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1. INTRODUCTION

Linear generalized dynamical systems, or descriptor systems, are described in (gener-

alized) state space form by
Ez = Az + Bu, det(AE - A) #0, (1.1)

where E,A € F"*", B € F"*™. These systems provide a natural generalization of the

class of regular state space systems ]
z = Az + Bu (1.2)

and have attracted widespread interest in recent years. The structure theory of such
systems is by now rather well developed, leading to generalizations of pole placement
theorems, Rosenbrock’s control structure theorem, and state space canonical forms. (See,
e.g., the survey paper by Lewis [1].) Of particular relevance to the present paper are the
recent papers by Shayman and Zhou [2], Glising-Lier8en and Hinrichsen [3], and Helmke
and Shayman [4].

However, geometric properties of spaces of generalized linear systems have not been
studied systematically in the literature, in contrast to the rather rich literature dealing
with geometric and topological aspects of regular systems (1.2); see e.g., the papers of
Brockett [5], Hazewinkel and Kalman [6], Byrnes and Duncan [7], Delchamps (8], Helmke
[9,10]. Geometric questions concerning spaces of generalized systems were first raised by
Cobb [11,12].

In this paper, we present a detailed topological study of the space of controllable

]Fn(2n+m)

generalized linear systems. Let é’n,m(F) denote the open subset of consisting of

all controllable generalized systems (1.1). The quotient space
Crm(IF) = Cpm(F)/GLn(F) x GL(F)
consisting of all equivalence classes [E, A, B, of state space equivalent systems

{(E',A",B") € Cpm(F) | (E',A',B") = (MEN™',MAN~!,MB), M,N € GL.(F)}
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parametrizes all coordinate-free defined controllable generalized systems and thus can be

regarded as the proper space of all (abstract) controllable generalized systems.

We prove two main results in this paper. Our first result states that C, ,,(IF) is a

smooth compact manifold.

Theorem A: The quotient space C, (IF) of controllable generalized systems is a smooth
compact algebraic manifold of dimension mn.

The result is not obvious in two respects. First, one might believe that by extending
the class of controllable regular systems (1.2) (modulo state space similarity) to the quo-
tient space Cp m(IF), singularities arise. Our result shows that this is false, and that local
neighborhoods of generalized systems (E, A, B) in the quotient space Cy, m(IF') all look the

same, regardless of whether E i3 singular or invertible.

Second, Theorem A shows that Cp m(IF) is a (smooth) compactification of the orbit
space L, m(IF) of all regular systems (1.2). The construction of a (smooth or singular)
compactification of the orbit space T, »(IF) has been a longstanding open problem (see,
e.g., Hazewinkel [13] or Byrnes [14}), which is solved by Theorem A.

In order to prove the compactness of the quotient space, we have to make a detour.
We prove the compactness by computing the singular homology groups of Cy .(C), an
important and natural class of topological invariants of Cp,m(C). Our next main result
expresses the homology groups of Cp,m(C) in terms of the homology groups of certain

products of Grassmann manifolds.

Theorem B: There is an isomorphism of (integral) singular homology groups

n
Hy(Cayn(©)) = D) Hy—r(G(€™+™ ) X Guer(€" 777 1))
r=0
for any g > 0.
In particular, Cp,m(C) is connected. Also, by Theorem B, Cp,m(C) has a nontrivial

homology group for the maximal dimension ¢ = 2nm, and this can be used to conclude
the compactness of Cp,m(F) for both F = R and IF = C; see §8. We are not aware of a

more direct proof of the compactness of Cy,m(IF).
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The organization of this paper is as follows: In §2, we review background material on
generalized linear systems. In §3, we show that the quotient space Cp, m(IF) of controllable
generalized linear systems (modulo restricted system equivalence) is an analytic manifold.
In §4, we construct an analytic stratification {Cy, ,,(IF)} of Cp m(IF) indexed by r :=
deg det(AE — pA). In §5, we review the Hermite cell decomposition for the quotient space
of controllable pairs (modulo similarity). In §6, we construct a generalized Hermite cell
decomposition for the stratum Cy ,,(IF). This cell decomposition is used in §7 to obtain
the singular homology groups and Betti numbers of Cp m(C). Finally,T in §8, we apply the
homology results in §7 to prove that Cp m(IF) is compact.

2. PRELIMINARIES

Let IF denote either the field IR of real numbers or the field € of complex numbers,

topologized in the usual way. A generalized linear system
Ei = Az + Bu (2.1)

with (E, A, B) € F™*" x F**" x F"*™ is called admissible if the genericity condition for

the homogeneous polynomial

det (\E — pA) £ 0 (2.2)

in (A, 1) holds. In the sequel, all generalized systems (2.1) are assumed to satisfy the
admissibility condition (2.2). Let

Gnm(F) := {(E, A, B) € FP*n*+™) | det (\E — pA) # 0} (2.3)

denote the set of all admissible systems (2.1). &5 m(IF) is a Zariski-open subset of the
Euclidean space F™(2"+m) and thus open and dense.

A system (E,A,B) € &p,m(F) is called regular whenever the n x n matrix E 1s
invertible; otherwise (E, A, B) is called singular. In particular, the linear state space
systems (A, B)

¢ = Az + Bu (2.4)
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can be considered as regular systems with E = I,,. There is a natural correspondence
between the set of all regular systems (E, A, B) and the affine space Frx(ntm) of arbitrary

linear state space systems (2.4), defined by
(E,A,B) — (E"'A,E™'B) (2.5a)
(A,B) — (In,A,B) (2.5b)

Obviously, the map (2.5b) is a right inverse of (2.5a).
Two linear state space systems (4, B), (A', B') are called similar, (A4, B) ~, (A', B'),
if
(A',B')=(SAS™1,SB) (2.6)

for some invertible transformation S € GL,(IF). ~, defines an equivalence relation on

F**("+™) and the equivalence classes

[4,B], := {(SAS™,5B) | S € GL,.(F)} (2.7)
are, by definition, the orbits of the group action

o : GL,(F) x FX(vtm) _, prx(ntm)
(S,(4, B)) ~ (SAS™,SB). (2.8)

o is called the similarity action of GL,(IF) on F™*("*+™),

Two generalized systems (E, A, B),(E',A',B') € 6n,m(IF) are called equivalent, in
symbols (E, A, B) ~, (E', A', B'), if they belong to the same orbit of the group action of

(restricted) system equivalence
1 (GLa(F) X GLa(F)) X () = G (F)
((M,N),(E,A,B)) » (MEN™!, MAN™' MB). (2.9)

The orbits of n are denoted by
[E, A, B]ﬂ = {(MEN"I,MAN"I,MB) | M,N € GL,(IF)} (2.10)

and we have

(E,A,B) ~, (E',A'",B") & [E,A,B), = [E',A', B'],.

4



Both group actions o, n are algebraic group actions and the transformation groups GL,(IF),

respectively GL,(IF) x GL,(IF), are linearly reductive.

