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ABSTRACT

Title of Dissertation: MODELING MULTI-BAND EFFECTS OF
HOT-ELECTRON TRANSPORT IN
SIMULATION OF SMALL SILICON
DEVICES BY A DETERMINISTIC
SOLUTION OF THE BOLTZMANN
TRANSPORT EQUATION USING
SPHERICAL HARMONIC EXPANSION

Surinder Pal Singh, Doctor of Philosophy, 1998

Dissertation directed by: Professor Isaak D. Mayergoyz
Department of Electrical Engineering

Solution of Boltzmann equation by a spherical-harmonic expansion ap-
proach is a computationally-efficient alternative to Monte Carlo. In this dis-
sertation we extend this technique to compute the distribution function in
multiple bands of silicon, using a multi-band band-structure which is accurate
for high energies. A new variable transformation is applied on the spherical
harmonic equations. This transformation (a) improves the numerical prop-
erties of the equations by enhancing the diagonal dominance of the resulting
equations; (b) accounts for exponential dependence of the distribution func-
tion on energy as well as electric potential; and (c) opens the possibility of
using superior Poisson solvers (d) while retaining the linearity of the origi-
nal equations intact. The resulting Boltzmann equations are discretized using
the current-conserving control-volume approach. The discretized equation are
solved using line successive-over-relaxation (SOR) method. Numerical noise in
the distribution was analyzed to be originating from the absence of coupling.
Noise is removed by using acoustic phonons in inelastic approximation. A novel
self-adjoint easy-to-discretize formulation for the inelastic acoustic phonons is
developed. A test case of thermal equilibrium for multi-band is derived and
used to validate the code. Hole-continuity and Poisson equation were solved

v



vi ABSTRACT

along with the multi-band Boltzmann equations. The equations are solved
in a Gummel-type decoupled loop. A nTnn* device is simulated to test the
simulator. The simulator is then applied to study a one-dimensional short-
base bipolar junction transistor. While these simulations are self-consistent,
a two-dimensional sub-micron MOSFET is simulated in a non-self-consistent
manner.

Key Words: Device Simulation, Spherical Harmonic Expansion, Boltzmann
Transport Equation, Semi-Classical Transport, Monte Carlo, Computer-Aided
Design (CAD), Technology Computer-Aided Design (TCAD), Non-Equilibrium
Transport, Non-Local Transport, Hot Electron, Multi-Band Band-Structure,
Device Physics, Computational Methods in Semiconductors, Numerical Meth-
ods, Control-Volume Discretization, Sub-Micron MOSFET, Short-Base Bipo-
lar Junction Transistor (BJT), nTnn™ Device.
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PREFACE

During my third year at IIT (Indian Institute of Technology), Kanpur, India,
in the Fall of 1987, I took the analog circuit design course under Prof. R. N.
Biswas. Aesthetic beauty of the analog circuits attracted me to the field of
semiconductors; so when I was looking for an area to concentrate for my Mas-
ters at the University of Maryland, I chose Microelectronics. In 1992 Spring,
my final semester of my MSEE degree, I took EE648 O, “Numerical analysis of
Semiconductors,” from Prof. Isaak Mayergoyz. This course was my first intro-
duction to device simulation. Two semesters later I joined him as a graduate
student.

Device simulation is a very interesting and important field. It requires skills
spanning over many areas of science and engineering: electrical engineering,
physics, computer science, mathematics, numerical analysis, material science
amongst many. The field is young enough that the early pioneers are still
around. In fact, I had the good fortune to meet at Intel one of the “Gods” of
device simulation: Don Scharfetter.

The famous quotation by R. W. Hamming, ! “The purpose of computing
is insight, not numbers,” is valid for device simulation. The utility of device
simulation is the insight it provides into device operation, which is then used
to improve device performance.

Developing device simulators involves developing the numerics as well as
writing the code. Initially, writing and debugging the simulator code takes up
all the effort; the pleasure of seeing the simulator reveal insight into devices
comes rather late. I used to sum this in the following statement, which is a
slightly-modified version of a lament I read from an experimentalists: ? “Nu-
merical device simulation is what we do in between debugging our code.” The
development of the simulator is made difficult because sometimes one is not
sure whether the simulator is not working because of weak numerics, or due
to presence of program bugs. This is exacerbated by the fact that journals
publish only successful simulations; we usually do not encounter papers that

!R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw Hill Book
Company, New York, 1973.
2“Experiments is what we do in between repairing instruments.” Anonymous.
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XXiv PREFACE

present a failed numerical scheme. During the course of research I did both
things: I have discarded many promising numerical schemes because they did
not seem to work when coded; and I have sometimes pursued some numerical
ideas of dubious merit too vigorously.

