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The regulation by environmental factors of two enzymes involved with urea

utilization – urea transport and urease – in estuarine phytoplankton and bacteria was

studied in cultures of five phytoplankton species, in Chesapeake Bay and Choptank

River assemblages, and in bioassay and mesocosm experiments. In these

experiments, temperature and nitrogen availability (NO3
-, NH4

+, and urea) were found

to regulate urea uptake and urease activity. However, regulation by these

environmental factors was dependent on the composition of the plankton community.

Dinoflagellates were found to have the highest urease activity in culture

among five phytoplankton species (Prorocentrum minimum, Karlodinium veneficum,

Heterocapsa triquetra, Storeatula major, and Isochrysis sp.) in culture on a per cell

and per cell volume basis with an optimized method to measure urease activity.

Urease activity was also lower when the dinoflagellates were grown on NH4
+ than

when grown on NO3
- or urea, suggesting repression by NH4

+.



Higher rates of urea uptake and urease activity in Chesapeake Bay and the

Choptank River were often associated with the presence of dinoflagellates and

cyanobacteria during the warmer months. Rates were also higher under N-limitation

when these phytoplankton were present than under P-limitation when diatoms were

present. Rates of urea uptake and urease activity in natural assemblages were

repressed when NO3
- and NH4

+ concentrations exceeded 40 and 5 µg at N l-1,

respectively.

Rates of urea uptake and urease activity decreased in response to additions of

NH4
+ in bioassay and mesocosm experiments. In these experiments, dinoflagellates

had the highest urea uptake and urease activity on a per cell basis while cyanobacteria

had the highest urea uptake and urease activity on a per cell volume or per

chlorophyll a basis. The difference in regulation of urea uptake and urease activity

among the diatoms, dinoflagellates and cyanobacteria provide some biochemical

explanantions about how they utilize urea under contrasting environmental

conditions.
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Introduction

Phytoplankton and bacteria control the amount of carbon transferred to higher

trophic levels in marine ecosystems. Phytoplankton remove 30 to 50% of

atmospheric CO2 and transform it into particulate organic carbon (Siegenthaler and

Sarmiento 1993). Bacteria utilize approximately one-half of the primary production

(in terms of carbon) by phytoplankton that is later incorporated into the microbial

loop (Azam 1998). The size, species, and growth rates of phytoplankton and bacteria

determine how much carbon is exported or grazed by protozoa and zooplankton

(Rivkin et al. 1996). These rates of phytoplankton and bacteria production directly

depend on the supply of nutrients such as nitrogen (Kirchman 2000, Zehr and Ward

2002), phosphorus (Kirchman 1994, Lomas et al. 2004), and vitamins and trace

metals (Martin et al. 1991, Reid and Butler 1991, Schulz et al. 2004). At times,

phytoplankton and bacteria may experience co-limitation by two nutrients or one

nutrient and a trace metal (Arrigo 2005, Shaked et al. 2006). Phytoplankton and

bacteria convert dissolved forms of nutrients, minerals, and trace metals into cellular

material, including proteins, carbohydrates, lipids, and nucleic acids (Falkowski and

Raven 1997, del Giorgio and Cole 2000, Geider and LaRoche 2002), which are

important for its own cellular growth, metabolism and production.

In most aquatic ecosystems, certain nutrients and trace metals are in limited

supply, controlling rates of growth and production of phytoplankton and bacteria.

Under nitrogen-limiting conditions that dominate during summer in areas near the

mouth of temperate estuaries (Glibert et al. 1995, Fisher et al. 1999, Holmboe et al.

1999, Yin et al. 2001, Kemp et al. 2005), phytoplankton and bacteria compete for
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nitrogenous substrates such as NO3
-, NO2

-, NH4
+, urea, and dissolved organic

nitrogen (DON; Kirchman 2000). Which nitrogen substrate is utilized by

phytoplankton or bacteria depends on energy costs of utilization, substrate

concentrations, input of external energy (e.g. sunlight), as well as species-specific

preferences (Falkowski and Raven 1997, Lomas and Glibert 1999, Capone 2000,

Parker and Armbrust 2005). Phytoplankton generally prefer NH4
+ to other nitrogen

substrates because it is energetically favorable to utilize reduced forms of nitrogen

(Dortch and Postel 1989, Capone 2000), although diatoms may prefer NO3
- under

some conditions (Collos et al. 1997, Lomas and Glibert 1999). Heterotrophic bacteria

primarily use dissolved free amino acids (DFAA), dissolved combined amino acids

(DCAA), and NH4
+ before they use NO3

- in order to reduce energetic costs of

assimilation (Kirchman 2000). In estuarine ecosystems concentrations of NO3
- and

NH4
+ are generally higher than those of other nitrogenous substrates, such as urea and

other forms of dissolved organic nitrogen (e.g. urea, DFAA, DCAA; Antia et al.

1991). As a result, measuring NO3
- and NH4

+ uptake by phytoplankton and

heterotrophic bacteria has received more attention than urea or DON uptake. This

dissertation focuses on the utilization of urea, one of the less-studied nitrogenous

substrates in estuarine ecosystems.

Overview of cellular pathways of nitrogen utilization

Nitrogen utilization pathways involve enzymes responsible for transport,

conversion to NH4
+, and assimilation. These enzymes may be regulated on both

biochemical and molecular levels (Fig. 1.1). Phytoplankton and bacteria that lack
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genes for enzymes that are involved in the assimilation of inorganic or organic

nitrogen cannot use these substrates. For instance, some strains of the cyanobacteria

Prochlorococcus (MED4, MIT9313) that do not contain genes required for NO3
-

utilization such as NO3
- permease (napA) and NO3

- reductase (narB) cannot grow on

NO3
- (Moore et al. 2002). Another strain, SS120, lacks the urease gene (ure)

(Dufrense et al. 2003).

The presence of genes required is a necessary but not a sufficient condition for

a cell to utilize a particular form of nitrogen. In addition to the presence of the gene,

the expression of the gene as mRNA is required. The mRNA is then translated into

an enzyme responsible for a step in nitrogen utilization. The enzyme becomes active

and performs its task in the nitrogen utilization pathway. Some phytoplankton

contain the appropriate gene, yet lack the ability to utilize a nitrogen source. For

example, a strain of Synechococcus (SH-94-5) contains both NO2
- and NO3

- reductase

(nir, nar) genes, but they are not expressed (Miller and Castenholz 2001). Since

regulation happens at each step in a process, it is vital to study regulation of both the

activity and expression of those enzymes. However, only regulation of activity was

studied in this dissertation.

Biochemical pathways of nitrogen utilization

Nitrogen utilization by phytoplankton and bacteria is at least a two-step

enzymatic process regulated by light (Ohki et al. 1992, Falkowski and Raven 1997),

temperature (Lomas and Glibert 1999a, Fan et al. 2003a, Parker and Armbrust 2005)

and nitrogen concentrations (Wheeler et al. 1982, Glibert et al. 1991, Lomas and
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Glibert 1999b, Lomas 2004) (Fig. 1.2). First, the nitrogen substrate must be

transported across the cell membrane by either passive or active transport (Antia et al.

1991, Siewe et al. 1998, Beckers et al. 2004). After reaching the inside of the cell,

the nitrogen substrate must be converted into NH4
+ which is later incorporated into

proteins by the enzymes, glutamine synthase (GS, glnA) and glutamine 2-

oxoglutarate aminotransferase (GOGAT; also known as glutamate synthase; Wheeler

1983, Capone 2000). Nitrogen substrates are converted into NH4
+ by a third (or a

series of) enzyme(s). For example, the enzymes NO3
- reductase (narB, nasA) and

NO2
- reductase (nir) convert NO3

- to NO2
- then NH4

+. (Table 1.1, Fig 1.2).

Utilization of urea in phytoplankton and bacteria is controlled by several

biochemical pathways (Fig 1.3). Urea is transported into the cell by active or passive

cell-membrane transport enzymes or produced internally as a by-product of the urea

cycle and amino acid catabolism (Antia et al. 1991, Mobley and Hausinger 1989,

Siewe et al. 1998, Beckers et al. 2004) or purine catabolism (McInich et al. 2003,

Allen et al. 2005, Berg and Jørgensen 2006). Intracellular urea is then broken down

into NH4
+ and CO2 by the enzyme urease (ure) (Antia et al. 1991, Mobley and

Hausinger 1989, Zehr and Ward 2002) or by a series of enzymes in the UALase

pathway (ATP: urea amidolyase; Antia et al. 1991, Hausinger 2004). The cell then

uses the NH4
+ produced by catabolism of urea for protein synthesis (Wheeler 1983,

Capone 2000).
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The role of urea in estuarine ecosystems

Urea concentrations in estuarine ecosystems are generally low (< 1 µg at N l-1)

(Lomas et al. 2002, Glibert et al. 2005), but have often been found to be higher in

coastal waters, estuaries and tributaries (Glibert et al. 2005, 2006). Despite low urea

concentrations, phytoplankton urea uptake rates can account for more than 50% of

total nitrogen uptake, and can be greater than NH4
+ and NO3

- uptake rates (McCarthy

1972, Kaufman et al. 1983, Glibert et al. 1991, Bronk et al. 1998, Kudela and

Cochlan 2000).

Heterotrophic bacteria, depending on environmental conditions, can be either

consumers or producers of urea. However, rates of urea uptake or production are

often variable and unpredictable (Jørgensen 2006). In a transect in the Gulf of Riga,

bacteria produced 53% of the urea near the shore and progressively became

consumers off-shore, utilizing 20% of the urea (Jørgensen et al. 1999). Bacteria can

have low urea uptake rates (<3%) compared to total nitrogen uptake rates (Wheeler

and Kirchman 1986, Middelburg and Nieuwenhuize 2000). Despite low urea uptake

rates, heterotrophic bacteria can be responsible for a small (<10%) (Cho and Azam

1995, Cho et al. 1996) or large percentage (86%) of total urea uptake (Middelburg

and Nieuwenhuize 2000). Benthic bacteria are important producers of urea

(Pedersen et al. 1993, Cho et al. 1996, Therkildsen et al. 1997). Urease activity

been studied to a lesser degree than urea uptake, but has been detected in both

phytoplankton and bacteria (Antia et al. 1991, Mobley and Hausinger 1989, Nolden et

al. 2000).
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Recently, elevated urea concentrations (>1 µg at N l-1) at several sites in the

Chesapeake Bay (Glibert et al. 2001, 2004, 2005), Long Island Sound (Berg et al.

1997) and aquaculture ponds (Glibert and Terlizzi 1999) have been linked with

increases in biomass of harmful algal species. Higher urea concentrations in

estuarine waters may be a result of increasing use of urea-based fertilizers which now

constitute more than 50% of the nitrogen fertilizers worldwide that become part of

runoff during heavy rainfall (Soh 2001, Glibert et al. 2001, 2006). Urea is also a

primary decomposition product of poultry manure also used as a fertilizer (Glibert et

al. 2004, 2006). These two sources, along with input from sewage, probably

contribute most of the urea to estuarine waters near the predominately agricultural

regions of Chesapeake Bay and Choptank River which were studied in this

dissertation. The link between increasing urea concentrations and frequency of

harmful algal blooms is becoming a concern for scientists and environmental

managers worldwide.

Sources of urea

Urea that is used by phytoplankton and bacteria can come from both

extracellular and intracellular sources (Fig. 1.4). Urea is present in the surrounding

water in concentrations of approximately 1 µg-at N l-1 due to natural sources of urea

such as atmospheric deposition (Cornell et al. 1995, Peierls and Paerl 1997, Mace et

al. 2003), or regeneration by heterotrophic bacteria and macro- and micro-

zooplankton (Pedersen et al. 1993, Cho et al. 1996, Therkildsen et al. 1997, Miller

and Glibert 1998, L’Helguen et al. 2005). Heterotrophic bacteria can be net
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producers of urea in sediments (Pedersen et al. 1993, Cho et al. 1996, Therkildsen et

al. 1997). Copepods such as Acartia tonsa excrete more urea during night-time

hours (Miller and Glibert 1998) while microheterotrophs such as ciliates can excrete

enough urea to meet phytoplankton requirements (L’Helguen et al. 2005). Benthic

macrofauna are also producers of urea that diffuses upwards from sediments

(Lomstein et al. 1989).

Urea is produced intracellularly in most organisms by either the urea cycle or

by purine catabolism (Antia et al. 1991, Allen et al. 2005, Berg and Jørgensen 2006).

The purpose of the urea cycle is to produce arginine and to excrete excess nitrogen

produced by α-keto amino acid catabolism (e.g. glutamate, proline, arginine, and

histidine; Garrett and Grisham 1995). Urea is produced when arginine is converted

into orthinine by arginase (Fig. 1.3). The addition of amino acids or urea cycle

intermediates to estuarine bioassays results in release of urea (Jørgensen et al. 1999,

Berman et al. 1999). The discovery of the urea cycle genes in a phototroph, the

diatom Thalassosira pseudonana, was a surprise because urea is not considered as a

‘waste’ product in those organisms (Armbrust et al. 2004). Likewise, cyanobacteria

contain some of the urea cycle genes such as carbamoyl phosphate synthetase and

arginase, but not a complete set of genes in their genomes (CyanoBase;

www.kazusa.or.jp/cyano/). However, intermediates from the urea cycle were found

to contribute to other aspects of diatom metabolism (Figure 1.5; Armbrust et al. 2004,

Allen et al. 2005). The urea produced via the urea cycle either goes into a nitrogen

reservoir or serves as osmolytes (Allen et al. 2005). Another intracellular source of

urea is via the catabolism of purines into urea and glyoxylate by the enzyme
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ureidoglycolate urea-lyase (McInich et al. 2003, Allen et al. 2005). The addition of

the purines, guanine and hypoxanthine, to estuarine bioassays resulted in an increase

of urea concentrations (Berman et al. 1999, Berg and Jørgensen 2006). Because

phytoplankton and bacteria have several intracellular sources of urea, it is possible

that they may exhibit low urea uptake rates and some urease activitiy.

Biochemistry and regulation of urea uptake

Urea, as a small neutral molecule, can be transported into the cell via passive

diffusion, but can also be transported via active cell-membrane transporters (Antia et

al. 1991). Passive transport occurs mostly at high urea concentrations that are mostly

not seen in estuarine waters. For example, passive transport occurred at urea

concentrations > 70 µM while active transport occurred at lower urea concentrations

in the green alga Chlamydomonas reinhardii (Hodson et al. 1975). Likewise, in the

bacterium Corynebacterium glutamicum, passive transport occurred at concentrations

up to 50 mM (Siewe et al. 1998)

Active transport of urea is dependent on energy obtained from

photophosphorylation (Rees and Syrett 1979, Siewe et al. 1998, Beckers et al. 2004),

so rates tend to increase during the day and decrease during the night. A diel pattern

was observed in Chesapeake Bay (Bronk et al. 1998), with the lowest rates during the

night and the highest rates in mid-afternoon. Urea uptake also increased with

increasing irradiance during a Prorocentrum minimum bloom in the Choptank River

in spite of the fact that urea uptake in this species is not light-dependent on short time

scales (30 min, Fan and Glibert 2005).
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Significant urea uptake can take place during the dark in dinoflagellate-

dominated assemblages (Kudela and Cochlan 2000, Fan and Glibert 2005) as well as

in diatoms (Melosira italica; Cimberlis and Cáceres 1991). In the Chesapeake Bay

plume, urea uptake also represented a larger proportion of total nitrogen utilization

during the night than during the day during different seasons (Glibert et al. 1991).

Production of energy (e.g. ATP) via oxidative phosphorylation is prevented by the

addition of KCN, leading to inhibition of dark urea uptake (Cimberlis and Cáceres

1991). Because of significant uptake during dark periods in some species, it is not yet

clear how urea uptake rates are regulated by light in different phytoplankton

taxonomic groups.

Temperature has a positive influence on urea uptake rates. In contrast to NO3
-,

NH4
+ and urea uptake rates have a positive relationship with temperature (5-30°C) in

diatom-dominated assemblages (Lomas and Glibert 1999). Maximum urea uptake

rates occur during the summer while minimum rates occur during the winter in

various temperate estuaries (Kristiansen 1983, Glibert et al. 1991, Bronk et al. 1998,

Lomas et al. 2002), but this may simply be due to seasonal changes in phytoplankton

composition. Urea uptake increased as a function of temperature in the diatom,

Melosira italica, with a Q10 coefficient of 1.94 (Cimbleris and Cáceres 1991).

However, urea uptake remained constant over a narrow temperature range of 10 to

25°C for Prorocentrum minimum in the Chesapeake Bay and Neuse Estuary (Fan et

al. 2003a). These findings suggest that the positive relationship between temperature

and urea uptake may depend on species composition during various seasons.
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Urea uptake rates may be influenced by nitrogen availability, especially NO3
-

and NH4
+, in both cultures and field incubations. Urea uptake rates of phytoplankton

grown under nitrogen-starved or urea-replete conditions decrease after the addition of

NH4
+ and/or NO3

- to cultures (Rees and Syrett 1979, Lund 1987, Lomas 2004). Most

culture studies have focused on the response of diatoms when grown on these

substrates or when the substrates are added to the culture. Urea uptake in the diatom,

Phaeodactylum tricornutum, ceased after 24h in a NH4
+ medium (Rees and Syrett

1979). Inhibition of urea uptake by NH4
+ in various phytoplankton, including P.

tricornutum, ranged from 8-34% (Molloy and Syrett 1988). In another experiment

that investigated the effects of additions of different nitrogen substrates on 15N-urea

uptake in the diatom, Skeletonema costatum, Lund (1987) observed a decrease of 82-

84% in urea uptake 3h after the addition of either NO3
- and NH4

+or both. Lomas

(2004) observed no changes in diel patterns of urea uptake in the cultures of the

diatom, Thalassiosira weissflogii, after the additions of NO3
- and NH4

+. However,

urea uptake rates were lower in the culture that was grown on NO3
- than NH4

+.

Urea uptake rates generally decrease in field incubations after the addition of

NH4
+ or when ambient NH4

+ concentrations are high. In field incubations of Baltic

seawater, urea uptake rates decreased after the addition of NH4
+ but not after the

addition of NO3
- (Tamminen and Irmisch 1996). Furthermore, urea turnover rates did

not immediately increase or decrease after nutrient additions. After 24h, however,

there was a clear inhibition by the NH4
+ addition. Urea uptake is inhibited or

repressed by NH4
+ concentrations higher than 1-2 µg at N l-1 in Oslofjord, Norway

(Kristansen 1983) and 40 µg at N l-1 in the Neuse Estuary, NC (Twomey et al. 2005).
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The results of these studies suggest that the suppression of urea uptake by NO3
- and

NH4
+ may occur in both phytoplankton and bacteria.

Biochemistry and regulation of urease activity

Urease activity has been found in a diverse range of organisms including

heterotrophic bacteria (Jahns 1992), cyanobacteria (Collier et al. 1999), diatoms

(Peers et al. 2000, Lomas 2004), dinoflagellates (Dyhrman and Anderson 2003, Fan

et al. 2003a), pelagophytes (Fan et al. 2003a), bangiophytes, chrysophytes,

cryptophytes, euglenophytes, eustigmatophytes, phaeophytes, prasinophytes, and

prymnesiophytes (see review by Antia et al. 1991).

Urease activity in phytoplankton and bacteria is carried out mostly by the

cytoplasmic urease enzyme (urea amidohydrolase) that has one, two or three peptides

of which sequences are highly conserved (Mobley et al. 1995, Collier et al. 1999). A

minority of species of phytoplankton (e.g. Chlorophytes) and bacteria catabolize urea

by UALase (Antia et al. 1991, Hausinger 2004) or by both urease and UALase

(Hausinger 2004). Prokaryotic ureases have been found to be more closely related to

each other than plant ureases (Todd and Hausinger 1987). In addition, ureases are

nickel-requiring metalloenzymes (Mobley and Hausinger 1989, Collier et al. 1999).

Often, urease activity is enhanced with the addition of Ni2+ (such as in the cultures of

the diatom, Cyclotella cryptica; Oliveira and Antia 1991).

Urease activity, like urea uptake, appears to have a positive relationship with

temperature, in part because it is a heat-stable enzyme (Mobley and Hausinger 1989).

In the only study that investigated temperature effects on urease activity, urease

activity generally increased in three phytoplankton species over a range of in vitro
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temperatures in laboratory cultures (0-50°C). The study concluded that the optimal in

vitro temperature for urease activity in the pelagophyte Aureococcus anophagefferens

(~50°C) was higher than for the diatom Thalassiosira weissflogii and the

dinoflagellate P. minimum (~20°C; Fan et al. 2003a).

Urease activity has been found to be present regardless of nitrogen source but

differs among each nitrogen source (Antia et al. 1991, Collier et al. 1999, Peers et al.

2000, Dyhrman and Anderson 2003, Lomas 2004), suggesting that urease activity

may be regulated. A clear example of regulation of urease activity was seen in the

dinoflagellate Alexandrium fundyense, where urease activity was the highest in a urea

grown culture, lower in NH4
+, and not detected in a NO3

- grown culture (Dyhrman

and Anderson 2003). Urease activity in A. fundyense was also derepressed by N-

starvation (Dyhrman and Anderson 2003). Another dinoflagellate, P. minimum, had

lower urease activity rates when grown on NH4
+ than on NO3

- and urea (Fan et al.

2003a). Yet, in the diatom T. weissflogii, different forms of regulation were seen.

Urease activity was the same regardless of nitrogen source in one clone (Peers et al.

2000), but down-regulated in another clone when grown on NO3
- (Fan et al. 2003a,

Lomas 2004). The conflicting results suggest that urease activity is either regulated

by nitrogen sources or constitutively expressed in different species of phytoplankton.

Research Questions and Approaches

Primary Research Objectives

The role of urea in estuarine ecosystems is beginning to be appreciated by the

oceanography community (e.g. Glibert et al. 2006). Urea can be an important
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source of nitrogen for phytoplankton or bacterial metabolism (Antia et al. 1991,

Berman and Bronk 2003), especially under N-limiting conditions in coastal and

estuarine waters (Bronk et al. 1998, Heil et al. in press). The main focus of this

dissertation is to examine the biochemical regulation of urea uptake and urease

activity by temperature and nitrogen substrates (e.g. NO3
-, NH4

+ and urea) in order to

understand how urea is utilized by phytoplankton and bacteria in estuarine

ecosystems. The regulation of urea uptake and urease activity was studied under

laboratory (Chapter 3), field (Chapters 4, 5), and manipulated conditions (Chapters 6,

7).

Urea uptake and urease activity were hypothesized to be regulated by

temperature and nitrogen substrates differently among phytoplankton and bacterial

taxonomic groups, leading to seasonal and spatial pattern in rates in Chesapeake Bay

and Choptank River. First, urea uptake and urease activity were predicted to

increase with temperature among all phytoplankton taxonomic groups. This would

result in higher rates during the summer. Second, nitrogen availability, especially

NO3
- and NH4

+, was expected to repress urea uptake and urease activity due to less

demand for NH4
+ by the phytoplankton cell via the urea uptake/urease pathway.

Repression of urea uptake and urease activity by NO3
- and NH4

+ would lead to

increasing rates from the Upper Chesapeake Bay to the Sargasso Sea as NO3
- and

NH4
+ concentrations decreased. The degree and pattern of regulation by NO3

- and

NH4
+ was also anticipated to differ between phytoplankton taxonomic groups –

especially the diatoms and dinoflagellates.



15

Chapter 2: A revised method to measure urease activity

In order to assess urease activity, it was first necessary to examine and

optimize the methodology (Peers et al. 2000, Fan et al. 2003a). This was prompted

by observations that urease activity rates measured in the <1.6 µm fraction using the

currently published methods were often higher than in whole samples, suggesting

potiental inference by reagents or cellular metabolites. In Chapter 2, different

aspects of the urease activity method were scrutinized to find whether NH4
+

contamination from reagents, interference from buffers on the indophenol assay for

measuring NH4
+, or changes in the phytoplankton or bacterial biomass was

responsible for the discrepancy. The simplification of two steps (boiling and longer

storage times in liquid N2) were also examined to provide ease in performing the

method. In the end, substantial changes were made to the method. The comparison

between the published and revised methods showed that previous measurements of

urease activity (e.g. Fan et al. 2003a, Dyhrman and Anderson 2003, Lomas 2004)

were most likely underestimated.

Chapter 3: Regulation of urease by nitrogen sources in five phytoplankton

species

The regulation of urease activity by nitrogen sources in phytoplankton has

only been examined in a few species that span few taxonomic groups. Prior to this

research, levels of urease activity were measured only in the bacillariophytes

(diatoms), dinophytes (dinoflagellates), pelagophytes, and cyanobacteria (Collier et

al. 1999, Peers et al. 2000, Dyhrman and Anderson 2003, Fan et al. 2003a, Lomas
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2004). The urease gene has been detected in many species of other taxonomic

groups but the rates of urease activity under different conditions are unknown (Bruhn

et al. 2002, Collier and Baker 2004). Experiments in Chapter 3 investigated

whether three dinoflagellates (P. minimum, Karolodinium veneficum and Heterocapsa

triquetra), a cryptophyte (Storeatula major), and a haptophyte (Isochrysis sp.) had

high levels of urease activity and whether the activity was regulated by nitrogen

sources. P. minimum and K. veneficum were found to have higher urease activity

rates than the other three species when measured on a per cell basis and also on a per

cell volume basis. This chapter concludes with a conceptual synthesis of cellular

regulation. It appears that dinoflagellate and cyanobacteria ureases are regulated by

NH4
+ while diatom urease is regulated by NO3

-. Ureases of species in other

taxonomic groups, such as the cryptophytes and the haptophytes, do not seem to be

regulated by nitrogen sources.

Chapters 4 and 5: Seasonal and spatial patterns in urea uptake and urease

activity in Chesapeake Bay and Choptank River

Most work done on urease activity prior to this dissertation was conducted in

phytoplankton and bacterial cultures. Natural rates of urease activity in microbial

assemblages were relatively unknown. One of the first field rates of urease activity

came from the western Gulf of Maine where urease activity was found to be higher

during an Alexandrium sp. bloom than during preceding periods (Dyhrman and

Anderson 2003). Chapters 4 and 5 advance the study of urease activity rates in

natural assemblages. Urea uptake and urease activity rates were measured over a
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seasonal and spatial gradient in Chesapeake Bay and Choptank River to investigate

the regulation of urea utilization by temperature and nitrogen availability in different

microbial assemblages. The highest urea uptake and urease activity rates in both

bodies of water were associated with warmer temperatures, lower NO3
- and higher

urea availability and the presence of dinoflagellates, cyanobacteria and cryptophytes.

Chapters 6 and 7: Examination of regulation of urea uptake and urease activity

in response to addition of nitrogen to biossays or mesocosms

Urea uptake and urease activity rates measured in laboratory or the field,

reported in Chapters 3-5, are from microbial assemblages adapted or acclimated to

the cultural medium or environmental conditions in which they are found. In

Chapter 6, different phytoplankton and bacterial communities were ‘challenged’ by

NH4
+ additions to see how quickly urea uptake or urease activity responded within a

3h time frame. Likewise in Chapter 7, different phytoplankton and bacterial

communities were ‘challenged’ by NO3
-, NH4

+ and urea additions in a 3-wk

mesocosm experiment. Urea uptake and urease activity (on a volumetric basis) in the

mesocosms were the highest during a mixed bloom of diatoms and dinoflagellates.

When cyanobacteria were present in the mesocosms towards the end of the

experiment, the highest urea uptake and urease activity (on a per chl a basis) were

observed.

Chapter 8: Summary and research conclusions

The last chapter (Chapter 8) is a synthesis of what has been learned about

regulation of urea uptake and urease activity by temperature and nitrogen availability
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with a focus on diatoms, dinoflagellates, and cyanobacteria. The difference in

regulation between diatoms and dinoflagellate/cyanobacteria communities provides

clues about patterns of urea utilization in natural environments. The pattern of urea

utilization in these groups is considered in the context of the complexity of cellular

pathways that may indirectly regulate urea uptake and urease activity. Natural rates

of urease activity are put in context by comparisons with rates of other enzymes

involved in nitrogen assimilation, such as nitrate reductase and glutamine synthase.

Lastly, suggested future directions to better understand regulation of urea uptake and

urease enzymes are discussed.



19

Literature cited

Allen, A.E., Ward, B.B. & Bowler, C.P. 2005. Multi-lineage richness of functional
genes in marine diatoms and transcriptional responses to nutrient stress. American
Society of Limnology and Oceanography Summer Meeting. Santiago, Spain. June
2005.

Antia, N.J., Harrison, P.J. & Oliveria, L. 1991. The role of dissolved organic nitrogen
in phytoplankton nutrition, cell biology, and ecology. Phycologia. 1:1-89.

Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H.,
Zhou, S.G., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K.,
Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D.,
Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V.,
Kroger, N., Lau, W.W.Y., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S.,
Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J.,
Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K.,
Valentin, K., Vardi, A,, Wilkerson, F.P. & Rokhsar, D.S. 2004. The genome of the
diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science.
306: 79-86.

Arrigo, K.R. 2005. Marine microorganisms and global nutrient cycles. Nature. 437:
349-355.

Azam, F. 1998. Microbial control of oceanic carbon flux: The plot thickens. Science.
280: 694-696.

Beckers, G., Bendt, A.K., Krämer, R. & Burkovski, A. 2004. Molecular
identification of the urea uptake system and transcriptional analysis of urea
transporter- and urease-encoding genes in Corynebacterium glutamicum. J.
Bacteriol. 186: 7645-7652.

Berg, G.M., Glibert, P.M, Lomas, M.W. & Burford, M.A. 1997. Organic nitrogen
uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown
tide event. Mar. Biol. 129: 377-387.

Berg, G.M. & Jørgensen, N.O.G. 2006. Purine and pyrimidine metabolism by
estuarine bacteria. Aquat. Microb. Ecol. 42: 215-226

Berman, T., Béchemin, C. & Maestrini, S.Y. 1999. Release of ammonium and urea
from dissolved organic nitrogen in aquatic ecosystems. Aquat. Microb. Ecol. 16:
295-302.

Berman, T. & Bronk, D.A. 2003. Dissolved organic nitrogen: a dynamic participant
in aquatic ecosystems. Aquat. Microbiol. Ecol. 279-305.



20

Bronk, D.A., Glibert, P.M., Malone, T.C., Banahan, S. & Sahlsten, E. 1998. Inorganic
and organic nitrogen cycling in Chesapeake Bay: autotrophic versus heterotrophic
processes and relationships to carbon flux. Aquat. Microb. Ecol. 15: 177-189.

Bruhn A., Buch-Illing, H., LaRoche, J. & Richardson, K. 2002. Identification of two
functional genes involved with phytoplankton metabolisms of dissolved organic
nitrogen: the urease and the formamidase gene. American Society of Limnology and
Oceanography Annual Meeting. Victoria, British Columbia, Canada. June 2002.

Capone, D. 2000. The marine microbial nitrogen cycle. In Microbial Ecology of the
Oceans [Ed. D. L. Kirchman]. Wiley-Liss. New York. pp. 455-493.

Cho, B.C. & Azam, F. 1995. Urea decomposition by bacteria in the Southern
California Bight and its implications for the mesopelagic nitrogen cycle. Mar. Ecol.
Prog. Ser. 122: 21-26.

Cho, B.C., Park, M.C., Shim, J.H. & Azam, F. 1996. Significance of bacteria in urea
dynamics in coastal surface waters. Mar. Ecol. Prog. Ser. 142: 19-26.

Cimberlis, A.C.P. & Caceres, O. 1991. Kinetics of urea uptake by Melosira italica
(Ehr.) Kuetz at different luminosity conditions. Hydrobiologia 220: 211-216.

Collier, J.L. & Baker, K.M. 2004. Urea-degrading microorganisms in Chesapeake
Bay. American Society for Limnology and Oceanography Annual Meeting.
Honolulu, Hawaii, USA. February 2004.

Collier, J.L., Brahamsha, B. & Palenik, B. 1999. The marine cyanobacterium
Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to
utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the
enzyme. Microbiology. 145: 447-59.

Collos, Y., Vaquer, A., Bibent, B., Slawyk, G., Garcia, N. & Souchu, P. 1997.
Variability in nitrate uptake kinetics of phytoplankton communities in a Mediterrean
coastal lagoon. Estuar. Coastal Shelf Sci. 44:369-375.