There is an important scaling action defined on &, (IF) which commutes with the

action 1. For any invertible 2 x 2 matrix
a p
Q= [7 5] € GLy(FF)

let
To(E, A, B) := (Eq, Aq, B) (2.11a)

be defined by
(Eq,Aq) := (aE + BA,vE + 6A). (2.11b)
Since admissibility of (E, A, B) is invariant under the transformations (2.11), (2.11) defines
a GLz(IF)-action
T : GLy(F) X Gn,m(F) = Gn,m(F)
(Q,(E, A, B)) — To(E, A, B), (2.12)

called the scaling action on &y ;m(FF). T is an action on &p,m(IF) which commutes with #:

Ta o n(m,N) = n(m,N) © Ta (2.13)

for all @ € GLy(FF), M,N € GLn(F). Using T, any (E,A,B) € &p,m(F) is scaling
equivalent to a regular system (Eq, Aq, B)—i.e., det Eq # 0 for some Q € GLy(IF). The
scaling action (using the subgroup SO(2)) was introduced by Shayman and Zhou [2] as an
analysis and design tool for generalized linear systems. See also Shayman [15,16].

We briefly recall the well-known Weierstrass decomposition of an admissible general-
ized system (2.1) into a slow and fast subsystem. (For details, see e.g. Cobb [17].)
Lemma 2.1: Let (E, A, B) € &n,m(F) and r := deg det(AE — A). (E, 4, B) is equivalent
to a system (E', A', B') € &n,m(IF) with

' Ir 0 1 __ Al 0
E—[O Az]’ A—[O In_r]' (2.14)
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Here A; € F™*" and the matrix A, € F( "%~ ig nilpotent. Futhermore,
det (A\E — pA) = ap" ™" det (A, — p4;) (2.15)

where a is a nonzero constant. n

Thus every admissible generalized linear system (2.1) is equivalent to a system in

standard form
:i)l = A1x1 + Blu (216(1)
A21i:2 =2 + Bzu (216b)
with A, nilpotent and B; € F™*™, B, € F("—"*m™ (2.16a), (2.16b) are called the slow,

respectively fast, subsystems of (2.1). They are uniquely defined up to similarity, as shown

by the following lemma:
Lemma 2.2 ([4]): For 0 <r,s <nlet

SRS

0 A 0 I,
, L, o . [Ay 0
p=[t ) 2= 4L

be in standard form (2.16) with Az, A} nilpotent. Assume (E',A') = (MEN7!,
MANT1) for M,N € GL,(F). Then r = s and

o _ M O
M_.N_[O Mn]

with My, € GLT(F), M;s € GL,,._,-(]F).

|
For 0 < r < n let
&5 m(F) = {(E, 4, B) € 6pm(F) | deg det (\E — A) =r}.
Thus,
&nm(F) = Lnj &5 m(F) (2.17)
r=0
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is a decomposition of &, m(IF) into disjoint quasi-affine subvarieties of &, m(IF). Since

5,m(IF) is obtained from &, m(IF) by setting n — r independent functions to zero,
dim 7, (F) =2n% + n(m — 1) +r. (2.18)
The following topological version of the Weierstrass decomposition (Lemma 2.1) is due to
Cobb [18]:
Lemma 2.3: Let (E,A,B) € &5 m(F). There exists an open neighborhood U C &7, (IF)
of (E, A, B) and an analytic map |
F:U - ay, ,.(F)

same (5 2[4 2)[E) em

which associates to every (E, A, B) an equivalent system in standard form.
|
Following Rosenbrock [19], a system (E, A, B) € &5 m(IF) is called controllable if and
only if
rank [A\E — p4,B] =n, VY(\,p)e €*—{(0,0)}. (2.20)
The following characterization from Yip and Sincovec [20] is an immediate consequence of
(2.20).
Lemma 2.4: A system (E, A, B) € 6p m(TF) in standard form (2.16) is controllable if and
only if the associated subsystems (4;, B ), (A2, B2) are controllable.
||
Remark 2.5: Clearly controllability of (E, A, B) € épn,m(IF) is a property which is invari-
ant under the scaling action (2.12).

3. THE QUOTIENT SPACE OF CONTROLLABLE GENERALIZED SYSTEMS

In this section the quotient space Cy m(IF) of controllable generalized linear systems
(E, A, B) modulo restricted system equivalence is introduced. We show that Cy () is

an analytic manifold.



Let Cp m(IF) denote the set of all controllable systems in Gu,m(IF). Crm(F) is a

Zariski-open subset of F™?"+™) and thus open and dense in F"(237t™) We denote by

C‘;‘?n(]F) C Cp,m(F) the open and dense subset consisting of all regular controllable sys-

tems. Similarly, let £, () denote the Zariski-open subset of F™("+t™) consisting of all
controllable pairs (A4, B).

The group actions o, 1 restrict to actions on the spaces Co,m(F), C~',’,‘f§n(]F ), Lnm(IF)
of controllable systems. We refer to
0 : GLa(F) x Ep,m(F) = T, m(F)
(S,(4,B)) — (SAS™!,SB) (3.1)

as the similarity action on in,m(]F). o is a free group action—i.e., for any (4,B) €

3 n,m(IF) the stabilizer subgroup
Stab(A4, B) := {S € GL.(F) | (SAS™!,$B) = (4, B)}

is the trivial subgroup consisting of the identity element in GLn(F).
Similarly,
1+ (GLa(F) X GLa(F)) X Cr a(F) = C,m(F)
((M,N),(E, A, B)) = (MEN™!, MAN™',MB), (3.2)

respectively its restriction to é{,‘f%,(]F)

1 (GLn(F) x GL,(F)) x Cr8, — C18,, (3.3)

reg

is called the (restricted) system equivalence action on Cr,m(F), respectively C’n,m(]F‘).
Let
Co,m(F) := Cr,m(F)/(GLa(F) x GLo(TF)) (3.4)

denote the set of all orbits [E, A, B], of controllable generalized linear systems. Chn,m(F)
is endowed with the quotient topology, i.e., with the finest topology for which the quotient

map

. ™ ~,,,,,,(]F) — Cp m(F)
(E’AvB) — [EaA’B]n (3.5)
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is continuous. Since equivalent systems (E, A, B),(E’, A', B') have the same system theo-
retic properties, we can regard Cy () as the (abstract) space of all controllable gener-

alized linear systems.

Similarly, let

Cre8 (F) := Cr%,(F)/(GLn(F) X GLa(TF)) (3.6)
Zn,m(F) = 2n,m(]F)/GLn(]F) (37)

be the orbit spaces of controllable regular systems, respectively of controllable pairs, for
the actions (3.3), respectively (3.1). Let
 + Giet, (F) — CI2%,(F)
(E,A,B) — [E, A, By, (3.8)
respectively
7 : Sy (F) = S m(F)

(4,B) + [4, Bl, (3.9)
denote the corresponding quotient maps. We endow C5&,(IF), Tn,m(IF) with the corre-
sponding quotient topologies. Cr8,(IF) is an open and dense subset of Cp,m(IF).

