly pattern.

But the cross-section of option implied-variance is even more persistent than re-

alized variance. In other words, overpriced options tend to stay overpriced, and

underpriced options tend to stay underpriced. The cross-section of option implied-

variance has a smaller seasonal pattern than realized variance, suggesting that mar-

kets do not fully anticipate the seasonality of market volatility. Even after we

eliminate �rm-month observations with dividend payments and earnings announce-

ments, the momentum and seasonality patterns remain strong. This suggests that

returns might be related to behavioral biases in forecasting volatility, rather than

information or cash �ow events.

The option momentum e�ect is correlated with previous anomalies. For exam-

ple, it is well-known that option returns have a (negative) variance premium, and

this variance premium extends to the cross-section. Speci�cally, Carr and Wu [2009]

and Goyal and Saretto [2009] showed that stock options with high prices, relative

to their historical volatility, have lower subsequent returns than options with low

prices. In other words, there is a variance premium associated with option value,

as measured by historical variance divided by current price. In contrast, option
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momentum is essentially a measure of historical variance divided by historical price.

While returns to option momentum and option value are correlated, multivariate

analysis shows that these two e�ects are distinct. In addition to being distinct from

option value, the returns to historical option momentum also remain largely unex-

plained by risks and other option return predictors, do not lie within the bid-ask

spread, and survive margin requirements.

Section 2 discusses the data used in our analysis. Section 3 explains how

the theoretical link between variance swaps and option strategies inspires pro�table

momentum strategies. Section 4 controls for option value, risk, and a wide range of

option return predictors. Section 5 examines the impact of option bid-ask spreads

to the pro�tability of option momentum strategies, and a �nal section concludes.

2.2 Data and Methodologies

We begin by constructing option strategies across individual stocks, and later

analyze the returns on these strategies. There are competing methodologies for

accommodating options with di�erent strike prices. Bakshi and Kapadia [2003a] use

delta-hedged returns on selected option series, and Jones, Khorram, and Mo [2020]

use delta-hedged straddle returns. The gains of their delta-hedged option portfolio

qualitatively represent a volatility risk premium that depends on the options being

used. In contrast, the most prominent published benchmarks for option prices are

the Chicago Board of Options Exchange VIX index for S&P 500 options (CBOE,
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20193) and the corresponding equity-V IX indices for options on individual stocks.

These indices are based on portfolios of options, weighted by the squared reciprocals

of their strike prices. Carr and Wu [2009] interpolated option prices to measure

an idealized continuous V IX portfolio, and then used a continuous-time variance

swap approximation to the returns on their portfolio. Although it is not literally a

tradable option strategy, the variance swap approach has an intuitive advantage of

decomposing returns into risk-neutral variance and realized variance. We construct

returns on a discrete daily-hedged analog of the continuous variance swap option

strategy. This method provides a tradable strategy, while preserving the intuition

of the variance swap decomposition.

The CBOE (2019) V IX index is based on the (interpolated) market value of

a portfolio at time t comprising options expiring at time T .

V (t;T ) = 2
∑
i

O(Ki, t;T )∆i

K2
i

, (2.1)

where O(K, t;T ) represents time t price of an out-of-the-money call or put option

with strike price K and expiration T , and ∆i represents the gap between adjacent

strike prices.4 Importantly, V IX portfolios are "model-free" because their construc-

tion does not depend on any model parameters. Carr and Madan [2001] showed that

3CBOE White Paper used to construct the V IX index can be found at:
https://www.cboe.com/micro/vix/vixwhite.pdf

4The sum uses out-of-the-money options with respect to the forward value of the strike price,
K(1 + rf )

T−t.
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we can approximate the V IX price with a continuous integral over strike prices.5

V̂ (t;T ) = 2

∫ ∞
0

O(K, t;T )

K2
dK. (2.2)

Given the spot price S(T ) at expiration, the option payo�O(K,T ;T ) equalsMax(S(T )−K, 0)

for a call option and Max(K−S(T ), 0) for a put option. In the absence of interme-

diate dividends, integrating these option payo�s over strike prices (2.2) shows the

terminal payo� of the idealized V IX portfolio.

V̂ (T ;T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

(
S(T )

S(t)(1 + rf )T−t
− 1

)
, (2.3)

where rf is the daily risk-free interest rate. The �rst term in the payo� (2.3) repre-

sents selling two units of the "log-portfolio". The second term represents a costless

static hedge that leverages (the present value of) two dollars of stock at time t, and

holds this hedge position constant until expiration at time T . The combined payo�

is a U-shaped function of the stock price, resembling a squared stock return. There-

fore, the price of this portfolio represents the approximate (risk-neutral) variance

of return. Since the S&P 500 V IX index and equity-V IX indices on individual

stocks represent standard deviation, they are proportional to the square-root of the

portfolio value V (t;T ).

Due to their U-shaped payo�s, the equity-V IX portfolios have (approximately)

5See also Demeter�, Derman, Kamal, and Zou [1999], Britten-Jones and Neuberger [2000], and
Jiang and Tian [2005] for various continuous-time derivations. Breeden and Litzenberger [1978]
�rst expressed the risk-neutral density in terms of the second derivative of the option price with
respect to the strike price. Carr and Madan [2001] then derived the formula (2.2) using integration
by parts twice.
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zero delta when they are constructed. In other words, they are locally insensitive to

movements in the underlying stock price. But over time, the stock price will drift

away from the center of the U-shaped payo�, and the equity-V IX portfolios will

become sensitive to the stock price. Instead of using a �xed static hedge, we can

further reduce risk of the V IX portfolios by dynamic hedging. This replaces the

second term of (2.3) with delta-hedging of the log-portfolio. The elasticity of option

value with respect to the stock price generally depends on a model. But due to

the log-payo� (2.3), the delta of the idealized continuous-strike V IX portfolio does

not. Instead, the delta-hedge of the log-portfolio buys 1/S(t) shares of stock for a

price of S(t), and rebalances to maintains a constant hedge exposure of one dollar.

So, not only is the value of the V IX portfolio model-free, but its dynamic-hedge

is also model-free. This dynamic hedge keeps the delta of the discrete equity-V IX

approximately equal to zero, and reduces the volatility of returns (relative to using

a �xed static hedge). The dynamically hedged payo� is

Vhedged(T ;T ) = −2 log(
S(T )

S(t)(1 + rf )T−t
) + 2

T∑
u=t+1

(rS(u)− rf ), (2.4)

where rS(u) represents the stock return on day u. We can replace the stock price in

equation (2.4) to express the Vhedged(T ;T ) payo� in terms of a telescoping series of

daily stock returns rS(u) at times u between t and T :

Vhedged(T ;T ) = −2
T∑

u=t+1

log(
1 + rS(u)

1 + rf
) + 2

T∑
u=t+1

(rS(u)− rf ). (2.5)
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When daily returns on the stock and risk-free rate are small, a second-order Taylor

series expansion shows that the dynamically hedged option portfolio (2.5) approxi-

mates the payo� of variance swap contract in Carr and Wu [2009]:

Vhedged(T ;T ) ≈
T∑

u=t+1

(rS(u)− rf )2. (2.6)

The return on the unhedged V IX portfolio from equation (2.1) is simply the

proportional change in its value

runhedged(t;T ) =
V (T ;T )− V (t;T )

V (t;T )
. (2.7)

The return on the dynamically hedged V IX portfolio is adjusted by the di�erence

between the static hedge term in (2.3) and the dynamic risk term in (2.4).

rhedged(t;T ) =

V (T ;T )− V (t;T )− 2

(
S(T )

S(t)(1+rf )T−t − 1−
T∑

u=t+1

(rS(u)− rf )
)

V (t;T )
.

