

ABSTRACT

Title of Thesis: MONTE CARLO TREE SEARCH AND

MINIMAX COMBINATION –
APPLICATION OF SOLVING PROBLEMS
IN THE GAME OF GO

 Jonathan Fun Lin, Master of Science, 2017

Thesis Directed By: Dr. Michael Fu, Smith School of Business and

the Institute for Systems Research, University
of Maryland at College Park

Monte Carlo Tree Search (MCTS) has been successfully applied to a variety

of games. Its best-first algorithm enables implementations without evaluation

functions. Combined with Upper Confidence bounds applied to Trees (UCT), MCTS

has an advantage over traditional depth-limited minimax search with alpha-beta

pruning in games with high branching factors such as Go. However, minimax search

with alpha-beta pruning still surpasses MCTS in domains like Chess. Studies show

that MCTS does not detect shallow traps, where opponents can win within a few

moves, as well as minimax search. Thus, minimax search performs better than MCTS

in games like Chess, which can end instantly (king is captured). A combination of

MCTS and minimax algorithm is proposed in this thesis to see the effectiveness of

detecting shallow traps in Go problems.

MONTE CARLO TREE SEARCH AND MINIMAX COMBINATION –
APPLICATION OF SOLVING PROBLEMS IN THE GAME OF GO

by

Jonathan Fun Lin

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2017

	

Advisory Committee:
Dr. Michael Fu, Chair
Dr. Steven Marcus, Committee Member
Dr. Jeffrey Herrmann, Committee Member

© Copyright by
Jonathan Fun Lin

2017

ii

Dedication

To my family.

iii

Acknowledgements

I would like to acknowledge the following people, all of whom contributed to

this thesis.

I would like to thank all members from UMD Go Club for helping me design

the model of Go problems. I would like to thank Justin Teng, the former president of

UMD Go Club, for operating the Go Club.

I would like to thank Dr. Steven Marcus and Dr. Jeffrey Herrmann for serving

on my thesis committee.

Finally, I would like to thank my advisor, Dr. Michael Fu, for his guidance

and support.

iv

Table of Contents

	

Dedication	...	ii	

Acknowledgements	...	iii	

Table of Contents	...	iv	

List of Tables	..	vi	

List of Figures	..	ix	

List of Abbreviations	..	xi	

Chapter 1: Introduction	..	1	
1.1 Background	..	1	
1.2 Comparison of Monte Carlo Tree Search and Minimax Search	1	
1.3 Goal of Thesis	...	3	
1.4 Structure of Thesis	...	3	

Chapter 2: Literature Review	...	4	
2.1 Deep Blue	...	4	
2.2 Monte Carlo Tree Search	...	5	

2.2.1 Markov Decision Process	...	6	
2.2.2 Monte Carlo Method	..	6	
2.2.3 Multi-armed Bandit Problem	..	6	
2.2.4 Upper Confidence Bounds	..	7	
2.2.5 Monte Carlo Tree Search Algorithm	..	8	
2.2.6 Upper Confidence Bounds Applied to Trees	..	9	

2.3 Shallow Traps in MCTS	...	10	
2.4 Previous Work Combining MCTS and Minimax Search	12	

2.4.1 MCTS Solver	..	12	
2.4.2 MCTS and Minimax Hybrids	...	13	

2.5 Monte Carlo Tree Search Extension	..	14	
2.5.1 UCB1-Tuned	..	14	
2.5.2 Best Arm identification algorithm	..	14	
2.5.3 All Moves As First (AMAF)	..	15	
2.5.4 Last-Good-Reply Policy	...	16	

Chapter 3: Approach	..	18	
3.1 Inspiration for minimax-combined MCTS	...	18	
3.2 Rules of Go	...	20	

3.2.1 Connection and Capture	...	21	
3.2.2 Ko and Ko fight	..	23	
3.2.3 Alive Groups	..	25	
3.2.4 Seki	...	26	

3.3 Model of Go Problem	...	26	

v

3.3.1 Configuration	..	27	
3.3.2 Scoring	..	29	
3.3.3 Ending Pattern Recognition	..	31	
3.3.4 Extra Rules	...	32	

3.4 Algorithm of MCTS	...	33	
3.4.1 Selection	...	33	
3.4.2 Expansion	...	34	
3.4.3 Simulation	...	34	
3.4.4 Backpropagation	...	34	
3.4.5 Decision	..	34	

3.5 Algorithm of Minimax-combined MCTS	...	35	
3.5.1 Selection	...	35	
3.5.2 Expansion	...	36	
3.5.3 Simulation	...	36	
3.5.4 Backpropagation	...	36	
3.5.5 Decision	..	37	

Chapter 4: Experiment	...	38	
4.1	 Experiment Process	...	38	
4.2 Level-3 Shallow Trap	...	40	
4.3 Level-5 Shallow Trap	...	43	
4.4 Simple Problems	...	45	
4.5 Complex Problems	...	48	
4.6 Complex Problems with Multiple results	...	52	

Chapter 5: Conclusion and Future Work	..	56	
5.1 Conclusion	..	56	
5.2 Future Work	..	57	

Appendices	..	59	
A. Experiment Data	...	59	

A.1 Level-3 Shallow Trap	...	59	
A.2 Level-5 Shallow Trap	...	59	
A.3 Simple Problems without Shallow Trap	...	59	
A.4 Complex Problems without Shallow Trap	..	62	

B. Source Code	...	64	

Bibliography	...	108	

vi

List of Tables

Table 3.1.1: Simulation results after 479 simulations
Table 3.1.2: Simulation results after 2976 simulations
Table 3.1.3: Simulation results after 7092 simulations
Table 3.3.1: Scores of results
Table 3.3.2: Scores when saving groups
Table 3.3.3: Scores when capturing groups
Table 4.2.1: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.2.2: Paired t-test (MCTS – Minimax MCTS)
Table 4.3.1: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.3.2: Paired t-test (MCTS – Minimax MCTS)
Table 4.4.1: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.4.2: Paired t-test (MCTS – Minimax MCTS)
Table 4.4.3: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.4.4: Paired t-test (MCTS – Minimax MCTS)
Table 4.4.5: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.4.6: Paired t-test (MCTS – Minimax MCTS)
Table 4.4.7: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.4.8: Paired t-test (MCTS – Minimax MCTS)
Table 4.4.9: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.4.10: Paired t-test (MCTS – Minimax MCTS)
Table 4.5.1: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.5.2: Paired t-test (MCTS – Minimax MCTS)
Table 4.5.3: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.5.4: Paired t-test (MCTS – Minimax MCTS)
Table 4.5.5: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.5.6: Paired t-test (MCTS – Minimax MCTS)
Table 4.5.7: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.5.8: Paired t-test (MCTS – Minimax MCTS)
Table 4.5.9: The average computations needed of MCTS and minimax-combined
MCTS
Table 4.5.10: Paired t-test (MCTS – Minimax MCTS)

vii

Table 4.6.1: After 5413 simulations
Table 4.6.2: After 17294 simulations
Table 4.6.3: After 92415 simulations
Table 4.6.4 The number of simulation and mean of the best move
Table 4.6.5: Theoretical values vs. confidence bounds
Table A.1.1: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.1.2: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=220)
Table A.2.1: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.2.2: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=240)
Table A.3.1: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.3.2: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.3.3: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.3.4: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.3.5: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.3.6: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.3.7: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.3.8: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.3.9: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.3.10: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.4.1: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.4.2: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)

viii

Table A.4.3: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.4.4: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.4.5: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.4.6: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.4.7: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.4.8: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)
Table A.4.9: The number of computations needed of MCTS to pick the correct move
(the exploration parameter = 1.414)
Table A.4.10: The number of computations needed of minimax-combined MCTS to
pick the correct move (the exploration parameter = 1.414 and minimax threshold
=140)

ix

List of Figures

Figure 2.3.1: A demonstration of shallow traps [9]
Figure 2.3.2: Frequency of shallow traps in different scenarios. [9]
Figure 2.3.3: Avoiding shallow traps with UCT [9]
Figure 2.5.1: An example of AMAF [16].
Figure 2.5.2: An example of last good reply policy [17].
Figure 3.2.1: A 9 by 9 board
Figure 3.2.2: A finished game. The triangle marks are considered black’s territories,
and the square marks are considered white’s territories.
Figure 3.2.3: Examples of connections. The stones marked with triangles are not
connected while the stones marked with squares are connected.
Figure 3.2.4: Examples of liberty. The circle-marked spaces are liberties of black
groups.
Figure 3.2.5: An example of captures. On the left side, black groups only have one
liberty. When white places a stone at the marked space, the black group is captured.
Figure 3.2.6: Examples of suicides. The black player is not allowed to play the
positions marked with squares, because the moves make the groups have no liberty.
Figure 3.2.7: An example of captures. The stones marked with triangles have only
one liberty. If either player plays the square, both groups have no liberty. By the rules
of Go, whoever makes the move can capture the opponent’s groups. The right-hand
board shows the
Figure 3.2.8: Endless cycle of Ko. Without the rule of Ko, players can keep playing
move 1 and 2, and create a position same as previous one.
Figure 3.2.9: A Ko fight. Black starts a Ko fight, and white finds a Ko threat. Black
ignores the Ko threat, and white gains from the Ko threat.
Figure 3.2.10: Examples of eyes. The circle-marked spaces are defined as eyes.
Figure 3.2.11: Example of alive group. The group has two eyes, and white cannot
play either spaces because suicide is not allowed.
Figure 3.2.12: Examples of Seki. Both players do not want to play the marked
spaces. If one plays there, his group will be captured, and vice versa.
Figure 3.2.13: Five types of Go problem. From left to right, top to bottom: saving
groups, killing groups, cutting groups, connecting groups, and capturing race. The
triangle marked stones are the groups to be saved, and the square marked stones are
the groups to be killed, and the circle marked spaces are the feasible areas.
Figure 4.1.1: List of picks. The picks change often in the beginning of MCTS (left
list). MCTS picks action (7,5) every time from 1024 simulations (right list).
Figure 4.1.2: After 1276 Simulations
Figure 4.1.3: After 2842 simulations
Figure 4.1.4: After 8011 simulations
Figure 4.2.1: The objective is to connect marked black stones
Figure 4.2.2: The square is the correct move. The triangles are the shallow traps.
Figure 4.2.3: A demonstration of falling into a shallow trap
Figure 4.2.4: The white player cuts off black stones in three moves.
Figure 4.3.1: The objective is to connect marked black stones.

x

Figure 4.3.2: The square is the correct move. The triangles are the shallow traps.
Figure 4.3.3: A demonstration of falling into a shallow trap.
Figure 4.3.5: The white player can cut off black stones in 5 moves.
Figure 4.4.1: The position of problem 1
Figure 4.4.2: The position of problem 2
Figure 4.4.3: The position of problem 3
Figure 4.4.4: The position of problem 4
Figure 4.4.5: The position of problem 5
Figure 4.5.1: The position of problem 1
Figure 4.5.2: The position of problem 2
Figure 4.5.3: The position of problem 3
Figure 4.5.4: The position of problem 4
Figure 4.5.5: The position of problem 5
Figure 4.6.1: A complex multi score problem
Figure B.1: The position of input data.

xi

List of Abbreviations

MCTS Monte Carlo Tree Search

UCT Upper Confidence bounds applied to Trees

MDP Markov Decision Process

UCB Upper Confidence Bounds

LCB Lower Confidence Bounds

AMAF All Moves As First

1

Chapter 1: Introduction

1.1 Background

Simulation is a useful technique in systems engineering because it can be used

for verification and to compare alternative systems. Verification is an important part

of systems engineering. Common verification methods are inspection, analysis,

analogy, demonstration, test, and sample. However, when a system is too expensive

to test or a system is too complicated to gain analytic results, simulations might be

handy. Also, when comparing alternative systems, simulations can provide results of

performance with a relatively low cost compared to building an actual system.

Monte Carlo Tree Search can be used for simulating systems where actors

make decisions with random outcomes. The most notable examples are the

implementation of AI in computer games or board games.

1.2 Comparison of Monte Carlo Tree Search and Minimax Search

While implementing tree-search based AI to games, evaluation functions are

important. Evaluation functions help AI to determine how good states and actions are.

Traditional AI, e.g. Deep Blue [1], which defeated the world champion in 1997,

utilizes evaluation functions to apply minimax search and alpha-beta pruning.

However, when applying AI to the game of Go with traditional methods, the result is

not promising. Go AI was easily beaten by amateur players in the early development.

This is due to two characteristics of Go:

2

1. The complexity of Go is much higher than Chess. The game state-space

complexity of Go is estimated 10170 while chess is estimated 1047 [2, 3].

2. There is no well-developed evaluation function for Go.

Go AI showed signs of rising when Monte Carlo Tree Search (MCTS) [4, 5]

was proposed. Instead of fixed-depth minimax search, MCTS samples the promising

states and actions more. Therefore, the search tree grows larger as the sample size

increases. Evaluation functions are replaced by the Monte Carlo method [6], which

evaluates a state by running simulations. In a simulation, moves are randomly played

until the game reaches the end, and the simulation reports a reward from the end state.

The Monte Carlo method estimates a state by averaging rewards of simulations. Thus,

MCTS can be implemented without any domain-based knowledge, but the

performance can be improved with domain-based knowledge. In 2016, AlphaGo [7],

a Go AI which uses MCTS with two deep neural networks, beat the top Go player

without handicaps.

Even though MCTS has had great success on games with large branching

factor, minimax search with alpha-beta pruning still beats MCTS on games like Chess

or Checkers [9]. Since MCTS mostly focuses on the promising actions, if there are a

lot of shallow traps [9] in a search space, MCTS is less appropriate than minimax

with alpha-beta pruning. A shallow trap is a situation where a player will lose within

a few moves if an opponent responds correctly. These traps are common in Chess

(capturing the king) but less common in games like Go.

3

1.3 Goal of Thesis

The goal of this thesis is to test the ability of minimax-combined MCTS to

detect shallow traps compared to MCTS. Achieving this goal requires the following

tasks:

1. Develop a model for the Go problem.

2. Implement MCTS to the Go problem.

3. Propose a minimax-combined MCTS algorithm.

4. Implement the minimax-combined MCTS to Go problem.

5. Compare the algorithms in terms of accuracy and computation.

1.4 Structure of Thesis

This thesis is structured as follows. Chapter 2 provides the background on

minimax search with alpha-beta pruning, MCTS, the relation of MCTS and shallow

traps. Chapter 3 provides the model of the Go problem and the algorithms for both the

and minimax-combined MCTS. Chapter 4 provides the experimental results.

Conclusions and future work are described in Chapter 5.

4

Chapter 2: Literature Review

2.1 Deep Blue

Deep Blue [1] was a great milestone of AI. Deep Blue won a game against the

world champion in chess in 1996, but lost 3 times and drew twice. The next year,

Deep Blue won by a score of 3.5-2.5. The basic components of Deep Blue are

minimax, alpha-beta pruning, and evaluation functions.

First, Deep Blue has a position generator, which allows Deep Blue to search

game trees deeper. Then, once it hits a certain depth of the tree, evaluation functions

kick in. There are two types of evaluation functions. The first one is simpler but takes

fewer computations, and the second one takes more computations but is more

accurate. The first evaluation function is just a sum of values of pieces. If the one

player has much more value of pieces compared to the opponent, then no further

evaluation is needed. However, if the values of pieces of both players are close, then

complex evaluation functions will be applied. The second evaluation function is a

sum of feature values. Deep Blue recognizes about 8000 patterns, and there are

corresponding values to the patterns.

Second, after the positions are evaluated, the value is backed up by minimax

and alpha-beta pruning algorithms. In minimax algorithms, there are max and min

nodes. Since the white player moves first in chess, we assume that the higher the

score, the better the situation for the white player. Therefore, every node that the

white player has the next move is a max node because the white player wants to

maximize the score, and every node that the black player has the next move is a min

5

node because the black player wants to minimize the score. This is a recursive

process that continues until the value is backed up to the root.

Third, alpha-beta is an algorithm based on minimax search. The central idea is

subtrees that cannot influence the root can be pruned. For example, a root (a max

node) has two children (min nodes): the value of child 1 is 5, and child 2 is still being

explored. If one of the children of child 2 has a value below 5, then child 2 can be

pruned. The reason is that child 2 is a min node, so it only updates values that are

lower. If child 2 has a value below 5, then it is impossible to have a value greater than

5. Thus, child 1 will always be greater than child 2, so we can prune child 2.

Fourth, Deep Blue has an extended minimax search due to the nature of chess.

If the leaf node is at a forcing position (i.e., checkmate or threat to win), the

evaluation functions do not work so well. The evaluating current forcing position is

not useful because players are expected to play a few moves responding to the threat.

Therefore, the leaf node is expanded one more layer, and the expanded position will

be evaluated.

2.2 Monte Carlo Tree Search

The methodology of Monte Carlo Tree Search [2] is the core of this proposal.

The observations and experiments of this thesis will be conducted under the

framework of MCTS to demonstrate why MCTS does not work well with a large

number of shallow traps. Therefore, understanding how the MCTS operates is

important. In general, the MCTS consists of 6 parts shown in chapter 2.2.1~2.2.6. In

short, how simulation can be estimated, how bounds are created, how bounds are

applied to tree search will be discussed as below:

6

2.2.1 Markov Decision Process

Markov decision process models sequential decision problems in fully

observable environments using four components:

• S: set of states, with s0 being the initial state.

• A: set of actions.

• T (s, a, s’): transition model that determines the probability of reaching state

s’ if action a is taken at state s.

• R(s): reward function.

