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Monte Carlo Tree Search (MCTS) has been successfully applied to a variety 

of games. Its best-first algorithm enables implementations without evaluation 

functions. Combined with Upper Confidence bounds applied to Trees (UCT), MCTS 

has an advantage over traditional depth-limited minimax search with alpha-beta 

pruning in games with high branching factors such as Go. However, minimax search 

with alpha-beta pruning still surpasses MCTS in domains like Chess. Studies show 

that MCTS does not detect shallow traps, where opponents can win within a few 

moves, as well as minimax search. Thus, minimax search performs better than MCTS 

in games like Chess, which can end instantly (king is captured). A combination of 

MCTS and minimax algorithm is proposed in this thesis to see the effectiveness of 

detecting shallow traps in Go problems.  
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Chapter 1: Introduction 

1.1 Background 

Simulation is a useful technique in systems engineering because it can be used 

for verification and to compare alternative systems. Verification is an important part 

of systems engineering. Common verification methods are inspection, analysis, 

analogy, demonstration, test, and sample. However, when a system is too expensive 

to test or a system is too complicated to gain analytic results, simulations might be 

handy. Also, when comparing alternative systems, simulations can provide results of 

performance with a relatively low cost compared to building an actual system. 

Monte Carlo Tree Search can be used for simulating systems where actors 

make decisions with random outcomes. The most notable examples are the 

implementation of AI in computer games or board games.  

1.2 Comparison of Monte Carlo Tree Search and Minimax Search 

While implementing tree-search based AI to games, evaluation functions are 

important. Evaluation functions help AI to determine how good states and actions are. 

Traditional AI, e.g. Deep Blue [1], which defeated the world champion in 1997, 

utilizes evaluation functions to apply minimax search and alpha-beta pruning. 

However, when applying AI to the game of Go with traditional methods, the result is 

not promising. Go AI was easily beaten by amateur players in the early development. 

This is due to two characteristics of Go: 
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1. The complexity of Go is much higher than Chess. The game state-space 

complexity of Go is estimated 10170 while chess is estimated 1047 [2, 3].  

2. There is no well-developed evaluation function for Go. 

Go AI showed signs of rising when Monte Carlo Tree Search (MCTS) [4, 5] 

was proposed. Instead of fixed-depth minimax search, MCTS samples the promising 

states and actions more. Therefore, the search tree grows larger as the sample size 

increases. Evaluation functions are replaced by the Monte Carlo method [6], which 

evaluates a state by running simulations. In a simulation, moves are randomly played 

until the game reaches the end, and the simulation reports a reward from the end state. 

The Monte Carlo method estimates a state by averaging rewards of simulations. Thus, 

MCTS can be implemented without any domain-based knowledge, but the 

performance can be improved with domain-based knowledge. In 2016, AlphaGo [7], 

a Go AI which uses MCTS with two deep neural networks, beat the top Go player 

without handicaps. 

Even though MCTS has had great success on games with large branching 

factor, minimax search with alpha-beta pruning still beats MCTS on games like Chess 

or Checkers [9]. Since MCTS mostly focuses on the promising actions, if there are a 

lot of shallow traps [9] in a search space, MCTS is less appropriate than minimax 

with alpha-beta pruning. A shallow trap is a situation where a player will lose within 

a few moves if an opponent responds correctly. These traps are common in Chess 

(capturing the king) but less common in games like Go.  
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1.3 Goal of Thesis 

The goal of this thesis is to test the ability of minimax-combined MCTS to 

detect shallow traps compared to MCTS. Achieving this goal requires the following 

tasks: 

1. Develop a model for the Go problem. 

2. Implement MCTS to the Go problem. 

3. Propose a minimax-combined MCTS algorithm. 

4. Implement the minimax-combined MCTS to Go problem. 

5. Compare the algorithms in terms of accuracy and computation. 

1.4 Structure of Thesis 

This thesis is structured as follows. Chapter 2 provides the background on 

minimax search with alpha-beta pruning, MCTS, the relation of MCTS and shallow 

traps. Chapter 3 provides the model of the Go problem and the algorithms for both the 

and minimax-combined MCTS. Chapter 4 provides the experimental results. 

Conclusions and future work are described in Chapter 5.  
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Chapter 2: Literature Review 

2.1 Deep Blue 

Deep Blue [1] was a great milestone of AI. Deep Blue won a game against the 

world champion in chess in 1996, but lost 3 times and drew twice. The next year, 

Deep Blue won by a score of 3.5-2.5. The basic components of Deep Blue are 

minimax, alpha-beta pruning, and evaluation functions. 

First, Deep Blue has a position generator, which allows Deep Blue to search 

game trees deeper. Then, once it hits a certain depth of the tree, evaluation functions 

kick in. There are two types of evaluation functions. The first one is simpler but takes 

fewer computations, and the second one takes more computations but is more 

accurate. The first evaluation function is just a sum of values of pieces. If the one 

player has much more value of pieces compared to the opponent, then no further 

evaluation is needed. However, if the values of pieces of both players are close, then 

complex evaluation functions will be applied. The second evaluation function is a 

sum of feature values. Deep Blue recognizes about 8000 patterns, and there are 

corresponding values to the patterns. 

Second, after the positions are evaluated, the value is backed up by minimax 

and alpha-beta pruning algorithms. In minimax algorithms, there are max and min 

nodes. Since the white player moves first in chess, we assume that the higher the 

score, the better the situation for the white player. Therefore, every node that the 

white player has the next move is a max node because the white player wants to 

maximize the score, and every node that the black player has the next move is a min 
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node because the black player wants to minimize the score. This is a recursive 

process that continues until the value is backed up to the root.  

Third, alpha-beta is an algorithm based on minimax search. The central idea is 

subtrees that cannot influence the root can be pruned. For example, a root (a max 

node) has two children (min nodes): the value of child 1 is 5, and child 2 is still being 

explored. If one of the children of child 2 has a value below 5, then child 2 can be 

pruned. The reason is that child 2 is a min node, so it only updates values that are 

lower. If child 2 has a value below 5, then it is impossible to have a value greater than 

5. Thus, child 1 will always be greater than child 2, so we can prune child 2. 

Fourth, Deep Blue has an extended minimax search due to the nature of chess. 

If the leaf node is at a forcing position (i.e., checkmate or threat to win), the 

evaluation functions do not work so well. The evaluating current forcing position is 

not useful because players are expected to play a few moves responding to the threat. 

Therefore, the leaf node is expanded one more layer, and the expanded position will 

be evaluated. 

2.2 Monte Carlo Tree Search 

The methodology of Monte Carlo Tree Search [2] is the core of this proposal. 

The observations and experiments of this thesis will be conducted under the 

framework of MCTS to demonstrate why MCTS does not work well with a large 

number of shallow traps. Therefore, understanding how the MCTS operates is 

important. In general, the MCTS consists of 6 parts shown in chapter 2.2.1~2.2.6. In 

short, how simulation can be estimated, how bounds are created, how bounds are 

applied to tree search will be discussed as below:  
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2.2.1 Markov Decision Process 

Markov decision process models sequential decision problems in fully 

observable environments using four components: 

• S: set of states, with s0 being the initial state. 

• A: set of actions. 

• T (s, a, s’): transition model that determines the probability of reaching state 

s’ if action a is taken at state s. 

• R(s): reward function. 

The goal for an MDP problem is to find and optimal policy π which maps 

states to actions. In other words, a policy specifies what actions should be taken in a 

given state. Optimal policy means the reward is maximized when decisions are made 

by optimal policy. 

2.2.2 Monte Carlo Method 

The Monte Carlo method [8] approximates the analytic value by repeated 

random sampling. By the law of large number, the empirical mean approximates the 

expected value as the number rises. Therefore, a reliable estimate can be generated by 

Monte Carlo method. 

2.2.3 Multi-armed Bandit Problem 

A multi-armed bandit problem [5, 10] is a sequential decision problem. The 

player chooses among K arms for each iteration and gets a reward. The goal of the 

problem is to maximize the accumulated reward. The difficulty is that the distribution 

of each arm is unknown, so the player estimates the reward by pulling an arm. This 
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leads to an exploration-exploitation tradeoff problem. Exploitation means pulling the 

currently best performing arm, and exploration means pulling sub-optimal arms. One 

wants to do exploitation to maximize the reward but also wants to do exploration in 

case the current believed best arm is actually sub-optimal. 

To deal with multi-armed bandit problems, a concept called regret is 

introduced. Whenever a player pulls an arm that is not optimal, there is a 

corresponding regret defined by R = µ∗ − µ& , where R is the regret, µ∗ is the mean of 

the best arm, and µ& is the mean of the chosen arm i which is not the best arm. Many 

bandit algorithms aim to minimize the regret. 

2.2.4 Upper Confidence Bounds 

Upper confidence bounds [10] (UCB) are useful for multi-armed bandit 

problems. Since the width of confidence bounds decreases as the sample size 

increases, upper confidence bounds of sub optimal arms fall below the mean of the 

best arm as sample sizes increase. When the sample sizes are close, the best arm 

should be most likely to be pulled. When one or more arms have much smaller 

sample sizes due to their bad performance, their confidence bounds are wide, so they 

should have chances to be pulled. Therefore, the exploitation-exploration tradeoff can 

be applied by choosing the highest UCB for each iteration. 

 There are many ways to generate upper confidence bounds. UCB1, 

which sets confidence bounds by Hoeffding’s inequality, is one of the well-known 

ways because of its ease of application and its ability to minimize regret. The 

algorithm is as follow: 
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Assume there are K arms with unknown identical independent distributions 

within [0, 1]. One pulls the arm that maximizes the formula 𝑋( +
* +,-
-.
	 , where 𝑗 ∈

1… ,𝐾,	𝑋( is the average reward from arm j, nj is the times of arm j has been pulled, 

and n is the overall number of pulls. 

2.2.5 Monte Carlo Tree Search Algorithm 

Monte Carlo Tree Search [2, 3] is a best-first tree search algorithm. MCTS 

relies on two concepts for the best-first characteristic. One is that the value of an 

action can be approximated by random simulations, and the other one is that the value 

of simulations is useful for the best first policy. MCTS repeats the following four 

steps until it reaches the stopping condition. The condition can be limited time, 

memory, or iteration. 

1. Selection: 

Start from the root node, a child is selected recursively until an expandable 

node is reached. A node is expandable if it is a non-terminal state and has children 

unvisited. 

2. Expansion: 

Add one or several of unexplored children nodes of a leaf node to the tree. 

3. Simulation: 

Run a simulation from a newly added node to produce an outcome. 

4. Backpropagation: 

Back up the result of simulation to the parent recursively. 
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MCTS is a popular algorithm for its following characteristics: 

1. Heuristic 

Although full-depth minimax tree search does not require any domain-based 

knowledge, it is quite computation-consuming. If fixed-depth minimax tree search is 

applied, then evaluation functions are required. On the other hand, MCTS does not 

require any domain-based knowledge, but the performance of MCTS can be 

improved with specific knowledge. In short, fixed-depth minimax and MCTS both 

work with domain-specific knowledge, but only MCTS is workable without any 

knowledge.  

2. Anytime 

The search tree is built incrementally in MCTS, and the results are propagated 

immediately after simulations. This allows MCTS to give a current best solution 

anytime.  

3. Asymmetric 

The selection policy allows MCTS to search more on promising nodes. 

Therefore, the shape of the tree tends to be asymmetric.  

2.2.6 Upper Confidence Bounds Applied to Trees 

UCT algorithm [5] is a selective policy in MCTS. A child is recursively 

selected by UCB1 until a terminal or expandable node is reached. UCT keeps the 

exploration-exploitation tradeoff characteristic from UCB1, and UCT is proved to 

converge to minimax [11]. 
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2.3 Shallow Traps in MCTS 

A player is at risk falling into a shallow trap [9] if there exist a sequence of 

actions that are guaranteed for the opponent to win the game. Figure 2.3.1 shows an 

example of shallow traps. If the white player chooses the middle action, the black 

player can win the game with a correct response. The definition of a level-k shallow 

trap is that after the player falls into a shallow trap, the opponent has a k-move 

winning strategy. Therefore, the levels of shallow traps are typically odd numbers, 

because it is assumed that players do not lose a game on their own move. The study 

[9] shows that MCTS is able to identify level-3 shallow traps, but it takes an 

extremely long time to identify level-5 or higher shallow traps. 

 
Figure 2.3.1: A demonstration of shallow traps [9] 

 
 

The frequency of shallow traps varies from game to game. For example, shallow traps 
occur quite often in Chess compared to the game of Go. The games stop when the 
king is captured in chess whereas there is no particular rule or pattern to determine 
the end of Go. Therefore, it is possible that the king will be captured inevitably in a 
few moves. In contrast, the ending of Go means all positions are either someone’s 
territories or impossible to become territories, which cannot happen in a few moves. 
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Therefore, shallow traps barely happen in Go. Figure 2.3.2 shows the frequency of 
different level shallow traps in different board depths. The upper part of the figure is 
the result of semi-random generated games, and the lower part is the result of games 
played by grandmasters. In semi-random games, moves are played randomly with 
probability 1/3 and played with GNU Chess (http://www.gnu.org/software/chess) 
heuristic with probability 2/3. Here we can see when shallow traps occur more often 
in end games than the opening (comparing depth 63 to 15). Also, the deeper shallow 
traps are, the more frequently the shallow traps happen. Finally, grandmasters are 
good at avoiding shallow traps in the opening, compared to the semi-random 
generated games. 

 
Figure 2.3.2: Frequency of shallow traps in different scenarios. [9] 

 
The ability of UCT to avoid shallow traps is not promising. Figure 2.3.3 

shows how many iterations with UCT are needed to detect shallow traps compared to 

the number of minimax nodes. The result shows that UCT is able to detect level-3 

shallow traps given roughly 10 times the number of iterations, but it takes extremely 

long to detect any shallow traps at higher levels (in some cases, 50 times is not 

enough). The result shows that 95% of nodes explored are 7 levels deeper when level 

7 shallow traps occur. 
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Figure 2.3.3: Avoiding shallow traps with UCT [9] 

 

2.4 Related Work Combining MCTS and Minimax Search 

2.4.1 MCTS Solver 

MCTS solver [15] finds the theoretical value under the framework of MCTS. 

When running MCTS solver, not only the results of simulations but also the proven 

wins and losses are propagated. If the expanded nodes are not in the end state, then 

the procedure is same as MCTS. However, if the expanded nodes are at the end state, 

then the proven wins and losses are propagated by the following rules: 

 

If the node is a max node, then 

 A proven win is backpropagated if one of the children is a proven win. 

A proven loss is backpropagated if all of the children are proven 

losses. 

 Otherwise, nothing is backpropagated. 

If the node is a min node, then 

 A proven loss is backpropagated if one of the children is proven loss. 
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 A proven win is backpropagated if all of the children are proven wins. 

 Otherwise, nothing is backpropagated. 

 

By the algorithm above, the theoretical values can be backpropagated. Also, 

proven nodes are no longer searched to improve the efficiency. The experiments 

show that MCTS solver has a win rate of 65% against MCTS in the game of Connect 

4. 

2.4.2 MCTS and Minimax Hybrids 

To improve the performance of MCTS when shallow traps exist, MCTS with 

minimax hybrid algorithm has been proposed in [8]. The minimax can be embedded 

in all four phases of MCTS. 

 

1. Minimax in simulation phases: 

In simulation phases, a fixed-depth minimax search is done before every 

random move. Since no evaluation is given, the minimax can only detect proven wins 

or losses. Thus, the random simulation will find forced wins or avoid forced losses.  

   

2. Minimax in selection and expansion phases: 

In selection and/or expansion phases, a shallow-depth full width minimax 

search is done. This improves the MCTS by checking immediate descendants of a 

subset of tree nodes. 

   

3. Minimax in backpropagation phases: 



 

 

14 
 

MCTS backpropagates simulation results to parents. What minimax does is to 

backpropagate proven wins and losses. 

2.5 Monte Carlo Tree Search Extension 

2.5.1 UCB1-Tuned 

UCB1-tuned [10] is a variation of UCB1 which tunes the bounds more finely 

than UCB1. It replaces the formula of upper confidence bounds * +, ,
,6

, with  

ln n
n9

min{
1
4
, V9(n9)} 

where 

V9 s =
1
2

X9,E*
F

EGH

− X9.F* +
2 ln t
s

 

which means that machine j, which has been played s times during the first t 

plays, has a variance that is at most the sample variance plus * +, K
L

. Although there is 

no analytical way to prove a regret bound for UCB1-tuned, experiments show that 

UCB1-tuned performs better than UCB1. 

2.5.2 Best Arm identification algorithm 

UCB is an accumulated regret minimizing technique. A suitable example is 

medical treatment. There are several treatments, and their effectiveness is unknown. 

Therefore, the objective is to do as little accumulated damage as possible to the 

patients. The regrets happen during the exploration. However, in the case of making 

decisions in the game of Go, the regrets happen after the exploration. Only the final 
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decision matters. Best arm identification algorithm [12] has a highly exploring policy 

[13], UCB-E. The following is the algorithm: 

𝐹𝑜𝑟	𝑖 ∈ 1,… . , 𝐾 , 𝑙𝑒𝑡	𝐵U,L = 𝑋U,L +
𝑎
𝑠
	𝑓𝑜𝑟	𝑠 ≥ 1	𝑎𝑛𝑑	𝐵U,\ = +∞ 

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡 = 1,…	, 𝑛: 𝐷𝑟𝑎𝑤	𝐼K ∈ 𝑎𝑟𝑔𝑚𝑎𝑥	𝐵U,L 

where the parameter satisfies:	0 ≤ 𝑎 ≤
ij
kl -mn

op
	, and machine i has been played s 

times, and K is the number of arms, and n is the total times of plays. 