(2.8)

A comparison of the hedged return (2.8) with the Taylor Series approximation (2.6)

shows that the dynamically hedged return on the V IX portfolio is approximately

the realized variance relative to the V IX portfolio price.

rhedged(t;T ) ≈

T∑
u=t+1

(rS(u)− rf )2

V (t;T )
− 1. (2.9)

Carr and Wu [2009] used the variance swap approximation to analyze vari-
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ance premiums in the cross-section of option returns, and Bollerslev, Tauchen, and

Zhou [2009] used it implicitly when forecasting returns variance premium. Giglio

and Kelly [2018] later applied it to multiple asset classes. In unreported diagnostics,

we found that the exact return on the underlying S&P 500 index V IX portfolio

is 99% correlated with the variance swap approximation (2.6). In other words, the

dynamically hedged payo� on the index V IX portfolio is very close to the realized

variance over the month. But with individual stocks, the correlations of options re-

turns with realized variance can be lower. Using returns on hedged option portfolios

(2.8) is consistent with previous research that measured delta-hedged returns, while

preserving compatibility with the variance swap literature (2.9).

An additional advantage of our benchmark approach is that it measures option

portfolios with all available strike prices. These portfolios maintain consistent sen-

sitivity to volatility because they always include at-the-money options. In a certain

sense, a V IX portfolio is always at-the-money. In contrast, Bakshi and Kapadia

[2003a] approach of delta-hedging a single option will generally lose vega sensitivity

when the option drifts away from the money.

This paper uses data from the OptionMetrics Ivy DB database from January

1996 to December 2017. These data provide daily closing bid and ask quotes for

U.S. equity options. We use the T-bill rate of appropriate maturity (interpolated

when necessary) from OptionMetrics as the risk-free rate.6 Finally, we obtain in-

formation about stock returns, dividends, and �rm characteristics from CRSP and

6Since average interest rates over this period were less than 2% per year, they had little e�ect
on our calculations with monthly returns.
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COMPUSTAT.

We apply a series of �lters on the option data. First, we use only options

on S&P 500 constituent stocks within the sample period. This leaves us with a

total of 995 �rms. Following Driessen, Maenhout, and Vilkov [2009], we remove all

observations for which the option open interest is equal to zero, in order to eliminate

options with no liquidity. We discard options with zero bid prices, and with missing

implied volatility or delta (which occurs for options with nonstandard settlement

or for options with intrinsic value above the current mid price). We delete all

observations whose ask price is lower than the bid price, and eliminate options whose

prices violate arbitrage bounds. We also require the mid-point bid-ask option quote

to be at least $0.125, and the underlying stock price to be at least $5. We delete

�rm-month observations containing stock splits. Following Christo�ersen, Fournier,

and Jacobs [2018], we remove �rm-month observations for which the present value of

dividends before expiration is larger than 4% of the stock price. Following Conrad,

Dittmar, and Ghysels [2013], we use an equal number of calls and puts to construct

V IX portfolios, using the midpoint of bid-ask quotes. Our �nal sample includes

79,845 �rm-month observations with 535,722 option contracts. On average, each

equity VIX portfolio consists of 6.71 option contracts.

The o�cial CBOE V IX methodology combines options with di�erent expi-

ration dates to achieve a 30-day weighted-average maturity. Our analysis uncovers

temporal periodicity in option prices and returns. To measure returns accurately, we

must calculate portfolio values without interpolating option prices across di�erent

maturities. Therefore, we establish option position in equity-V IX portfolios on a
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Friday of each month, with exactly 28 days to expiration on the third Friday of the

subsequent month.7 This avoids interpolation by using exact option prices instead

of 30-day weighted-averages used by the CBOE (2019) V IX methodology. We cal-

culate returns to expiration on the underlying equity-V IX portfolio (2.1), hedged

daily according to (2.8), without using any approximations nor interpolations. The

resulting option portfolio value and its returns are model-free.

Panel A of Table 2.1 compares exact equity-V IX returns (2.8) with variance

swap returns (2.9) at the individual �rm level. The gross variance swap return is

de�ned as the realized monthly variance of a stock return divided by the equity-

V IX price. Options have a negative variance premium, with equity-V IX returns

averaging a loss of 4.19% per month. While this seems large compared to average

equity returns, equity-V IX portfolios are risky and highly levered. The standard

deviation of return exceeds 85% per month. There is a particularly fat right tail,

where returns exceed 115% on the upper 5% of observations. The variance swap

return averages a loss of 2.64% per month. Overall, the two measures of return have

similar distributions, but the average equity-V IX return is more negative than the

average variance swap return.

Panel B shows the di�erence between cross-sectional average equity-V IX re-

turns and variance swap returns in an equally weighted portfolio across all �rms

at each month. This is e�ectively a portfolio of option portfolios. By exploiting

the bene�t of a large cross section, this approach diversi�es the approximation er-

7We usually establish the option positions on the third Friday of a month. In months with �ve
Fridays, we postpone the portfolio formation by one week to keep a holding period of exactly 28
days. This procedure had little e�ect on our empirical results.
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ror between equity-V IX returns and variance swap returns. The average di�erence

between equally weighted variance swap returns and equally weighted equity-V IX

returns is only 0.23% per month. Overall, equity-VIX returns are much less negative

than index VIX returns, whose monthly average equals −23.24%. This is consistent

with the �ndings in Carr and Wu [2009] and Driessen, Maenhout, and Vilkov [2009].

To reliably calculate correlations and risk-exposures, Panel C of Table 2.1 re-

stricts the sample to 650 stocks which had data available to calculate equity-V IX

prices for at least 30 monthly observations. Panel C shows that across these 650

stocks, the average within-�rm correlation between equity-V IX return and vari-

ance swap return is 75%, and the median correlation is 87%. An equally weighted

portfolio of all equity-V IX's as in Panel B gives an even higher correlation of 92%.

By comparison, the S&P 500 Index V IX produced a 99% correlation between the

variance swap return and the exact daily hedged V IX return. The variance swap

methodology produces a higher correlation for the S&P 500 Index V IX returns be-

cause there are more strike prices available to construct the option portfolios. While

the correlation between variance swap returns and equity-V IX returns is lower at

the individual �rm level than that at the index level, much of the discrepancy gets

diversi�ed away in large portfolios. It is reassuring to know that the two measures

are similar enough to support comparison of our new results with previous research.

The last row of Table 2.1 Panel A shows the Black-Scholes deltas, i.e., elas-

ticities with respect to the stock price. The deltas of the idealized continuous V IX

portfolios (2.3) are exactly zero, and Table 2.1 shows that the deltas of the equity-

V IX portfolios are nearly zero. Under the Black-Scholes assumptions, the equity-
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V IX portfolios should be uncorrelated with stock returns. Panel C shows this is not

the case. Equity-V IX returns have strong negative betas with respect to the stock

return and even stronger negative betas with respect to S&P 500 returns. This is

because of negative correlation between stock returns and innovations in variance.