Despite the many baby’s I threw with the bath water and many rat holes I
ended in, I have immensely enjoyed my dalliance with this subject. One such
incident is the idea for the pre-Maxwellian variables discussed in this thesis.
In the summer of 1995, I was perturbed by my self-consistent simulator not
converging to the right answer. Every trick in my bag failed. I was cogitating on
the cause when, while sitting in the back of the hall and listening to the kirtan
music of Bhai Jagmohan Singh, the idea for the pre-Maxwellian dawned on me.
It was a reincarnation of an idea I had once explored with Prof. Mayergoyz. I
went to work on this idea; it looked good on paper, but the code did not work.
I shelved the idea at that time; little did I know that I would be revisiting this
idea a year and half later, and it will form the basis of all simulations of the
thesis.

This dissertation brings to close my academic life as a student. I have
attempted to make this document as readable and usable to my readers. This
is at two levels: (a) content chosen to be written in the thesis; and (b) the
writing style of the presentation. On the content front, I have shied away
from regurgitating derivations that are already present in literature, referring
to appropriate citations instead. In addition, I relegated many derivations to
the appendices. I have striven to achieve the dual aim of providing enough
detail so that a researcher, like a graduate student, has enough details to
reproduce my results, as well as keep the advanced reader interested. On the
writing-style front, I have tried to make the presentation crisp, direct, clear,
pointed, unambiguous, and vigorous. I have tried to eschew from creating
acronyms, and kept their use to the minimum, using only the most common
of all (like MOSFET, BJT). I have added an index for easy reference. I have
been tremendously aided by books on good writing style in general * and
writing for science and engineering. * Two publications, for me, have been the
paragon of good writing-style: Prof. Mayergoyz’ Poisson equation paper [95],
and Prof. Patankar’s book [113]. Despite my efforts, there could be many
spelling, grammar, and stylistic errors remaining in the dissertation; I apologize

3D. Hacker, A Writer’s Reference, Bedford Books of St. Martin’s Press, Boston, MA,
1995.

4J. Kirkman, Good Style Writing for Science and Technology, E & FN Spon, London,
UK, 1992.
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to the readers for that.

Santa Clara, California Surinder Pal Singh
April 1998
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CHAPTER ].

INTRODUCTION

1.1 Chapter Introduction

This chapter is an introduction to the entire dissertation. This chapter is
organized as follows: Section 1.2 outlines the motivation and need for tech-
nology computer-aided design (TCAD) tools in the semiconductor industry.
Various approaches to device simulation—Ilike drift-diffusion, hydrodynamic,
and Monte Carlo—are discussed in Section 1.3 on the next page, followed by
a discussion on spherical-harmonic approach in Section 1.4 on page 5. The
spherical-harmonic literature is briefly reviewed in Section 1.5 on page 6. The
scope and contributions of this dissertation are discussed in Section 1.6 on
page 8. Finally, the organization of the dissertation is outlined in Section 1.7
on page 9.

1.2 Motivation for Device Simulation

Semiconductors, sometimes referred to as the rice of the industry [1], have
made tremendous advances in the recent decades. To increase functionality,
the number of transistors on a chip have increased at an exponential rate; in
fact, according to the Moore’s Law, number of transistors on a chip doubles
every eighteen months. Logic chips, like microprocessors, currently can easily
have 5-15 million transistors; in the year 2003 this number is expected to be
76 million; in the year 2006 it is expected to be at 200 million; while it might
be as large as 520 million in year 2009 [2].

Minimum feature size on an integrated circuit is continuously shrinking.
This is because smaller feature sizes have many advantages: higher transistor
counts, which means more functionality; lower power; faster speed of operation.
While decades ago the minimum channel-length of metal-oxide-semiconductor
field-effect transistor (MOSFET) was 20um, but the current state-of-the-art
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in production is 0.25-0.15um. The industry organizations are already in the
process of developing 0.1-um technology, which is expected to ship in the year
2003. It is estimated that MOSFET channel-length of products shipped in the
year 2009 will reach 0.05um [2]. Technology is expected to continue shrinking
in the near future.