𝐻H	𝑖𝑠	𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑎𝑠:	
1
∆U*

n

UGH

	𝑎𝑛𝑑	∆U= 	𝜇∗ − 𝜇U 

2.5.3 All Moves As First (AMAF) 

ALL MOVES AS FIRST [16] is a history heuristic which uses the 

information in simulations for the selection phase. In MCTS, the simulation result 

will only be backpropagated to the node triggering the simulation and all of its parent 

nodes. AMAF backpropagates the simulation result to siblings of the node triggering 

the simulation and all of the parent nodes. Take Figure 2.5.1 for example. Actions C1 

and A1 are selected by UCT, and B1, A3, and C3 are the actions of the simulation. 

UCT only backpropagates the result to C1 and A1, but AMAF backpropagates the 

result to C1, A1, B1, A3, and C3. 
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Figure 2.5.1: An example of AMAF [16]. 

 

2.5.4 Last-Good-Reply Policy 

 
The Last Good Reply Policy [17] views MCTS as a machine learning 

technique. In each simulation, actions are selected according to similar game states. 

After the simulation, if the result is successful, the move will be adopted as good 

reply. If there was a good reply and another good reply appears, the last good reply 

will be adopted. Figure 2.5.2 illustrates an example of the last good reply policy. The 

result of the first simulation is black’s win. Therefore, all the replies (C replies to B, E 

replies to D, and G replies) are adopted. The result of the second simulation is white’s 

win. The same procedure is taken. The result of the third simulation is black’s win. 

Two rseplies exist to action B (C to B and D to B). Only the last reply (D to B) will 

be adopted, and the old one is forgotten.  
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Figure 2.5.2: An example of last good reply policy [17]. 
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Chapter 3: Approach 

3.1 Inspiration for minimax-combined MCTS 

The idea of minimax-combined MCTS comes from a very simple example, 

level one trap. In this example, we have a game with branching factor 20. The root 

node (black player’s turn) has 20 children. 19 children nodes are normal moves with a 

mean of 0.5, and the last child node is a trap. The trap node (white player’s turn) has 

19 children nodes (wrong moves for white) with a mean of 0.7, and the last child 

node (correct move for white) has a mean of 0.3. Notice that no proven win or loss is 

within 2 layers, so the node is not a shallow trap. Therefore, both MCTS and MCTS 

and minimax hybrid do not work here. Nonetheless, the node is indeed a trap move 

because the opponent has a response that leads himself to a good situation. The logic 

is explained in the next paragraph. 

If the black player plays a normal move, the result is 0.5. If the black player 

plays a trap move and the white player plays a wrong move, the result is 0.7. If the 

black player plays a trap move and the white player plays the correct move, the result 

is 0.3. The black player should assume the white player will pick the correct move, 

because it requires only one step to figure out the results. Therefore, the black player 

should choose the normal moves instead of the trap move. 

If one uses the minimax search with a fixed depth = 2, only 20+202=420 

nodes are needed to be explored to find the trap. However, it takes a lot of simulations 

for MCTS to detect the trap. The result is shown in the following tables. 
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Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 479	 0.5117	 X	 X	
Normal	moves	 23	 0.5	 0.9828	 X	
Trap	 42	 0.6333	 0.9906	 X	
Wrong	moves	
for	white	

2	 0.7	 X	 -0.5741	

Correct	move	
for	white	

4	 0.3	 X	 -0.6009	

Table 3.1.1: Simulation results after 479 simulations 
 
 

Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 2976	 0.5031	 X	 X	
Normal	moves	 145	 0.5	 0.7189	 X	
Trap	 221	 0.5416	 0.7189	 X	
Wrong	moves	
for	white	

9	 0.7	 X	 -0.0218	

Correct	move	
for	white	

50	 0.3	 X	 -0.0062	

Table 3.1.2: Simulation results after 2976 simulations 
 

Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 7092	 0.4999	 X	 X	
Normal	moves	 355	 0.5	 0.6473	 X	
Trap	 347	 0.4983	 0.6472	 X	
Wrong	moves	
for	white	

13	 0.7	 X	 0.0746	

Correct	move	
for	white	

100	 0.3	 X	 0.0748	

Table 3.1.3: Simulation results after 7092 simulations 
 

From the simulation results, we can see that MCTS works properly. The 

promising nodes are explored more, and the correct decision is finally made. The only 

problem is that too many simulations are needed to detect traps. It takes roughly 
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twenty times more simulations than minimax search. The potential reason for such a 

low efficiency to detect traps is that MCTS evaluates a node by the average scores of 

simulations. Therefore, MCTS still takes some time to converge to the theoretical 

value. 

The purpose of minimax-combined MCTS is very simple. The result of 

MCTS under a subtree can be treated as an evaluation function. Thus, a minimax 

search can identify not only shallow traps but also good/bad situations. On the other 

hand, MCTS solver and MCTS and minimax hybrid can only detect proven wins and 

losses but not good/bad situations. 

3.2 Rules of Go 

In the game of Go, the board is a plane grid of 19 horizontal lines and 19 

vertical lines (figure 3.2.1, an example of 9 by 9 board). Two players (black and 

white) place one stone in turns, and the stones are placed on the intersections on the 

board. Once the stone is placed, it cannot be moved, but it can be captured and taken 

away from the board. The objective is to control more territories than the opponent. 

Territories are defined as areas enclosed by own stones, where every opponent’s 

stones within the territories are expected to be captured eventually (figure 3.2.2). 
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Figure 3.2.1: A 9 by 9 board 
 

 
Figure 3.2.2: A finished game. The triangle marks are considered black’s 

territories, and the square marks are considered white’s territories. 
 

3.2.1 Connection and Capture 

 Connected stones are considered to be a group. When a group is 

captured, all stones are removed. Stones are connected with adjacent stones, and only 

vertical and horizontal direction counts. Figure 3.2.3 shows examples of connection. 

Every adjacent empty point to a group is considered its liberty (figure 3.2.4). If a 

group has no liberty, it is captured (figure 3.2.5). Players cannot fill their last liberty 

(figure 3.2.6), which is a suicide unless that move is able to capture opponent’s 

groups (figure 3.2.7). 
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Figure 3.2.3: Examples of connections. The stones marked with triangles are not 

connected while the stones marked with squares are connected. 
 

 
Figure 3.2.4: Examples of liberty. The circle-marked spaces are liberties of black 

groups. 
 

  
Figure 3.2.5: An example of captures. On the left side, black groups only have 
one liberty. When white places a stone at the marked space, the black group is 

captured. 
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Figure 3.2.6: Examples of suicides. The black player is not allowed to play the 
positions marked with squares, because the moves make the groups have no 

liberty. 
 

  
Figure 3.2.7: An example of captures. The stones marked with triangles have 

only one liberty. If either player plays the square, both groups have no liberty. 
By the rules of Go, whoever makes the move can capture the opponent’s groups. 

The right-hand board shows the  
 

3.2.2 Ko and Ko fight 

A Ko is a special situation in Go where both players can capture opponent’s 

stones and create an endless loop. The rule of Ko is to prevent immediate repetition. 

If a move creates a position same as the last previous position, then the move is 

illegal (Figure 3.2.8). Because of this rule, when Ko happens, players will play moves 

that opponents want to defend, which is called Ko threat. If so, the player can capture 

the opponent’s stone again because the position is changed (Figure 3.2.9). This 
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process is called Ko fight. In general, a player will win the Ko fight and gain some 

profit while the other player gains profit from the Ko threat. 

   
Figure 3.2.8: Endless cycle of Ko. Without the rule of Ko, players can keep 

playing move 1 and 2, and create a position same as previous one. 
 

  

  

 
Figure 3.2.9: A Ko fight. Black starts a Ko fight, and white finds a Ko threat. 

Black ignores the Ko threat, and white gains from the Ko threat. 
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3.2.3 Alive Groups 

Some groups can never be captured, even if opponents can play several moves 

in a row. These groups are considered alive. Basically, groups with two eyes or more 

are alive. An eye is defined as a space surrounded by a player’s own stones (Figure 

3.2.10). When a group has two eyes, its liberty cannot be decreased down to 0 

because it is a suicide for the opponent when they put stones in the eyes (Figure 

3.2.11). 

 
Figure 3.2.10: Examples of eyes. The circle-marked spaces are defined as eyes. 

 

 
Figure 3.2.11: Example of alive group. The group has two eyes, and white cannot 

play either spaces because suicide is not allowed. 
 



 

 

26 
 

3.2.4 Seki 

Seki, or mutual life, is a situation that groups of both players do not have two 

eyes, but they are also not able to capture the opponents’ stones. The most classic 

situation of Seki is that both groups have two mutual liberties, so when one player 

fills a liberty, the other player is able to capture (figure 3.2.12). Therefore, no one 

wants to take the first move, and no groups can be captured. 

  

 
Figure 3.2.12: Examples of Seki. Both players do not want to play the marked 

spaces. If one plays there, his group will be captured, and vice versa. 
 

3.3 Model of Go Problem 

There are several types of Go problems. This model is created to solve the 

problems that involve capturing opponent’s stones or avoiding one’s own stones from 

being captured. When capturing opponent’s stones, the player usually gains the 
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territories where the stones are removed. As a result, capturing stones can be seen as a 

sub-goal of winning a game, which is very important in the game of Go. 

3.3.1 Setup 

 The Go problem considered in this section is from the black player’s 

perspective. Therefore, actions, objectives, and scores are from the black player’s 

perspective. The black player has the first move. The higher the score is, the better the 

condition black player is in (on the other hand, the worse condition the white player is 

in). If the objective is to save groups, the black player has to save groups. 

Go problems discussed in this thesis only include two objectives, capturing 

stones and avoiding stones from being captured. The problems fall into 5 sub-

problems: saving groups, killing groups, cutting groups, connecting groups, and 

capturing race (Figure 3.2.13). In cutting and connecting groups problems, stones are 

inevitably captured if they lose the connection. In capturing race problems, if 

opponent’s stones are not captured, then one’s own stones are inevitably captured. To 

sum up, the objectives of the five sub-problems are either capturing stones and 

avoiding stones from being captured, and the only difference is the scenario. In 

addition, Go problems usually do not involve the entire board, and some groups are 

assumed alive to simplify the problems. The following are the setup: 

1. Decide problem mode: Saving groups or killing groups 

2. Set positions: putting black and white stones on the board according to the 

problem 
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3. Determine feasible area: Determine area which is legal to play. The 

problem must have an ending (either groups are saved or captured) just by 

playing within feasible area. 

4. Determine important positions: Determine which stones are supposed to 

be saved or captured. If important stones at important positions are saved 

or captured, then the problem is ended. 

5. Determine alive groups: For connecting problems, the objective is to 

connect groups instead of making two eyes. Therefore, some groups are 

marked as alive, and other groups are considered alive when they connect 

to alive groups. Thus, connecting problems has the same standard of 

scoring as other problems: alive (connected), seki, and dead. 
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Figure 3.2.13: Five types of Go problem. From left to right, top to bottom: saving 

groups, killing groups, cutting groups, connecting groups, and capturing race. 
The triangle marked stones are the groups to be saved, and the square marked 
stones are the groups to be killed, and the circle marked spaces are the feasible 

areas. 
 

3.3.2 Scoring 

The problem ends when important groups are alive, Seki, or captured. Based 

on my experience, scores of results are shown in Table 3.3.1. Notice that Seki, or 

mutual life, seems to be an even result for both players. However, the result is slightly 

better for the player who is saving groups.  

Avoiding being captured Score  Capturing opponent’s groups Score 
Alive 1  Alive 0 
Seki 0.7  Seki 0.3 

Dead (Captured) 0  Dead (Captured) 1 
Table 3.3.1: Scores of results 

 
However, the Ko fight might happen in Go problems. As mentioned, players 

find Ko threat “somewhere else” and hope their opponents will respond. However, 

when doing local problems, there is no clue of how opponents will respond. Thus, 

assumptions are made for scoring. First, when Ko fight happens, players are allowed 

to fight back immediately, which is against the rule. Second, after a player fights back 
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immediately, that player can fight back the Ko immediately, but the opponent cannot 

fight back at all. Third, the player who fights back the Ko has a penalty. 

The assumptions are based on the Ko fight pattern. When a player fights back 

the Ko, we assume the player wins the Ko, but meanwhile winning the Ko means that 

the opponent can play two moves in a row somewhere else. Therefore, the player has 

a score penalty because the opponent gains something somewhere else. Based on the 

assumptions, we have the modified score: 

 Black wins the Ko No one wins the Ko White wins the Ko 
Alive 0.5 1 1 
Seki 0.3 0.7 0.85 
Dead 0 0 0.5 

Table 3.3.2: Scores when saving groups 
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 Black wins the Ko No one wins the 

Ko 
White wins the Ko 

Alive 0 0 0.5 
Seki 0.15 0.3 0.7 
Dead 0.5 1 1 

Table 3.3.3: Scores when capturing groups 
 

3.3.3 Ending Pattern Recognition 

The model has to decide the result of the problem: alive, Seki, or dead.  

1. Dead: When important stones are captured, the result is dead. 

After a move check each position marked as important 

If the purpose is to save groups 

If any of important positions is not black stone 

Return dead 

Else if the purpose is to kill groups 

If any of important positions is not white stone 

Return dead 

  If above statements do not return dead 

  Return not dead 

 

2. Seki: When both players pass continuously over 3 times, the result is Seki.  

 If continuous passes are over 3 times 

  Return Seki 

 Else 

  Return not Seki 
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3. Alive: Recognizing alive patterns is the most difficult. According to rules, 

a group with two eyes is alive, and eyes are defined as a space surrounded 

by own stones. However, there are true and false eyes which do not have 

simple ways to determine. Therefore, instead of recognizing eyes, the 

player who is capturing is given infinite moves in a row. If the important 

groups can be captured, then the group is not alive. 

Fill the board with stones of the player who is capturing expect 

positions of eyes of the player who is being captured 

 Do 

  Fill every position of eyes one at a time 

  If important stones are captured 

   Return not alive 

 While some stones are captured 

 Return alive 

3.3.4 Extra Rules 

The extra rules are not necessary but simplify the model of Go problems and 

prevent endless cycles. 

1. Situations allowing passing: We don’t want players to pass in any 

situation. In fact, we want players to pass when Seki happens. Notice that 

satisfying this situation does not mean Seki, but situations are always 

satisfied when Seki happens. 

Pass rule 1: if a player has no place to play, the player is allowed to 

pass. 
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Pass rule 2: if every feasible place is either reducing own liberty to 1 

or filling own eyes, the player is allowed to pass. 

2. Winning by passing: Sometimes opponents can keep playing useless 

moves and make the game endless. Therefore, if a player passes three 

times more than the opponent, the player wins. 

3. Limited Ko advantages: In the model, when a player wins a Ko, the player 

is assumed to win Ko in the future. However, this advantage is limited to 5 

times. After 5 Ko, the player wins the Ko cannot fight Ko back anymore. 

4. Not filling true eyes: Players are not allowed to fill true eyes. 

3.4 Algorithm of MCTS 

Although the model of MCTS is discussed in chapter 2, the model is for 

general MDP problems. The main difference between MDP problems and Go 

problems is that Go problems are two-player zero-sum games or adversarial games. 

Therefore, the selection phase is different. When the black player has the move, the 

player wants to pick moves with higher scores. When the white player has the move, 

the player wants to pick moves with lower scores. This is different from MDP 

problems where the purpose is either maximizing or minimizing rewards. Also, no 

policy is applied in this thesis. 

3.4.1 Selection 

In MCTS, UCT is applied in the selection phase. For max nodes (black 

player’s turn), the child node with the highest upper confidence bound (UCB) is 

picked. For min nodes (white player’s turn), the child node with the lowest lower 
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confidence bound (LCU) is picked. The formula to calculate UCB and LCB is 𝑋( ±

* +,-
-.
	 , where 𝑗 ∈ 1… ,𝐾,	𝑋( is the average reward from arm j, and nj is the times of 

arm j has been pulled, and n is the overall number of pulls. The algorithm keeps 

selecting children nodes until it reaches terminated nodes, or it reaches nodes whose 

children nodes are all unexplored. If unexplored nodes are reached, the algorithm 

enters expansion phase. If terminated nodes are reached, the algorithm enters 

backpropagation phase, which propagates the score of the terminated node. 

 

3.4.2 Expansion 

When expanding a node, all of its children nodes are expanded. Expanded 

nodes are added to the search tree, and all of them will be simulated. 

3.4.3 Simulation 

Moves are uniformly randomly played until reaching the end state. After the 

simulation, the score of the simulation will be propagated. 

3.4.4 Backpropagation 

The result of simulations will be returned to parent nodes recursively from 

leaf nodes to the root node. For nodes on the returning path, the times of simulations 

are increased by 1, and the total score is increased by the score of simulation. 

3.4.5 Decision 

The children node of root nodes with the highest mean is chosen as the final 

decision. 
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3.5 Algorithm of Minimax-combined MCTS 

The framework of minimax-combined MCTS is identical to MCTS. It has 

four repetitive phases and a final decision. However, the ways algorithms select nodes 

and backpropagate values are different. Two terms are introduced here: 

1. Minimax threshold: The minimax threshold indicates whether a node is 

included in the minimax search. A node meets the minimax threshold if 

the node is visited enough times. In experiments, the minimax threshold = 

minimax threshold parameter * branching factor. For example, a node has 

5 children and the minimax threshold parameter =100. It meets the 

minimax threshold if it is visited 500 times. 