The �nal row of Panel C shows that equity-V IX returns have an average positive

beta of 0.4 with respect to returns on S&P 500 index-V IX returns. In other words,

equity-V IX returns share exposure to systematic market variance.

Options on individual equities have an additional American early exercise fea-

ture. While there are many numerical methods and approximations to the optimal

exercise policy, a simple approximation is to exercise options early when their ex-

ercise value exceeds a certain threshold of the ask prices of options. Table A2.1 in

the Appendix performs sensitivity analysis to show that the early exercise premium

(0.36%) is small compared to the variance premiums in Table 2.1 and to the returns

of our momentum strategies.8 As an additional robustness check, we form option

momentum strategy each month using only non-dividend paying �rms and compare

the result with that in Table 2.4. The monthly average return of momentum strat-

egy only changes slightly from 16.13% with a t-statistics of 8.42 to 16.23% with a

t-statistics of 8.14. Therefore, we ignore early exercise when computing returns in

subsequent tables.

8By using a binomial tree method, Driessen, Maenhout, and Vilkov [2009] �nd that the early
exercise premium is between 0.3% and 1.1% for the 1-month option price. Our result lies in this
range.
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2.3 Option Portfolio Strategies

The previous section described construction of returns on our monthly equity-

V IX portfolios. We use returns to expiration on these discrete model-free option

portfolios. In the rest of this paper, when we form momentum strategies each month,

we only consider �rms that were included in the S&P 500 Index at that month,

so that our strategy does not have forward-looking bias. Bakshi, Kapadia, and

Madan [2003] used 31 individual stocks, and Carr and Wu [2009] used 35 individual

stocks. Our substantially larger cross-section allows exploration of many di�erent

investment strategies.

Jegadeesh and Titman [1993] developed the simplest benchmark for stock mo-

mentum strategies. Their "relative strength" strategies sort stocks based on histor-

ical return over 3-, 6-, 9-, or 12-month periods, and then hold the equally weighted

top decile of winner stocks and short the bottom decile of loser stocks for subsequent

3-, 6-, 9, or 12-month periods. We measure the corresponding option strategy that

buys the equally weighted top decile of equity-V IX option portfolios and shorts

the equally weighted bottom decile of losers every month. Following Jegadeesh and

Titman, we rebalance these portfolio each month to maintain equal weights.

Table 2.2 shows the results of simple decile spread strategies based on all

combinations of 3-, 6-, 9-, and 12-month formation periods and 3-, 6-, 9-, or 12-

month holding periods. The results are consistently pro�table. Across all formation

periods and all holding periods up to one year, the top decile of winners outperformed

the bottom decile of losers. For example, with the 3-month-formation/3-month-hold
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strategies, the top decile of winners earned an average of 2.74% per month, while

the bottom decile of losers lost 7.88% per month. This di�erence exceeds 10% per

month. Across all strategies, the option decile spreads are economically large and

statistically signi�cant.

The strategies in Table 2.2 were not optimized for options. Table 2.2 merely

represents an out-of-sample test of Jegadeesh and Titman's original strategies on

an entirely new asset class. To understand why these strategies might be prof-

itable, we decompose the option portfolio returns according to the variance swap

approximation of the previous section.

Equation (2.9) shows that the gross return on an equity-V IX portfolio for the

ith stock over month t is approximately the realized variance, RVi(t), divided by the

cost of the equity-V IX portfolio V IX2
i (t− 1). In logarithms, this relationship is

log(1 + ri(t)) ≈ log(RVi(t))− log(V IX2
i (t− 1)). (2.10)

This return decomposition shows that predictability in equity-V IX returns re�ects

predictability in realized variance relative to equity-V IX prices. To diagnose the

sources of momentum pro�ts, we run the cross-sectional regression

log(RVi(t)) = γ0,t + γk,t · log(RVi(t− k)) + εi(t). (2.11)

The coe�cient estimate γk,t shows the extent to which the cross-section of realized

variance in one month is predicted by the previous cross-section lagged by k-months.
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The average of γk,t over all months t shows the average relationship. Figure 1

(a) shows that the cross-section of realized variance is persistent, with coe�cients

exceeding 0.6 for short monthly lags, and declining as lags grow to �ve years. Figure

1 (a) also displays the corresponding average coe�cients for the analogous regression

of the cross-section of logarithms of equity-V IX prices log(V IX2
i (t)) on their own

lags. Option prices are even more persistent than realized variance, with average

coe�cients exceeding 0.8 for short monthly lags, and remaining above 0.5 even

for lags of �ve years. Across di�erent lags, both the realized variance and V IX2

coe�cients exhibit a striking quarterly periodicity. It appears that variance has

a quarterly seasonal pattern across stocks, and to a large extent, option prices

anticipate the pattern in future variance.

To ascertain whether option prices properly anticipate the persistence and sea-

sonality of realized variance, we run the cross-section regression using continuously

compounded variance swap returns,

log(1 + r̃i(t)) = γ0,t + γk,t · log(1 + r̃i(t− k)) + εi(t), (2.12)

where r̃i(t) denotes the variance swap return. While compounded variance swap

returns are not exactly equal to returns, they are a good approximation. Figure 1

(b) shows that the resulting pattern of average γ coe�cients across di�erent lags

remains positive and visibly seasonal for at least �ve years. Figure 1 (b) suggests that

option prices fail to properly anticipate the persistence and periodicity of realized

variance.
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Table 2.3 shows the coe�cients of �rst year lags from Figure 1 (b). The

univariate columns shows that coe�cient estimates are all highly signi�cant at all

lags, with t-statistics ranging from 6 to 11. To measure the incremental statistical

signi�cance of individual lags, the multivariate column of Table 2.3 reports average

(of time-series) coe�cients from multivariate cross-sectional regression that includes

a full year of monthly lags. The multivariate t-statistics are at least 3 at the quarterly

lags of 3-, 6-, 9-, and 12-months. But they are mostly statistically insigni�cant at

other lags. This indicates that persistence in the cross-section of option returns is

primarily a quarterly seasonal phenomenon.

To recap, Table 2.2 provides simple and robust evidence that momentum

strategies are pro�table across options on di�erent stocks. Figure 1 and Table 2.3

indicate this predictability has a quarterly pattern that lasts for up to �ve years.

This suggests that we investigate strategies that exploit momentum and speci�cally

quarterly momentum for various horizons up to �ve years.

Inspired by Table 2.3 and Figure 1, Table 2.4 reports returns on one-month

equally weighted decile portfolios of equity-V IX option strategies ranked according

to di�erent historical measures of variance swap momentum. The Year 1 "All"

deciles are sorted based on the geometric average of all 12 monthly variance swap

returns over the past year; the Year 2 "All" deciles are sorted based on monthly lags

12-24, and so forth. The Year 1 quarterly decile portfolios are sorted only based on

monthly lags 3, 6, 9, and 12. The Year 2 quarterly portfolio uses lags 15, 18, 21,

and 24, and similarly for Years 3, 4, and 5. The nonquarterly decile portfolios are

sorted on the monthly lags of a given year that are not quarterly, e.g., lags 1, 2, 4,
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5, 7, 8, 10, and 11 for Year 1.