The scaling action (2.12) on &,,m(IF) restricts to the scaling action on Cr.m(F)
T : GLy(F) X € m(IF) = C ()

([: g ] (E, A, B)) + (aE + BA,7E + 64, B). (3.10)

Since the actions T,n commute, T induces a scaling action of GLz(IF) and also of the
projective general linear group PGLy(IF) := GLz(F)/F* on the orbit space Cr,m(IF):
T : PGLy(F) x Cp,m(IF) = Cp m(IF)

([“ ﬂ] ,[E,A,B],,)H[aE-i-ﬂA,—yE-l-&A,B],,. (3.11)
Y 6]p.

For (E, A, B) € 6n,m(FF), let Stab(E, A, B) denote the stabilizer subgroup of (E, A, B)
for the equivalence action 7. Since T,7n commute,
Stab(Ta(E, A, B)) = Stab(E, A, B) (3.12)
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for all @ € GLy(IF). Suppose (E, A, B) € &, m(F) is regular and (M, N) € Stab(E, 4, B).
Then N € Stab(E~'A,E~*B) and M = ENE!. Thus

Stab(E, A, B) = Stab(E~'A, E™'B) (3.13)

via the group isomorphism which sends each N € Stab(E~'A4,E~'B) to (ENE},N) €
Stab(E, A, B).

Lemma 3.1: The restricted system equivalence action
7 : (GLy(F) X GLy(F)) X Gp,m(F) = &n,m(F)
acts freely on Cp, m(F). Moreover, Cr,m(FF) is the principal orbit type of n—i.e.,

Stab(E, A, B) = {(In, I)} & (E, 4, B) € Cu m(F).

Proof: For the similarity action on state space systems (F,G) € F"*" x F"*™, Byrnes
and Hurt [21] have shown that Stab(F,G) = {I,} if and only if (¥, G) is controllable.
Since any (E, A, B) € &n,m(FF) is scaling equivalent to a regular system, the result follows
from (3.12), (3.13) and Remark 2.5.

Let o : G x X — X, (g,z) + g - =, denote a group action on a set X. Let ~q denote

the associated equivalence relation on X. The graph of « is defined as the set
To:={(z,y) €X x X |z ~a y}.
Thus I’y is the image of the graph map

I:'GxX—-XxX

(9,2) = (2,9 - 2).
Proposition 3.2: The graph of the equivalence action

7 : (GLa(FF) x GLa(F)) x Ci8,(F) — C%(F)
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is a closed analytic submanifold of C’;‘f‘}n(F) X C':,‘fﬁ,(lF)

Proof: Let T8 C Creg 8 (F) x Clreg & (IF) denote the graph of 5, and let Ty C £, n(IF) X
3 n.m(IF) denote the graph of the similarity action on the set £, ,.(IF") of controllable pairs.
By Helmke [10, Lemma 2.1}, T, is a closed analytic submanifold of £, m(IF) x £5 m(F).
Consider the analytic mapping
3 : C8 (F) x CI& (F) — Ep m(F) X £ ()

((E,A,B),(E,A,B))— (E*A,E7'B),(E~*A,E7'B). (3.14)
For regular (E, A, B), (E, A, B) given, suppose
E7'A=N(ETAN™, ET'B=N(E™'B)
for some N € GL,(FF). Set M := ENE™!. Then
(E,A,B)= (MEN"',MAN~!,MB).

Thus ®~(T';) = ;8. Since @ is a submersion, the inverse image I';8 is a closed analytic

submanifold of C’e‘,‘-‘n(]F) X C‘eg g (IF).
n

Using standard results about analytic Lie group actions on manifolds, see Dieudonné

[22] or Helmke and Hinrichsen [23], Lemma 3.1 and Proposition 3.2 imply:
Corollary 3.3: The orbit space C;%%,(F) = Cree (F)/(GLn(FF) x GLA(TF)) of regular
controllable systems is an analytic manifold of dimension nm. The quotient map = :
'eg & (F) — C;8,(F) is a principal fibre bundle with structure group GL.(IF) X GLn(F).
n

The corresponding result for the orbit space Zp m(IF) of controllable linear systems
(4, B) modulo similarity has been well known since the early work of Hazewinkel and
Kalman [6] and Byrnes and Hurt [21]. In particular, E, m(IF) is known to be a connected,
nonsingular quasiprojective variety of dimension nm. In addition to the two aforemen-

tioned references, see Helmke [9,10] for further results on the topology of Xy, m(IF).
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Consider the analytic map between manifolds.
i: Zn,m(F) = Coob(F)
[, Bls + [I, A, B],. (3.15)

t is a bijection with inverse
i7! =5 : CRE(F) = Zam(F)

[E,A,B), » [E"'A,E7'B), 1 (3.16)

Since j is analytic, it yields a bianalytical diffeomorphism. This shows

Proposition 3.4: The orbit spaces Zn m(F) and C;8,(IF) are diffeomorphic as analytic

manifolds.
[ |

In order to obtain the full quotient space C,.,m(]F) as a manifold, we use the scaling
action T : GLy(IF) X Cp,m(F) — Cy m(F).
For every 2 € GLy(IF), let

Ca(n,m) := T({Q} x CL&,(F)). (3.17)

Each Cq(n,m) is an open and dense subset of Cy m(IF). Furthermore, Cq(n,m) carries
a natural structure of an anlytic manifold which makes it analytically diffeomorphic to
Cxt,(F).

Lemma 3.5: There exist finitely many Qo,...,Q, € GL2(IF) such that

Com(F) = | Cai(n,m). (3.18)
=0
-1
Proof: Choose any §2; = [:' ?’] with pairwise linearly independent row vectors

(ai,B), ¢ = 0,...,n. Suppose there exists [E, A, B], € Cnpn(F) with [E, A, B], ¢
Cq,(n,m) for all i = 0,...,n. Then det(a;E + fiA) = 0 for ¢ = 0,...,n. But the
polynomial det(\E + pA) has at most n linearly independent roots (A, p), a contradiction.
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Theorem 3.6: The orbit space Cp m(F) of controllable generalized linear systems is
an analytic manifold of dimension nm. Furthermore, the quotient map = : C’n,m(lF) —
Cy,m(IF) is a principal fibre bundle with structure group GL,(FF) x GL,(FF).
Proof: The proof is by a standard gluing argument. Consider the finite covering (3.18) of
C, m(IF) by the open subsets Cq,(n,m), i =0,...,n. Consider the homeomorphism
Ti: O (F) — Cai(n,m)
[E, A, B), — [Tq,(E, A, B)], (3.19)

i =0,.--,n. There exists a unique structure of an F-analytic manifold on Cq,(n,m) for
which T; becomes a bianalytical diffeomorphism. Since
wij =T 1o Ty Tj"l(CQ,.(n,m) N Cq,(n,m)) — T }(Cq;(n, m))
[E, A, B, — [TQ;'IQ,-(EvAaB)]n (3-20)

is analytic, there exists a (unique) real analytic manifold structure on Cy (IF") which
induces the given analytic manifold structures on Cgq,(n,m). Since the maps ¢;; are
compatible with the quotient maps = : C~',’,‘j§n(]F) — C}%8 (F), respectively Com(F) —
Cpn m(F), the result follows readily from Corollary 3.3.