Cornell, S. Rendell, A. & Jickells, T. 1995. Atmospheric inputs of dissolved organic
nitrogen to the oceans. Nature. 376: 243-246.

del Giorgio, P.A. & Cole, J.J. 2000. Bacterial energetics and growth efficiency. In
Microbial Ecology of the Oceans. [Ed. D. L. Kirchman]. Wiley-Liss. New York. pp.
289-326.

Dortch, Q. & Postel, J.R. 1989. Biochemical indicators of N utilization by
phytoplankton during upwelling off the Washington Coast. Limnol. Oceanogr. 34:
758-773.



21 
 

Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I.M., Barbe,
V., Duprat, S., Galperin, M.Y., Koonin, E.V., Le Gall, F., Makarova, K.S.,
Ostrowski, M., Oztas, S., Robert, C., Rogozin, I.B., Scanlan, D.J., de Marsac, N.T.,
Weissenbach, J., Wincker, P., Wolf, Y.I. & Hess, W.R. 2003. Genome sequence of
the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal
oxyphototrophic genome. Proc Natl Acad Sci USA. 100:9647-9649.

Dyhrman, S.T., & Anderson, D.M. 2003. Urease activity in cultures and field
populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr. 48: 647-655.

Falkowski, P.G. & Raven, J.A. 1997. Aquatic Photosynthesis. Blackwell Science.

Fan, C. & Glibert, P.M. 2005. Effect of light on nitrogen and carbon uptake during a
Prorocentrum minimum bloom. Harmful Algae. 4:629-641.

Fan, C., Glibert, P.M., Alexander, J. & Lomas, M.W. 2003b. Characterization of
urease activity in three marine phytoplankton species, Aureococcus anophagefferens,
Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol. 142:949-958.

Fan, C., Glibert, P.M & Burkholder, J.M. 2003a. Characterization of the affinity for
nitrogen, uptake kinetics, and environmental relationships for Prorocentrum minimum
in natural blooms and laboratory cultures. Harmful Algae: 2: 283-299.

Fisher, T.R., Gustafson, A.B., Sellner, K., Lacouture, R., Haas, L.W., Wetzel, R.L.,
Magnien. R., Everitt, D., Michaels, B. & Karrh, R. 1999. Spatial and temporal
variation of resource limitation in Chesapeake Bay. Mar. Biol. 133: 763-778.

Garrett, R.H. & Grisham, C.M. 1995. Biochemistry. Harcourt Brace.

Geider, R.J. & LaRoche, J. 2002. Redfield revisted: variability of C:N:P in marine
microalgae and its biochemical basis. Eur. J. Phycol. 37: 1-17.

Glibert, P.M., Alexander, J., Trice, T.M., Michael, B., Magnien, R.E. Lane, L.,
Oldach, D. & Bowers, H. 2004. Chronic urea loading: a correlate of Pfiesteria spp. in
the Chesapeake and Coastal Bays of Maryland. In: Steidinger, K.A., Landsberg, J.H.,
Tomas, C.R., and Vargo, G.A. (eds). Harmful Algae 2002, Proceedings of the Xth
International Conference on Harmful Algae. Florida Fish and Wildlife Conservation
Commission and Intergovermental Oceanographic Commission of UNESCO, USA.
pp. 48-55.

Glibert, P.M., Conley, D.J., Fisher, T.R., Harding, L.W. & Malone, T.M. 1995.
Dynamics of the 1990 winter/spring bloom in Chesapeake Bay. Mar. Ecol. Prog.
Ser. 122: 27-43.



22

Glibert, P.M., Garside, C., Fuhrman, J.A. & Roman, M.R. 1991. Time-dependent
coupling of inorganic and organic nitrogen uptake and regeneration in the plume of
the Chesapeake Bay estuary and its regulation by large heterotrophs. Limnol.
Oceangr. 36: 895-909.

Glibert, P.M., Harrison, J., Heil, C., & Seitzinger, S. 2006. Escalating worldwide use
of urea – a global change contributing to coastal eutrophication. Biogeochemistry.
77:441-463.

Glibert, P.M., Magnien, R., Lomas, M.W., Alexander, J., Fan, C., Haramoto, E.,
Trice, M. & Kana, T.M. 2001. Harmful algal blooms in the Chesapeake and Coastal
Bays of Maryland, USA: Comparison of the 1997, 1998 and 1999 Events. Estuaries.
24: 875-883.

Glibert, P.M & Terlizzi, D.E. 1999. Cooccurence of elevated urea levels and
dinoflagellate blooms in temperate estuarine aquaculture ponds. Appl. Environ.
Microbiol. 65: 5594-5596.

Glibert, P.M., Trice, T.M, Michael, B. & Lane, L. 2005. Urea in the tributaries of
the Chesapeake and Coastal Bays of Maryland. Water, Air, and Soil Pollution. 160:
229-243.

Hausinger, R. P. 2004. Metabolic versatility of prokaryotes for urea decomposition.
J. Bacteriol. 186: 2520-2.

Heil, C.A., Revilla, M., Glibert, P.M. & Murasko, S. In press. Nutrient quality drives
differential phytoplankton community composition on the West Florida Shelf.
Limnol. Oceanogr.

Hodson, R.C., Williams, S.K. & Davidson, W.R. 1975. Metabolic control of urea
catabolism in Chlamydomonas reinhardii and Chlorella pyrenoidsa. Journal of
Bacteriology. 121:1022-1035.

Holmboe, N., Jensen, H.S. & Anderson, F.O. 1999. Nutrient addition bioassays as
indicators of nutrient limitation of phytoplankton in an eutrophic estuary. Mar. Ecol.
Prog. Ser. 186: 95-104.

Jahns, T. 1992. Urea uptake by the marine bacterium Deleya venusta HG1. J. Gen.
Microbiol. 138: 1815-1820.

Jørgensen, N.O.G. 2006. Uptake of urea by estuarine bacteria. Aquat. Microb. Ecol.
42: 227-242.

Jørgensen, N.O.G., Tranvik, L.J. & Berg, G.M. 1999. Occurrence and bacterial
cycling of dissolved nitrogen in the Gulf of Riga, the Baltic Sea. Mar. Ecol. Prog.
Ser. 191:1-18.



23

Kaufman, Z.G., Lively, J.S. & Carpenter, E.J. 1983. Uptake of nitrogenous nutrients
by phytoplnkaton in a barrier-island estuary – Great South Bay, New York. Est.
Shelf. Coastal. Sci. 17: 483-493.

Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G.,
Cornwell, J.C., Fisher, T.R., Glibert, P.M., Hagy, J.D., Harding, L.W., Houde, E.D.,
Kimmel, D.G., Miller, W.D., Newell, R.I.E., Roman, M.R., Smith, E.M. &
Stevenson, J.C. 2005. Eutrophication of Chesapeake Bay: historical trends and
ecological interactions. Mar. Ecol. Prog. Ser. 303:1-29.

Kirchman, D.L. 1994. The uptake of inorganic nutrients by heterotrophic bacteria.
Microb. Ecol. 28:255-271.

Kirchman, D.L. 2000. Uptake and regeneration of inorganic nutrients by marine
heterotrophic bacteria. In Microbial Ecology of the Oceans. [Ed. D. L. Kirchman].
Wiley-Liss. New York. pp. 261-288.

Kristiansen, S. 1983. Urea as a nitrogen source for the phytoplankton in the
Oslofjord. Mar. Biol. 74:17-24.

Kudela, R.M. & Cochlan, W.P. 2000. Nitrogen and carbon uptake kinetics and the
influence of irradiance for a red tide bloom off southern California. Aquat. Microb.
Ecol. 21:31-47.

L’Hulguen, S., Slawyk, G. & Le Corre, P. 2005. Seasonal patterns of urea
regeneration by size-fractionated microheterotrophs in well-mixed temperate coastal
waters. J. Plank. Res. 27: 263-270.

Lomas, M.W. 2004. Nitrate reductase and urease enzyme activity in the marine
diatom Thalassiosira weissflogii (Bacillariophyceae): Interactions between nitrogen
substrates. Mar. Biol. 144: 37-44.

Lomas, M.W. & Glibert, P.M. 1999a. Temperature regulation of nitrate uptake: a
novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol.
Oceangr. 556-572.

Lomas, M.W. & Glibert, P.M. 1999b. Interactions between NH4
+ and NO3

- uptake
and assimilation: comparisons of diatoms and dinoflagellates at several growth
temperatures. Mar. Biol. 133: 541-551.

Lomas, M.W., Swain, A., Shelton, R. & Ammerman, J.W. 2004. Taxonomic
variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol. Oceangr. 49:
2303-2310.



24

Lomas, M.W., Trice, T.M, Glibert, P.M., Bronk, D.A. & McCarthy, J.J. 2002.
Temporal and spatial dynamics of urea uptake and regeneration rates and
concentrations in Chesapeake Bay. Estuaries. 25: 469-482.

Lomstein, B.A., Blackburn, T.H. & Henriksen, K. 1989. Aspects of nitrogen and
carbon cycling in the northern Bering Shelf sediment. 1. The significance of urea
turnover in the mineralization of NH4

+. Mar. Ecol. Prog. Ser. 57:237-247.

Lund, B.A. 1987. Mutual interference of ammonium, nitrate, and urea on uptake of
15N sources by the marine diatom Skeletonema costatum (Grev.) Cleve. J. Exp Mar.
Biol. Ecol. 113:167-180.

Mace, K.A., Kubilay, N. & Duce, R.A. 2003. Organic nitrogen in rain and aerosol in
the eastern Mediterranean atmosphere: An association with atmospheric dust. J.
Geophysical Res. Atmos. 108:4320-4331

Martin, J.H., Gordon, R.M. & Fitzwater, S.E. 1991. The case for iron. Limnol.
Oceanogr. 36: 1793-1802.

McCarthy, J.J. 1972. The uptake of urea by natural population of marine
phytoplankton. Limnol. Oceangr. 17:738-748.

McIninch, J.K., McIninch, J.D. & May, S.W. 2003. Catalysis, stereochemistry, and
inhibition of ureidoglycolate lyase. J. Biol. Chem. 278: 50091-50100.

Middelburg, J.J. & Nieuwenhuize, J. 2000. Nitrogen uptake by heterotrophic
bacteria and phytoplankton in the nitrate-rich Thames estuary. Mar. Ecol. Prog. Ser.
203: 13-21.

Milligan, A.J. & Harrison, P.J. 2000. Effects of non-steady-state iron limitation on
nitrogen assimlatory enzymes in the marine diatom Thalassosira weissflogii
(Bacillariophyceae). J. Phycol. 36: 78-86.

Miller, C.A. & Glibert, P.M. 1998. Nitrogen excretion by the calanoid copepod
Acartia tonsa: results of mesocosm experiments. J. Plank. Res. 20: 1767-1780.

Miller, S.R. & Castenholz, R.W. 2001. Ecological physiology of Synechococcus sp.
Strain SH-94-5, a naturally occurring cyanobacteria deficient in nitrate assimilation.
Appl. Environ. Microbiol. 67: 3002-3009

Mobley, H.L.T. & Hausinger, R.P. 1989. Microbial ureases: significance, regulation
and molecular characterization. Microbiol. Rev. 3: 85-108.

Mobley, H.L.T., Island, M.D. & Hausinger, R.P. 1995. Molecular Biology of
Microbial Ureases. Microbiol. Rev. 59: 451-480.



25

Molloy, C.J. & Syrett, P.J. 1988. Interrelationships between uptake of urea and
uptake of ammonium by microalgae. J. Exp. Mar. Biol. Ecol. 118: 85-95.

Moore, L.R., Post, A.F., Rocap, G., & Chisholm, S.W. 2002. Utilization of different
nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus.
Limnol. Oceanogr. 47: 989-996.

Nolden, L., Beckers, G., Mockel, B., Pfefferle, W., Nampoothiri, K.M., Kramer, R. &
Burkovski, A. 2000. Urease of Corynebacterium glutamicum: organization of
corresponding genes and investigation of activity. FEMS Microb. Let. 189: 305-310.

Ohki, K., Zehr, J.P. & Fujita, Y. 1992. Regulation of nitrogenase activity in relation
to the light-dark regime in the filamentous non-heterocytosus cyanobacterium
Trichodesmium sp. NIBB 1067. J. Gen Microbiol. 138:2679-2685.

Oliveira, L. & Antia, N.J. 1986. Some observations on the urea-degrading enzyme of
the diatom Cyclotella cryptica and the role of nickel in its production. J. Plank. Res.
8: 235-242.

Pantoja, S. & Lee, C. 1994. Cell-surface oxidation of amino acids in seawater.
Limnol. Oceanogr. 39: 1718-1726.

Parker, M.S. & Armbrust, E.V. 2005. Synergistic effects of light, temperature, and
nitrogen source on transcription of genes for carbon and nitrogen metabolism in the
centric diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 41:1142-
1153.

Pedersen, H., Lomstein, B.A. & Blackburn, T.H. 1993. Evidence for bacterial urea
production in marine sediments. FEMS Microb. Ecol. 12:51-59.

Peers, G.S., Milligan, A.J. & Harrison, P.J. 2000. Assay optimization and regulation
of urease activity in two marine diatoms. J. Phycol. 36: 523-528.

Peierls, B.L. & H.W. Paerl. 1997. Bioavailability of atmospheric organic nitrogen
deposition to coastal phytoplankton. Limnol. Oceanogr. 42: 1819-1823.

Rees, T.A.V. & Syrett P.J. 1979. The uptake of urea by the diatom Phaeodactylum.
New Phytol. 82: 169-178.

Reid, R.T. & Butler, A. 1991. Investigation of the mechanism of iron acquisition by
the marine bacterium Alteromonas luteoviolaceus – characterization of siderophore
production. Limnol. Oceangr. 36:1783-1792.

Rivkin, R.B., Legendre, L., Deibel, D., Tremlay, J-E., Klein, B., Crocker, K., Roy,
S., Silverberg, N., Lovejoy, C., Mesple, F., Romero, N., Anderson, M.R., Matthews,
P., Savenkoff, C., Vezina, A., Therriault, J-C., Wesson, J., Berube, C. & Ingram, R.G.



26

1996. Vertical flux of biogenic carbon in the ocean: Is there food web control?
Science. 272: 1163-1166.

Schulz, K.G., Zondervan, I., Gerringa, L.J.A., Timmermans, K.R., Veldhuis, M.J.W.
& Riebesell, U. 2004. Effect of trace metal availability on coccolithophorid
calcification. Nature 430: 673-676.

Shaked, Y., Xu Y., Leblanc K., & Morel, F.M.M. 2006. Zinc availability and alkaline
phosphatase activity in Emiliania huxleyi: Implications for Zn-P co-limitation in the
ocean. Limnol. Oceanogr., 51:299-309.

Seigenthaler, U. & Sarmiento, J.L. 1993. Atmospheric carbon dioxide and the ocean.
Nature 365: 119-125.

Siewe, R.M., Weil, B., Burkovski, A., Eggeling, L., Krämer, R. & Jahns, T. 1998.
Urea uptake and urease activity in Corynebacterium glutamicum. Arch. Microbiol.
169: 411-416.

Soh, K.G. 2001. A review of the global fertilizer use by product. 7th AFA Annual
Conference. Cairo.

Tamminen, T. & Irmisch, A. 1996. Urea uptake kinetics of a midsummer planktonic
community on the SW coast of Finland. Mar. Ecol. Prog. Ser. 130: 201-211.

Therkildsen, M.S., Isaken, M.F. & Lomstein, B.A. 1997. Urea production by the
marine bacteria Delaya venusta and Pseudomonas stutzeri grown in a minimal
medium. Aquat. Microb. Ecol. 13: 213-217.

Todd, M.J. & Hausinger, R.P. 1987. Purification and characterization of the nickel-
containing multicomponent urease from Klebsiella aerogenes. J. Biol. Chem. 262:
5963-5967.

Twomey, L.J., Piehler, M.F. & Paerl, H.W. 2005. Phytoplankton uptake of
ammonium, nitrate, and urea in the Neuse River Estuary, NC, USA. Hydrobiologia.
533: 123-134.

Wheeler, P. 1983. Phytoplankton nitrogen metabolism.. In Carpenter, E.J & Capone,
D.G. [Eds] Nitrogen in the Marine Environment. Academic Press. New York, N.Y.
pp. 309- 346.

Wheeler, P.A., Glibert, P.M. & McCarthy, J.J. 1982. Ammonium uptake and
incorporation by Chesapeake Bay phytoplankton: Short term uptake kinetics.
Limnol. Oceangr. 27:1113-1128.

Wheeler, P.A. & Kirchman, D.L. 1986. Utilization of inorganic and organic nitrogen
by bacteria in marine systems. Limnol. Oceangr. 31: 998-1009.



27

Yin, K., Qian, P., Wu, M.C.S., Chen, J.C., Huang, L., Song, X. & Jian, W. 2001.
Shift from P to N limitation of phytoplankton growth across the Pearl River estuarine
plume during summer. Mar. Ecol. Prog. Ser. 221:17-28.

Zehr, J.P. & Capone, D.G. 1996. Problems and promises of assaying the genetic
potential for nitrogen fixation in the marine environment. Microb. Ecol. 32: 263-281.

Zehr, J.P. & Ward, B.B. 2002. Nitrogen cycling in the ocean: new perspectives on
processes and paradigms. Appl. Environ. Microbiol. 68: 1015-1024.



28

Table

Table 1.1: Enzymes responsible for the conversion of various nitrogen substrates
into ammonium

NO3 nitrite reductase (nir), nitrate reductase (nar) Milligan and Harrison, 2000
Urea urease (ure) Peers et al. 2000
N2 nitrogenase (nif) (only in cyanobacteria) Zehr and Capone, 1996
Amino acids amino acid oxidation Pantoja and Lee, 1994
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Figures

Fig. 1.1 Division of molecular and biochemical regulation of nitrogen assimilation
pathways in a phytoplankton cell.
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Fig. 1.2 Various nitrogen assimilation pathways in a microbial cell. Not all
pathways will be present in different species of phytoplankton, cyanobacteria, and
bacteria.
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Fig. 1.3 Intracellular pathways in a microbial cell involved with urea utilization and
assimilation.
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Fig. 1.4 Sources of urea and organisms that utilize urea in estuarine waters.
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Fig. 1.5. Role of intermediates of the urea cycle in diatom metabolism (modified
from Allen et al. 2005).
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Chapter 2: Measuring urease activity in environmental
samples
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Abstract

The current published method for measuring urease activity in phytoplankton

involves measuring the hydrolysis of urea into ammonium. The method was

previously optimized for studies of phytoplankton cultures, not for natural

assemblages of phytoplankton. We tested several steps of the method using water

samples from two distinct sites to optimize the urease assay method for field studies.

We found interference of NH4
+ from extraction and assay reagents in the current

published protocol, leading to significant depression of urease activity. We

recommend a reduction in the concentration or removal of two of these reagents.

These improvements lead to values that are more accurate, but unfortunately more

variable due to the low volumes used. We thus found a trade-off between increasing

accuracy and increasing variability.

Introduction

Urea (CO(NH2)2), a small neutral molecule, is a significant source of nitrogen

for bacteria and phytoplankton in both freshwater and marine environments (Antia et

al. 1991; Berman and Bronk 2003; Glibert et al. 2001, 2006). Many phytoplankton

taxa utilize urea and many ‘harmful’ or ‘toxic’ species either have higher urea uptake

rates than for NO3
- or NH4

+ or are stimulated by elevated urea concentrations (Berg et

al. 1997; Kudela and Cochlan 2000; Collos et al. 2004; Mulholland et al. 2004;

Glibert et al. 2004). Urea was shown to contribute up to 90% of total nitrogen

uptake during brown tide blooms of the pelagophyte Aureococcocus anophagefferens

in Shinneock Bay, New York, and Chincoteague Bay, Maryland, despite higher
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concentrations of NH4
+ than urea (Berg et al. 1997; Mulholland et al. 2004).

Elevated urea concentrations in aquaculture ponds were also correlated with blooms

of Karlodinium veneficum (as Gyrodinium galatheanum), Gyrodinium nelsonii,

Prorocentrum minimum and Katodinium sp. (Glibert and Terlizzi 1999). Other

harmful species such as the red tide dinoflagellate Karenia brevis (Steidinger et al.

1988, Heil et al. in press), Lingulodinium polyedrum (Kudela and Cochlan 2000), P. 

minimum (Fan et al. 2003) and Alexandrium catenella and A. fundyense (Dyhrman

and Anderson 2003; Collos et al. 2004) have been found to have the capacity to use

urea either in culture or in the field.

Within a cell, urea is hydrolyzed by urease. Urease converts urea and water

into NH4
+ and CO2 that are subsequently utilized by various biochemical pathways.

The measurement of urease activity may help understand whether urea, transported

into the cell (Antia et al. 1991) or produced internally by catabolism of amino acids or

purines (Antia et al. 1991, Allen et al. 2005), is assimilated into biomass by microbes.

Estimations about the potential contribution of urea to total cellular nitrogen demand

for phytoplankton and bacteria may also be made using urease activity.

Urease activity can be measured by various techniques (Mobley and

Hausinger 1989) but only two are commonly used in the aquatic sciences. The two

methods measure different end products of urea catabolism: CO2 or NH4
+. The first

investigators measured urease activity by rates of release of 14CO2 (Leftley and Syrett

1973; Bekheet and Syrett 1977; Ge et al. 1990). Later investigators measured the

liberation of NH4
+ by various NH4

+ analyses (Oliveira and Antia 1986; Jahns et al.
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1995; Collier et al. 1999; Peers et al. 2000). The urease assay for culture studies was

optimized by Peers et al. (2000) and further improved by Fan et al. (2003).

In recent years, urease activity has been measured in cultures of various

species of phytoplankton using the method that measures production of NH4
+ from

urea catabolism. While relatively few in number, these studies have shown that

urease activity is present in the diatoms Thalassiosira pseudonana and T. weissflogii

(Peers et al. 2000; Lomas 2004), dinoflagellates P. minimum (Fan et al. 2003) and

Alexandrium sp. (Dyhrman and Anderson 2003), the pelagophyte A. anophagefferns

(Fan et al. 2003), as well as several other phytoplankton groups (Leftley and Syrett

1973; Antia et al. 1991). Urease activity varies from 0 to ~142 fg-atom N cell-1 hr-1 

depending on growth conditions (Dyhrman and Anderson 2003; Fan et al. 2003;

Lomas 2004).

To date, there has been relatively little research on urease activity in natural

plankton assemblages (e.g. Syrett and Leftley 1973; Peers et al. 2003; Fan et al. 2003;

Dyhrman and Anderson 2003; Lomas 2004; Glibert et al. 2004, Heil et al. in press).

Preliminary field studies have hinted at variability in enzyme activity related to

volume of sample filtered and other field manipulations. For example, urease activity

in size fractionated samples with a lower chl a biomass was often higher than in

whole samples, suggesting interference from cell metabolites or that the method was

not optimal. Hence, a thorough review of each step in the method was warranted.

The goal of this study was thus to refine and optimize the methods of Peers et

al. (2000) and Fan et al. (2003) for field application. We investigated whether the

high variability associated with manipulations of field samples was the result of steps
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in the method (NH4
+ contamination from reagents, interference from buffers, boiling,

and storage) or was the result of environmental heterogeneity.

Methods

Overview of urease assay method

The urease assay method of Peers et al. (2000) and Fan et al. (2003) first

requires collection of phytoplankton and bacteria on GF/F filters (combusted at

450°C for 1 hr; <5 mm Hg), which are then stored in liquid N2 until analysis. A

storage time of a few days or less was recommended in both methods. Urease is

extracted from cells by homogenization with a tissue homogenizer in 1 ml of ice-cold

extraction buffer (3.75 ml of 1M potassium phosphate buffer adjusted to pH 7.9 with

NaOH pellets, 2.5 ml 0.5 M HEPES buffer (n-2-hydroxyethylpiperazine-n’-2-

ethanesulfonic acid, pH 7.9), 2.5 ml 3% PVP (polyvinyl pyrrolidone), 2.5 ml 1%

Triton-X, 2.5 ml 50 mM EDTA (ethylenediamine-tetraacetic acid disodium salt, pH

7.9), 11.25 ml dionized H20 for a total of 25 ml). The original extraction buffer had

bovine serum albumin (BSA) (Peers et al. 2000) but its removal was recommended

by Fan et al. (2003) because of high NH4
+ contamination. After homogenization,

samples are transferred to 1.5 ml centrifuge tubes and centrifuged for approximately 5

min.

The resulting supernatant is divided into two volumes of 0.4 ml that are

transferred to two test tubes (to and tf). The supernatant is combined with 700 µl of

cold assay buffer (2.5 ml 0.5 M HEPES, 3.75 ml 1 M potassium phosphate buffer,

18.75 ml dionized H20 for a total of 25 ml) and 800 µl of deionized water. The t0 test
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tubes are put in boiling water for 1 min, then 300 µl of 5 mM urea stock is added,

followed immediately by 0.2 ml phenol (20 g phenol in 200 ml of 95% EtOH), the

first reagent used in the indophenol method of NH4
+ determination (Parsons et al.

1984). While the to test tubes are in boiling water, 300 µl of 5 mM urea stock is

added to the tf tubes, which are then incubated at environmental temperature for 30

min to 1 h. Peers et al. (2000) originally recommended halting the enzymatic reaction

by adding 20 µl of HCl, followed by neutralization with 20 µl of 4N NaOH, but the

indophenol method is sensitive to pH changes. Fan et al. (2003) suggested removing

this step, but also found that boiling did not result in a complete inactivation of the

enzyme and recommended immediately adding the NH4
+ phenol reagent to the

samples to stop the reaction. After killing with phenol, 2.8 ml of deionized water are

added to bring the total volume to 5.2 ml. Finally, the remaining reagents for the

NH4
+ assay (0.2 ml sodium nitroprusside prepared as 1g of sodium nitroprusside in

200 ml deionized water; 0.5 ml oxidizing reagent prepared as 40 ml of 100g sodium

citrate and 5g NaOH in 500 ml of deionized water and 10 ml of sodium hypochlorite;

Parsons et al. 1984) are added and the test tubes are stored in the dark for a minimum

of 2.5 hours until analysis on a spectrophotometer at 640 nm.

NH4
+ contamination from reagents

Since NH4
+ is the end product of the urease assay, contamination with NH4

+

by assay reagents is of concern. To address this concern, the contribution of NH4
+ by

each of the reagents in the extraction buffer was tested. One ml of each reagent

(potassium phosphate buffer, HEPES, PVP, Triton-X, and EDTA) was diluted to 5 ml
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then analyzed for NH4
+ concentration (Parsons et al. 1984). To examine further the

contribution of PVP to NH4
+ background levels, 3% PVP was diluted further to 0.3%

and 0.03%. PVP was also dialyzed by placing a solution of 3% PVP in 6,000-8,000

MW membrane tubing (Spectra/Por) in deionized water (replaced several times) for

one day. One ml of each PVP solution was diluted to 5 ml and analyzed for NH4
+

concentrations (Parsons et al. 1984).

To examine whether the contribution of contaminant NH4
+ could be reduced

and the method would still yield the same results, different extraction buffers

containing modified concentrations of PVP were tested. Originally, PVP was added

to the method to act as an adsorbent for phenolic compounds that inhibit urease

activity (Loomis and Battaile 1966; Peers et al. 2000). Furthermore, the addition of

PVP reduced the variability in urease activity (Peers et al. 2000). The standard

extraction buffer with 3% PVP was used as a positive control while the extraction

buffer without PVP served as a negative control. The remaining three extraction

buffers had 0.3% PVP, 0.03% PVP, and dialyzed PVP.

Buffers

The influence or interference of the extraction and assay buffers on detection

of NH4
+ was examined in three experiments. The first experiment investigated the

effect of each reagent (potassium phosphate buffer, HEPES buffer, 0.03% PVP,

Triton X-100, EDTA) on the detection of NH4
+. Two test tubes were used for each

reagent: one had 1 ml of reagent diluted to 5 ml while the second had 1 ml of

reagent, spiked with 5 µg-at N l-1 of NH4
+, then diluted to 5 ml. The samples were
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then measured for NH4
+ concentrations (Parsons et al. 1984). The amount of NH4

+

recovered was determined by subtracting the non-spiked sample from the spiked

sample.

The combined effect of the reagents on the detection of NH4
+ was determined

through a second experiment that tested a series of homogenate volumes (extraction

buffer: 100, 200, 300 and 400 µl) with or without 700 µl of assay buffer that were

spiked with 5 µg-at N l-1 of NH4
+, then diluted to 5 ml with deionized water. The

samples were then measured for NH4
+ concentrations (Parsons et al. 1984). To

further compare the combined effect of the reagents, four NH4
+ standard curves were

measured in varying homogenate volumes (50, 100, 200, and 400 µl), but with the

same volume of assay buffer (700 µl), and diluted to 5 ml. Two additional NH4
+

standard curves were measured in homogenate (100 and 400 µl) and assay buffers

both with and without HEPES. The seventh NH4
+ standard curve measured in

deionized water served as a control.

The third experiment tested the specific effect of HEPES on urease activity

measured in culture and field samples. Culture samples of the haptophyte Isochrysis

sp. were obtained from the oyster hatchery at Horn Point Laboratory while field

samples were collected from the dock of the Horn Point Laboratory on the Choptank

River in March 2006. Samples were filtered (2ml for culture samples, 75 ml for

Choptank samples) onto combusted GF/F filters (n=5), and then analyzed for urease

activity using homogenate (100 and 400 µl) and assay buffers both with or without

HEPES.



42

Boiling

The boiling step, thought to stop the enzymatic process, was investigated to

determine if this step was necessary. In field conditions, manipulation of samples is

facilitated if this step can be avoided or simplified. The current method requires

putting test tubes in boiling water to stop the hydrolysis reaction by promoting the

denaturation of urease, then adding phenol. Phenol (the first reagent for color

development for ammonium) also can stop the hydrolysis reaction but is sensitive to

temperature of the samples (Stewart 1985).

To test the effect of boiling, water was collected from the dock of the Horn

Point Laboratory in July 2003. River water (50 ml) was filtered onto combusted

GF/F filters (n=16), and then analyzed for urease activity using different homogenate

volumes with the only modification being in the boiling step. Samples (n=4 for each

homogenate volume) were separated into one t0 and tf test tubes. The t0 and tf test

tubes of two samples were subjected to boiling while the test tubes of the other two

samples were not.

Storage

Samples from a culture of Isochrysis sp. were used to test how long urease

samples would remain stable in liquid N2 or a –80°C freezer after collection. In May

2004, aliquots of culture (n=60) of 0.025 l were filtered onto combusted GF/F filters

and kept in liquid N2 or a -80°C freezer over a period of three weeks. One set of

filters (n=3) was analyzed for urease activity immediately using 0.03% PVP and 100

µl homogenate volume. Using the same protocol, the samples that were stored in
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liquid N2 were measured in triplicate every day for two weeks, then again at days 17

and 21. Samples that were stored in a –80°C freezer were only measured in triplicate

on weekly basis (days 7, 14, and 21). Samples from liquid N2 storage that were

analyzed on days 8-11 were removed from the data set after it was determined that

those samples were at the top of the liquid N2 dewar and were not kept at the same

cold temperatures due to liquid N2 evaporation.

Environmental heterogeneity and effect of sample volume

Water was collected from two sites: Choptank River, MD (a tributary of the

Chesapeake Bay) and Duck Key, FL (in Florida Bay) for the analysis of optimal

filtration volumes and environmental heterogeneity. Two separate experiments to test

different filtration volumes and homogenate volumes were run using Choptank River

water on two separate days in July 2003, while similar experiments manipulating

filtration and homogenate volumes were run on Duck Key water the same month.

The range of filtration volumes tested was different between the two sites due

to variable biomass levels, while the homogenate volumes were the same. Filtration

volumes in the Choptank samples ranged from 0.025 l to 0.1 l and from 0.6 l to 0.9 l

in the Florida Bay samples. For comparison between the two sites, filtration volumes

were converted into chlorophyll content using the average chlorophyll concentrations

in Choptank River and Duck Key (36.0±3.81 µg chl a l-1 and 0.38±0.19 µg chl a l-1,

respectively). Homogenate volumes tested for both sites were the same at 50, 100,

200 and 400 µl. The 400 µl volume is the original homogenate volume used in the

methods of Peers et al. (2000) and Fan et al. (2003).
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Assessment

NH4
+ contamination from reagents

The NH4
+ concentration in all reagents except 3% PVP was < 20 µg-at N l-1 

(Table 2.1). While the NH4
+ concentrations of the reagents were high when

measured independently, their contribution, with the exception of 3% PVP, to the

final extraction buffer was significantly lower (<2 µg at N l-1). PVP, with a NH4
+

concentration of 733 ± 22.4 µg-at N l-1, contributed 95.8% to the background NH4
+ in

1 ml of extraction buffer. Reduced concentrations of PVP led to lower NH4
+

concentrations (0.3% PVP = 70.8 ± 3.72 µg-at N l-1, 0.03% PVP = 7.37 ± 0.48 µg-at

N l-1 and dialyzed PVP = 10.8 ± 0.47 µg-at N l-1).