The goal for an MDP problem is to find and optimal policy π which maps

states to actions. In other words, a policy specifies what actions should be taken in a

given state. Optimal policy means the reward is maximized when decisions are made

by optimal policy.

2.2.2 Monte Carlo Method

The Monte Carlo method [8] approximates the analytic value by repeated

random sampling. By the law of large number, the empirical mean approximates the

expected value as the number rises. Therefore, a reliable estimate can be generated by

Monte Carlo method.

2.2.3 Multi-armed Bandit Problem

A multi-armed bandit problem [5, 10] is a sequential decision problem. The

player chooses among K arms for each iteration and gets a reward. The goal of the

problem is to maximize the accumulated reward. The difficulty is that the distribution

of each arm is unknown, so the player estimates the reward by pulling an arm. This

7

leads to an exploration-exploitation tradeoff problem. Exploitation means pulling the

currently best performing arm, and exploration means pulling sub-optimal arms. One

wants to do exploitation to maximize the reward but also wants to do exploration in

case the current believed best arm is actually sub-optimal.

To deal with multi-armed bandit problems, a concept called regret is

introduced. Whenever a player pulls an arm that is not optimal, there is a

corresponding regret defined by R = µ∗ − µ& , where R is the regret, µ∗ is the mean of

the best arm, and µ& is the mean of the chosen arm i which is not the best arm. Many

bandit algorithms aim to minimize the regret.

2.2.4 Upper Confidence Bounds

Upper confidence bounds [10] (UCB) are useful for multi-armed bandit

problems. Since the width of confidence bounds decreases as the sample size

increases, upper confidence bounds of sub optimal arms fall below the mean of the

best arm as sample sizes increase. When the sample sizes are close, the best arm

should be most likely to be pulled. When one or more arms have much smaller

sample sizes due to their bad performance, their confidence bounds are wide, so they

should have chances to be pulled. Therefore, the exploitation-exploration tradeoff can

be applied by choosing the highest UCB for each iteration.

 There are many ways to generate upper confidence bounds. UCB1,

which sets confidence bounds by Hoeffding’s inequality, is one of the well-known

ways because of its ease of application and its ability to minimize regret. The

algorithm is as follow:

8

Assume there are K arms with unknown identical independent distributions

within [0, 1]. One pulls the arm that maximizes the formula 𝑋(+
* +,-
-.
	 , where 𝑗 ∈

1… ,𝐾,	𝑋(is the average reward from arm j, nj is the times of arm j has been pulled,

and n is the overall number of pulls.

2.2.5 Monte Carlo Tree Search Algorithm

Monte Carlo Tree Search [2, 3] is a best-first tree search algorithm. MCTS

relies on two concepts for the best-first characteristic. One is that the value of an

action can be approximated by random simulations, and the other one is that the value

of simulations is useful for the best first policy. MCTS repeats the following four

steps until it reaches the stopping condition. The condition can be limited time,

memory, or iteration.

1. Selection:

Start from the root node, a child is selected recursively until an expandable

node is reached. A node is expandable if it is a non-terminal state and has children

unvisited.

2. Expansion:

Add one or several of unexplored children nodes of a leaf node to the tree.

3. Simulation:

Run a simulation from a newly added node to produce an outcome.

4. Backpropagation:

Back up the result of simulation to the parent recursively.

9

MCTS is a popular algorithm for its following characteristics:

1. Heuristic

Although full-depth minimax tree search does not require any domain-based

knowledge, it is quite computation-consuming. If fixed-depth minimax tree search is

applied, then evaluation functions are required. On the other hand, MCTS does not

require any domain-based knowledge, but the performance of MCTS can be

improved with specific knowledge. In short, fixed-depth minimax and MCTS both

work with domain-specific knowledge, but only MCTS is workable without any

knowledge.

2. Anytime

The search tree is built incrementally in MCTS, and the results are propagated

immediately after simulations. This allows MCTS to give a current best solution

anytime.

3. Asymmetric

The selection policy allows MCTS to search more on promising nodes.

Therefore, the shape of the tree tends to be asymmetric.

2.2.6 Upper Confidence Bounds Applied to Trees

UCT algorithm [5] is a selective policy in MCTS. A child is recursively

selected by UCB1 until a terminal or expandable node is reached. UCT keeps the

exploration-exploitation tradeoff characteristic from UCB1, and UCT is proved to

converge to minimax [11].

10

2.3 Shallow Traps in MCTS

A player is at risk falling into a shallow trap [9] if there exist a sequence of

actions that are guaranteed for the opponent to win the game. Figure 2.3.1 shows an

example of shallow traps. If the white player chooses the middle action, the black

player can win the game with a correct response. The definition of a level-k shallow

trap is that after the player falls into a shallow trap, the opponent has a k-move

winning strategy. Therefore, the levels of shallow traps are typically odd numbers,

because it is assumed that players do not lose a game on their own move. The study

[9] shows that MCTS is able to identify level-3 shallow traps, but it takes an

extremely long time to identify level-5 or higher shallow traps.

Figure 2.3.1: A demonstration of shallow traps [9]

The frequency of shallow traps varies from game to game. For example, shallow traps
occur quite often in Chess compared to the game of Go. The games stop when the
king is captured in chess whereas there is no particular rule or pattern to determine
the end of Go. Therefore, it is possible that the king will be captured inevitably in a
few moves. In contrast, the ending of Go means all positions are either someone’s
territories or impossible to become territories, which cannot happen in a few moves.

11

Therefore, shallow traps barely happen in Go. Figure 2.3.2 shows the frequency of
different level shallow traps in different board depths. The upper part of the figure is
the result of semi-random generated games, and the lower part is the result of games
played by grandmasters. In semi-random games, moves are played randomly with
probability 1/3 and played with GNU Chess (http://www.gnu.org/software/chess)
heuristic with probability 2/3. Here we can see when shallow traps occur more often
in end games than the opening (comparing depth 63 to 15). Also, the deeper shallow
traps are, the more frequently the shallow traps happen. Finally, grandmasters are
good at avoiding shallow traps in the opening, compared to the semi-random
generated games.

Figure 2.3.2: Frequency of shallow traps in different scenarios. [9]

The ability of UCT to avoid shallow traps is not promising. Figure 2.3.3

shows how many iterations with UCT are needed to detect shallow traps compared to

the number of minimax nodes. The result shows that UCT is able to detect level-3

shallow traps given roughly 10 times the number of iterations, but it takes extremely

long to detect any shallow traps at higher levels (in some cases, 50 times is not

enough). The result shows that 95% of nodes explored are 7 levels deeper when level

7 shallow traps occur.

12

Figure 2.3.3: Avoiding shallow traps with UCT [9]

2.4 Related Work Combining MCTS and Minimax Search

2.4.1 MCTS Solver

MCTS solver [15] finds the theoretical value under the framework of MCTS.

When running MCTS solver, not only the results of simulations but also the proven

wins and losses are propagated. If the expanded nodes are not in the end state, then

the procedure is same as MCTS. However, if the expanded nodes are at the end state,

then the proven wins and losses are propagated by the following rules:

If the node is a max node, then

 A proven win is backpropagated if one of the children is a proven win.

A proven loss is backpropagated if all of the children are proven

losses.

 Otherwise, nothing is backpropagated.

If the node is a min node, then

 A proven loss is backpropagated if one of the children is proven loss.

13

 A proven win is backpropagated if all of the children are proven wins.

 Otherwise, nothing is backpropagated.

By the algorithm above, the theoretical values can be backpropagated. Also,

proven nodes are no longer searched to improve the efficiency. The experiments

show that MCTS solver has a win rate of 65% against MCTS in the game of Connect

4.

2.4.2 MCTS and Minimax Hybrids

To improve the performance of MCTS when shallow traps exist, MCTS with

minimax hybrid algorithm has been proposed in [8]. The minimax can be embedded

in all four phases of MCTS.

1. Minimax in simulation phases:

In simulation phases, a fixed-depth minimax search is done before every

random move. Since no evaluation is given, the minimax can only detect proven wins

or losses. Thus, the random simulation will find forced wins or avoid forced losses.

2. Minimax in selection and expansion phases:

In selection and/or expansion phases, a shallow-depth full width minimax

search is done. This improves the MCTS by checking immediate descendants of a

subset of tree nodes.

3. Minimax in backpropagation phases:

14

MCTS backpropagates simulation results to parents. What minimax does is to

backpropagate proven wins and losses.

2.5 Monte Carlo Tree Search Extension

2.5.1 UCB1-Tuned

UCB1-tuned [10] is a variation of UCB1 which tunes the bounds more finely

than UCB1. It replaces the formula of upper confidence bounds * +, ,
,6

, with

ln n
n9

min{
1
4
, V9(n9)}

where

V9 s =
1
2

X9,E*
F

EGH

− X9.F* +
2 ln t
s

which means that machine j, which has been played s times during the first t

plays, has a variance that is at most the sample variance plus * +, K
L

. Although there is

no analytical way to prove a regret bound for UCB1-tuned, experiments show that

UCB1-tuned performs better than UCB1.

2.5.2 Best Arm identification algorithm

UCB is an accumulated regret minimizing technique. A suitable example is

medical treatment. There are several treatments, and their effectiveness is unknown.

Therefore, the objective is to do as little accumulated damage as possible to the

patients. The regrets happen during the exploration. However, in the case of making

decisions in the game of Go, the regrets happen after the exploration. Only the final

15

decision matters. Best arm identification algorithm [12] has a highly exploring policy

[13], UCB-E. The following is the algorithm:

𝐹𝑜𝑟	𝑖 ∈ 1,… . , 𝐾 , 𝑙𝑒𝑡	𝐵U,L = 𝑋U,L +
𝑎
𝑠
	𝑓𝑜𝑟	𝑠 ≥ 1	𝑎𝑛𝑑	𝐵U,\ = +∞

𝐹𝑜𝑟	𝑒𝑎𝑐ℎ	𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑡 = 1,…	, 𝑛: 𝐷𝑟𝑎𝑤	𝐼K ∈ 𝑎𝑟𝑔𝑚𝑎𝑥	𝐵U,L

where the parameter satisfies:	0 ≤ 𝑎 ≤
ij
kl -mn

op
	, and machine i has been played s

times, and K is the number of arms, and n is the total times of plays.

𝐻H	𝑖𝑠	𝑑𝑒𝑓𝑖𝑛𝑒𝑑	𝑎𝑠:	
1
∆U*

n

UGH

	𝑎𝑛𝑑	∆U= 	𝜇∗ − 𝜇U

2.5.3 All Moves As First (AMAF)

ALL MOVES AS FIRST [16] is a history heuristic which uses the

information in simulations for the selection phase. In MCTS, the simulation result

will only be backpropagated to the node triggering the simulation and all of its parent

nodes. AMAF backpropagates the simulation result to siblings of the node triggering

the simulation and all of the parent nodes. Take Figure 2.5.1 for example. Actions C1

and A1 are selected by UCT, and B1, A3, and C3 are the actions of the simulation.

UCT only backpropagates the result to C1 and A1, but AMAF backpropagates the

result to C1, A1, B1, A3, and C3.

16

Figure 2.5.1: An example of AMAF [16].

2.5.4 Last-Good-Reply Policy

The Last Good Reply Policy [17] views MCTS as a machine learning

technique. In each simulation, actions are selected according to similar game states.

After the simulation, if the result is successful, the move will be adopted as good

reply. If there was a good reply and another good reply appears, the last good reply

will be adopted. Figure 2.5.2 illustrates an example of the last good reply policy. The

result of the first simulation is black’s win. Therefore, all the replies (C replies to B, E

replies to D, and G replies) are adopted. The result of the second simulation is white’s

win. The same procedure is taken. The result of the third simulation is black’s win.

Two rseplies exist to action B (C to B and D to B). Only the last reply (D to B) will

be adopted, and the old one is forgotten.

17

Figure 2.5.2: An example of last good reply policy [17].

18

Chapter 3: Approach

3.1 Inspiration for minimax-combined MCTS

The idea of minimax-combined MCTS comes from a very simple example,

level one trap. In this example, we have a game with branching factor 20. The root

node (black player’s turn) has 20 children. 19 children nodes are normal moves with a

mean of 0.5, and the last child node is a trap. The trap node (white player’s turn) has

19 children nodes (wrong moves for white) with a mean of 0.7, and the last child

node (correct move for white) has a mean of 0.3. Notice that no proven win or loss is

within 2 layers, so the node is not a shallow trap. Therefore, both MCTS and MCTS

and minimax hybrid do not work here. Nonetheless, the node is indeed a trap move

because the opponent has a response that leads himself to a good situation. The logic

is explained in the next paragraph.

If the black player plays a normal move, the result is 0.5. If the black player

plays a trap move and the white player plays a wrong move, the result is 0.7. If the

black player plays a trap move and the white player plays the correct move, the result

is 0.3. The black player should assume the white player will pick the correct move,

because it requires only one step to figure out the results. Therefore, the black player

should choose the normal moves instead of the trap move.

If one uses the minimax search with a fixed depth = 2, only 20+202=420

nodes are needed to be explored to find the trap. However, it takes a lot of simulations

for MCTS to detect the trap. The result is shown in the following tables.

19

Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 479	 0.5117	 X	 X	
Normal	moves	 23	 0.5	 0.9828	 X	
Trap	 42	 0.6333	 0.9906	 X	
Wrong	moves	
for	white	

2	 0.7	 X	 -0.5741	

Correct	move	
for	white	

4	 0.3	 X	 -0.6009	

Table 3.1.1: Simulation results after 479 simulations

Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 2976	 0.5031	 X	 X	
Normal	moves	 145	 0.5	 0.7189	 X	
Trap	 221	 0.5416	 0.7189	 X	
Wrong	moves	
for	white	

9	 0.7	 X	 -0.0218	

Correct	move	
for	white	

50	 0.3	 X	 -0.0062	

Table 3.1.2: Simulation results after 2976 simulations

Name	of	the	
node	

#	of	simulations	 Mean	 Upper	
confidence	
bounds	

Lower	
confidence	
bounds	

Root	 7092	 0.4999	 X	 X	
Normal	moves	 355	 0.5	 0.6473	 X	
Trap	 347	 0.4983	 0.6472	 X	
Wrong	moves	
for	white	

13	 0.7	 X	 0.0746	

Correct	move	
for	white	

100	 0.3	 X	 0.0748	

Table 3.1.3: Simulation results after 7092 simulations

From the simulation results, we can see that MCTS works properly. The

promising nodes are explored more, and the correct decision is finally made. The only

problem is that too many simulations are needed to detect traps. It takes roughly

20

twenty times more simulations than minimax search. The potential reason for such a

low efficiency to detect traps is that MCTS evaluates a node by the average scores of

simulations. Therefore, MCTS still takes some time to converge to the theoretical

value.

The purpose of minimax-combined MCTS is very simple. The result of

MCTS under a subtree can be treated as an evaluation function. Thus, a minimax

search can identify not only shallow traps but also good/bad situations. On the other

hand, MCTS solver and MCTS and minimax hybrid can only detect proven wins and

losses but not good/bad situations.

3.2 Rules of Go

In the game of Go, the board is a plane grid of 19 horizontal lines and 19

vertical lines (figure 3.2.1, an example of 9 by 9 board). Two players (black and

white) place one stone in turns, and the stones are placed on the intersections on the

board. Once the stone is placed, it cannot be moved, but it can be captured and taken

away from the board. The objective is to control more territories than the opponent.

Territories are defined as areas enclosed by own stones, where every opponent’s

stones within the territories are expected to be captured eventually (figure 3.2.2).

21

Figure 3.2.1: A 9 by 9 board

Figure 3.2.2: A finished game. The triangle marks are considered black’s

territories, and the square marks are considered white’s territories.

3.2.1 Connection and Capture

 Connected stones are considered to be a group. When a group is

captured, all stones are removed. Stones are connected with adjacent stones, and only

vertical and horizontal direction counts. Figure 3.2.3 shows examples of connection.

Every adjacent empty point to a group is considered its liberty (figure 3.2.4). If a

group has no liberty, it is captured (figure 3.2.5). Players cannot fill their last liberty

(figure 3.2.6), which is a suicide unless that move is able to capture opponent’s

groups (figure 3.2.7).

22

Figure 3.2.3: Examples of connections. The stones marked with triangles are not

connected while the stones marked with squares are connected.

Figure 3.2.4: Examples of liberty. The circle-marked spaces are liberties of black

groups.

Figure 3.2.5: An example of captures. On the left side, black groups only have
one liberty. When white places a stone at the marked space, the black group is

captured.

23

Figure 3.2.6: Examples of suicides. The black player is not allowed to play the
positions marked with squares, because the moves make the groups have no

liberty.

Figure 3.2.7: An example of captures. The stones marked with triangles have

only one liberty. If either player plays the square, both groups have no liberty.
By the rules of Go, whoever makes the move can capture the opponent’s groups.

The right-hand board shows the

3.2.2 Ko and Ko fight

A Ko is a special situation in Go where both players can capture opponent’s

stones and create an endless loop. The rule of Ko is to prevent immediate repetition.

If a move creates a position same as the last previous position, then the move is

illegal (Figure 3.2.8). Because of this rule, when Ko happens, players will play moves

that opponents want to defend, which is called Ko threat. If so, the player can capture

the opponent’s stone again because the position is changed (Figure 3.2.9). This

24

process is called Ko fight. In general, a player will win the Ko fight and gain some

profit while the other player gains profit from the Ko threat.

Figure 3.2.8: Endless cycle of Ko. Without the rule of Ko, players can keep

playing move 1 and 2, and create a position same as previous one.

Figure 3.2.9: A Ko fight. Black starts a Ko fight, and white finds a Ko threat.