Remark 3.7: Using the gluing data (3.19), (3.20) it is easy to construct an atlas of local
coordinate charts for the manifold Cp m(F). Indeed, let {(Ux,%¥a) | A € A} be a finite
atlas of coordinate charts for the orbit manifold £, (IF). For example, use the atlas for
T, m(IF) described in Hazewinkel [13] based on nice selections for the controllability matrix
(B,AB,...,A*"1B). Using the diffeomorphism i : £ m(IF) — C;%8 (IF), this defines an
atlas {(Va, ) | A € A} for CZ8,(F) with Vi :=i(Us), ¢a = ¥a0i™', A € A. Then

(T:(VA), $aoTIY) A €A, i =0,...,n}

defines a finite atlas of local coordinate charts for Cy m(IF).
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Remark 3.8: It can be shown that 7 : Cp () = Cn,m(F) is a nontrivial fibre bundle
for arbitrary m,n € IN. This implies the nonexistence of continuous canonical forms
for restricted system equivalence of controllable generalized systems. See Helmke and

Shayman [4] for details.

|
4. A STRATIFICATION OF C, (F)
Let co(E, A),...,ca(E, A) € F be defined by
det(AE — pA) = Y  ci(E, AN u" "
=0
This defines an analytic map

X : Ca,m(F) - P™(F)

(4.1)

[E, A, B], — [co(E,A) : ... : ca(E, A)]
which is called the characteristic map. For any 0 < r < n, let
Cnm:=1lE,AB], € Crn,m(F)|deg det(AE — A) =r}.

Since the functions co(E, A), ..., ca(E, A) are algebraically independent, C§ ,.(F) = x™*
(IF7) (with F™ C IP*(FF) the affine subspace defined by [zo :...: Zy—1:1:0...:0]) isan
analytic subvariety of Cp m(IF) with

dim Cy, ,(F) = n(m—-1)+r.

Clearly C3 ,(IF) = C;%,(F) is open and dense, and

Com(F) = |) Com(F) (4.2)

is a decomposition of Cp m(F) into finitely many disjoint locally closed subsets. Let
Cr (TF) denote the topological closure of Chy m(FF) in Cyp (). Since C}, ,(F) = x~Y(P"),

G = | Con(F) (43)

=0
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is an analytic subvariety of Cy (). This proves

Lemma 4.1: The decomposition (4.2) is a stratification of Cp,m(IF) by analytic subvari-
eties Cf ,(F) with dim C}, ,(F) = n(m —1)+r.

Recall that a finite decomposition {X; | ¢ € I} of an analytic variety X into nonempty

disjoint subsets X; is called an analytical stratification if
(i) X; is an analytic subvariety of X
(i) X;nX; #0 = dim X; < dim X fori#j.
Let Mim(F) C Zk,m(F) denote the subset of Li,m(IF) consisting of all similarity
classes [A, B], with A nilpotent. Ng,m(IF) is a closed algebraic subvariety of the quasi-

projective variety Ti (). We can now state the main result of this section which gives

an explicit parametrization of C7, ,.(IF).

Theorem 4.2: Forany 0 <r<n

@ Lrm(F) x Nn—r,m(F) - C;,m(]F)

([41, B1]o, [A2, B2]o) H[ ({) ,22) ’ (jti)l I,,O_r> : (g:) ],,

is an isomorphism between analytic varieties. In particular, C;, () is homeomorphic to

the product space Zy,m(F) X Np—r,m(F).

Proof: ¢ is clearly analytic. Surjectivity of ¢ follows from Lemma 2.1, while Lemma 2.2
proves the injectivity. Thus ¢ is bijective. Analyticity of ¢! follows immediately from

Lemma 2.3.

5. HERMITE INDICES

In this section we recall some basic facts about Hermite indices of controllable systems
(A, B) and an associated cell decomposition of the orbit manifold s m(IF). This material
is due to Helmke [10] to which we refer for further details.
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A combination of n € N into m parts is any m-tuple of nonnegative integers K =

(Ki,...,Km) with Ky +---+ Km = n. mis called the length and |K| := }_ K; the weight

i=1

of K. Combinations K of fixed length m and weight n form a finite set

Kpm = {K €Z™|K;>0,) K= n} (5.1)

i=1

of cardinality

(n+m—1)=(n+m—1)! (52)

n nl(m—-1)!

Let (4,B) € in,m(]F), and let by, ... b,, denote the columns of the matrix B. We consider
the following elimination procedure on the columns of the controllability matrix of (4, B):

Delete in the list
(b1, Aby,... ,A"_lbl, veeybm, Abp, ... ,A""lbm),

while going from left to right, all vectors A*b, which are linearly dependent on the set of

all previous vectors. By controllability, the remaining vectors
Tag :=(b1,..., A5 b1, .. by ey A5 b)) (5.3)

form a basis of the state space IF" with nonnegative integers Kj,..., Ky, satisfying K1 +
«+++ Ky = n. (5.3) is called the Hermite basis and the combination K = (Ki,...Km) €
Knm is called the list of Hermite indices of (A4,B). Obviously the Hermite indices
K(A,B) = (K,...,Kmn) of (A, B) are similarity invariants:

K(SAS™,SB) = K(4,B), VS € GL.(F). (5.4)

Expressing (A, B) with respect to the Hermite basis T4p leads to the Hermite canonical
form for the similarity action on £, m(IF). See Mayne [24], Hinrichsen and Prétzel-Wolters
[25], Helmke and Shayman [4].

For any combination K € Kp,m, a Hermite stratum of 3n,m(F) (respectively of

N m(IF)) is defined by
Herp(K) :={ (A,B) € Enm(F) | K(4,B) =K }
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respectively

Herp(K) :={ (A,B) € N, m(F) | K(A,B) = K } .

The Hermite strata are quasi-affine subvarieties of £y m(IF), respectively /Vn,m(lE‘) (10],

and
Eam(F) = |J Herp(K), (5.5)
KeKn,m
respectively
Ka(®) = | Herp(K), (5.6)
K€Kn,m

are finite decompositions into disjoint o-invariant subsets.

Let
Herp(K) :=n(Herp(K)) = Herp(K)/GLn(F),

respectively

Herd(K) = n(Herp(K)) = Herg(K)/GLu(F)

— —~—0
denote the orbit spaces of the similarity action restricted to Herg(XK), respectively Herp(K).
Thus, Herp(K) C Zp,m(F) and Herf(K) C Np m(F).

Lemma 5.1: Let K € Ky m.
a) Herg(K) is a cell, i.e., an analytic subvariety of X, m(IF) which is bianalytically

homeomorphic to some F™¥), The dimension of Herg(K) is equal to

n(K) = Em:(m ~-i1+1)K;. (5.7)

=1

b) Herd(K) = F™®) js a cell in Ny m(IF) of dimension

no(K) = i(m -)K; = n(K)—n. (5.8)

=1
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Proof: For (a) we refer to [10]. We now prove (b). For (4, B) € I?;‘F(K) and1<j<m,

there exist uniquely determined numbers a;j/(4, B) € F with

K;
AKjbj = Za,-jg(A,B)Al“lb,-. (5.9)

L)
i<

Here A is nilpotent if and only if
ajjt(A,B)=0 Vt=1,.. ,K;, jem. (5.10)

(Consider the characteristic polynomial of the block triangular matrix Ty5 A Tap.) Thus
—~—0
(A, B) € Herg(K) if and only if (5.9) and (5.10) are satisfied for all j =1,...,m.
By uniqueness, a;;e(SAS™,SB) = a;;s(A, B) for all S € GL,(F). Let o;(4,B) €
F" (5 denote the vector with components a;je(4,B), i < j and £ = 1,...,K;. Thus
nj(K)=Ki+...+ K;_1 and

no(K) =Y ni(K) = Y (m—i)K;.