Since the modern chip design and manufacturing is an extremely complex
and involved process, computer-aided design (CAD) tools are used in all stages
[72,81,82]. In the semiconductor industry there are two categories of CAD
tools: electronic circuit CAD (ECAD); and technology CAD (TCAD) [3-8].

ECAD, which is sometimes also referred to as “higher-level CAD” [5], pro-
vides software tools to the chip designers in the areas of logic and circuit design,
layout, design-rule checking, timing analysis, floor-planning, hardware descrip-
tion languages, silicon compilers. It is primarily associated with product design
in relatively mature production technology.

TCAD, on the other hand, typically is applied during the development of
the technology. It ranges from equipments simulation, process simulation, de-
vice simulation, and sometimes even small-circuit simulation. Equipment sim-
ulation predicts the behavior of equipment used in a fabrication plant. Process
simulation would then simulate of each step of the chip manufacturing to pre-
dict the final device structure and doping profiles. This information is in turn
used in device simulation to predict the external and internal electrical be-
havior of the devices like I-V curves, electric fields, electron and hole energies
and concentrations [3]. The predictive nature of TCAD allows technologists to
develop new processes and devices in a faster and resource-efficient manner [4].

While the relatively-more-mature field of ECAD fuels its development
mainly from the algorithms and techniques of computer science, TCAD, on
the other hand, culls from the academic disciplines of applied mathematics,
physics, chemistry, chemical engineering, electrical engineering, material sci-
ence, and computer science [5].

Fig. 1.1 on the facing page shows the hierarchy of CAD tools used in the
very large-scale integrated (VLSI) circuit design [5]. Information feeds upward,
from the primitive to the higher level: equipment simulation — process sim-
ulation — device simulation — circuit simulation and higher. The focus of
this dissertation is on this technologically-important aspect of TCAD: Device
Stmulation.

1.3 Device Simulation Approaches

The operation of semiconductor device can be modeled by a set of transport
equations along with the Poisson equation, The transport equations, which are
typically coupled partial differential equations, are not unique; they depend
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Figure 1.1: Hierarchy of computer-aided design (CAD) in semiconductor design
and manufacturing. Electronic CAD (ECAD) is used for chip design; technology
CAD (TCAD) is used for technology development. Device simulation—which is the
subject of this dissertation—forms a very important part of this process. After [5].

on the level of accuracy desired. These equations can be solved to understand
and predict devices in two ways: simplified closed-form solution or rigorous
numerical solution.

Closed-form analytical solutions are obtained by approximating the govern-
ing transport equations on simplified piece-wise linear doping profiles. Rigorous
numerical methods, on the other hand, solve these partial differential equations
exactly and rigorously by numerical techniques: The device can be divided into
small regions by grids, and the equations solved by finite-difference or finite-
element methods. This allows flexibility in having arbitrary device shapes and
doping profiles, and ease of incorporating more physically sophisticated models.
Unfettered by blanket assumptions, the numerical simulation of devices gives
reliable and accurate solutions. In the absence of closed form solutions, how-
ever, the physical meaning of device parameters and their influence on device
performance may sometimes be obscured [54]. Numerical device simulation,
therefore, can be defined as a numerical solution of semiconductor transport
equations which include relevant physical effects in a realistic device structure.

Very intimately connected with the simulation is the choice of the governing
transport model equations. A sophisticated model may include more physics
and may predict device behavior more accurately; although it may consume
more computational resources. A simpler model, on the other hand, may be
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computationally efficient; although the model may describe the device behavior
less accurately. Following models, in order of increasing complexity, are used
in industry for device simulations:

1. Drift-Diffusion
2. Hydrodynamic or Energy-Transport
3. Monte Carlo

Following sub-sections discuss these models.

1.3.1 Drift-Diffusion

Drift-diffusion is the oldest models of semiconductor transport [72]. The model
gets its name by the assumption that the charge transport of the carriers (elec-
trons and holes) is a result of drift (due to electric fields) and diffusion (due
to the concentration gradients). This is the most common transport model.
Sophisticated techniques exist for solving this model. Its major strengths are
(a) mathematical simplicity and robustness, (b) modest CPU (central process-
ing unit) demands, and (b) easy calibration. On the down side, however, the
model is not accurate for devices where the electric is large, or rapidly varying—
typical of modern sub-micron MOSFET and bipolar transistors [9,10]. This
is due to the fact that the drift-diffusion model does not model hot-electron
transport.