Black ignores the Ko threat, and white gains from the Ko threat.

25

3.2.3 Alive Groups

Some groups can never be captured, even if opponents can play several moves

in a row. These groups are considered alive. Basically, groups with two eyes or more

are alive. An eye is defined as a space surrounded by a player’s own stones (Figure

3.2.10). When a group has two eyes, its liberty cannot be decreased down to 0

because it is a suicide for the opponent when they put stones in the eyes (Figure

3.2.11).

Figure 3.2.10: Examples of eyes. The circle-marked spaces are defined as eyes.

Figure 3.2.11: Example of alive group. The group has two eyes, and white cannot

play either spaces because suicide is not allowed.

26

3.2.4 Seki

Seki, or mutual life, is a situation that groups of both players do not have two

eyes, but they are also not able to capture the opponents’ stones. The most classic

situation of Seki is that both groups have two mutual liberties, so when one player

fills a liberty, the other player is able to capture (figure 3.2.12). Therefore, no one

wants to take the first move, and no groups can be captured.

Figure 3.2.12: Examples of Seki. Both players do not want to play the marked

spaces. If one plays there, his group will be captured, and vice versa.

3.3 Model of Go Problem

There are several types of Go problems. This model is created to solve the

problems that involve capturing opponent’s stones or avoiding one’s own stones from

being captured. When capturing opponent’s stones, the player usually gains the

27

territories where the stones are removed. As a result, capturing stones can be seen as a

sub-goal of winning a game, which is very important in the game of Go.

3.3.1 Setup

 The Go problem considered in this section is from the black player’s

perspective. Therefore, actions, objectives, and scores are from the black player’s

perspective. The black player has the first move. The higher the score is, the better the

condition black player is in (on the other hand, the worse condition the white player is

in). If the objective is to save groups, the black player has to save groups.

Go problems discussed in this thesis only include two objectives, capturing

stones and avoiding stones from being captured. The problems fall into 5 sub-

problems: saving groups, killing groups, cutting groups, connecting groups, and

capturing race (Figure 3.2.13). In cutting and connecting groups problems, stones are

inevitably captured if they lose the connection. In capturing race problems, if

opponent’s stones are not captured, then one’s own stones are inevitably captured. To

sum up, the objectives of the five sub-problems are either capturing stones and

avoiding stones from being captured, and the only difference is the scenario. In

addition, Go problems usually do not involve the entire board, and some groups are

assumed alive to simplify the problems. The following are the setup:

1. Decide problem mode: Saving groups or killing groups

2. Set positions: putting black and white stones on the board according to the

problem

28

3. Determine feasible area: Determine area which is legal to play. The

problem must have an ending (either groups are saved or captured) just by

playing within feasible area.

4. Determine important positions: Determine which stones are supposed to

be saved or captured. If important stones at important positions are saved

or captured, then the problem is ended.

5. Determine alive groups: For connecting problems, the objective is to

connect groups instead of making two eyes. Therefore, some groups are

marked as alive, and other groups are considered alive when they connect

to alive groups. Thus, connecting problems has the same standard of

scoring as other problems: alive (connected), seki, and dead.

29

Figure 3.2.13: Five types of Go problem. From left to right, top to bottom: saving

groups, killing groups, cutting groups, connecting groups, and capturing race.
The triangle marked stones are the groups to be saved, and the square marked
stones are the groups to be killed, and the circle marked spaces are the feasible

areas.

3.3.2 Scoring

The problem ends when important groups are alive, Seki, or captured. Based

on my experience, scores of results are shown in Table 3.3.1. Notice that Seki, or

mutual life, seems to be an even result for both players. However, the result is slightly

better for the player who is saving groups.

Avoiding being captured Score Capturing opponent’s groups Score
Alive 1 Alive 0
Seki 0.7 Seki 0.3

Dead (Captured) 0 Dead (Captured) 1
Table 3.3.1: Scores of results

However, the Ko fight might happen in Go problems. As mentioned, players

find Ko threat “somewhere else” and hope their opponents will respond. However,

when doing local problems, there is no clue of how opponents will respond. Thus,

assumptions are made for scoring. First, when Ko fight happens, players are allowed

to fight back immediately, which is against the rule. Second, after a player fights back

30

immediately, that player can fight back the Ko immediately, but the opponent cannot

fight back at all. Third, the player who fights back the Ko has a penalty.

The assumptions are based on the Ko fight pattern. When a player fights back

the Ko, we assume the player wins the Ko, but meanwhile winning the Ko means that

the opponent can play two moves in a row somewhere else. Therefore, the player has

a score penalty because the opponent gains something somewhere else. Based on the

assumptions, we have the modified score:

 Black wins the Ko No one wins the Ko White wins the Ko
Alive 0.5 1 1
Seki 0.3 0.7 0.85
Dead 0 0 0.5

Table 3.3.2: Scores when saving groups

31

 Black wins the Ko No one wins the

Ko
White wins the Ko

Alive 0 0 0.5
Seki 0.15 0.3 0.7
Dead 0.5 1 1

Table 3.3.3: Scores when capturing groups

3.3.3 Ending Pattern Recognition

The model has to decide the result of the problem: alive, Seki, or dead.

1. Dead: When important stones are captured, the result is dead.

After a move check each position marked as important

If the purpose is to save groups

If any of important positions is not black stone

Return dead

Else if the purpose is to kill groups

If any of important positions is not white stone

Return dead

 If above statements do not return dead

 Return not dead

2. Seki: When both players pass continuously over 3 times, the result is Seki.

 If continuous passes are over 3 times

 Return Seki

 Else

 Return not Seki

32

3. Alive: Recognizing alive patterns is the most difficult. According to rules,

a group with two eyes is alive, and eyes are defined as a space surrounded

by own stones. However, there are true and false eyes which do not have

simple ways to determine. Therefore, instead of recognizing eyes, the

player who is capturing is given infinite moves in a row. If the important

groups can be captured, then the group is not alive.

Fill the board with stones of the player who is capturing expect

positions of eyes of the player who is being captured

 Do

 Fill every position of eyes one at a time

 If important stones are captured

 Return not alive

 While some stones are captured

 Return alive

3.3.4 Extra Rules

The extra rules are not necessary but simplify the model of Go problems and

prevent endless cycles.

1. Situations allowing passing: We don’t want players to pass in any

situation. In fact, we want players to pass when Seki happens. Notice that

satisfying this situation does not mean Seki, but situations are always

satisfied when Seki happens.

Pass rule 1: if a player has no place to play, the player is allowed to

pass.

33

Pass rule 2: if every feasible place is either reducing own liberty to 1

or filling own eyes, the player is allowed to pass.

2. Winning by passing: Sometimes opponents can keep playing useless

moves and make the game endless. Therefore, if a player passes three

times more than the opponent, the player wins.

3. Limited Ko advantages: In the model, when a player wins a Ko, the player

is assumed to win Ko in the future. However, this advantage is limited to 5

times. After 5 Ko, the player wins the Ko cannot fight Ko back anymore.

4. Not filling true eyes: Players are not allowed to fill true eyes.

3.4 Algorithm of MCTS

Although the model of MCTS is discussed in chapter 2, the model is for

general MDP problems. The main difference between MDP problems and Go

problems is that Go problems are two-player zero-sum games or adversarial games.

Therefore, the selection phase is different. When the black player has the move, the

player wants to pick moves with higher scores. When the white player has the move,

the player wants to pick moves with lower scores. This is different from MDP

problems where the purpose is either maximizing or minimizing rewards. Also, no

policy is applied in this thesis.

3.4.1 Selection

In MCTS, UCT is applied in the selection phase. For max nodes (black

player’s turn), the child node with the highest upper confidence bound (UCB) is

picked. For min nodes (white player’s turn), the child node with the lowest lower

34

confidence bound (LCU) is picked. The formula to calculate UCB and LCB is 𝑋(±

* +,-
-.
	 , where 𝑗 ∈ 1… ,𝐾,	𝑋(is the average reward from arm j, and nj is the times of

arm j has been pulled, and n is the overall number of pulls. The algorithm keeps

selecting children nodes until it reaches terminated nodes, or it reaches nodes whose

children nodes are all unexplored. If unexplored nodes are reached, the algorithm

enters expansion phase. If terminated nodes are reached, the algorithm enters

backpropagation phase, which propagates the score of the terminated node.

3.4.2 Expansion

When expanding a node, all of its children nodes are expanded. Expanded

nodes are added to the search tree, and all of them will be simulated.

3.4.3 Simulation

Moves are uniformly randomly played until reaching the end state. After the

simulation, the score of the simulation will be propagated.

3.4.4 Backpropagation

The result of simulations will be returned to parent nodes recursively from

leaf nodes to the root node. For nodes on the returning path, the times of simulations

are increased by 1, and the total score is increased by the score of simulation.

3.4.5 Decision

The children node of root nodes with the highest mean is chosen as the final

decision.

35

3.5 Algorithm of Minimax-combined MCTS

The framework of minimax-combined MCTS is identical to MCTS. It has

four repetitive phases and a final decision. However, the ways algorithms select nodes

and backpropagate values are different. Two terms are introduced here:

1. Minimax threshold: The minimax threshold indicates whether a node is

included in the minimax search. A node meets the minimax threshold if

the node is visited enough times. In experiments, the minimax threshold =

minimax threshold parameter * branching factor. For example, a node has

5 children and the minimax threshold parameter =100. It meets the

minimax threshold if it is visited 500 times.

2. Minimax node: The best leaf node which can be reached by the minimax

search on the mean from a certain node. If the node does not meet the

minimax threshold, the minimax node is itself.

3.5.1 Notation

𝑁v,U:	𝑡ℎ𝑒	𝑖𝑡ℎ	𝑐ℎ𝑖𝑙𝑑	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒

𝑁w: 𝑡ℎ𝑒	𝑚𝑖𝑛𝑖𝑚𝑎𝑥	𝑛𝑜𝑑𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒

𝑀y:	𝑡ℎ𝑒	𝑚𝑒𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁

𝑈y:	𝑡ℎ𝑒	𝑈𝐶𝐵	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁

𝐿y:	𝑡ℎ𝑒	𝐿𝐶𝐵	𝑜𝑓	𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑁

𝑀𝑇:	𝑡ℎ𝑒	𝑚𝑖𝑛𝑖𝑚𝑎𝑥	𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

3.5.2 Selection

𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁𝑈𝐿𝐿

36

𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�

𝐹𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑡ℎ𝑒	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 − 1

								𝐼𝑓	𝑏𝑙𝑎𝑐𝑘�𝑠	𝑡𝑢𝑟𝑛

																𝐼𝑓	𝑈
y�,�

� > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑈
y�,�

�

																								𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁v,U

								𝐼𝑓	𝑤ℎ𝑖𝑡𝑒′𝑠	𝑡𝑢𝑟𝑛

																𝐼𝑓	𝐿
y�,�

� < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝐿
y�,�

�

																								𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑 = 𝑁v,U

𝑁𝑒𝑥𝑡𝐶ℎ𝑖𝑙𝑑	𝑠𝑒𝑙𝑒𝑐𝑡𝑠	𝑖𝑡𝑠	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛	𝑤𝑖𝑡ℎ	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑝𝑟𝑜𝑐𝑒𝑠𝑠

3.5.3 Expansion

The expansion process is the same as MCTS.

3.5.4 Simulation

The simulation process is the same as MCTS.

3.5.5 Backpropagation

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 + +

37

𝑇𝑜𝑡𝑎𝑙	𝑆𝑐𝑜𝑟𝑒+= 𝑆𝑖𝑚𝑢𝑙𝑎𝑖𝑡𝑜𝑛	𝑟𝑒𝑠𝑢𝑙𝑡
𝑈𝑝𝑑𝑎𝑡𝑒	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛�𝑠	𝑈𝐶𝐵	𝑎𝑛𝑑	𝐿𝐶𝐵

𝐼𝑓	𝑉y < 𝑀𝑇
 𝑁w = 𝑁	(𝑡ℎ𝑒	𝑛𝑜𝑑𝑒	𝑖𝑡𝑠𝑒𝑙𝑓)
								𝑅𝑒𝑡𝑢𝑟𝑛	

𝑁w = 𝑁v,\w
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀

y�,�
�

𝐹𝑜𝑟	𝑖	𝑓𝑟𝑜𝑚	1	𝑡𝑜	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 − 1
								𝐼𝑓	𝑏𝑙𝑎𝑐𝑘�𝑠	𝑡𝑢𝑟𝑛
																𝐼𝑓	𝑀

y�,�
� > 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�

																								𝑁w = 𝑁v,Uw
								𝐼𝑓	𝑤ℎ𝑖𝑡𝑒′𝑠	𝑡𝑢𝑟𝑛
																𝐼𝑓	𝑀

y�,�
� < 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒

																								𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 = 𝑀
y�,�

�

																								𝑁w = 𝑁v,Uw

3.5.6 Decision

The child node with the highest visit times is picked as the final decision.

38

Chapter 4: Experiment

4.1 Experiment Process

The experiment evaluates the performance of MCTS and minimax-combined

MCTS by the number of simulations needed to consistently pick the correct move.

That means only one correct move exists in each problem, and the correct move is

known. Every time a backpropagation is done, the program will pick one move.

MCTS picks the child with the highest mean, and minimax-combined MCTS picks

the most frequently visited child. The definition of consistent pick will be discussed

in the last paragraph of this section.

Experiments are conducted in the following scenarios:

1. Level-3 shallow trap

2. Level-5 shallow trap

3. Simple problems

4. Complex problems

5. Complex problems with multiple scores

The experiments are conducted in the following steps:

1. Run a long enough simulation to make sure MCTS converges to correct

moves.

2. Run multiple MCTS and minimax-combined MCTS with an exploration

parameter = 1.414 and a minimax threshold = 50 * branching factor.

39

3. Do paired t-tests to see if both algorithms are significantly different from each

other.

Determine the consistent correct pick:

The consistent pick involves manual tracking. There are two requirements to decide

whether the pick is consistent.

1. The correct move is continuously picked many times.

2. The mean of the correct move asymptotically approaches the theoretical

value.

Figure 4.1.1: List of picks. The picks change often in the beginning of MCTS

(left list). MCTS picks action (7,5) every time from 1024 simulations (right list).

40

Figure 4.1.2: After 1276 Simulations

Figure 4.1.3: After 2842 simulations

Figure 4.1.4: After 8011 simulations

Figures 4.1.1 through 4.1.4 show that correct move (7,5) is picked every time

from 1024 simulations spent. They also show that the results asymptotically approach

the theoretical value 1.

4.2 Level-3 Shallow Trap

Figures 4.2.1 to 4.2.4 illustrate an example of level-3 shallow traps. Figure

4.2.1 shows the position of the stones. The objective is to connect the stones marked

with circles. Figure 4.2.2 shows the correct move and the shallow traps. The position

marked with a square is the correct move, and the position marked with triangles are

the shallow traps. Figures 4.2.3 and 4.2.4 demonstrate how a shallow trap happens.

41

Figure 4.2.1: The objective is to connect marked black stones

Figure 4.2.2: The square is the correct move. The triangles are the shallow traps.

Figure 4.2.3: A demonstration of falling into a shallow trap

42

Figure 4.2.4: The white player cuts off black stones in three moves.

The theoretical score of the correct move is 1, and any other moves are 0. The

shallow traps are 3 level deep, and the correct move is 11 level deep. Table 4.2.1

shows the computation needed of MCTS and minimax-combined MCTS to pick the

correct move (minimax threshold parameter = 50). Table 4.2.2 shows the paired t-test

under 95% confidence interval. The confidence interval does not include 0, showing

that the minimax-combined MCTS needs significantly fewer computations to pick the

correct move.

43

 Average computations needed Standard deviation
MCTS 48803 7792

Minimax-combined MCTS 7304 1415
Table 4.2.1: The average computations needed of MCTS and minimax-combined

MCTS

Lower bound Upper bound
34662 48336

Table 4.2.2: Paired t-test (MCTS – Minimax MCTS)

4.3 Level-5 Shallow Trap

Figures 4.3.1 to 4.3.4 illustrate an example of level-5 shallow traps. Figure 1

shows the position of the stones. The objective is to connect the stones marked with

circles. Figure 4.3.2 shows the correct move and the shallow traps. The position

marked with a square is the correct move, and the position marked with triangles are

the shallow traps. Figures 4.3.3 and 4.3.4 demonstrate how a shallow trap happens.

Figure 4.3.1: The objective is to connect marked black stones.

44

Figure 4.3.2: The square is the correct move. The triangles are the shallow traps.

Figure 4.3.3: A demonstration of falling into a shallow trap.

Figure 4.3.5: The white player can cut off black stones in 5 moves.

The theoretical score of the correct move is 1, and any other moves are 0. The

shallow traps are 5 level deep, and the correct move is 13 level deep. Table 4.3.1

shows the computation needed of MCTS and minimax-combined MCTS to pick the

correct move (minimax threshold parameter = 50). Table 4.3.2 shows the paired t-test

45

under 95% confidence interval. The confidence interval does not include 0, showing

that the minimax-combined MCTS needs significantly fewer computations to pick the

correct move.

 Average computations needed Standard deviation
MCTS 49786 7761

Minimax-combined MCTS 23067 7384
Table 4.3.1: The average computations needed of MCTS and minimax-combined

MCTS

Lower bound Upper bound
19363 34076

Table 4.3.2: Paired t-test (MCTS – Minimax MCTS)

4.4 Simple Problems

This section discusses the performance of minimax-combined MCTS when

shallow traps do not exist. Simple problems are defined as problems that need

500~5000 computations for MCTS to pick the correct move.