Urease activity differed in extraction buffers with different NH4
+ background

concentrations. Urease activity was lowest in the standard extraction buffer and was

significantly different than urease activity in extraction buffers that had a lower

concentration of PVP (0.03% PVP) or dialyzed PVP that had lower background NH4
+

(p<0.05; Table 2.2). Urease activity in the extraction buffer with dialyzed PVP had

lower variance (x= 0.68 ± 0.12 µg at N l-1 h-1) than in the extraction buffer with

0.03% PVP (x = 0.59 ± 0.19 µg at N l-1 h-1), but the urease activities assayed with

both buffer preparations were not significantly different (p=0.29).

Buffers

In theory, NH4
+ concentrations in the t0 and tf samples should increase linearly

with increasing homogenate volume if there is no interference with the urease enzyme

or the indophenol-blue analytical method for detecting NH4
+. An observed non-
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linear relationship in both t0 and tf samples (Fig. 2.1) led to an investigation of

whether reagents in this urease assay method were interfering with the indophenol-

blue method for detecting NH4
+.

The reagents in the extraction and assay buffers had different effects on the

ability to detect NH4
+ using the indophenol-blue method of Parsons et al. (1984).

The HEPES buffer had a negative effect and none of the spiked NH4
+ was recovered

(Table 2.1). The other reagents, except PVP, did not have a 100% recovery of the

spiked NH4
+. PVP was the only reagent that led to an amplification of the spiked

NH4
+. Overall, no reagent had a neutral effect on the recovery of the spiked NH4

+.

The combined effect of all the reagents in the buffer was investigated by

testing a series of homogenate volumes with or without assay buffer. The amount of

NH4
+ recovered from the spike increased when the homogenate volume was reduced

from 400 µl to 100 µl in samples without assay buffer while the amount of NH4
+

recovered did not change with volume of homogenate in samples with assay buffer

(Fig. 2.2). The interference from the different reagents in the buffers was minimized

at the lowest homogenate volume (100 µl).

The effect of the buffers was investigated further by comparing NH4
+ standard

curves in deionized water and in different buffers. The NH4
+ standard curve

measured in deionized water and without HEPES buffer was different than the other

four standard curves with HEPES buffer (Fig. 2.3). The NH4
+ standard curve in

deionized water resulted in a linear regression with a slope of 0.083 and y-intercept of

0.029. The regression of the NH4
+ standard curve in 50 µl homogenate and 700 µl
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assay buffer resulted in a lower slope of 0.050 and higher y-intercept of 0.145. As

the homogenate volume increased, the slope decreased and the y-intercept increased.

HEPES had an influence on urease activity in both culture and field samples

(Fig. 2.4). Rates of urease activity in HEPES buffer using the published method

were almost two-fold lower and had higher variability than in potassium phosphate

buffer alone for Isochrysis sp. Rates of urease activity in samples from the Choptank

River were higher with lower variability using revised methods that either had a

lower homogenate volume or no HEPES buffer than using the published methods.

Urease activity was not significantly different with or without HEPES when 100 µl

homogenate was used along with an appropriate ammonium standard curve.

A clear conclusion that can be made from the four experiments above is the

interference of the HEPES buffer with the detection of NH4
+. First, HEPES buffer

had a negative effect on recovery of spiked NH4
+ while the potassium phosphate

buffer did not (Table 2.1). Second, the HEPES concentration increased with

increasing homogenate volume, and an increase in homogenate volume led to a

decrease in the detection of NH4
+ (Fig. 2.2) and lower NH4

+ standard curve slopes

(Fig. 2.3). Furthermore, urease activity measured in buffers without HEPES was

higher than with HEPES (Fig. 2.4). These results agree with Peers et al. (2000) who

suggested removing HEPES buffer, which was originally recommended by Mobley

and Hausinger (1989), after observing lower activity in cultures of the diatom, T. 

pseudonana, in HEPES buffer than in potassium phosphate buffer. Therefore, the

determination of urease activity (e.g. the detection of NH4
+) is best achieved by using

lower homogenate volumes or the complete removal of HEPES buffer.
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Boiling

Urease activity averaged over all homogenate volumes was higher in boiled

samples than in non-boiled samples. Urease activity at the lower homogenate

volumes of 50 and 100 µl was significantly different between the boiled (0.66 ± 0.15

µg at N l-1 hr-1) and non-boiled samples (0.40 ± 0.16 µg at N l-1 hr-1; p<0.02) while

there was no significant difference at the higher homogenate volumes of 200 and 400

µl (p>0.37; data not shown). The difference in NH4
+ concentration between the tf

and t0 boiled samples was on average higher than in the non-boiled samples

(0.78±0.56 vs. 0.49±0.56 µg at N l-1).

Storage

Urease activity of samples stored in liquid nitrogen remained at the same level

(grand mean: 5.83±0.71 µg at N l-1 hr-1) for three weeks (Fig. 2.5). Urease activity

was not significantly different (student’s t-test; p=0.29, p=0.46) between samples

stored in both liquid N2 and an –80°C freezer the first and second week (day 7 and

14). Urease activity was borderline significantly different the third week (day 21;

student’s t-test: p=0.06) between the two sets of samples. These results suggest that

urease samples can be preserved in either liquid N2 or an –80°C freezer for at least up

to three weeks.
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Environmental heterogeneity and effect of sample volume

Rates of urease activity were generally the highest at the lowest filtration and

homogenate volumes, but the variability was much higher than at the highest

filtration and homogenate volumes. Urease activity over a range of filtration

volumes (averaged over all homogenate volumes) followed different trends in Duck

Key, FL than in Choptank River, MD. Samples from Duck Key, with a low

chlorophyll biomass, did not have any statistical difference in urease activity among

different filtration volumes (Fig. 2.6A). Samples from Choptank River had higher

chlorophyll biomass and decreasing average urease activity was observed with

increasing biomass per sample filter (Fig. 2.6B). There was no significant difference

between filtration volumes with the exception of 0.025 l (0.90 µg chl a) and 0.05 l

(1.80 µg chl a; p<0.005). The decrease in urease activity with increasing biomass

may be due to inference from increasing concentrations of intracellular NH4
+ or other

cell metabolites. The lowest filtration volume (0.025 l; 0.90 µg chl a) with the

highest urease activity was also adequate to run routine chlorophyll analyses.

Average urease activity decreased with increasing homogenate volume at both

sites (Fig. 2.7), which was consistent with earlier experiments. In Duck Key, urease

activity decreased from 0.012 to 0.003 µg at N l-1 h-1 as the homogenate volume

increased from 50 to 400 µl. Urease activities in the lowest homogenate volumes (50

and 100 µl) were not statistically different (p=0.80). Urease activity in the

homogenate volume of 100 µl, which had a lower variance than 50 µl, was

significantly different than in the previously recommended homogenate volume of

400 µl (p<0.05 when the 50 µl homogenate samples were removed from the data set).
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In the Choptank River, the decrease in activity was also four-fold as the homogenate

volume increased. The urease activity between the 50 and 100 µl volumes was

significantly different (p<0.05) and urease activity in both volumes was significantly

different than in the 400 µl homogenate volume (p<0.05 and p=0.06, respectively).

Urease activity also followed the same trends when normalized for chlorophyll or

carbon, as would be expected (data not shown). The similarity in pattern of urease

activity over increasing homogenate volumes between homogenate with cells (Fig.

2.7) and recovery of NH4
+ in buffers without cells (Fig. 2.2) and NH4

+ standard

curves (Fig. 2.3) suggests that the effects on the urease assay are not environmental

but rather from the HEPES buffer on the indophenol-blue method for detecting NH4
+.

Suggested modifications to the method

Based on the data shown above, we suggest several modifications to Peers et

al. (2000) and Fan et al. (2003) methods, the only methods currently available for this

analysis. First, the percentage of PVP used should be reduced from 3% to 0.03% to

reduce background NH4
+. The reduction of background NH4

+ is important in order

to resolve lower levels of urease activity. Second, the NH4
+ standard curve should be

measured in the same matrix as the assay, not in deionized water. Third, HEPES

should not be used as a buffer, or 100 µl homogenate volumes should be used to

minimize interference from the HEPES buffer. Fourth, the amount filtered onto

GF/F filters should not exceed the minimum amount of seawater required for routine

chlorophyll analyses to minimize the biomass effect. Results from natural samples
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should be closer to true field values and assay artifacts would be minimized with

those modifications.

Conversions can be made from the published method (3% PVP, 400 µl

homogenate) to values obtained by one of the revised methods suggested here (0.03%

PVP, 100 µl homogenate; Fig. 2.8). Values measured by the previous method that

were >0.2 µg at-N l-1 h-1 were underestimated while values <0.2 µg at-N l-1 h-1 were

overestimated. Most urease activity is < 0.2 µg at-N l-1 h-1 with small differences

between tf and t0, thus it is important to measure NH4
+ concentrations accurately with

low variability. Other methods that effectively measure NH4
+ at nanomolar

concentrations (e.g. Brzezinksi 1987, Holmes et al. 1999) with different reagents

should be tested in the near future. Until then, variability may be a reality, requiring

more replicates to be performed.
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Tables

Table 2.1 Concentration of NH4
+ (±SD) in each reagent in the extraction buffer and

NH4
+ recovered from a 5 µg-at N l-1 spike

Reagent

NH4
+

concentration
(µg at N l-1)

% contribution
to 1 ml
extraction
buffer

NH4
+

recovered
(µg at N l-1) % recovery

HEPES 19.5±0.18 2.55 -1.39±1.92 -28

Potassium
phosphate
buffer (1M)

3.50±0.07 0.68 3.10±0.18 62

3% PVP 222±6.73 95.8 6.55±1.49* 131*

Triton X-100 2.23±0.05 0.06 4.68±0.16 94

EDTA 6.63±0.08 0.87 2.86±1.56 57
*for NH4

+ recovery, 0.03% PVP was used
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Table 2.2 Urease activity in extraction buffers containing different concentrations of
PVP

Extraction buffer (EB) Urease activity (µg at N l-1 h-1)

Standard EB 0.23±0.15
No PVP 0.29±0.09
0.3% PVP 0.44±0.11
0.03% PVP 0.59±0.19
Dialyzed PVP (6-8,000 MW) 0.68±0.12
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Figures

Fig 2.1 Concentration of NH4
+ in the assayed t0 and tf samples as a function of

different homogenate volumes of a 25 ml filtered sample (using 0.03% PVP) from the
Choptank River.
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Fig. 2.2 Concentration of NH4
+ recovered in homogenate only and with assay buffer

as a function of different homogenate volumes. The dotted line represents the 5 µg-at
N l-1 NH4

+ that should have been recovered.
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Fig. 2.3 NH4
+ standard curves in deionized water and varying volumes of

homogenate buffer and 700 µl of assay buffer with and without HEPES buffer.
Regression lines are shown for deionized water and 400 µl homogenate volume with
HEPES.

NH4
+ concentration (µg-at N l-1)

0 5 10 15 20 25

A
bs

or
ba

nc
e

at
64

0
nm

0.5

1.0

1.5

2.0
Deionized water
50 µl homogenate
100 µl homogenate
200 µl homogenate
400µl homogenate
100 µl homogenate, No HEPES
400 µl homogenate, No HEPES



59

Fig. 2.4 Comparison of urease activity values obtained by using the published
method (Fan et al. 2003) and revised methods with (1) 0.03% PVP, 100 µl
homogenate with HEPES buffer or 0.03 PVP, 100 µl (2a) and 400 µl (2b)
homogenate without HEPES buffer in both Isochrysis sp. cultures and the Choptank
River in March 2006.
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Fig. 2.5 Urease activity in stored samples over a three week period. Samples were
stored in liquid N2 and in a –80°C freezer.
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Fig. 2.6 Urease activity measured with different filtration volumes (normalized to
chlorophyll biomass) averaged over all homogenate volumes in A) Duck Key in
Florida Bay and B) the Choptank River. Note difference in scale for urease activity.
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Fig. 2.7 Urease activity measured with different homogenate volumes averaged over
all filtrate volumes in A) Duck Key in Florida Bay and B) the Choptank River. Note
difference in scale for urease activity.

50 100 200 400U
re

as
e

ac
tiv

ity
( µ

g
at

N
l-

1
h-

1 )

0.005

0.010

0.015

0.020

0.025

50 100 200 400

0.5

1.0

1.5

2.0

2.5

Homogenate volume (µl)

A B



63

Fig. 2.8 Comparison of urease activity values obtained by measuring the published
methods (Peers et al. 2000; Fan et al. 2003) and one of the revised methods with
0.03% PVP, 100 µl homogenate with HEPES buffer on the same samples collected
from the Choptank River or the Chesapeake Bay in July 2003 and April, July, August
2004.
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Chapter 3: Urease activity in five phytoplankton species
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Abstract

The regulation of urease, the enzyme responsible for the catabolism of urea to

NH4
+ and CO2, by different nitrogen compounds was investigated in laboratory

cultures of five species of estuarine phytoplankton grown on NO3
-, NH4

+ and urea.

Two of the species studied, dinoflagellates Prorocentrum minimum and Karlodinium

veneficum, had higher urease activity rates on a per cell basis than the other species

under investigation, the dinoflagellate Heterocapsa triquetra, the cryptophyte

Storeatula major, and the haptophyte Isochrysis sp. When urease activity was

normalized on a per cell volume basis, K. veneficum had the highest rates while S.

major had the lowest rates. Two dinoflagellates, P. minimum and K. veneficum, had

lower urease activities when grown on NH4
+ than when grown on NO3

- or urea,

suggesting that in some dinoflagellates, urease may be regulated by NH4
+. Results

from this study and previous studies suggest that urease activity may be repressed by

NO3
- in diatoms and by NH4

+ in dinoflagellates and cyanobacteria.

Introduction

Phytoplankton and bacteria can use a variety of nitrogenous substrates to meet

their metabolic demand, including inorganic forms such as NO3
- and NH4

+ and

organic nitrogen such as urea and amino acids. While urea in general contributes

only a small percentage of total nitrogen uptake relative to NO3
- and NH4

+, there are

coastal regions and periods of the year when urea uptake can exceed 50% of total

nitrogen uptake by phytoplankton (Glibert et al. 1991, Bronk et al. 1998, Kudela and

Cochlan 2000, Tremblay et al. 2000, Twomey et al. 2005).
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Some species of phytoplankton, including many harmful algal species, have

been observed to utilize urea at higher rates than NO3
- (Kudela and Cochlan 2000,

Fan et al. 2003, Collos et al. 2004). In fact, many harmful dinoflagellates have been

found to prefer urea both in culture and in the field. A large bloom of Lingulodinium

polyedrum, a red tide dinoflagellate, off Newport Beach, California was found to

have higher urea than NO3
- and NH4

+ uptake rates (Kudela and Cochlan 2000). A

study of Alexandrium catanella nitrogen kinetics also found higher urea uptake rates

compared to inorganic nitrogen uptake rates in culture (Collos et al. 2004). In

addition, after elevated levels of urea were observed in aquaculture ponds, a

consortium of harmful dinoflagellates, including Karlodinium veneficum (reported as

Gyrodinium galatheanum), Gymnodinium nelsonii, Prorocentrum minimum, and

Katodinium sp. increased in biomass (Glibert and Terlizzi 1999). Furthermore, the

percent contribution of urea to total nitrogen uptake was found to be highly correlated

with the percentage of dinoflagellates in the plankton community of Moreton Bay,

Australia (Glibert et al. 2006).

Dinoflagellates are not the only taxa found to utilize urea at high rates.

Blooms of the pelagophyte, Aureococcus anophagefferens, can be fueled by high urea

concentrations in some environments (Berg et al. 1997, Mulholland et al. 2004, Kana

et al. 2004). Blooms of the cyanobacterium, Synechococcus elongatus, in Florida

Bay, have both higher rates of urea uptake and urease activity than surrounding areas

(Glibert et al. 2004). Another cyanobacterium, Trichodesmium sp. (strain

NIBB1067), had higher rates of urea uptake than nitrogen fixation when grown on

urea (Mulholland et al. 1999). The estuarine species Chloromorum toxicum
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(formerly the rhaphidophyte, Chattonella cf. verriculosa), grows better on urea or

NH4
+ than NO3

- (Tomas 2005).

In order for a phytoplankton cell to utilize urea, it must first be transported

into the cell via either passive or active transport. Many phytoplankton have active

urea transport systems (Rees and Syrett 1979, Horrigan and McCarthy 1981, Antia et

al. 1991). Urea is also produced intracellularly as the byproduct of the ornithine-urea

cycle of arginine biosynthesis and catabolism (Antia et al. 1991) or catabolism of

purines (Allen et al. 2005, Berg and Jørgensen 2006). Inside the cell, urea must be

catabolized by urease or ATP: urea amidolyase (UALase) before urea-N enters the

GS/GOGAT pathway as NH4
+ (Antia et al. 1991). The urease catabolism pathway

for converting urea into CO2 and NH4
+ is more common in phytoplankton than is

UALase, which appears to be present only in some of the Chlorophyceae (Syrett and

Leftley 1976, Bekheet and Syrett 1977, Anita et al. 1991).

In the past ten years, the study of urease activity has been limited to a few

phytoplankton species including only the bacillariophytes (diatoms), dinophytes

(dinoflagellates), pelagophytes and cyanobacteria (Collier et al. 1999, Peers et al.

2000, Dyhrman and Anderson 2003, Fan et al. 2003, Lomas 2004). The urease gene

has been detected in many species of other taxonomic groups, but the rates of urease

activity are unknown (Bruhn et al. 2002, Collier and Baker 2004). Due to the

paucity of urease activity data, it is difficult to determine, along with urea uptake

data, which taxonomic groups of phytoplankton are better competitors for urea and

whether this ability is regulated by different nitrogen sources. There are indications

that dinoflagellates have higher urease activity rates than diatoms and pelagophytes,
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but this conclusion is based on one or very few species within each taxonomic group

(Fan et al. 2003). Furthermore, experiments completed on the same few species have

not revealed any clear patterns in the regulation of urease activity by nitrogenous

substrates such as NO3
-, NH4

+ or urea. To broaden our understanding of urea

utilization by phytoplankton, we investigated growth rates, internal N pools, and

urease activity in laboratory cultures of five species from three taxonomic groups.

Methods

Species studied

Five phytoplankton species were investigated under controlled laboratory

conditions. These included three harmful or toxic dinoflagellates (Prorocentrum

minimum, Karlodinium veneficum (formerly K. micrum; Bergholtz et al. 2006), and

Heterocapsa triquetra, one common cryptophyte, Storeatula major, often a prey

species for K. veneficum (Li et al. 2000, 2001), and the haptophyte, Isochrysis sp.

Three species came from strains isolated from the Chesapeake Bay: P. minimum by

M. Johnson (PM-1, Horn Point Laboratory, Cambridge, MD), K. veneficum

(Leadbeater et Dodge) Larsen (strain GE) by A. Li and D. Stoecker (CCMP 1974),

S. major Butcher ex Hill (strain g) by A. Lewitus (Baruch Marine Laboratory,

Georgetown, SC). H. triquetra was obtained from the Provasoli-Guillard National

Center for Culture of Marine Phytoplankton (CCMP 449) and was originally from the

St. Lawrence estuary in Canada. Isochrysis sp. was isolated from near the island

Providenciales in the Turks and Caicos Islands (Milford strain, C-ISO) and was
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obtained from G. Wikfors (NOAA, National Marine Fisheries Service Laboratory,

Milford, CT).

Culture conditions

The five species of phytoplankton were grown under identical nutrient and

light conditions. Non-axenic cultures were grown in f/2 media (Guillard and Ryther,

1962) with nitrogen (NO3
-, NH4

+ or urea) and phosphate substrates added at f/20

concentrations (88 µM and 3.6 µM, respectively; N:P=24). All species were

acclimated to the culture conditions described above for a period of several weeks to

months before the experiments were conducted. Duplicate or triplicate cultures were

grown in 2L glass bottles in a 20°C incubator room at 300 µmol photons•m-2 •s-1 on a

12h L:D cycle over the course of the experiment. Culture preparation and sampling

were done under sterile conditions to maintain low bacterial biomass in the cultures.

Phytoplankton and bacteria biomass

During the two weeks of each experiment, 10-ml samples were taken each day

for phytoplankton and bacterial counts and preserved in 4% glutaraldehyde.

Depending on density of the culture, samples varying from 1-ml to 20-ml (and diluted

with artificial seawater (salinity of 15) to a final volume of 20-ml) were also collected

for determining cell counts and cell diameters using a Coulter Counter (Coulter

Multisizer II). Bacterial biomass was calculated from bacterial counts made on a

flow cytometer (Beckman Dickinson FACSCalibur) using the DNA stain SYTO 13
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(del Giorgio et al. 1996) and an estimate of 19.5 fg-C bacterial cell-1 for estuarine

bacteria (Ducklow 2000).

Nutrient analyses

When each culture reached the mid- or late exponential phase, samples were

collected for the analyses of particulate carbon (PC) and nitrogen (PN), and of

internal cell nitrogen pools. For all analyses, phytoplankton were filtered (25-ml to

75-ml) onto a combusted (1 h at 450°C) GF/F filter. Samples for PC and PN were

stored in a -20°C freezer, dried at 50ºC for three days, and then analyzed on a Control

Equipment CHN elemental analyzer. Internal cell nitrogen samples were placed into

5-ml of boiling water to break apart the cell walls, then immediately frozen

(Raimbault and Mingazzini 1987). After thawing, samples were separated into two,

2-ml sub-samples and diluted to 5-ml for NH4
+ and 4-ml for urea. NH4

+ internal cell

concentrations were measured using the indophenol method of Parsons et al. (1984),

while urea internal cell concentrations were analyzed using the diacetylmonoxime

method (Mulvenna and Savidge 1992, Revilla et al. 2005). Total cellular N was

corrected by adding intracellular NH4
+ concentrations because of high volatilization

rates of NH4
+ from filters during the drying process.

Urease activity

Replicate samples (n=15) for urease activity were collected at mid- to late

exponential phase by filtering 25-ml to 75-ml of culture onto combusted GF/F filters
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and then immediately freezing them in liquid N2. The urease activity samples were

transferred to a -80°C freezer for overnight storage. An exception to this procedure

occurred for K. veneficum samples, which were immediately frozen in a -80°C

freezer.

One day following sample collection, urease activity was assayed using a

modified method based on Peers et al. (2000) and Fan et al. (2003) with reduced

homogenate volumes and polyvinyl pyrrolidone (PVP) concentrations in order to

reduce NH4
+ contamination and inference from buffers (Solomon et al. submitted).

A range of urea additions were made in order to calculate Michealis-Menten kinetic

parameters for urease activity. Final urea concentration additions of 250, 500 1360,

and 3000 µg-at N•L-1 were made to triplicate samples. One set of triplicate tubes

had zero addition.

Data analysis

The kinetic parameters, Km, and Vmax are defined by the Michealis-Menten

equation,

V = Vmax

S

(Km + S)

where Km is the half-saturation constant, Vmax is maximum urease activity, and S is

the concentration of the substrate, urea. In order to make comparisons among species

and with other published studies, specific urease activity, Vmax (µg-at N•L-1•h-1) was
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normalized on a per cell (Vmax-cell: fg-at N•cell-1•h-1), per cell volume basis (Vmax-vol:

fg-at N•µm-3•h-1), and per chlorophyll a basis (Vmax-chl; ng-at µg chl a-1 h-1).

Statistical testing was done to determine whether there were differences in

growth rate and intracellular nitrogen concentrations between species grown on NO3
-,

NH4
+, or urea. Significant differences among nitrogen sources were determined by

one-way ANOVA tests and post-hoc comparisons (Tukey-HSD) using data from each

individual species.

ANOVAs were also conducted to determine significant differences in Km and

Vmax among species or nitrogen sources. Values of Km and Vmax for each culture were

obtained using the best fit to the Michealis-Menten curve using SigmaPlot software

(SYSTAT 2004). The calculated Km and Vmax values were checked to determine if

the data had a normal distribution using the S-PLUS statistics program (Insightful

Corporation 2002). Because the original data did not have a normal distribution, the

data were transformed using the log10(x+1) function. One-way ANOVAs with both

Km or Vmax and nitrogen source as fixed effects for each species were run on the

transformed data. Additional two-way ANOVAs were run to test for effect of

species, nitrogen source, or any interaction between the two factors.

For graphical purposes, different calculations were performed to obtain Km

and Vmax values. The mean overall urease activity at each assayed urea concentration

was calculated. First, the replicates (n=3) of urease activity from each individual

culture were averaged at each urea concentration. Next, sets of averages for each

species (n=2 or 3 depending on species) grown on the same nitrogen source were

combined to obtain an overall mean urease activity at each urea concentration.
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Using the overall mean urease activity data, both Km or Vmax were calculated by

using SigmaPlot software (SYSTAT 2004), using the best fit to the Michealis-Menten

kinetic curve.

Results

Growth rates and biomass

Phytoplankton and bacterial growth rates in the cultures varied depending on

the species and nitrogen growth source. Among the phytoplankton studied, the

dinoflagellate H. triquetra had the lowest growth rates (0.21 ± 0.04 to 0.24 ± 0.01 d-1)

while the haptophyte Isochrysis sp. had the highest growth rates (0.72 ± 0.01 to 0.85

± 0.01 d-1; Table 3.1). Both P. minimum and Isochrysis sp. had higher growth rates

on NO3
- than the other nitrogen substrates, but these differences were only significant

for Isochrysis sp. (ANOVA, Tukey-HSD, p <0.05). All the other species had higher

growth rates when grown on NH4
+, although only the cryptophyte S. major had a

significantly higher growth rate on NH4
+ (0.71±0.03 d-1 ) than NO3

- (0.65±0.02 d-1) (p

< 0.05). For all the other species, differences in growth rate between nitrogen

substrates were not significant (ANOVA, p>0.05).

Bacteria net growth rates in the K. veneficum and H. triquetra cultures were

less than 0.22 d-1 and at times were not growing or were negative, likely due to being

grazed by the dinoflagellates (data not shown). In the P. minimum, S. major and

Isochrysis sp. cultures, bacteria net growth rates were comparable to or greater than

the phytoplankton growth rates, varying from 0.25 to 0.91 d-1. Regardless of growth



74

rates, bacterial carbon biomass contributed only 0.01 to 0.3% to the total carbon

biomass in all the cultures.

Biochemical state of cells

Intracellular concentrations of urea (ranging from 0.16 to 3.46 mg-at N•L-1)

were 3- to 37-fold higher in cells grown on urea than on NO3
- in P. minimum, K.

veneficum and H. triquetra while there was no significant difference in S. major and

Isochrysis sp. (Table 3.2, ANOVA, Tukey-HSD, p<0.05). Among species grown on

urea, K. veneficum had the largest intracellular pool of urea. Urea composed 0.20%

(Isochrysis sp.) to 42% (K. veneficum) of total cellular N (Table 3.2).

Intracellular concentrations of NH4
+ were higher than those of urea in all

species regardless of growth N source, varying from 5.41 to 504 mg-at N•L-1 (Table

3.2). Three species (K. veneficum, H. triquetra, and Isochrysis sp.) had higher NH4
+

concentrations when grown on NO3
- than on other nitrogen sources. The other two

species, P. minimum and S. major, had higher NH4
+ concentrations when grown on

urea. P. minimum had significantly higher NH4
+ concentrations when grown on urea

than on both NH4
+ and NO3

- (ANOVA, Tukey-HSD, p<0.05). Intracellular NH4
+

contributed from 1.51 to 53.8% of total cellular N.

Urease activity

Patterns of maximal urease activity per cell (Vmax-cell) among species followed

similar trends when grown on NO3
- or NH4

+ (Fig. 3.1). The dinoflagellates P.

minimum and K. veneficum had the highest maximal urease activity (Fig. 3.1, Table
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3.3). The next highest maximal urease activity rates were seen in the dinoflagellate

species H. triquetra, followed by the cryptophyte S. major, and lastly the haptophyte

Isochrysis sp. When grown on urea, a similiar pattern existed with the exception of

S. major having higher Vmax-cell than H. triquetra. The dinoflagellates, P. minimum

and K. veneficum, had significantly higher Vmax-cell on average than the other three

species (two-way ANOVA; p < 0.05). Among the three species with the lowest

Vmax-cell, H. triquetra had significantly higher maximal activity than Isochrysis sp.

(two-way ANOVA; p < 0.05).

Significant differences in urease activity (Vmax-cell ) within a species when

grown on different nitrogen sources were only seen in K. veneficum. The urease

activity per cell (Vmax-cell) of K. veneficum grown on NO3
- and urea was significantly

higher than in cells were grown on NH4
+ (one-way ANOVA, Tukey-HSD; p<0.05).

The patterns of maximal urease activity per cell volume (Vmax-vol) among

species differed from those of urease activity per cell (Vmax-cell). K. veneficum had the

highest Vmax-vol, while S. major had the lowest Vmax-vol (Fig. 3.2). K. veneficum had

significantly higher average Vmax-vol than the other four species regardless of nitrogen

growth source (two-way ANOVA, Tukey-HSD; p<0.05). P. minimum, K.

veneficum and Isochrysis. sp. grown on urea had significantly higher urease activity

when grown on NH4
+ (ANOVA; Tukey-HSD; p <0.05).

Maximal urease activity per chlorophyll a (Vmax-chl) was significantly higher in

the three dinoflagellates than the other two species, S. major and Isochrysis sp. when

grown on all three nitrogen sources (two-way ANOVA; Tukey-HSD; p<0.05). P.

minimum, K. veneficum and S. major had higher Vmax-chl when grown on urea than on



76

NO3
- or NH4

+ (Fig. 3.3) but significant differences in Vmax-chl were only observed in

K. veneficum (ANOVA, Tukey-HSD; p<0.05).

Overall differences in Km between species or nitrogen growth source

calculated using five urea concentrations were not significant (two-way ANOVA,

p>0.05). Cultures of K. veneficum, S. major and Isochrysis sp. had the lowest Km

when grown on NO3
-, P. minimum when grown on NH4

+, and H. triquetra than when

grown on urea. However, K. veneficum had a significantly higher Km when grown

on urea than NH4
+ (one-way ANOVA, Tukey-HSD, p<0.05).

Discussion

Urease may be expressed constitutively (e.g. urease activity remains the same

regardless of cell physiology) or may be regulated by physiological factors (e.g.

nitrogen or growth status). Both types of urease regulation have been observed in

bacteria (Mobley and Hausinger 1989, Mobley et al. 1995) and may be true for

phytoplankton. Regulation by nitrogen sources has been observed in various

phytoplankton taxonomic groups for other enzymes involved with nitrogen

acquisition. Nitrate reductase (NR) is induced by the presence of NO3
-, and

repressed by NH4
+ in diatoms such as Thalassiosira pseudonana (Berges 1997,

Parker and Armbrust 2005) and the chlorophyte Dunaliella tertiolecta (Song and

Ward 2004), but does not appear to be repressed by NH4
+ in dinoflagellates (Berges

1997). In the green alga, Dunaliella primolecta, in vivo glutamine synthetase (GS)

activity, but not in vitro activity, has been shown to be inhibited by increasing NH4
+

concentrations (Seguineau et al. 1987, 1989). Many bacterial and cyanobacterial



77

ureases are tightly regulated by the nitrogen regulatory system (e.g. nitrogen control

gene A; ntcA) while some are expressed constitutively (Mobley and Hausinger 1989,

Flores and Herrero 2005).

One way to determine whether urease is regulated or constitutively expressed

in phytoplankton is to examine the kinetic parameter that describes the maximal

urease activity rate (Vmax) under different growth conditions. If a phytoplankton

species has similar maximal urease activity rates (Vmax) when grown on different

nitrogen sources, urease may not be regulated by nitrogen source and therefore may

be expressed constitutively. Two dinoflagellates, P. minimum and K. veneficum, in

this study had higher urease activity rates in urea- and NO3
--grown cultures compared

to NH4
+-grown cultures, suggesting regulation by NH4

+. Other dinoflagellate ureases

also appear to be regulated. The dinoflagellate Alexandrium fundyense had the

highest urease activity in an urea grown culture, lower in NH4
+ and not detected in a

NO3
- grown culture (Dyhrman and Anderson 2003). Urease activity in A. fundyense

was also induced by N-starvation (Dyhrman and Anderson 2003). The cryptophyte,

S. major, and haptophyte, Isochrysis sp., had similar urease activity when grown on

all three nitrogen sources, suggesting that urease activity in these species is

constitutive. However, different forms of regulation have been seen in the same

species. In one clone of the diatom Thalassosira weissflogii, urease activity (Vmax)

was shown to be the same regardless of nitrogen source (Peers et al. 2000), but was

down-regulated in another clone when grown on NO3
- (Fan et al. 2003, Lomas 2004).