2. Minimax node: The best leaf node which can be reached by the minimax 

search on the mean from a certain node. If the node does not meet the 

minimax threshold, the minimax node is itself. 

3.5.1 Notation 

𝑁v,U:	𝑡ℎ𝑒	𝑖𝑡ℎ	𝑐ℎ𝑖𝑙𝑑	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒 

𝑁w: 𝑡ℎ𝑒	𝑚𝑖𝑛𝑖𝑚𝑎𝑥	𝑛𝑜𝑑𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒 

𝑀y:	𝑡ℎ𝑒	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁 

𝑈y:	𝑡ℎ𝑒	𝑈𝐶𝐵	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁 

𝐿y:	𝑡ℎ𝑒	𝐿𝐶𝐵	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁 

𝑀𝑇:	𝑡ℎ𝑒	𝑚𝑖𝑛𝑖𝑚𝑎𝑥	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

3.5.2 Selection 

𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁𝑈𝐿𝐿 
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𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�  

𝐹𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 − 1 

								𝐼𝑓	𝑏𝑙𝑎𝑐𝑘�𝑠	𝑡𝑢𝑟𝑛 

																𝐼𝑓	𝑈
y�,�

� > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑈
y�,�

�  

																								𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁v,U 

								𝐼𝑓	𝑤ℎ𝑖𝑡𝑒′𝑠	𝑡𝑢𝑟𝑛 

																𝐼𝑓	𝐿
y�,�

� < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐿
y�,�

�  

																								𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁v,U 

𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑	𝑠𝑒𝑙𝑒𝑐𝑡𝑠	𝑖𝑡𝑠	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

3.5.3 Expansion 

The expansion process is the same as MCTS. 

3.5.4 Simulation 

The simulation process is the same as MCTS. 

3.5.5 Backpropagation 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + + 
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𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒+= 𝑆𝑖𝑚𝑢𝑙𝑎𝑖𝑡𝑜𝑛	𝑟𝑒𝑠𝑢𝑙𝑡 
𝑈𝑝𝑑𝑎𝑡𝑒	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛�𝑠	𝑈𝐶𝐵	𝑎𝑛𝑑	𝐿𝐶𝐵 
 
𝐼𝑓	𝑉y < 𝑀𝑇 
       𝑁w = 𝑁	(𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑖𝑡𝑠𝑒𝑙𝑓) 
								𝑅𝑒𝑡𝑢𝑟𝑛	 
 
𝑁w = 𝑁v,\w 
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀

y�,�
�  

𝐹𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 − 1 
								𝐼𝑓	𝑏𝑙𝑎𝑐𝑘�𝑠	𝑡𝑢𝑟𝑛 
																𝐼𝑓	𝑀

y�,�
� > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�  

																								𝑁w = 𝑁v,Uw 
								𝐼𝑓	𝑤ℎ𝑖𝑡𝑒′𝑠	𝑡𝑢𝑟𝑛 
																𝐼𝑓	𝑀

y�,�
� < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�  

																								𝑁w = 𝑁v,Uw 
 

3.5.6 Decision 

The child node with the highest visit times is picked as the final decision. 
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Chapter 4: Experiment 

4.1 Experiment Process 

The experiment evaluates the performance of MCTS and minimax-combined 

MCTS by the number of simulations needed to consistently pick the correct move. 

That means only one correct move exists in each problem, and the correct move is 

known. Every time a backpropagation is done, the program will pick one move.  

MCTS picks the child with the highest mean, and minimax-combined MCTS picks 

the most frequently visited child. The definition of consistent pick will be discussed 

in the last paragraph of this section. 

Experiments are conducted in the following scenarios: 

1. Level-3 shallow trap 

2. Level-5 shallow trap 

3. Simple problems 

4. Complex problems 

5. Complex problems with multiple scores 

 

The experiments are conducted in the following steps: 

1. Run a long enough simulation to make sure MCTS converges to correct 

moves. 

2. Run multiple MCTS and minimax-combined MCTS with an exploration 

parameter = 1.414 and a minimax threshold = 50 * branching factor. 
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3. Do paired t-tests to see if both algorithms are significantly different from each 

other. 

 

Determine the consistent correct pick: 

The consistent pick involves manual tracking. There are two requirements to decide 

whether the pick is consistent. 

1. The correct move is continuously picked many times. 

2. The mean of the correct move asymptotically approaches the theoretical 

value. 

          
Figure 4.1.1: List of picks. The picks change often in the beginning of MCTS 

(left list). MCTS picks action (7,5) every time from 1024 simulations (right list).  
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Figure 4.1.2: After 1276 Simulations 

 

 
Figure 4.1.3: After 2842 simulations 

 

 
Figure 4.1.4: After 8011 simulations 

 
Figures 4.1.1 through 4.1.4 show that correct move (7,5) is picked every time 

from 1024 simulations spent. They also show that the results asymptotically approach 

the theoretical value 1. 

4.2 Level-3 Shallow Trap 

Figures 4.2.1 to 4.2.4 illustrate an example of level-3 shallow traps. Figure 

4.2.1 shows the position of the stones. The objective is to connect the stones marked 

with circles. Figure 4.2.2 shows the correct move and the shallow traps. The position 

marked with a square is the correct move, and the position marked with triangles are 

the shallow traps. Figures 4.2.3 and 4.2.4 demonstrate how a shallow trap happens.  
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Figure 4.2.1: The objective is to connect marked black stones 

 

 
Figure 4.2.2: The square is the correct move. The triangles are the shallow traps. 

 

 
Figure 4.2.3: A demonstration of falling into a shallow trap 
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Figure 4.2.4: The white player cuts off black stones in three moves. 

 

The theoretical score of the correct move is 1, and any other moves are 0. The 

shallow traps are 3 level deep, and the correct move is 11 level deep. Table 4.2.1 

shows the computation needed of MCTS and minimax-combined MCTS to pick the 

correct move (minimax threshold parameter = 50). Table 4.2.2 shows the paired t-test 

under 95% confidence interval. The confidence interval does not include 0, showing 

that the minimax-combined MCTS needs significantly fewer computations to pick the 

correct move. 
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 Average computations needed Standard deviation 
MCTS 48803 7792 

Minimax-combined MCTS 7304 1415 
Table 4.2.1: The average computations needed of MCTS and minimax-combined 

MCTS 
 

Lower bound Upper bound 
34662 48336 

Table 4.2.2: Paired t-test (MCTS – Minimax MCTS) 
 

4.3 Level-5 Shallow Trap 

Figures 4.3.1 to 4.3.4 illustrate an example of level-5 shallow traps. Figure 1 

shows the position of the stones. The objective is to connect the stones marked with 

circles. Figure 4.3.2 shows the correct move and the shallow traps. The position 

marked with a square is the correct move, and the position marked with triangles are 

the shallow traps. Figures 4.3.3 and 4.3.4 demonstrate how a shallow trap happens. 

 
Figure 4.3.1: The objective is to connect marked black stones. 
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Figure 4.3.2: The square is the correct move. The triangles are the shallow traps. 

 

  
Figure 4.3.3: A demonstration of falling into a shallow trap. 

 

 
Figure 4.3.5: The white player can cut off black stones in 5 moves. 

 
The theoretical score of the correct move is 1, and any other moves are 0. The 

shallow traps are 5 level deep, and the correct move is 13 level deep. Table 4.3.1 

shows the computation needed of MCTS and minimax-combined MCTS to pick the 

correct move (minimax threshold parameter = 50). Table 4.3.2 shows the paired t-test 
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under 95% confidence interval. The confidence interval does not include 0, showing 

that the minimax-combined MCTS needs significantly fewer computations to pick the 

correct move. 

 Average computations needed Standard deviation 
MCTS 49786 7761 

Minimax-combined MCTS 23067 7384 
Table 4.3.1: The average computations needed of MCTS and minimax-combined 

MCTS 
 

Lower bound Upper bound 
19363 34076 

Table 4.3.2: Paired t-test (MCTS – Minimax MCTS)  
 

4.4 Simple Problems 

This section discusses the performance of minimax-combined MCTS when 

shallow traps do not exist. Simple problems are defined as problems that need 

500~5000 computations for MCTS to pick the correct move. 

Problem 1: 

The shallow traps are 5 level deep, and the correct move is 9 level deep. 

 
Figure 4.4.1: The position of problem 1 

 
 Average computations needed Standard deviation 

MCTS 1153 250 
Minimax-combined MCTS 1016 303 
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Table 4.4.1: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

-80 354 
Table 4.4.2: Paired t-test (MCTS – Minimax MCTS) 

 
Problem 2: 

The shallow traps are 3 level deep, and the correct move is 9 level deep. 

 
Figure 4.4.2: The position of problem 2 

 
 Average computations needed Standard deviation 

MCTS 1906 235 
Minimax-combined MCTS 2026 359 

Table 4.4.3: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

-315 76 
Table 4.4.4: Paired t-test (MCTS – Minimax MCTS) 

 
Problem 3: 

The shallow traps are 5 level deep, and the correct move is 7 level deep. 
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Figure 4.4.3: The position of problem 3 

 
 Average computations needed Standard deviation 

MCTS 1074 294 
Minimax-combined MCTS 825 418 

Table 4.4.5: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

-16 514 
Table 4.4.6: Paired t-test (MCTS – Minimax MCTS) 

 
Problem 4: 

The shallow traps are 5 level deep, and the correct move is 5 level deep. 

 
Figure 4.4.4: The position of problem 4 

 
 Average computations needed Standard deviation 

MCTS 2046 395 
Minimax-combined MCTS 1917 279 

Table 4.4.7: The average computations needed of MCTS and minimax-combined 
MCTS 
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Lower bound Upper bound 
-118 376 

Table 4.4.8: Paired t-test (MCTS – Minimax MCTS) 
 

Problem 5: 

The shallow traps are 9 level deep, and the correct move is 9 level deep. 

 
Figure 4.4.5: The position of problem 5 

 
 Average computations needed Standard deviation 

MCTS 2396 346 
Minimax-combined MCTS 2107 369 

Table 4.4.9: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

23 555 
Table 4.4.10: Paired t-test (MCTS – Minimax MCTS) 

 

4.5 Complex Problems 

This section discusses the performance of minimax-combined MCTS when 

shallow traps do not exist. Complex problems are defined as problems that need 

50000 or more computations for MCTS to pick the correct move. 

Problem 1: 

The shallow traps are 9 level deep, and the correct move is 9 level deep. 
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Figure 4.5.1: The position of problem 1 

 
 Average computations needed Standard deviation 

MCTS 78395 4344 
Minimax-combined MCTS 17643 2023 

Table 4.5.1: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

56855 64649 
Table 4.5.2: Paired t-test (MCTS – Minimax MCTS) 

 

Problem 2: 

The shallow traps are 9 level deep, and the correct move is 13 level deep. 

 
Figure 4.5.2: The position of problem 2 

 
 Average computations needed Standard deviation 

MCTS 52966 2984 
Minimax-combined MCTS 35254 15631 
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Table 4.5.3: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

4300 31122 
Table 4.5.4: Paired t-test (MCTS – Minimax MCTS) 

 
Problem 3: 

The shallow traps are 9 level deep, and the correct move is 9 level deep. 

 
Figure 4.5.3: The position of problem 3 

 
 Average computations needed Standard deviation 

MCTS 37692 6180 
Minimax-combined MCTS 29536 6259 

Table 4.5.5: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

-146 16457 
Table 4.5.6: Paired t-test (MCTS – Minimax MCTS) 

 
Problem 4: 

The shallow traps are 7 level deep, and the correct move is 7 level deep. 
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Figure 4.5.4: The position of problem 4 

 
 Average computations needed Standard deviation 

MCTS 36677 9654 
Minimax-combined MCTS 31260 8223 

Table 4.5.7: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

-5482 16317 
Table 4.5.8: Paired t-test (MCTS – Minimax MCTS) 

 

Problem 5: 

The shallow traps are 9 level deep, and the correct move is 11 level deep. 

 
Figure 4.5.5: The position of problem 5 

 
 Average computations needed Standard deviation 

MCTS 43118 15449 
Minimax-combined MCTS 15838 9397 
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Table 4.5.9: The average computations needed of MCTS and minimax-combined 
MCTS 

 
Lower bound Upper bound 

16522 38039 
Table 4.5.10: Paired t-test (MCTS – Minimax MCTS) 

 

4.6 Complex Problems with Multiple results 

This section does not relate to shallow traps. In fact, it is an unsolved problem 

for either or minimax-combined MCTS. When a complex problem has multiple 

results, MCTS tends to figure out a good move without a lot of simulations, but it 

might take very long to find out the best move. Figure 4.6.1 shows an example of a 

problem that MCTS take very long to solve (more than 500,000 simulations). The 

position marked with the square is the correct move, which has a theoretical score of 

1. The position marked with the triangle is the second-best move which has a 

theoretical score of 0.7. The position marked with the circle is the third-best move 

which has a theoretical score of 0.5. The positions unmarked are bad moves which 

have a theoretical score of 0. Tables 4.6.1 to 4.6.3 show the results when the number 

of total simulations increases. 

 
Figure 4.6.1: A complex multi score problem 

 
Moves	 Number	of	simulations	 Mean	 UCB	
Best	 714	 0.37	 0.52	
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Second	best	 1347	 0.41	 0.52	
Third	best	 870	 0.38	 0.52	

Bad	move	-	1	 131	 0.16	 0.52	
Bad	move	-	2	 725	 0.37	 0.52	
Bad	move	-	3	 390	 0.31	 0.52	
Bad	move	-	4	 687	 0.36	 0.52	
Bad	move	-	5	 167	 0.2	 0.52	
Bad	move	-	6	 382	 0.31	 0.52	

Table 4.6.1: After 5413 simulations 
 

Moves	 Number	of	simulations	 Mean	 UCB	
Best	 1013	 0.35	 0.49	

Second	best	 10956	 0.51	 0.55	
Third	best	 1251	 0.36	 0.49	

Bad	move	-	1	 173	 0.16	 0.49	
Bad	move	-	2	 1075	 0.35	 0.49	
Bad	move	-	3	 700	 0.32	 0.49	
Bad	move	-	4	 1292	 0.36	 0.49	
Bad	move	-	5	 233	 0.2	 0.49	
Bad	move	-	6	 601	 0.31	 0.49	

Table 4.6.2: After 17294 simulations 
 

Moves	 Number	of	simulations	 Mean	 UCB	
Best	 1013	 0.35	 0.5	

Second	best	 86077	 0.72	 0.74	
Third	best	 1251	 0.36	 0.5	

Bad	move	-	1	 173	 0.16	 0.5	
Bad	move	-	2	 1075	 0.35	 0.5	
Bad	move	-	3	 700	 0.32	 0.5	
Bad	move	-	4	 1292	 0.36	 0.5	
Bad	move	-	5	 233	 0.2	 0.5	
Bad	move	-	6	 601	 0.31	 0.5	

Table 4.6.3: After 92415 simulations 
 

From the tables, we can see that the second-best move is not significantly 

different from other moves at the beginning. After 20000 simulations, all simulation 

budgets are allocated to the second-best move. The second-best move converges to its 

theoretical score 0.7, and the UCB of the second-best increases from 0.52 to 0.74, 

which raises a question: If the UCB of a move was 0.52 and it converges to 0.7, is it 
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possible that other moves with UCB of 0.5 converge to a score higher than 0.7? The 

answer is positive. In this example, the best move has a theoretical score of 1. Table 

4.6.4 shows what will happen if the best move is simulated more. 

Number	of	simulations	 Mean	
572	 0.39	
1066	 0.36	
3022	 0.37	
7833	 0.45	
13636	 0.59	
19428	 0.68	
51133	 0.84	
102159	 0.91	

Table 4.6.4 The number of simulation and mean of the best move 
 

Table 4.6.5 shows the result of comparing the theoretical scores and the 

confidence bounds after 10000 simulations: 

Moves	 Mean	 UCB	 LCB	 Theoretical	
value	

Fall	in	
confidence	
bounds	or	

not	
Best	 0.35	 0.48	 0.21	 1	 No	

Second	best	 0.42	 0.49	 0.36	 0.7	 No	
Third	best	 0.34	 0.48	 0.2	 0.5	 No	

Bad	move	-	1	 0.18	 0.48	 -0.13	 0	 Yes	
Bad	move	-	2	 0.34	 0.48	 0.2	 0	 No	
Bad	move	-	3	 0.29	 0.48	 0.09	 0	 No	
Bad	move	-	4	 0.31	 0.48	 0.15	 0	 No	
Bad	move	-	5	 0.35	 0.48	 0.22	 0	 No	
Bad	move	-	6	 0.24	 0.48	 0	 0	 Yes	

Table 4.6.5: Theoretical values vs. confidence bounds 
 

 Here we can see most of the confidence bounds do not contain the theoretical 

score. This is due to the following fact: 

 Bandit problems, Hoeffding’s inequality, UCB1, and UCT all rely on an 

assumption: the distributions of samples are identical independent distribution (iid), 
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which is helpful when generating confidence bounds. However, in MCTS, samples 

under a node are not identical and independent distributed. Based on previous 

simulations, MCTS tends to search more promising nodes, so the later simulations are 

dependent on previous simulations and not identical to previous simulations. 