Problem 1:

The shallow traps are 5 level deep, and the correct move is 9 level deep.

Figure 4.4.1: The position of problem 1

 Average computations needed Standard deviation

MCTS 1153 250
Minimax-combined MCTS 1016 303

46

Table 4.4.1: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

-80 354
Table 4.4.2: Paired t-test (MCTS – Minimax MCTS)

Problem 2:

The shallow traps are 3 level deep, and the correct move is 9 level deep.

Figure 4.4.2: The position of problem 2

 Average computations needed Standard deviation

MCTS 1906 235
Minimax-combined MCTS 2026 359

Table 4.4.3: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

-315 76
Table 4.4.4: Paired t-test (MCTS – Minimax MCTS)

Problem 3:

The shallow traps are 5 level deep, and the correct move is 7 level deep.

47

Figure 4.4.3: The position of problem 3

 Average computations needed Standard deviation

MCTS 1074 294
Minimax-combined MCTS 825 418

Table 4.4.5: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

-16 514
Table 4.4.6: Paired t-test (MCTS – Minimax MCTS)

Problem 4:

The shallow traps are 5 level deep, and the correct move is 5 level deep.

Figure 4.4.4: The position of problem 4

 Average computations needed Standard deviation

MCTS 2046 395
Minimax-combined MCTS 1917 279

Table 4.4.7: The average computations needed of MCTS and minimax-combined
MCTS

48

Lower bound Upper bound
-118 376

Table 4.4.8: Paired t-test (MCTS – Minimax MCTS)

Problem 5:

The shallow traps are 9 level deep, and the correct move is 9 level deep.

Figure 4.4.5: The position of problem 5

 Average computations needed Standard deviation

MCTS 2396 346
Minimax-combined MCTS 2107 369

Table 4.4.9: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

23 555
Table 4.4.10: Paired t-test (MCTS – Minimax MCTS)

4.5 Complex Problems

This section discusses the performance of minimax-combined MCTS when

shallow traps do not exist. Complex problems are defined as problems that need

50000 or more computations for MCTS to pick the correct move.

Problem 1:

The shallow traps are 9 level deep, and the correct move is 9 level deep.

49

Figure 4.5.1: The position of problem 1

 Average computations needed Standard deviation

MCTS 78395 4344
Minimax-combined MCTS 17643 2023

Table 4.5.1: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

56855 64649
Table 4.5.2: Paired t-test (MCTS – Minimax MCTS)

Problem 2:

The shallow traps are 9 level deep, and the correct move is 13 level deep.

Figure 4.5.2: The position of problem 2

 Average computations needed Standard deviation

MCTS 52966 2984
Minimax-combined MCTS 35254 15631

50

Table 4.5.3: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

4300 31122
Table 4.5.4: Paired t-test (MCTS – Minimax MCTS)

Problem 3:

The shallow traps are 9 level deep, and the correct move is 9 level deep.

Figure 4.5.3: The position of problem 3

 Average computations needed Standard deviation

MCTS 37692 6180
Minimax-combined MCTS 29536 6259

Table 4.5.5: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

-146 16457
Table 4.5.6: Paired t-test (MCTS – Minimax MCTS)

Problem 4:

The shallow traps are 7 level deep, and the correct move is 7 level deep.

51

Figure 4.5.4: The position of problem 4

 Average computations needed Standard deviation

MCTS 36677 9654
Minimax-combined MCTS 31260 8223

Table 4.5.7: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

-5482 16317
Table 4.5.8: Paired t-test (MCTS – Minimax MCTS)

Problem 5:

The shallow traps are 9 level deep, and the correct move is 11 level deep.

Figure 4.5.5: The position of problem 5

 Average computations needed Standard deviation

MCTS 43118 15449
Minimax-combined MCTS 15838 9397

52

Table 4.5.9: The average computations needed of MCTS and minimax-combined
MCTS

Lower bound Upper bound

16522 38039
Table 4.5.10: Paired t-test (MCTS – Minimax MCTS)

4.6 Complex Problems with Multiple results

This section does not relate to shallow traps. In fact, it is an unsolved problem

for either or minimax-combined MCTS. When a complex problem has multiple

results, MCTS tends to figure out a good move without a lot of simulations, but it

might take very long to find out the best move. Figure 4.6.1 shows an example of a

problem that MCTS take very long to solve (more than 500,000 simulations). The

position marked with the square is the correct move, which has a theoretical score of

1. The position marked with the triangle is the second-best move which has a

theoretical score of 0.7. The position marked with the circle is the third-best move

which has a theoretical score of 0.5. The positions unmarked are bad moves which

have a theoretical score of 0. Tables 4.6.1 to 4.6.3 show the results when the number

of total simulations increases.

Figure 4.6.1: A complex multi score problem

Moves	 Number	of	simulations	 Mean	 UCB	
Best	 714	 0.37	 0.52	

53

Second	best	 1347	 0.41	 0.52	
Third	best	 870	 0.38	 0.52	

Bad	move	-	1	 131	 0.16	 0.52	
Bad	move	-	2	 725	 0.37	 0.52	
Bad	move	-	3	 390	 0.31	 0.52	
Bad	move	-	4	 687	 0.36	 0.52	
Bad	move	-	5	 167	 0.2	 0.52	
Bad	move	-	6	 382	 0.31	 0.52	

Table 4.6.1: After 5413 simulations

Moves	 Number	of	simulations	 Mean	 UCB	
Best	 1013	 0.35	 0.49	

Second	best	 10956	 0.51	 0.55	
Third	best	 1251	 0.36	 0.49	

Bad	move	-	1	 173	 0.16	 0.49	
Bad	move	-	2	 1075	 0.35	 0.49	
Bad	move	-	3	 700	 0.32	 0.49	
Bad	move	-	4	 1292	 0.36	 0.49	
Bad	move	-	5	 233	 0.2	 0.49	
Bad	move	-	6	 601	 0.31	 0.49	

Table 4.6.2: After 17294 simulations

Moves	 Number	of	simulations	 Mean	 UCB	
Best	 1013	 0.35	 0.5	

Second	best	 86077	 0.72	 0.74	
Third	best	 1251	 0.36	 0.5	

Bad	move	-	1	 173	 0.16	 0.5	
Bad	move	-	2	 1075	 0.35	 0.5	
Bad	move	-	3	 700	 0.32	 0.5	
Bad	move	-	4	 1292	 0.36	 0.5	
Bad	move	-	5	 233	 0.2	 0.5	
Bad	move	-	6	 601	 0.31	 0.5	

Table 4.6.3: After 92415 simulations

From the tables, we can see that the second-best move is not significantly

different from other moves at the beginning. After 20000 simulations, all simulation

budgets are allocated to the second-best move. The second-best move converges to its

theoretical score 0.7, and the UCB of the second-best increases from 0.52 to 0.74,

which raises a question: If the UCB of a move was 0.52 and it converges to 0.7, is it

54

possible that other moves with UCB of 0.5 converge to a score higher than 0.7? The

answer is positive. In this example, the best move has a theoretical score of 1. Table

4.6.4 shows what will happen if the best move is simulated more.

Number	of	simulations	 Mean	
572	 0.39	
1066	 0.36	
3022	 0.37	
7833	 0.45	
13636	 0.59	
19428	 0.68	
51133	 0.84	
102159	 0.91	

Table 4.6.4 The number of simulation and mean of the best move

Table 4.6.5 shows the result of comparing the theoretical scores and the

confidence bounds after 10000 simulations:

Moves	 Mean	 UCB	 LCB	 Theoretical	
value	

Fall	in	
confidence	
bounds	or	

not	
Best	 0.35	 0.48	 0.21	 1	 No	

Second	best	 0.42	 0.49	 0.36	 0.7	 No	
Third	best	 0.34	 0.48	 0.2	 0.5	 No	

Bad	move	-	1	 0.18	 0.48	 -0.13	 0	 Yes	
Bad	move	-	2	 0.34	 0.48	 0.2	 0	 No	
Bad	move	-	3	 0.29	 0.48	 0.09	 0	 No	
Bad	move	-	4	 0.31	 0.48	 0.15	 0	 No	
Bad	move	-	5	 0.35	 0.48	 0.22	 0	 No	
Bad	move	-	6	 0.24	 0.48	 0	 0	 Yes	

Table 4.6.5: Theoretical values vs. confidence bounds

 Here we can see most of the confidence bounds do not contain the theoretical

score. This is due to the following fact:

 Bandit problems, Hoeffding’s inequality, UCB1, and UCT all rely on an

assumption: the distributions of samples are identical independent distribution (iid),

55

which is helpful when generating confidence bounds. However, in MCTS, samples

under a node are not identical and independent distributed. Based on previous

simulations, MCTS tends to search more promising nodes, so the later simulations are

dependent on previous simulations and not identical to previous simulations.

 If we applied these theories to tree search games while assuming the samples

are iid, we get overconfident bounds. Like the example, UCB indicates other moves

are confidently under 0.5, which is not true.

56

Chapter 5: Conclusion and Future Work

5.1 Conclusion

In this thesis, I develop a model of Go problems and propose minimax-

combined MCTS. Then, I successfully implement MCTS and minimax-combined

MCTS to the model of Go problems.

According to the results of the experiments, minimax-combined MCTS

performs significantly better than MCTS when level-3 and level-5 shallow traps exist

in complex problems. The MCTS spends 670% as many computations as minimax-

combined MCTS in the level-3 shallow trap problem, and MCTS spends 216% as

many computations as minimax-combined MCTS in the level-5 shallow trap

problem.

However, when the problem is simple, the minimax-combined MCTS is

significantly better in only 1 out of 5 scenarios (and the difference is not much), and

the performance is not significantly different among the two algorithms in the rest of

the problems.

On the other hand, in 3 out of 5 complex problems without level-3 or 5

shallow traps, MCTS spends more computations (440%, 150%, and 272% as many

computations as minimax-combined MCTS), and the performance is not significantly

different among the two algorithms in the rest of the problems.

Also, the iid assumption allows MCTS to find out good moves fast.

Nonetheless, when several outcomes exist in the problem, it might only able to find

out the second or third best move instead of the best.

57

5.2 Future Work

First, I would like to do more experiments. The current experiments are

insufficient in many ways. The sample size is small, and the number of problems is

low, and the parameters are fixed. The experiment should be conducted under

different parameters. Also, I would like to test the effectiveness of minimax-

combined MCTS on different domains of games such as chess, Go (the entire game,

not only restricted to local problems). The performance might vary from games to

games.

 Second, I would like to investigate more ways to define the minimax

threshold. Currently, the minimax threshold is picked arbitrarily. A more statistics-

based rule should be applied. The UCB and LCB of parent and child nodes may give

some clues.

 Third, I would like to incorporate opponent policy play into MCTS, which is

not considered in this thesis. With such a policy, the minimax-combined MCTS

should show substantial improvement, as in AlphaGo and AlphaGo Zero.

 Fourth, I would like to apply various MCTS extensions as well, e.g., as

mentioned in the literature review, the MCTS solver and three ways of MCTS and

minimax hybrid, and compare them to minimax-combined MCTS. Furthermore, I

would like to apply UCB1-tuned instead of UCB1, because UCB1-tuned takes

variance of samples into account, which might improve the performance. Also, best-

arm identification algorithm only considers the regret of a final decision, which is a

more suitable assumption than accumulated regrets.

58

Fifth, I would like to apply heuristic algorithms that particularly fit the game

of Go. All Moves As First (AMAF) is a tree policy enhancement. The board of Go is

big compared to other games, so when the positions of some places are changed, the

rest of the board are not influenced that much. Therefore, a position which leads to

good results under a sub-tree is often a good position in other sub-trees. This concept

can be extended to the Last Good Reply heuristic. For example, if the sequence of

moves (A1-A2-B1-B2) leads to a good result. Then, when opponents play B1, B2

might be a good response.

Last, I would like to do research on the influence of the non-iid characteristic

in MCTS. When having poor policies or no policy, the influence is huge. The

problem is whether the characteristic has great or little influence when the policy is as

good as AlphaGo. Also, I would like to explore the algorithms that can deal with the

non-iid characteristic.

59

Appendices

A. Experiment Data

A.1 Level-3 Shallow Trap

X1 X2 X3 X4 X5
52848 58821 54372 37941 42139
X6 X7 X8 X9 X10
43128 55132 43259 42146 58240
Table A.1.1: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
5572 7544 5167 8243 7982
X6 X7 X8 X9 X10
5176 8647 8266 7979 8462
Table A.1.2: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

A.2 Level-5 Shallow Trap

X1 X2 X3 X4 X5
52811 46902 51639 43533 69134
X6 X7 X8 X9 X10
44109 42579 52095 49536 45526
Table A.2.1: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
28138 15428 20815 38386 31840
X6 X7 X8 X9 X10
19470 19660 20827 20302 15806
Table A.2.2: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =100)

A.3 Simple Problems without Shallow Trap

Problem 1:
X1 X2 X3 X4 X5

60

1167 1443 1255 1152 981
X6 X7 X8 X9 X10
932 1528 1028 1340 1009
X11 X12 X13 X14 X15
878 1211 1090 1645 1327
X16 X17 X18 X19 X20
746 1158 1438 1003 727
Table A.3.1: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
943 1387 988 993 709
X6 X7 X8 X9 X10
1075 1182 1186 831 1302
X11 X12 X13 X14 X15
1123 529 1586 1220 192
X16 X17 X18 X19 X20
1012 1069 1008 869 1107
Table A.3.2: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

Problem 2:
X1 X2 X3 X4 X5
1916 2003 1470 1720 2417
X6 X7 X8 X9 X10
1856 2350 1738 1867 1777
X11 X12 X13 X14 X15
2143 2021 2137 1899 1893
X16 X17 X18 X19 X20
1850 1542 1985 1702 1835
Table A.3.3: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
1608 1127 1803 2202 2152
X6 X7 X8 X9 X10
2150 2648 1957 2121 1747
X11 X12 X13 X14 X15
2406 2188 2314 1759 1841
X16 X17 X18 X19 X20
2683 1921 1978 2124 1786
Table A.3.4: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

61

Problem 3:
X1 X2 X3 X4 X5
937 1804 1201 1064 1384
X6 X7 X8 X9 X10
748 1470 960 1013 1027
X11 X12 X13 X14 X15
1076 477 658 907 830
X16 X17 X18 X19 X20
1157 1245 1266 1116 1131
Table A.3.5: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
382 420 1024 663 900
X6 X7 X8 X9 X10
1208 1176 1094 257 533
X11 X12 X13 X14 X15
280 194 1019 1039 1076
X16 X17 X18 X19 X20
1156 849 1668 1260 297
Table A.3.6: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

Problem 4:
X1 X2 X3 X4 X5
2033 1597 1967 1842 1669
X6 X7 X8 X9 X10
2168 1489 2610 2533 2200
X11 X12 X13 X14 X15
2231 2257 1536 1712 2099
X16 X17 X18 X19 X20
1498 1814 2350 2571 2747
Table A.3.7: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
2316 2015 1991 2250 1934
X6 X7 X8 X9 X10
2155 1799 1897 1770 2151
X11 X12 X13 X14 X15
1972 1866 1769 1177 1435
X16 X17 X18 X19 X20
2186 1784 1716 1916 2245

62

Table A.3.8: The number of computations needed of minimax-combined MCTS
to pick the correct move (the exploration parameter = 1.414 and minimax

threshold parameter =50)

Problem 5:
X1 X2 X3 X4 X5
2648 2595 2785 1826 2851
X6 X7 X8 X9 X10
1777 2497 2253 2357 2374
X11 X12 X13 X14 X15
2807 2285 2194 1672 2684
X16 X17 X18 X19 X20
2131 2372 2458 2594 2754
Table A.3.9: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
2372 2334 1878 2215 1913
X6 X7 X8 X9 X10
2088 2219 2072 1576 1941
X11 X12 X13 X14 X15
1849 2194 1899 2123 1876
X16 X17 X18 X19 X20
2301 1676 2322 1930 3360

Table A.3.10: The number of computations needed of minimax-combined MCTS
to pick the correct move (the exploration parameter = 1.414 and minimax

threshold parameter =50)

A.4 Complex Problems without Shallow Trap

Problem 1:
X1 X2 X3 X4 X5
82338 81734 70378 79007 74319
X6 X7 X8 X9 X10
83975 79494 79836 73289 79581
Table A.4.1: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
16527 16267 17740 16414 15791
X6 X7 X8 X9 X10
18012 20085 16389 17017 22191

63

Table A.4.2: The number of computations needed of minimax-combined MCTS
to pick the correct move (the exploration parameter = 1.414 and minimax

threshold parameter =100)

Problem 2:
X1 X2 X3 X4 X5
50899 49774 58950 51618 56656
X6 X7 X8 X9 X10
54415 50883 54154 51218 51089
Table A.4.3: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
60320 33934 37281 27826 19976
X6 X7 X8 X9 X10
58647 12298 38391 41156 22714
Table A.4.4: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =100)

Problem 3:
X1 X2 X3 X4 X5
34519 30172 35242 38399 47751
X6 X7 X8 X9 X10
46638 38477 28536 37295 39893
Table A.4.5: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
36104 37460 22037 31771 21091
X6 X7 X8 X9 X10
36588 32016 29274 22552 26470
Table A.4.6: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

Problem 4:
X1 X2 X3 X4 X5
27433 26469 44101 43254 27051
X6 X7 X8 X9 X10
28315 29114 48490 48197 44346
Table A.4.7: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5

64

41871 36937 31965 28147 35115
X6 X7 X8 X9 X10
31452 11069 32699 35446 27897
Table A.4.8: The number of computations needed of minimax-combined MCTS

to pick the correct move (the exploration parameter = 1.414 and minimax
threshold parameter =50)

Problem 5:
X1 X2 X3 X4 X5
58978 33232 33013 33910 69404
X6 X7 X8 X9 X10
67056 32853 34205 36054 32478
Table A.4.9: The number of computations needed of MCTS to pick the correct

move (the exploration parameter = 1.414)

X1 X2 X3 X4 X5
23214 6543 28460 5695 28505
X6 X7 X8 X9 X10
20363 13198 9766 3378 19257

Table A.4.10: The number of computations needed of minimax-combined MCTS
to pick the correct move (the exploration parameter = 1.414 and minimax

threshold parameter =50)

B. Source Code

The program is written is C++, including 6 files.
1. Main.cpp: Where the experiment process is defined.
2. Node.h: Define the algorithm of MCTS. This is the only different part

between MCTS and minimax-combined MCTS.
3. Board.h: Define the model of Go.
4. Position.h: An interface between Node.h and Board.h.
5. Function.h: Supporting functions.
6. Go.txt: input files.