Table 2.4 shows that average monthly returns are nearly monotonic across

momentum deciles sorted based on the past year of returns. Using all months in the

past year, the lowest decile lost 13.47% per month, while the highest decile gained

2.65% per month. The di�erence exceeds 16% per month, and is highly statistically

signi�cant. Sorting deciles using only four lags of 3-, 6-, 9-, and 12-months is nearly

as pro�table, with a decile spread of 14.77%. The quarterly e�ect must be quite

strong for a noisy momentum strategy using only 4 lagged months to be nearly

as pro�table as a strategy using all 12 lagged months within the past year. In

fact, the t-statistic for this quarterly winner-loser strategy exceeds the t-statistic

for the full-year strategy. The Year 1 Non-Quarterly strategy is also pro�table; the

corresponding 10-1 decile spread exceeds 11%. The Year 1 Quarterly decile spread

outperforms the Non-Quarterly decile spread by 3.42% per month.

To examine the source of pro�ts of momentum strategies, we report the risk-

adjusted returns for the short- and long-leg in the portfolio Year 1 "All", controlling

for the V IX returns of S&P 500 Index, �ve Fama and French [2015] factors, and

stock momentum factor. Results are reported in Table 2.5. In terms of raw returns,

the short leg (13.47%) contributes most to total pro�t (16.13%), as shown in the �rst

row of Table 2.4. After adjusting for the risk exposure to index V IX returns, which

is largely negative, the winner portfolio contributes 70.4% to total risk-adjusted

pro�ts (11.9% out of 16.9%). This resembles the pattern of stock market momentum

in Jegadeesh and Titman [1993].

The pattern of quarterly continuation in Table 2.4 relates to previous patterns
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of momentum in stock returns. Heston and Sadka [2008] found a quarterly pattern

of continuation when using lagged stock returns less than one year. But beyond one

year, this quarterly pattern disappeared. Instead, long-term stock returns exhibit

long-term reversal (De Bondt and Thaler [1985, 1987]), with continuation at annual

lags. The cross-section of option returns shares the quarterly pattern of continuation.

While the quarterly pattern of options gets weaker and statistically less signi�cant

as the horizon recedes, it de�nitely does not turn into reversal within �ve years.

We have explored variables that might be related to the quarterly seasonal-

ity in option returns. These include �rms' earnings months, ex-dividend months,

calendar month, and length of trading-month. These variables are easy to diagnose

by simply analyzing subsamples of monthly return observations. Unreported tables

resemble full-sample results, and show that none of these variables explain the sea-

sonal pattern in realized variance or in option returns. Jones, Khorram, and Mo

[2020] �nd similar seasonal momentum e�ects in straddle returns, and conclude that

these e�ects remain strong after controlling for characteristics and factor risk. A be-

havioral explanation is that markets fail to fully anticipate seasonality in volatility.

This resembles the behavioral bias across expiration dates documented by Eisdorfer,

Sadka, and Zhdanov [2017]. Alternatively, there might be a distinct risk premium

associated with quarterly seasonal volatility. Similar patterns remain unexplained

in the stock momentum literature, and present questions for future research.
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2.4 Control for Risk and Option Return Predictors

If markets are e�cient, then excess returns of options strategies should be

compensation for systematic risk. While our equity-V IX portfolios are hedged to

be insensitive to stock risk, they are constructed to be very sensitive to variance risk.

Systematic market variance has a well-known negative risk premium (Bakshi and

Kapadia [2003a]). The existence of a variance premium makes it plausible that past

returns are correlated with exposure to variance. For example, stocks with high past

variance swap returns might have high future comovement with systematic market

variance.

Table 2.4 controls for risk by regressing the long-short momentum strategy re-

turns on �ve Fama and French [2015] factors and the momentum factor of Carhart

[1997]. It also includes the V IX returns of S&P 500 Index as an additional risk

factor. The intercept "alpha" from this regression represent risk-adjusted average

returns. These risk-adjusted means are generally close to the average decile spreads,

and do not alter their statistical signi�cance. There is little indication that momen-

tum returns in the cross-section of options are related to stock factors (including

momentum) or to covariance with systematic market volatility.

Given the pro�tability of momentum strategies in options, a concern is whether

the momentum return e�ect is truly new, or just a disguised manifestation of ex-

isting anomalies. In particular, Goyal and Saretto [2009] and Carr and Wu [2009]

documented a signi�cant negative return premium on options with high implied

variance, relative to their historical variances. We de�ne option value as rolling
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1-year historical variance divided by current equity-V IX price. Option momentum

is similar to option value, because option momentum is historical realized variance

divided by historical equity-V IX price.

Table 2.6 distinguishes option momentum from option value using a double-

sort. The rows �rst sort stocks into equally weighted quintiles by 12-month option

value. Then, the columns sorts by option momentum. The value e�ect is quite

strong, and returns are almost monotonic in every column. But they are also almost

monotonic in every row. The average excess return on the quintile spread of high

momentum minus low momentum across all stocks exceeds 12% per month, and is

largely unchanged when adjusted for risk factors. It appears that the e�ect of option

momentum is distinct from previously documented pro�tability of option value.

While option momentum is not subsumed by option value, it may capture

some e�ects overlapped with previously documented option return predictors. To

control for these variables, we put them along with option momentum into a vector

Zi(t− 1), which is known at month t− 1. We then run a cross-section regression

ri(t) = γ0,t + γ′k,tZi(t− 1) + εi(t), (2.13)

where: ri(t) is the excess return of equity-V IX portfolio over risk-free rate; the

vector γ′k,t represents coe�cients for the option return predictors. The controlled

variables include HV-IV (volatility deviation in Goyal and Saretto [2009]), IVOL (id-

iosyncratic volatility in Cao and Han [2013]), Slope_VTS (slope of implied volatility

term structures in Vasquez [2015]), VOV (volatility of volatility constructed using

92



option implied volatilities in Cao, Vasquez, Xiao, and Zhan [2019]), RN_Skew (risk-

neutral skewness in Bakshi, Kapadia, and Madan [2003]), Option Demand (option

demand pressure calculated as the ratio of the average option open interest times

|∆| of option contracts over the past week to the total stock trading volume over the

past week), Amihud (Amihud illiquidity measure (Amihud [2002])), and stock char-

acteristics including �rm size, book-to-market ratio, past one month stock return,

stock return momentum, analyst forecast dispersion, cash holding, pro�tability, and

stock issues constructed as Cao, Han, Tong, and Zhan [2017]. To check the robust-

ness of results, we also use delta-hedged at-the-money (ATM) call and put returns

(calculated as Bakshi and Kapadia [2003a]) as the dependent variable, respectively.

Table 2.7 reports the time-series averages of γ coe�cients and their t-statistics,

corrected for autocorrelation following Newey and West [1987] with three lags. Con-

trolling for all of these option return predictors only moderately reduces the option

momentum coe�cient from 0.152 to 0.115. Results using delta-hedged call and put

returns display very similar pattern. Option momentum remains highly pro�table

and statistically signi�cant. We conclude that returns to option momentum are

substantially independent of the option return predictors documented in previous

literature.