 If we applied these theories to tree search games while assuming the samples 

are iid, we get overconfident bounds. Like the example, UCB indicates other moves 

are confidently under 0.5, which is not true. 
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Chapter 5:  Conclusion and Future Work 

5.1 Conclusion 

In this thesis, I develop a model of Go problems and propose minimax-

combined MCTS. Then, I successfully implement MCTS and minimax-combined 

MCTS to the model of Go problems. 

According to the results of the experiments, minimax-combined MCTS 

performs significantly better than MCTS when level-3 and level-5 shallow traps exist 

in complex problems. The MCTS spends 670% as many computations as minimax-

combined MCTS in the level-3 shallow trap problem, and MCTS spends 216% as 

many computations as minimax-combined MCTS in the level-5 shallow trap 

problem. 

However, when the problem is simple, the minimax-combined MCTS is 

significantly better in only 1 out of 5 scenarios (and the difference is not much), and 

the performance is not significantly different among the two algorithms in the rest of 

the problems. 

On the other hand, in 3 out of 5 complex problems without level-3 or 5 

shallow traps, MCTS spends more computations (440%, 150%, and 272% as many 

computations as minimax-combined MCTS), and the performance is not significantly 

different among the two algorithms in the rest of the problems. 

Also, the iid assumption allows MCTS to find out good moves fast. 

Nonetheless, when several outcomes exist in the problem, it might only able to find 

out the second or third best move instead of the best. 
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5.2 Future Work 

First, I would like to do more experiments. The current experiments are 

insufficient in many ways. The sample size is small, and the number of problems is 

low, and the parameters are fixed. The experiment should be conducted under 

different parameters.  Also, I would like to test the effectiveness of minimax-

combined MCTS on different domains of games such as chess, Go (the entire game, 

not only restricted to local problems). The performance might vary from games to 

games. 

 Second, I would like to investigate more ways to define the minimax 

threshold. Currently, the minimax threshold is picked arbitrarily. A more statistics-

based rule should be applied. The UCB and LCB of parent and child nodes may give 

some clues. 

 Third, I would like to incorporate opponent policy play into MCTS, which is 

not considered in this thesis. With such a policy, the minimax-combined MCTS 

should show substantial improvement, as in AlphaGo and AlphaGo Zero. 

 Fourth, I would like to apply various MCTS extensions as well,  e.g., as 

mentioned in the literature review, the MCTS solver and three ways of MCTS and 

minimax hybrid, and compare them to minimax-combined MCTS. Furthermore, I 

would like to apply UCB1-tuned instead of UCB1, because UCB1-tuned takes 

variance of samples into account, which might improve the performance. Also, best-

arm identification algorithm only considers the regret of a final decision, which is a 

more suitable assumption than accumulated regrets. 
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Fifth, I would like to apply heuristic algorithms that particularly fit the game 

of Go. All Moves As First (AMAF) is a tree policy enhancement. The board of Go is 

big compared to other games, so when the positions of some places are changed, the 

rest of the board are not influenced that much. Therefore, a position which leads to 

good results under a sub-tree is often a good position in other sub-trees. This concept 

can be extended to the Last Good Reply heuristic. For example, if the sequence of 

moves (A1-A2-B1-B2) leads to a good result. Then, when opponents play B1, B2 

might be a good response. 

Last, I would like to do research on the influence of the non-iid characteristic 

in MCTS. When having poor policies or no policy, the influence is huge. The 

problem is whether the characteristic has great or little influence when the policy is as 

good as AlphaGo. Also, I would like to explore the algorithms that can deal with the 

non-iid characteristic. 
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Appendices 

A. Experiment Data 

A.1 Level-3 Shallow Trap 

X1 X2 X3 X4 X5 
52848 58821 54372 37941 42139 
X6 X7 X8 X9 X10 
43128 55132 43259 42146 58240 
Table A.1.1: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
5572 7544 5167 8243 7982 
X6 X7 X8 X9 X10 
5176 8647 8266 7979 8462 
Table A.1.2: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 

A.2 Level-5 Shallow Trap 

X1 X2 X3 X4 X5 
52811 46902 51639 43533 69134 
X6 X7 X8 X9 X10 
44109 42579 52095 49536 45526 
Table A.2.1: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
28138 15428 20815 38386 31840 
X6 X7 X8 X9 X10 
19470 19660 20827 20302 15806 
Table A.2.2: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =100) 

A.3 Simple Problems without Shallow Trap 

Problem 1: 
X1 X2 X3 X4 X5 
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1167 1443 1255 1152 981 
X6 X7 X8 X9 X10 
932 1528 1028 1340 1009 
X11 X12 X13 X14 X15 
878 1211 1090 1645 1327 
X16 X17 X18 X19 X20 
746 1158 1438 1003 727 
Table A.3.1: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
943 1387 988 993 709 
X6 X7 X8 X9 X10 
1075 1182 1186 831 1302 
X11 X12 X13 X14 X15 
1123 529 1586 1220 192 
X16 X17 X18 X19 X20 
1012 1069 1008 869 1107 
Table A.3.2: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 

 
Problem 2: 
X1 X2 X3 X4 X5 
1916 2003 1470 1720 2417 
X6 X7 X8 X9 X10 
1856 2350 1738 1867 1777 
X11 X12 X13 X14 X15 
2143 2021 2137 1899 1893 
X16 X17 X18 X19 X20 
1850 1542 1985 1702 1835 
Table A.3.3: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
1608 1127 1803 2202 2152 
X6 X7 X8 X9 X10 
2150 2648 1957 2121 1747 
X11 X12 X13 X14 X15 
2406 2188 2314 1759 1841 
X16 X17 X18 X19 X20 
2683 1921 1978 2124 1786 
Table A.3.4: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 
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Problem 3: 
X1 X2 X3 X4 X5 
937 1804 1201 1064 1384 
X6 X7 X8 X9 X10 
748 1470 960 1013 1027 
X11 X12 X13 X14 X15 
1076 477 658 907 830 
X16 X17 X18 X19 X20 
1157 1245 1266 1116 1131 
Table A.3.5: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
382 420 1024 663 900 
X6 X7 X8 X9 X10 
1208 1176 1094 257 533 
X11 X12 X13 X14 X15 
280 194 1019 1039 1076 
X16 X17 X18 X19 X20 
1156 849 1668 1260 297 
Table A.3.6: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 

 
Problem 4: 
X1 X2 X3 X4 X5 
2033 1597 1967 1842 1669 
X6 X7 X8 X9 X10 
2168 1489 2610 2533 2200 
X11 X12 X13 X14 X15 
2231 2257 1536 1712 2099 
X16 X17 X18 X19 X20 
1498 1814 2350 2571 2747 
Table A.3.7: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
2316 2015 1991 2250 1934 
X6 X7 X8 X9 X10 
2155 1799 1897 1770 2151 
X11 X12 X13 X14 X15 
1972 1866 1769 1177 1435 
X16 X17 X18 X19 X20 
2186 1784 1716 1916 2245 
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Table A.3.8: The number of computations needed of minimax-combined MCTS 
to pick the correct move (the exploration parameter = 1.414 and minimax 

threshold parameter =50) 
 
Problem 5: 
X1 X2 X3 X4 X5 
2648 2595 2785 1826 2851 
X6 X7 X8 X9 X10 
1777 2497 2253 2357 2374 
X11 X12 X13 X14 X15 
2807 2285 2194 1672 2684 
X16 X17 X18 X19 X20 
2131 2372 2458 2594 2754 
Table A.3.9: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
2372 2334 1878 2215 1913 
X6 X7 X8 X9 X10 
2088 2219 2072 1576 1941 
X11 X12 X13 X14 X15 
1849 2194 1899 2123 1876 
X16 X17 X18 X19 X20 
2301 1676 2322 1930 3360 

Table A.3.10: The number of computations needed of minimax-combined MCTS 
to pick the correct move (the exploration parameter = 1.414 and minimax 

threshold parameter =50) 
 

A.4 Complex Problems without Shallow Trap 

Problem 1: 
X1 X2 X3 X4 X5 
82338 81734 70378 79007 74319 
X6 X7 X8 X9 X10 
83975 79494 79836 73289 79581 
Table A.4.1: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
16527 16267 17740 16414 15791 
X6 X7 X8 X9 X10 
18012 20085 16389 17017 22191 
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Table A.4.2: The number of computations needed of minimax-combined MCTS 
to pick the correct move (the exploration parameter = 1.414 and minimax 

threshold parameter =100) 
 
Problem 2: 
X1 X2 X3 X4 X5 
50899 49774 58950 51618 56656 
X6 X7 X8 X9 X10 
54415 50883 54154 51218 51089 
Table A.4.3: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
60320 33934 37281 27826 19976 
X6 X7 X8 X9 X10 
58647 12298 38391 41156 22714 
Table A.4.4: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =100) 

 
Problem 3: 
X1 X2 X3 X4 X5 
34519 30172 35242 38399 47751 
X6 X7 X8 X9 X10 
46638 38477 28536 37295 39893 
Table A.4.5: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
36104 37460 22037 31771 21091 
X6 X7 X8 X9 X10 
36588 32016 29274 22552 26470 
Table A.4.6: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 

 
Problem 4: 
X1 X2 X3 X4 X5 
27433 26469 44101 43254 27051 
X6 X7 X8 X9 X10 
28315 29114 48490 48197 44346 
Table A.4.7: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
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41871 36937 31965 28147 35115 
X6 X7 X8 X9 X10 
31452 11069 32699 35446 27897 
Table A.4.8: The number of computations needed of minimax-combined MCTS 

to pick the correct move (the exploration parameter = 1.414 and minimax 
threshold parameter =50) 

 
Problem 5: 
X1 X2 X3 X4 X5 
58978 33232 33013 33910 69404 
X6 X7 X8 X9 X10 
67056 32853 34205 36054 32478 
Table A.4.9: The number of computations needed of MCTS to pick the correct 

move (the exploration parameter = 1.414) 
 
X1 X2 X3 X4 X5 
23214 6543 28460 5695 28505 
X6 X7 X8 X9 X10 
20363 13198 9766 3378 19257 

Table A.4.10: The number of computations needed of minimax-combined MCTS 
to pick the correct move (the exploration parameter = 1.414 and minimax 

threshold parameter =50) 
 

B. Source Code 

The program is written is C++, including 6 files. 
1. Main.cpp: Where the experiment process is defined. 
2. Node.h: Define the algorithm of MCTS. This is the only different part 

between MCTS and minimax-combined MCTS. 
3. Board.h: Define the model of Go. 
4. Position.h: An interface between Node.h and Board.h. 
5. Function.h: Supporting functions. 
6. Go.txt: input files. 

 
Main.cpp (MCTS): 
#include "Node.h" 
 

#include <iostream> 
using namespace std; 
 

int main(){ 
  
    srand((unsigned int)time(NULL)); 
    rand(); 
    rand(); 
    rand(); 
    rand(); 
    rand(); 
     
    char fileName[]="Go.txt"; 
    Board board(fileName); 
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    Node root(&board,1500,1.414); 
    root.MonteCarloTreeSearch(); 
    root.viewTree(); 
     
    return 0; 
} 
Main.cpp (minimax-combined MCTS); 
#include "Node.h" 
 
#include <iostream> 
using namespace std; 
 
int main(){ 
  
    srand((unsigned int)time(NULL)); 
    rand(); 
    rand(); 
    rand(); 
    rand(); 
    rand(); 
     
    char fileName[]="Go.txt"; 
    Board board(fileName); 
     
    Node root(&board,1000,1.414,50); 
    root.MonteCarloTreeSearch(); 
    root.viewTree(); 
     
    return 0; 
} 
 
Node.h (MCTS): 
// 
//  Node.h 
//  Thesis 
// 
//  Created by Jonathan Lin on 6/19/17. 
//  Copyright © 2017 Jonathan Lin. All rights reserved. 
// 
 
#ifndef Node_h 
#define Node_h 
 
#include "Board.h" 
 
class Node{ 
     
private: 
     
    Board* board; 
    Node* parent; 
    int action[2]; 
    vector<Node*> children; 
     
    vector<int>decisionTimeList; 
    vector<int>decisionListRow; 
    vector<int>decisionListColumn; 
     
    int simulationBudget; 
    int budgetUsed; 
    float explorationParameter; 
     
    float numberOfSimulation; 
    float totalScore; 
    float mean; 
    float UCB; 
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    float LCB; 
     
    void updateDecisionList(); 
    void decision(int functionAction[2]); 
    void selection(); 
    void expansion(); 
    void simulation(float* score); 
    void backPropagation(float score); 
     
    void randomPlay(Board* copy); 
     
    Node* searchChild(int functionAction[2]); 
    void getAction(int functionAction[2]); 
     
    void calculateUCBLCB(); 
     
public: 
     
    void test(); 
    Node(Board* input, int functionSimulationBudget, float 
functionExplorationParameter); //for root 
    Node(Node* parentNode, int functionAction[2]); //for child 
    ~Node(); 
    void MonteCarloTreeSearch(); 
    void giveExtraSearchBudget(int budget); 
    void viewDecision(); 
    void viewData(); 
    void viewTree(); 
     
}; 
 
//PUBLIC 
 
void Node::test(){ 
     
    //* 
    //board->placeStone(2, 1); 
    MonteCarloTreeSearch(); 
    viewTree(); 
    //*/ 
     
    /* 
    int i=0; 
    while(i<100){ 
        float score=0; 
        simulation(&score); 
        backPropagation(score); 
        i++; 
    } 
    viewData(); 
    //*/ 
     
} 
 
Node::Node(Board* input, int functionSimulationBudget, float 
functionExplorationParameter){ 
     
    Board* copy=new Board(input); 
    board=copy; 
    parent=NULL; 
    action[0]=-1; 
    action[1]=-1; 
     
    simulationBudget=functionSimulationBudget; 
    budgetUsed=0; 
    explorationParameter=functionExplorationParameter; 
     
    numberOfSimulation=0; 
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    totalScore=0; 
    mean=0; 
    UCB=0; 
    LCB=0; 
     
} 
 
Node::Node(Node* parentNode, int functionAction[2]){ 
     
    parentNode->children.push_back(this); 
    parent=parentNode; 
    Board* copy=new Board(parentNode->board); 
    copy->placeStone(functionAction[0], functionAction[1]); 
    board=copy; 
    action[0]=functionAction[0]; 
    action[1]=functionAction[1]; 
     
    simulationBudget=0; 
    budgetUsed=0; 
    explorationParameter=parent->explorationParameter; 
     
    numberOfSimulation=0; 
    totalScore=0; 
    mean=0; 
    UCB=0; 
    LCB=0; 
     
} 
 
Node::~Node(){ 
     
    delete board; 
     
} 
 
void Node::MonteCarloTreeSearch(){ 
     
    while(budgetUsed<=simulationBudget){ 
         
        selection(); 
        budgetUsed++; 
         
        if(budgetUsed!=0&&budgetUsed%1000==0){ 
            cout<<budgetUsed<<" of budget is used."<<endl; 
        } 
         
    } 
     
} 
 
void Node::giveExtraSearchBudget(int budget){ 
    simulationBudget+=budget; 
    MonteCarloTreeSearch(); 
    viewTree(); 
} 
 
void Node::viewDecision(){ 
     
    int convergeTime=-1; 
    int converageMove[2]={-1,-1}; 
     
    int i=0; 
    while(i<decisionListRow.size()) { 
         
        if(!(decisionListRow[i]==converageMove[0]&&decisionListColumn[i]==converageMo
ve[1]) 
           ){ 
            converageMove[0]=decisionListRow[i]; 
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            converageMove[1]=decisionListColumn[i]; 
            convergeTime=decisionTimeList[i]; 
        } 
         
        //cout<<decisionTimeList[i]<<endl; 
        //cout<<decisionListRow[i]<<" "<<decisionListColumn[i]<<endl; 
        i++; 
    } 
     
    cout<<endl; 
    cout<<"Convergent time: "<<convergeTime<<endl; 
    cout<<"Convergent move: "<<converageMove[0]<<" "<<converageMove[1]<<endl; 
    cout<<endl; 
     
} 
 
void Node::viewData(){ 
     
    board->showBoard(); 
     
    if(board->getOwnColor()==1) { 
        cout<<"Black to move."<<endl<<endl; 
    } 
    else{ 
        cout<<"White to move."<<endl<<endl; 
    } 
     
    cout<<setw(30)<<"Last move"<<action[0]<<" "<<action[1]<<endl<<endl; 
     
    cout<<setw(30)<<"Number of simulation"<<numberOfSimulation<<endl<<endl; 
     
    cout<<setw(30)<<"Total score"<<rounding(totalScore, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"Mean"<<rounding(mean, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"UCB"<<rounding(UCB, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"LCB"<<rounding(LCB, 2)<<endl<<endl; 
     
     
    cout<<"Children"<<endl; 
     
    if(children.size()==0) { 
        cout<<"No child"<<endl<<endl; 
    } 
    else{ 
         
        cout<<setw(15)<<"Action"; 
        cout<<setw(15)<<"# of sim."; 
        cout<<setw(15)<<"Mean"; 
        cout<<setw(15)<<"UCB"; 
        cout<<setw(15)<<"LCB"; 
        cout<<endl; 
         
        int i=0; 
        while(i<children.size()){ 
            cout<<setw(5)<<children[i]->action[0]; 
            cout<<setw(10)<<children[i]->action[1]; 
            cout<<setw(15)<<children[i]->numberOfSimulation; 
            cout<<setw(15)<<rounding(children[i]->mean,2); 
            cout<<setw(15)<<rounding(children[i]->UCB,2); 
            cout<<setw(15)<<rounding(children[i]->LCB,2); 
            cout<<endl; 
            i++; 
        } 
        cout<<endl; 
         