Urease activity appears to be regulated in some but not all phytoplankton taxonomic

groups.
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Potential repression by NH4
+ of urease activity occurs in some but not all

dinoflagellates. Urease activity in H. triquetra when grown on urea was much lower

than that of P. minimum and K. veneficum and had smaller pools of intracellular

NH4
+. The lower growth rate of H. triquetra than P. minimum and K. veneficum may

have reduced the metabolic demand for N, which in turn led to lower urease activity.

These results suggest that regulation of urease within the dinoflagellates is complex,

not simply dependent on nitrogen sources but also on other factors such as growth

rates.

Urease activity and nitrogen demand

Potential urease contribution to cellular nitrogen demand varied among the

five species examined in this study. The cellular nitrogen demand was calculated by

multiplying the intracellular nitrogen concentrations (Q) and hourly growth rate (µ)

for individual species grown on urea. Assuming that urease was operating at Vmax

measured in vitro, hourly urease activity accounted for more than enough nitrogen in

the 3 dinoflagellates, sometimes by 4-fold (Fig. 3.4). In contrast, in both S. major

and Isochrysis sp., urease activity rates were not sufficient to meet the hourly nitrogen

demand.

Whether the actual rate of urease activity in vivo reaches Vmax depends on the

intracellular urea concentration experienced by urease relative to its Km. Km is an

intrinsic property of the enzyme and should not vary within a species grown on

different nitrogen sources. Estimates of Km made during this study (Table 3.3) were

highly variable even within species, which likely reflects the sensitivity of calculated
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Km values to the number and distribution of urea concentrations assayed above and

below Km, and may also be influenced by the presence of other cell metabolites in the

assays. Nevertheless, our values were consistent with previously reported values for

phytoplankton urease Km, which range from 120-460 µM (Table 3.4).

Intracellular urea concentrations of species studied here were comparable to

concentrations found in other species, which range from non-detectable to 15 mg-at N

l-1 in diatoms such as Phaeodactylum tricornutum and Thalassiosira gravida and the

green alga, Chlorella fusca (Wheeler 1983). The diatom Thalassiosira weissflogii

(0.42 ± 0.08 mg-at N l-1) has been shown to have significantly lower urea intracellular

concentrations than the dinoflagellate P. minimum (2.71 ± 0.21 mg-at N l-1) and

pelagophyte A. anophagefferens (4.65 ± 0.31 mg-at N l-1) when grown on urea (Fan

et al. 2003). When grown on urea, dinoflagellates in this study had higher

intracellular urea concentrations than did the cryptophyte and haptophyte. The

results from both past studies and this study suggest that dinoflagellates may have a

more efficient mechanism for developing large intracellular urea pools, either through

surface membrane transport proteins or via the urea cycle, and are able to retain urea

within the cell. All species here had intracellular urea concentrations similar to or

greater than estimated urease Km. Therefore, as long as the intracellular urea pool is

available to the enzyme, urease should operate between
Vmax

2
and Vmax in vivo.
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A brief review and conceptual model of urease regulation

A summary of kinetic data of urease activity from the literature is presented in

Table 3.4. Urease activity often appears to be down-regulated in diatom cultures

grown on NO3
-. In contrast, urease activity in dinoflagellates, with the exception of H.

triquetra, appears to be down-regulated in NH4
+ grown cultures. The same is true in

cyanobacteria where depressed urease activity is often seen when cultures are grown

on NH4
+ (Collier et al. 1999). In other phytoplankton taxonomic groups such as the

cryptophytes and haptophytes, no evidence of regulation of urease activity has been

observed.

Although the regulation of urease in diatoms and dinoflagellates is not fully

understood, a conceptual model can be constructed based on general seasonal trends

in temperate estuaries such as Chesapeake Bay (Fig. 3.5). When temperatures are

seasonally low, spring diatom blooms are generally fueled by NO3
-, (Lomas and

Glibert 1999), leading to reduced urease activity because NO3
- would be expected to

suppress urease activity in diatoms (Table 3.4; Fig. 3.5) but not in the relatively few

dinoflagellates present (Table 3.4; Fig. 3.5). Later during the summer, dinoflagellate

blooms are frequently observed when NH4
+ and urea, resulting from high

regeneration rates, make up a large percentage of the nitrogen pool (Glibert et al.

2001), inhibiting nitrate uptake rates and NR activity in diatoms (Lomas and Glibert

1999, Lomas and Glibert 1999b, Lomas 2004) (Fig. 3.5). Supporting observations

of low enzyme activities, low levels of mRNA of both NO3
- transporters and NR have

been observed in diatoms grown on NH4
+ (Hildebrand and Dahlin 2000, Parker and

Armbrust 2005). As in diatoms, NO3
- uptake in dinoflagellates is suppressed by
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NH4
+ (Lomas and Glibert 1999b). However, it is not yet clear if NR activity or

mRNA levels are regulated by NH4
+ in dinoflagellates. The differences in repression

of urease and NR, as well as enzymes involved in nitrogen uptake, between diatoms

and dinoflagellates provide some biochemical explanations to why they bloom under

contrasting environmental conditions.

Ecological implications

Urea concentrations in estuaries around the world have been generally low (<

1 µg-at N•L-1), but may be increasing due to a rise in urea fertilizer use in agriculture

(Glibert et al. 2005, 2006). Harmful algal blooms have been observed after an

increase in urea concentration in coastal waters, often after a fertilization event

(Glibert et al. 2001, 2006). For example, blooms of P. minimum have been shown to

be simulated by high urea concentrations in the Chesapeake Bay (Glibert et al. 2001).

The harmful dinoflagellate, K. veneficum, as shown in this study, also has the ability

to use urea and may also bloom under similar conditions as P. minimum. A K.

veneficum bloom associated with fish kills in South Carolina retention ponds was

associated with high levels of DON (Kempton et al. 2002). Based on what is known

about K. veneficum physiology, urea has the potential for meeting its daily nitrogen

demand and simulating blooms.

The potential regulation of urease activity by NH4
+ in dinoflagellates that

bloom during late spring and summer is important ecologically. Typically, NO3
-

concentrations are lower during those months in estuaries and NH4
+ and urea make up

a larger percentage of the available nitrogen pool than during the winter or early

spring (Bronk et al. 1998, Glibert et al. 2005, Twomey et al. 2005). If NH4
+ is not
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present at concentrations that repress urease activity, then urea may be responsible for

meeting most, if not all, of the nitrogen demand of the dinoflagellates P. minimum

and K. veneficum. Ambient levels of NH4
+ in the tributaries of Chesapeake Bay can

reach ~ 20 µg-at N l-1 (Glibert et al. 2005, Solomon et al. submitted), which may be

enough to suppress urease activity during the late spring and summer months in

estuaries and coastal areas. The possible regulation of urease by NH4
+ in

dinoflagellates, but not diatoms, is important to explore further for better

understanding the differences in nitrogen metabolism and physiological ecology in

these two phytoplankton taxonomic groups.

Conclusion

Urease activity is possibly regulated differently by nitrogen sources among

and within phytoplankton taxonomic groups. Based on a review of the literature

which only encompasses one to a few species in each taxonomic group, diatom urease

may be repressed by NO3
- while dinoflagellate and cyanobacterial ureases may be

repressed by NH4
+. Urease in cryptophytes and haptophytes, at the present time,

does not seem to be regulated by nitrogen source. The differential regulation of

urease activity among various phytoplankton taxonomic groups may have

implications for understanding differences in nitrogen metabolism and providing

biochemical explanations to why diatoms and dinoflagellates bloom under different

environmental conditions.
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Tables

Table 3.1 Growth rates (d-1 ± SD) of the five phytoplankton species grown on NO3
-,

NH4
+, and urea

Growth substrate - NitrogenPhytoplankton
species NO3

- NH4
+ Urea

Dinoflagellates
P. minimum (n=3) 0.34±0.02 0.31±0.04 0.29±0.01
K. veneficum (n=3) 0.42±0.06 0.52±0.06 0.49±0.07
H. triquetra (n=2) 0.21±0.04 0.24±0.00 0.23±0.01

Cryptophyte
S. major (n=3) 0.65±0.02 0.71±0.03 0.69±0.02

Haptophyte
Isochrysis sp. (n=2) 0.85±0.01 0.72±0.01 0.78±0.00
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Table 3.2 Intracellular NH4
+ and urea concentrations, N content of cells and contribution of NH4

+ and urea to total cellular N content
(±SD) of phytoplankton grown on different nitrogen sources.

Phytoplankton
species

Growth
substrate

NH4
+

(mg at N l-1)
% of total
cellular N

Urea
(mg at N l-1)

% of total
cellular N

Total pg-at
N/cell

C:N
(molar)

Dinoflagellates
P. minimum NO3

- 4.39±2.44 15.3±5.79 0.80±1.15 2.29±2.84 2.02±0.38 9.90±1.23
(n=3) NH4

+ 41.8±18.4 25.2±8.86 0.39±0.60 0.98±1.20 1.76±0.24 9.65±0.24
Urea 159±26.6 25.4±4.98 2.14±0.30 9.92±1.60 1.59±0.08 10.0±0.41

K. veneficum NO3
- 504±148 45.0±9.62 0.26±0.40 2.54±2.21 1.49±0.22 5.01±1.18

(n=3) NH4
+ 477±71.2 53.8±4.99 0.29±0.39 2.76±2.32 1.19±0.13 7.90±4.47

Urea 246±74.7 39.0±9.65 3.46±0.44 42.0±8.98 0.84±0.08 8.04±5.25

H. triquetra NO3
- 86.3±52.0 30.9±13.9 0.08±0.16 0.79±1.12 0.35±0.06 8.89±0.94

(n=2) NH4
+ 79.5±6.66 23.1±4.90 0.56±0.75 3.55±1.92 0.46±0.13 7.89±0.40

Urea 19.3±0.12 7.87±1.63 2.99±0.23 32.8±6.68 0.33±0.07 9.20±0.32

Cryptophyte
S. major NO3

- 5.41±1.10 2.33±0.47 2.03±1.45 2.47±1.83 0.85±0.09 6.45±0.39
(n=3) NH4

+ 5.48±0.57 3.44±0.29 2.95±1.91 3.61±1.71 0.58±0.06 8.16±0.25
Urea 6.61±1.11 4.46±0.76 1.22±0.49 1.49±0.42 0.54±0.01 7.94±0.32

Haptophyte
Isochrysis sp. NO3

- 27.9±2.82 3.15±0.46 0.72±1.05 0.96±0.73 0.14±0.01 7.83±0.28
(n=2) NH4

+ 19.3±10.2 2.44±1.23 0.16±0.31 0.20±0.28 0.13±0.00 8.37±0.66
Urea 10.5±1.28 1.51±0.25 0.53±0.56 0.72±0.62 0.12±0.01 8.09±0.50
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Table 3.3 Average urease kinetic parameters (±SD), Vmax-cell (fg-at N cell-1 h-1) and Km (µg-at N l-1) for all five phytoplankton
species. Data represent mean (±SD) for all replicates. The correlation coefficient (r2) represents the best fit to a non-linear model. All
measurements were conducted during mid- to late exponential growth phase. K. veneficum (*) was the only species that had
significantly higher Vmax-cell when grown on NO3

- and urea than on NH4
+ as well as a higher Km when grown on urea than NH4

+.

Growth substrate - Nitrogen
NO3

- NH4
+ Urea

Phytoplankton
species Vmax-cell Km r2 Vmax-cell Km r2 Vmax-cell Km r2

Dinoflagellates
P. minimum 38.9±3.28 610±151 0.98 23.7±6.47 137±208 0.64 43.4±10.1 439±333 0.86

K. veneficum* 32.1±5.93 26.3±92.7 0.64 15.1±5.38 114±251 0.34 36.7±9.31 604±453 0.87

H. triquetra 9.14±2.82 924±722 0.85 12.1±3.23 1765±956 0.94 4.71±1.44 459±457 0.70

Cryptophyte
S. major 8.46±2.26 266±284 0.49 9.23±3.90 553±696 0.66 9.22±1.77 476±291 0.90

Haptophyte
Isochrysis sp. 2.24±0.42 608±337 0.92 1.15±0.19 867±381 0.95 2.03±0.44 1269±624 0.95
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Table 3.4 Comparison of urease activity kinetic parameters among different phytoplankton species in culture. Units for Vmax are fg-
at N cell-1 h-1 (±SD) unless noted. Units for Km are µg-at N l-1(±SD).

Growth nitrogen source NO3
- NH4

+ Urea
Kinetic parameter Vmax Km Vmax Km Vmax Km

Diatoms
Phaeodatylum tricornutum
(Syrett and Leftley 1976)

460
(Leftley and Syrett 1973) 2.22 nmol CO2

liberated/mg
protein h-1

(Rees and Bekheet 1982) 450 nmol C mg
protein-1 h-1

(Syrett and Peplinska, 1988) 5-9 nmol urea
decomposed (107

cells h)-1

Cyclotella cryptica
(Oliver and Anita 1986)

0.36 µM urea
hydrolyzed min-1

mg protein-1

0.47 µM urea
hydrolyzed min-1

mg protein-1

Thalassosira weissflogii1

(Peers et al. 2000) 1667 1667 1667
(Fan et al. 2003)2 19.80±5.67 44.71±9.23 45.07±13.68

46.26±3.6 120±53.8
(Lomas 2004) 17.9±5.9 41.7±8.3 55.3±15.9

Thalassosira pseudonana3

(Peers et al. 2000)
167
718 nmol C mg
protein-1 h-1

41.7 312.5
2.7 x 103 nmol C
mg protein-1 h-1



93

Table 3.4 con’t Vmax Km Vmax Km Vmax Km

Dinoflagellates
Prorocentrum minimum
(Fan et al. 2003)2

61.75±10.74 48.47±22.02 64.96±12.35
112±9.94 165±45.7

(Solomon et al., this study) 38.9±3.28 610±151 23.7±6.47 137±208 43.4±10.1 439±333

Alexandrium fundyense
(Dyhrman and Anderson
2003)

not detectable
77.01 (low nitrate)
100.5 (low nitrate)
140.17 (low nitrate)

~10 ~110

Karlodinium veneficum
(Solomon et al., this study)

32.1±5.93 26.3±92.7 15.1±5.38 114±251 36.7±9.31 604±453

Heterocapsa triquetra
(Solomon et al., this study)

9.14±2.82 924±722 12.1±3.23 1765±956 4.71±1.44 459±457

Pelgaophytes
Aureococcus
anophagefferens
(Fan et al. 2003)2

6.54±2.07 6.03±1.53
4.22±0.22 144±39.4

Cryptophyte
Storeatula major
(Solomon et al., this study)

8.46±2.26 266±284 9.23±3.90 553±696 9.22±1.77 476±291

Haptophytes
Isochrysis sp.
(Solomon et al., this study)

2.24±0.42 608±337 1.15±0.19 867±381 2.03±0.44 1269±624
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Table 3.4 con’t Vmax Km Vmax Km Vmax Km

Cyanobacteria (for more
see Collier et al. 1999)
Anabaena doliolum
(Rai and Singh, 1987)

596.8 nmol urea
hydrolyzed mg-1

protein h-1

120 µM3 230.0 nmol urea
hydrolyzed mg-1

protein h-1

630.0 nmol urea
hydrolyzed mg-1

protein h-1

Anabaena variabilis
(Ge et al. 1990)

52.0±1.88 pmol
CO2 released mg
protein-1 h-1

34.2±0.92
pmol CO2 released
mg protein-1 h-1

Anacystis nidulans
(Rai and Singh, 1987)

568.4 nmol urea
hydrolyzed mg-1

protein h-1

250 µM,
1.66 mM4

(biphasic)

214.0 nmol urea
hydrolyzed mg-1

protein h-1

598.0 nmol urea
hydrolyzed mg-1

protein h-1

Synechococcus (WH7805)
(Collier et al. 1999)

14, 22 nnmol urea
hydrolyzed min-1

mg protein-1

512, 20.2

232 3.2, 3.5 nnmol urea
hydrolyzed min-1

mg protein-1

52.94, 3.22

4.3, 5.7 nnmol
urea hydrolyzed
min-1 mg protein-1

53.95, 5.23

Prochlorococcus marinus
(PCC 9511) (Palinska et al.
2000)

94.6 mol urea
hydrolyzed min-1

mg protein-1

61.74 ng-N cell-1

h-1

0.23 mM

Nostoc muscorum
(Singh 1993)

0.6 nnmol urea
hydrolyzed min-1

mg protein-1

9.8 nnmol urea
hydrolyzed min-1

mg protein-1

1Values from Peers et al. (2000) were taken from Day 1 of their experiment. 2Fan et al. (2003) used SE, not SD. 3Conversions from pg N cell-1 d-1 done by Peers et al. (2000). 4For cultures grown on
combined nitrogen sources (NH4Cl, Ca(NO3)3, urea) 5Conversions from nmol urea hydrolyzed min-1 mg protein-1 using 500 fg protein cell-1 for WH7805 (Kramer and Morris, 1990) 6Conversions from
mol urea hydrolyzed min-1 mg protein-1 using an average of 21.5 fg protein cell-1 for Prochlorococcus sp. (Zubkov and Tarran, 2005).
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Figures

Fig. 3.1 Kinetic curves of urease activity per cell in five different phytoplankton
species as function of urea concentration. Each line represents data from cultures
grown on a different nitrogen substrate. The kinetic parameters for each relationship
are reported in Table 3.3.
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Fig. 3.2 Same as Fig. 3.1 except urease activity is given on a per cell volume basis.
Note: the kinetic curve for P. minimum grown on NO3

- was too low to be shown in
the figure.
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Fig. 3.3 Same as Fig. 3.1 except urease activity is given on a per chl a basis. Note:
the kinetic curve for K. veneficum grown on NH4

+ was too low to be shown in the
figure.
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Fig. 3.4 Comparison of potential urease activity (dark bars) versus nitrogen demand
(open bars) calculated on an hourly basis for the seven phytoplankton species on a log
scale. Species denoted with an asterisk (*) are estimates from Fan et al. (2003).
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Fig. 3.5 A comparison of biochemical regulation of enzymes involved with nitrogen
acquisition (i.e. urease and nitrate reductase) in diatoms and dinoflagellates under two
different environmental conditions: high NO3

- concentrations which occur in early
spring and higher contribution of NH4

+/urea in late spring and summer in Chesapeake
Bay. Enzymes responsible for the major pathways such as nitrite and nitrate
reductase (NiR/NR), glutamate synthetase & glutamine 2-oxoglutarate
aminotransferase (GS/GOGAT) and urease and those that are repressed by NO3

- or
NH4

+ are shown with a X. The circular loop represents the urea cycle. The size of
the font indicates relative concentrations of NO3

-, NH4
+ or urea.
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Chapter 4: Microbial urea uptake and urease activity in
Chesapeake Bay
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Abstract

Urea uptake and urease activity were studied over a nutrient gradient from

Chesapeake Bay to the Sargasso Sea during two dry (2001, 2002) and two wet years

(2003, 2004). The dry and wet years presented contrasting conditions in nitrogen

concentrations and microbial communities, especially in the mesohaline Bay (Mid

Bay), and possibily differences in regulation between urea uptake and urease activity.

Urea uptake and urease activity changed seasonally, with the highest rates observed

during the summer. Urea uptake was more tightly regulated by nitrogen availability

than urease activity, sometimes leading to lower urea uptake than urease activity

rates. The utilization of urea, as indicated by higher urea uptake and urease activity

rates, increased from the Upper Bay to the Sargasso Sea, reflecting the importance of

urea in N-limiting waters.

Introduction

Phytoplankton and bacteria utilize many nitrogenous substrates including

NO3
-, NH4

+, urea, and amino acids (Capone 2000; Kirchman 2000). Many enzymes

are involved with the assimilation of these substrates. Urease, the enzyme that

catabolizes urea to NH4
+ and CO2, has been studied only in a few phytoplankton

species (Collier et al. 1999; Fan et al. 2003; Dyhrman and Anderson 2003; Solomon

and Glibert submitted). Utilization of most nitrogen sources, including urea, also

requires the active uptake of the substrate into the cell (Capone 2000). The

examination of both urea uptake and urease activity is necessary to understand how

urea is utilized under different environmental conditions in estuaries.
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The significance of urea utilization by phytoplankton and bacteria is

beginning to be appreciated (Berman and Bronk 2003; Glibert et al. 2006). Urea

uptake can account for > 50% of total nitrogen uptake in some coastal areas (Glibert

et al. 1991, 1995; Kudela and Cochlan 2000) and can satisfy nitrogen metabolic

requirements in some species in culture (Fan et al. 2003; Solomon and Glibert

submitted). Higher urea uptake rates have been observed during blooms of both

dinoflagellates and cyanobacteria than of other phytoplankton such as diatoms

(Kudela and Cochlan 2000; Collos et al. 2004; Glibert et al. 2004, 2006).

In recent years, measurements of urease activity in culture and field studies

have expanded our understanding of urea utilization. Urease activity seems to be

inversely correlated with inorganic nitrogen and positively correlated with organic

nitrogen. For example, urease activity rates were found to be higher when NO3
- and

NH4
+ concentrations were low during a dinoflagellate bloom of Alexandrium sp., than

prior to the bloom in the western Gulf of Maine (Dyhrman and Anderson 2003).

Higher rates of urease activity were observed in a bloom of the cyanobacterium,

Synechococcus elongatus, in Barnes Key in Florida Bay than in nearby areas that had

higher dissolved inorganic nitrogen (DIN) concentrations (Glibert et al. 2004). On

the West Florida Shelf, Heil et al. (in press) found the highest urease activity at the

mouth of the Peace and Shark rivers where urea and dissolved organic nitrogen

(DON) levels were higher than offshore sites. Urease activity, like urea uptake, also

appears to be related to the taxonomic composition of phytoplankton. For example,

urease activity rates in a dinoflagellate culture (Prorocentrum minimum) were

observed to be higher on a per cell basis than in a diatom and a pelagophyte culture
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(Fan et al. 2003). In a bloom of P. minimum in the Corsica River, Maryland, urease

activity rates were four-fold higher than outside the bloom (Salerno 2005). On the

West Florida Shelf, regions with high urease activity were dominated by

dinoflagellates, including Karenia brevis, and cyanobacteria, as opposed to southern

regions on the shelf with lower urease activity and higher percentage of diatoms (Heil

et al. in press).

Chesapeake Bay offers a natural setting in which to examine the regulation of

urea utilization by a variety of environmental factors. Freshwater flow into the

Chesapeake Bay establishes a gradient in nitrogen availability (Fisher et al. 1992;

Glibert et al. 1995; Bronk et al. 1998) and community structure (Adolf et al. 2006).

The upper reaches of the estuary are dominated by oxidized forms of nitrogen (e.g.

NO3
- and NO2

-; Fisher et al. 1992; Kemp et al. 2005). Reduced forms such as NH4
+,

urea, and DON become progressively more important from the upper to the lower

parts of the estuary (Glibert et al. 1995; Bronk et al. 1998). If urea uptake and urease

activity are regulated by NO3
- and NH4

+, rates would be expected to increase from the

upper to lower parts of Chesapeake Bay. If particular phytoplankton species are

major users of urea, urea uptake and urease activity would be expected to vary with

phytoplankton community composition. To test these hypotheses, we measured both

urea uptake and urease activity and compared these rates to available taxonomic data

over a period of four years (2001-2004) at three sites in the Chesapeake Bay, its

plume, and the Sargasso Sea.
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Methods

Field sampling

Samples were collected from three stations in Chesapeake Bay (Fig. 4.1) in

the spring, summer, and fall from 2001-2004, with the exception that only one station

(Mid Bay) was sampled in summer 2003. The first station was in the upper reaches

of the Bay (Upper Bay), the second site was mid-Bay (Mid Bay), while the third site

was near the mouth of the Bay (Lower Bay). During some cruises, additional sites

were sampled in Chesapeake Bay plume (April 2002, October 2004) and the Sargasso

Sea (April 2002, 2004).

Hydrological data

Water was collected from near-surface and near-bottom using Niskin bottles

mounted on a 12 bottle General Oceanic 1015 rosette aboard the R/V Cape Henlopen.

Only the surface data are presented here. Salinity and temperature data were taken

with a Seabird 911 CTD. Monthly and daily streamflow data into Chesapeake Bay

were obtained from the United States Geological Survey

(www.usgs.gov/monthly/bay1.html).

Nutrients

At each station, water from the Niskin bottles was filtered through

precombusted GF/F filters (450ºC for 1 h) into acid-washed bottles for later

determination of nutrients in the laboratory. Concentrations of NO3
-, NO2

-, NH4
+, and

PO4
3- were determined with a Technicon Autoanalyzer II (Lane et al. 2000). Urea
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concentrations were measured by the urease method described by Parsons et al.

(1984) until April 2004. Samples taken after April 2004 were measured by the

diacetylmonoxime method which was found to have a smaller salt interference than

the urease method (Mulvenna and Savidge 1992; Revilla et al. 2005). Total dissolved

nitrogen (TDN) concentrations were determined by persulfate oxidation (Bronk et al.

2000) while total dissolved phosphorus (TDP) was measured by the method of

Solórzano and Sharp (1980). Concentrations of DON and dissolved organic

phosphorus (DOP) were determined by subtracting inorganic nitrogen from TDN, and

PO4
3- from TDP. Concentrations of particulate carbon (PC) and particulate nitrogen

(PN) were analyzed with an Exeter Analytical Incorporated CE-440 elemental

analyzer.

Plankton composition and biomass

For chlorophyll a (chl a) and pigment analyses, water was also filtered

through precombusted GF/F filters (450ºC for 1 h), and the filters were immediately

frozen onboard at -20ºC. Once back in the laboratory, samples were stored in a -80ºC

freezer until analysis. Chl a samples were analyzed by extraction with acetone

(Parsons et al. 1984), then measured on a 10-AU Turner Designs flourometer.

Pigment analyses were done according to Van Heukelem et al. (1994) and Van

Heukelem and Thomas (2001) on a Hewlett Packard high-performance liquid

chromatograph (HPLC; Model 110) system. Results from pigment analyses were

analyzed using the CHEMTAX software program (Mackey et al. 1996) using a

matrix calibrated for estuarine phytoplankton (Adolf et al. 2006) that gave the relative
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abundance of seven taxonomic groups (f_chl-ataxa): prasinophytes, dinoflagellates,

cryptophytes, haptophytes, chlorophytes, cyanobacteria, and diatoms. Since

CHEMTAX analysis is not completely robust (e.g. Lewitus et al. 2005), further

analysis was conducted to ensure that certain groups of phytoplankton were detected

such as dinoflagellates that lack peridinin. Dinoflagellates such as Karlodinium

veneficum (formerly K. micrum and Gyrodinium galatheaum; Bergholtz et al. 2006)

contain 19'-hexanoyloxy-fucoxanthin (Tengs et al. 2000; Bergholtz et al. 2006) which

CHEMTAX uses as an indicator of haptophytes which leads to misidentification of

this group of phytoplankton. To prevent misidentification, preserved samples (in

Lugol’s solution, 4% glutaraldehyde or 2% formalin) of a few selected time points

and stations with high 19'-hexanoyloxy-fucoxanthin concentrations were analyzed by

microscopsy. Phytoplankton biomass estimates were based on conversions of

chlorophyll to carbon biomass using an average estimate of C:Chl a of 75 (Hagy et al.

2005).

Samples for the enumeration of bacteria were collected from water at the same

sites. Bacteria were preserved at the time of collection in 2% formalin and stored at

4°C until stained with DAPI (4’-6-Diamidino-2-phenylindole) and counted on an

epiflouresent microscope. Replicate counts during different months were conducted

to ensure there was no cell loss over the storage period. Estimations of bacterial

biomass were obtained by converting bacteria cell densities to carbon biomass using

19.5 fg C cell-1 (Ducklow 2000).
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Urea uptake and urease activity

Urea uptake and urease activity samples were collected for both whole and

<1.6 µm fractions. The whole fraction consisted of unfiltered water while the <1.6

µm fraction was obtained by filtering water through precombusted GF/A filters (1.6

µm pore size; 450ºC for 1 h). Urea uptake rates were determined on both size

fractions using 15N tracer techniques (Glibert and Capone 1993). Incubations were

conducted in 1 L acid-washed polycarbonate bottles with 0.5 µg-at N L-1 15N-urea

(resulting in atom % enrichment of 13.1 to 100%) under 60% natural irradiance using

neutral-density screening for 30 min. After the incubations, water was filtered onto

one GF/F filter for the whole fraction and onto a double layer of GF/F filters for the

<1.6 µm fraction to retain as much bacteria as possible. Once filtering was complete,

samples were immediately frozen. Samples were dried at 50°C, packed into tin

boats, and analyzed on a SerCon mass spectrometer.

Urease activity samples were collected from the same size fractions.

Particulate matter was collected immediately onto filters in a similar fashion as for

the urea uptake samples, and the filters were frozen in liquid N2 until analysis.

Samples were analyzed for urease activity within one week of sampling using the

method of Peers et al. (2000) which was further improved by Fan et al. (2003).

Beginning in August 2003, urease activity samples were analyzed using an optimized

assay for field samples (Solomon et al. submitted). Conversions on data prior to

August 2003 were made using an equation developed from samples collected from a

range of sites and seasons analyzed by both methods (Solomon et al. submitted).
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Urease activity was normalized on a per chl a biomass (ng at-N µg chl a-1 h-1) basis

for temporal and spatial comparisons.

Statistical analysis

Data from all four years were analyzed to determine the extent to which

environmental parameters explained variability in urea uptake and urease activity in

Chesapeake Bay. The original urease activity and urea uptake data did not have a

normal distribution, so the data were transformed using the square root function.

Two-way ANOVAs were run to detect any significant relationships between seasons

or stations in urea uptake and urease activity.

Physical factors (salinity and temperature), nitrogen availability (NO3
-, NH4

+,

urea), and phytoplankton community composition (diatoms, dinoflagellates,

cryptophytes, cyanobacteria, and haptophytes) are strongly inter-correlated, so

principal component analyses (PCA; S-PLUS, Insightful Corporation, 2002) were

conducted to produce a new set of linear combined variables and reduce the number

of variables to be used in a multiple regression model.

Two considerations were used in determining which variables should be

combined to form a new set of linear variables. The first consideration was the

relationship between urea uptake and urea concentration which is non-linear and

follows Michealis-Menten enzyme kinetics. However, the relationship between the

reaction rate and substrate concentration is close to linear below the half-saturation

constant, Ks. Ambient urea concentrations from all sites were <1.5 µg-at N L-1 which

is close to Ks of <1.0 µg-at N L-1 in many natural assemblages (reviewed in Kudela
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and Cochlan 2000). Thus in most cases, the relationship between urea uptake and

ambient urea concentrations is expected to be linear.

The second consideration was which values from the CHEMTAX analysis

should be used to form the linear combined variables. Five major taxonomic groups

(diatoms, dinoflagellates, cryptophytes, cyanobacteria and haptophytes) were chosen

for the PCA analysis because they represented the largest percentage of the floral

community in Chesapeake Bay (Adolf et al. 2006). Once the set of environmental

variables to use was determined, the PCA analysis allowed for the visualization of

how each combined variable changed over time at each Chesapeake Bay station.

Urea uptake and urease activity were then modeled using multiple regressions with

the new combined variables resulting from PCA analysis (PC1, PC2, PC3). The

level of significance in the multiple regressions was set at p <0.1.

Results

Physical features

All three stations in Chesapeake Bay exhibited an annual pattern in both

temperature and salinity (Table 4.1). Of the sampled months, the coldest

temperatures observed were recorded in April (7.3 to 11.6ºC) and the warmest

temperatures in July or August (25.5 to 27.7ºC). Salinity increased from the mostly

freshwater Upper Bay station (<9) to the Lower Bay station (>16.7). Salinity was

lower in 2003 and 2004 than in 2001 and 2002 (Table 4.1). The average streamflow

from the Susquehanna River in 2001 and 2002, considered to be dry years, was
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<1,700 m3 s-1 which was below the range of normal streamflow (1,900-2,600 m3 s-1;

USGS 2006). Average streamflow into Chesapeake Bay in 2003 and 2004,

considered to be wet years, exceeded 3000 m3 s-1 (USGS 2006) and reduced salinity

levels by approximately 5 throughout Chesapeake Bay. The timing of the spring

freshet differed each year, which had an influence on the nutrient concentrations at

the time of sampling in April. In 2001, 2003, and 2004, the freshet occurred prior or

during the spring sampling period. However, in 2002, the spring freshet occurred

after the spring sampling (data not shown).