2.5 Transaction Cost Analysis

Equity options have large trading costs. The median percentage bid-ask spread

of our equity-V IX portfolios, de�ned as absolute bid-ask spread divided by the mid-
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point price of equity-V IX portfolio, is 14%. Such large trading costs might eliminate

the pro�ts on option strategies if mispricing lies entirely within the bid-ask spread.

Margin requirements are another type of friction. Santa-Clara and Saretto [2009]

show that margin requirements limit the notional amount of capital that can be

invested in option strategies. Therefore, Table 2.8 evaluates the e�ect of these two

trading frictions.

Table 2.8 uses the decile spread strategies from the �rst row of Table 2.4,

forming monthly momentum portfolio based on "All" returns within the last year.

The "0%" in the �rst column of Table 2.8 measures option prices at the mid-point

of bid-ask quotes, just as in Table 2.4. The last column uses the full quoted bid-ask

spreads. The intermediate columns use 50% and 75% of the quoted bid-ask spread

around the mid-point prices.

Table 2.8, Panel A shows that the "All", "Quarterly", and "Non-Quarterly"

strategies remain pro�table for trading costs equal to 50% of the quoted bid-ask

spread. When costs exceed 75% of the bid-ask spread, the "All" and "Quarterly"

strategies earn insigni�cant pro�ts, and the "Non-Quarterly" strategy loses insignif-

icant money. When paying full bid-ask spreads, all the strategies lose money. Mu-

ravyev and Pearson [2019] show that the average e�ective bid-ask spread ratio for

trades taking into account of high frequency trade timing ability is around 50%.

In the presence of bid-ask spreads, one could just trade the cheaper options. A

simple strategy is to restrict trades to equity-V IX portfolio with percentage bid-ask

spreads below the sample median of 14%. Panel B shows that this restriction hardly

changes average pro�ts when trading at the mid-point of the bid-ask spread. Indeed,
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this restriction insubstantially improves the mid-point pro�ts from momentum based

on "All" months from 16.1% to 17.0%. Using mid-point returns, restricting the

sample increases the volatility and lowers the t-statistic due to a smaller sample

of available �rms. But it substantially improves pro�ts when paying transactions

costs. Even when paying the full bid-ask spread, the "All" strategy earns 9.1% per

month, and the "Quarterly" strategy earns 7.1% per month. These post-trading-

cost pro�ts are positive at the 1% level of statistical signi�cance. We conclude that

with appropriate trade execution, the post-transactions cost momentum strategies

preserve about half the mid-point trading pro�ts.

Since our option momentum strategy sells options in loser portfolios, we in-

vestigate the impact of margin requirements. We compute margins of the option

positions in loser portfolios following the CME margin system, which is applied to

institutional investors' margin accounts. Speci�cally, we implement the scenario

analysis algorithm used in Goyal and Saretto [2009]. Each day, we use ±15% as the

range for stock price movement, with progressive increments of 3%, and ±10% as

the range for level of volatility. We then calculate option positions using the Black

and Scholes [1973] model under each scenario, and determine the margin by the

largest loss among those scenarios.

The initial margin haircut ratio is de�ned as M0−V0
V0

, where M0 is the initial

margin of option positions in the �rm's V IX portfolio when the trade is imple-

mented, and V0 equals the sum of option prices when the position is opened. Since

additional margin calls may occur after the position is established, we also report

the maximum haircut ratio during the holding month. Since the loser portfolio
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is equally weighted, we calculate the portfolio-level margin haircut by taking an

equal-weighted average of the haircuts for individual �rms.

Panel C reports the margin haircut ratio of shorting the loser portfolio in

our "All" strategy. The initial haircut ratio has an average of 3.18 and maximum

value of 6.64.9 For each dollar of written options, investors need to borrow $3.18,

on average, to satisfy the initial margin requirement, which limits investors' option

exposure to 31% of their capital. During the holding period after portfolio formation,

the maximum haircut ratio has an average of 4.77 and maximum value of 8.94. To

further explore the impact of margins on option momentum returns, we check the

correlation between initial haircut and the momentum strategy return during the

subsequent holding period. The two have a correlation of -0.27, which means initial

haircuts tend to be high when the subsequent strategy returns are low. In this

sense, the initial margins actually lower investors' exposure to potential negative

momentum returns and alleviate the "momentum crashes" documented by Daniel

and Moskowitz [2016].

To measure the joint impact of bid-ask spreads and margin requirements faced

by institutional investors, we compute monthly returns from investing the inverse

initial margin ratio, V0
M0−V0 , in our 12-month option momentum strategy, and allocat-

ing the remainder to the risk-free asset. We also assume investors face 50% e�ective

bid-ask spread. Panel C reports the results in the "Return (%)" column. The aver-

age monthly return equals 4.53% with a t-statistic of 4.59. The minimum return is

9As a benchmark, Santa-Clara and Saretto [2009] �nd that the initial margin of writing an
ATM index put has an average of 2.6 and maximum value of 11.6.
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-31.17%. The annual Sharpe Ratio is 1.00. Therefore, option momentum strategies

are pro�table after considering both margins and reasonable bid-ask spreads, with

a mild monthly maximum loss.

2.6 Conclusions

This paper develops a new methodology to calculate exact returns on model-

free V IX portfolios with a model-free dynamic hedge. This allows us to explore a

large panel of option returns across di�erent stocks. The new methodology preserves

the intuition of continuous-time variance swaps; it decomposes returns into realized

variance and implied variance. This enables a comparison of the dynamics of realized

variance with the dynamics of implied variance.

We �nd that a variety of momentum strategies are pro�table across options on

individual stocks. Option momentum is a measure of historical option returns, i.e.,

realized variance relative to historical option prices. A related measure of option

value is realized variance relative to current option prices. Returns to option mo-

mentum are distinct from returns to option value, and are not explained by standard

risk factors, stock characteristics, or bid-ask spreads.

Option momentum has intriguing commonalities and contrasts with stock mo-

mentum. Momentum in options across S&P 500 �rms displays a strong quarterly

periodicity that matches the Heston and Sadka [2008] pattern of momentum within

one year, but does not match the Heston and Sadka annual pattern for long-term

momentum. Unlike stocks, options do not show long-term reversal of momentum
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pro�ts. Instead, option momentum, particularly quarterly momentum, remains prof-

itable for up to �ve years. It is tempting to speculate about risk factors or behavioral

biases that might explain returns to option momentum. A successful theory would

explain the quarterly pattern in options, and why the patterns of momentum pro�ts

are di�erent in stocks and options.
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Table 2.1: Summary Statistics of Equity-V IX Returns

The sample data are from January 1996 to December 2017. We select �rms that were included in
the S&P 500 index during that period. There are 263 months of returns and 79,854 �rm-month
observations in total. Equity-V IX Return is the actual realized return of underlying equity-
V IX portfolio, constructed as a static position in a basket of options plus a daily rebalanced
position in the underlying stock. Variance Swap Return (VSR) is de�ned as the realized
variance of the stock return divided by the price of the equity-V IX portfolio minus 1. Equity-
V IX Return - VSR is the di�erence between equity-V IX return and variance swap return.
Index-V IX Return is the V IX return of S&P 500 Index. EW Equity-V IX Return is the cross
sectional average of equity-V IX returns each month. EW Variance Swap Return is the cross
sectional average of �rms' variance swap returns each month. Black-Scholes Delta Elasticity
is the elasticity of equity-V IX portfolio with respect to the underlying stock price at the
formation date. βStock is the exposure of the �rm equity VIX return to its stock return; βSP500

is the exposure of �rms' equity-V IX returns to the S&P 500 index return; βMKT V IX is the
exposure of �rm equity-V IX returns to the S&P 500 index V IX return. Correlation(Equity
VIX Return,VSR) is the �rm level time-series correlation between equity-V IX returns and
variance swap returns. When calculating βStock, βSP500, βMkt V IX and Correlation(Equity-
V IX Return, VSR), we require �rms to have at least 30 observations. There are 650 �rms
meeting this requirement.