Define a mapping

¢ : Her}(K) — FmoK)
[A,B), — (a1(4,B),...,am(4,B)).

¢ is clearly a bijection. The functions
Qije - HCT%(K) — F, [4, B, — aijl(AaB)

are F-analytic [10]. Hence ¢ is analytic. As in [10}, one shows that ¢~1 is analytic. This
completes the proof.

|
We call Herp(K), respectively Hery(K), a Hermite cell of Tn m(IF), respectively of
Nyum(F).

18



In order to describe how the Hermite cells of £, ,»(IF), respectively Ny, m(IF), are
pasted together, we recall the dominance order < on the set Ky, of combinations. For

any K,L € K, m, define
KL<L&Ki+...+K;<Li+...+Lj Vjem. (5.11)

This defines a partial ordering on K, ,» which is called the dominance order.
The following results on the closures of Hermite cells of ,, m(IF) are shown in Helmke
[10].
Proposition 5.2: Let K,L € K,, ,» and let < denote the dominance order on K, n. For
F=C¢,
Herqp(K) C mﬁ Herg(K) ﬂm# 0 K<L

Proposition 5.2 yields the following explicit characterization of the boundary of a Hermite
cell in By, m(C):

Herg(L) = |J Herg(K). (5.12)
K<L

For IF = R, the geometric situation is considerably more complicated and Proposition
5.2, respectively the characterization (5.12), becomes in general false. However, we still

have the following result:

Proposition 5.3: Let K, L € K,, m and let < denote the dominance order on Ky y». Then

Herg(K)NHerp(L)#0 < K < L.

Since Her‘(’D(K) C Herg(K), we obtain:

Corollary 5.4:
Her)(K)NHerQ(L)#0 = K <L.
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In particular we have the following partial description of the boundary of a Hermite cell

in X m(IF), respectively Ny, m(F).

Herp(L) C | Herp(K) (5.13)
K<L

Her(L) C | Herg(K). (5.14)
K<L

In the sequel we use the following terminology from topology:

Definition 5.5: Let X be a locally compact topological space. A finite decomposition

{X: |1 € I} of X into nonempty disjoint subsets is called a cell decomposition provided

(2) Each X; is homeomorphic to some R™, n; € IN.

(b) The boundary 8X; = X; — X; of X; is contained in the union of the cells X ; with
dim X; < dim X;.

A cell decomposition {X; | ¢ € I'} is said to satisfy the frontier condition, if
XinX;#0 & X;cX; Vi,jel (5.15)
For any ¢,j € I, we consider the relation
i<j & XinX;#0. (5.16)

We refer to (5.16) as the adherence relation on the cell decomposition {X; | ¢ € I}.

The decomposition of spaces into cells is a well established technique in topology. For a
survey about cell decompositions in linear systems theory, their role in the parametrization
of system spaces and their relationship to canonical forms, see Helmke and Hinrichsen [23],
Hinrichsen [26].

Theorem 5.6 ([10]): The decomposition {Herp(K) | K € Knm} of the orbit space
Za,m(IF) into Hermite cells is a finite cellular decomposition. The adherence relation on
the set of Hermite cells is given by the dominance order. For IF = C, it satisfies the frontier

condition.
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For the subspace Ny m(IF), there is a similar result:
Theorem 5.7: The decomposition {HerQ(K) | K € Kn,m} of Nu,m(IF) is a finite cellular

decomposition.

Proof: By Lemma (5.1), Hery(K) is a cell of dimension no(K) = fnj(m -)K; =K +

1=1
(Ki+K)++-+ K1+ -+ Km1) Thus K <L implies no(K) < no(L). By Corollary

5.4, the boundary of a Hermite cell H erd(L) is contained in |J H erd.(K), with dim
K<L

Her(K) = no(K) < no(L) = dim Herd(L). The result follows.
||

We call {Herp(K) | K € Kn,m}, respectively {Herl(K) | K € Kn,m}, the Hermite cell
decomposition of T, m(IF), respectively Nom(FF).
6. A CELL DECOMPOSITION OF C,’;,m(]F)

Let (E, A, B) € Cp m(F) with deg det (AE — A) = r. Using the Weierstrass decom-
position, let (A1,B1) € f),,m(]F), respectively (A2,Bz) € Noa—r,m(F), denote the slow,
respectively fast, subsystems of (E,A,B). Let K = K (A1, B1) € K, m, respectively
L = K(A2,B;) € Ky—r,m, denote the Hermite indices of (4;, B1), (A2, B2). We call

K(E’A’B) = (T; K(AlaBl)iK(AQ)BZ)) € {1'} X Kr,m X Kn—r,m
= (r; Kl(E,A,B);Kg(E,A,B)) (6.1)

the generalized Hermite indices of (E,A,B). By Lemma 2.2 and (5.4), K(E,A,B) is
well-defined and satisfies

K(MEN~',MAN~!,MB) = K(E, A, B) (6.2)
for all M, N € GL,(IF). Let

J(n,m):={(r,K1,K2) |0<r<n, K1 € Kym, K2 € Knerm}- (6.3)
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J(n,m) ~ K, om is a finite set of cardinality

cardJ(n,m):Xn:(m+:—l) (m+:::—1>=(n+2r:n_1)' (6.4)

r=0
For any (r,K;,K3) € J(n,m), there exists (E,A,B) € C,m(FF) with deg det (\E —
A) =r, K\(E,A,B) = Ky, K3(E,A,B) = K;. Thus J(n,m) = Ky 2m is the set of all

generalized Hermite indices for Cp m(TF).

For any (r, K1, K;) € J(n,m), a generalized Hermite stratum of C’;’m(l[’) is defined
by

Herp (K1, K2) == {(E, 4, B) € C}, (F) | (Ki(E, 4, B), K2(E, A, B)) = (K1, K2)}. (6.5)

Thus

Crnm(F) = U Herg (K1, K2) (6.6)
(T,K1 ,Kg)EJ(n,m)

is a decomposition into finitely many disjoint n-invariant subsets. (6.6) induces the de-
composition
Crn(®)= |J Herr(K1,K2) (6.7)

Ki€Ken
K2€Kn—r,m

foreach 0 <r < n.
Let
Herp (K1, K) := n(Herp (K1, K2))
= Herp (K1, K2)/(GLn(F) x GLa(TF)) (6.8)

denote the orbit space of the system equivalence action 5 (3.2) restricted to the generalized
Hermite stratum IT&F(Kl,Kg). We call Herp (K1, K2) a generalized Hermite cell of both
Cr () and Co,m(IF).