1.3.2 Hydrodynamic or Energy-Transport

The hydrodynamic model assumes that, in addition to the drift and diffusion,
the current density has a thermal component to it [74]. It assumes that carriers
can be assigned a temperature, which is different from the lattice temperature
[56,62,74]. The advantage of the hydrodynamic device simulation is that it
has more physical detail. On the flip side it is (a) numerically unstable, (b)
requires more computational time, and (c) is not as easy to calibrate.

1.3.3 Monte Carlo

Monte Carlo technique solves the Boltzmann transport equation [62-70, 87—
90,92]. It is a stochastic technique which generates random numbers to mi-
croscopically simulate electron motion—drift in electric field and collision with
lattice or other electrons. Monte Carlo approach can successfully solve the
multi-dimensional Boltzmann equation, something that is not a trivial task
for direct numerical techniques. It can include, with relative ease, complex
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band-structure and scattering processes. The Monte Carlo technique, how-
ever, is encumbered by intensive computational demands—Ilarge CPU (Cen-
tral Processing Unit) times and large memory requirements. This becomes
more severe when the Monte Carlo simulation has to be self-consistent with
the Poisson Equation. Monte Carlo method consumes even more computation
time for devices which have regions of high doping, low electric fields, and re-
tarding barriers [67, 89]—which, of course is true for most devices, especially
MOSFET’s and bipolar junction transistors. This is inherent in the nature
of the Monte Carlo technique. A very large number of particles are needed
to obtain a statistically significant estimate, free from statistical noise. This
statistical noise manifests in two ways. Firstly, the tail (high-energy) region
of the distribution function is noisy and inaccurate, especially at low electric
field—devices almost always have large regions of low electric fields. Secondly,
the electric currents predicted by Monte Carlo at low applied bias are very
noisy.

1.4 Device Simulation by Spherical Harmonics

We make conflicting demands on device simulation TCAD: On one hand we
want more physical rigor to model the modern sub-micron devices; on the other,
we would desire computational efficiency and numerical robustness. Spherical-
harmonic approach is one such solution technique which promises to deliver
both. Fig. 1.2 on page 7 compares the spherical-harmonic approach with the
others. Physics in the spherical-harmonic approach is much more than that
in drift-diffusion and hydrodynamic models; but it is comparable to that in
Monte Carlo. The computation time is, on the other hand, is much less that
for Monte Carlo. Chang, et al., [44] report the computation time of 10 seconds
for spherical-harmonic simulation of a bipolar junction transistor (BJT), while
it took 10 hours for Monte Carlo. Spherical-harmonic approach, therefore, is
a computationally efficient alternative to the Monte Carlo for the solution
of the Boltzmann equation [17-51]. It is a direct deterministic solution, as
compared the stochastic solution of the Monte Carlo approach. It does not,
therefore, suffer from the statistical noise in the tail of the distribution func-
tion. Unlike drift-diffusion it incorporates non-local non-equilibrium effects.
Unlike drift-diffusion and hydrodynamic, this approach provides the distri-
bution function for the carriers, which in turn allows accurate computation
of distribution-function-dependent hot-electron effects like gate and substrate
currents in MOSFET’s [84,85]. Hot electrons, incidently, are those electrons
in the semiconductor that have much higher kinetic energy than the average
carrier population [85].

The basic idea of spherical-harmonic approach is to expand the distribution
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function in momentum space using spherical harmonics. In fact, this expansion
reflects the spherical symmetry inherent due to the spherical symmetry of the
band-structure and the randomizing nature of most scattering processes [17].
In the extreme case, the equilibrium distribution function is fully spherically
symmetric. The spherical-harmonic basis function exploits this symmetry. The
expansion reduces the dimensionality in momentum space and allows for ana-
lytical evaluation of the scattering integral.