    } 
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} 
 
void Node::viewTree(){ 
     
    Node* currentNode=this; 
    int control1=0, control2=0; 
     
    while(currentNode!=NULL){ 
         
        currentNode->viewData(); 
         
        cout<<"Go to child: (row, col). Go to parent node: -1. Exit: -2. Give more 
budget: -3. View decision: -4."<<endl; 
        cin>>control1; 
         
        if(control1==-1) { 
            currentNode=currentNode->parent; 
            continue; 
        } 
         
        else if(control1==-2) { 
            break; 
        } 
         
        else if(control1==-3) { 
            break; 
        } 
         
        else if(control1==-4){ 
            viewDecision(); 
            continue; 
        } 
         
        else{ 
             
            cin>>control2; 
            int move[2]={control1,control2}; 
            if(currentNode->searchChild(move)==NULL){ 
                cout<<"Child not found. Input a key to continue."<<endl; 
                int temp=0; 
                cin>>temp; 
                continue; 
            } 
             
            currentNode=currentNode->searchChild(move); 
            continue; 
             
        } 
         
    } 
     
    if(control1==-3) { 
        int extraBudget=0; 
        cout<<"Enter extra budget."<<endl; 
        cin>>extraBudget; 
        giveExtraSearchBudget(extraBudget); 
    } 
     
     
     
} 
 
//PRIVATE 
 
void Node::updateDecisionList(){ 
     
    int move[2]={-1,-1}; 
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    decision(move); 
    decisionTimeList.push_back(numberOfSimulation); 
    decisionListRow.push_back(move[0]); 
    decisionListColumn.push_back(move[1]); 
     
} 
 
void Node::decision(int functionAction[2]){ 
     
    if(children.size()==0){ 
        return; 
    } 
     
    float value=children[0]->mean; 
    functionAction[0]=children[0]->action[0]; 
    functionAction[1]=children[0]->action[1]; 
     
    int i=1; 
    while(i<children.size()) { 
        if(children[i]->mean>value){ 
            value=children[i]->mean; 
            functionAction[0]=children[i]->action[0]; 
            functionAction[1]=children[i]->action[1]; 
        } 
        i++; 
    } 
     
} 
 
void Node::selection(){ 
     
    Node* currentNode=this; 
     
    while(currentNode!=NULL) { 
         
        //if the node is at end state 
        if(currentNode->board->getScore()!=-2) { 
            currentNode->backPropagation(currentNode->board->getScore()); 
            updateDecisionList(); 
            return; 
        } 
         
        //get legal positions 
        Position position(currentNode->board->getBoardSize()); 
        currentNode->board->computerInterface(&position); 
         
        //if the node is expandable 
        if(currentNode->children.size()==0) { 
            currentNode->expansion(); 
            updateDecisionList(); 
            return; 
        } 
         
        //if the node is not expandable 
        else{ 
             
            //if the node is MAX node 
            if(currentNode->board->getOwnColor()==1){ 
                int selectedChild=0; 
                float maxUCB=currentNode->children[selectedChild]->UCB; 
                int i=1; 
                while(i<currentNode->children.size()){ 
                    if(currentNode->children[i]->UCB>maxUCB){ 
                        selectedChild=i; 
                        maxUCB=currentNode->children[selectedChild]->UCB; 
                    } 
                    i++; 
                } 
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                currentNode=currentNode->children[selectedChild]; 
            } 
             
            //if the node is MIN node 
            else if(currentNode->board->getOwnColor()==2) { 
                int selectedChild=0; 
                float minLCB=currentNode->children[selectedChild]->LCB; 
                int i=1; 
                while(i<currentNode->children.size()){ 
                    if(currentNode->children[i]->LCB<minLCB){ 
                        selectedChild=i; 
                        minLCB=currentNode->children[selectedChild]->LCB; 
                    } 
                    i++; 
                } 
                currentNode=currentNode->children[selectedChild]; 
            } 
        } 
 
    } 
     
} 
 
void Node::expansion(){ 
     
    if(children.size()!=0){ 
        cout<<"Expansion error, the node is already expanded."<<endl; 
        return; 
    } 
     
    Position position(board->getBoardSize()); 
    board->computerInterface(&position); 
     
    int i=0; 
    while(i<position.legalPositionColumn.size()) { 
         
        int move[2]={position.legalPositionRow[i],position.legalPositionColumn[i]}; 
        Node* expandedChild=new Node(this,move); 
        float score=0; 
        expandedChild->simulation(&score); 
        expandedChild->backPropagation(score); 
         
        i++; 
    } 
     
} 
 
void Node::simulation(float* functionScore){ 
     
    float score=0; 
    Board copy(board); 
     
    while(copy.getScore()==-2){ 
        randomPlay(&copy); 
    } 
     
    score=copy.getScore(); 
    *functionScore=score; 
     
} 
 
void Node::backPropagation(float score){ 
     
    Node* currentNode=this; 
     
    while(currentNode!=NULL){ 
         
        currentNode->numberOfSimulation++; 
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        currentNode->totalScore+=score; 
        currentNode->mean=currentNode->totalScore/currentNode->numberOfSimulation; 
         
        int i=0; 
        while(i<currentNode->children.size()) { 
            currentNode->children[i]->calculateUCBLCB(); 
            i++; 
        } 
         
        currentNode=currentNode->parent; 
         
    } 
     
} 
 
void Node::randomPlay(Board* copy){ 
     
    Position position(copy->getBoardSize()); 
    copy->computerInterface(&position); 
     
    //randomly pick position 
     
    int random=(int)(zeroToOne()*position.getNumberOfLegalMove()); 
     
    int pickedRow=position.legalPositionRow.at(random); 
    int pickedColumn=position.legalPositionColumn.at(random); 
     
    copy->placeStone(pickedRow, pickedColumn); 
     
} 
 
Node* Node::searchChild(int functionAction[2]){ 
     
    Node* result=NULL; 
     
    int counter=0; 
     
    while(counter<children.size()){ 
         
        int childMove[2]={0}; 
        children.at(counter)->getAction(childMove); 
        if(functionAction[0]==childMove[0]&&functionAction[1]==childMove[1]){ 
            result=children.at(counter); 
             
        } 
         
        counter++; 
    } 
     
    return result; 
     
} 
 
void Node::getAction(int functionAction[2]){ 
     
    functionAction[0]=action[0]; 
    functionAction[1]=action[1]; 
     
} 
 
void Node::calculateUCBLCB(){ 
     
    if(parent==NULL) { 
        return; 
    } 
     
    float exploration=explorationParameter*sqrt(log(parent-
>numberOfSimulation)/numberOfSimulation); 
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    UCB=mean+exploration; 
    LCB=mean-exploration; 
     
} 
 
#endif /* Node_h */ 
 
Node.h (minimax-combined MCTS); 
// 
//  Node.h 
//  Thesis 
// 
//  Created by Jonathan Lin on 6/19/17. 
//  Copyright © 2017 Jonathan Lin. All rights reserved. 
// 
 
#ifndef Node_h 
#define Node_h 
 
#include "Board.h" 
 
class Node{ 
     
private: 
     
    Board* board; 
    Node* parent; 
    Node* minimaxChild; 
    int action[2]; 
    vector<Node*> children; 
     
    vector<int>decisionTimeList; 
    vector<int>decisionListRow; 
    vector<int>decisionListColumn; 
     
    int simulationBudget; 
    int budgetUsed; 
    float explorationParameter; 
    int backupThresholdParameter; 
    int backupThreshold; 
     
    float numberOfSimulation; 
    float totalScore; 
    float mean; 
    float UCB; 
    float LCB; 
     
    void updateDecisionList(); 
    void decision(int functionAction[2]); 
    void selection(); 
    void expansion(); 
    void simulation(float* score); 
    void backPropagation(float score); 
     
    void randomPlay(Board* copy); 
     
    Node* searchChild(int functionAction[2]); 
    void getAction(int functionAction[2]); 
     
    void calculateUCBLCB(); 
    void calculateMinimax(); 
    bool checkMinimax(); 
     
public: 
     
    void test(); 
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    Node(Board* input, int functionSimulationBudget, float 
functionExplorationParameter, int functionBackupThresholdParameter); //for root 
    Node(Node* parentNode, int functionAction[2]); //for child 
    ~Node(); 
    void MonteCarloTreeSearch(); 
    void giveExtraSearchBudget(int budget); 
    void viewDecision(); 
    void viewData(); 
    void viewTree(); 
     
}; 
 
//PUBLIC 
 
void Node::test(){ 
     
     
     
} 
 
Node::Node(Board* input, int functionSimulationBudget, float 
functionExplorationParameter, int functionBackupThresholdParameter){ 
     
    Board* copy=new Board(input); 
    board=copy; 
    parent=NULL; 
    minimaxChild=this; 
    action[0]=-1; 
    action[1]=-1; 
     
    simulationBudget=functionSimulationBudget; 
    budgetUsed=0; 
    explorationParameter=functionExplorationParameter; 
     
    backupThresholdParameter=functionBackupThresholdParameter; 
    Position position(board->getBoardSize()); 
    board->computerInterface(&position); 
    backupThreshold=backupThresholdParameter*position.getNumberOfLegalMove(); 
     
    numberOfSimulation=0; 
    totalScore=0; 
    mean=0; 
    UCB=0; 
    LCB=0; 
     
} 
 
Node::Node(Node* parentNode, int functionAction[2]){ 
     
    parentNode->children.push_back(this); 
    parent=parentNode; 
    minimaxChild=this; 
    Board* copy=new Board(parentNode->board); 
    copy->placeStone(functionAction[0], functionAction[1]); 
    board=copy; 
    action[0]=functionAction[0]; 
    action[1]=functionAction[1]; 
     
    simulationBudget=0; 
    budgetUsed=0; 
    explorationParameter=parent->explorationParameter; 
     
    backupThresholdParameter=parent->backupThresholdParameter; 
    Position position(board->getBoardSize()); 
    board->computerInterface(&position); 
    backupThreshold=backupThresholdParameter*position.getNumberOfLegalMove(); 
     
    numberOfSimulation=0; 
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    totalScore=0; 
    mean=0; 
    UCB=0; 
    LCB=0; 
     
} 
 
Node::~Node(){ 
     
    delete board; 
     
} 
 
void Node::MonteCarloTreeSearch(){ 
     
    while(budgetUsed<=simulationBudget){ 
         
        selection(); 
        budgetUsed++; 
         
        if(budgetUsed!=0&&budgetUsed%100==0){ 
            cout<<budgetUsed<<"/"<<simulationBudget<<" of budget is used."<<endl; 
        } 
         
    } 
     
} 
 
void Node::giveExtraSearchBudget(int budget){ 
    simulationBudget+=budget; 
    MonteCarloTreeSearch(); 
    viewTree(); 
} 
 
void Node::viewDecision(){ 
     
    int convergeTime=-1; 
    int converageMove[2]={-1,-1}; 
     
    int i=0; 
    while(i<decisionListRow.size()) { 
         
        if(!(decisionListRow[i]==converageMove[0]&&decisionListColumn[i]==converageMo
ve[1]) 
           ){ 
            converageMove[0]=decisionListRow[i]; 
            converageMove[1]=decisionListColumn[i]; 
            convergeTime=decisionTimeList[i]; 
        } 
         
        //cout<<decisionTimeList[i]<<endl; 
        //cout<<decisionListRow[i]<<" "<<decisionListColumn[i]<<endl; 
        i++; 
    } 
     
    cout<<endl; 
    cout<<"Convergent time: "<<convergeTime<<endl; 
    cout<<"Convergent move: "<<converageMove[0]<<" "<<converageMove[1]<<endl; 
    cout<<endl; 
     
} 
 
void Node::viewData(){ 
     
    board->showBoard(); 
     
    if(board->getOwnColor()==1) { 
        cout<<"Black to move."<<endl<<endl; 
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    } 
    else{ 
        cout<<"White to move."<<endl<<endl; 
    } 
     
    cout<<setw(30)<<"Last move"<<action[0]<<" "<<action[1]<<endl<<endl; 
     
    if(minimaxChild==this){ 
        cout<<"Don't have minimax child."<<endl<<endl; 
    } 
    else{ 
        cout<<"Have minimax child."<<endl<<endl; 
    } 
     
    cout<<setw(30)<<"Number of simulation"<<numberOfSimulation<<endl<<endl; 
     
    cout<<setw(30)<<"Total score"<<rounding(totalScore, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"Mean"<<rounding(mean, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"UCB"<<rounding(UCB, 2)<<endl<<endl; 
     
    cout<<setw(30)<<"LCB"<<rounding(LCB, 2)<<endl<<endl; 
     
    cout<<"Children"<<endl; 
     
    if(children.size()==0) { 
        cout<<"No child"<<endl<<endl; 
    } 
    else{ 
         
        cout<<setw(15)<<"Action"; 
        cout<<setw(15)<<"# of sim."; 
        cout<<setw(15)<<"Mean"; 
        cout<<setw(15)<<"UCB"; 
        cout<<setw(15)<<"LCB"; 
        cout<<setw(15)<<"# of sim."; 
        cout<<setw(15)<<"Mean"; 
        cout<<setw(15)<<"UCB"; 
        cout<<setw(15)<<"LCB"; 
        cout<<endl; 
         
        int i=0; 
        while(i<children.size()){ 
            cout<<setw(5)<<children[i]->action[0]; 
            cout<<setw(10)<<children[i]->action[1]; 
            cout<<setw(15)<<children[i]->numberOfSimulation; 
            cout<<setw(15)<<rounding(children[i]->mean,2); 
            cout<<setw(15)<<rounding(children[i]->UCB,2); 
            cout<<setw(15)<<rounding(children[i]->LCB,2); 
             
            cout<<setw(15)<<children[i]->minimaxChild->numberOfSimulation; 
            cout<<setw(15)<<rounding(children[i]->minimaxChild->mean,2); 
            cout<<setw(15)<<rounding(children[i]->minimaxChild->UCB,2); 
            cout<<setw(15)<<rounding(children[i]->minimaxChild->LCB,2); 
            cout<<endl; 
            i++; 
        } 
        cout<<endl; 
         
    } 
     
} 
 
void Node::viewTree(){ 
     
    Node* currentNode=this; 
    int control1=0, control2=0; 
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    while(currentNode!=NULL){ 
         
        currentNode->viewData(); 
         
        cout<<"Go to child: (row, col). Go to parent node: -1. Exit: -2. Give more 
budget: -3. View decision: -4."<<endl; 
        cin>>control1; 
         
        if(control1==-1) { 
            currentNode=currentNode->parent; 
            continue; 
        } 
         
        else if(control1==-2) { 
            break; 
        } 
         
        else if(control1==-3) { 
            break; 
        } 
         
        else if(control1==-4){ 
            viewDecision(); 
            continue; 
        } 
         
        else if(control1==-5){ 
            currentNode=currentNode->minimaxChild; 
            continue; 
        } 
         
        else if(control1==-6){ 
            currentNode->calculateMinimax(); 
            continue; 
        } 
         
        else{ 
             
            cin>>control2; 
            int move[2]={control1,control2}; 
            if(currentNode->searchChild(move)==NULL){ 
                cout<<"Child not found. Input a key to continue."<<endl; 
                int temp=0; 
                cin>>temp; 
                continue; 
            } 
             
            currentNode=currentNode->searchChild(move); 
            continue; 
             
        } 
         
    } 
     
    if(control1==-3) { 
        int extraBudget=0; 
        cout<<"Enter extra budget."<<endl; 
        cin>>extraBudget; 
        giveExtraSearchBudget(extraBudget); 
    } 
     
} 
 
//PRIVATE 
 
void Node::updateDecisionList(){ 
     



 

 

78 
 

    int move[2]={-1,-1}; 
    decision(move); 
    decisionTimeList.push_back(numberOfSimulation); 
    decisionListRow.push_back(move[0]); 
    decisionListColumn.push_back(move[1]); 
     
} 
 
void Node::decision(int functionAction[2]){ 
     
    if(children.size()==0){ 
        return; 
    } 
     
    float value=children[0]->numberOfSimulation; 
    functionAction[0]=children[0]->action[0]; 
    functionAction[1]=children[0]->action[1]; 
     
    Position position(board->getBoardSize()); 
    board->computerInterface(&position); 
     
    int i=1; 
    while(i<children.size()) { 
        if(children[i]->numberOfSimulation>value){//&&children[i]-
>numberOfSimulation>numberOfSimulation/position.getNumberOfLegalMove() 
            value=children[i]->numberOfSimulation; 
            functionAction[0]=children[i]->action[0]; 
            functionAction[1]=children[i]->action[1]; 
        } 
        i++; 
    } 
     
} 
 
void Node::selection(){ 
     
    Node* currentNode=this; 
     
    while(currentNode!=NULL) { 
         
        //if the node is at end state 
        if(currentNode->board->getScore()!=-2) { 
            currentNode->backPropagation(currentNode->board->getScore()); 
            updateDecisionList(); 
            return; 
        } 
         
        //get legal positions 
        Position position(currentNode->board->getBoardSize()); 
        currentNode->board->computerInterface(&position); 
         
        //if the node is expandable 
        if(currentNode->children.size()==0) { 
            currentNode->expansion(); 
            updateDecisionList(); 
            return; 
        } 
         
        //if the node is not expandable 
        else{ 
             
            //if the node is MAX node 
            if(currentNode->board->getOwnColor()==1){ 
                int selectedChild=0; 
                float maxUCB=currentNode->children[0]->minimaxChild->UCB; 
                int i=1; 
                while(i<currentNode->children.size()){ 
                    if(currentNode->children[i]->minimaxChild->UCB>maxUCB){ 
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                        selectedChild=i; 
                        maxUCB=currentNode->children[i]->minimaxChild->UCB; 
                    } 
                    i++; 
                } 
                currentNode=currentNode->children[selectedChild]->minimaxChild; 
            } 
             