Main.cpp (MCTS):
#include "Node.h"

#include <iostream>
using namespace std;

int main(){

 srand((unsigned int)time(NULL));
 rand();
 rand();
 rand();
 rand();
 rand();

 char fileName[]="Go.txt";
 Board board(fileName);

65

 Node root(&board,1500,1.414);
 root.MonteCarloTreeSearch();
 root.viewTree();

 return 0;
}
Main.cpp (minimax-combined MCTS);
#include "Node.h"

#include <iostream>
using namespace std;

int main(){

 srand((unsigned int)time(NULL));
 rand();
 rand();
 rand();
 rand();
 rand();

 char fileName[]="Go.txt";
 Board board(fileName);

 Node root(&board,1000,1.414,50);
 root.MonteCarloTreeSearch();
 root.viewTree();

 return 0;
}

Node.h (MCTS):
//
// Node.h
// Thesis
//
// Created by Jonathan Lin on 6/19/17.
// Copyright © 2017 Jonathan Lin. All rights reserved.
//

#ifndef Node_h
#define Node_h

#include "Board.h"

class Node{

private:

 Board* board;
 Node* parent;
 int action[2];
 vector<Node*> children;

 vector<int>decisionTimeList;
 vector<int>decisionListRow;
 vector<int>decisionListColumn;

 int simulationBudget;
 int budgetUsed;
 float explorationParameter;

 float numberOfSimulation;
 float totalScore;
 float mean;
 float UCB;

66

 float LCB;

 void updateDecisionList();
 void decision(int functionAction[2]);
 void selection();
 void expansion();
 void simulation(float* score);
 void backPropagation(float score);

 void randomPlay(Board* copy);

 Node* searchChild(int functionAction[2]);
 void getAction(int functionAction[2]);

 void calculateUCBLCB();

public:

 void test();
 Node(Board* input, int functionSimulationBudget, float
functionExplorationParameter); //for root
 Node(Node* parentNode, int functionAction[2]); //for child
 ~Node();
 void MonteCarloTreeSearch();
 void giveExtraSearchBudget(int budget);
 void viewDecision();
 void viewData();
 void viewTree();

};

//PUBLIC

void Node::test(){

 //*
 //board->placeStone(2, 1);
 MonteCarloTreeSearch();
 viewTree();
 //*/

 /*
 int i=0;
 while(i<100){
 float score=0;
 simulation(&score);
 backPropagation(score);
 i++;
 }
 viewData();
 //*/

}

Node::Node(Board* input, int functionSimulationBudget, float
functionExplorationParameter){

 Board* copy=new Board(input);
 board=copy;
 parent=NULL;
 action[0]=-1;
 action[1]=-1;

 simulationBudget=functionSimulationBudget;
 budgetUsed=0;
 explorationParameter=functionExplorationParameter;

 numberOfSimulation=0;

67

 totalScore=0;
 mean=0;
 UCB=0;
 LCB=0;

}

Node::Node(Node* parentNode, int functionAction[2]){

 parentNode->children.push_back(this);
 parent=parentNode;
 Board* copy=new Board(parentNode->board);
 copy->placeStone(functionAction[0], functionAction[1]);
 board=copy;
 action[0]=functionAction[0];
 action[1]=functionAction[1];

 simulationBudget=0;
 budgetUsed=0;
 explorationParameter=parent->explorationParameter;

 numberOfSimulation=0;
 totalScore=0;
 mean=0;
 UCB=0;
 LCB=0;

}

Node::~Node(){

 delete board;

}

void Node::MonteCarloTreeSearch(){

 while(budgetUsed<=simulationBudget){

 selection();
 budgetUsed++;

 if(budgetUsed!=0&&budgetUsed%1000==0){
 cout<<budgetUsed<<" of budget is used."<<endl;
 }

 }

}

void Node::giveExtraSearchBudget(int budget){
 simulationBudget+=budget;
 MonteCarloTreeSearch();
 viewTree();
}

void Node::viewDecision(){

 int convergeTime=-1;
 int converageMove[2]={-1,-1};

 int i=0;
 while(i<decisionListRow.size()) {

 if(!(decisionListRow[i]==converageMove[0]&&decisionListColumn[i]==converageMo
ve[1])
){
 converageMove[0]=decisionListRow[i];

68

 converageMove[1]=decisionListColumn[i];
 convergeTime=decisionTimeList[i];
 }

 //cout<<decisionTimeList[i]<<endl;
 //cout<<decisionListRow[i]<<" "<<decisionListColumn[i]<<endl;
 i++;
 }

 cout<<endl;
 cout<<"Convergent time: "<<convergeTime<<endl;
 cout<<"Convergent move: "<<converageMove[0]<<" "<<converageMove[1]<<endl;
 cout<<endl;

}

void Node::viewData(){

 board->showBoard();

 if(board->getOwnColor()==1) {
 cout<<"Black to move."<<endl<<endl;
 }
 else{
 cout<<"White to move."<<endl<<endl;
 }

 cout<<setw(30)<<"Last move"<<action[0]<<" "<<action[1]<<endl<<endl;

 cout<<setw(30)<<"Number of simulation"<<numberOfSimulation<<endl<<endl;

 cout<<setw(30)<<"Total score"<<rounding(totalScore, 2)<<endl<<endl;

 cout<<setw(30)<<"Mean"<<rounding(mean, 2)<<endl<<endl;

 cout<<setw(30)<<"UCB"<<rounding(UCB, 2)<<endl<<endl;

 cout<<setw(30)<<"LCB"<<rounding(LCB, 2)<<endl<<endl;

 cout<<"Children"<<endl;

 if(children.size()==0) {
 cout<<"No child"<<endl<<endl;
 }
 else{

 cout<<setw(15)<<"Action";
 cout<<setw(15)<<"# of sim.";
 cout<<setw(15)<<"Mean";
 cout<<setw(15)<<"UCB";
 cout<<setw(15)<<"LCB";
 cout<<endl;

 int i=0;
 while(i<children.size()){
 cout<<setw(5)<<children[i]->action[0];
 cout<<setw(10)<<children[i]->action[1];
 cout<<setw(15)<<children[i]->numberOfSimulation;
 cout<<setw(15)<<rounding(children[i]->mean,2);
 cout<<setw(15)<<rounding(children[i]->UCB,2);
 cout<<setw(15)<<rounding(children[i]->LCB,2);
 cout<<endl;
 i++;
 }
 cout<<endl;

 }

69

}

void Node::viewTree(){

 Node* currentNode=this;
 int control1=0, control2=0;

 while(currentNode!=NULL){

 currentNode->viewData();

 cout<<"Go to child: (row, col). Go to parent node: -1. Exit: -2. Give more
budget: -3. View decision: -4."<<endl;
 cin>>control1;

 if(control1==-1) {
 currentNode=currentNode->parent;
 continue;
 }

 else if(control1==-2) {
 break;
 }

 else if(control1==-3) {
 break;
 }

 else if(control1==-4){
 viewDecision();
 continue;
 }

 else{

 cin>>control2;
 int move[2]={control1,control2};
 if(currentNode->searchChild(move)==NULL){
 cout<<"Child not found. Input a key to continue."<<endl;
 int temp=0;
 cin>>temp;
 continue;
 }

 currentNode=currentNode->searchChild(move);
 continue;

 }

 }

 if(control1==-3) {
 int extraBudget=0;
 cout<<"Enter extra budget."<<endl;
 cin>>extraBudget;
 giveExtraSearchBudget(extraBudget);
 }

}

//PRIVATE

void Node::updateDecisionList(){

 int move[2]={-1,-1};

70

 decision(move);
 decisionTimeList.push_back(numberOfSimulation);
 decisionListRow.push_back(move[0]);
 decisionListColumn.push_back(move[1]);

}

void Node::decision(int functionAction[2]){

 if(children.size()==0){
 return;
 }

 float value=children[0]->mean;
 functionAction[0]=children[0]->action[0];
 functionAction[1]=children[0]->action[1];

 int i=1;
 while(i<children.size()) {
 if(children[i]->mean>value){
 value=children[i]->mean;
 functionAction[0]=children[i]->action[0];
 functionAction[1]=children[i]->action[1];
 }
 i++;
 }

}

void Node::selection(){

 Node* currentNode=this;

 while(currentNode!=NULL) {

 //if the node is at end state
 if(currentNode->board->getScore()!=-2) {
 currentNode->backPropagation(currentNode->board->getScore());
 updateDecisionList();
 return;
 }

 //get legal positions
 Position position(currentNode->board->getBoardSize());
 currentNode->board->computerInterface(&position);

 //if the node is expandable
 if(currentNode->children.size()==0) {
 currentNode->expansion();
 updateDecisionList();
 return;
 }

 //if the node is not expandable
 else{

 //if the node is MAX node
 if(currentNode->board->getOwnColor()==1){
 int selectedChild=0;
 float maxUCB=currentNode->children[selectedChild]->UCB;
 int i=1;
 while(i<currentNode->children.size()){
 if(currentNode->children[i]->UCB>maxUCB){
 selectedChild=i;
 maxUCB=currentNode->children[selectedChild]->UCB;
 }
 i++;
 }

71

 currentNode=currentNode->children[selectedChild];
 }

 //if the node is MIN node
 else if(currentNode->board->getOwnColor()==2) {
 int selectedChild=0;
 float minLCB=currentNode->children[selectedChild]->LCB;
 int i=1;
 while(i<currentNode->children.size()){
 if(currentNode->children[i]->LCB<minLCB){
 selectedChild=i;
 minLCB=currentNode->children[selectedChild]->LCB;
 }
 i++;
 }
 currentNode=currentNode->children[selectedChild];
 }
 }

 }

}

void Node::expansion(){

 if(children.size()!=0){
 cout<<"Expansion error, the node is already expanded."<<endl;
 return;
 }

 Position position(board->getBoardSize());
 board->computerInterface(&position);

 int i=0;
 while(i<position.legalPositionColumn.size()) {

 int move[2]={position.legalPositionRow[i],position.legalPositionColumn[i]};
 Node* expandedChild=new Node(this,move);
 float score=0;
 expandedChild->simulation(&score);
 expandedChild->backPropagation(score);

 i++;
 }

}

void Node::simulation(float* functionScore){

 float score=0;
 Board copy(board);

 while(copy.getScore()==-2){
 randomPlay(©);
 }

 score=copy.getScore();
 *functionScore=score;

}

void Node::backPropagation(float score){

 Node* currentNode=this;

 while(currentNode!=NULL){

 currentNode->numberOfSimulation++;

72

 currentNode->totalScore+=score;
 currentNode->mean=currentNode->totalScore/currentNode->numberOfSimulation;

 int i=0;
 while(i<currentNode->children.size()) {
 currentNode->children[i]->calculateUCBLCB();
 i++;
 }

 currentNode=currentNode->parent;

 }

}

void Node::randomPlay(Board* copy){

 Position position(copy->getBoardSize());
 copy->computerInterface(&position);

 //randomly pick position

 int random=(int)(zeroToOne()*position.getNumberOfLegalMove());

 int pickedRow=position.legalPositionRow.at(random);
 int pickedColumn=position.legalPositionColumn.at(random);

 copy->placeStone(pickedRow, pickedColumn);

}

Node* Node::searchChild(int functionAction[2]){

 Node* result=NULL;

 int counter=0;

 while(counter<children.size()){

 int childMove[2]={0};
 children.at(counter)->getAction(childMove);
 if(functionAction[0]==childMove[0]&&functionAction[1]==childMove[1]){
 result=children.at(counter);

 }

 counter++;
 }

 return result;

}

void Node::getAction(int functionAction[2]){

 functionAction[0]=action[0];
 functionAction[1]=action[1];

}

void Node::calculateUCBLCB(){

 if(parent==NULL) {
 return;
 }

 float exploration=explorationParameter*sqrt(log(parent-
>numberOfSimulation)/numberOfSimulation);

73

 UCB=mean+exploration;
 LCB=mean-exploration;

}

#endif /* Node_h */

Node.h (minimax-combined MCTS);
//
// Node.h
// Thesis
//
// Created by Jonathan Lin on 6/19/17.
// Copyright © 2017 Jonathan Lin. All rights reserved.
//

#ifndef Node_h
#define Node_h

#include "Board.h"

class Node{

private:

 Board* board;
 Node* parent;
 Node* minimaxChild;
 int action[2];
 vector<Node*> children;

 vector<int>decisionTimeList;
 vector<int>decisionListRow;
 vector<int>decisionListColumn;

 int simulationBudget;
 int budgetUsed;
 float explorationParameter;
 int backupThresholdParameter;
 int backupThreshold;

 float numberOfSimulation;
 float totalScore;
 float mean;
 float UCB;
 float LCB;

 void updateDecisionList();
 void decision(int functionAction[2]);
 void selection();
 void expansion();
 void simulation(float* score);
 void backPropagation(float score);

 void randomPlay(Board* copy);

 Node* searchChild(int functionAction[2]);
 void getAction(int functionAction[2]);

 void calculateUCBLCB();
 void calculateMinimax();
 bool checkMinimax();

public:

 void test();

74

 Node(Board* input, int functionSimulationBudget, float
functionExplorationParameter, int functionBackupThresholdParameter); //for root
 Node(Node* parentNode, int functionAction[2]); //for child
 ~Node();
 void MonteCarloTreeSearch();
 void giveExtraSearchBudget(int budget);
 void viewDecision();
 void viewData();
 void viewTree();

};

//PUBLIC

void Node::test(){

}

Node::Node(Board* input, int functionSimulationBudget, float
functionExplorationParameter, int functionBackupThresholdParameter){

 Board* copy=new Board(input);
 board=copy;
 parent=NULL;
 minimaxChild=this;
 action[0]=-1;
 action[1]=-1;

 simulationBudget=functionSimulationBudget;
 budgetUsed=0;
 explorationParameter=functionExplorationParameter;

 backupThresholdParameter=functionBackupThresholdParameter;
 Position position(board->getBoardSize());
 board->computerInterface(&position);
 backupThreshold=backupThresholdParameter*position.getNumberOfLegalMove();

 numberOfSimulation=0;
 totalScore=0;
 mean=0;
 UCB=0;
 LCB=0;

}

Node::Node(Node* parentNode, int functionAction[2]){

 parentNode->children.push_back(this);
 parent=parentNode;
 minimaxChild=this;
 Board* copy=new Board(parentNode->board);
 copy->placeStone(functionAction[0], functionAction[1]);
 board=copy;
 action[0]=functionAction[0];
 action[1]=functionAction[1];

 simulationBudget=0;
 budgetUsed=0;
 explorationParameter=parent->explorationParameter;

 backupThresholdParameter=parent->backupThresholdParameter;
 Position position(board->getBoardSize());
 board->computerInterface(&position);
 backupThreshold=backupThresholdParameter*position.getNumberOfLegalMove();

 numberOfSimulation=0;

75

 totalScore=0;
 mean=0;
 UCB=0;
 LCB=0;

}

Node::~Node(){

 delete board;

}

void Node::MonteCarloTreeSearch(){

 while(budgetUsed<=simulationBudget){

 selection();
 budgetUsed++;

 if(budgetUsed!=0&&budgetUsed%100==0){
 cout<<budgetUsed<<"/"<<simulationBudget<<" of budget is used."<<endl;
 }

 }

}

void Node::giveExtraSearchBudget(int budget){
 simulationBudget+=budget;
 MonteCarloTreeSearch();
 viewTree();
}

void Node::viewDecision(){

 int convergeTime=-1;
 int converageMove[2]={-1,-1};

 int i=0;
 while(i<decisionListRow.size()) {

 if(!(decisionListRow[i]==converageMove[0]&&decisionListColumn[i]==converageMo
ve[1])
){
 converageMove[0]=decisionListRow[i];
 converageMove[1]=decisionListColumn[i];
 convergeTime=decisionTimeList[i];
 }

 //cout<<decisionTimeList[i]<<endl;
 //cout<<decisionListRow[i]<<" "<<decisionListColumn[i]<<endl;
 i++;
 }

 cout<<endl;
 cout<<"Convergent time: "<<convergeTime<<endl;
 cout<<"Convergent move: "<<converageMove[0]<<" "<<converageMove[1]<<endl;
 cout<<endl;

}

void Node::viewData(){

 board->showBoard();

 if(board->getOwnColor()==1) {
 cout<<"Black to move."<<endl<<endl;