Mean Std 5% 25% 50% 75% 95%

Panel A: Individual �rms.

Number of Firms Each Month 304 111 147 203 293 411 468
Number of Strikes 6.71 4.90 4.00 4.00 6.00 8.00 14.00
Equity-V IX Return (%) -4.19 85.52 -69.18 -42.78 -19.49 14.73 115.1
Variance Swap Return (VSR) (%) -2.64 101.9 -71.66 -48.74 -24.73 11.73 126.3
Black-Scholes Delta Elasticity -0.05 0.09 -0.17 -0.07 -0.04 -0.02 0.00

Panel B: Time series of S&P 500 Index and equally weighted (EW) portfolio.

Index-V IX Return(%) -23.24 72.66 -73.10 -56.43 -37.18 -13.80 65.52
Index Variance Swap Return(%) -24.35 74.19 -74.72 -58.32 -38.75 -13.11 60.02
EW Equity-V IX Return (%) -3.46 32.85 -38.03 -22.88 -9.87 6.64 56.13
EW Variance Swap Return (%) -3.23 44.19 -39.80 -26.13 -12.02 5.66 67.08

Panel C

Correlation(Equity-V IX Return, VSR) 0.75 0.31 0.13 0.69 0.87 0.95 0.99
βStock -2.24 2.55 -6.37 -3.36 -2.07 -0.98 1.06
βSP500 -4.02 3.50 -9.75 -5.98 -3.82 -1.96 1.18
βMkt V IX 0.40 0.31 -0.06 0.24 0.38 0.55 0.85
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Table 2.2: Option Momentum Strategy Returns

The momentum portfolios are formed based on J-month lagged equity-V IX returns and held
for K months as in Jegadeesh and Titman (1993). In addition, we require the �rms to have
non-missing equity-V IX returns for at least 2

3J past months. The values of J and K for the
di�erent strategies are indicated in the �rst column and row, respectively. To avoid forward-
looking bias, we only include �rms that are included in the S&P 500 index when we form the
portfolio. The portfolios are equally weighted. The average monthly returns of these portfolios
are presented in this table. The t-statistics are reported in parentheses. Portfolio returns are
expressed in percent. The sample period is from January 1996 to December 2017.

J K= 3 6 9 12

3 Loser -7.88 -6.81 -6.41 -6.42
(-3.53) (-3.09) (-2.95) (-2.94)

3 Winner 2.74 0.52 -0.93 -1.46
(1.00) (0.21) (-0.39) (-0.62)

3 Winner-Loser 10.63 7.32 5.49 4.96
(5.90) (5.44) (4.67) (4.43)

6 Loser -8.15 -7.69 -7.03 -7.10
(-3.48) (-3.36) (-3.08) (-3.15)

6 Winner 1.93 0.37 -0.74 -1.02
(0.69) (0.14) (-0.30) (-0.41)

6 Winner-Loser 10.08 8.05 6.29 6.08
(5.09) (4.93) (4.06) (4.22)

9 Loser -7.89 -7.61 -7.65 -7.17
(-3.07) (-3.16) (-3.27) (-3.09)

9 Winner 1.63 1.05 -0.01 -0.31
(0.60) (0.40) (-0.00) (-0.12)

9 Winner-Loser 9.52 8.67 7.64 6.86
(4.67) (4.82) (4.34) (4.19)

12 Loser -5.60 -7.18 -6.91 -7.15
(-2.22) (-2.91) (-2.83) (-3.02)

12 Winner 1.21 0.40 -0.17 -0.91
(0.43) (0.15) (-0.07) (-0.36)

12 Winner-Loser 7.21 7.58 6.74 6.24
(3.27) (3.95) (3.68) (3.57)
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(a) Coe�cients of log(RVi,t−k) and log(V IX
2
i,t−k)

(b) Coe�cients of log(1 + V SRi,t−k)

Figure 1. Monthly univariate cross-sectional regression of the form xi,t = αk,t+γk,t ·xi,t−k+
εi,t, are calculated for each month t and lag k, where xi,t is either the logarithm of realized
variance (RV), logarithm of the price of equity-V IX portfolio, or the logarithm of the variance
swap return (VSR) of �rm i in month t. The regression is calculated for every month t from
January 1996 through December 2017 and for lag k values of 1 through 60. Figures (a) and
(b) plot the time-series averages of γk,t.
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Table 2.3: Univariate and Multivariate Cross-sectional Regressions of Vari-

ance Swap Returns

Monthly univariate cross-sectional regression of the form ri,t = αk,t + γk,t · ri,t−k + εi,t, are
calculated for each month t and lag k, where ri,t is the continuously compounded variance swap
return of �rm i in month t. The regression is calculated for every month t from January 1996
through December 2017 and for lag k values 1 through 12. Monthly multivariate cross-sectional
regression takes the form: ri,t = αk,t +

∑12
k=1 γk,t · ri,t−k + εi,t. To avoid forward-looking bias,

we only include �rms that are included in the S&P 500 index when we form the portfolio. The
time-series averages of γk,t along with their t-statistics, are reported in the table.

Univariate Multivariate

Lag Coe�cient t-statistic Coe�cient t-statistic

1 0.085 7.85 0.043 2.24
2 0.089 9.65 0.026 1.93
3 0.125 11.26 0.053 3.10
4 0.087 8.74 0.049 2.34
5 0.073 6.93 0.030 2.21
6 0.099 9.83 0.046 2.95
7 0.073 9.24 0.013 0.51
8 0.080 9.35 0.023 1.05
9 0.092 10.46 0.078 3.93
10 0.068 6.93 0.027 1.42
11 0.068 7.51 0.019 1.49
12 0.099 11.30 0.050 3.73
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Table 2.4: Returns of Strategies Based on Past Variance Swap Returns

Every month �rms are grouped into ten portfolios according to various categories based on
the geometric average of past variance swap returns. To avoid forward-looking bias, we only
include �rms that are included in the S&P 500 index when we form the portfolio. For example,
the trading strategy that is formed based on past quarterly returns during Year 2 ranks �rms
according to their average log variance swap returns over historical monthly lags 15, 18, 21,
and 24. The trading strategy "All" in a given year is formed based on each �rm's average log
variance swap return over that lagged year. The equity-V IX's in each portfolio are equally
weighted across �rms, and portfolios are rebalanced monthly. To calculate alpha, we control
for the V IX return of the S&P 500 index, �ve Fama and French (2015) risk factors, and
the Carhart (1997) stock momentum factor. The average monthly returns of these portfolios
are presented in percent, with t-statistics reported in parentheses. The sample period is from
January 1996 through December 2017.