Spherical-harmonic-expansion approach can also be interpreted as a spectral
method, similar to those used in the discipline of computational fluid dynamics
(CFD) [114,115]. By expanding the distribution in spherical harmonics, we
have used a spectral method in azimuthal- and polar-angle direction, and the
usual finite-difference in radius (energy) and space. Spectral methods are well-
known for their high accuracies arising from low discretization error [115].

1.5 Literature Review of Spherical Harmonic Ap-
proach

Spherical harmonics, or their simplified cousins Legendre Polynomials, were
first introduced in solid-state physics in 1950’s [49]. In recent years, spherical-
harmonic approach to solving the Boltzmann equation was proposed by Prof.
Neil Goldsman in 1989 in his seminal work in [20,47]. That aroused con-
siderable interest in the device-simulation community and attracted many re-
search groups to this area; since then a considerable body of literature has
built up: [17-28,30-43,46-51] At the time of writing this dissertation, there
are three major groups active in this area: (1) Italian group at University of
Bologna [21,27-31,35-39, 45, 46]; (2) Massachusetts Institute of Technology
(MIT) group under Prof.’s Jacob White and Dimitri Antoniadis [17-19]; and
(3) the University of Maryland group under Prof.’s Neil Goldsman and Isaak
Mayergoyz [20,22-26,32-34,40-44,47-51].

The spherical-harmonic expansion in space-independent formulation [17,
20-30, 40,47-50] has been used to study effects like impact ionization [24-
27,29,37]. Soon many many devices were simulated: one-dimensional n*nn*
device [17,19,32,33,42,48]; one-dimensional bipolar junction transistors (BJT)

[31,34,36,37,44]; and two-dimensional MOSFET’s [39,41-46, 50, 51].

Some of the space-dependent simulations were a post-processing to the
drift-diffusion or hydrodynamic simulation [32,36,37,39,41]; some simulations
were self-consistent with the Poisson equation [17-19,33]; and a few simulation
went beyond the Poisson equation and included the hole-continuity equation
self-consistently [34,42,43,51]. A hybrid simulator which combines efficient
hydrodynamic with the spherical-harmonic approach was proposed in [45].

In terms of band-structure, the initial simulations used a simple elliptical
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Figure 1.2: A schematic representation of the physical rigor of the various trans-
port models and the computational burden associated with them. Spherical-
harmonic approach incorporates more physics in its formulation, but takes sig-
nificantly less computation time.
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parabolic band-structure [20,32,33,40,47,48]. Soon a spherical multi-band
band-structure by Brunetti et al. [57], and improvements on it [58], gained
popularity. Although this band-structure has four bands, space-dependent
simulations have used only the lower two [21,37,39,42,43]. All four bands have
been incorporated only in space-independent formulations [23,25,50]. Vecchi
et al. [27-29] have proposed an interesting idea to incorporate full-band band-
structure, similar to the one used in full-band Monte Carlo, into the spherical-
harmonic approach.

1.6 Scope & Contributions of the Dissertation

This dissertation makes further progress in the spherical-harmonic techniques
for solving the Boltzmann transport equation. A major salient feature is that
the space-dependent Boltzmann equation is solved for energies up to 3.4eV by
including all four bands of the multi-band band-structure of Brunetti et al. [57],
and its improvement [58]. All four bands, so far, have been used only in space-
independent formulations [23, 25, 50]. In space-dependent formulations, the
most that has been incorporated are the lower two bands [21, 37,39, 42, 43].
Modeling the higher bands is important because electrons in modern short-
geometry devices routinely reach high energies. These energetic electrons are
also a major reliability concern.

In this dissertation we transform the spherical-harmonic-expanded Boltz-
mann equation to a new variable, called pre-Maxwellian variable. It is shown
here that if the Boltzmann equation is transformed to use this new variable then
its numerical properties improve, making the numerical solution more robust.
This new variable transformation (a) enhances the diagonal dominance of the
discretized Boltzmann equation; (b) accounts for exponential variation of distri-
bution in both energy and space; (c) allows usage of superior Poisson-equation
solvers, like Mayergoyz’ fixed-point technique [95-97]; (d) while retaining the
linearity of the Boltzmann equation intact. The Boltzmann equation in each
band is transformed to this new variable and discretized using the control-
volume formulation [113,114]. The discretized equations are solved using line
SOR in space and energy alternatively [114]. The solution exhibited numeri-
cal noise. The cause of this noise was identified and removed by inclusion of
acoustic phonons in inelastic approximation, instead of the usual elastic ap-
proximation. The inelastic acoustic phonons scattering term was formulated
in a new self-adjoint form, and a new stable discretization was developed. The
use of inelastic acoustic phonons, it may be pointed out, is not an original con-
tribution; it has been used in the original Spherical-Harmonic paper of Prof.
Neil Goldsman [20]. What is new is that (a) it was identified as the cure
for the numerical noise, and (b) a new discretization was developed based on
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expressing the scattering term in a self-adjoint form.