76

 }
 else{
 cout<<"White to move."<<endl<<endl;
 }

 cout<<setw(30)<<"Last move"<<action[0]<<" "<<action[1]<<endl<<endl;

 if(minimaxChild==this){
 cout<<"Don't have minimax child."<<endl<<endl;
 }
 else{
 cout<<"Have minimax child."<<endl<<endl;
 }

 cout<<setw(30)<<"Number of simulation"<<numberOfSimulation<<endl<<endl;

 cout<<setw(30)<<"Total score"<<rounding(totalScore, 2)<<endl<<endl;

 cout<<setw(30)<<"Mean"<<rounding(mean, 2)<<endl<<endl;

 cout<<setw(30)<<"UCB"<<rounding(UCB, 2)<<endl<<endl;

 cout<<setw(30)<<"LCB"<<rounding(LCB, 2)<<endl<<endl;

 cout<<"Children"<<endl;

 if(children.size()==0) {
 cout<<"No child"<<endl<<endl;
 }
 else{

 cout<<setw(15)<<"Action";
 cout<<setw(15)<<"# of sim.";
 cout<<setw(15)<<"Mean";
 cout<<setw(15)<<"UCB";
 cout<<setw(15)<<"LCB";
 cout<<setw(15)<<"# of sim.";
 cout<<setw(15)<<"Mean";
 cout<<setw(15)<<"UCB";
 cout<<setw(15)<<"LCB";
 cout<<endl;

 int i=0;
 while(i<children.size()){
 cout<<setw(5)<<children[i]->action[0];
 cout<<setw(10)<<children[i]->action[1];
 cout<<setw(15)<<children[i]->numberOfSimulation;
 cout<<setw(15)<<rounding(children[i]->mean,2);
 cout<<setw(15)<<rounding(children[i]->UCB,2);
 cout<<setw(15)<<rounding(children[i]->LCB,2);

 cout<<setw(15)<<children[i]->minimaxChild->numberOfSimulation;
 cout<<setw(15)<<rounding(children[i]->minimaxChild->mean,2);
 cout<<setw(15)<<rounding(children[i]->minimaxChild->UCB,2);
 cout<<setw(15)<<rounding(children[i]->minimaxChild->LCB,2);
 cout<<endl;
 i++;
 }
 cout<<endl;

 }

}

void Node::viewTree(){

 Node* currentNode=this;
 int control1=0, control2=0;

77

 while(currentNode!=NULL){

 currentNode->viewData();

 cout<<"Go to child: (row, col). Go to parent node: -1. Exit: -2. Give more
budget: -3. View decision: -4."<<endl;
 cin>>control1;

 if(control1==-1) {
 currentNode=currentNode->parent;
 continue;
 }

 else if(control1==-2) {
 break;
 }

 else if(control1==-3) {
 break;
 }

 else if(control1==-4){
 viewDecision();
 continue;
 }

 else if(control1==-5){
 currentNode=currentNode->minimaxChild;
 continue;
 }

 else if(control1==-6){
 currentNode->calculateMinimax();
 continue;
 }

 else{

 cin>>control2;
 int move[2]={control1,control2};
 if(currentNode->searchChild(move)==NULL){
 cout<<"Child not found. Input a key to continue."<<endl;
 int temp=0;
 cin>>temp;
 continue;
 }

 currentNode=currentNode->searchChild(move);
 continue;

 }

 }

 if(control1==-3) {
 int extraBudget=0;
 cout<<"Enter extra budget."<<endl;
 cin>>extraBudget;
 giveExtraSearchBudget(extraBudget);
 }

}

//PRIVATE

void Node::updateDecisionList(){

78

 int move[2]={-1,-1};
 decision(move);
 decisionTimeList.push_back(numberOfSimulation);
 decisionListRow.push_back(move[0]);
 decisionListColumn.push_back(move[1]);

}

void Node::decision(int functionAction[2]){

 if(children.size()==0){
 return;
 }

 float value=children[0]->numberOfSimulation;
 functionAction[0]=children[0]->action[0];
 functionAction[1]=children[0]->action[1];

 Position position(board->getBoardSize());
 board->computerInterface(&position);

 int i=1;
 while(i<children.size()) {
 if(children[i]->numberOfSimulation>value){//&&children[i]-
>numberOfSimulation>numberOfSimulation/position.getNumberOfLegalMove()
 value=children[i]->numberOfSimulation;
 functionAction[0]=children[i]->action[0];
 functionAction[1]=children[i]->action[1];
 }
 i++;
 }

}

void Node::selection(){

 Node* currentNode=this;

 while(currentNode!=NULL) {

 //if the node is at end state
 if(currentNode->board->getScore()!=-2) {
 currentNode->backPropagation(currentNode->board->getScore());
 updateDecisionList();
 return;
 }

 //get legal positions
 Position position(currentNode->board->getBoardSize());
 currentNode->board->computerInterface(&position);

 //if the node is expandable
 if(currentNode->children.size()==0) {
 currentNode->expansion();
 updateDecisionList();
 return;
 }

 //if the node is not expandable
 else{

 //if the node is MAX node
 if(currentNode->board->getOwnColor()==1){
 int selectedChild=0;
 float maxUCB=currentNode->children[0]->minimaxChild->UCB;
 int i=1;
 while(i<currentNode->children.size()){
 if(currentNode->children[i]->minimaxChild->UCB>maxUCB){

79

 selectedChild=i;
 maxUCB=currentNode->children[i]->minimaxChild->UCB;
 }
 i++;
 }
 currentNode=currentNode->children[selectedChild]->minimaxChild;
 }

 //if the node is MIN node
 else if(currentNode->board->getOwnColor()==2) {
 int selectedChild=0;
 float minLCB=currentNode->children[0]->minimaxChild->LCB;
 int i=1;
 while(i<currentNode->children.size()){
 if(currentNode->children[i]->minimaxChild->LCB<minLCB){
 selectedChild=i;
 minLCB=currentNode->children[i]->minimaxChild->LCB;
 }
 i++;
 }
 currentNode=currentNode->children[selectedChild]->minimaxChild;
 }
 }

 }

}

void Node::expansion(){

 if(children.size()!=0){
 cout<<"Expansion error, the node is already expanded."<<endl;
 return;
 }

 Position position(board->getBoardSize());
 board->computerInterface(&position);

 int i=0;
 while(i<position.legalPositionColumn.size()) {

 int move[2]={position.legalPositionRow[i],position.legalPositionColumn[i]};
 Node* expandedChild=new Node(this,move);
 float score=0;
 expandedChild->simulation(&score);
 expandedChild->backPropagation(score);

 i++;
 }

}

void Node::simulation(float* functionScore){

 float score=0;
 Board copy(board);

 while(copy.getScore()==-2){
 randomPlay(©);
 }

 score=copy.getScore();
 *functionScore=score;

}

void Node::backPropagation(float score){

80

 Node* currentNode=this;

 while(currentNode!=NULL){

 currentNode->numberOfSimulation++;
 currentNode->totalScore+=score;
 currentNode->mean=currentNode->totalScore/currentNode->numberOfSimulation;

 currentNode->calculateMinimax();

 int i=0;
 while(i<currentNode->children.size()) {
 currentNode->children[i]->calculateUCBLCB();
 i++;
 }
 currentNode=currentNode->parent;

 }

}

void Node::randomPlay(Board* copy){

 Position position(copy->getBoardSize());
 copy->computerInterface(&position);

 //randomly pick position

 int random=(int)(zeroToOne()*position.getNumberOfLegalMove());

 int pickedRow=position.legalPositionRow.at(random);
 int pickedColumn=position.legalPositionColumn.at(random);

 copy->placeStone(pickedRow, pickedColumn);

}

Node* Node::searchChild(int functionAction[2]){

 Node* result=NULL;

 int counter=0;

 while(counter<children.size()){

 int childMove[2]={0};
 children.at(counter)->getAction(childMove);
 if(functionAction[0]==childMove[0]&&functionAction[1]==childMove[1]){
 result=children.at(counter);

 }

 counter++;
 }

 return result;

}

void Node::getAction(int functionAction[2]){

 functionAction[0]=action[0];
 functionAction[1]=action[1];

}

void Node::calculateUCBLCB(){

81

 if(parent==NULL) {
 return;
 }

 float exploration=explorationParameter*sqrt(log(parent-
>numberOfSimulation)/numberOfSimulation);

 UCB=mean+exploration;
 LCB=mean-exploration;

}

void Node::calculateMinimax(){

 if(children.size()==0){
 minimaxChild=this;
 return;
 }

 if(numberOfSimulation<backupThreshold){
 minimaxChild=this;
 return;
 }

 float maxValue=-99;
 float minValue=99;
 int i=0;
 while(i<children.size()){

 if(board->getOwnColor()==1){
 if(children[i]->minimaxChild->mean>maxValue){
 maxValue=children[i]->minimaxChild->mean;
 minimaxChild=children[i]->minimaxChild;
 }
 }

 if(board->getOwnColor()==2){
 if(children[i]->minimaxChild->mean<minValue){
 minValue=children[i]->minimaxChild->mean;
 minimaxChild=children[i]->minimaxChild;
 }
 }

 i++;
 }
}

#endif /* Node_h */

Board.h:
#ifndef Board_h
#define Board_h

#include "Functions.h"
#include "Position.h"

class Board{

private:

 int gameType; // 1 black to live 2 black to kill
 int boardSize; // n*n board

 int **space; // 0 not playable 1 playable
 int **important; // 0 not important 1 important
 int **alive; // 0 not alive 1 alive
 int colorOfOwn; // 1 black to play 2 white to play
 int colorOfOpponent; // 1 black to play 2 white to play
 int positionOfKo[2]; // [0] row [1] column
 int whoWinKo; // 0 no one 1 black 2 white
 int remainingKoAdvantage; // default 5
 int continuousPass; // if increase to 3, game ends.

82

 int accumulatedPass; // if up to 4˙˙, black wins, if down to -4, white wins
 int **stone; // 0 empty 1 black 2 white -1 border
 int countLiberty(int row, int column);
 void subCountLiberty(int **liberty, int row, int column);
 void capture(int row, int column, int color); // color default 0
 bool checkKo(int row, int column); // true if move is a ko
 bool checkLegalMove(int row, int column); // true if move is legal
 void getLegalMove(Position* position);
 bool checkFillSpace(int row, int column); //true if fill space
 bool checkFillEye(int row, int column); // true if fill eye
 bool checkPass(); //if allow to pass 1. if not 0.

 bool checkDead(); // true if dead
 bool checkAlive(); // true if alive
 void updateAlive(int row, int column); // if the move connects to alive groups, all stones connected
are alive and not important
 void changePlayer();

public:
 void test();
 Board(char fileName[]);
 Board(Board* copyBoard);
 ~Board();
 void humanInterface();
 void computerInterface(Position* position);
 void placeStone(int row, int column);
 float getScore(); // have nine states: 0 undecided, 1 lose ko and alive, 2 alive, 3 lose ko and seki,
4 seki, 5 win ko and alive, 6 lose ko and dead, 7 win ko and seki, 8 dead, 9 win ko and dead
 int getBoardSize();
 int getOwnColor();
 void showBoard();
 void viewData();

};

//---------------------PUBLIC----------------------------

void Board::test(){

 while(getScore()==-2){

 humanInterface();

 }

 cout<<"The score is "<<getScore()<<endl;

 showBoard();

}

Board::Board(char fileName[]){

 int counter1=0,counter2=0;
 int buffer=0;
 string input="";

 //if file not read

 ifstream readFile;
 readFile.open(fileName);
 if(!readFile.is_open()){
 cout<<"Board() error: file is not read."<<endl;
 return;
 }
 readFile.close();

 //set value

 readFile.open(fileName);

 while(!readFile.eof()){

 readFile>>input;

 if(input=="size"){
 readFile>>buffer;
 boardSize=buffer;
 //create array
 counter1=0,counter2=0;
 stone=new int *[boardSize+2];
 while(counter1<boardSize+2){
 stone[counter1]=new int[boardSize+2];
 counter1++;

83

 }
 counter1=0,counter2=0;
 space=new int *[boardSize+2];
 while(counter1<boardSize+2){
 space[counter1]=new int[boardSize+2];
 counter1++;
 }
 counter1=0,counter2=0;
 important=new int *[boardSize+2];
 while(counter1<boardSize+2){
 important[counter1]=new int[boardSize+2];
 counter1++;
 }
 counter1=0,counter2=0;
 alive=new int *[boardSize+2];
 while(counter1<boardSize+2){
 alive[counter1]=new int[boardSize+2];
 counter1++;
 }
 }

 if(input=="type"){
 readFile>>buffer;
 gameType=buffer;
 }

 if(input=="Stone"){
 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 readFile>>buffer;
 stone[counter1][counter2]=buffer;
 counter2++;
 }
 counter1++;
 }
 }

 if(input=="Space"){
 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 readFile>>buffer;
 space[counter1][counter2]=buffer;
 counter2++;
 }
 counter1++;
 }
 }

 if(input=="Important"){
 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 readFile>>buffer;
 important[counter1][counter2]=buffer;
 counter2++;
 }
 counter1++;
 }
 }

 if(input=="Alive"&&!readFile.eof()){
 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 readFile>>buffer;
 alive[counter1][counter2]=buffer;
 counter2++;
 }
 counter1++;
 }
 }
 }

 colorOfOwn=1;
 colorOfOpponent=2;
 positionOfKo[0]=0;
 positionOfKo[1]=0;
 whoWinKo=0;

84

 remainingKoAdvantage=5;
 continuousPass=0;
 accumulatedPass=0;

 return;
}

Board::Board(Board* copyBoard){

 int counter1=0,counter2=0;

 //set board size

 boardSize=copyBoard->boardSize;

 //create array

 counter1=0,counter2=0;
 stone=new int *[boardSize+2];
 while(counter1<boardSize+2){
 stone[counter1]=new int[boardSize+2];
 counter1++;
 }
 counter1=0,counter2=0;
 space=new int *[boardSize+2];
 while(counter1<boardSize+2){
 space[counter1]=new int[boardSize+2];
 counter1++;
 }
 counter1=0,counter2=0;
 important=new int *[boardSize+2];
 while(counter1<boardSize+2){
 important[counter1]=new int[boardSize+2];
 counter1++;
 }
 counter1=0,counter2=0;
 alive=new int *[boardSize+2];
 while(counter1<boardSize+2){
 alive[counter1]=new int[boardSize+2];
 counter1++;
 }

 //set array

 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 stone[counter1][counter2]=copyBoard->stone[counter1][counter2];
 space[counter1][counter2]=copyBoard->space[counter1][counter2];
 important[counter1][counter2]=copyBoard->important[counter1][counter2];
 alive[counter1][counter2]=copyBoard->alive[counter1][counter2];
 counter2++;
 }
 counter1++;
 }

 //set other attributes

 gameType=copyBoard->gameType;
 colorOfOwn=copyBoard->colorOfOwn;
 colorOfOpponent=copyBoard->colorOfOpponent;
 positionOfKo[0]=copyBoard->positionOfKo[0];
 positionOfKo[1]=copyBoard->positionOfKo[1];
 whoWinKo=copyBoard->whoWinKo;
 remainingKoAdvantage=copyBoard->remainingKoAdvantage;
 continuousPass=copyBoard->continuousPass;
 accumulatedPass=copyBoard->accumulatedPass;

}

Board::~Board(){

 int counter1=0;

 while(counter1<boardSize+2){
 delete stone[counter1];
 delete space[counter1];
 delete important[counter1];
 delete alive[counter1];
 counter1++;
 }

 delete stone;

85

 delete space;
 delete important;
 delete alive;

}

void Board::humanInterface(){

 showBoard();

 if(colorOfOwn==1){
 cout<<"Black's turn."<<endl;
 }
 else{
 cout<<"White's turn."<<endl;
 }

 cout<<"row, column"<<endl;
 int row=0, column=0;
 cin>>row>>column;

 placeStone(row, column);

}

void Board::computerInterface(Position* position){

 getLegalMove(position);

 if(checkPass()){
 position->position[0][0]=1;
 }

 //if fill eye, set position to 0

 int counter1=1,counter2=1;
 while(counter1<boardSize+1){
 counter2=1;
 while(counter2<boardSize+2){
 if(checkFillEye(counter1, counter2)){
 position->position[counter1][counter2]=0;
 }
 counter2++;
 }
 counter1++;
 }

 position->getLegalPosition();

}

void Board::placeStone(int row, int column){

 //if pass

 if(row==0&&column==0){
 if(!checkPass()){
 cout<<"Place stone error, not able to pass."<<endl;
 return;
 }

 if(colorOfOwn==1){
 accumulatedPass++;
 }
 else{
 accumulatedPass--;
 }

 continuousPass++;
 positionOfKo[0]=0;
 positionOfKo[1]=0;

 //change player
 changePlayer();

 return;
 }

 //if not legal

 if(!checkLegalMove(row, column)){
 cout<<"Place stone error, illegal move."<<endl;
 return;
 }

86

 else{
 continuousPass=0;
 }

 //if ko

 bool ifkohappen=false;

 if(checkKo(row, column)){

 ifkohappen=true;

 //if take ko back

 if(positionOfKo[0]==row&&positionOfKo[1]==column){
 whoWinKo=colorOfOwn;
 remainingKoAdvantage--;
 }

 }

 //place stone

 stone[row][column]=colorOfOwn;

 //set ko position

 if(ifkohappen){
 if(countLiberty(row-1, column)==0){
 positionOfKo[0]=row-1;
 positionOfKo[1]=column;
 }
 if(countLiberty(row+1, column)==0){
 positionOfKo[0]=row+1;
 positionOfKo[1]=column;
 }
 if(countLiberty(row, column-1)==0){
 positionOfKo[0]=row;
 positionOfKo[1]=column-1;
 }
 if(countLiberty(row, column+1)==0){
 positionOfKo[0]=row;
 positionOfKo[1]=column+1;
 }
 }
 else{
 positionOfKo[0]=0;
 positionOfKo[1]=0;
 }