Dissolved nutrient distributions

Nitrogen concentrations followed a gradient from the Upper to Lower Bay.

Average TDN during 2001-2002 was the highest in the Upper Bay (98.7± 28.7 µg-at

N L-1) and decreased southward to Lower Bay (9.84 ±4.47 µg-at N L-1; Table 4.2).

NO3
- concentrations were the highest in the Upper Bay and reached >90 µg at N l-1 

annually in April (Fig. 4.2), except in 2002 when the spring freshet, the main supply

of NO3
-, occurred in May (data not shown). NO3

- levels dropped substantially from

April to July/August at all stations, with the exception of the Upper Bay station in

2004. The sampling period in July 2004 was preceded by a peak in daily stream flow

which kept NO3
- levels high. NH4

+ and urea concentrations were comparable at all

stations (Fig. 4.2), but the percentage contribution to TDN increased southward. At

the Upper Bay station, NH4
+ and urea together on average contributed <15% of the

TDN. The contribution of NH4
+ and urea to TDN at the Mid and Lower Bay stations

was 39 and 62%, respectively. Urea was a large percentage of TDN at the Lower
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Bay station, with a maximum contribution of 75% occurring in October 2002. The

ratio of DON (including urea) to TDN was the highest in Lower Bay.

Concentrations of PO4
3- progressively decreased from Upper to Lower Bay

(Table 4.2), while concentrations of DOP remained approximately constant, between

0.3-0.36 µg-at P L-1 (data not shown). Average TDP concentrations were greater in

the Upper Bay than in the other regions during each season (Table 4.2). The

decrease in average TDP from Upper to Lower Bay was driven by the decrease in

PO4
3- (Table 4.2).

Seasonal patterns in the DIN:DIP ratio, which is indicative of inorganic N- or

P-limitation in plankton (Redfield 1958; Falkowski 2000) were apparent (Table 4.2).

Limitation by inorganic P was evident at all three sites in Chesapeake Bay during

spring with DIN:DIP values 8-19 fold higher than the stoichiometric proportion of

16:1. The severity of P-limitation increased at Upper and Mid Bay stations from

the dry years of 2001-2002 to the wet years of 2003-2004. During summer and fall,

DIN:DIP ratios progressively decreased southward during the dry years, with Mid

and Lower Bay showing N-limitation. During the wet years, average DIN:DIP

values indicated possible N-limitation only at the Lower Bay station during the

summer, and balanced nutrient availability during the fall. At the plume station,

DIN:DIP ratios indicated a shift from N-limitation during the dry years to P-limitation

during the wet years. N-limitation at the Sargasso Sea site was evident during both

dry and wet years in both spring and the fall.
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Plankton composition and distribution

Phytoplankton biomass (chl a) followed different trends at different stations

(Fig. 4.3). During the dry years (2001-2002) at the Upper Bay station, chl a biomass

peaked in the summer or fall. In contrast, during 2003 and 2004, the highest chl a

biomass was found in spring. Chl a biomass at the Mid Bay station did not follow

any consistent temporal patterns. Chl a biomass did not exceed 6.98 µg chl a L-1  

during 2001-2002 at the Lower Bay station, but was between 5.00 and 18.1 µg chl a

L-1  during 2003-2004.

The relative abundance of phytoplankton taxonomic groups differed between

the three Chesapeake Bay stations (Fig. 4.4). Phytoplankton composition at the

Upper Bay station was generally dominated by diatoms (e.g. Navicula sp., Nitzschia

sp., Skeletonema sp. and Cyclotella sp.) and cryptophytes during the spring and fall.

The phytoplankton composition in spring 2002 was unusual with a high haptophyte

and chlorophyte signal. The summer phytoplankton community differed during the

dry and wet years. Dinoflagellates composed 26-49% of the phytoplankton

community during the summers of 2001 and 2002 while cryptophytes (50%), diatoms

(30%) and chlorophytes (17%) were more abundant during 2004. The fall

phytoplankton community in 2004 was different than preceding years with an

unusually high percentage of chlorophytes (42%), followed by cryptophytes (37%)

and cyanobacteria (12%).

Like Upper Bay, the phytoplankton community of the Mid Bay station shifted

from dry to wet years. During the dry years, diatoms dominated in April (2001: 78%;

2002: 84%). The contribution of diatoms (e.g. Cyclotella sp., Thalossosira sp.,
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Chaetoceros sp.) to the total phytoplankton community decreased during the wet

years (2003: 69%; 2004: 52%), while the contribution of dinoflagellates and

cryptophytes increased. The summer phytoplankton community saw a shift from

dominance by cyanobacteria, dinoflagellates (such as Ceratium sp. and Prorocentrum

minimum), and cryptophytes (2001: 55%; 2002: 63%) during the dry years to diatoms

and cryptophytes (2003: 91%; 2004: 89%) during the wet years. In the small

percentage of dinoflagellates present during the wet years, Akashiwo sanguinea, P.

minimum and Gonyaulax sp. were observed. The fall phytoplankton community

changed slightly from dry to wet years. Diatoms and cryptophytes consistently

dominated the fall phytoplankton community, but their contribution increased from

74-79% during the dry years to 86-90% during the wet years.

The phytoplankton composition of the Lower Bay station changed from year

to year, rather than from dry to wet years. Diatoms (e.g. Skeletonema sp.,

Rhizolenia sp., Pleurosigma sp. and centric diatoms <20 µm) and cryptophytes

consistently dominated the spring community (76-99%). The summer community

varied from one dominated by dinoflagellates and cyanobacteria (2001: 62%), to

cyanobacteria (2002: 65%), and then cyanobacteria and cryptophytes (2004: 70%).

In fall, diatoms and cyanobacteria dominated the phytoplankton community from

2001-2003 (73, 80, 84%), while diatoms and cryptophytes dominated in 2004 (79%).

The plume and Sargasso Sea stations had a different phytoplankton

community composition than in the Bay (data not shown). The plume, which was

only sampled in April 2002 and 2004, consisted of primarily diatoms (76 and 93%

respectively). However, in 2002, there were also minor contributions from
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haptophytes (7%) and prasinophytes (7%). The Saragasso Sea station had 30%

diatoms, 23% cyanobacteria, 10% haptophytes, and 10% cryptophytes in April 2002.

Two years later in October 2004, cyanobacteria and haptophytes collectively

composed 89% of the phytoplankton community.

Bacteria abundance also exhibited a seasonal pattern (Fig. 4.3). In Upper and

Mid Bay, bacteria abundance peaked either in summer or fall. The Lower Bay had a

higher abundance of bacteria (reaching > 8 x 106 cells mL-1) which peaked during the

summer months. Bacterial abundance was higher during 2001-2002 than 2003-2004

in both Upper Bay and Lower Bay (Fig. 4.3). In Mid Bay, bacterial abundance had

similar seasonal patterns and levels throughout 2001-2004.

Urea uptake and urease activity rates

Both urea uptake and urease activity in surface waters exhibited significant

seasonal patterns throughout the Bay (ANOVA, p<0.05). Both urea uptake and

urease activity in the whole fraction, when normalized to chl a biomass, generally had

an annual peak in the summer months at all stations (Fig. 4.5). Urea uptake in the

<1.6 µm fraction contributed on average <11% of the total urea uptake in the Upper

and Lower Bay (Fig. 4.6). In Mid Bay, average contribution by the <1.6 µm fraction

to total urea uptake was 17% of total urea uptake rates, but did not exhibit any

seasonal patterns. Urease activity from the <1.6 µm fraction contributed more of

the total urease activity in April and October than during the summers of 2002-2004

at all stations. The percent contribution of the <1.6 µm fraction was the highest in

Mid Bay, and where it often was responsible for total urease activity.
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Urea uptake and urease activity had no spatial pattern on a volumetric basis

(Fig. 4.7A, B) but both rates showed a significant increasing pattern from the

freshwater to oceanic site when normalized for chl a biomass (Fig. 4.7C, D; ANOVA,

p<0.05).

Relationships between physical factors, nitrogen availability, phytoplankton
community composition and urea uptake and urease activity

Generally, a positive linear relationship existed between urea uptake and

urease activity in Chesapeake Bay. Urea uptake and urease activity were positively

related bay wide (n = 34, r2 = 0.24, p <0.05), but the relationship was strongest in

Upper Bay (n=11, r2 = 0.68, p<0.05) and Lower Bay (n=11, r2 = 0.59, p<0.05).

However, urea uptake rates were, at times, not similar to urease activity rates (Fig.

4.8). During 2001-2002, urea uptake rates were often much higher (2.01-170 ng-at N

µg chl a-1 h-1) than urease activity rates (0-88 ng-at N µg chl a-1 h-1), while during

2003-2004, uptake rates often were the same as urease activity or lower.

The PCA analysis created several combined principal components based on

physical factors, nitrogen availability, and phytoplankton community composition.

The proportion of variance in environmental variables explained from the first three

principal components (PC1, PC2, PC3) varied from 0.78 to 0.82 at the three Bay

stations (Table 4.3). At all stations, PC1 was primarily driven by temperature and

salinity (Fig. 4.9). PC1 was also related to the relative abundance of several

phytoplankton taxonomic groups which differed at each Bay Station. In the Upper

Bay, warmer temperatures and more saline waters were associated with f_chl

adinoflagellates. The same conditions were associated with f_chl acyanobacteria and f_chl
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ahaptophytes but negatively with f_chl adiatoms and f_chl adinoflgellates in the Mid Bay. The

Lower Bay PC1 was positively related to all of the taxonomic groups except f_chl

adiatoms. PC2 was driven by different variables at each Bay station. In the Upper

Bay, PC2 was positively related to f_chl adiatoms and negatively related to f_chl

acyanobacteria. The Mid Bay PC2 was primarily associated with salinity and f_chl

adiatoms, but negatively with f_chl acryptophytes. Nutrient availability, especially NH4
+,

and urea, positively drove PC2 in the mostly nitrogen-limited Lower Bay. Salinity

and f_chl ahaptophytes were also negatively associated with PC2 in the Lower Bay.

Urea uptake and urease activity were not related to any environmental

variables in the Upper Bay (Table 4.4). However in the Mid and Lower Bay, urea

uptake and urease activity were significantly related to one or more PC variables.

Urea uptake was significantly correlated to PC1 in Mid Bay which represented

warmer temperatures, higher salinity, and the presence of cyanobacteria and

haptophytes, not diatoms and dinoflagellates, which occurred during the summer

months (Fig. 4.9). Urea uptake was also significantly correlated to PC3, which was

primarily driven by urea concentrations, in Lower Bay (Tables 4.3 & 4.4). Urease

activity was significantly correlated to all three PC variables in Mid Bay (n = 9, r2 =

0.89; Table 4.3). Urease activity was also strongly correlated with PC1 and PC2 in

Lower Bay. Warmer temperatures were associated with the presence of

cyanobacteria, dinoflagellates, and cryptophytes as well as NH4
+ and urea availability

during the summer months (Fig. 4.9).

One factor not examined in the PCA analysis was the role of bacteria. Urea

uptake and urease activity decreased with increasing ratio of phytoplankton:bacteria
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biomass (Fig. 4.10). However, the relationship between urea uptake and urease

activity rates and phytoplankton:bacteria biomass was weak (n= 34, p >0.05).

Discussion

A wide range of phytoplankton and bacteria can use urea to meet their

nitrogen metabolic demand, especially in N-limiting waters (Anita et al. 1991;

Kirchman 2000). The ability of those organisms to utilize urea depends on the

regulation of urea uptake and urease activity in natural waters. The data presented

here suggest that seasonal and spatial variations in urea uptake and urease activity

were the result of regulation by environmental factors, such as temperature and

nutrient availability, interacting with the species composition of the planktonic

communities. These environmental factors often co-vary making it difficult to

identify a single dominant factor. Principal component analysis (PCA) made it

possible to identify groups of variables related to variations in urea uptake and urease

activity. By combining environmental factors into one independent variable, PCA

showed that higher urea uptake and urease activity were generally associated with

warmer temperatures, lower NO3
- but higher NH4

+ and urea availability, and the

presence of cyanobacteria, cryptophytes and haptophytes.

Seasonal changes in rates of urea uptake and urease activity

Both urea uptake and urease activity rates were generally higher during the

summer in more saline waters in Chesapeake Bay. For instance, urea uptake and

urease activity were positively correlated to warmer temperatures and higher salinity

(PC1) in Mid Bay. Higher rates of urea uptake in the warmer months have also
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previously been measured in temperate estuaries (Kristiansen 1983; Glibert et al.

1991; Bronk et al. 1998; Lomas et al. 2002). The importance of temperature is

suggested by positive relationships between urea uptake and temperature observed in

diatom-dominated assemblages (in contrast to negative relationships between NO3
-

uptake and temperature for similar diatom-dominated assemblages; Lomas and

Glibert 1999). Urease activity was also found to be higher when growth

temperatures were similar to temperatures observed during the summer months (20-

30ºC) in three phytoplankton species, Aureococcus anophagefferens, Thalassiosira

weissflogii and Prorocentrum minimum (Fan et al. 2003).

Regulation of urea uptake and urease activity by NO3
- and NH4

+ availability

The results from Chesapeake Bay support a growing body of evidence that

urea uptake is suppressed or inhibited by NH4
+. Urea uptake rates of phytoplankton

grown under nitrogen-replete conditions decrease after the addition of NH4
+ and/or

NO3
- to culture (Lund 1987; Lomas 2004) or field incubations (Tamminen and

Irmisch 1996). Urea uptake rates are often low in the field when NH4
+ concentrations

are high. For an example, in a recent study in the Neuse River estuary, North

Carolina, NH4
+ concentrations exceeding 40 µg-at l-1 were associated with low urea

uptake rates in the upper portion of the estuary (Twomey et al. 2005). Kristiansen

(1983) found that urea uptake was inhibited by NH4
+ concentrations higher than 1-2

µg-at N L-1 in Oslofjord, Norway. In the Mid Bay, during the dry years when NH4
+

concentrations were below 2.5 µg-at N L-1, urea uptake rates were higher and

exhibited a stronger seasonal pattern than during the following two wet years when

NH4
+ concentrations were often above 2.75 µg-at N L-1. Also, urea uptake was
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consistently associated with PC variables that had negative loading values for NH4
+

(PC1 in Mid Bay and PC3 in Lower Bay).

In contrast, little is known about regulation of urease activity by NO3
- , NH4

+

or urea. Diatoms grown on NO3
- in culture have lower urease activity than those

grown on NH4
+or urea (Solomon and Glibert submitted). Likewise, rates of urease

activity were generally low during spring when NO3
- concentrations were high and

diatoms dominated the phytoplankton community in Chesapeake Bay. Urease

activity rates were consistently the highest during the summer months, despite

differences in the phytoplankton communities. Dinoflagellates and cyanobacteria,

which dominated the summer community during the dry years, have been shown to

have lower urease activity when grown on NH4
+ in culture (Collier et al. 1999, Fan et

al. 2003, Solomon and Glibert submitted). Low concentrations of NH4
+ during the

dry years may have allowed for higher urease activity in these species. Diatoms and

cryptophytes, which were prevalent during the summer months in the wet years in

both Upper and Mid Bay, do not have lower urease activity when grown on NH4
+ in

culture (Solomon and Glibert submitted). Thus, the higher summer NH4
+

concentrations during the wet years may not repress urease activity in diatoms and

cryptophytes. The difference in regulation of urease activity by NH4
+ in diatoms and

dinoflagellates may explain why at times urease activity was positively related to

combined variables that included higher NH4
+ availability. For example, urease

activity was positively associated with PC3 in Mid Bay which had positive loadings

for both diatoms and NH4
+. Both NO3

- and NH4
+ availability regulate urease activity
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in Chesapeake Bay, but urease activity is also strongly dependent on the

phytoplankton community composition.

Urea uptake and urease activity in different microbial assemblages

Dinoflagellates have been shown to have higher urease activity per cell than

many other phytoplankton taxa in culture (Fan et al. 2003; Solomon and Glibert

submitted). For this reason, urease activity would be expected to be positively

related to combined variables that included the presence of dinoflagellates.

However, urease activity was often negatively related to the presence of

dinoflagellates. The discrepancy may be explained by how the CHEMTAX program

identified dinoflagellates and haptophytes. Further investigation into specific dates

(e.g. July 2002 in Mid Bay; PC1) when dinoflagellates were negatively related but

haptophytes were positively related to urea uptake and urease activity, found high

amounts of 19'-hexanoyloxy-fucoxanthin present during these times. K. veneficum

is generally abundant in Mid Bay during the summer months (Li et al. 2000), lending

support to the possibility that this species was present. Combined linear variables

such as PC1 and PC3 in Mid Bay and PC3 in Lower Bay that had a negative

relationship with dinoflagellates but a positive relationship with haptophytes may

actually indicate a positive relationship with the presence of the dinoflagellate, K.

veneficum. This possibility suggests that dinoflagellates, including K. veneficum, in

Chesapeake Bay may be associated with high rates of urea uptake and urease activity.

Cyanobacteria have been shown to have high urease activity on a per cell

volume basis in culture (Solomon et al. submitted). For instance, the
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cyanobacterium, Prochlorococcus marinus, has the highest reported urease activity of

any marine photosynthetic organism (Palinksa et al. 2000; Solomon and Glibert

submitted). Supporting results from culture studies, urease activity was often

positively related to the presence of cyanobacteria during the summer months in both

Mid and Lower Bay.

The negative relationship between urease activity and phytoplankton:bacterial

biomass and the large contribution to total urease activity from the <1.6 µm fraction

in this study suggested that bacteria in Chesapeake Bay did utilize urea as a substrate.

Similar observations were made in the Southern California Bight by Cho and Azam

(1995) where high rates of urea decomposition were associated with the bacterial-size

fraction especially at 100-200m. The contribution of the <1.6 µm fraction to total

urease activity was higher during the spring and fall than during the summer months.

Urease activity in the <1.6 µm fraction sometimes exceeded 100% which may be an

artifact due to changes made in the urease method during the study. Yet, those times

are probably when small flagellates, cyanobacteria and bacteria were actively

utilizing urea. Nevertheless, the role of bacteria as consumers of urea should be

considered in future studies on urea utilization.

Microbes in the <1.6 µm fraction that consisted of cyanobacteria, small

flagellates and heterotrophic bacteria were sometimes responsible for most of the

urease activity in Chesapeake Bay. In contrast, larger phytoplankton were mostly

responsible for urea uptake, with some exceptions in Mid Bay. Luxury uptake of

urea may be occurring in larger phytoplankton, resulting in large pools of intracellular

urea. Dinoflagellates have been observed to have relatively large intracellular pools
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of urea (Fan et al. 2003; Solomon and Glibert submitted). However, the possible

mechanism of storage for urea, such as vacuoles for NO3
- in diatoms (e.g Antia et al.

1963; Eppley and Catsworth 1968), is unknown. Urease activity may also be

inhibited in larger phytoplankton from a lack of Ni2+ (Oliveira and Antia 1986) or by

metabolites produced in the cell (Mobley and Hausinger 1989).

Gradient in urea uptake and urease activity rates

Chesapeake Bay, especially in the summer, has a nutrient gradient that is

created by freshwater inputs during the spring (Fisher et al. 1988; Malone et al. 1988,

Harding 1994; Kemp et al. 2005). The difference in freshwater discharge in

Chesapeake Bay during the dry (2001-2002) and wet years (2003-2004) led to a

change from N- to P-limitation in the Mid Bay, and a shift in phytoplankton

community from dinoflagellate, cyanobacteria and cryptophytes during the dry years

to diatoms and cryptophytes during the wet years. This observation is in agreement

with Adolf et al. (2006) who observed during 1995-2000 that years with strong

winter-spring freshets had a higher proportion of diatoms in the mesohaline region.

The progressive shift from high to low total nitrogen concentrations and DIN:DIP

ratios and change in nitrogen composition from mostly NO3
- to organic nitrogen as a

result of increasing stratification from Upper Bay to Lower Bay corresponded with

increasing urea uptake and urease activity.

A pattern in urea uptake and urease activity rates over a nutrient gradient has

also been observed on the West Florida Shelf (Heil et al. in press). Heil et al. (in

press) classified the north-south gradient in nutrient availability into three zones.
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The most northern zone, Zone I, was dominated by peridinin-containing

dinoflagellates and the non-peridinin containing Karenia brevis and was primarily

nitrogen-limited. The second zone, Zone II, contained mostly cyanobacteria and

diatoms and had inorganic nitrogen and phosphorus pools close to Redfield

proportions. The southern zone closest to the Everglades, Zone III, had the highest

N:P ratios and supported mostly diatoms. Urea uptake and urease activity decreased

southward with increasing inorganic nitrogen inputs and diatom-dominated

phytoplankton assemblages. Like in Chesapeake Bay, urea uptake and urease

activity increased with decreasing DIN:DIP and increasing presence of

dinoflagellates and cyanobacteria.

Nutrient dynamics can differ over time in the same location. A study that

compared Alexandrium fundyense blooms in the Gulf of Maine found different rates

of urease activity during a period of two months (Dyhrman and Anderson 2003).

An A. fundyense bloom that occurred in May was supported by lower urea and higher

DIN concentrations (DIN:DIP = 4.76) than a bloom in June. Higher urease activity

(92.5±63.9 fmol cell-1 h-1) was reported in June with a lower DIN:DIP ratio of 0.77.

Synthesizing results from field studies, urea uptake and urease activity are strongly

associated with dinoflagellates and cyanobacteria under nutrient regimes with low

DIN:DIP ratios.

Chesapeake Bay: A historical perspective

Urea concentrations and urea uptake rates from this study can be compared

with historical data from Chesapeake Bay to examine whether changes in urea
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dynamics have occurred in the recent decade. Urea concentrations were higher

during the summer and fall of 2001-2004 than prior to 1998 (but not statistically

significant; p> 0.05; Fig. 4.11A, Lomas et al. 2002). Increases in urea uptake rates

during 2001-2004 were not sufficient to keep ambient urea concentrations at constant

levels (Fig. 4.11B, Lomas et al. 2002). Urea concentrations may have increased as a

result of higher urea regeneration by benthic macrofauna (Lomstein et al. 1989),

micro- and macrozooplankton (Miller and Glibert 1998; L’Hulguen et al. 2005), and

heterotrophic bacteria (Cho et al. 1996; Therkildsen et al. 1997) or from input from

agricultural run-off (Glibert et al. 2005, 2006).

A comparison can be made with a study conducted during a dry year in

mesohaline Chesapeake Bay (Mid Bay) by Bronk et al. (1998). In spring of 1988,

urea uptake was ~33% of total nitrogen uptake with rates below 0.4 µg-at N L-1 h-1,

while in 2002 it was only 9% with a rate of 0.13 µg-at N L-1 h-1. Later during the

summer, urea uptake was ~33% of total nitrogen uptake with similar rates between

0.4-0.6 µg-at N L-1 h-1 during both 1988 and 2002. Fall uptake rates were much

lower (~0.02 µg-at N L-1 h-1) and only contributed < 20% to total nitrogen uptake

during both 1988 and 2002. The only difference between the two dry years was in

the spring, which may have resulted from the timing of sampling. In 1988, sampling

was done in May while in 2002 it was done in early April. The phytoplankton

community can change dramatically during this time period, and it might have shifted

from a predominantly diatom to a mixed diatom-dinoflagellate community that may

utilize urea at higher rates. Nevertheless, it is remarkable that two dry years that are
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more than a decade apart have similar urea uptake rates and urea contributions to total

nitrogen uptake, despite higher urea concentrations in Chesapeake Bay.

Conclusion

Chesapeake Bay provided a natural laboratory for studying urea cycling along

strong spatial and temporal gradients in temperature, nutrient availability, and

plankton community composition. These factors often co-vary, making it difficult to

identify a single dominant factor. Despite the complexity, urea uptake and urease

activity appear to be regulated by temperature and nitrogen availability in different

phytoplankton communities in Chesapeake Bay.



126

Literature cited

Adolf, J.E., Harding, L.W., Yeager, C.L., Malonee, M.E. & Miller, W.D. 2006.
Environmental forcing of phytoplankton floral composition, biomass and primary
productivity in the Chesapeake Bay, USA. Estuar. Coastal Shelf Sci. 67: 108-122.

Allen, A.E.,Ward, B.B. & Bowler, C.P. 2005. Multi-lineage richness of functional
genes in marine diatoms and transcriptional responses to nutrient stress. American
Society of Limnology and Oceanography Summer Meeting. Santiago, Spain. June
2005.

Antia, N.J., Harrison, P.J. & Oliveria, L. 1991. The role of dissolved organic nitrogen
in phytoplankton nutrition, cell biology, and ecology. Phycologia. 1: 1-89.

Antia, N.J., McCallister, C.D., Parsons, T.R., Stephens, K. & Strickland, J.D. 1963.
Further measurements of primary production using a large-volume plastic sphere.
Limnol. Oceanogr. 8: 166-183.

Berges, J.A. 1997. Minireview: Algal nitrate reductases. Eur. J. Phycol. 32:3-8.

Bergholtz, T., Daugbjerg, N., Moestrup, Ø. & Fernández-Tejedor, M. 2006. On the
identity of Karlodinium veneficum and description of Karlodinium armiger sp. nov.
(Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA,
and pigment composition. J. Phycol. 42: 170-193.

Berman, T. & Bronk, D.A. 2003. Dissolved organic nitrogen: a dynamic participant
in aquatic ecosystems. Aquat. Microb. Ecol. 31: 279-305.

Bronk, D.A., P.M. Glibert, T.C. Malone, S. Banahan and E. Sahlsten. 1998. Inorganic
and organic nitrogen cycling in Chesapeake Bay: autotrophic versus heterotrophic
processes and relationships to carbon flux. Aquat. Microb. Ecol. 15: 177-189.

Bronk, D.A., Lomas, M.W., Glibert, P.M., Schukert, K.J. & Sanderson, M.P. 2000.
Total dissolved nitrogen analysis: comparisons between persulfate, UV, and high
temperature oxidation methods. Mar. Chem. 69: 163-178.

Cho, B.C. & Azam, F. 1995. Urea decomposition by bacteria in the Southern
California Bight and its implications for the mesopelagic nitrogen cycle. Mar. Ecol.
Prog. Ser. 122: 21-26.

Cho, B.C., Park, M.C., Shim, J.H. & Azam, F. 1996. Significance of bacteria in urea
dynamics in coastal surface waters. Mar. Ecol. Prog. Ser. 142: 19-26.

Collier, J.L., Brahamsha, B. & Palenik, B. 1999. The marine cyanobacterium
Synechococcus sp. WH7805 requires urease (urea amidohydrolase, EC 3.5.1.5) to



127

utilize urea as a nitrogen source: molecular-genetic and biochemical analysis of the
enzyme. Microbiol. 145: 447-459.

Collos, Y., Gagne, C., Laabir, M.,Vaquer, A., Cecchi, P. & Souchu, P. 2004.
Nitrogenous nutrition of Alexandrium catenalla (Dinophycae) cultures and in Thau
Lagoon, Southern France. J. Phycol. 40:96-103.

Ducklow, H. 2000. Bacterial production and biomass in the oceans. p. 85-120
In.D.L. Kirchman [ed.], Microbial ecology of the oceans. Wiley-Liss,

Dyhrman, S.T. & Anderson, D.A. 2003. Urease activity in cultures and field
populations of the toxic dinoflagellate Alexandrium. Limnol. Oceanogr. 48: 647-655.

Eppley, R.W. & Coatsworth, J.L. 1968. Uptake of nitrate and nitrite by Ditylum
brightwellii – kinetics and mechanisms. J. Phycol. 4: 151-156.

Falkowski, P.G. 2000. Rationalizing elemental ratios in unicellular algae. J. Phycol.
36:3-6.

Fan, C., Glibert, P.M., Alexander, J. & Lomas, M.W. 2003. Characterization of
urease activity in three marine phytoplankton species, Aureococcus anophagefferens,
Prorocentrum minimum, and Thalassiosira weissflogii. Mar. Biol. 142:949-958.

Fisher, T.R., Harding, L.W., Stanley, D.W. & Ward, L.G. 1988. Phytoplankton,
nutrients, and turbidity in Cheaspeake, Delaware, and Hudson estuaries. Estuar. Shelf
Coastal Sci. 27: 61-93.

Fisher, T.R., Peele, E.R., Ammerman, J.A. & Harding, L.W. 1992. Nitrogen
limitation of phytoplankton in the Chesapeake Bay. Mar. Ecol. Prog. Ser. 82:51-63.

Glibert, P.M. & Capone, D.G. 1993. Mineralization and assimilation in aquatic,
sediment, and wetland systems, p. 243-272. In R. Knowles and T.H. Blackburn [eds],
Nitrogen isotope techniques. Academic Press.

Glibert, P.M., Conley, D.J., Fisher, T.R., Harding, L.W. & Malone, T.C. 1995.
Dynamics of the 1990 winter/spring bloom in Chesapeake Bay. Mar. Ecol. Prog.
Ser. 122:27-43.

Glibert, P.M., Garside, C., Fuhrman, J.A. & Roman, M.R. 1991. Time-dependent
coupling of inorganic and organic nitrogen uptake and regeneration in the plume of
the Chesapeake Bay estuary and its regulation by large heterotrophs. Limnol.
Oceangr. 36: 895-909.

Glibert, P.M., Harrison, J., Heil, C. & Seitzinger, S. 2006. Escalating worldwide use
of urea – a global change contributing to coastal eutrophication. Biogeochemistry.
77: 441-463.



128

Glibert, P.M., Heil, C.A., Hollander, D., Revilla, M., Hoare, A., Alexander, J. &
Murasko, S. 2004. Evidence for dissolved organic nitrogen and phosphorus uptake
during a cyanobacterial bloom in Florida Bay. Mar. Ecol. Prog. Ser. 280: 73-83.

Glibert, P.M., Trice, T.M., Michael, B. & Lane, L. 2005. Urea in the tributaries of
the Chesapeake and Coastal Bays of Maryland. Water, Air, and Soil Pollution. 160:
229-243.

Hagy, J.D., Boynton, W.R. & Jasinski, D.A. 2005. Modelling phytoplankton
deposition to Chesapeake Bay sediments during winter-spring: interannual variability
in relation to river flow. Estuar. Coastal Shelf Sci. 62: 25-40.

Harding, L.W. 1994. Long-term trends in the distribution of phytoplankton in
Chesapeake Bay: roles of light, nutrients, and streamflow. Mar. Ecol. Prog. Ser.
104: 267-291.

Heil, C.A., M. Revilla,, P.M. Glibert and S. Murasko. In press. Nutrient quality
drives differential phytoplankton community composition on the West Florida Shelf.
Limnol. Oceanogr.

Kemp, W.M., Boynton, W.R., Adolf, J.E., Boesch, D.F., Boicourt, W.C., Brush, G.,
Cornwell, J.C., Fisher, T.R., Glibert, P.M., Hagy, J.D., Harding, L.W., Houde, E.D.,
Kimmel, D.G., Miller, W.D., Newell, R.I.E., Roman, M.R., Smith, E.M. &
Stevenson, J.C. 2005. Eutrophication of Chesapeake Bay: historical trends and
ecological interactions. Mar. Ecol. Prog. Ser. 303:1-29.

Kirchman, D.L. 2000. Uptake and regeneration of inorganic nutrients by marine
heterotrophic bacteria. p. 261-288. In.D.L. Kirchman [ed.], Microbial ecology of the
oceans. Wiley-Liss, New York.

Kristiansen, S. 1983. Urea as a nitrogen source for the phytoplankton in the
Oslofjord. Mar. Biol. 74:17-24.

Kudela, R.M. & Cochlan,W.P. 2000. Nitrogen and carbon uptake kinetics and the
influence of irradiance for a red tide bloom off southern California. Aquat. Microb.
Ecol. 21:31-47.

Kudo, I.,Yoshimura, T., Yanada, M. & Matsunaga, K. 2000. Exhaustion of nitrate
terminates a phytoplankton bloom in Funka Bay, Japan: a change in SiO4:NO3

consumption rate during the bloom. Mar. Ecol. Prog. Ser. 193: 45-51.