This approach of solving the Boltzmann equation was tested on three de-
vices: (a) a one-dimensional n*nn™ device structure; (b) a one-dimensional
bipolar junction transistor (BJT); and (c¢) a two-dimensional metal-oxide-
semiconductor field-effect transistor (MOSFET). For the n*nn* and BJT the
Boltzmann equation was solved self-consistently with the Poisson and hole-
continuity equations. For the MOSFET the Boltzmann equation was solved as
a post-processor to a drift-diffusion simulation.

The case of thermal equilibrium was examined. An analytical solution to
the multi-band Boltzmann-Poisson system was developed and used to validate
the code. It was shown that despite large electric fields in devices, equilibrium
conditions prevail in the device. At thermal equilibrium, electron velocity is
zero; this can be interpreted as wvelocity undershoot or velocity damping, since
the velocity is less than what is demanded by the local electric field.

1.7 Organization of the Dissertation

The dissertation is organized as follows. Chapter 2 on page 11 derives the ba-
sic mathematical formulation of the spherical-harmonic-expansion approach.
The multi-band band-structure is discussed in Chapter 3 on page 43. The
multi-band spherical-harmonic Boltzmann equation is transformed to the new
pre-Maxwellian variable and discretized in Chapter 4 on page 53. This dis-
cretization, along with the Poisson and hole-continuity equation, is solved for
the n*nn™ device in Chapter 5 on page 81. A bipolar junction transistor (BJT)
is simulated in Chapter 6 on page 107, and a MOSFET is simulated Chapter 7
on page 133. Finally the dissertation concludes in Chapter 8 on page 171.

To maintain lucidity, some topics are discussed in the appendices. Proof of
current-conserving property of the Boltzmann equation is given in Appendix A
on page 173. Analytical solution to the thermal-equilibrium Boltzmann equa-
tion is derived in Appendix B on page 177. The derivation of harmonic-mean
discretization, and its similarities to other schemes, is presented in Appendix C
on page 179. Following that, Appendix D on page 183 introduces the Poisson
equation along with its discretization, and Appendix E on page 189 presents
the discretization of the hole-continuity equation.

1.8 Chapter Summary

In this chapter the central ideas of the dissertation were introduced. An
argument was made that device simulation is an important area for semi-
conductors. Then it was indicated that the present simulation approaches—
drift-diffusion, hydrodynamic, and Monte Carlo—have deficiencies which the
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spherical-harmonic approach addresses. Following that, a brief review of the
spherical harmonic literature was given. The scope and contributions of this
dissertation were discussed, followed by a description of its organization.



CHAPTER 2

SPHERICAL HARMONIC
EXPANSION OF BOLTZMANN
TRANSPORT EQUATION:
DERIVATIONS AND
FUNDAMENTALS

2.1 Chapter Introduction

Electron transport in semiconductors can be described by the semi-classical
Boltzmann transport equation. Numerical simulation of semiconductor de-
vices by this equation is a formidable task because of many reasons: (a) the
dependent variable, distribution function, is a function of seven dimensions,
three in real space, three in wave-vector space, and one in time; this is re-
ferred to as the the curse of dimensionality. (b) The Boltzmann transport
equation is a complicated integro-differential equation. = Over the last few
decades many methods have been developed for its solution [12]: Monte Carlo
method [62-67, 69, 70, 92]; scattering-matrix approach [13,91]; deterministic
particle method [14]; cellular-automata approach [15]; and iterative-spectral
method [16] amongst others. Spherical-harmonic-expansion approach is an ef-
ficient direct numerical solution technique to solve the Boltzmann transport
equation [17-51]. This chapter is devoted to presenting the basic derivations
pertaining to this method.