            //if the node is MIN node 
            else if(currentNode->board->getOwnColor()==2) { 
                int selectedChild=0; 
                float minLCB=currentNode->children[0]->minimaxChild->LCB; 
                int i=1; 
                while(i<currentNode->children.size()){ 
                    if(currentNode->children[i]->minimaxChild->LCB<minLCB){ 
                        selectedChild=i; 
                        minLCB=currentNode->children[i]->minimaxChild->LCB; 
                    } 
                    i++; 
                } 
                currentNode=currentNode->children[selectedChild]->minimaxChild; 
            } 
        } 
         
    } 
     
} 
 
void Node::expansion(){ 
     
    if(children.size()!=0){ 
        cout<<"Expansion error, the node is already expanded."<<endl; 
        return; 
    } 
     
    Position position(board->getBoardSize()); 
    board->computerInterface(&position); 
     
    int i=0; 
    while(i<position.legalPositionColumn.size()) { 
         
        int move[2]={position.legalPositionRow[i],position.legalPositionColumn[i]}; 
        Node* expandedChild=new Node(this,move); 
        float score=0; 
        expandedChild->simulation(&score); 
        expandedChild->backPropagation(score); 
         
        i++; 
    } 
     
} 
 
void Node::simulation(float* functionScore){ 
     
    float score=0; 
    Board copy(board); 
     
    while(copy.getScore()==-2){ 
        randomPlay(&copy); 
    } 
     
    score=copy.getScore(); 
    *functionScore=score; 
     
} 
 
void Node::backPropagation(float score){ 
     



 

 

80 
 

    Node* currentNode=this; 
     
    while(currentNode!=NULL){ 
         
        currentNode->numberOfSimulation++; 
        currentNode->totalScore+=score; 
        currentNode->mean=currentNode->totalScore/currentNode->numberOfSimulation; 
         
        currentNode->calculateMinimax(); 
         
        int i=0; 
        while(i<currentNode->children.size()) { 
            currentNode->children[i]->calculateUCBLCB(); 
            i++; 
        } 
        currentNode=currentNode->parent; 
         
    } 
     
} 
 
void Node::randomPlay(Board* copy){ 
     
    Position position(copy->getBoardSize()); 
    copy->computerInterface(&position); 
     
    //randomly pick position 
     
    int random=(int)(zeroToOne()*position.getNumberOfLegalMove()); 
     
    int pickedRow=position.legalPositionRow.at(random); 
    int pickedColumn=position.legalPositionColumn.at(random); 
     
    copy->placeStone(pickedRow, pickedColumn); 
     
} 
 
Node* Node::searchChild(int functionAction[2]){ 
     
    Node* result=NULL; 
     
    int counter=0; 
     
    while(counter<children.size()){ 
         
        int childMove[2]={0}; 
        children.at(counter)->getAction(childMove); 
        if(functionAction[0]==childMove[0]&&functionAction[1]==childMove[1]){ 
            result=children.at(counter); 
             
        } 
         
        counter++; 
    } 
     
    return result; 
     
} 
 
void Node::getAction(int functionAction[2]){ 
     
    functionAction[0]=action[0]; 
    functionAction[1]=action[1]; 
     
} 
 
void Node::calculateUCBLCB(){ 
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    if(parent==NULL) { 
        return; 
    } 
     
    float exploration=explorationParameter*sqrt(log(parent-
>numberOfSimulation)/numberOfSimulation); 
     
    UCB=mean+exploration; 
    LCB=mean-exploration; 
     
} 
 
void Node::calculateMinimax(){ 
     
    if(children.size()==0){ 
        minimaxChild=this; 
        return; 
    } 
     
    if(numberOfSimulation<backupThreshold){ 
        minimaxChild=this; 
        return; 
    } 
     
    float maxValue=-99; 
    float minValue=99; 
    int i=0; 
    while(i<children.size()){ 
         
        if(board->getOwnColor()==1){ 
            if(children[i]->minimaxChild->mean>maxValue){ 
                maxValue=children[i]->minimaxChild->mean; 
                minimaxChild=children[i]->minimaxChild; 
            } 
        } 
         
        if(board->getOwnColor()==2){ 
            if(children[i]->minimaxChild->mean<minValue){ 
                minValue=children[i]->minimaxChild->mean; 
                minimaxChild=children[i]->minimaxChild; 
            } 
        } 
         
        i++; 
    } 
} 
 
#endif /* Node_h */ 
 
Board.h: 
#ifndef Board_h 
#define Board_h 
 
#include "Functions.h" 
#include "Position.h" 
 
class Board{ 
     
private: 
     
    int gameType; // 1 black to live 2 black to kill 
    int boardSize; // n*n board 
     
    int **space; // 0 not playable 1 playable 
    int **important; // 0 not important 1 important 
    int **alive; // 0 not alive 1 alive 
    int colorOfOwn; // 1 black to play 2 white to play 
    int colorOfOpponent; // 1 black to play 2 white to play 
    int positionOfKo[2]; // [0] row [1] column 
    int whoWinKo; // 0 no one 1 black 2 white 
    int remainingKoAdvantage; // default 5 
    int continuousPass; // if increase to 3, game ends. 
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    int accumulatedPass; // if up to 4˙˙, black wins, if down to -4, white wins 
    int **stone; // 0 empty 1 black 2 white -1 border 
    int countLiberty(int row, int column); 
    void subCountLiberty(int **liberty, int row, int column); 
    void capture(int row, int column, int color); // color default 0 
    bool checkKo(int row, int column); // true if move is a ko 
    bool checkLegalMove(int row, int column); // true if move is legal 
    void getLegalMove(Position* position); 
    bool checkFillSpace(int row, int column); //true if fill space 
    bool checkFillEye(int row, int column); // true if fill eye 
    bool checkPass(); //if allow to pass 1. if not 0. 
     
    bool checkDead(); // true if dead 
    bool checkAlive(); // true if alive 
    void updateAlive(int row, int column); // if the move connects to alive groups, all stones connected 
are alive and not important 
    void changePlayer(); 
  
public: 
    void test(); 
    Board(char fileName[]); 
    Board(Board* copyBoard); 
    ~Board(); 
    void humanInterface(); 
    void computerInterface(Position* position); 
    void placeStone(int row, int column); 
    float getScore(); // have nine states: 0 undecided, 1 lose ko and alive, 2 alive, 3 lose ko and seki, 
4 seki, 5 win ko and alive, 6 lose ko and dead, 7 win ko and seki, 8 dead, 9 win ko and dead 
    int getBoardSize(); 
    int getOwnColor(); 
    void showBoard(); 
    void viewData(); 
     
}; 
 
//---------------------PUBLIC---------------------------- 
 
void Board::test(){ 
  
    while(getScore()==-2){ 
         
        humanInterface(); 
         
    } 
     
    cout<<"The score is "<<getScore()<<endl; 
     
 showBoard(); 
     
} 
 
Board::Board(char fileName[]){ 
     
    int counter1=0,counter2=0; 
    int buffer=0; 
    string input=""; 
     
    //if file not read 
     
    ifstream readFile; 
    readFile.open(fileName); 
    if(!readFile.is_open()){ 
        cout<<"Board() error: file is not read."<<endl; 
        return; 
    } 
    readFile.close(); 
     
    //set value 
     
    readFile.open(fileName); 
     
    while(!readFile.eof()){ 
      
        readFile>>input; 
         
        if(input=="size"){ 
         readFile>>buffer; 
         boardSize=buffer; 
         //create array 
      counter1=0,counter2=0; 
      stone=new int *[boardSize+2]; 
      while(counter1<boardSize+2){ 
          stone[counter1]=new int[boardSize+2]; 
          counter1++; 
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      } 
      counter1=0,counter2=0; 
      space=new int *[boardSize+2]; 
      while(counter1<boardSize+2){ 
          space[counter1]=new int[boardSize+2]; 
          counter1++; 
      } 
      counter1=0,counter2=0; 
      important=new int *[boardSize+2]; 
      while(counter1<boardSize+2){ 
          important[counter1]=new int[boardSize+2]; 
          counter1++; 
      } 
      counter1=0,counter2=0; 
      alive=new int *[boardSize+2]; 
      while(counter1<boardSize+2){ 
          alive[counter1]=new int[boardSize+2]; 
          counter1++; 
      } 
  } 
   
  if(input=="type"){ 
   readFile>>buffer; 
   gameType=buffer; 
  } 
   
  if(input=="Stone"){ 
   counter1=0,counter2=0; 
            while(counter1<boardSize+2){ 
                counter2=0; 
                while(counter2<boardSize+2){ 
                    readFile>>buffer; 
                    stone[counter1][counter2]=buffer; 
                    counter2++; 
                } 
                counter1++; 
            } 
  } 
   
  if(input=="Space"){ 
            counter1=0,counter2=0; 
            while(counter1<boardSize+2){ 
                counter2=0; 
                while(counter2<boardSize+2){ 
                    readFile>>buffer; 
                    space[counter1][counter2]=buffer; 
                    counter2++; 
                } 
                counter1++; 
            } 
        } 
         
        if(input=="Important"){ 
            counter1=0,counter2=0; 
            while(counter1<boardSize+2){ 
                counter2=0; 
                while(counter2<boardSize+2){ 
                    readFile>>buffer; 
                    important[counter1][counter2]=buffer; 
                    counter2++; 
                } 
                counter1++; 
            } 
        } 
         
        if(input=="Alive"&&!readFile.eof()){ 
            counter1=0,counter2=0; 
            while(counter1<boardSize+2){ 
                counter2=0; 
                while(counter2<boardSize+2){ 
                 readFile>>buffer; 
                    alive[counter1][counter2]=buffer; 
                    counter2++; 
                } 
                counter1++; 
            } 
        } 
    } 
     
    colorOfOwn=1; 
    colorOfOpponent=2; 
    positionOfKo[0]=0; 
    positionOfKo[1]=0; 
    whoWinKo=0; 



 

 

84 
 

    remainingKoAdvantage=5; 
    continuousPass=0; 
    accumulatedPass=0; 
     
    return; 
} 
 
Board::Board(Board* copyBoard){ 
     
    int counter1=0,counter2=0; 
     
    //set board size 
     
    boardSize=copyBoard->boardSize; 
     
    //create array 
     
    counter1=0,counter2=0; 
    stone=new int *[boardSize+2]; 
    while(counter1<boardSize+2){ 
        stone[counter1]=new int[boardSize+2]; 
        counter1++; 
    } 
    counter1=0,counter2=0; 
    space=new int *[boardSize+2]; 
    while(counter1<boardSize+2){ 
        space[counter1]=new int[boardSize+2]; 
        counter1++; 
    } 
    counter1=0,counter2=0; 
    important=new int *[boardSize+2]; 
    while(counter1<boardSize+2){ 
        important[counter1]=new int[boardSize+2]; 
        counter1++; 
    } 
    counter1=0,counter2=0; 
    alive=new int *[boardSize+2]; 
    while(counter1<boardSize+2){ 
        alive[counter1]=new int[boardSize+2]; 
        counter1++; 
    } 
     
    //set array 
     
    counter1=0,counter2=0; 
    while(counter1<boardSize+2){ 
        counter2=0; 
        while(counter2<boardSize+2){ 
            stone[counter1][counter2]=copyBoard->stone[counter1][counter2]; 
            space[counter1][counter2]=copyBoard->space[counter1][counter2]; 
            important[counter1][counter2]=copyBoard->important[counter1][counter2]; 
            alive[counter1][counter2]=copyBoard->alive[counter1][counter2]; 
            counter2++; 
        } 
        counter1++; 
    } 
     
    //set other attributes 
     
    gameType=copyBoard->gameType; 
    colorOfOwn=copyBoard->colorOfOwn; 
    colorOfOpponent=copyBoard->colorOfOpponent; 
    positionOfKo[0]=copyBoard->positionOfKo[0]; 
    positionOfKo[1]=copyBoard->positionOfKo[1]; 
    whoWinKo=copyBoard->whoWinKo; 
    remainingKoAdvantage=copyBoard->remainingKoAdvantage; 
    continuousPass=copyBoard->continuousPass; 
    accumulatedPass=copyBoard->accumulatedPass; 
     
} 
 
Board::~Board(){ 
     
    int counter1=0; 
     
    while(counter1<boardSize+2){ 
        delete stone[counter1]; 
        delete space[counter1]; 
        delete important[counter1]; 
        delete alive[counter1]; 
        counter1++; 
    } 
     
    delete stone; 
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    delete space; 
    delete important; 
    delete alive; 
     
} 
 
void Board::humanInterface(){ 
     
    showBoard(); 
     
    if(colorOfOwn==1){ 
        cout<<"Black's turn."<<endl; 
    } 
    else{ 
        cout<<"White's turn."<<endl; 
    } 
     
    cout<<"row, column"<<endl; 
    int row=0, column=0; 
    cin>>row>>column; 
     
    placeStone(row, column); 
     
} 
 
void Board::computerInterface(Position* position){ 
     
    getLegalMove(position); 
     
    if(checkPass()){ 
        position->position[0][0]=1; 
    } 
     
    //if fill eye, set position to 0 
     
    int counter1=1,counter2=1; 
    while(counter1<boardSize+1){ 
     counter2=1; 
     while(counter2<boardSize+2){ 
      if(checkFillEye(counter1, counter2)){ 
       position->position[counter1][counter2]=0; 
   } 
      counter2++; 
  } 
     counter1++; 
 } 
     
    position->getLegalPosition(); 
     
} 
 
void Board::placeStone(int row, int column){ 
     
    //if pass 
     
    if(row==0&&column==0){ 
        if(!checkPass()){ 
            cout<<"Place stone error, not able to pass."<<endl; 
            return; 
        } 
         
        if(colorOfOwn==1){ 
            accumulatedPass++; 
        } 
        else{ 
            accumulatedPass--; 
        } 
         
        continuousPass++; 
        positionOfKo[0]=0; 
        positionOfKo[1]=0; 
         
        //change player 
        changePlayer(); 
         
        return; 
    } 
     
    //if not legal 
     
    if(!checkLegalMove(row, column)){ 
        cout<<"Place stone error, illegal move."<<endl; 
        return; 
    } 
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    else{ 
        continuousPass=0; 
    } 
     
    //if ko 
     
 bool ifkohappen=false; 
     
    if(checkKo(row, column)){ 
         
        ifkohappen=true; 
         
        //if take ko back 
         
        if(positionOfKo[0]==row&&positionOfKo[1]==column){ 
            whoWinKo=colorOfOwn; 
            remainingKoAdvantage--; 
        } 
         
    } 
     
    //place stone 
     
    stone[row][column]=colorOfOwn; 
     
    //set ko position 
     
    if(ifkohappen){ 
        if(countLiberty(row-1, column)==0){ 
            positionOfKo[0]=row-1; 
            positionOfKo[1]=column; 
        } 
        if(countLiberty(row+1, column)==0){ 
            positionOfKo[0]=row+1; 
            positionOfKo[1]=column; 
        } 
        if(countLiberty(row, column-1)==0){ 
            positionOfKo[0]=row; 
            positionOfKo[1]=column-1; 
        } 
        if(countLiberty(row, column+1)==0){ 
            positionOfKo[0]=row; 
            positionOfKo[1]=column+1; 
        } 
    } 
    else{ 
        positionOfKo[0]=0; 
        positionOfKo[1]=0; 
    } 
     
    //if capture opponent stone 
     
    if(stone[row-1][column]==colorOfOpponent&&countLiberty(row-1, column)==0){ 
        capture(row-1, column, 0); 
    } 
    if(stone[row+1][column]==colorOfOpponent&&countLiberty(row+1, column)==0){ 
        capture(row+1, column, 0); 
    } 
    if(stone[row][column-1]==colorOfOpponent&&countLiberty(row, column-1)==0){ 
        capture(row, column-1, 0); 
    } 
    if(stone[row][column+1]==colorOfOpponent&&countLiberty(row, column+1)==0){ 
        capture(row, column+1, 0); 
    } 
     
    //update alive 
     
    if( 
 (stone[row-1][column]==colorOfOwn&&alive[row-1][column]==1)|| 
 (stone[row+1][column]==colorOfOwn&&alive[row+1][column]==1)|| 
 (stone[row][column-1]==colorOfOwn&&alive[row][column-1]==1)|| 
 (stone[row][column+1]==colorOfOwn&&alive[row][column+1]==1) 
 ){ 
        updateAlive(row, column); 
    } 
     
    //change player 
     
    changePlayer(); 
     
} 
 
float Board::getScore(){ 
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    //if accumulated pass is over 4 
     
    if(accumulatedPass>=4) { 
        return 1; 
    } 
    else if(accumulatedPass<=-4){ 
        return -1; 
    } 
     
    //if seki 
     
    if(continuousPass==3){ 
        if(whoWinKo==0){ 
            if(gameType==1){ 
                return 0.7; 
            } 
            if(gameType==2){ 
                return 0.3; 
            } 
        } 
        if(whoWinKo==1){ 
            if(gameType==1){ 
                return 0.3; 
            } 
            if(gameType==2){ 
                return 0.15; 
            } 
        } 
        if(whoWinKo==2){ 
            if(gameType==1){ 
                return 0.85; 
            } 
            if(gameType==2){ 
                return 0.7; 
            } 
        } 
    } 
     