Lemma 6.1: Let K = (K1,...,Km) € Krmy L= (L1,...,Lm) € Kn—r,m. Herp(K, L)
is an analytic manifold bianalytically diffeomorphic to Herg(K) x H erd (L) and is a cell

of dimension

n(K, L) = f:(m - i)(K.‘ + L,‘) +r.

=1
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Proof: By Theorem 4.2

®: Zrm(F) X Nperym(FF) — Cv';,m(]F)

([Al,Bl],,[Ag,Bz],)HK{)' 22),(%1 I,B.r)’(g;)],, (6.9)

is an analytic isomorphism of varieties. Since p(Herp(K) x Hery(L)) = Herp(K, L), the

result follows immediately from Lemma 5.1.

B
Let < denote the ordering by dominance on K, K. n—rm-
Proposition 6.2: Let K;,K; € Ky m, L1,L; € Kpnep . If
Herp(Ky,Li) N Herp(K2,Ly) # 0,
then K] S Kg and L1 S L2.
Proof: By Proposition 5.2,
Herp (K3, Ly) = ¢ (Herg(2) x Herd (L))
C U ¢ (Herp(Kr) x Herf(Ly))
K1<K3
Li<L;
= |J Herr(K:1,L).
Ky <Kz
Ly<Ly
n

Let K; = (K},...,K}) € Krymy, Li = (L§,...,L%.) € Knrm, i = 1,2, be given. For
K, £ K3, L, < L3, we have dim Herp(K;,L;) = dim Herp(K1) + dim Herd (L) <
dim Hergp(K;)+dim Herd (L) = dim Herp(K3, L;). Here, we have used the “dimension
drop” property of the Hermite cell decompositions of I, (IF) and My—r,m(IF). This proves
the following main result of this section:

Theorem 6.3: The decomposition {Herp(K,L) | K € Kym, L € Kn—r;m} of C}, .(F)

into generalized Hermite cells is a cell decomposition.
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We refer to this decomposition as the (generalized) Hermite cell decomposition of Cy, ..(F).

It contains (m-{—:—l) (m+n—r—1) cells.

n—r
Remark 6.4: For ' = R and 2 < r < n, the Hermite cell decomposition of Cy, ,,(R)
does not satisfy the frontier condition (5.15). Moreover, the relative topological closure
Herg(K, L) of a generalized Hermite cell in Cr w(R) is in general not an analytic sub-
variety of C; ,(R). For F = € and 0 < r < n, we conjecture that the Hermite cell
decomposition {Herq(K,L) | K € Kym, L € Ka—r,m} of C], ,.(C) satisfies the frontier
condition.
| |
We do not know whether the decomposition {Herg(K,L) | (r,K,L) € J(n,m)} of
Cn,m(TF) is a cell decomposition, i.e., if the dimension drop property (b) in Definition
5.5 is satisfied. The problem is that the adherence relation on the whole set J(n,m) of
generalized Hermite indices is unknown, while Proposition 6.2 applies only for fixed r. To
overcome this difficulty we use the following terminology, which weakens the definition of
a cell decomposition:
Definition 6.5: Let X be a locally compact topological space. A finite decomposition
{Xi | i € I} of X into nonempty disjoint subsets is called a cellular patch complez provided

(a') Each X; is homeomorphic to some IF"*, n; € N.
(b") There exists a partial ordering < on I with

XinX;#0=i<j.

Using this terminology we have
Theorem 6.6: The decomposition {Herg(K,L)|(r,K,L) € J(n,m)} is a finite cellular

patch complex.

Proof: We define a partial ordering on J(n,m) by
r<s

(r,K1,Ly) < (s,K3,Ly) : & {or

r=s a'ndI{l SK2, L1 _<_L2
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By (4.3) and Theorem 6.3, {Herp(K, L)|(r,K,L) € J(n,m)} is a cellular patch complex
for the ordering <.

7. HOMOLOGY GROUPS AND BETTI NUMBERS

An important class of topological invariants of a space X are the singular homology
groups Hy (X;G), defined for any integer ¢ € Ny and an abelian group G. The Betti
numbers of X are defined by

Bo(X) :=dim Hy(X;Q), ¢=>0.
In this section, we determine the integral homology groups
H.(Cn,m(C)) := Ho(Cn,m(C); Z)

of Cp,m () leading to an explicit combinatorial formula for the Betti numbers of C,, n(CT).
Our method of computing H.(Cr =(T)) is classical and uses the Hermite cell decomposition
of the strata CJ . (F). In the real case, our method does not allow us to determine
H,.(Cn,m(R);Z /2), and we leave the problem of computing the mod 2 homology groups
of Cpn,m(IR) as an open question.

First, let us determine the homology groups of the various strata Cy, ,,(C) for r =
0,...,n. Let H qB M(X) denote the g-th Borel-Moore homology group with closed support
and coefficients in ZZ. For p > 0, let ZZ? = ZZ @ - - - ® ZZ denote the p-fold direct sum of
7Z, 7Z° := {0}. For a given cell decomposition {X;|i € I} of a topological space X, the
g-th type number of {X;|i € I} is defined by

cg(X) := card{i € I|dimr X; = ¢}, (7.1)
i.e., the number of cells of real dimension gq.

We use the following facts about the Borel-Moore homology groups.

Lemma 7.1: Let X be a topological space with§ =X_; CXo C X1 CX, C...C X, =
X a finite filtration of X by closed subspaces X;, 1 =0,...,n. Suppose

HEM (Xi— Xi1) = {0} forall ¢>0, 0<i<n.
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Then for all ¢ > 0,
HEM(X) = P HEM(X; - Xi-1).

=0

Proof: We work by induction on n. For n = 0, we have nothing to show. Suppose the

result is shown for n — 1. Thus, for 4 := X,
n—1
HPM(A) = @ HEM (Xi — Xi-y). (7.2)

1=0

Consider the homology exact sequence
o= HEM(A) - HEM(X) -» HEM(X — A) > HEN(4) > ---.

For g odd, we have HPM(X — A) = {0} and, by (7.2), HZ?M(A) = {0}. Thus, for ¢ odd,
HBM(X) = {0} and

H2M(X) = HPM(X — Xpo1) @ HPM (X ).
For ¢ even, the homoldgy exact sequence splits into short exact sequences
0 — HEM(A) - HPM(X) - HEPM(X - A) -0,
since H2M(A) = HEM (X — A) = {0}. Thus,
HEM(X)2 HEM(A) o HIM(X - 4)

= P HPM(Xi — Xi-1).

=0

Corollary 7.2: Let X be a locally compact Hausdorff space and let {X;|¢ € I} be a finite
cell decomposition of X. If all cells X; have even dimensions, then for all ¢ > 0,

BM ~t C'X)
HEM(X) 2 70,
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In particular, H2M(X) is torsion free.
]

We now apply Corollary 7.2 to compute the Borel-Moore homology groups of Cy,m(C).
For any integer ¢ > 0 and m,n > 1, let

By(n,m) ;= card{K € Kn m| 2Xm:(m —1)K; =g} (7.3)

i=1
denote the number of Hermite cells H er‘(’D (K) of Ny,m(C) of real dimension g. We have

the following simple combinatorial formula for f,(n,m).