Strategy 1 2 3 4 5 6 7 8 9 10 10-1 Alpha

Year 1 All -13.47 -7.82 -4.82 -3.56 -4.86 -1.58 -1.77 0.00 1.44 2.65 16.13 16.92
(8.42) (8.21)

Quarterly -12.56 -6.97 -5.62 -2.26 -3.23 -2.47 0.72 -0.10 -0.67 2.21 14.77 15.39
(8.75) (8.71)

Non-Quarterly -11.51 -6.57 -5.56 -2.73 -2.61 -1.31 -2.17 -0.84 0.71 0.13 11.64 11.52
(6.49) (5.99)

Year 2 All -9.10 -4.24 -5.13 -3.45 -2.32 -3.78 -3.97 -2.96 -1.75 -1.20 7.90 5.75
(3.98) (2.74)

Quarterly -7.26 -6.95 -2.98 -4.23 -4.62 -2.94 -1.23 -1.09 -3.85 0.54 7.80 8.27
(4.21) (4.15)

Non-Quarterly -5.92 -5.09 -6.36 -2.31 -3.52 -3.25 -1.17 -3.51 -3.50 -2.63 3.29 1.34
(1.48) (0.57)

Year 3 All -7.72 -5.87 -5.67 -3.70 -6.22 -4.87 -2.65 -5.45 -3.66 -3.63 4.09 2.01
(2.03) (0.94)

Quarterly -7.05 -7.91 -6.08 -6.67 -5.44 -4.10 -2.16 -2.38 -2.56 -3.84 3.21 2.88
(1.83) (1.52)

Non-Quarterly -6.95 -4.60 -4.26 -4.58 -4.37 -5.44 -4.30 -3.79 -4.47 -5.21 1.73 0.06
(0.97) (0.03)

Year 4 All -7.15 -5.63 -5.42 -4.95 -4.61 -4.76 -5.33 -4.81 -6.36 -4.21 2.94 3.11
(1.68) (1.65)

Quarterly -7.12 -5.41 -4.02 -5.71 -4.85 -5.78 -7.31 -5.47 -3.75 -1.81 5.31 4.85
(2.96) (2.50)

Non-Quarterly -6.11 -6.13 -4.35 -4.85 -4.46 -7.06 -4.64 -4.56 -5.45 -5.84 0.26 -0.67
(0.15) (-0.34)

Year 5 All -6.54 -7.66 -8.57 -8.07 -5.62 -7.73 -6.14 -6.84 -5.25 -3.55 2.99 0.18
(1.26) (0.07)

Quarterly -9.89 -8.51 -6.82 -5.93 -7.63 -5.58 -7.55 -5.78 -5.99 -3.89 6.00 5.39
(3.46) (2.86)

Non-Quarterly -6.24 -6.42 -6.60 -10.19 -8.13 -6.51 -7.45 -5.39 -3.91 -4.90 1.34 -0.94
(0.65) (-0.343)
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Table 2.5: Risk-adjusted Option Momentum Returns

Option momentum portfolios are formed by sorting �rms' geometric average of all 12 monthly
variance swap returns over the past year, the same as the �rst row in Table 2.4. The table
presents results from the following time-series regression: rp,t = αp + βp · Ft + εp,t, where rp,t is
the monthly excess return of loser, winner, and long-short portfolio, respectively. Ft is a vector
of risk factors including: the return of S&P 500 Index VIX portfolio in excess of the risk-free
rate, the Fama and French (2015) �ve factors (MKT-Rf, SMB, HML, RMW, and CMA), and
the Carhart (1997) momentum factor (Stock MOM). Coe�cient estimates are reported with
the associated t-statistics in parentheses. ***, **, and * denote signi�cance at 1%, 5%, and
10%, respectively.

Loser Winner W-L
Alpha -0.051∗∗∗ 0.119∗∗∗ 0.169∗∗∗

(-3.63) (5.99) (8.21)

Index VIX Ret-Rf 0.345∗∗∗ 0.395∗∗∗ 0.050
(15.85) (12.81) (1.56)

MKT-Rf -0.397 -0.002 0.395
(-1.05) (-0.00) (0.71)

SMB -0.962∗ -1.237 -0.275
(-1.82) (-1.65) (-0.35)

HML -0.653 0.141 0.794
(-1.34) (0.20) (1.10)

RMW -0.096 0.543 0.639
(-0.15) (0.61) (0.69)

CMA -0.049 -1.231 -1.182
(-0.06) (-1.04) (-0.95)

Stock MOM 0.022 -0.047 -0.069
(0.11) (-0.17) (-0.24)

Adj.R2 0.637 0.517 -0.004
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Table 2.6: Average Monthly Returns on Equity-V IX Portfolios Sorted on

Value and then Momentum

Each month, we �rst sort �rms into quintiles based on option value, de�ned as log(
RVi,t−12,t

V IX2
i,t

),

where log(RVi,t−12,t) is the geometric average of �rm i's realized variance over the past 12
months. Then, within each quintile, we sort �rms based on option momentum, which is the
compound variance swap return over the past 12 months. The "All" row shows statistics
for portfolios sorted by momentum only, without controlling for value. Portfolios are equally
weighted. Portfolio 1 has the lowest value or momentum. To avoid forward-looking bias, we
only include �rms in the S&P 500 index when we form the portfolio. To compute the alpha of
portfolio returns, we control for the Fama and French (2015) �ve factors, the Carhart (1997)
momentum factor, and the V IX return of the S&P 500 index. Returns are expressed in
percent, with t-statistics in parentheses.

Momentum

Value 1 (Low) 2 3 4 5 (High) 5-1 Alpha

1 (Low) -19.98 -13.66 -12.55 -9.63 -5.84 14.13 15.46
(5.21) (5.48)

2 -9.50 -8.14 -4.14 -5.83 -2.85 6.64 10.15
(2.95) (4.35)

3 -4.41 -4.40 -5.58 -2.90 1.07 5.48 2.99
(2.18) (1.13)

4 -3.23 0.19 0.89 -0.19 2.70 5.93 7.56
(2.04) (2.42)

5 (High) -1.07 5.23 5.39 3.03 7.42 8.49 9.56
(3.00) (3.11)

All -10.62 -4.20 -3.22 -0.87 2.04 12.67 12.69
(8.48) (7.93)

105



Table 2.7: Option Momentum Controlling for Other Predictors

We estimate the cross-sectional regression: ri,t = αt+γt ·Zi,t−1+εi,t, where ri,t is the monthly
equity-V IX returns in excess of risk-free rate, and Z ′s are option return predictors including
Option MOM (continuously compounded variance swap return over the past 12 months), HV-
IV (volatility deviation in Goyal and Saretto (2009)), IVOL (idiosyncratic volatility in Cao and
Han (2013)), Slope_VTS (slope of implied volatility term structures in Vasquez (2017)), VOV
(volatility of volatility in Cao et al. (2020)), RN_Skew (risk-neutral skewness in Bakshi et al.
(2003)), Option Demand (option demand pressure), Amihud (Amihud illiquidity measure over
the previous month), and stock characteristics in Cao et al. (2017). Results using delta-hedged
ATM call and put returns calculated as Bakshi and Kapadia (2003) are also reported. The
associated t-statistics using Newey and West (1987) with three lags are reported in parentheses.
***, **, and * denote signi�cance at 1%, 5%, and 10%, respectively. The sample period is from
January 1997 to December 2017.