Lane, L., Rhoades, S., Thomas, C. & van Heukelem, L. 2000. Analytical Services
Laboratory Standard Operating Procedures. Technical Report No. TS-264-00. Horn
Point Laboratory, University of Maryland Center for Environmental Science.



129

Lewitus, A.J., White, D.L., Tymowski, R.G., Geesey, M.E., Hymel, S.N. & Noble,
P.A. 2005. Adapting the CHEMTAX method for assessing phytoplankton
taxonomic composition in southeastern U.S. estuaries. Estuaries. 28: 160-172.

L’Hulguen, S., Slawyk, G. & Le Corre, P. 2005. Seasonal patterns of urea
regeneration by size-fractionated microheterotrophs in well-mixed temperate coastal
waters. J. Plank. Res. 27: 263-270.

Li, A., Stoecker, D.K. & Adolf, J.E. 1999. Feeding, pigmentation, photosynthesis
and growth of the mixotrophic dinoflagellate Gyrodinium galatheanum. Aquat.
Microb. Ecol. 10:139-47.

Li, A., Stoecker, D.K. & Coats, D.W. 2000. Spatial and temporal aspects of
Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy. J.
Plankton Res. 22:2105-2124.

Lomas, M.W. 2004. Nitrate reductase and urease enzyme activity in the marine
diatom Thalassiosira weissflogii (Bacillariophyceae): Interactions between nitrogen
substrates. Mar. Biol. 144: 37-44.

Lomas, M.W. & Glibert, P.M. 1999. Temperature regulation of nitrate uptake: a
novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol.
Oceangr. 556-572.

Lomas, M.W., Trice, T.M., Glibert, P.M., Bronk, D.A. & McCarthy, J.J. 2002.
Temporal and spatial dynamics of urea uptake and regeneration rates and
concentrations in Chesapeake Bay. Estuaries. 25: 469-482.

Lomstein, B.A., Blackburn, T.H. & Henriksen, K. 1989. Aspects of nitrogen and
carbon cycling in the northern Bering Shelf sediment. 1. The significance of urea
turnover in the mineralization of NH4

+. Mar. Ecol. Prog. Ser. 57:237-247.

Lund, B.A. 1987. Mutual interference of ammonium, nitrate, and urea on uptake of
15N sources by the marine diatom Skeletonema costatum (Grev.) Cleve J. Exp Mar.
Biol. Ecol. 113:167-180.

Mackey, M.D., Higgins, H.W., Mackey, D.J. & Wright, S.W. 1996. CHEMTAX - a
program for estimating class abundances from chemical markers – application to
HPLC measurements of phytoplankton. Mar. Ecol. Prog. Ser. 144: 265-283.

Malone, T.C., Crocker, L.H., Pike, S.E. & Wendler, B.W. 1988. Influences of river
flow on the dynamics of phytoplankton production in a partially stratified estuary.
Mar. Ecol. Prog. Ser. 48: 235-249.

Miller, C.A. & Glibert, P.M. 1998. Nitrogen excretion by the calanoid copepod
Acartia tonsa: results of mesocosm experiments. J. Plank. Res. 20: 1767-1780.



130

Mobley, H.L.T. & Hausinger, R.P. 1989. Microbial ureases: significance, regulation
and molecular characterization. Microbiol. Rev. 53: 85-108.

Mulvenna, P.F. & Savidge,G. 1992. A modified manual method for the
determination of urea in seawater using diacetylmonoxime reagent. Estuar. Coast.
Shelf. Sci. 34: 429-438.

Oliveira, L. & Antia, N.J. 1986. Some observations on the urea-degrading enzyme of
the diatom Cyclotella cryptica and the role of nickel in its production. J. Plank. Res.
8: 235-242.

Palinska, K.A., Jahns, T., Rippka, R. & Tandeau de Marsac, N. 2000.
Prochlorococcus marinus strain PCC 9511, a picoplankton cyanobacterium,
synthesizes the smallest urease. Microbiology. 146: 3099-3107.

Parker, M.S. & Armbrust, E.V. 2005. Synergistic effects of light, temperature, and
nitrogen source on transcription of genes for carbon and nitrogen metabolism in the
centric diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 41:1142-
1153.

Parsons, R.T., Y. Maita and C.M. Lalli. 1984. A manual of chemical and biological
methods for seawater analysis. Pergamon Press, New York, N.Y.

Peers, G.S., Milligan, A.J & Harrison, P.J. 2000. Assay optimization and regulation
of urease activity in two marine diatoms. J. Phycol. 36: 523-528.

Redfield, A.C. 1958. The biological control of chemical factors in the environment.
American Scientist 46: 205-221.

Revilla, M., Alexander, J. & Glibert, P.M. 2005. Analysis of urea in coastal waters:
comparison of the enzymatic and the direct method. Limnol. Oceangr. Methods. 3:
290-299.

Salerno, M. 2005. Ectocellular enzyme activities in the mixotrophic dinoflagellate
Prorocentrum minimum (Dinophyceae). Masters Thesis. University of Maryland.

Solomon, C.M., J. Alexander and P.M. Glibert. Submitted. Measuring urease
activity in environmental samples. Limnol. Oceangr. Methods.

Solomon, C.M and P.M.Glibert. Submitted. Urease activity in five phytoplankton
species. J. Phycol.

Soloranzo, L. & Sharp, J.H. 1980. Determination of the total dissolved phosphorus
and particulate phosphorus in natural waters. Limnol. Oceangr. 25: 754-752.



131

Tamminen, T. & Irmisch, A. 1996. Urea uptake kinetics of a midsummer planktonic
community on the SW coast of Finland. Mar. Ecol. Prog. Ser. 130: 201-211.

Tengs, T., Dahlberg, O.J., Shalcian-Tabrizi, K., Klaveness, D., Rudi, K., Delwiche,
C.F. & Jakobsen, K.S. 2000. Phylogenetic analyses indicate that the 19' hexanoyloxy-
fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin.
Mol. Biol. Evol. 17:718-729.

Therkildsen, M.S., Isaken, M.F. & Lomstein, B.A. 1997. Urea production by the
marine bacteria Delaya venusta and Pseudomonas stutzeri grown in a minimal
medium. Aquat. Microb. Ecol. 13: 213-217.

Twomey, L.J., Piehler, M.F. & Paerl, H.W. 2005. Phytoplankton uptake of
ammonium, nitrate, and urea in the Neuse River Estuary, NC, USA. Hydrobiologia.
533: 123-134.

van Heukelem, L., Lewitus, A., Kana, T.M. & Craft, N. 1994. Improved separation
of phytoplankton pigments using temperature-controlled high performance liquid
chromatography. Mar. Ecol. Prog. Ser. 114: 303-313.

van Heukelem, L. & Thomas, C.S. 2001. Computer-assisted high-performance liquid
chromatography method development with applications to the isolation and analysis
of phytoplankton pigments. J. Chromatogr A 910:31-49.

Zehr, J.P., Carpenter, E.J. & Villareal, T.A. 2000. New perspectives on nitrogen-
fixing organisms in tropical and subtropical oceans. Trends Microbiol. 8:68-73.



132

Tables

Table 4.1 Average streamflow, temperature and salinity at Chesapeake Bay stations.
Samples were not collected in summer 2003 in Upper Bay and Lower Bay so the
range denoted by an asterisk (*) reflects spring and fall values.

2001 2002 2003 2004
Average annual
streamflow (m3 s-1)

1416 1700 3964 3115

Temperature (ºC)
Spring 8.45±1.08 10.6±0.82 8.90±0.39 8.98±0.35

Summer 27.3±0.33 27.0±0.53 26.9 26.4±1.10
Fall 18.8±1.46 23.5±1.29 19.7±1.51 21.3±1.67

Salinity
Upper Bay 2.76±1.98 4.53±4.64 0.13±0.00* 0.26±0.19
Middle Bay 13.2±2.80 15.2±3.37 9.27±2.75 7.89±2.00
Lower Bay 22.1±0.58 22.6±2.51 17.2±0.30* 16.9±0.26
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Table 4.2 Distribution of nitrogen (µg at N l-1) and phosphate (µg at P l-1) in the Chesapeake Bay during three seasons. Values
represent the mean of two years (with standard deviation). The Plume and Sargasso Sea data are from April 2002, April 2004, and
October 2004.

2001-2002 (Dry years) 2003-2004 (Wet years)
Station Season TDN TDP DIN DIP DIN:DIP TDN TDP DIN DIP DIN:DIP
Upper Bay Spring 98.7

(28.7)
0.48
(0.21)

82.6
(21.6)

0.3
(0.04)

273
(34)

97.7
(28.7)

0.44
(0.24)

91.1
(10.7)

0.36
(0.18)

300
(183)

Summer 54.9
(2.55)

1.0
(0.10)

21.1
(4.87)

0.37
(0.01)

56.7
(11.0)

107 1.13 97.9 0.95 103

Fall 50.1
(3.61)

1.39
(0.07)

34.3
(10.0)

1.06
(0.03)

32.4
(0.07)

108.9
(24.3)

1.42
(0.72)

87.7
(24.2)

0.75
(0.08)

117
(20.3)

Mid Bay Spring 38.8
(24.8)

0.07
(0.04)

26
(28.4)

0 8655*
(9473)

67.4
(3.11)

0.29
(0.01)

52.9
(14.2)

0.21
(0.07)

255
(18.5)

Summer 21.7
(3.25)

0.39
(0.07)

1.28
(0.27)

0.10
(0.04)

13.9
(2.35)

22.7
(4.74)

0.27
(0.19)

7.14
(5.43)

0.16
(0.01)

46.3
(38.0)

Fall 20.75
(8.98)

0.84
(0.04)

3.15
(0.13)

0.34
(0.14)

10.2
(4.63)

48.7
(16.0)

1.41
(0.73)

29.1
(10.2)

0.53
(0.27)

57.4
(9.87)

Lower Bay Spring 9.84
(4.47)

0.15
(0.01)

1.35
(1.00)

0 448.3*
(332.3)

27.2
(2.12)

0.21
(0.04)

14.1
(1.28)

0.12
(0.01)

122
(3.61)

Summer 18.4
(0.92)

0.59
(0.29)

2.43
(1.39)

0.18
(0.08)

17.3
(15.7)

19.9 0.47 1.2 0.11 10.9

Fall 16.3
(3.32)

0.47
(0.12)

1.5
(2.04)

0.15
(0.02)

9.42
(12.7)

19.6
(5.87)

0.74
(0.28)

3.42
(1.48)

0.23
(0.01)

15.1
(7.35)

Plume Spring 8.65 0.00 0.18 0.03 6.0 14.1 0.2 7.5 0.07 107

Sargasso
Sea

Spring 9.79 0.27 0.27 0.05 5.4

Fall 12.8 0.19 1.24 0.13 9.54



134

Table 4.3 Loadings for PC1, PC2, and PC3 for each Chesapeake Bay station. Loadings <0.1 are not reported.

Upper Bay Mid Bay Lower Bay
Variables PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Physical
Temperature 0.400 -0.283 0.236 0.412 -0.195 0.269 0.410
Salinity 0.560 0.147 0.314 0.484 0.135 -0.531 -0.191

Chemical
NO3

- -0.492 0.170 -0.448 -0.134 -0.406 0.108 -0.201
NH4

+ -0.117 -0.296 -0.573 -0.273 -0.180 0.105 0.200 0.423 -0.470
Urea 0.185 -0.487 -0.337 0.617 0.171 0.319 0.542

Biological
Diatoms -0.201 0.543 -0.319 0.343 0.442 -0.413
Dinoflagellates 0.491 0.111 -0.129 -0.416 -0.313 -0.507 0.285 -0.585
Cryptophytes 0.163 -0.514 0.351 0.252 0.214
Cyanobacteria -0.197 -0.396 -0.222 0.463 -0.188 0.403 -0.101
Haptophytes -0.274 0.492 0.334 -0.297 0.164 0.206 -0.582 0.100

% cumulative
variance
explained

0.35 0.61 0.78 0.41 0.64 0.78 0.46 0.68 0.82
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Table 4.4 Regression coefficients and t-values for multiple regression models of urea uptake and urease activity at all three
Chesapeake Bay Stations. The multiple correlation coefficient is denoted by r2.

Urea uptake Urease activity
Station Intercept PC1 PC2 PC3 Intercept PC1 PC2 PC3
Upper Bay df 11 11 11 11 11 11 11 11

coeff. 0.2525 0.0237 0.0080 -0.0196 0.2924 0.0357 -0.0002 0.0447
(t-value) (5.5896) (0.9757) (0.2879) (-0.5707) (3.7354) (0.8477) (-0.0042) 0.7509
p-value 0.0008 0.3617 0.7817 0.5861 0.0073 0.4247 0.9967 0.4772
r2= 0.1627 0.1548

Mid Bay df 12 12 12 12 12 12 12 12
coeff. 0.3019 0.0473 -0.0093 -0.0407 0.2917 0.0216 -0.0861 0.0628
(t-value) (6.1866) (1.9540) (-0.2908) (-0.9843) (15.0888) (2.2541) (-6.8075) (3.8356)
p-value 0.0003 0.0865 0.7786 0.3538 0.0000 0.0542 0.0010 0.0050
r2= 0.3785 0.8921

Lower Bay df 11 11 11 11 11 11
coeff. 0.5591 0.0521 0.0261 0.1171 0.3287 0.0406 0.0772 0.0335
(t-value) (7.7665) (1.5585) (0.5302) (1.9449) (8.8361) (2.3486) (3.0365) (1.0765)
p-value 0.0001 0.1631 0.6124 0.0929 0.0000 0.0512 0.0189 0.3174
r2= 0.4812 0.6942
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Figures

Fig. 4.1 The five sampling sites in the Chesapeake Bay and the Sargasso Sea.
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Fig. 4.2 Nutrient concentrations as function of month and year of sampling at three stations in the Chesapeake Bay during 2001-
2004. Note the difference in scale for NO3

- concentrations in Upper Bay as opposed to the Middle and Lower Bay stations.
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Fig. 4.3 Chl a biomass and bacterial abundance as function of month and year of
sampling at three stations in the Chesapeake Bay during 2001-2004.
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Fig. 4.4 Relative contribution of each phytoplankton taxon to the total
phytoplankton assemblage as analyzed by CHEMTAX as function of season and year
of sampling during 2001-2004 at each Chesapeake Bay station.
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Fig. 4.5 Normalized urea uptake and urease activity at three stations in Chesapeake Bay as function of month and year of sampling
during 2001-2004. The upper panels are urea uptake while the lower panels are urease activity.
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Fig. 4.6 Contribution of the <1.6 µm fraction to total urea uptake or urease activity
as function of month and year of sampling at the three stations in Chesapeake Bay
during 2001-2004.
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Fig. 4.7 Urea uptake rates and urease activity over a spatial gradient in Chesapeake
Bay and the Sargasso Sea. A&B) normalized on a volumetric basis C&D)
normalized on a chl a biomass basis.
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Fig. 4.8 The difference between urea uptake and urease activity rates from all
stations in Chesapeake Bay, plume and the Sargasso Sea as a function of month and
year of sampling during 2001-2004.
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Fig. 4.9 Principal component analysis of temperature, salinity, nitrogen availability,
and relative abundance of five phytoplankton taxonomic groups at three Chesapeake
Bay stations from 2001-2004.
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Fig. 4.10 A) Urea uptake and B) Urease activity as function of
phytoplankton:bacterial biomass in all Chesapeake Bay stations.
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Fig. 4.11: Comparisons of A) surface urea concentrations and B) urea uptake rates
during 2001-2004 with data collected prior to 1998 from Lomas et al. (2002). Urea
concentration data prior to 1998 were recalculated, resulting in different means
(±SE).
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Chapter 5: Urea utilization in Choptank River
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Abstract

Rates of urea uptake and urease activity were measured seasonally over a

four-year period in the Choptank River, a tributary of the Chesapeake Bay, to

understand how these processes are related to nutrient limitation, nitrogen

availability, and plankton community composition. Urea uptake was lower in the

diatom-dominated and predominately P-limited station in the upper tributary. At the

N-limited station in the lower part of the Choptank River, dominated by

dinoflagellates and cyanobacteria, during the summer and fall, urea was utilized at

higher rates than in the upper Choptank. However, urea uptake was repressed if

levels of NO3
- and NH4

+ were high. These findings have implications for the fate of

urea-based fertilizers once they enter the Choptank River.

Introduction

The Choptank River, a tributary of the Chesapeake Bay, has been impacted by

anthropogenic activity, especially by nitrogen inputs from agriculture (Staver et al.

1996, Fisher et al. 1998, Fisher et al. 2006). The predominately agricultural region

of the Choptank watershed produces corn, soybeans, wheat, fruit and vegetables

(Goel et al. 2005, Fisher et al. 2006). Total nitrogen concentrations in the river are

strongly correlated with freshwater discharge through groundwater (Staver et al.

1996) and peak twice a year in late fall or winter and late spring (Fisher et al. 1998).

Groundwater supplies mostly NO3
-which has been increasing annually since 1980,

possibly due to lags in leaching from agricultural lands enriched with N-based
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fertilizers (Fisher et al. 1998). NH4
+, on average, represents a much smaller portion

of the total nitrogen pool than NO3
- (4%; Fisher et al. 1998, Fisher et al. 2006).

In the past decade, agriculturalists in Maryland have increased their use of

urea-based fertilizers by more than two-fold (Fig. 5.1; Maryland Department of

Agriculture, 2006). Urea fertilizers are preferred over NO3
--based fertilizers because

of their longer storage times and retention in soils (reviewed in Glibert et al. 2006).

The relationship between agricultural nutrient inputs and water quality has been a

primary focus in the eutrophication of the Bay (e.g. Boesch et al. 2001, Kemp et al.

2005). The extent to which this shift in fertilizer use has impacted water quality is

unknown. Glibert et al. (2001, 2005) found peaks in urea concentrations in spring

and mid-summer that coincided with annual application of urea or manure to crops in

other tributaries of the Chesapeake Bay over a period of five years, and such peaks

coincided with blooms of the dinoflagellate, Prorocentrum minimum.

Although most of the agricultural urea is volatized as NH4
+, consumed by

crops, or converted to NH4
+, some does reach adjacent waterways via overland

transport. Urea that enters the Choptank River via runoff from agricultural lands can

be used by both phytoplankton and bacteria for cell metabolism. The contribution of

urea from agricultural use may exceed urea produced in situ from zooplankton

excretion (Miller and Glibert 1998, L’Hulguen et al. 2005), bacterial regeneration

(Cho et al. 1996, Therkildsen et al. 1997), and release from sediments (Lomstein et al.

1989, Lund and Blackburn 1989, Therkildsen and Lomstein 1994). In order for

external urea to be assimilated by a phytoplankton or bacterial cell, urea must first be

transported into the cell via passive or active transport (Antia et al. 1991, Beckers et
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al. 2004). The enzyme urease catabolizes urea into NH4
+ and CO2. The NH4

+ then

enters the glutamate synthetase (GS)/glutamine 2-oxoglutarate aminotransferase

(GOGAT) pathway.

Due to growing amounts of anthropogenic inputs of urea, rates of urea uptake

and urease activity may be increasing in phytoplankton and bacteria to utilize this

source of new nitrogen. The Choptank River has fluctuating nitrogen concentrations

resulting from groundwater flow (Fisher et al. 2006) so rates of urea uptake and

urease activity were hypothesized to vary seasonally between an upstream and

downstream station as well as in surface and bottom waters.

Methods

Field sampling and hydrological data

Samples were collected from two sites in the Choptank River (Fig. 5.2) in

April, July/August and October from 2001-2004. Additional sampling was done

during February (2002, 2003), June (2002-2004), September (2002) and December

(2001, 2003). The first site was downstream of the confluence of the Tuckahoe and

Choptank Rivers (Upper Choptank) while the second site was near the mouth of the

river where it enters the Chesapeake Bay (Lower Choptank). Water was collected

from the near-surface and the near-bottom using a diaphragm pump, which minimizes

damage to plankton. Water was stored in acid-washed Nalgene carboys for transport

to the lab (<1 h) for processing. Salinity and temperature data was collected by both

a YSI 85 probe and a Seabird CTD at both depths. Annual streamflow data into the
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Choptank River at Greensboro, Maryland (Station 01491000) was obtained from the

United States Geological Survey (www.usgs.gov).

Nutrients

In the laboratory, water from each site was filtered through precombusted

GF/F filters (450ºC for 1 h) into acid-washed bottles for nutrient analyses.

Concentrations of NO3
-, NO2

-, NH4
+, and PO4

3- were determined with a Technicon

Autoanalyzer II (Lane et al. 2000). Urea concentrations from April 2001-April 2004

were determined by the urease method described by Parsons et al. (1984) and after

April 2004 by the diacetylmonoxime method (Mulvenna and Savidge 1992, Revilla et

al. 2005). Total dissolved nitrogen (TDN) concentrations were determined by

persulfate oxidation (Bronk et al. 2000) while total dissolved phosphate (TDP) was

measured by the method of Solórzano and Sharp (1980). Concentrations of

particulate carbon (PC) and particulate nitrogen (PN) were analyzed on particulate

matter that was collected on precombusted GF/F filters (450ºC for 1 h) with an Exeter

Analytical Incorporated CE-440 elemental analyzer.

Plankton composition and biomass

Particulate matter was also collected on precombusted G/F filters (450ºC for 1

h) for chlorophyll a (chl a) and pigment analyses, then immediately frozen in a -80ºC

freezer until analysis. Chlorophyll samples were analyzed by extraction with acetone

(Parsons et al. 1984) and then measured on a 10-AU Turner Designs flourometer.

Pigment analyses were done according to Van Heukelem et al. (1994) and Van
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Heukelem and Thomas (2001) on a Hewlett Packard high-performance liquid

chromatograph system (HPLC; Model 110). The HPLC data was analyzed using the

CHEMTAX software program (Mackey et al. 1996, Adolf et al. 2006) in order to

compare relative abundances (f_chl ataxonomic group) of seven taxonomic groups

(diatoms, dinoflagellates, cryptophytes, chlorophytes, haptophytes, prasinophytes and

cyanobacteria). For a few selected time points and stations, the CHEMTAX results

were compared to preserved samples of phytoplankton (in Lugol’s, 4%

glutaraldehyde or 2% formalin).

Urea uptake and urease activity

Urea uptake rates were determined using 15N tracer techniques (Glibert and

Capone 1993). Water samples of 500 mL were incubated in 1 L acid-washed

polycarbonate bottles with 0.5 µg at N l-1 15N-urea for 30 minutes. The atom %

enrichment in samples varied from 10.2 to 100%. Surface water samples and bottom

samples were incubated under 60% natural irradiance using neutral-density screening

and in the dark, respectively. After the incubation period, particulate matter was

collected on combusted GF/F filters. Once filtration was complete, the samples were

frozen until they were dried at 50°C. Dried samples were packed into tin boats and

analyzed on a SerCon Mass Spectrometer using urea as a standard.

Urease activity samples were also collected by collecting particulate matter on

combusted GF/F filters which were frozen in liquid N2 until analysis. Samples were

analyzed for urease activity in the laboratory within one week of sampling using the

method of Peers et al. (2000) which was further improved by Fan et al. (2003).
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Beginning in August 2003, urease activity samples were analyzed using an optimized

assay for field samples (Solomon et al. submitted). Urease activity data prior to

August 2003 were corrected by a conversion between the currently published and

revised methods using samples from a range of sites and seasons (Solomon et al.

submitted).

Statistical analyses

Data from all four years were analyzed to see if physical factors (salinity and

temperature), nitrogen availability (NO3
-, NH4

+, urea), and phytoplankton community

composition explained most of the variability in urea uptake and urease activity in the

Choptank River. The urea uptake and urease activity data, which did not have

normal distributions, were transformed using the square root function before analysis

by statistical techniques.

The statistical analysis had two components. First, to detect any significant

relationships between urea uptake or urease activity and season, station or depth, a

three-way ANOVA was run using the entire data set. In addition, a two-way

ANOVA was run to detect any seasonal or depth effects on urea uptake or urease

activity at individual stations.

Second, to detect any significant relationships of urea uptake and urease

activity with environmental variables that often co-vary, a principal component

analyses (PCA; S-PLUS, Insightful Corporation, 2002) was conducted to produce a

new set of linear combined variables and reduce the number of variables to be used in

a multiple regression model. The PCA analysis also allowed for the visualization of
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interaction among variables over time at each of the Choptank River stations. Rates

of urea uptake and urease activity were then modeled using multiple regressions that

incorporated the new combined variables resulting from PCA analysis (PC1, PC2,

PC3). The level of significance in the multiple regressions was set at p<0.1.

Results

Hydrological features

Streamflow, salinity, and temperature in the Choptank River changed annually

during the four year period. During 2002, the annual streamflow into the Choptank

River was lower than the long-term average (Table 5.1), with a historical daily low of

0.01 m3 s-1 during August (data not shown). In contrast, during 2003-2004

streamflow into the Choptank River was two- to three-fold higher than the long-term

average, and salinity decreased both on the surface and bottom of the Choptank River

at both stations (Table 5.1). There was difference of 8-11 in salinity between the

Choptank stations. Temperature at both Choptank stations followed a seasonal

pattern with a winter low of 1.1ºC in February 2003 to a summer high of 28.3ºC in

August 2003 (Table 5.1).

Dissolved nutrient distributions

In the Upper Choptank, concentrations of NO3
- ranged from 41 to >200 µg at

N l-1 during winter and spring in both surface and bottom waters, but were <50 µg at

N l-1 (except fall 2003) during summer and fall. Concentrations of NH4
+ were also

higher during winter and spring in both surface and bottom waters (>5 µg at N l-1)
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during summer and fall (<5 µg at N l-1; Fig. 5.3). Urea concentrations lacked

seasonality and were the highest in fall 2001 at 4.39 µg at N l-1. DIN:DIP ratios were

generally higher than the stoichiometric proportion of 16:1 throughout all four years,

indicating phosphorus limitation, especially in winter and spring (Fig. 5.3). DIN:DIP

ratios at both the surface and bottom were similar during all seasons (Fig. 5.3).

Concentrations of nitrogen were lower at the Lower Choptank station than the

Upper Choptank (Fig. 5.4). During winter and spring, NO3
- concentrations in surface

waters were <7.5 µg at N l-1 in 2001-2002 and were between 40-54 µg at N l-1 in

2003-2004. NH4
+ concentrations remained below <5 µg at N l-1 in the spring, winter

and fall. Urea concentrations mostly were <0.7 µg at N l-1 throughout the year (Fig.

5.4). The contribution of NH4
+ and urea to the total nitrogen pool at the surface was

>80% during summer and fall, except in 2003 (data not shown). DIN:DIP ratios at

both the surface and bottom indicated P limitation (>16:1) during the winter and

spring. During the summer and fall, DIN:DIP ratios suggested N limitation (<16:1)

in both surface and bottom waters (Fig. 5.4).

Plankton distribution

Diatoms or chlorophytes and cryptophytes dominated the phytoplankton

community in both surface and bottom waters in the Upper Choptank (Fig. 5.5). The

relative abundance of diatoms (such as Navicula sp., Skeletonema costatum,

Cyclotella sp. and other centric diatoms) at the surface was between 46-87% in the

spring and 55-89% in the fall. The relative abundance of diatoms was lower and the

relative abundance of chlorophytes (such as Scenedesmus sp. and Pediastrum duplex)
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and cryptophytes was higher than rest of the sampling period during December 2001-

June 2002 and June 2003-June 2004. The community in the bottom layer generally

had more diatoms during the summer than the surface community, but followed the

same trends during other times of the year (Fig. 5.5).

With the exception of spring 2004, diatoms were a large component of the

spring community in the surface waters of the Lower Choptank (>74% with species

such as Cytotella sp., Ditylum brightwellii, Nitzschia sp.) (Fig. 5.6). The spring

2004 community consisted of 31% diatoms, 31% chlorophytes, and 12%

cryptophytes. The summer, fall and winter phytoplankton communities were mostly

dominated by dinoflagellates (such as Prorocentrum sp., Heterocapsa sp., Akashiwo

sanguinea) and cryptophytes, with contributions from cyanobacteria except in

summer 2001 (Fig. 5.6). The summer of 2003 was unusual with 86% of the

community consisting of the diatom, Leptocylindrus minimus. The bottom

community was similar to the surface community but with more contributions by

cyanobacteria and haptophytes during 2003-2004 (Fig. 5.6). The contribution of

dinoflagellates at the surface (64%) was much higher than at the bottom (11%) in

summer 2004.

Urea uptake and urease activity rates

Rates of urea uptake were higher during the summer and fall than during

winter and spring at both Choptank stations (Figs. 5.5 and 5.6). Rates of urea uptake

were higher in the surface than in the bottom waters during all seasons, but spring and

summer 2002 was an exception to this trend. Rates of urease activity did not appear

to follow any seasonal trend at either Choptank station. Maximum urease activity in



157

the surface waters in the Upper and Lower Choptank was 86.4 and 141 ng-at N µg chl

a-1 h-1 (= 0.16 and 0.35 µg-at N l-1 h-1), respectively, which occurred in June 2004

(data not shown). Urease activity was higher in bottom waters with maximum urease

activity of 126 ng-at N µg chl a-1 h-1 (= 0.60 µg-at N l-1 h-1) in winter 2002 in the

Upper Choptank and 189 ng-at N µg chl a-1 h-1 (= 0.20 µg-at N l-1 h-1) in June 2004 in

the Lower Choptank.

Relationships between urea uptake, urease activity and environmental factors

Urea uptake did not have any significant temporal (seasonal) or spatial

(station and depth) patterns (ANOVA; p > 0.19) using results from both stations. On

the other hand, urease activity did change significantly with seasons, but not between

stations or depths (ANOVA; p<0.05 for seasons and p>0.37 for station and depth).

When results from each station were analyzed individually, urea uptake was

significantly different at the two depths in the Upper Choptank (ANOVA, p=0.07)

but not seasonally at either station (ANOVA, p>0.3). Urease activity significantly

changed seasonally but not between depths at both stations (ANOVA, p<0.05 for

seasons, p>0.13 for depth). In addition, there was no significant relationship between

urea uptake and urease activity in the Choptank or at individual stations (r2 <0.01).

The PCA analysis created several combined principal components based on

physical factors, nitrogen availability, and phytoplankton community composition.

The first three principal components (PC1, PC2, and PC3) explained 65% and 68% of

the variance in the surface and bottom waters of the Upper Choptank, 63% and 74%

in the Lower Choptank (Fig. 5.7; Table 5.2). PC1 for both surface and bottom waters
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in the Upper Choptank was positively related to f_chl adiatoms, but negatively to f_chl

acryptophytes and NO3
- and NH4

+ concentrations (Table 5.2). PC2 for surface waters

and PC3 for bottom waters were associated with warm temperatures and higher urea

concentrations, but negatively with f_chl adinoflagellates. Higher salinities and f_chl

adinoflagellates and f_chl acyanobacteria represented PC2 in bottom waters and PC3 in

surface waters. In surface waters, urea uptake was significantly positively correlated

with PC1 while urease activity was similarly correlated with PC2 (p<0.06; Table 5.3).

Bottom water characteristics had no significant relationship with urea uptake or

urease activity (Table 5.3).

Individual factors in the surface and the bottom waters grouped together

differently in the Lower Choptank. PC1 in surface waters was associated with

warmer temperatures, higher urea concentrations and f_chl adinoflagellates and f_chl

acyanobacteria (Fig. 5.7B; Table 5.2). Like surface waters, PC1 in bottom waters was

related to warmer temperatures and higher urea concentration but was negatively

associated with higher salinity and f_chl adinoflagellates (Fig. 5.7D; Table 5.2). PC2 at

both depths was associated with higher NO3
- and NH4

+ concentrations, but with

different phytoplankton communities. The surface community was associated with

f_chl achlorophytes , f_chl acyanobacteria, f_chl adinoflagellates and f_chl acryptophytes and but not

f_chl adiatoms. The bottom community was associated with f_chl acryptophytes, f_chl

ahaptophytes, and f_chl achlorophytes. PC3 at the surface was related with warmer

temperatures and f_chl adinoflagellates, but not f_chl ahaptophytes and f_chl acryptophytes.

Bottom PC3 was associated with colder temperatures, higher NO3
- and NH4

+

concentrations, and lower f_chl acyanobacteria. Urea uptake in surface waters of the
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Lower Choptank was significantly correlated to PC1 and PC2. However, urea

uptake in the bottom waters and urease activity at both depths was not significantly

related to any of the combined variables in the Lower Choptank (Table 5.3).