Lemma 7.3 ([10]): B,(n,m) is a partition number and is equal to the number of sequences
(a1,...,am-1) of nonnegative integers with 0 < a; < ... S am-1 < n and 2(a; + -- -+
am-1) = ¢

|

Let b,(r;n,m) denote the number of generalized Hermite cells Her ¢(K, L) of C}, .(T)

of real dimension ¢q. By Lemma 6.1, we have

Lemma 7.4:

by(r;n,m) = Z Bi—2r(r,m)Bg—i(n — r,m).

=0

The following result is an immediate consequence of Theorem 6.3 and Corollary 7.2:
Theorem 7.5:

(a) For any integer ¢ > 0,
HPM(CF,(€)) = T
(b) The odd-dimensional homology groups vanish:
Hy i (Cr m(€))={0}, Vg20

and HEM(Cy, ,()) is torsion free.
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In order to state the main result of this section, let us introduce the number

bg(n,m) := Z bg(r;n,m) (7.4)

r=0

q n

= Z Z Bi—2r(r,m)Bq—i(n — r,m). (7.5)

i=0 r=0
Let Hy(X) denote the classical g-th singular homology group of X with coefficients
in ZZ. These groups H,(X) are classical topological invariants attached to X, but they
have to be clearly distinguished from the Borel-Moore homology groups H qBM (X). In
general, the groups HPM(X') and H,(X) are not isomorphic. Our main interest is in the
singular homology groups. However, for technical reasons, we also need to work with the

Borel-Moore homology.

Theorem 7.6: The singular (integral) homology groups of the orbit space Cp m(C) are
given by

Hy(Cn,m(€)) = ZPmm=aW™), g € Ny,
with bg(n, m) defined by (7.4),(7.5). In particular, bynm—q(n,m) is the ¢g-th Betti number
of Cp,m(C), and H.(Cy m(C)) is torsion free.

Proof: Consider the filtration

Clm(F) CCL () C -+ C CF o(F) = Co,m(F)

by closed subsets C},  (FF) = U_’;.=0 C} n(F), i = 0,...,n. By Theorem 7.5 and Lemma
7.1, we have for all ¢ > 0

n

HZM(Ca,m(€)) 2 D HZM(CF () (7.6)
r=0
Thus, by Theorem 7.5, (7.4):
HPM(Coym(€)) 2 Z™™, Vg 2 0.
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By Theorem 3.6, Cn m(C) is a complex manifold of real dimension 2nm. As a complex

manifold, Cp m(C) is orientable. Thus, by Poincaré duality

HZY(Cn,m(€)) 2 HI(Cn,m(C))

= Hznm—q(Cn,m(C))-

Thus,
Hy(Co,m(C)) = Zbmm=em™) Y g > 0.

In order to reformulate Theorem 7.6 in a more geometric way, let Gx(IF™) denote the
Grassmann manifold of k-dimensional IF-linear subspaces of IF". G(IF") is a smooth com-
pact manifold. The singular homology groups of Gx(IF") are well-known; see Ehresmann

[27]. In particular, for IF = €, one has:
H,(Gr(T™F) & 7zPa(mk+1) (7.7)

where B¢(n, k + 1) is defined by Lemma 7.3.

Theorem 7.7: There are isomorphisms of singular (integral) homology groups

Hy(Con(€) 2 @) Hymar(Grmoa (€Y x Gy (€777

r=0

for all ¢ > 0.

Proof: By the Kiinneth formula and (7.7),
Hi(Grmoa(C™771) X G (€747 7H))

k
> P Hi(Gm-1(C™ 7)) ® Hi—i(Gm_y(C"TH™7Y)

1=0

& Z7EkmoBi(rm)Bumi(n=r,m)
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Since

n 2nm-—g
b2'"n—q(n’ m) = E Z ﬂi—-Zr(r, m)ﬁ2nm—(q+i) (n -r, m)
r=0 =0
n 2nm—(g+2r)
= Z ﬂl(r’ m)ﬂ2nm—-(q+l+2r)(n =T, m),
r=0 £=0

Theorem 7.6 implies
Hy(Cr.m(C)) = 77b2nm—q(n,m)

2 (D Hinm(g+20)(Cmo1 (€)X Gy (T 7)).

r=0

Since Gm_1(C™ ™ )X Gpm-1(C* "F™!) is a compact complex manifold of real dimension

2r(m — 1) + 2(n — r)(m — 1) = 2n(m — 1), Poincaré duality gives

Hynm—(g421)(Gm-1(CF " )X Gy (T

= Hya(r-m(Gm-1 (€)X Grma (C77H7 7)),

The result follows.

|
Example 1: Let m = 1. By Theorem 7.6, we obtain
HCa @ ={T oo
Thus, Cp 1(C) has the homology groups of the complex projective n-space IP"(C):
H.(Cn1(C€)) = H.(PP"(T))- (7.8)
|

Even more is true:

Proposition 7.8: The spaces Cp 1(IF) and P"(F) are diffeomorphic.
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Proof: Consider the analytic mapping x : Cn,m(F) — PP"(IF) defined in (4.1). Using the
Weierstrass decomposition (Lemma 2.1), it is easily seen that x is surjective. Let m =1

and 0 < r < n. Consider the analytic isomorphism

Py Er,l(F) X Nn_r,l(F) — C;,I(IF)

([Al,Bl],,,[Az,lea)’—*[(% ,22)’(%1 I,,O_,)’(g;)],,'

(See Theorem 4.2.) Thus,
det(AE — pA) = au™ " det(Al, — A1),

where o is a nonzero scalar. The similarity orbit [4;, Bi], is uniquely defined by the
coefficients of the characteristic polynomial det(\I. — A;). Similarly, [A2, B2]s € Nau—r1is
uniquely determined by n—r. Thus, the composed map x o ¢y is injective for every r. The
injectivity of x follows. From Weierstrass form, it is clear that the inverse of the restriction
x|Cy 1(F) is analytic for any r. In particular, for r = n, x|C;3(F) is a diffeomorphism
onto its image F™ C P". Let 7 : GL2(FF) = GLn41(F) = GL(B(n)), & + 7q denote the
standard irreducible representation of GLy(IF). Here B(n) denotes the IF-vector space of

all homogeneous polynomials
n - .
p(Ap) =) piMp",  p€F
§=0

of degree n in (A, p), and Tap(A, p) = p((A, #)§2). We also denote by Tq the corresponding

induced map on the projective space of B(n).

Let Cn1(F) = U (Cq,(n,1) be as in (3.18) with

- fai B v _ [ ai =B
Q'_('Yi 5i)’ Q'—(—%' 8 )
It is trivial to verify that
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Since Cq;(n,1) = Tqo,(C3(F)), and x|C;$(IF) is a diffeomorphism onto its image, this

n,l

implies that x|Cq,(n,1) is a diffeomorphism onto its image. It follows that x is a diffeo-

morphism.
n
Example 2: Let n = 1. By Theorem 7.7,
Hy(C1,m(T)) = Hy(P™7(C€)) & Hy—2(P™7*(C))
= H,(P'(€) x P™7}(C)) ' (7.9)
for all ¢ > 0. |
Proposition 7.9: The spaces C;,m(F) and P}(F) x P™}(FF) are diffeomorphic.
Proof: Consider
p: Crm(F) — PYF) x P" ()
[E,A,(b1,...,0m)]p = ([co(E, A) : c1(E, A)), [b1:...: b))
It is trivial to verify that p yields a bianalytical diffeomorphism.
L]

By Propositions 7.8, 7.9, the orbit spaces Cp m(F) are compact for min(m,n) = 1. In

the next section, we will prove that Cy n(IF) is in fact compact for all m,n.