    //if dead 
     
    if(checkDead()){ 
        if(whoWinKo==0){ 
            if(gameType==1){ 
                return 0; 
            } 
            if(gameType==2){ 
                return 1; 
            } 
        } 
        if(whoWinKo==1){ 
            if(gameType==1){ 
                return 0; 
            } 
            if(gameType==2){ 
                return 0.5; 
            } 
        } 
        if(whoWinKo==2){ 
            if(gameType==1){ 
                return 0.5; 
            } 
            if(gameType==2){ 
                return 1; 
            } 
        } 
    } 
     
    //if alive 
     
    if(checkAlive()){ 
        if(whoWinKo==0){ 
            if(gameType==1){ 
                return 1; 
            } 
            if(gameType==2){ 
                return 0; 
            } 
        } 
        if(whoWinKo==1){ 
            if(gameType==1){ 
                return 0.5; 
            } 
            if(gameType==2){ 
                return 0; 
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            } 
        } 
        if(whoWinKo==2){ 
            if(gameType==1){ 
                return 1; 
            } 
            if(gameType==2){ 
                return 0.5; 
            } 
        } 
    } 
     
    return -2; 
} 
 
int Board::getBoardSize(){ 
    return boardSize; 
} 
 
int Board::getOwnColor(){ 
    return colorOfOwn; 
} 
 
void Board::showBoard(){ 
    int counter1=1,counter2=1; 
    cout<<endl; 
     
    //top numbers 
     
    counter1=1; 
    cout<<setw(2)<<" "<<setw(2)<<" "; 
    while(counter1<boardSize+1){ 
        cout<<left<<setw(4)<<counter1; 
        counter1++; 
    } 
    cout<<endl<<endl; 
     
    //board 
     
    counter1=1; 
    while(counter1<boardSize+1){ 
        counter2=1; 
         
        //left numbers 
         
        cout<<setw(2)<<counter1<<setw(2)<<" "; 
         
        //line with stones 
         
        while(counter2<boardSize+1){ 
            if(stone[counter1][counter2]==0){ 
             //cout<<setw(2)<<(char)250; 
                cout<<setw(2)<<"+"; 
            } 
            else if(stone[counter1][counter2]==1){ 
             cout<<"▓"<<setw(1)<<""; 
                //cout<<setw(2)<<"X"; 
            } 
            else if(stone[counter1][counter2]==2){ 
             cout<<"▒"<<setw(1)<<""; 
                //cout<<setw(2)<<"O"; 
            } 
            if(counter2!=boardSize){ 
             cout<<setw(2)<<""; 
                //cout<<setw(2)<<"+"; 
            } 
             
            counter2++; 
        } 
         
        //right numbers 
         
        cout<<setw(2)<<" "<<setw(2)<<counter1; 
         
        cout<<endl; 
         
        //line without stones 
         
        if(counter1!=boardSize){ 
            counter2=1; 
            cout<<setw(2)<<" "<<setw(2)<<" "; 
            while(counter2<boardSize+1){ 
             cout<<setw(2)<<""; 
                //cout<<setw(2)<<"+"; 
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                if(counter2!=boardSize){ 
                    cout<<setw(2)<<""; 
                } 
                counter2++; 
            } 
        } 
        cout<<endl; 
        counter1++; 
    } 
     
    //bottom numbers 
     
    counter1=1; 
    cout<<setw(2)<<" "<<setw(2)<<" "; 
    while(counter1<boardSize+1){ 
        cout<<left<<setw(4)<<counter1; 
        counter1++; 
    } 
    cout<<endl<<endl; 
     
} 
 
void Board::viewData(){ 
     
    int counter1=0,counter2=0; 
     
    cout<<"Stone"<<endl; 
    counter1=1,counter2=1; 
    while(counter1<boardSize+1){ 
        counter2=1; 
        while(counter2<boardSize+1){ 
            cout<<setw(3)<<stone[counter1][counter2]; 
            counter2++; 
        } 
        cout<<endl; 
        counter1++; 
    } 
    cout<<endl; 
     
    cout<<"Space"<<endl; 
    counter1=1,counter2=1; 
    while(counter1<boardSize+1){ 
        counter2=1; 
        while(counter2<boardSize+1){ 
            cout<<setw(3)<<space[counter1][counter2]; 
            counter2++; 
        } 
        cout<<endl; 
        counter1++; 
    } 
    cout<<endl; 
     
    cout<<"Important"<<endl; 
    counter1=1,counter2=1; 
    while(counter1<boardSize+1){ 
        counter2=1; 
        while(counter2<boardSize+1){ 
            cout<<setw(3)<<important[counter1][counter2]; 
            counter2++; 
        } 
        cout<<endl; 
        counter1++; 
    } 
    cout<<endl; 
     
    cout<<"Alive"<<endl; 
    counter1=1,counter2=1; 
    while(counter1<boardSize+1){ 
        counter2=1; 
        while(counter2<boardSize+1){ 
            cout<<setw(3)<<alive[counter1][counter2]; 
            counter2++; 
        } 
        cout<<endl; 
        counter1++; 
    } 
    cout<<endl; 
     
    cout<<"Legal positions"<<endl; 
     
    Position position(boardSize); 
    getLegalMove(&position); 
    position.viewData(); 
    cout<<endl; 
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    cout<<"gameType "<<gameType<<endl<<endl; 
    cout<<"colorOfOwn "<<colorOfOwn<<endl<<endl; 
    cout<<"colorOfOpponent "<<colorOfOpponent<<endl<<endl; 
    cout<<"positionOfKo "<<positionOfKo[0]<<" "<<positionOfKo[1]<<endl<<endl; 
    cout<<"whoWinKo "<<whoWinKo<<endl<<endl; 
    cout<<"remainingKoAdvantage "<<remainingKoAdvantage<<endl<<endl; 
    cout<<"continuousPass "<<continuousPass<<endl<<endl; 
     
} 
 
//---------------------PRIVATE---------------------------- 
 
int Board::countLiberty(int row, int column){ 
     
    //precondition 
    //the row and column are in the range of 1~boardsize 
    //the selected space must be a black or white stone 
     
    //if out of board 
     
    if(row<0||row>boardSize+1||column<0||column>boardSize+1){ 
        cout<<"Count liberty error: count liberty out of board."<<endl; 
        return -1; 
    } 
     
    //if not stone 
     
    if(!(stone[row][column]==1||stone[row][column]==2)){ 
        return -1; 
    } 
     
    //create array 
     
    int **liberty; 
    int counter1=0,counter2=0; 
    liberty=new int *[boardSize+2]; 
    counter1=0; 
    while(counter1<boardSize+2){ 
        liberty[counter1]=new int[boardSize+2]; 
        counter1++; 
    } 
     
    counter1=0,counter2=0; 
    while(counter1<boardSize+2){ 
        counter2=0; 
        while(counter2<boardSize+2){ 
            liberty[counter1][counter2]=stone[counter1][counter2]; 
            counter2++; 
        } 
        counter1++; 
    } 
     
    //mark liberty with 3 
     
    subCountLiberty(liberty, row, column); 
     
    //count number of 3 
     
    int countLiberty=0; 
    counter1=0; 
    while(counter1<boardSize+2){ 
        counter2=0; 
        while(counter2<boardSize+2){ 
            if(liberty[counter1][counter2]==3){ 
                countLiberty++; 
            } 
            counter2++; 
        } 
        counter1++; 
    } 
     
    //delete array 
     
    counter1=0; 
    while(counter1<boardSize+2){ 
        delete liberty[counter1]; 
        counter1++; 
    } 
    delete[] liberty; 
     
    //return value 
     
    return countLiberty; 
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} 
 
void Board::subCountLiberty(int **liberty, int row, int column){ 
     
    //variables 
     
    bool up=false,down=false,left=false,right=false; 
     
    //check down 
     
    if(liberty[row+1][column]==liberty[row][column]&&liberty[row][column]!=4){ 
        down=true; 
    } 
    if(liberty[row+1][column]==0){ 
        liberty[row+1][column]=3; 
    } 
     
    //check up 
     
    if(liberty[row-1][column]==liberty[row][column]&&liberty[row][column]!=4){ 
        up=true; 
    } 
    if(liberty[row-1][column]==0){ 
        liberty[row-1][column]=3; 
    } 
     
    //check left 
     
    if(liberty[row][column-1]==liberty[row][column]&&liberty[row][column]!=4){ 
        left=true; 
    } 
    if(liberty[row][column-1]==0){ 
        liberty[row][column-1]=3; 
    } 
     
    //check right 
     
    if(liberty[row][column+1]==liberty[row][column]&&liberty[row][column]!=4){ 
        right=true; 
    } 
    if(liberty[row][column+1]==0){ 
        liberty[row][column+1]=3; 
    } 
     
    //prevent infinite calling 
     
    liberty[row][column]=4; 
     
    //calling 
     
    if(down){ 
        subCountLiberty(liberty, row+1, column); 
    } 
     
    if(up){ 
        subCountLiberty(liberty, row-1, column); 
    } 
     
    if(left){ 
        subCountLiberty(liberty, row, column-1); 
    } 
     
    if(right){ 
        subCountLiberty(liberty, row, column+1); 
    } 
     
} 
 
void Board::capture(int row, int column, int color){ 
     
    //if out of board 
     
    if(row<0||row>boardSize+1||column<0||column>boardSize+1){ 
        cout<<"Capture error: out of board."<<endl; 
        return; 
    } 
     
    //initialize 
     
    if(color==0) { 
         
        color=stone[row][column]; 
         
        //if the stone has liberty 
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        if(countLiberty(row, column)!=0){ 
         //cout<<row<<" "<<column<<" has liberty"<<endl; 
            return; 
        } 
         
    } 
     
    //capture 
     
    if(stone[row][column]==color){ 
        stone[row][column]=0; 
        capture(row-1, column, color); 
        capture(row+1, column, color); 
        capture(row, column-1, color); 
        capture(row, column+1, color); 
    } 
    else{ 
        return; 
    } 
     
} 
 
bool Board::checkKo(int row, int column){ 
     
    //if out of board 
     
    if(row<1||row>boardSize||column<1||column>boardSize){ 
     cout<<"Check ko error: out of board."<<endl; 
     return false; 
 } 
     
    //if not check empty space 
     
    if(stone[row][column]!=0){ 
     cout<<"Check ko error: not check empty space."<<endl; 
        return false; 
    } 
     
    Board copy(this); 
     
    //suppose the position is played 
     
    copy.stone[row][column]=colorOfOwn; 
     
    //if the position is surrounded by either opponent's stones or border 
     
    if(copy.countLiberty(row, column)==0){ 
         
        //if only one opponent stone has 0 liberty 
         
        int zeroLibertyCounter=0; 
        int zeroLibertyPosition[2]={0}; 
        if(copy.stone[row-1][column]==copy.colorOfOpponent&&copy.countLiberty(row-1, column)==0){ 
            zeroLibertyCounter++; 
            zeroLibertyPosition[0]=row-1; 
            zeroLibertyPosition[1]=column; 
        } 
        if(copy.stone[row+1][column]==copy.colorOfOpponent&&copy.countLiberty(row+1, column)==0){ 
            zeroLibertyCounter++; 
            zeroLibertyPosition[0]=row+1; 
            zeroLibertyPosition[1]=column; 
        } 
        if(copy.stone[row][column-1]==copy.colorOfOpponent&&copy.countLiberty(row, column-1)==0){ 
            zeroLibertyCounter++; 
            zeroLibertyPosition[0]=row; 
            zeroLibertyPosition[1]=column-1; 
        } 
        if(copy.stone[row][column+1]==copy.colorOfOpponent&&copy.countLiberty(row, column+1)==0){ 
            zeroLibertyCounter++; 
            zeroLibertyPosition[0]=row; 
            zeroLibertyPosition[1]=column+1; 
        } 
         
        //if only one stone has 0 liberty 
         
        if(zeroLibertyCounter==1){ 
             
            //if the 0 liberty stone are surronded by opponent's stones 
             
            if((copy.stone[zeroLibertyPosition[0]-
1][zeroLibertyPosition[1]]==copy.colorOfOwn||copy.stone[zeroLibertyPosition[0]-
1][zeroLibertyPosition[1]]==-
1)&&(copy.stone[zeroLibertyPosition[0]+1][zeroLibertyPosition[1]]==copy.colorOfOwn||copy.stone[zeroLibert
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yPosition[0]+1][zeroLibertyPosition[1]]==-1)&&(copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]-
1]==copy.colorOfOwn||copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]-1]==-
1)&&(copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]+1]==copy.colorOfOwn||copy.stone[zeroLibert
yPosition[0]][zeroLibertyPosition[1]+1]==-1)){ 
                 
                return true; 
            } 
        } 
         
    } 
     
    //remove the move 
    return false; 
} 
 
bool Board::checkLegalMove(int row, int column){ 
     
    //if out of board 
     
    if(row<0||row>boardSize+1||column<0||column>boardSize+1){ 
     cout<<"Check legal move error: out of board."<<endl; 
        return false; 
    } 
     
    //if out of space 
     
    if(space[row][column]!=1){ 
        return false; 
    } 
     
    //if not empty 
     
    if(stone[row][column]!=0){ 
        return false; 
    } 
     
    //if ko 
     
    if(checkKo(row, column)){ 
      
        //if take ko back 
         
        if(row==positionOfKo[0]&&column==positionOfKo[1]){ 
             
            //if no one wins ko 
             
            if(whoWinKo==0){ 
                return true; 
            } 
             
            //if opponents wins ko 
             
            if(whoWinKo==colorOfOpponent) { 
                return false; 
            } 
             
            //if ownself wins ko 
             
            if(whoWinKo==colorOfOwn){ 
                if(remainingKoAdvantage!=0){ 
                    return true; 
                } 
                else{ 
                    return false; 
                } 
            } 
        } 
         
        //if not take ko back 
         
        else{ 
            return true; 
        } 
    } 
     
    //make a copy board and assume the position is played 
     
    Board copy(this); 
    copy.stone[row][column]=copy.colorOfOwn; 
     
    //if has liberty 
     
    if (copy.countLiberty(row, column)!=0) { 
        return true; 
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    } 
     
    //if no liberty 
     
    if (copy.countLiberty(row, column)==0){ 
         
        //if any surrounding opponent's stones have no liberty 
         
        if( 
  (copy.stone[row-1][column]==copy.colorOfOpponent&&copy.countLiberty(row-1, 
column)==0)|| 
  (copy.stone[row+1][column]==copy.colorOfOpponent&&copy.countLiberty(row+1, 
column)==0)|| 
  (copy.stone[row][column-1]==copy.colorOfOpponent&&copy.countLiberty(row, column-
1)==0)|| 
  (copy.stone[row][column+1]==copy.colorOfOpponent&&copy.countLiberty(row, 
column+1)==0)){ 
             
            return true; 
        } 
         
        //if all surrounding opponent's stones have liberty 
         
        else{ 
            return false; 
        } 
         
    } 
     
    return true; 
} 
 
void Board::getLegalMove(Position* position){ 
     
    int counter1=0, counter2=0; 
     
    //set value 
    counter1=0, counter2=0; 
    while(counter1<boardSize+2){ 
        counter2=0; 
        while(counter2<boardSize+2){ 
          
            if(checkLegalMove(counter1, counter2)){ 
                position->position[counter1][counter2]=1; 
            } 
            else{ 
                position->position[counter1][counter2]=0; 
            } 
             
            counter2++; 
        } 
        counter1++; 
    } 
     
} 
 
bool Board::checkFillSpace(int row, int column){ 
     
    bool result=false; 
     
    if((stone[row-1][column]==colorOfOwn||stone[row-1][column]==-1)&& 
       (stone[row+1][column]==colorOfOwn||stone[row+1][column]==-1)&& 
       (stone[row][column-1]==colorOfOwn||stone[row][column-1]==-1)&& 
       (stone[row][column+1]==colorOfOwn||stone[row][column+1]==-1) 
       ){ 
            result=true; 
       } 
     
    return result; 
     
} 
 
bool Board::checkFillEye(int row, int column){ 
  
 //if out of board 
 if(row<1||column<1||row>boardSize+1||column>boardSize+1){ 
  cout<<"Check fill eye error: out of board"<<endl; 
  return false; 
 } 
  
 int countBorder=0; 
 if(stone[row-1][column]==-1){ 
  countBorder++; 
 } 
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 if(stone[row+1][column]==-1){ 
  countBorder++; 
 } 
 if(stone[row][column-1]==-1){ 
  countBorder++; 
 } 
 if(stone[row][column+1]==-1){ 
  countBorder++; 
 } 
  
 //if at cornor 
  
 if(countBorder==2){ 
  int countSurroundingOwnStones=0; 
  if(stone[row-1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row-1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row-1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
   
  if(countSurroundingOwnStones==3){ 
   return true; 
  } 
  else{ 
   return false; 
  } 
 } 
  
 //if at side 
  
 if(countBorder==1){ 
  int countSurroundingOwnStones=0; 
  if(stone[row-1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row-1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row-1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
   
  if(countSurroundingOwnStones==5){ 
   return true; 
  } 
  else{ 
   return false; 
  } 
 } 
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 //if at center 
  
 if(countBorder==0){ 
   
  int countSurroundingOwnStones=0; 
   
  //check surrounding (side to the space) 
   
  if(stone[row][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  else{ 
   return false; 
  } 
  if(stone[row-1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  else{ 
   return false; 
  } 
  if(stone[row+1][column]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  else{ 
   return false; 
  } 
  if(stone[row][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  else{ 
   return false; 
  } 
   