Equity-V IX Return Delta-hedged Call Delta-hedged Put

(1) (2) (3) (4) (5) (6)
Option MOM 0.152∗∗∗ 0.115∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.007∗∗∗ 0.005∗∗∗

(7.18) (5.75) (5.52) (6.23) (6.37) (6.13)
HV-IV 0.113∗∗ 0.009∗∗∗ 0.009∗∗∗

(2.26) (3.67) (3.74)
IVOL -2.629∗∗∗ -0.171∗∗∗ -0.120∗∗∗

(-2.67) (-4.02) (-2.77)
Slope_VTS 0.640∗∗∗ 0.046∗∗∗ 0.048∗∗∗

(4.23) (6.93) (7.33)
VOV -0.664∗∗∗ -0.012 -0.028∗∗∗

(-3.03) (-1.11) (-2.87)
RN_Skew 0.017 -0.001∗∗ 0.002∗∗∗

(1.18) (-2.50) (3.23)
Option Demand -0.005∗∗∗ -0.000∗∗∗ -0.000∗∗

(-3.72) (-2.89) (-1.98)
Amihud 88.835 1.960 3.350

(1.45) (0.82) (1.29)
Size 0.003 -0.000 -0.000

(0.34) (-0.23) (-0.19)
Book-to-Market 0.001 0.000 -0.000

(0.18) (0.62) (-0.74)
RETt−1,t -0.171∗∗ -0.009∗∗∗ -0.012∗∗∗

(-2.48) (-2.75) (-4.27)
RETt−12,t−1 0.019 -0.002∗ -0.001

(0.72) (-1.90) (-1.27)
Analyst Dispersion -0.052 0.002 0.002

(-0.83) (0.69) (0.77)
Cash Holding 0.029 -0.000 0.002∗

(1.08) (-0.26) (1.92)
Pro�tability -0.016 0.001∗ 0.001

(-0.80) (1.81) (0.70)
Issue 0.082 0.005∗ 0.005∗∗

(1.62) (1.95) (2.35)
Intercept -0.003 0.012 0.001 0.004 -0.003∗∗∗ 0.000

(-0.12) (0.08) (0.63) (0.79) (-3.14) (0.07)
adj. R2 0.016 0.072 0.017 0.109 0.019 0.106
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Table 2.8: Impact of Transaction Costs

Option momentum portfolios are formed as in Table 2.4. The portfolio returns are computed
from the mid-point price and from the e�ective bid-ask spread, estimated to be equal to 50%,
75%, and 100% of the quoted spread. In panel B, if the percentage bid-ask spread of VIX
portfolio price of a �rm is larger than the sample median, we don't trade the �rm that month.
All returns are expressed in percent, with t-statistics in parentheses. Panel C reports the margin
haircut ratio of shorting loser portfolios. The initial margin haircut is de�ned as (M0−V0)/V0,
where M0 is the initial margin of option positions in equity-V IX portfolios when the trade is
implemented, and V0 equals the sum of option prices when the position is opened. Max haircut
is the maximum haircut ratio during the month. Correlation between initial haircut ratio and
the subsequent option momentum strategy return of the month is also reported. The column
"Return (%)" in Panel C reports the monthly return of momentum strategy "All" with 50%
e�ective spreads combined with initial margin requirements. The t-statistics are reported in
parenthesis.

Panel A: Option momentum returns

Percentage of Quoted Bid-Ask Spread

0% 50% 75% 100%
All 16.13 6.74 1.86 -3.22

(8.42) (3.62) (1.00) (-1.69)
Quarterly 14.77 5.85 1.24 -3.53

(8.75) (3.55) (0.75) (-2.08)
Non-Quarterly 11.64 2.52 -2.31 -7.46

(6.49) (1.44) (-1.30) (-4.08)

Panel B: Percentage bid-ask spread lower than median.

All 17.05 13.25 11.17 9.08
(5.66) (4.48) (3.78) (3.08)

Quarterly 13.91 11.53 9.35 7.17
(5.52) (4.08) (3.31) (2.53)

Non-Quarterly 11.95 8.13 6.03 3.93
(4.90) (3.43) (2.54) (1.65)

Panel C: Margin haircut ratio of loser portfolio.

Initial haircut Max haircut Correlation Return (%)

Mean 3.18 4.77 -0.27 4.53 (4.59)
Std 1.29 1.59 15.64
Min 0.68 1.23 -31.17
Max 6.64 8.94
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2.7 Appendix

Table A2.1: Early Exercise Premium

This table examines the di�erence between the European option return-to-expiration and the
American early exercise return of our equity-V IX portfolios. We consider approximate policies
that exercise options at end of each day if the exercise value is higher than 95%, 96%, 97%,
98% and 99% of the ask price of the option. Using these policies, there are up to 17,000 �rm-
month observations with early exercise. To calculate the early-exercise payo� of a call option,
we borrow the strike price at risk-free rate and hold the stock position to option maturity; to
calculate the early exercised payo� of a put option, we short-sell the stock and reinvest the
payo� to maturity at risk-free rate. All dividends are reinvested to maturity at the risk-free
rate.
The Mean calculates the monthly average error between the European return and the American
return. All returns are expressed in percent. The standard error (Std) calculates the standard
deviation of the error. The mean absolute error (MAE) calculates the monthly average absolute
error. Correlation reports the correlation between European return and American return.
Panel B shows that the maximum American exercise premium of .355% is achieved with an
early-exercise threshold of 96%. This is smaller, by an order of magnitude, than the average
European return-to-expiration of -4.19% in the �rst row of Table 1 Panel A. We conclude that
early exercise is not quantitatively important to our analysis.

Panel A: Summary Statistics of European Return and American Return

Mean Std 5% 25% 50% 75% 95%
European -4.195 85.52 -69.18 -42.78 -19.49 14.73 115.10
American 99% -3.970 85.59 -69.06 -42.56 -19.22 15.01 115.45
American 98% -3.895 85.58 -69.01 -42.49 -19.12 15.11 115.53
American 97% -3.849 85.51 -69.02 -42.42 -19.04 15.19 115.47
American 96% -3.839 85.47 -69.00 -42.38 -19.02 15.20 115.38
American 95% -3.854 85.43 -69.02 -42.38 -19.02 15.19 115.43

Panel B: Early Exercise Premium

Mean Std MAE t-statistic Correlation
99% 0.225 4.35 0.627 14.59 0.999
98% 0.299 5.00 0.782 16.91 0.998
97% 0.346 5.77 0.959 16.93 0.998
96% 0.355 6.40 1.099 15.68 0.997
95% 0.341 6.89 1.237 13.98 0.997
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