Discussion

Differences between Upper and Lower Choptank

The Upper Choptank had higher nitrogen concentrations than the Lower

Choptank and remained mostly P-limited throughout the four year study. NO3
- and

NH4
+ concentrations in the Upper Choptank were >40 and 5 µg-at N l-1, respectively,

during the spring months. These concentrations may have repressed urea uptake

rates in the dominant members of the phytoplankton community, the diatoms, during

the spring months (Fig. 5.7A). Urea uptake rates, on average, were lower (x =

11.8±19.0 ng-at N µg chl a-1 h-1) but not significantly different than those observed in

the Lower Choptank. On the other hand, higher urease activity was associated with

cyanobacteria and chlorophytes (Fig. 5.7A).

In contrast, the Lower Choptank station had lower nitrogen concentrations

(TDN: <83 µg-at N l-1 as opposed to the Upper Choptank where TDN reached 263

µg-at N l-1) and was often N-limited during the summer and fall months. Looking

further into the PCA at individual dates (July 2002 and July 2004) when the Lower

Choptank was N-limited, high urea uptake rates were associated with dinoflagellates

and cyanobacteria (PC1; Fig. 5.7B). During times of P-limitation in the spring (April

2001), lower urea uptake, than other times, was associated with diatoms (PC2; Fig.

5.7B). Both rates of urea uptake and urease activity, on average, were higher in
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surface waters of the Lower Choptank (24±38 and 24.8±5.66 ng-at N µg chl a-1 h-1)

than the Upper Choptank (11.8±18.6 and 22.8±4.87 ng-at N µg chl a-1 h-1). In all,

urea uptake and urease activity tended to be lower if diatoms were abundant and

higher if dinoflagellates and cyanobacteria were abundant.

Influence of plankton composition on urea uptake and urease activity at two

depths

Urea uptake and urease activity was higher when cyanobacteria or

dinoflagellates were abundant in either surface or bottom waters in the Lower

Choptank such as July 2002 (surface), August 2004 (both surface and bottom),

October 2002 (both surface and bottom), and October 2004 (surface). Cyanobacteria

in coastal regions such as Florida Bay (Glibert et al. 2004a), western Florida Shelf

(Heil et al. in press), and the Chesapeake Bay (Solomon et al. submitted) have

previously been associated with higher urea uptake and urease activity rates on a per

chl a basis than found with other phytoplankton taxonomic groups in nearby waters.

In contrast, dinoflagellates have higher urea uptake and urease activity on a

volumetric basis than opposed to other phytoplankton taxonomic groups (Fan et al.

2003, Glibert et al. 2006, Solomon et al. 2006). For example, the association of

higher rates of urea uptake with dinoflagellates and higher rates of urease activity

with cyanobacteria was clearly seen in August 2004 in the Lower Choptank when

urea uptake was higher at the surface while urease activity was higher at the bottom.
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Influence of NO3
- and NH4

+ availability on urea uptake and urease activity

High levels of NO3
- and NH4

+ have previously been shown to repress urea

uptake and urease activity rates both in culture and field studies (Solomon et al. 2006,

Solomon and Glibert submitted). Repression of urea uptake by NO3
- and NH4

+ was

evident in the Choptank both on spatial and temporal scales. On a spatial scale, urea

uptake rates were lower in the Upper Choptank which has higher concentrations of

NO3
- and NH4

+ than in the Lower Choptank. On a temporal scale, urea uptake rates

were higher during the summer when NH4
+ concentrations in the Lower Choptank

were below 1.2 µg-at N l-1 in summers 2002 and 2004 than when NH4
+

concentrations were >1.2 µg-at N l-1 in summers 2001 and 2003. Urea uptake was

also very high during April 2002 in the Lower Choptank when both NO3
- and NH4

+

concentrations were relatively low.

Urea dynamics in the Choptank River

Urea concentrations in the tributaries tend to be higher than in the mainstem

of Chesapeake Bay (Glibert et al. 2001, 2004a,b, 2005). The highest urea

concentration observed in the Choptank was 4.39 µg-at N l-1 while the maximum

recorded observations in other tributaries range from 2.5 to >24 µg-at N l-1 (Glibert et

al. 2001, 2004b, 2005). However, the average concentration of urea in the Upper

and Lower Choptank was 0.82 and 0.34 µg-at N l-1, respectively, which was within

the range seen in the Chesapeake Bay during the same period (0.50-0.89 µg-at N l-1;

Solomon et al. submitted). As in other tributaries, urea concentrations were highly

variable with no seasonal trend and not related to seasonally averaged flow (Glibert et
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al. 2005). Higher transient urea concentrations may be associated with precipitation

events (e.g. Glibert et al. 2001), but such events were not observed during this study.

Possible impacts of urea-based agricultural fertilizers in the Choptank River

Application of urea fertilizers on farmland will have a different impact at the

two stations in the Choptank River. At the primarily P-limited Upper Choptank

station, a response to a possible increase in urea concentrations will unlikely occur

due to repression of urea utilization by high NO3
- and NH4

+ concentrations. During

years of low flow (2001-2002), NH4
+ concentrations during the spring in the Upper

Choptank were often >15 µg-at N l-1, while during years of high flow (2003-2004),

NO3
- concentrations were often >200 µg-at N l-1. These are concentrations that have

previously been observed to repress urea uptake and urease activity (Solomon et al.

2006, Solomon et al. submitted). Thus, even during a sporadic precipitation event in

the spring, most likely urea will not be utilized at high rates in this region of the river.

Anthropogenic urea, however, may have a bigger impact at the Lower

Choptank station during the summer or fall when the plankton is N-limited. The

ability of the dinoflagellate and cyanobacteria community to respond to increases in

urea concentrations may depend on NH4
+ availability. Dinoflagellates and

cyanobacteria have lower urease activity when grown on NH4
+ than other nitrogen

substrates (Solomon et al. 2006, Solomon and Glibert submitted), so if NH4
+

concentrations are low enough not to repress urease activity, then urea will be readily

utilized by these phytoplankton. Dinoflagellates in the region have previously

responded to inputs of urea. High urea concentrations in the Chicamacomico River,
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another tributary of the Chesapeake Bay, coincided with major periods of urea

fertilization (Glibert et al. 2005). Likewise, Prorocentrum minimum blooms were

observed in tributaries after periods of high ambient concentrations of urea soon after

a rainfall event (Glibert et al. 2001). Many harmful algal species have been observed

to have the ability to efficiently utilize urea (Glibert et al. 2006, Solomon and Glibert

submitted), and may potentially bloom after a precipitation event washes in

agricultural urea if other conditions permit. The ability of phytoplankton and

bacteria to utilize urea from both anthropogenic and natural sources in the Lower

Choptank River thus appears to depend on nitrogen availability, not only of urea but

other forms of nitrogen as well.

Conclusion

The contrasting conditions of the Upper and Lower Choptank stations, despite

only being separated by 28 km, in terms of nutrient limitation, nitrogen availability

and plankton community composition allowed for comparisons to understand what

conditions may regulate urea uptake and urease activity. Urea uptake and urease

activity were lower in the primarily P-limited Upper Choptank than the often N-

limited Lower Choptank. Under P-limiting conditions, diatoms were dominant

members of the community and were associated with urea uptake, albeit at lower

rates, while most of the urease activity was associated with cyanobacteria,

cryptophytes, and chlorophytes. Under N-limiting conditions, higher urea uptake

and urease activity were associated with dinoflagellates, cyanobacteria, and

haptophytes. In these plankton communities, high levels of NO3
- and NH4

+

repressed urea uptake and urease activity. The difference in enzymatic rates between
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surface and bottom waters was also explained by differences in the presence of

diatoms, dinoflagellates, and cyanobacteria. Urea uptake and urease activity are

influenced by the state of nutrient limitation and plankton community composition

which in turn has implications on whether urea from agricultural runoff will impact

phytoplankton communities at the two stations in the Choptank River.
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Tables

Table 5.1 Average (±SE) streamflow, temperature (at both stations over both depths)
and salinity of both depths in the Choptank River. *Winter temperature values for
2001 are from December, 2002-2003 are from February, and 2004 from December
2003.

2001 2002 2003 2004
Average annual
streamflow at
Greensboro, MD (m3 s-1)
(long-term average 1949-
2005; 3.86 m3 s-1)

4.33 2.89 9.12 5.28

Temperature (ºC)
Winter 12.8 5.43±0.31* 1.20±0.31* 12.7±3.11*
Spring 15.3±0.91 12.7±0.70 11.6±0.62 9.96±0.49

Summer 27.0±0.45 26.7±0.29 26.3±0.97 26.3±0.35
Fall 18.1±0.21 23.7±0.32 20.8±0.07 23.0±0.08

Salinity
Upper Choptank 0.58±0.20 3.68±0.27 0.29±0.12 0.98±0.19
Lower Choptank 12.0±0.78 15.1±0.60 9.43±0.70 10.33±0.19
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Table 5.2 Loadings for PC1, PC2, and PC3 for each Choptank station

Upper Choptank Upper Choptank Lower Choptank Lower Choptank
Surface Bottom Surface Bottom

Variables PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

Physical
Temperature 0.608 0.177 0.135 0.176 0.671 0.304 0.110 0.302 0.373 -0.467
Salinity -0.134 0.371 0.643 0.103 0.139 -0.265 -0.196 -0.486 -0.139

Chemical
NO3

- -0.329 -0.372 -0.388 -0.348 0.351 0.184 0.174 0.218 0.563
NH4

+ -0.272 -0.476 -0.402 -0.415 0.311 0.453 0.159 0.204
Urea 0.407 -0.414 -0.207 0.400 0.353 -0.191 0.149 0.374 -0.157

Biological
Diatoms 0.520 0.438 -0.201 -0.347 -0.433 0.148 -0.520
Dinoflagellates -0.201 -0.557 0.133 -0.114 0.422 -0.566 0.460 0.175 0.231 -0.304
Cryptophytes -0.426 -0.421 0.220 0.222 -0.701 -0.108 0.511 -0.214
Cyanobacteria -0.286 0.121 0.416 0.433 0.311 0.356 -0.235 0.124 0.271 -0.546
Haptophytes -0.208 -0.295 -0.298 -0.206 0.177 0.149 -0.403 0.237 0.364 0.111
Chlorophytes -0.423 0.348 -0.393 -0.200 0.187 -0.103 0.494 0.216 -0.225 0.395 0.196

Cum. prop of
variance

0.286 0.472 0.648 0.402 0.561 0.684 0.273 0.493 0.632 0.305 0.551 0.743
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Table 5.3 Regression coefficients and t-values for multiple regression models of urea uptake and urease activity at two Choptank
River stations. The multiple correlation coefficient is denoted by r2.

Urea uptake Urease activity
Station Intercept PC1 PC2 PC3 Intercept PC1 PC2 PC3
Upper
Choptank

df 13 13 13 13 12 12 12 12

Surface coeff. 0.3633 0.0731 0.0451 0.0415 0.3866 0.0624 0.1162 0.0954
(t-value) (6.9681 (2.3332) (1.2427) (0.9739) (5.3432) (0.1.3672 (2.0535) (1.7043)
p-value 0.0000 0.0363 0.2359 0.3479 0.0002 0.1966 0.0625 0.1141
r2= 0.4312 0.4299

Upper
Choptank

df 12 12 12 12 12 12 12 12

Bottom coeff. 0.2132 0.0238 0.0251 0.0273 0.5202 0.0121 0.0380 -0.0285
(t-value) (7.3483) (1.6650) (1.0118) (0.8317) (6.4065) (0.2955) (0.6348) (-0.4335)
p-value 0.0000 0.1218 0.3316 0.4218 0.0000 0.7727 0.5375 0.6723
r2= 0.3233 0.0542

Lower
Choptank

df 12 12 12 12 12 12 12 12

Surface coeff. 0.4112 0.1067 -0.0864 0.0369 0.4286 0.0699 0.0311 0.0804
(t-value) (5.8988) (2.6526) (-1.9274) (0.6537) (5.8236) (1.6468) (0.6565) (1.3483)
p-value 0.0001 0.0211 0.0779 0.5256 0.0001 0.1255 0.5239 0.2024
r2= 0.4823 0.2925

Lower
Choptank

df 10 10 10 10 9 9 9 9

Bottom coeff. 0.3041 -0.0608 -0.1008 0.0546 0.3515 0.0522 -0.0219 0.0663
(t-value) (2.8430) (-1.1212) (-1.5187) (0.7614) (5.6370) (1.5317) (-0.5903) (1.6700)
p-value 0.0175 0.2884 0.7614 0.4640 0.0003 0.1600 0.5695 0.1293
r2= 0.2901 0.3768
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Figures

Fig. 5. 1 Tonnage of urea fertilizer bought in the state of Maryland from 1989-2004.



173

Fig. 5.2 The two sampling stations in the Choptank River
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Fig. 5.3 Nitrogen concentrations (NO3
-, NH4

+, and urea) and DIN:DIP ratios at the
Upper Choptank station during 2001-2004 in both surface (left panel) and bottom
(right panel) waters as function of season and year.
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Fig. 5.4 Nitrogen concentrations (NO3
-, NH4

+, and urea) and DIN:DIP ratios at the
Lower Choptank station during 2001-2004 in both surface (left panel) and bottom
(right panel) waters as function of season and year.
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Fig. 5.5 Relative contribution of each phytoplankton taxon to the total phytoplankton
assemblage, as analyzed by CHEMTAX during 2001-2004, urea uptake and urease
activity (on a per chl a basis) at the Upper Choptank in both surface (left panel) and
bottom (right panel) waters as a function of season and year.
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Fig. 5.6 Relative contribution of each phytoplankton taxon to the total phytoplankton
assemblage, as analyzed by CHEMTAX during 2001-2004, urea uptake and urease
activity (on a per chl a basis) at the Lower Choptank in both surface (left panel) and
bottom (right panel) waters as a function of season and year.
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Fig. 5.7 Principal component analysis of temperature, salinity, nitrogen availability
and relative abundance of six phytoplankton taxonomic groups at two Choptank
River stations from 2001-2004. A) Surface Upper Choptank B) Surface Lower
Choptank C) Bottom Upper Choptank D) Bottom Lower Choptank.
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Chapter 6: Responses of urea uptake and urease activity to NH4
+

additions in short-term bioassays
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Abstract

Short-term (3h) responses of urea uptake and urease activity to in vivo changes in

NH4
+ availability were examined in bioassay experiments conducted on water from the

Choptank River, Maryland, four times during the course of one year. Responses by the

two processes were dependent on the phytoplankton community composition in the

bioassays. Rates of urea uptake were more responsive to changes in NH4
+ availability in

a mixed diatom-cryptophyte than in a dinoflagellate-dominated assemblage, while rates

of urease activity were generally not responsive to changes in NH4
+ availability. The

different degree of responses of urea uptake to in vivo changes in NH4
+ availability

among different phytoplankton assemblages suggests that influence of NH4
+ is not

similar among various phytoplankton taxonomic groups.

Introduction

Urea, an organic nitrogen substrate, can be readily used by both phytoplankton

and bacteria in coastal, estuarine and oceanic regions (Antia et al. 1991, Kirchman 2000,

Kudela and Cochlan 2000, Berman and Bronk 2003, Glibert et al. 2006). The ability of

different phytoplankton and bacteria species to use urea depends on how two enzymes

involved with urea assimilation, urea transport and urease, are regulated by

environmental factors such as NH4
+ availability (Solomon et al. submitted).

Enzyme activity is determined by the concentration of its substrate and potential

competing or interfering substrates. For instance, urea uptake in estuaries is generally

reduced under high ambient NH4
+ concentrations (Twomey et al. 2005, Solomon et al.
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submitted). Expression of urease activity, which directly responds to intracellular

nitrogen levels, is not as greatly influenced by ambient NH4
+ concentrations as are rates

of urea uptake (Solomon et al. 2006). The influence of NH4
+ availability also may be

taxon-specific. Diatoms appear to have lower urease activity when grown on NO3
- than

NH4
+ and urea, while dinoflagellates and cyanobacteria generally have lower urease

activity when grown on NH4
+ than on NO3

- and urea (Solomon and Glibert submitted).

Urea uptake and urease activity in both phytoplankton and bacteria may also be induced

under N-starvation (Nolden et al. 2000, Dyhrman and Anderson 2003).

These observed rates may be the result of environmental conditions or the

plankton community composition and those influences are difficult to separate. One

possible way to tease out the differences is by conducting bioassay experiments and

exposing different phytoplankton and bacterial assemblages to similar changes in NH4
+

availability on shorter time scales. From these experiments, a better understanding of

whether urea uptake or urease activity is more strongly dependent on environmental

conditions, such as NH4
+ availability, or plankton community composition can emerge.

Methods

Near-surface water was collected from Choptank River, MD (a tributary of

Chesapeake Bay) on four occasions (November 2002, March 2003, May 2003 and

November 2003). Samples of 10 L were then subjected to changes in vivo NH4
+

concentrations for 3 h. NH4
+ concentrations were amended by adding NH4Cl, resulting

in final concentrations of approximately 0.5, 1, 5, or 20 µg at-N l-1. When initial NH4
+

concentrations were >0.5 µg at-N l-1 no amendments were made for the lowest NH4
+
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concentration treatment. Nutrient samples were taken at the beginning and the end of

the bioassay experiments, which were 3 h in duration, by filtering water through

precombusted GF/F filters (450ºC for 1 h) into acid-washed bottles for later

determination in the laboratory. Concentrations of NO3
-, NO2

-, NH4
+, and PO4

3- in the

filtrates were then determined with a Technicon Autoanalyzer II (Lane et al. 2000) while

urea concentrations were determined by the diacetylmonoxime method (Revilla et al.

2005).

Plankton biomass measurements

Samples were also collected before and after the 3h incubation from each

bioassay for particulate carbon (PC) and particulate nitrogen (PN), chl a and pigment

analyses. Particulate matter was collected on precombusted GF/F filters (450ºC for 1 h)

for all analyses, and then stored in a -20ºC or -80ºC freezer. Concentrations of PC and

PN were analyzed on the filters that had been dried at 50ºC with an Exeter Analytical

Incorporated CE-440 elemental analyzer. Chlorophyll samples were analyzed by

extraction with acetone (Parsons et al. 1984), and then measured on a 10-AU Turner

Designs flourometer. Pigment analyses from the four sampling dates were done

according to van Heukelem et al. (1994) and van Heukelem & Thomas (2001) on a

Hewlett Packard high-performance liquid chromatograph (HPLC Model 110) system.

Results from pigment analyses were analyzed using the CHEMTAX software

program (Mackey et al. 1996) using a matrix calibrated for estuarine phytoplankton

(Adolf et al. 2006) that gave the relative abundance of seven phytoplankton taxonomic

groups (prasinophytes, dinoflagellates, cryptophytes, haptophytes, chlorophytes,

cyanobacteria and diatoms).
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Urea uptake and urease activity

For urea uptake rates, water samples (500 ml) were incubated with 0.5 µg at-N l-1 

15N-urea in acid-washed polycarbonate bottles for 30 min at ambient temperature after

the 3h incubation period was complete. Following a 30 min uptake incubation,

particulate matter was collected on precombusted GF/F filters (450ºC for 1 h), which

were then frozen at -20ºC, and subsequently dried at 50ºC. Dried filters were packed

into tin boats then analyzed on a SerCon mass spectrometer using urea as a standard.

Urease activity samples were collected immediately at the end of the 3h bioassay

incubation period by collecting particulate matter on GF/F filters which were

immediately frozen in liquid nitrogen. Samples collected after March 2003 were

analyzed using the method of Solomon et al. (submitted) that revised the currently

published methods of Peers et al. (2000) and Fan et al. (2003). Prior to March 2003, the

methods of Peers et al. (2000) were used and were subsequently corrected by a

conversion between the revised and previous methods (Solomon et al. submitted).

Statistical analyses of urea uptake and urease activity over a range of NH4
+

concentrations were conducted for each sampling period (SigmaPlot; SYSTAT, 2004).

Results

General characteristics of the bioassays

The bioassay experiments were conducted during different seasons over the course of

one year, which resulted in different NO3
- concentrations and phytoplankton communities

at the beginning of each experiment (Table 6.1). The highest concentration of NO3
- (74

µg at N l-1) occurred during March while the lowest was in November (1.4 µg at N l-1).
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The concentrations of the other nutrients, NH4
+, urea, and PO4

3-, did not vary as much

between sampling periods.

The phytoplankton community in November 2002 was dominated by diatoms and

cryptophytes (Fig. 6.1). By March 2003, the abundance of diatoms decreased while the

abundance of dinoflagellates increased compared to the previous November. The May

2003 phytoplankton community composition was similar to March but with more

crytophytes, haptophytes and diatoms. The November 2003 phytoplankton community

was dominated by cryptophytes with minor contributions from dinoflagellates and

diatoms.

Influence of NH4
+ availability

Urea uptake and urease activity both decreased as NH4
+ concentrations increased

in March and November 2003 (Table 6.2). Results were different in May 2003 because

urea uptake decreased while urease activity increased over the same range of NH4
+

concentrations. None of the trends were significant due to few data points (n=3, Table

6.2). When all the data were combined (n=9) then the significance of the negative

relationship between urea uptake and NH4
+ concentrations improved (Table 6.2). Urea

uptake decreased on average by 38% while urease activity slightly increased on average

(9%) with increasing NH4
+ concentrations (Fig. 6.2).

Discussion and Conclusion

Urea uptake responded more to changes in ambient NH4
+ availability than urease

activity. The lesser response by urease was not surprising because urease responds

directly to intracellular rather than ambient NH4
+concentrations. Urea uptake always



185

decreased with increasing NH4
+ concentrations, suggesting repression of urea uptake by

this substrate. During all three sampling periods, diatoms were present and repression of

urea uptake by NH4
+ in diatoms has previously been observed (Lund 1987, Molloy and

Syrett 1988, Lomas 2004). However, the clearest decrease in urea uptake was observed

when cryptophytes were present in addition to diatoms in November 2003. Surprisingly,

urea uptake rates did not decrease as much when dinoflagellates were dominant. Lower

rates of urea uptake have been observed in mixed field assemblages when ambient NH4
+

concentrations are higher relative to other areas or time of the year (Kristansen 1983,

Twomey et al. 2005, Burford 2005) suggesting that repression of urea uptake by NH4
+

occurs but at different degrees across many phytoplankton taxonomic groups.

Responses of urea uptake and urease activity to environmental factors such as

NH4
+ availability can be difficult to separate from the composition of the estuarine

community. The degree of changes in urea uptake and urease activity in bioassays with

different phytoplankton communities that were treated to similar changes in NH4
+

availability were ultimately dependent on phytoplankton taxonomic differences.

Taxonomic-specific responses in urea uptake and urease activity to changes in NH4
+

availability helps elucidate how urea is utilized in estuarine and marine ecosystems.
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Tables

Table 6.1 Ambient concentrations of NO3
-, NH4

+, urea, and PO4
3- for the bioassay

experiments.

Month and year NO3
-

(µg at N l-1)
NH4

+

(µg at N l-1)
Urea
(µg at N l-1)

PO4
3- 

(µg at P l-1)

November 2002 1.38 3.14 0.38 0.39

March 2003 74.3 1.90 0.47 0.24

May 2003 23.5 2.22 0.48 0.10

November 2003 9.02* 1.77 0 0.04

*[NO3
- + NO2

-]



190

Table 6.2 Regression statistics for relationships between urea uptake and urease activity
and NH4

+ concentrations during three months in 2003. Note: All sampling dates have at
least n=3 (control + treatments).

Uptake Urease
Month slope y-intercept r2 p slope y-intercept r2 p

March 2003 -0.12 2.24 0.91 0.19 -0.08 1.88 0.38 0.58
May 2003 -0.08 1.88 0.38 0.58 0.07 5.40 0.03 0.90
November 2003 -0.61 13.2 0.95 0.15 -0.05 1.48 0.94 0.16

Overall -0.38 7.09 0.28 0.14 0.09 2.85 0.03 0.66
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Figures

Fig. 6.1 Average relative contribution of each phytoplankton taxon to the total
phytoplankton assemblage as analyzed by CHEMTAX in the bioassays during November
2002, March 2003, May 2003, and November 2003.
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Fig. 6.2 A) Urea uptake and B) urease activity on a per chl a basis as function of NH4
+

concentrations.
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Chapter 7: Urea uptake and urease activity under manipulated
phosphorus and nitrogen conditions: a mesocosm study
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Abstract

The response of urea uptake and urease activity to manipulation of phosphorus

and nitrogen sources was studied in a three week mesocosm experiment. Mesocosms

first received PO4
3- then N additions (NO3

-, NH4
+, or urea) several days later. Neither the

plankton community composition nor rates of enzymatic activity differed among N

treatments, but there were significant changes during the course of the experiment. The

meoscosms were initially P-limited, then after the addition of PO4
3- became N-limited.

During the period of N-limitation, a mixed bloom of diatoms and dinoflagellates

occurred. Urea uptake and urease activity, normalized on a volumetric basis, was the

highest during this period. Five days after the addition of N, the mesocosms became P-

limited again. Cyanobacteria appeared and urea uptake and urease activity, normalized

on a per chl a basis, began to increase. This study supports previous work suggesting

that dinoflagellates and cyanobacteria are important consumers of urea under both N- and

P-limitation.

Introduction

Urea transporters and urease, enzymes involved in urea assimilation, in different

phytoplankton and bacteria species may be regulated differently by nitrogen substrates.

Most of our current understanding of regulation of urea uptake and urease activity by

nitrogen substrates is based on cultures grown on NO3
-, NH4

+ or urea (Fan et al. 2003,

Dyhrman and Anderson 2003, Solomon and Glibert submitted) or field studies (Dyhrman

and Anderson 2003, Glibert et al. 2004, Heil et al. in press, Solomon et al. submitted).

Further understanding of urea utilization may be obtained from ‘challenging’ the
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phytoplankton and bacteria community in vivo with rapid changes in nutrient

concentrations.

Previous work has shown that urea uptake may be repressed or inhibited by NO3
-

and/or NH4
+ additions in phytoplankton cultures or field incubations (Lund 1987,

Tamminen and Irmisch 1996). In the diatom, Skeletonema costatum, Lund (1987)

observed an 82-84% decrease in urea uptake 3 h after the addition of either NO3
- or NH4

+

or both. Tamminen and Irmisch (1996) added NH4
+, NO3

-, and glucose to field

incubations of Baltic seawater during mid-summer. Urea turnover rates did not respond

immediately to the nutrient additions, but after 24 h there was a clear inhibition of urea

turnover by the NH4
+ additions. However, addition of PO4

3- removed any inhibitory

effect of NH4
+. There have been few other studies in which the effects of added PO4

3- on

urea uptake or urease activities have been examined.

Only one study reported changes in both urea uptake and urease activity after

‘challenging’ a culture grown on one nitrogen substrate by adding a different substrate. In

cultures of the diatom, Thalassiosira weissflogii, diel patterns in urea uptake were not

immediately influenced by the additions of NO3
- and NH4

+ within hours, but urea uptake

rates were lower when grown on NO3
- than NH4

+ and urea (Lomas 2004). A larger

decrease in urease activity took place within 30 min after addition of NH4
+ than NO3

- to

the T. weissflogii cultures. These studies suggest that urea uptake and urease activity

may be down-regulated by ambient NO3
- and NH4

+, but many questions remain.

The goal of this study was to examine how urea uptake and urease activity

respond to additions of NO3
-, NH4

+, urea and/or PO4
3- in a long term mesocosm

experiment (~3 weeks). It is unclear whether urea uptake and urease activity are
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regulated similarly by NO3
-, NH4

+ or urea availability or nitrogen status in phytoplankton

and bacteria. The mesocosm experiment was designed to expose phytoplankton and

bacteria to different conditions to allow observation for changes in urea uptake and

urease activity to better understand how these two enzymes are regulated by nitrogen or

phosphorus status and sources.

Methods

During May and June 2004 for 19 days, eight mesocosms (1 m3 volume) (labeled

C2-C9) were established in the Multiscale Experimental Ecosystem Research Center

(MEERC) facility at University of Maryland Center for Environmental Science, Horn

Point Laboratory (Berg et al. 1999, Petersen et al. 2003). Mesocosms were filled with

water from Choptank River, MD which was filtered through a 2 µm mesh filter before

entering the mesocosms, but there was some evidence of introduction of >2 µm cells

because copepods were later observed in the mesocosms. Light above the mesocosms

was provided by fluorescent bulbs at between 365-382 µmol photons m-2 s-1 at the water

surface on a 12:12 light:dark cycle. The mesocosms were well mixed with paddles that

rotated in cycles of 4h on/2h off and the walls scrubbed frequently. Temperature was

maintained between 24 and 26ºC while salinity remained at 8.2 during the course of the

three week experiment.

Concentrations of N and P in the mesocosms were manipulated during the three

weeks of the experiment. On Day 3, NaH2PO4 was added to all eight mesocosms,

resulting in a final concentration of 2 µg at-P l-1. On Day 8, N additions were made to

six mesocosms, leaving two as controls. Of the six N-enriched mesocosms, each form of
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N (NaNO3, NH4Cl, or urea; final concentration 32 µg at-N l-1) was added to two

mesocosms. No further nutrient additions were made during the rest of the experiment

(Table 7.1).

Nutrient measurements

On a daily basis, 10 L samples were removed from each mesocosm 1 h after the

lights came on and were subsequently used in various chemical or experimental assays.

Some of the sample was filtered through combusted GF/F filters (450ºC for 1 h) into

acid-washed bottles for later determination of nutrients in the laboratory. The particulate

matter collected on the filters was dried for later determination of particulate carbon (PC)

and particulate nitrogen (PN) on an Exeter Analytical Incorporated CE-440 elemental

analyzer. Concentrations of NO3
-, NO2

-, NH4
+, and PO4

3- in the filtrates were

determined with a Technicon Autoanalyzer II (Lane et al. 2000) while concentrations of

urea were determined by the diacetylmonoxime method (Revilla et al. 2005). Total

dissolved nitrogen (TDN) concentrations were determined by persulfate oxidation (Bronk

et al. 2000) and total dissolved phosphorus (TDP) was measured by the method of

Solórzano and Sharp (1980). Dissolved organic nitrogen (DON) and dissolved organic

phosphorus (DOP) concentrations were determined by subtracting inorganic nitrogen

from TDN, and PO4
3- from TDP.

Plankton biomass measurements

Particulate matter was also collected on combusted GF/F filters for both chl a and

pigment analyses, and the filters were stored in a -80ºC freezer until analyzed.
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Chlorophyll samples were extracted with acetone (Parsons et al. 1984), and then

measured on a 10-AU Turner Designs flourometer. Pigment analyses on Days 5, 9 and

17 (Table 7.1) were done according to Van Heukelem et al. (1994) and Van Heukelem &

Thomas (2001) on a Hewlett Packard high-performance liquid chromatograph (HPLC;

Model 110) system. Relative contributions of each of seven phytoplankton taxonomic

groups (prasinophytes, dinoflagellates, cryptophytes, haptophytes, chlorophytes,

cyanobacteria, and diatoms) to the total phytoplankton assemblage were determined by

CHEMTAX analysis using HPLC results (Mackey et al. 1996, Adolf et al. 2006).

Phytoplankton samples were preserved in both Lugol’s solution and 4% glutaraldehyde

to compare with results obtained from CHEMTAX analyses.

Urea uptake and urease activity measurements

Rates of urea uptake were determined using 15N tracer techniques on Days 5, 9,

and 17 (Glibert and Capone, 1993). Concurrently, the rate of urea assimilated into the

protein fraction was measured using trichloroacetic acid (TCA) (Wheeler et al. 1982,

Glibert and McCarthy 1984, Lomas and Glibert 1999). Sample volumes of 500 ml were

incubated with 0.5 µg at-N l-1 15N-urea in acid-washed polycarbonate bottles for 30 min

at ambient temperature by floating the bottles in a mesocosm filled separately for this

purpose. At intervals during the incubation period (5, 10, 15, 30 min and 1 h), two

samples were collected. The first sample, which represented the 15N pool in the whole

cell, was immediately filtered then frozen. Uptake rates were calculated using this

sample. The second sample was filtered until about 5-10 ml remained in the filtering

tower. Approximately 25 ml of cold 5% TCA was added to the tower and incubated
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between 30 sec to 1 min, and then the remaining volume was filtered. Once filtration was

complete, the filter was then frozen. This sample represented the protein pool and was

used to calculate assimilation rates. After three weeks in the freezer, all filters were

dried at 50ºC, packed into tin boats, and then analyzed on a SerCon mass spectrometer

using urea as a standard.