  //check surrounding (diagnal to the space) 
   
  if(stone[row-1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column-1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row-1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
  if(stone[row+1][column+1]==colorOfOwn){ 
   countSurroundingOwnStones++; 
  } 
   
  if(countSurroundingOwnStones>=7){ 
   return true; 
  } 
  else{ 
   return false; 
  } 
 } 
  
    return false; 
     
} 
 
bool Board::checkPass(){ 
  
    //create position 
     
    Position legalPosition(boardSize); 
     
    //get legal move 
     
    getLegalMove(&legalPosition); 
     
    //count legal space 
     
    int legalSpace=0; 
    int counter1=0,counter2=0; 
    while (counter1<boardSize+2) { 
        counter2=0; 
        while(counter2<boardSize+2){ 
            if(legalPosition.position[counter1][counter2]==1){ 
                legalSpace++; 
            } 
            counter2++; 
        } 
        counter1++; 
    } 
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    //if no position is available, player can pass 
     
    if(legalSpace==0){ 
        return true; 
    } 
     
    //if all available positions are either: 
 //1.Take back ko. 
    //2.connected to own groups and have only one liberty after play. 
 //Player can pass. 
     
    else{ 
      
        counter1=0,counter2=0; 
         
        while(counter1<boardSize+2){ 
          
            counter2=0; 
             
            while(counter2<boardSize+2){ 
              
                if(legalPosition.position[counter1][counter2]==1){ 
                  
                 bool ifFillSpace=false; 
                 bool ifTakeKoBack=false; 
                 bool ifHaveOneLiberty=false; 
                 bool ifConnectedToOwnStones=false; 
                    Board copy(this); 
                    copy.placeStone(counter1, counter2); 
                     
                    //if fill eye 
                    ifFillSpace=checkFillSpace(counter1, counter2); 
                     
                    //if the position played in copy board is ko position in original board 
                    ifTakeKoBack=(counter1==positionOfKo[0]&&counter2==positionOfKo[1]); 
                     
                    //if the position played in copy board has one liberty 
                    ifHaveOneLiberty=copy.countLiberty(counter1, counter2)==1; 
                     
                    //if the place is connected to own stones,  
                    //colorOfOwn is from original board  
     //because already place a stone on copy board 
     //so the color is changed 
                    ifConnectedToOwnStones= 
     copy.stone[counter1-1][counter2]==colorOfOwn|| 
     copy.stone[counter1+1][counter2]==colorOfOwn|| 
     copy.stone[counter1][counter2-1]==colorOfOwn|| 
     copy.stone[counter1][counter2+1]==colorOfOwn; 
      
     if( 
     !( 
     ifFillSpace|| 
     ifTakeKoBack|| 
     (ifHaveOneLiberty&&ifConnectedToOwnStones) 
     ) 
     ){ 
      return false; 
     } 
                } 
                counter2++; 
            } 
            counter1++; 
        } 
         
        return true; 
    } 
} 
 
bool Board::checkAlive(){ 
     
    int counter1=0, counter2=0; 
    bool ifPlaceNewStone=true; 
     
    //if no important stone, then return true 
     
    counter1=1,counter2=1; 
    int countImportant=0; 
    while (counter1<boardSize+1) { 
        counter2=1; 
        while(counter2<boardSize+1){ 
            if(important[counter1][counter2]==1){ 
                countImportant++; 
            } 
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            counter2++; 
        } 
        counter1++; 
    } 
    if(countImportant==0){ 
        return true; 
    } 
     
    //create a board 
     
    Board copy(this); 
     
    while(ifPlaceNewStone){ 
        ifPlaceNewStone=false; 
         
        //fill the board with killing side stone if the space is not one space eye of living side 
         
        counter1=1; 
        while(counter1<copy.boardSize+1){ 
            counter2=1; 
            while(counter2<copy.boardSize+1){ 
                 
                //if the space is empty 
                 
                if(copy.stone[counter1][counter2]==0){ 
                     
                    //if black to live 
                     
                    if(gameType==1){ 
                         
                        //if space is not one space eye 
                         
                        if( 
      !( 
      (copy.stone[counter1-1][counter2]==1|| 
      copy.stone[counter1-1][counter2]==-1)&& 
      (copy.stone[counter1+1][counter2]==1|| 
      copy.stone[counter1+1][counter2]==-1)&& 
      (copy.stone[counter1][counter2-1]==1|| 
      copy.stone[counter1][counter2-1]==-1)&& 
      (copy.stone[counter1][counter2+1]==1|| 
      copy.stone[counter1][counter2+1]==-1)) 
      ){ 
                            copy.stone[counter1][counter2]=2; 
                            ifPlaceNewStone=true; 
                        } 
                    } 
                     
                    //if black to kill 
                     
                    if(gameType==2){ 
                         
                        //if space is not one space eye 
                         
                        if( 
      !( 
      (copy.stone[counter1-1][counter2]==2|| 
      copy.stone[counter1-1][counter2]==-1)&& 
      (copy.stone[counter1+1][counter2]==2|| 
      copy.stone[counter1+1][counter2]==-1)&& 
      (copy.stone[counter1][counter2-1]==2|| 
      copy.stone[counter1][counter2-1]==-1)&& 
      (copy.stone[counter1][counter2+1]==2|| 
      copy.stone[counter1][counter2+1]==-1)) 
      ){ 
                            copy.stone[counter1][counter2]=1; 
                            ifPlaceNewStone=true; 
                        } 
                    } 
                } 
                counter2++; 
            } 
            counter1++; 
        } 
         
        //capture the zero liberty stones of living side 
         
        counter1=1, counter2=1; 
        while(counter1<copy.boardSize+1){ 
            counter2=1; 
            while(counter2<copy.boardSize+1){ 
                 
                //if black to live 
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                if(gameType==1){ 
                    if(copy.stone[counter1][counter2]==1){ 
                        copy.capture(counter1, counter2,0); 
                    } 
                } 
                 
                //if black to kill 
                 
                if(gameType==2){ 
                    if(copy.stone[counter1][counter2]==2){ 
                        copy.capture(counter1, counter2,0); 
                    } 
                } 
                counter2++; 
            } 
            counter1++; 
        } 
         
        //place stone in one space eye. try to capture. if not able, take the stone away 
         
        counter1=1, counter2=1; 
        while(counter1<copy.boardSize+1){ 
            counter2=1; 
            while(counter2<copy.boardSize+1){ 
                 
                //if space is empty 
                 
                if(copy.stone[counter1][counter2]==0){ 
                     
                    //if black to live 
                     
                    if(gameType==1){ 
                         
                        //if is one space eye 
                         
                        if( 
      (copy.stone[counter1-1][counter2]==1|| 
      copy.stone[counter1-1][counter2]==-1)&& 
      (copy.stone[counter1+1][counter2]==1|| 
      copy.stone[counter1+1][counter2]==-1)&& 
      (copy.stone[counter1][counter2-1]==1|| 
      copy.stone[counter1][counter2-1]==-1)&& 
      (copy.stone[counter1][counter2+1]==1|| 
      copy.stone[counter1][counter2+1]==-1) 
      ){ 
                             
                            copy.stone[counter1][counter2]=2; 
                            bool ifcapture=false; 
                             
                            if(copy.stone[counter1-1][counter2]==1&& 
       copy.countLiberty(counter1-1, 
counter2)==0){ 
         
        copy.capture(counter1-1, 
counter2, 0); 
                                ifcapture=true; 
                                 
                            } 
                             
                            if(copy.stone[counter1+1][counter2]==1&& 
       copy.countLiberty(counter1+1, 
counter2)==0){ 
                                 
                                copy.capture(counter1+1, counter2, 0); 
                                ifcapture=true; 
                                 
                            } 
                            if(copy.stone[counter1][counter2-1]==1&& 
       copy.countLiberty(counter1, counter2-
1)==0){ 
         
                                copy.capture(counter1, counter2-1, 0); 
                                ifcapture=true; 
                                 
                            } 
                            if(copy.stone[counter1][counter2+1]==1&& 
       copy.countLiberty(counter1, 
counter2+1)==0){ 
         
                                copy.capture(counter1, counter2+1, 0); 
                                ifcapture=true; 
                                 
                            } 
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                            //if not capture anything 
                             
                            if(!ifcapture){ 
                                copy.stone[counter1][counter2]=0; 
                            } 
                             
                        } 
                    } 
                     
                    //if black to kill 
                     
                    if(gameType==2){ 
                         
                        //if is one space eye 
                         
                        if( 
      (copy.stone[counter1-1][counter2]==2|| 
      copy.stone[counter1-1][counter2]==-1)&& 
      (copy.stone[counter1+1][counter2]==2|| 
      copy.stone[counter1+1][counter2]==-1)&& 
      (copy.stone[counter1][counter2-1]==2|| 
      copy.stone[counter1][counter2-1]==-1)&& 
      (copy.stone[counter1][counter2+1]==2|| 
      copy.stone[counter1][counter2+1]==-1) 
      ){ 
        
                            copy.stone[counter1][counter2]=1; 
                            bool ifcapture=false; 
                             
                            if(copy.stone[counter1-1][counter2]==2&& 
       copy.countLiberty(counter1-1, 
counter2)==0){ 
                                copy.capture(counter1-1, counter2, 0); 
                                ifcapture=true; 
                            } 
                            if(copy.stone[counter1+1][counter2]==2&& 
       copy.countLiberty(counter1+1, 
counter2)==0){ 
                                copy.capture(counter1+1, counter2, 0); 
                                ifcapture=true; 
                            } 
                            if(copy.stone[counter1][counter2-1]==2&& 
       copy.countLiberty(counter1, counter2-
1)==0){ 
                                copy.capture(counter1, counter2-1, 0); 
                                ifcapture=true; 
                            } 
                            if(copy.stone[counter1][counter2+1]==2&& 
       copy.countLiberty(counter1, 
counter2+1)==0){ 
                                copy.capture(counter1, counter2+1, 0); 
                                ifcapture=true; 
                            } 
                             
                            //if not capture anything 
                             
                            if(!ifcapture){ 
                                copy.stone[counter1][counter2]=0; 
                            } 
                             
                        } 
                    } 
                } 
                counter2++; 
            } 
            counter1++; 
        } 
         
        //if important stones are capture, then return false 
         
        counter1=0, counter2=0; 
        while(counter1<copy.boardSize+2){ 
            counter2=0; 
            while(counter2<copy.boardSize+2){ 
                 
                //if black to live 
                 
                if(gameType==1){ 
                    if(copy.important[counter1][counter2]==1&&copy.stone[counter1][counter2]!=1){ 
                        return false; 
                    } 
                } 
                 
                //if black to live 
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                if(gameType==2){ 
                    if(copy.important[counter1][counter2]==1&&copy.stone[counter1][counter2]!=2){ 
                        return false; 
                    } 
                } 
                counter2++; 
            } 
            counter1++; 
        } 
         
    } 
    return true; 
} 
 
bool Board::checkDead(){ 
     
    int counter1=0, counter2=0; 
     
    //if no important stone, then return false 
     
    counter1=0,counter2=0; 
    int countImportant=0; 
    while (counter1<boardSize+2) { 
        counter2=0; 
        while(counter2<boardSize+2){ 
            if(important[counter1][counter2]==1){ 
                countImportant++; 
            } 
            counter2++; 
        } 
        counter1++; 
    } 
    if(countImportant==0){ 
        return false; 
    } 
     
    // if important stones are taken, stones are dead 
     
    counter1=0; 
    while(counter1<boardSize+2){ 
        counter2=0; 
        while(counter2<boardSize+2){ 
             
            //black to live 
             
            if(gameType==1){ 
                if(important[counter1][counter2]==1&&stone[counter1][counter2]!=1){ 
                    return true; 
                } 
            } 
             
            //black to kill 
             
            if(gameType==2){ 
                if(important[counter1][counter2]==1&&stone[counter1][counter2]!=2){ 
                    return true; 
                } 
            } 
            counter2++; 
        } 
        counter1++; 
    } 
     
    return false; 
} 
 
void Board::updateAlive(int row, int column){ 
    if(!(stone[row][column]==colorOfOwn&&alive[row][column]==0)){ 
        return; 
    } 
    else{ 
        important[row][column]=0; 
        alive[row][column]=1; 
        updateAlive(row-1, column); 
        updateAlive(row+1, column); 
        updateAlive(row, column-1); 
        updateAlive(row, column+1); 
    } 
     
} 
 
void Board::changePlayer(){ 
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 if(colorOfOwn==1){ 
  colorOfOwn=2; 
  colorOfOpponent=1; 
  return; 
 } 
  
 if(colorOfOwn==2){ 
  colorOfOwn=1; 
  colorOfOpponent=2; 
  return; 
 } 
  
} 
 
#endif /* Board_h */ 

 
Position.h: 
class Position{ 
  
private: 
     
    int size; 
  
public: 
  
    int** position; 
    vector<int>legalPositionRow; 
    vector<int>legalPositionColumn; 
  
 Position(int boardSize); 
 ~Position(); 
    void getLegalPosition(); 
    int getNumberOfLegalMove(); 
 void viewData(); 
  
}; 
 
Position::Position(int boardSize){ 
  
 //create array 
  
 int counter1=0, counter2=0; 
 position=new int*[boardSize+2]; 
 while(counter1<boardSize+2){ 
  position[counter1]=new int [boardSize+2]; 
  counter1++; 
 } 
  
 //initialize 
  
 size=boardSize; 
  
 counter1=0, counter2=0; 
 while(counter1<boardSize+2){ 
   
  counter2=0; 
  while(counter2<boardSize+2){ 
    
   position[counter1][counter2]=0; 
    
   counter2++; 
  } 
   
  counter1++; 
 } 
  
} 
 
Position::~Position(){ 
  
 int counter=0; 
 while(counter<size+2){ 
  delete position[counter]; 
  counter++; 
 } 
 delete [] position; 
  
} 
 
void Position::getLegalPosition(){ 
     
    //get legal positions 
    int counter1=0, counter2=0; 
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    while(counter1<size+2){ 
        counter2=0; 
        while(counter2<size+2){ 
            if(position[counter1][counter2]==1){ 
                legalPositionRow.push_back(counter1); 
                legalPositionColumn.push_back(counter2); 
                 
            } 
            counter2++; 
        } 
        counter1++; 
    } 
     
} 
 
int Position::getNumberOfLegalMove(){ 
     
    int result=0; 
     
    int counter1=0, counter2=0; 
     
    while(counter1<size+2) { 
         
        counter2=0; 
        while(counter2<size+2){ 
             
            if(position[counter1][counter2]==1){ 
                result++; 
            } 
             
            counter2++; 
        } 
         
        counter1++; 
    } 
     
    return result; 
     
} 
 
void Position::viewData(){ 
  
 int counter1=1, counter2=1; 
  
 cout<<endl; 
  
 if(position[0][0]==1){ 
  cout<<"Allow to pass"<<endl; 
 } 
 else{ 
  cout<<"Not allow to pass"<<endl; 
 } 
  
 while(counter1<size+1){ 
   
  counter2=1; 
  while(counter2<size+1){ 
    
   cout<<position[counter1][counter2]; 
    
   counter2++; 
    
  } 
  cout<<endl; 
   
  counter1++; 
   
 } 
  
 cout<<endl; 
  
} 

 
Function.h: 
#ifndef Functions_h 
#define Functions_h 
 
#include <time.h> 
#include <stdlib.h> 
#include <math.h> 
#include <vector> 
#include <fstream> 
#include <iomanip> 
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#include <iostream> 
using namespace std; 
 
float zeroToOne(){ 
     
    float result=1; 
    while(result==1){ 
        result=(float)rand()/(float)RAND_MAX; 
    } 
    return result; 
     
} 
 
float rounding(float number, int to){ 
     
    float result=0; 
    float digit=10; 
    int i=0; 
    while(i<to){ 
        digit*=10; 
        i++; 
    } 
     
    bool ifNegative=false; 
    if(number<0){ 
        number=-number; 
        ifNegative=true; 
    } 
     
    number*=digit; 
    number=(int)((number+5)/10); 
    number=number/digit*10; 
     
    result=number; 
     
    if(ifNegative){ 
        return -result; 
    } 
    else{ 
        return result; 
    } 
     
} 
 
 
#endif /* Functions_h */ 

 
Go.txt: 
 Figure B.1 is the example of the input data. 
 

 
Figure B.1: The position of input data. 

 
The objective for the black player is to capture the important stone (marked 

with a triangle). The position marked with circles are feasible spaces to play. The 
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stones marked with squares are alive groups, which the player want to prevent the 

important stone connect to. 

 The input file is the following. 

Board size           

9           

Game type           

1           

Stone           

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 2 2 2 2 2 0 -1 

-1 0 0 0 1 0 0 0 2 0 -1 

-1 0 0 0 1 0 0 0 2 0 -1 

-1 0 0 0 1 2 0 0 2 0 -1 

-1 0 0 0 1 1 1 1 2 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Space           

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 
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-1 0 0 0 0 1 1 1 0 0 -1 

-1 0 0 0 0 1 1 1 0 0 -1 

-1 0 0 0 0 0 1 1 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Important           

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 1 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

Alive           

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 0 0 0 0 0 0 0 0 0 -1 
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-1 0 0 0 1 1 1 1 1 0 -1 

-1 0 0 0 0 0 0 0 1 0 -1 

-1 0 0 0 0 0 0 0 1 0 -1 

-1 0 0 0 0 0 0 0 1 0 -1 

-1 0 0 0 0 0 0 0 1 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 0 0 0 0 0 0 0 0 0 -1 

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
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