Since considerable literature on the spherical-harmonic approach has accu-
mulated in the recent past [17-51], this chapter, therefore, tries to eschew from
re-deriving the old equations—final results will be presented with the appropri-
ate citations. Impact-ionization scattering, however, is treated in more detail,

11
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this is because our derivation is at slight variance with literature [24,43,51].

The chapter is organized as follows. First the Boltzmann transport equa-
tion is introduced in Section 2.2. An overview of the derivation and equations
for the spherical-harmonic approach is presented in Section 2.3 on page 14. In
Section 2.4 on page 19 are given the derivations pertaining to average quanti-
ties, like electron concentration and current; and some functions, like density
of states. We then introduce the expressions for the collision terms in Sec-
tion 2.5 on page 26. All terms are put together into a differential-difference
equation in Section 2.6 on page 34, which, along with the boundary conditions
of Section 2.7 on page 35, represents the boundary-value problem to be solved
in subsequent chapters.

2.2 Boltzmann Transport Equation

Let us assume that the distribution of electrons in real space, r, and wave-vector
space, k, at time ¢ can be described by a distribution function f = f(r,k,t). We
want this distribution function to have the following physical interpretation:
It is the probability of finding an electron at a electronic state at (r,k) at
time ¢. The total number of electrons in a given volume, therefore, is the
sum of probabilities over all possible states: > f(r, k). This, as will be shown
in Section 2.4, can be expressed as an integral 1/473 [ f(r,k) d’r d®k. The
distribution function, it follows, is a dimensionless function which describes
how the electrons are distributed in real and wave-vector space [74].

Distribution function is a complete description of all electrons in a device—
all quantities of interest in a device can be computed from the distribution
function. The distribution function is governed by the celebrated Boltzmann
transport equation. It is named after the renowned scientist Ludwig Boltzmann,
shown in Fig. 2.1 on the facing page.

The Boltzmann transport equation can be derived as follows. Following
the derivation by Tomizawa ( [62], p. 171) we write the Boltzmann transport
equation as:

of of of
SCA (A =L 2.1
at ( at >drift * [ at :| collision ( )
The drift term is the drift in both real and wave-vector space:
af dr dk
— =—-V, — -V 2.2
(5 =5+ Y 22

Using quantum mechanics we can write the group velocity, u,, in terms of the
band structure.

dr 1
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Figure 2.1: Ludwig Boltzmann (1844-1906). After his doctorate in 1866 he
studied under many teachers like Josef Stefan, Bunsen, Kirchoff, and Helmholtz.
It is said that he became depressed by arguments with his colleague and scientific
opponent W. Ostwald and attempted suicide. He obtained the Maxwell-Boltzmann
distribution in 1871. In 1884 he derived Josef Stefan’s empirical 7 law for black-
body radiation from thermodynamic principles. In the 1890's he derived the Second
Law of Thermodynamics from the principles of mechanics. In 1904 he visited
Berkeley and Stanford. He committed suicide before the new discoveries concerning
radiation, which he learned in his American trip, would prove his theories. After
[11].
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where the reduced Planck’s constant, 7, is Planck’s constant divided by 27; and
e = e(k) is the energy of the electron, whose dependence on wave-vector, k,
comes from the knowledge of semiconductor band-structure. The momentum
of electrons, by quantum mechanics, is p = hk, and the rate of change of
momentum, by classical mechanics, is the force acting on it:

dp _ ,di
dt — dt
where the ¢ is magnitude of charge on an electron, and E is the electric field.

Substituting Eq. (2.4) and Eq. (2.3) in Eq. (2.2) and Eq. (2.1) we get the
well-known Boltzmann transport equation:

O ANV Vf B Vif = [3f] (25
collision

= —qE (2.4)

ot h ot

where the nabla, V, operators have the following definitions.

0A, 0A, 0A,

AR 2.

Vr 8x+8y+82 (2:6)
A A A

Vk'Aéaw+ay—|—az (27)

ok, Ok, ' Ok,

Boltzmann transport equation, Eq. (2.5), describes electron transport in
semiconductors in a semi-classical fashion. The electron motion is modeled by a
combination of classical and quantum mechanics. The equation is essentially a
statement of conservation in real space and wave-vector space. The Boltzmann
equation is an integro-differential equation which has a high dimensionality—it
has seven dimensions: three in real space; three in wave-vector space; and one
in time. Because of this curse of dimensionality, a direct solution is rather
difficult. Using spherical harmonics this dimensionality in wave-vector space is
reduced and this integro-differential equation is transformed into a differential-
difference equation, which is more amenable to a numerical solution.