Activity of the enzyme urease was also measured on 9 days (Days 1, 3, 4, 6, 8, 9,

10, 13, 16 and 19) during the experiment using the method of Solomon et al. (submitted)

(Table 7.1).

Genetic diversity

In order to assess genetic diversity during the course of the experiment, 2L of

water from each of the eight mesocosms was incubated with 0.67 µg at-N l-1 or 8 µg at-N

l-1 15N-urea on Days 1, 8, and 16 (Table 7.1). After the three day incubation period was

complete, samples were then filtered into 0.2 µm Sterivex filters using a peristaltic pump

then flash-frozen in liquid nitrogen, and transferred to a -80ºC freezer. DNA was

extracted from the Sterivex filters using the protocol of Tillett and Neilan (2000).

PCR amplification was carried out to generate products for DGGE (denaturing

gradient gel electrophoresis). PCR amplification of prokaryotic DNA used 341fGC (GC

clamped) and 519r primers, while for eukaryotic DNA used 980fGC (GC clamped) and

1200r (Gast et al. 2004). The amplification with a BioRad iCycler began at 65ºC for 2

cycles (45s at 95ºS, 45s at 65ºC, 45s at 72ºC) then followed with a decrease in annealing

temperature by 2ºC every two cycles until 55ºC. Twenty five cycles were then carried
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out at 55ºC annealing temperature (45s at 95ºS, 45s at 65ºC, 45s at 72ºC) (Gast et al.

2004).

DGGE gels were run with a denaturing gradient of 35-60% urea for prokaryotic

diversity and 25-50% urea for eukaryotic diversity at 65ºC at 75 V for 24 h using a

DGGE gel apparatus (CBS Scientific). Band patterns were analyzed using GelCompar II

(Applied Maths).

Statistical analyses

Changes in floral composition

Statistical analyses were conducted on CHEMTAX data to determine whether if

any significant shifts occurred in phytoplankton composition after nutrient additions in all

the mesocosms during the experiment. A multivariate ANOVA (MANOVA) was first

run to determine whether there were any overall significant changes in relative

contribution of each phytoplankton taxonomic group among nutrient treatments or during

the course of the three week experiment. Next, individual ANOVAs were conducted to

see how the relative contributions of each phytoplankton taxonomic group varied with

fixed factors such as nitrogen treatment and day of experiment.

Urea uptake and urease activity

Rates of urea uptake and urease activity were analyzed with a two-way ANOVA

using N treatment and day as main factors. The original urease data was normal but

skewed, so the data was transformed using the log (x+1) function. Multiple comparisons

between N treatments and days were done using pre-planned contrasts (Tukey-HSD).
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DGGE bands

Similarity in DGGE patterns between mesocosms was evaluated using a

presence/absence data set produced by GelCompar II. Bands that had a pixel density of

at least 5% of the densest band in the sample were scored as present in the sample. A

pairwise distance matrix (Dice; Sd = 2a/(b+c) where a is the number of shared bands, b

and c are the number of bands in each sample) was calculated using the presence/absence

data by the multidimensional scaling (MDS) module of the SPSS software package

(SPSS, Inc.). The MDS analysis resulted in a graphical representation in which the

degree of similarity among mesocosms could be visualized. Mesocosms that contained

many of the same bands were plotted in close proximity to each other.

Results

Nutrient concentrations in all the mesocosms varied somewhat at the beginning of

the experiment due to the length of the time required to fill the mesocosms and the

variable standing time before the experiment was begun (NO3
- = 33-39 µg-at N l-1; NH4

+

= 4.95-7.03 µg-at N l-1; urea = 1.24-9.88 µg-at N l-1, PO4
3- = 0.52-1.89 µg-at P l-1) (Fig.

7.1). NH4
+ and urea were rapidly drawn down to <1 µg-at N l-1 when PO4

3- was added

on Day 3. By Day 4, PO4
3-concentrations in the mesocosms were drawn down to

between 0.13 to 1.22 µg at P l-1, approximately the initial conditions (data not shown).

On Day 8, concentrations of nitrogen in the NO3
-, NH4

+ and urea treatments increased to

23-27 µg at N l-1 after addition of those substrates. Following the N addition in the NO3
-

treatment, levels of NH4
+ increased almost immediately while in the NH4

+ and urea

treatments, NO3
- concentrations increased beginning on Day 11 (Fig. 7.1).
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DIN:DIP and DON:DOP ratios varied significantly over the course of the

experiment (Fig. 7.1). Before the addition of PO4
3- on Day 4, the average DIN:DIP ratios

in the mesocosms were >200, suggesting strong inorganic P-limitation. Once PO4
3- was

added, DIN:DIP ratios were reduced to <65. On Day 8 after N was added, DIN:DIP in

the NO3
-, NH4

+ and urea mesocosms once again indicated P-limitation (>250). The

control mesocosms maintained DIN:DIP ratios at <20. Towards the end of the

experiment (Day 13), DIN:DIP ratios increased further and reached >700 in the

mesocosms that received urea additions on Day 19. DON:DOP ratios often followed the

same trends as DIN:DIP ratios but were frequently lower (Fig. 7.1). DON:DOP ratios

were <100 except during the third period in control and urea mesocosms, and the first

period in NO3
- treatments. DON:DOP was also high during the fourth period in the urea

mesocosms.

The planktonic community composition and biomass changed during the course

of the experiment, but did not differ among N treatments (MANOVA; p<0.05 for day).

Of the seven phytoplankton groups, there were significant changes in relative

contributions over the course of the experiment by diatoms, dinoflagellates, and

cyanobacteria (ANOVA, p<0.05). There were almost no prasinophytes or haptophytes in

the mesocosms, while the relative contribution of cryptophytes and chlorophytes did not

significantly change as the experiment progressed. Chl a biomass began to increase on

Day 3 and consisted of mostly diatoms (Fig. 7.2). By Day 6, chl a peaked with an

average biomass of 101±5.60 µg chl a l-1 and was composed of a bloom of diatoms and

some dinoflagellates (mostly Prorocentrum mimimum). By Day 17, chl a biomass

declined to <2 µg chl a l-1 and was dominated by diatoms and cyanobacteria.
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The sequential changes in the planktonic community and similarity among

mesocosms were confirmed by MDS analyses of DGGE bands of prokaryotes and

eukaryotes (Fig. 7.3). While the plankton community throughout the experiment may

have included some of the same species, the overall genetic composition of the

community on each day (Days 1, 8 and 16) was distinct with very little overlap. The

similarity of genetic prokaryotic diversity between replicate N treatments was the greatest

on Day 16 and the least on Day 1, while for genetic eukaryotic diversity the opposite was

true (Fig. 7.3).

Rates of urea uptake and urease activity on a volumetric basis (µg at N l-1 h-1)

changed similarly across all N treatments, including the control (Fig. 7.4). Rates of urea

uptake were <0.4 µg at N l-1 h-1 for all mesocosms on the days tested. In contrast, rates of

urease activity increased to >1.0 µg at N l-1 h-1 on Day 6, and were significantly higher on

Days 3, 4, 6 and 8 than during the other days of the experiment (ANOVA, Tukey-HSD,

p<0.05).

When normalized on a per chl a basis (ng at N µg chl a-1 h-1), a different pattern

emerged (Fig. 7.4). Urea uptake was not significantly different between Day 5 (prior to

N addition) and 9 (after N addition) but was significantly higher on Day 17 (ANOVA,

Tukey-HSD, p<0.05). Urease activity was significantly lower on Day 6 (prior to N

addition) than Day 9 (after N addition) but did not differ among N treatments over the

course of the experiment (ANOVA, p<0.01 for day, and p=0.96 for mesocosms).

Towards the end of the experiment, urease activity was significantly higher than prior to

N addition, especially after Day 16 (ANOVA, Tukey-HSD, p<0.05).
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The rate of urea assimilation into protein was faster on Days 5 and 9 than Day 17

(Fig. 7.5). On both Days 5 and 9, uptake rates, on average, were between 0.18-0.23 µg at

N l-1 with 60-80% of urea incorporated into protein within the first 15 min. In contrast,

average uptake rates were lower on Day 17 (0.13 µg at N l-1) with <50% of urea

incorporated into protein within the first 15 min. On each day, urea uptake and

assimilation rates were similar among all treatments.

Discussion

The mesocosm experiment can be divided into four stages based on plankton

succession and type of nutrient limitation (I-IV; Fig. 7.6). Stage I (Days 1-2) was the

initial P-limited condition prior to any nutrient manipulation. The eukaryotic plankton

community consisted of mostly diatoms and was very genetically similar among the

mesocosms. Stage II (Days 3-7) began after PO4
3- was added to all the mesocosms,

resulting in N-limitation. During this period, a bloom of diatoms and some

dinoflagellates occurred. Stage III (Days 8-14) occurred during the end of the bloom

when N was added to the mesocosms. P-limitation was again observed in the plankton

community that was more genetically diverse among the N treatments than during Stage I

(eukaryotes) or Stage IV (prokaryotes). Stage IV (>day 15) was a period of severe P-

limitation with DIN:DIP and DON:DOP ratios >400 and ~100, respectively.

Phytoplankton biomass was low (<2 µg chl a l-1) and was dominated by both diatoms and

cyanobacteria. During this stage, prokaryotic genetic diversity was the lower while the

eukaryotic genetic diversity was greater than during the rest of the experiment.
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The highest urea uptake and urease activity on a volumetric basis were observed

during Stage II (N-limitation) while highest rates on a per chl a basis were observed

during Stage IV (severe P-limitation). During Stage II, urea uptake and urease activity

(on a volumetric basis) increased concurrently with chl a biomass when the plankton

experienced N-limitation. The prokaryotic and eukaryotic community was similar

among mesocosms during this period and consisted of some dinoflagellates which in the

past have been shown to have high rates of urea uptake and urease activity on a per cell

basis (Glibert et al. 2006, Solomon et al. 2006). Dinoflagellates such as Prorocentrum

minimum and Karlodinium veneficum have higher urea uptake and urease activity on a

per cell basis than diatoms, pelagophytes, cryptophytes and haptophytes (Fan et al. 2003,

Glibert 2006, Solomon et al. 2006, Solomon and Glibert submitted). In this community

with some dinoflagellates, urea was rapidly incorporated into protein 15 min after

addition of N.

Later during the experiment during Stage IV, urea uptake and urease activity (on a

per chl a basis) began to increase under severe P-limitation with mostly diatoms and

cyanobacteria present. The genetic diversity of prokaryotes during this time was less

similar than during other stages, suggesting that same assemblage of bacteria or

cyanobacteria may have been present in all the mesocosms. High rates of urea uptake

have previously been associated with cyanobacteria in other areas such as Lake Kinneret,

Florida Bay, and the western Florida Shelf, as well as urease activity (Berman 1997,

Berman and Bronk 2003, Glibert et al. 2004, Heil et al. in press, Solomon et al. 2006).

Despite P-limitation, the total concentration of N was also low. Under these

circumstances, urea was assimilated more slowly into protein.
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N- vs. P-limitation

The mesocosm experiment originally set out to investigate whether urea uptake

and urease activity was regulated by nitrogen sources. Instead, we found that the

mesocosms had similar planktonic communities that responded to different stages of N-

and P-limitation over time. Urea uptake and urease activity rates, normalized on a

volumetric basis, were the highest during N-limitation. Both rates of urea uptake and

urease activity have previously been observed to increase in both phytoplankton and

bacteria under N-limitation. Urea uptake in some bacteria is mediated by ATP binding

cassette (ABC)-type transporters that are transcribed under N-starvation (Beckers et al.

2004) and transcription can be inhibited by the addition of NH4
+, glutamine or glutamate

(Siewe et al. 1998). Like urea uptake, urease activity in bacteria and cyanobacteria

increase under nitrogen starvation and lower rates are observed when grown on NH4
+

than urea (Ge et al. 1990, Collier et al. 1999, Nolden et al. 2000).

In contrast, not much is understood about how urea uptake or urease activity

responds to P-limitation. Urease is not an energy-dependent enzyme, so does not require

ATP or other energy sources. However, urea uptake in bacteria is an ABC-type uptake

system that is linked with proton motive forces (Siewe et al. 1998, Beckers et al. 2004).

Urea uptake at low concentrations depends on the membrane potential which can be

disrupted by the addition of CCCP (carbonyl cyanide m-chlorophenylhydrazone) in both

bacteria (Siewe et al. 1998, Beckers et al. 2004) and diatoms (Rees and Syrett 1979).

The membrane potential is produced by oxidative phosphorylation which requires PO4
3-,

thus the addition of P (as PO4
3-) may help facilitate urea uptake. Due to the need for
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PO4
3- , urea uptake may be repressed under P-limitation. Supporting this reasoning, urea

uptake rates (on a volumetric basis) were low during stages of P-limitation (stages I, III,

IV). Also, urea was assimilated into protein more slowly during this period.

Conclusion

Despite additions of different nitrogen substrates, the mesocosms did not differ in

plankton community composition nor urea uptake or urease activity rates. However,

there was a succession of phytoplankton and nitrogen status throughout the mesocosm

experiment which allowed for comparison of urea uptake and urease activity among

different photosynthetic taxonomic groups under N- and P-limitation. Urea uptake and

urease activity, normalized on a volumetric basis, was the highest when dinoflagellates

increased in the mesocosms during N-limitation, during which chl a biomass was the

highest. Later during the experiment when mesocosms were P-limited, urea uptake and

urease activity when normalized on a per chl a basis was the highest when cyanobacteria

had an increased presence in the mesocosms. This study supports previous work

(Solomon and Glibert submitted, Solomon et al. 2006) that urea is utilized at higher rates

in select groups of phytoplankton and bacteria.
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Tables

Table 7.1: Sampling dates for nutrient additions, urea uptake, urease activity, and
genetic diversity in the mesocosm experiment.

Date Day Nutrient additions to
mesocosms

HPLC Urea uptake
(TCA)

Urease
activity

Genetic
diversity

24 May 1 X Incubation 1
25 May 2
26 May 3 PO4

3- X
27 May 4 X Collected 1
28 May 5 X X
29 May 6 X
30 May 7
31 May 8 NO3

-, NH4
+, Urea X Incubation 2

1 June 9 X X X
2 June 10 X
3 June 11 Collected 2
4 June 12
5 June 13 X
6 June 14
7 June 15
8 June 16 X Incubation 3
9 June 17 X X
10 June 18
11 June 19 X Collected 3
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Figures

Fig. 7.1 Left panels: Nitrogen concentrations (NO3
- NH4

+ and urea) in all N treatments
as a function of day of the experiment. Data points represent the average of two
mesocosms for each N treatment. Right panels: Average DIN:DIP and DON:DOP ratios
over four periods. The vertical lines represent when PO4

3- (dashed line), or N was added
(dotted line).
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Fig. 7.2 A) Chl a biomass in all eight mesocosms as a function of day. The two
mesocosms for each treatment are represented by filled and empty symbols. The line is
the mean of all mesocosms. B) Mean relative contribution of each phytoplankton taxon
to the total phytoplankton assemblage in all eight mesocosms as a function of sampling
date (Days 5, 9, 17) in the mesocosms. The vertical lines are the same as in Fig. 7.1
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Fig. 7.3 Multidimensional scaling diagram with stress value of the Dice distance matrix
calculated from DGGE banding patterns of both prokaryotic and eukaryotic samples
collected from each mesocosm on Days 1, 8 and 16.
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Fig. 7.4 Left panel: Urea uptake and urease activity on a volumetric basis in all N
treatments as a function of day of experiment. Data points represent the average of two
mesocosms for each N treatment. Lines were drawn by eye for easier visualization of
trends. Right panel: Urea uptake and urease activity on a per µg chl a basis in all N
treatments as a function of day of experiment. The vertical lines are the same as in Fig.
7.1.
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Fig. 7.5 Percentage of urea assimilated into the protein fraction on days 5, 9 and 17 over
one hour in each N treatment. Each point represents the mean (±SE) of the two
mesocosms for each treatment.
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Fig. 7.6 A schematic synthesis of events during the mesocosm experiment. The
mesocosms experiment is divided into four stages according to when nutrients were
added and DIN:DIP ratios
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Chapter 8: Summary and Research Conclusions
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The research conducted for this dissertation set out to understand how urea uptake

and urease activity are regulated in estuarine ecosystems. The framework of this

dissertation was guided by work done on another enzyme involved with N assimilation,

NO3
- reductase. The regulation of NO3

- reductase by temperature (Lomas and Glibert

1999a, Gao et al. 2000) and nitrogen availability (Lomas and Glibert 1999a, Parker and

Armbrust 2005) is different among the diatoms and dinoflagellates (Lomas and Glibert

1999b, Lomas and Glibert 2000). NO3
- reductase activity is able to exceed cellular N

demand in diatoms but not in dinoflagellates (Lomas and Glibert 2000). In contrast,

urease activity can meet the N demand of the dinoflagellate, Prorocentrum minimum

(Fan et al. 2003). This led to the question of whether urea (as well as NH4
+) could be

meeting the cellular N demand in other dinoflagellates and other phytoplankton and

bacterial taxonomic groups and whether urea utilization was regulated by the same

factors - temperature and nutrient availability.

Temperature

Consistent with previous studies, urea uptake and urease activity generally

increased with temperature. Rates were the highest during the summer months

throughout Chesapeake Bay and Choptank River unless repressed by NH4
+ availability.

Dinoflagellates were generally abundant during the summer months and the higher rates

of urea uptake and urease activity suggests that they are able to use urea under warmer

conditions. This may be explained by the work of Fan et al. (2003) who found urease

activity in the diatom, Thalassosira weissflogii, increased from 0 to 20ºC before

decreasing at higher temperature while urease activity in the dinoflagellate, P. minimum,

did not vary much from 20-50ºC. The difference in physiological responses between
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diatoms and dinoflagellates to temperature may help explain the ability of dinoflagellates

to utilize urea during the warmer months (>20ºC) in Chesapeake Bay and Choptank

River.

Nitrogen availability

Urea uptake and urease activity are regulated by ambient nitrogen availability, but

the degree and pattern of repression differs among phytoplankton taxonomic groups.

Urea uptake enzymes are located in the phytoplankton or bacterial cell membrane and are

directly exposed to ambient NH4
+ and NO3

- and are more tightly regulated by these N

sources than urease. Urea uptake rates were the highest when the ambient NO3
- and

NH4
+ concentrations were <40 and <5 µg-at N l-1, respectively, in Chesapeake Bay and

Choptank River (Fig. 8.1). Supporting these observations, urea uptake rates decreased

with increasing NO3
- and NH4

+ concentrations in bioassay and mesocosm experiments.

Repression of urea uptake by NO3
- and NH4

+ may occur because the metabolic cost of

assimilating NH4
+ directly for protein synthesis is less energetically expensive than

converting urea or NO3
- into NH4

+ (Falkowski and Raven 1997). The repression of urea

uptake by NO3
- and NH4

+ would allow for more NH4
+ to be transported into the cell to be

directly assimilated into protein.

Urease activity is not as tightly regulated by ambient nitrogen availability as urea

uptake (Fig. 8.1) maybe because urease activity responds to intracellular N

concentrations or N status (e.g. N starvation). Regardless, urease activity generally was

lower when ambient NO3
- and NH4

+ concentrations were high under both field and

manipulated conditions. When less NO3
- and NH4

+ are transported into the cell, urease

activity may increase in response to limitation of inorganic N or an increase in
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intracellular urea. The size of the intracellular urea pool can change with variations in

rates of urea uptake or production of urea from amino acid and purine catabolism.

Urease in phytoplankton also may respond to intracellular NO3
-, NH4

+ or urea

concentrations which vary as a result of growing on different media or the activities of

other cellular pathways. Lower urease activity is sometimes found in NH4
+ grown

cultures, especially of the dinoflagellates P. minimum and K. veneficum, than in NO3
- and

urea grown cultures. In conclusion, urease activity may be indirectly regulated by

ambient NO3
- and NH4

+, but how urease activity is regulated by intracellular N

concentrations or N status requires further study.

Difference in regulation among phytoplankton taxonomic groups

It is well established in the literature that a wide range of phytoplankton and bacteria

species can use urea to meet their N metabolic demand (Anita et al. 1991, Kirchman

2000, Berman and Bronk 2003, Glibert et al. 2006). This dissertation went a step further

and investigated how rates of urea uptake and urease activity differed among several

specific taxonomic groups. Fan et al. (2003) provided clues that dinoflagellates may

have higher urease activities than diatoms or pelagophytes on a per cell basis. However,

P. minimum, the dinoflagellate studied by Fan et al. (2003) is summer-time estuarine

species but many other dinoflagellates exist in estuaries throughout the year and their

ability to utilize urea may change over time and space. The dinoflagellates are a

physiologically diverse group, so it is difficult to generalize about the ability of

dinoflagellates to use urea based on one species. High urea uptake and urease activity

could also possibly be attributed to other phytoplankton taxonomic groups such as
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cyanobacteria, cryptophytes, chlorophytes, and haptophytes that are present in the

Chesapeake Bay.

It was possible tease out which phytoplankton taxonomic group was responsible for

the high urea uptake or urease activity rates during different seasons throughout the

Chesapeake Bay and the Choptank River by conducting principal component analysis

(PCA) which combined environmental factors including the relative abundance of the

five to seven major taxonomic groups. Dinoflagellates and cyanobacteria consistently

were related to periods of high urea uptake and urease activity, not only in Chesapeake

Bay and Choptank River but in culture, bioassay and mesocosm experiments. The

dinoflagellates, Prorocentrum minimum and Karlodinium veneficum, had the highest

urease activity in culture on both per cell, per cell volume, and per chl a basis. Finally, a

synthesis of published rates of urease activity confirmed that dinoflagellates and

cyanobacteria had the highest rates on either per cell or per cell volume basis (Fig 8.2).

The greater ability of dinoflagellates and cyanobacteria to utilize urea during the

summer than diatoms lies in the possible difference in regulation of urea uptake and

urease activity by N sources. Urea uptake and urease activity are lower in diatoms grown

on NO3
- (Fig 8.3) and in dinoflagellates grown on NH4

+ than on urea (Fig. 8.4).

Conceptually, spring-time conditions with high NO3
- concentrations would repress urease

activity in diatoms but not the relatively few dinoflagellates present (Fig. 8.4). Later

during the summer, high NH4
+ concentrations would repress NO3

- uptake in diatoms,

dinoflagellates, and cyanobacteria allowing for higher NH4
+ and urea utilization.

However, if NH4
+ concentrations are high enough, urea uptake can be repressed in

diatoms and dinoflagellates, and subsequently urease activity in dinoflagellates and
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cyanobacteria. The optimal conditions for high urea uptake and urease activity in

dinoflagellates and cyanobacteria are under N-limitation.

Large phytoplankton were mostly responsible for urea uptake observed in

Cheseapeake Bay and Choptank River. In contrast, some of the urease activity observed

was due to smaller phytoplankton and bacteria. Luxury uptake of urea may be occurring

in larger phytoplankton, resulting in large pools of intracellular urea. Dinoflagellates

such as P. minimum and K. veneficum had large intracellular pools of urea, but the

possible storage mechanisms are unknown. Urease activity in larger phytoplankton may

be inhibited from the lack of Ni2+ (needed for the metallocenter of urease; Oliveira and

Antia 1991) or by metabolites produced in the cell. Supporting such a possibility, urease

activity decreased with increasing biomass, hence more cell metabolites, in tests of the

urease activity method.

Complexity in urea utilization

Urea uptake and urease activity may be influenced by many factors including

ambient and intracellular N concentrations. The study of the regulation of these

processes by intracellular NH4
+ and urea is especially complicated by many cellular

production and consumption pathways. For example, NH4
+ represses both urea uptake

and urease activity but these two enzymes may be more directly regulated by intracellular

concentrations of 2-oxoglutarate than NH4
+ (Muro-Pastor et al. 2005, Flores and Herrero

2005). The pool of 2-oxyglutarate may be influenced by pathways that produce NH4
+

from inorganic and organic compounds that are present or transported into the cell.

Urease activity is higher in phytoplankton that are grown on urea with larger intracellular

pools of urea. The size of the intracellular urea pool depends on the supply of urea via
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transport and the catabolism of amino acids and purines (Antia et al. 1991, Allen et al.

2005) and the demand by urease.

The discovery of urea cycle genes in the diatom, T. pseudonana, brought some

insights in how the intermediates for the urea cycle, which remains to be found in other

phytoplankton, may be important for many aspects of diatom metabolism (Armbrust et al.

2004, Allen et al. 2005). Urease activity may respond to an increase in urea from

enhanced urea cycle activity to provide the needed intermediates for silica precipitation,

signaling molecules, osmolytes, or energy storage (Allen et al. 2005). Changes in

urease activity are not regulated only by fluctuations in ambient and intracellular urea

concentrations but also by variations in metabolic needs of the phytoplankton or bacterial

cell.

Comparison of field activity of enzymes involved in nitrogen assimiliation

Before work began on this dissertation, urease activity had not been measured in

field samples. Subsequent work by Dyhrman and Anderson (2003), Glibert et al. (2004),

and Heil et al. (in press) has shown that urease activity can supply NH4
+ to phytoplankton

and bacteria (Table 8.1). The highest bulk urease activity reported was during a bloom

of the dinoflagellate P. minimum (Salerno 2005) while the highest urease specific activity

reported (on a per chl a basis) was during a bloom of the cyanobacterium Synechococcus

elongatus (Glibert et al. 2004). The average urease activity reported for the Chesapeake

Bay was lower than during bloom conditions reported elsewhere. NO3
- reductase

activity, generally, was higher than urease activity under either non-bloom or bloom

conditions (Table 8.1). Further studies measuring both NO3
- reductase and urease
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activity simultaneously will be needed in addition to 15N tracer studies to fully understand

the relative contribution of each pathway to microbial N assimilation. Regardless, urease

activity can supply sufficient NH4
+ to phytoplankton and bacteria in estuaries such as the

Chesapeake Bay.

Future directions for understanding urea regulation in phytoplankton and

bacteria

Recent studies on regulation of transcription of several genes that code for

enzymes involved with N metabolism are beginning to explain observations in the field.

Most of this work has focused on the utilization of NO3
- and NH4

+ in diatoms, in attempt

to understand why NO3
- is utilized during spring blooms rather than the normally

preferred NH4
+, which is less energetically expensive to assimilate. Lomas and Glibert

(1999) first provided a hypothesis to explain this phenomenon: under cool temperatures,

the NO3
- reductase (NR) pathway accepts excess electrons from light stress that cannot

go through the temperature-limited RUBSICO pathway. The excess NO3
- reduction

would result in release of DON and NH4
+ generated as a byproduct of NR and subsequent

reactions. Parker and Armbrust (2005) went a step further and found that the transcript

abundance (mRNA) for NR increased under high light and cool temperatures in the

diatom, Thalassiosira pseudonana when grown on NO3
-. Levels of mRNA of other

enzymes involved with NO3
- assimilation, such as NO3

- transporters (NAT) and

glutamine synthetase II (GSII), which is specific for NH4
+ produced by NR also increase

when grown on NO3
- (Hildebrand and Dahlin 2000, Parker and Armbrust 2005).

However, diatoms grown on NH4
+ had lower levels of NR, NAT and GSII NR mRNA.

On the other hand, the NH4
+ transporters (AMT1 and AMT2) in the diatom,
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Cylindrotheca fusiformis, are not as tightly regulated and exhibit different expression

patterns (Allen 2005, Hillebrand 2005). The highest mRNA levels were found in the

diatom under N starvation and lower levels were found in NO3
- and NH4

+ grown cultures.

AMT mRNA was quickly degraded, suggesting a high turnover of AMT transcripts

(Hildebrand 2005). Since NH4
+ is the preferred and energetically cheaper nitrogen

source (Falkowski and Raven 1997) there is probably no need to prevent NH4
+

assimilation, except under N starvation.

Similar work on how transcription of urea transporters (urt) and urease (ure)

genes is regulated by different nitrogen sources need to be done to understand the

interactions between enzymes involved with N assimilation. A beginning study on urea

transport genes found that additions of 5 mM of NH4
+, glutamine and glutamate

prevented the synthesis of the urea uptake system in the bacterium, Corynebacterium

glutamicum (Siewe et al. 1998), while N starvation promoted synthesis (Beckers et al.

2004). In contrast, down-regulation of the urea uptake system occurred in the

haptophyte, Emiliana huxleyi, when grown in NO3
- poor medium (5 µM; A. Bruhn,

personal communication). It would be expected from this dissertation that transcript

abundance of urea transport and urease enzymes would be regulated by global nitrogen

regulators (such as NctA, AmtR), and to some degree nitrogen availability (NO3
-, NH4

+,

glutamine, and amino acids). However, the degree and pattern of regulation of transcript

abundance of urea transporters and urease would be expected to differ among the

diatoms, dinoflagellates and the cyanobacteria.
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Table

Table 8.1. Comparisons of field rates of enzymatic activities involved with nitrogen
assimilation at various locations around the world. Units for bulk activity are µg-at N l-1 
h-1 while for specific activity are ng-at N µg chl a-1 h-1 unless noted. Conversions for
rates denoted with an asterisk (*) were not possible because no chl a data were available.

Location (Reference) Nitrate reductase
activity

GS activity Urease activity

Bulk Specific Bulk Specific Bulk Specific
Chesapeake Bay mouth
(Takayanagi et al. 1989)

0.71-1.62 0-0.78

Chesapeake Bay
(Solomon et al.
submitted; Chapter 4)

0.12±0.06 21.3±4.99

Choptank River
(Solomon et al
submitted; Chapter 5)

0.21±0.02 20.0±4.84

Alexandrium sp.
(dinoflagellate) bloom in
Gulf of Maine (Dyhrman
and Anderson 2003)

0.02-0.03 141.7-
115.7
fmol cell-

1 h-1 

Synechoccocus elongatus
(cyanobacteria) bloom in
Florida Bay (Glibert et
al. 2004)

0.4 50

West Florida Shelf (Heil
et al. in press)

0.02-0.15 6-190

Prorocentrum minimum
bloom in Corsica River,
MD (Salerno 2005).

2.8 10.8
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Table 8.1 con’t Nitrate reductase
activity

GS activity Urease activity

Location (Reference) Bulk Specific Bulk Specific Bulk Specific
Gymnodinium cf.
chlorophorum
(dinoflagellate) bloom in
Puerto Montt Bay, Chile
(Iriarte et al. 2005)

0.006 0 1600 <1

Chaetoceros socialis
(diatom) bloom in Funka
Bay, Japan (Kudo et al.
2000)

0.78 52

Gymnodinium splendens
(dinoflagellate) bloom
off the coast of Peru
(Dortch & Maske 1982)

0.03 *

East China Sea (Hung et
al. 2000)

0-15,000 0-18.75

East China Sea (Wong
and Hung 2001)

0-8;
coastal
zone
0.2-0.6;
Kuroshiro
current

*
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Figures

Fig. 8.1 Urea uptake or urease activity as a function of NO3
- concentration and

NH4
+ concentration using all field data.
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Fig. 8.2 Comparison of urease activity rates between different phytoplankton
species on per cell or per cell volume basis. Data for the cyanobacteria
Prochlorococcus marinus were obtained from Palinska et al. (2000) and Synechococcus
WH7805 from Collier et al. (1999). Rates were converted from µM urea hyrolzed min-1 
protein-1 to fg-at N cell-1 h-1 using 21.5 fg protein cell-1 for P. marinus (Zubkov & Tarran
2005) and 500 fg protein cell-1 for WH7805 (Kramer and Morris 1990). P. marinus on a
per cell volume basis (*) was divided by 10 to allow for visualization of other species.
Data source of other species are described in Figs. 7.3 and 7.4. Cell volumes were
calculated assuming a sphere or cylinder and diameters obtained from readings on the
Coulter Counter or from CCMP.
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Fig. 8.3 Comparison of rates of urease activity in diatoms grown on different N
substrates. Data for Thalassosira weissflogii were obtained from Fan et al. (2003) and
Lomas (2004). Data for Cyclotella cryptica were obtained from Oliveira and Antia
(1986) and rates were converted from µM urea hydrolyzed min-1 protein-1 to fg-at N cell-1 
h-1 using the regression from Menden-Duer and Lessard (2000) to get N cell-1 and the fact
that 70-90% of cellular N is protein (Wheeler et al. 1983).
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Fig. 8.4 Comparison of rates of urease activity in dinoflagellates grown on different
N substrates. Data for Alexandrium fundyense were obtained from Dyhrman &
Anderson (2003), for Prorocentrum minimum from Fan et al. (2003), and for the
remaining species from this dissertation.
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