Example 3: Let m = n = 2. Theorem 7.7 implies
H,(Ca,2(C)) = Hy(P*(T)) ® Hy—2(P*(C) x P(C)) & Hy—s(P*(C)).

for all ¢ > 0. The Betti numbers of C3 2(C) are

1| I I I
0ok DO

(1 ¢
2 q
4
by(C2,2(C)) = , g
1 ¢
L0 o

therwise
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8. COMPACTNESS OF C, n(F)
As a topological application of the formula in Theorem 7.7 for the Betti numbers of
Cn,m(C), we p.rove the compactness of the orbit space Cp,m(FF) for F = R, C.
For any complex system (E, A, B) € Cpn m(C), let (E, 4, B) € Cn,m(CT) be defined by
complex conjugation of E, A, B. This induces an involution
7 : Cp,m(C) = Cn,m(C)

[E,A, B, — [E, A, B, (8.1)

on the orbit space Cp m(C). Let
Fix(7) := {[E, 4, Bly € Cnm(C) | [E, 4, Bl, =[E, 4, Blx}

denote the fixed point set of 7. Obviously, Cn,m(R) is imbedded in Cp,m(C) by associ-
ating to the GLn(IR) x GLn(R) orbit of a real system (E, 4, B) € Cr,m(R) the complex
GLn(C) x GL,(C) orbit [E, A, B]y in Cp,m(C).

Lemma 8.1: Fix(1) = Cp m(R).

Proof: Certainly Cp m(IR) is contained in the fixed point set of 7. For any € PG Ly (R),

the scaling transformation To commutes with 7:

7(Ta(Cri(€))) = Ta(7(Cr(0))).

If [A,B], is a fixed point for complex conjugation on Zn,m(C), then by uniqueness of

Hermite form, the Hermite form of (A4, B) must be real. Hence, Tn,m(IR) is precisely the

fixed point set for complex conjugation on Zp,m(C). Since Cie8 (C) is T-equivariantly

isomorphic to Ty, m(C), this implies that
Fix(T)!Tn(c;ﬁgn(C)) = Ta(Crn(R))

for all @ € PGLy(R). The result follows from Lemma 3.5.
|

By Lemma 8.1, Cn,m(R) is the set of real points of Cn,m(C) and thus a closed subspace
of Cp m(C).
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We can now state and prove one of the main results of this paper.
Theorem 8.2: C, () is a compact space.

Proof: From the above, it sufficies to prove the compactness of Cpn m(C); i.e., in the
complex case. By Theorem 3.6, Cpn,m(CT) is a complex manifold of real dimension 2nm.

By Theorem 7.7, the top dimensional singular homology group of Cy m(C) is
Hinm(Cn,m(C)) =

= P Hrnm2r(Gmo1 (€™ 1) X Gy (C7F77)),

r=0

The product space of Grassmannians Gm—1(€™7™ ™) X Ge1(C* ™™ 1) is a complex
manifold of real dimension 2r(m —1)+2(n—r)(m—1) = 2n(m —1). For any n-dimensional
manifold X, H,(X) = {0} for ¢ > n. Thus,
Hynm(Cn,m(CT))
> Hyn(m-1)(Gm-1(C"F™ 1) X Gt (C™7H))
~ 77, (8.2)

the last isomorphism being because Gm_1(€"*™ 1) X Gpm—1(€™ ') is orientable and
connected. For any noncompact manifold X of dimension n, the top dimensional homology
group must be trivial, i.e., H,(X) = {0}. Thus, by (8.2), Cn,m(C), and hence Cn,m(R),

must be compact.

It is easy to show via the methods of Byrnes and Hurt [21] that Cp,m(C) is quasipro-

jective. Combining Theorem 3.6 with Theorem 8.2 thus gives the following result.

Theorem 8.3: The orbit space Cp,m(IF) of controllable generalized linear systems is a

smooth projective variety of IF-dimension mn.

Corollary 8.4: For any ¢ > 0, there are isomorphisms of singular homology groups
(2) Hy(Ca,m(T)) & Hznm—g(Cn,m(C))-

34



(b) Hy(Cnym(R); Z /2) & Ham—g(Ca,m(R); Z /2).
Proof: Follows immediately from Theorem 8.3 and Poincaré duality.

Remark 8.5: The space of generalized controllable systems Cyp m(IF) contains the set
of regular controllable systems CI%€ (IF) & £, () as an open dense subset. The orbit
space Ln,m(IF) = Ci8 (IF) of controllable systems is not compact. Thus, Theorem 8.3 says
that Cp m(IF) is a smooth compactification of Zp,m(F). The boundary points of T m(TF)

necessary in order to compactify I, . (IF) are given by

Coum(F) = CEEL.(F) = | Cm(F), (83)

i.e., consists of singular systems. The important new point is that the compactification
Cr,m(F) is smooth and is ezplicitly described as the quotient space of generalized linear sys-
tems. This is quite different from previously described compactifications; see, in particular,

Hazewinkel [13] and Byrnes [14].
]

The compactness of Cp,m(IF) has the following consequence for high gain limits of
state feedback orbits. Let (I,A,B) € C',’f%,(]F) and let K, € F™*", v € N, denote
an arbitrary sequence of state feedback gain matrices. In general it is not true that the
sequence of systems [I, A + BK,, B], € Ci’8 (F) has a limit point in C;28 (FF). However,
by Theorem 8.2, there always exists a limit point in Cn,m(F). We reformulate this as
follows:

Corollary 8.6: Let (4,B) € F™*" x F"*™ be controllable, and let K, € F™ " v €
N, denote an arbitrary sequence of state feedback gain matrices. There exist invert-
ible matrices My, N, € GL,(F), v € N, such that the sequence of regular systems
(M,N;*,M,(A+BK,)N;',M,B,) € é’,’,‘fﬁ,(]ﬁ‘) has a convergent subsequence with limit
(Eoo, Aco, Boo) € Crnym(F).

Proof: By Theorem 8.2, the sequence of orbits [I, A+ BK,, B}, € Cr8 (IF) has a conver-
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gent subsequence [I, A + BK,, B], with

V}Enw[I,A + BK,1, Bly i= [Eoo; Acoy By € Cr,m(TF).

By Theorem 3.6, the quotient map 7 : Cym(IF) = Cp m(F) is a locally trivial fibre
bundle with structure group GL,(FF) x GL,(IF). Thus, there exist invertible matrices
M,,N, € GL,(F) with

lim (My'N-;l,My'(A + BKy’)N;l,My'B) - (Em, A.m, Bw)

v —o00 v

with (Feoy Aco, Boo) controllable and admissible.
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