 //if capture opponent stone

 if(stone[row-1][column]==colorOfOpponent&&countLiberty(row-1, column)==0){
 capture(row-1, column, 0);
 }
 if(stone[row+1][column]==colorOfOpponent&&countLiberty(row+1, column)==0){
 capture(row+1, column, 0);
 }
 if(stone[row][column-1]==colorOfOpponent&&countLiberty(row, column-1)==0){
 capture(row, column-1, 0);
 }
 if(stone[row][column+1]==colorOfOpponent&&countLiberty(row, column+1)==0){
 capture(row, column+1, 0);
 }

 //update alive

 if(
 (stone[row-1][column]==colorOfOwn&&alive[row-1][column]==1)||
 (stone[row+1][column]==colorOfOwn&&alive[row+1][column]==1)||
 (stone[row][column-1]==colorOfOwn&&alive[row][column-1]==1)||
 (stone[row][column+1]==colorOfOwn&&alive[row][column+1]==1)
){
 updateAlive(row, column);
 }

 //change player

 changePlayer();

}

float Board::getScore(){

87

 //if accumulated pass is over 4

 if(accumulatedPass>=4) {
 return 1;
 }
 else if(accumulatedPass<=-4){
 return -1;
 }

 //if seki

 if(continuousPass==3){
 if(whoWinKo==0){
 if(gameType==1){
 return 0.7;
 }
 if(gameType==2){
 return 0.3;
 }
 }
 if(whoWinKo==1){
 if(gameType==1){
 return 0.3;
 }
 if(gameType==2){
 return 0.15;
 }
 }
 if(whoWinKo==2){
 if(gameType==1){
 return 0.85;
 }
 if(gameType==2){
 return 0.7;
 }
 }
 }

 //if dead

 if(checkDead()){
 if(whoWinKo==0){
 if(gameType==1){
 return 0;
 }
 if(gameType==2){
 return 1;
 }
 }
 if(whoWinKo==1){
 if(gameType==1){
 return 0;
 }
 if(gameType==2){
 return 0.5;
 }
 }
 if(whoWinKo==2){
 if(gameType==1){
 return 0.5;
 }
 if(gameType==2){
 return 1;
 }
 }
 }

 //if alive

 if(checkAlive()){
 if(whoWinKo==0){
 if(gameType==1){
 return 1;
 }
 if(gameType==2){
 return 0;
 }
 }
 if(whoWinKo==1){
 if(gameType==1){
 return 0.5;
 }
 if(gameType==2){
 return 0;

88

 }
 }
 if(whoWinKo==2){
 if(gameType==1){
 return 1;
 }
 if(gameType==2){
 return 0.5;
 }
 }
 }

 return -2;
}

int Board::getBoardSize(){
 return boardSize;
}

int Board::getOwnColor(){
 return colorOfOwn;
}

void Board::showBoard(){
 int counter1=1,counter2=1;
 cout<<endl;

 //top numbers

 counter1=1;
 cout<<setw(2)<<" "<<setw(2)<<" ";
 while(counter1<boardSize+1){
 cout<<left<<setw(4)<<counter1;
 counter1++;
 }
 cout<<endl<<endl;

 //board

 counter1=1;
 while(counter1<boardSize+1){
 counter2=1;

 //left numbers

 cout<<setw(2)<<counter1<<setw(2)<<" ";

 //line with stones

 while(counter2<boardSize+1){
 if(stone[counter1][counter2]==0){
 //cout<<setw(2)<<(char)250;
 cout<<setw(2)<<"+";
 }
 else if(stone[counter1][counter2]==1){
 cout<<"▓"<<setw(1)<<"";
 //cout<<setw(2)<<"X";
 }
 else if(stone[counter1][counter2]==2){
 cout<<"▒"<<setw(1)<<"";
 //cout<<setw(2)<<"O";
 }
 if(counter2!=boardSize){
 cout<<setw(2)<<"";
 //cout<<setw(2)<<"+";
 }

 counter2++;
 }

 //right numbers

 cout<<setw(2)<<" "<<setw(2)<<counter1;

 cout<<endl;

 //line without stones

 if(counter1!=boardSize){
 counter2=1;
 cout<<setw(2)<<" "<<setw(2)<<" ";
 while(counter2<boardSize+1){
 cout<<setw(2)<<"";
 //cout<<setw(2)<<"+";

89

 if(counter2!=boardSize){
 cout<<setw(2)<<"";
 }
 counter2++;
 }
 }
 cout<<endl;
 counter1++;
 }

 //bottom numbers

 counter1=1;
 cout<<setw(2)<<" "<<setw(2)<<" ";
 while(counter1<boardSize+1){
 cout<<left<<setw(4)<<counter1;
 counter1++;
 }
 cout<<endl<<endl;

}

void Board::viewData(){

 int counter1=0,counter2=0;

 cout<<"Stone"<<endl;
 counter1=1,counter2=1;
 while(counter1<boardSize+1){
 counter2=1;
 while(counter2<boardSize+1){
 cout<<setw(3)<<stone[counter1][counter2];
 counter2++;
 }
 cout<<endl;
 counter1++;
 }
 cout<<endl;

 cout<<"Space"<<endl;
 counter1=1,counter2=1;
 while(counter1<boardSize+1){
 counter2=1;
 while(counter2<boardSize+1){
 cout<<setw(3)<<space[counter1][counter2];
 counter2++;
 }
 cout<<endl;
 counter1++;
 }
 cout<<endl;

 cout<<"Important"<<endl;
 counter1=1,counter2=1;
 while(counter1<boardSize+1){
 counter2=1;
 while(counter2<boardSize+1){
 cout<<setw(3)<<important[counter1][counter2];
 counter2++;
 }
 cout<<endl;
 counter1++;
 }
 cout<<endl;

 cout<<"Alive"<<endl;
 counter1=1,counter2=1;
 while(counter1<boardSize+1){
 counter2=1;
 while(counter2<boardSize+1){
 cout<<setw(3)<<alive[counter1][counter2];
 counter2++;
 }
 cout<<endl;
 counter1++;
 }
 cout<<endl;

 cout<<"Legal positions"<<endl;

 Position position(boardSize);
 getLegalMove(&position);
 position.viewData();
 cout<<endl;

90

 cout<<"gameType "<<gameType<<endl<<endl;
 cout<<"colorOfOwn "<<colorOfOwn<<endl<<endl;
 cout<<"colorOfOpponent "<<colorOfOpponent<<endl<<endl;
 cout<<"positionOfKo "<<positionOfKo[0]<<" "<<positionOfKo[1]<<endl<<endl;
 cout<<"whoWinKo "<<whoWinKo<<endl<<endl;
 cout<<"remainingKoAdvantage "<<remainingKoAdvantage<<endl<<endl;
 cout<<"continuousPass "<<continuousPass<<endl<<endl;

}

//---------------------PRIVATE----------------------------

int Board::countLiberty(int row, int column){

 //precondition
 //the row and column are in the range of 1~boardsize
 //the selected space must be a black or white stone

 //if out of board

 if(row<0||row>boardSize+1||column<0||column>boardSize+1){
 cout<<"Count liberty error: count liberty out of board."<<endl;
 return -1;
 }

 //if not stone

 if(!(stone[row][column]==1||stone[row][column]==2)){
 return -1;
 }

 //create array

 int **liberty;
 int counter1=0,counter2=0;
 liberty=new int *[boardSize+2];
 counter1=0;
 while(counter1<boardSize+2){
 liberty[counter1]=new int[boardSize+2];
 counter1++;
 }

 counter1=0,counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 liberty[counter1][counter2]=stone[counter1][counter2];
 counter2++;
 }
 counter1++;
 }

 //mark liberty with 3

 subCountLiberty(liberty, row, column);

 //count number of 3

 int countLiberty=0;
 counter1=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){
 if(liberty[counter1][counter2]==3){
 countLiberty++;
 }
 counter2++;
 }
 counter1++;
 }

 //delete array

 counter1=0;
 while(counter1<boardSize+2){
 delete liberty[counter1];
 counter1++;
 }
 delete[] liberty;

 //return value

 return countLiberty;

91

}

void Board::subCountLiberty(int **liberty, int row, int column){

 //variables

 bool up=false,down=false,left=false,right=false;

 //check down

 if(liberty[row+1][column]==liberty[row][column]&&liberty[row][column]!=4){
 down=true;
 }
 if(liberty[row+1][column]==0){
 liberty[row+1][column]=3;
 }

 //check up

 if(liberty[row-1][column]==liberty[row][column]&&liberty[row][column]!=4){
 up=true;
 }
 if(liberty[row-1][column]==0){
 liberty[row-1][column]=3;
 }

 //check left

 if(liberty[row][column-1]==liberty[row][column]&&liberty[row][column]!=4){
 left=true;
 }
 if(liberty[row][column-1]==0){
 liberty[row][column-1]=3;
 }

 //check right

 if(liberty[row][column+1]==liberty[row][column]&&liberty[row][column]!=4){
 right=true;
 }
 if(liberty[row][column+1]==0){
 liberty[row][column+1]=3;
 }

 //prevent infinite calling

 liberty[row][column]=4;

 //calling

 if(down){
 subCountLiberty(liberty, row+1, column);
 }

 if(up){
 subCountLiberty(liberty, row-1, column);
 }

 if(left){
 subCountLiberty(liberty, row, column-1);
 }

 if(right){
 subCountLiberty(liberty, row, column+1);
 }

}

void Board::capture(int row, int column, int color){

 //if out of board

 if(row<0||row>boardSize+1||column<0||column>boardSize+1){
 cout<<"Capture error: out of board."<<endl;
 return;
 }

 //initialize

 if(color==0) {

 color=stone[row][column];

 //if the stone has liberty

92

 if(countLiberty(row, column)!=0){
 //cout<<row<<" "<<column<<" has liberty"<<endl;
 return;
 }

 }

 //capture

 if(stone[row][column]==color){
 stone[row][column]=0;
 capture(row-1, column, color);
 capture(row+1, column, color);
 capture(row, column-1, color);
 capture(row, column+1, color);
 }
 else{
 return;
 }

}

bool Board::checkKo(int row, int column){

 //if out of board

 if(row<1||row>boardSize||column<1||column>boardSize){
 cout<<"Check ko error: out of board."<<endl;
 return false;
 }

 //if not check empty space

 if(stone[row][column]!=0){
 cout<<"Check ko error: not check empty space."<<endl;
 return false;
 }

 Board copy(this);

 //suppose the position is played

 copy.stone[row][column]=colorOfOwn;

 //if the position is surrounded by either opponent's stones or border

 if(copy.countLiberty(row, column)==0){

 //if only one opponent stone has 0 liberty

 int zeroLibertyCounter=0;
 int zeroLibertyPosition[2]={0};
 if(copy.stone[row-1][column]==copy.colorOfOpponent&©.countLiberty(row-1, column)==0){
 zeroLibertyCounter++;
 zeroLibertyPosition[0]=row-1;
 zeroLibertyPosition[1]=column;
 }
 if(copy.stone[row+1][column]==copy.colorOfOpponent&©.countLiberty(row+1, column)==0){
 zeroLibertyCounter++;
 zeroLibertyPosition[0]=row+1;
 zeroLibertyPosition[1]=column;
 }
 if(copy.stone[row][column-1]==copy.colorOfOpponent&©.countLiberty(row, column-1)==0){
 zeroLibertyCounter++;
 zeroLibertyPosition[0]=row;
 zeroLibertyPosition[1]=column-1;
 }
 if(copy.stone[row][column+1]==copy.colorOfOpponent&©.countLiberty(row, column+1)==0){
 zeroLibertyCounter++;
 zeroLibertyPosition[0]=row;
 zeroLibertyPosition[1]=column+1;
 }

 //if only one stone has 0 liberty

 if(zeroLibertyCounter==1){

 //if the 0 liberty stone are surronded by opponent's stones

 if((copy.stone[zeroLibertyPosition[0]-
1][zeroLibertyPosition[1]]==copy.colorOfOwn||copy.stone[zeroLibertyPosition[0]-
1][zeroLibertyPosition[1]]==-
1)&&(copy.stone[zeroLibertyPosition[0]+1][zeroLibertyPosition[1]]==copy.colorOfOwn||copy.stone[zeroLibert

93

yPosition[0]+1][zeroLibertyPosition[1]]==-1)&&(copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]-
1]==copy.colorOfOwn||copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]-1]==-
1)&&(copy.stone[zeroLibertyPosition[0]][zeroLibertyPosition[1]+1]==copy.colorOfOwn||copy.stone[zeroLibert
yPosition[0]][zeroLibertyPosition[1]+1]==-1)){

 return true;
 }
 }

 }

 //remove the move
 return false;
}

bool Board::checkLegalMove(int row, int column){

 //if out of board

 if(row<0||row>boardSize+1||column<0||column>boardSize+1){
 cout<<"Check legal move error: out of board."<<endl;
 return false;
 }

 //if out of space

 if(space[row][column]!=1){
 return false;
 }

 //if not empty

 if(stone[row][column]!=0){
 return false;
 }

 //if ko

 if(checkKo(row, column)){

 //if take ko back

 if(row==positionOfKo[0]&&column==positionOfKo[1]){

 //if no one wins ko

 if(whoWinKo==0){
 return true;
 }

 //if opponents wins ko

 if(whoWinKo==colorOfOpponent) {
 return false;
 }

 //if ownself wins ko

 if(whoWinKo==colorOfOwn){
 if(remainingKoAdvantage!=0){
 return true;
 }
 else{
 return false;
 }
 }
 }

 //if not take ko back

 else{
 return true;
 }
 }

 //make a copy board and assume the position is played

 Board copy(this);
 copy.stone[row][column]=copy.colorOfOwn;

 //if has liberty

 if (copy.countLiberty(row, column)!=0) {
 return true;

94

 }

 //if no liberty

 if (copy.countLiberty(row, column)==0){

 //if any surrounding opponent's stones have no liberty

 if(
 (copy.stone[row-1][column]==copy.colorOfOpponent&©.countLiberty(row-1,
column)==0)||
 (copy.stone[row+1][column]==copy.colorOfOpponent&©.countLiberty(row+1,
column)==0)||
 (copy.stone[row][column-1]==copy.colorOfOpponent&©.countLiberty(row, column-
1)==0)||
 (copy.stone[row][column+1]==copy.colorOfOpponent&©.countLiberty(row,
column+1)==0)){

 return true;
 }

 //if all surrounding opponent's stones have liberty

 else{
 return false;
 }

 }

 return true;
}

void Board::getLegalMove(Position* position){

 int counter1=0, counter2=0;

 //set value
 counter1=0, counter2=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){

 if(checkLegalMove(counter1, counter2)){
 position->position[counter1][counter2]=1;
 }
 else{
 position->position[counter1][counter2]=0;
 }

 counter2++;
 }
 counter1++;
 }

}

bool Board::checkFillSpace(int row, int column){

 bool result=false;

 if((stone[row-1][column]==colorOfOwn||stone[row-1][column]==-1)&&
 (stone[row+1][column]==colorOfOwn||stone[row+1][column]==-1)&&
 (stone[row][column-1]==colorOfOwn||stone[row][column-1]==-1)&&
 (stone[row][column+1]==colorOfOwn||stone[row][column+1]==-1)
){
 result=true;
 }

 return result;

}

bool Board::checkFillEye(int row, int column){

 //if out of board
 if(row<1||column<1||row>boardSize+1||column>boardSize+1){
 cout<<"Check fill eye error: out of board"<<endl;
 return false;
 }

 int countBorder=0;
 if(stone[row-1][column]==-1){
 countBorder++;
 }

95

 if(stone[row+1][column]==-1){
 countBorder++;
 }
 if(stone[row][column-1]==-1){
 countBorder++;
 }
 if(stone[row][column+1]==-1){
 countBorder++;
 }

 //if at cornor

 if(countBorder==2){
 int countSurroundingOwnStones=0;
 if(stone[row-1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row-1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row-1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }

 if(countSurroundingOwnStones==3){
 return true;
 }
 else{
 return false;
 }
 }

 //if at side

 if(countBorder==1){
 int countSurroundingOwnStones=0;
 if(stone[row-1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row-1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row-1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }

 if(countSurroundingOwnStones==5){
 return true;
 }
 else{
 return false;
 }
 }

96

 //if at center

 if(countBorder==0){

 int countSurroundingOwnStones=0;

 //check surrounding (side to the space)

 if(stone[row][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 else{
 return false;
 }
 if(stone[row-1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 else{
 return false;
 }
 if(stone[row+1][column]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 else{
 return false;
 }
 if(stone[row][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 else{
 return false;
 }

 //check surrounding (diagnal to the space)

 if(stone[row-1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column-1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row-1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }
 if(stone[row+1][column+1]==colorOfOwn){
 countSurroundingOwnStones++;
 }

 if(countSurroundingOwnStones>=7){
 return true;
 }
 else{
 return false;
 }
 }

 return false;

}

bool Board::checkPass(){

 //create position

 Position legalPosition(boardSize);

 //get legal move

 getLegalMove(&legalPosition);

 //count legal space

 int legalSpace=0;
 int counter1=0,counter2=0;
 while (counter1<boardSize+2) {
 counter2=0;
 while(counter2<boardSize+2){
 if(legalPosition.position[counter1][counter2]==1){
 legalSpace++;
 }
 counter2++;
 }
 counter1++;
 }

97

 //if no position is available, player can pass

 if(legalSpace==0){
 return true;
 }

 //if all available positions are either:
 //1.Take back ko.
 //2.connected to own groups and have only one liberty after play.
 //Player can pass.

 else{

 counter1=0,counter2=0;

 while(counter1<boardSize+2){

 counter2=0;

 while(counter2<boardSize+2){

 if(legalPosition.position[counter1][counter2]==1){

 bool ifFillSpace=false;
 bool ifTakeKoBack=false;
 bool ifHaveOneLiberty=false;
 bool ifConnectedToOwnStones=false;
 Board copy(this);
 copy.placeStone(counter1, counter2);

 //if fill eye
 ifFillSpace=checkFillSpace(counter1, counter2);

 //if the position played in copy board is ko position in original board
 ifTakeKoBack=(counter1==positionOfKo[0]&&counter2==positionOfKo[1]);

 //if the position played in copy board has one liberty
 ifHaveOneLiberty=copy.countLiberty(counter1, counter2)==1;

 //if the place is connected to own stones,
 //colorOfOwn is from original board
 //because already place a stone on copy board
 //so the color is changed
 ifConnectedToOwnStones=
 copy.stone[counter1-1][counter2]==colorOfOwn||
 copy.stone[counter1+1][counter2]==colorOfOwn||
 copy.stone[counter1][counter2-1]==colorOfOwn||
 copy.stone[counter1][counter2+1]==colorOfOwn;

 if(
 !(
 ifFillSpace||
 ifTakeKoBack||
 (ifHaveOneLiberty&&ifConnectedToOwnStones)
)
){
 return false;
 }
 }
 counter2++;
 }
 counter1++;
 }

 return true;
 }
}

bool Board::checkAlive(){

 int counter1=0, counter2=0;
 bool ifPlaceNewStone=true;

 //if no important stone, then return true

 counter1=1,counter2=1;
 int countImportant=0;
 while (counter1<boardSize+1) {
 counter2=1;
 while(counter2<boardSize+1){
 if(important[counter1][counter2]==1){
 countImportant++;
 }

98

 counter2++;
 }
 counter1++;
 }
 if(countImportant==0){
 return true;
 }

 //create a board

 Board copy(this);

 while(ifPlaceNewStone){
 ifPlaceNewStone=false;

 //fill the board with killing side stone if the space is not one space eye of living side

 counter1=1;
 while(counter1<copy.boardSize+1){
 counter2=1;
 while(counter2<copy.boardSize+1){

 //if the space is empty

 if(copy.stone[counter1][counter2]==0){

 //if black to live

 if(gameType==1){

 //if space is not one space eye

 if(
 !(
 (copy.stone[counter1-1][counter2]==1||
 copy.stone[counter1-1][counter2]==-1)&&
 (copy.stone[counter1+1][counter2]==1||
 copy.stone[counter1+1][counter2]==-1)&&
 (copy.stone[counter1][counter2-1]==1||
 copy.stone[counter1][counter2-1]==-1)&&
 (copy.stone[counter1][counter2+1]==1||
 copy.stone[counter1][counter2+1]==-1))
){
 copy.stone[counter1][counter2]=2;
 ifPlaceNewStone=true;
 }
 }

 //if black to kill

 if(gameType==2){

 //if space is not one space eye

 if(
 !(
 (copy.stone[counter1-1][counter2]==2||
 copy.stone[counter1-1][counter2]==-1)&&
 (copy.stone[counter1+1][counter2]==2||
 copy.stone[counter1+1][counter2]==-1)&&
 (copy.stone[counter1][counter2-1]==2||
 copy.stone[counter1][counter2-1]==-1)&&
 (copy.stone[counter1][counter2+1]==2||
 copy.stone[counter1][counter2+1]==-1))
){
 copy.stone[counter1][counter2]=1;
 ifPlaceNewStone=true;
 }
 }
 }
 counter2++;
 }
 counter1++;
 }

 //capture the zero liberty stones of living side

 counter1=1, counter2=1;
 while(counter1<copy.boardSize+1){
 counter2=1;
 while(counter2<copy.boardSize+1){

 //if black to live

99

 if(gameType==1){
 if(copy.stone[counter1][counter2]==1){
 copy.capture(counter1, counter2,0);
 }
 }

 //if black to kill

 if(gameType==2){
 if(copy.stone[counter1][counter2]==2){
 copy.capture(counter1, counter2,0);
 }
 }
 counter2++;
 }
 counter1++;
 }

 //place stone in one space eye. try to capture. if not able, take the stone away

 counter1=1, counter2=1;
 while(counter1<copy.boardSize+1){
 counter2=1;
 while(counter2<copy.boardSize+1){

 //if space is empty

 if(copy.stone[counter1][counter2]==0){

 //if black to live

 if(gameType==1){

 //if is one space eye

 if(
 (copy.stone[counter1-1][counter2]==1||
 copy.stone[counter1-1][counter2]==-1)&&
 (copy.stone[counter1+1][counter2]==1||
 copy.stone[counter1+1][counter2]==-1)&&
 (copy.stone[counter1][counter2-1]==1||
 copy.stone[counter1][counter2-1]==-1)&&
 (copy.stone[counter1][counter2+1]==1||
 copy.stone[counter1][counter2+1]==-1)
){

 copy.stone[counter1][counter2]=2;
 bool ifcapture=false;

 if(copy.stone[counter1-1][counter2]==1&&
 copy.countLiberty(counter1-1,
counter2)==0){

 copy.capture(counter1-1,
counter2, 0);
 ifcapture=true;

 }

 if(copy.stone[counter1+1][counter2]==1&&
 copy.countLiberty(counter1+1,
counter2)==0){

 copy.capture(counter1+1, counter2, 0);
 ifcapture=true;

 }
 if(copy.stone[counter1][counter2-1]==1&&
 copy.countLiberty(counter1, counter2-
1)==0){

 copy.capture(counter1, counter2-1, 0);
 ifcapture=true;

 }
 if(copy.stone[counter1][counter2+1]==1&&
 copy.countLiberty(counter1,
counter2+1)==0){

 copy.capture(counter1, counter2+1, 0);
 ifcapture=true;

 }

100

 //if not capture anything

 if(!ifcapture){
 copy.stone[counter1][counter2]=0;
 }

 }
 }

 //if black to kill

 if(gameType==2){

 //if is one space eye

 if(
 (copy.stone[counter1-1][counter2]==2||
 copy.stone[counter1-1][counter2]==-1)&&
 (copy.stone[counter1+1][counter2]==2||
 copy.stone[counter1+1][counter2]==-1)&&
 (copy.stone[counter1][counter2-1]==2||
 copy.stone[counter1][counter2-1]==-1)&&
 (copy.stone[counter1][counter2+1]==2||
 copy.stone[counter1][counter2+1]==-1)
){

 copy.stone[counter1][counter2]=1;
 bool ifcapture=false;

 if(copy.stone[counter1-1][counter2]==2&&
 copy.countLiberty(counter1-1,
counter2)==0){
 copy.capture(counter1-1, counter2, 0);
 ifcapture=true;
 }
 if(copy.stone[counter1+1][counter2]==2&&
 copy.countLiberty(counter1+1,
counter2)==0){
 copy.capture(counter1+1, counter2, 0);
 ifcapture=true;
 }
 if(copy.stone[counter1][counter2-1]==2&&
 copy.countLiberty(counter1, counter2-
1)==0){
 copy.capture(counter1, counter2-1, 0);
 ifcapture=true;
 }
 if(copy.stone[counter1][counter2+1]==2&&
 copy.countLiberty(counter1,
counter2+1)==0){
 copy.capture(counter1, counter2+1, 0);
 ifcapture=true;
 }

 //if not capture anything

 if(!ifcapture){
 copy.stone[counter1][counter2]=0;
 }

 }
 }
 }
 counter2++;
 }
 counter1++;
 }

 //if important stones are capture, then return false

 counter1=0, counter2=0;
 while(counter1<copy.boardSize+2){
 counter2=0;
 while(counter2<copy.boardSize+2){

 //if black to live

 if(gameType==1){
 if(copy.important[counter1][counter2]==1&©.stone[counter1][counter2]!=1){
 return false;
 }
 }

 //if black to live

101

 if(gameType==2){
 if(copy.important[counter1][counter2]==1&©.stone[counter1][counter2]!=2){
 return false;
 }
 }
 counter2++;
 }
 counter1++;
 }

 }
 return true;
}

bool Board::checkDead(){

 int counter1=0, counter2=0;

 //if no important stone, then return false

 counter1=0,counter2=0;
 int countImportant=0;
 while (counter1<boardSize+2) {
 counter2=0;
 while(counter2<boardSize+2){
 if(important[counter1][counter2]==1){
 countImportant++;
 }
 counter2++;
 }
 counter1++;
 }
 if(countImportant==0){
 return false;
 }

 // if important stones are taken, stones are dead

 counter1=0;
 while(counter1<boardSize+2){
 counter2=0;
 while(counter2<boardSize+2){

 //black to live

 if(gameType==1){
 if(important[counter1][counter2]==1&&stone[counter1][counter2]!=1){
 return true;
 }
 }

 //black to kill

 if(gameType==2){
 if(important[counter1][counter2]==1&&stone[counter1][counter2]!=2){
 return true;
 }
 }
 counter2++;
 }
 counter1++;
 }

 return false;
}

void Board::updateAlive(int row, int column){
 if(!(stone[row][column]==colorOfOwn&&alive[row][column]==0)){
 return;
 }
 else{
 important[row][column]=0;
 alive[row][column]=1;
 updateAlive(row-1, column);
 updateAlive(row+1, column);
 updateAlive(row, column-1);
 updateAlive(row, column+1);
 }

}

void Board::changePlayer(){

102

 if(colorOfOwn==1){
 colorOfOwn=2;
 colorOfOpponent=1;
 return;
 }

 if(colorOfOwn==2){
 colorOfOwn=1;
 colorOfOpponent=2;
 return;
 }

}

#endif /* Board_h */

Position.h:
class Position{

private:

 int size;

public:

 int** position;
 vector<int>legalPositionRow;
 vector<int>legalPositionColumn;

 Position(int boardSize);
 ~Position();
 void getLegalPosition();
 int getNumberOfLegalMove();
 void viewData();

};

Position::Position(int boardSize){

 //create array

 int counter1=0, counter2=0;
 position=new int*[boardSize+2];
 while(counter1<boardSize+2){
 position[counter1]=new int [boardSize+2];
 counter1++;
 }

 //initialize

 size=boardSize;

 counter1=0, counter2=0;
 while(counter1<boardSize+2){

 counter2=0;
 while(counter2<boardSize+2){

 position[counter1][counter2]=0;

 counter2++;
 }

 counter1++;
 }

}

Position::~Position(){

 int counter=0;
 while(counter<size+2){
 delete position[counter];
 counter++;
 }
 delete [] position;

}

void Position::getLegalPosition(){

 //get legal positions
 int counter1=0, counter2=0;

103

 while(counter1<size+2){
 counter2=0;
 while(counter2<size+2){
 if(position[counter1][counter2]==1){
 legalPositionRow.push_back(counter1);
 legalPositionColumn.push_back(counter2);

 }
 counter2++;
 }
 counter1++;
 }

}

int Position::getNumberOfLegalMove(){

 int result=0;

 int counter1=0, counter2=0;

 while(counter1<size+2) {

 counter2=0;
 while(counter2<size+2){

 if(position[counter1][counter2]==1){
 result++;
 }

 counter2++;
 }

 counter1++;
 }

 return result;

}

void Position::viewData(){

 int counter1=1, counter2=1;

 cout<<endl;

 if(position[0][0]==1){
 cout<<"Allow to pass"<<endl;
 }
 else{
 cout<<"Not allow to pass"<<endl;
 }

 while(counter1<size+1){

 counter2=1;
 while(counter2<size+1){

 cout<<position[counter1][counter2];

 counter2++;

 }
 cout<<endl;

 counter1++;

 }

 cout<<endl;

}

Function.h:
#ifndef Functions_h
#define Functions_h

#include <time.h>
#include <stdlib.h>
#include <math.h>
#include <vector>
#include <fstream>
#include <iomanip>

104

#include <iostream>
using namespace std;

float zeroToOne(){

 float result=1;
 while(result==1){
 result=(float)rand()/(float)RAND_MAX;
 }
 return result;

}

float rounding(float number, int to){

 float result=0;
 float digit=10;
 int i=0;
 while(i<to){
 digit*=10;
 i++;
 }

 bool ifNegative=false;
 if(number<0){
 number=-number;
 ifNegative=true;
 }

 number*=digit;
 number=(int)((number+5)/10);
 number=number/digit*10;

 result=number;

 if(ifNegative){
 return -result;
 }
 else{
 return result;
 }

}

#endif /* Functions_h */

Go.txt:
 Figure B.1 is the example of the input data.

Figure B.1: The position of input data.

The objective for the black player is to capture the important stone (marked

with a triangle). The position marked with circles are feasible spaces to play. The

105

stones marked with squares are alive groups, which the player want to prevent the

important stone connect to.

 The input file is the following.

Board size

9

Game type

1

Stone

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 2 2 2 2 2 0 -1

-1 0 0 0 1 0 0 0 2 0 -1

-1 0 0 0 1 0 0 0 2 0 -1

-1 0 0 0 1 2 0 0 2 0 -1

-1 0 0 0 1 1 1 1 2 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Space

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

106

-1 0 0 0 0 1 1 1 0 0 -1

-1 0 0 0 0 1 1 1 0 0 -1

-1 0 0 0 0 0 1 1 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Important

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 1 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

Alive

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 0 0 0 0 0 0 0 0 0 -1

107

-1 0 0 0 1 1 1 1 1 0 -1

-1 0 0 0 0 0 0 0 1 0 -1

-1 0 0 0 0 0 0 0 1 0 -1

-1 0 0 0 0 0 0 0 1 0 -1

-1 0 0 0 0 0 0 0 1 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 0 0 0 0 0 0 0 0 0 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

108

Bibliography

[1] Campbell, M., Hoane, A. & Hsu, F. “Deep Blue.” Artif. Intell. 134, 57–83 (2002).

[2] Claude Shannon. “Programming a Computer for Playing Chess.” Philosophical
Magazine, Ser.7, Vol. 41, No. 314 - March 1950.

[3] John Tromp and Gunnar Farnebäck. “Combinatorics of Go.” In P. Ciancarini and
H. J. van den Herik, editors, Proceedings of the Fifth International Conference on
Computer and Games, Turin, Italy, 2006.

[4] Coulom, R. “Efficient selectivity and minimax operators in Monte-Carlo tree
search.” In 5th International Conference on Computers and Games, 72–83 (2006)

[5] . Kocsis, L. & Szepesvári, C. “Bandit based Monte-Carlo planning.” In 15th
European Conference on Machine Learning, 282–293 (2006)

[6] Bruce Abramson. “Expected-outcome: A general model of static evaluation.”
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(2):182–193,
February 1990.

[7] Silver, David, Huang, Aja, Maddison, Chris J., Guez, Arthur, Sifre, Laurent, van
den Driessche, George, Schrittwieser, Julian, Antonoglou, Ioannis, Panneershelvam,
Veda, Lanctot, Marc, Dieleman, Sander, Grewe, Dominik, Nham, John,
Kalchbrenner, Nal, Sutskever, Ilya, Lillicrap, Timothy, Leach, Madeleine,
Kavukcuoglu, Koray, Graepel, Thore, and Hassabis, Demis. “Mastering the game of
go with deep neural networks and tree search.” Nature, 529(7587):484–489, Jan
2016. Article.

[8] H. Baier and M. H. M. Winands. “Monte-Carlo tree search and minimax hybrids,”
In IEEE Conference on Computational Intelligence and Games (CIG), pages 129–
136, 2013.

[9] R. Ramanujan, A. Sabharwal, and B. Selman, “On Adversarial Search Spaces and
Sampling-Based Planning,” in Proc. 20th Int. Conf. Automat. Plan. Sched., Toronto,
Canada, 2010, pp. 242–245.

[10] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time analysis of the
multi armed bandit problem,” Machine Learning, 47(2/3):235–256, 2002.

[11] L. Kocsis, C. Szepesvari, and J. Willemson, “Improved Monte-Carlo Search,”
Univ. Tartu, Estonia, Tech. Rep. 1, 2006.

109

[12] J.-Y. Audibert, S. Bubeck, and R. Munos, “Best arm identification in multi-
armed bandits,” in Proceedings of the Annual Conference on Learning Theory
(COLT), 2010.

[13] S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in multi-armed bandits
problems,” in Proceedings of the International Conference on Algorithmic Learning
Theory (ALT), 2009.

[14] Lanctot, M., Winands, M. H. M., Pepels, T. & Sturtevant, N. R. “Monte Carlo
tree search with heuristic evaluations using implicit minimax minimaxs.” In IEEE
Conference on Computational Intelligence and Games, 1–8 (2014).

[15] M. H. M. Winands, Y. Bjornsson, and J.-T. Saito, “Monte-Carlo Tree Search
Solver,” in Proc. Comput. and Games, LNCS 5131, Beijing, China, 2008, pp. 25–36.

[16] D. P. Helmbold and A. Parker-Wood, “All-Moves-As-First Heuristics in Monte-
Carlo Go,” in Proc. Int. Conf. Artif. Intell., Las Vegas, Nevada, 2009, pp. 605–610.

[17] H. Baier and P. D. Drake, “The Power of Forgetting: Improving the Last-Good-
Reply Policy in Monte Carlo Go,” IEEE Trans. Comp. Intell. AI Games, vol. 2, no. 4,
pp. 303–309, 2010.