2.3 Spherical Harmonic Expansion of the Boltz-
mann Equation

Distribution function can be expected to have some spherical symmetry in
wave-vector space due to the spherical symmetry of the band-structure and the
randomizing nature of the scattering processes [17]. In the limiting case, the
Maxwellian distribution at thermal equilibrium is spherically symmetric. This
a priort knowledge of symmetry can be exploited by expanding the distribution
in wave-vector space using spherical-harmonic functions.
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Spherical-harmonic-expansion approach can also be interpreted as a spectral
method in azimuthal- and polar-angle direction, and the usual finite-difference
in radius (energy) and space. This is similar to the approach in the discipline of
computational fluid dynamics (CFD) [114,115]. Spectral methods in numerical
solution of partial differential equations are well-known for their high accuracies
arising from low discretization error [115].

Spherical harmonics are also used in other areas of science where there is
spherical symmetry. In meteorological weather simulation, for example, spher-
ical harmonics are used to solve for quantities at or near earth’s surface. The
earth provides natural spherical symmetry.

The spherical-harmonic expansion of the Boltzmann Transport equation
has been treated in detail in literature: Hennacy [41,49] and the Italian group

[35] originally derived many of these important results. Readers may also refer

to [50,51]. Therefore there is little need to re-derive these equations. I will
only give a brief sketch of the derivations; an interested reader is referred to
the original publications. The derivation of the spherical-harmonic expansion
of the Boltzmann equation can be summarized in the following steps:

1. Expand the distribution in spherical harmonics (Eq. (2.8))
2. Substitute the expansion in the Boltzmann transport equation (Eq. (2.14))

3. Use orthogonality of spherical harmonic functions (Eq. (2.13) ) to derive
equations in the coefficients of the expansion

4. Convert the wave-vector magnitude, k, to energy, € using the dispersion
relation for the band-structure (Eq. (2.16))

5. Change the independent variable from energy to Hamiltonian (Eq. (2.19)
and Eq. (2.20))

6. Truncate the infinite expansion to first-order (Eq. (2.21))

Referring to Fig. 2.2 on the next page we can express the wave-vector,
k = (k;, ky, k,), in terms of its spherical components (k, 0, ¢). Where k = k| =
magnitude of electron wave vector, # = polar angle, and ¢ = azimuthal angle.
We can expand the distribution in terms of spherical harmonics as

k) =Y "> frrkY™0,¢) mel-Liandl€0,00)| (28)

=0 m=-1

The magnitude k£ has a physical significance—for spherical band-structure all
points on a sphere have the same energy.

The functions Y;™ are the spherical-harmonics, integers m € [—,{], and
[ € [0,00). For some lower values of [ and m these functions have the following



16 2. SH BTE: DERIVATIONS AND FUNDAMENTALS

/

X

Figure 2.2: Coordinate systems used in the spherical-harmonic expansion. The
coordinates of wave-vector k in the spherical system are the magnitude £, the polar
angle 6, and the azimuthal angle ¢. In the Cartesian system the wave-vector k will
have familiar Cartesian components: k;, k,, and k..

form [71]:
Y90.6) = —— (2.9)

Y0, ¢) = —\/g sin ) /¢ (2.10)

(0, ¢) = % cos (2.11)

Y0, ¢) = + % sin e~7¢ (2.12)

where j = y/—1. Orthogonality of spherical-harmonic functions is an important
property:

s 27
/ / Y0, )Y (0, 6) sin 0 d0 db = 8y 10y (2.13)
0=0 J =0
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Substituting the expansion of f(r,k) from Eq. (2.8) into the Boltzmann
equation Eq. (2.5) we get

(;Jr —Vie -V, — qE Vk)ZZfl k)Y;"(0,¢) =
=0 m=—1
la Z?io Zin:—l flm(r7 k)y}m(e’ ¢) ]

o (2.14)

collision

By projecting this on the basis functions

T 2T
/ / dfde sin Y™ (0, p)
=0 J $=0
0 1 0
E - — | = .
(at * thg V hq Vk |:8t:| c0111510n>

z S 08 =0 (215)

=0 m=—10

we derive a set of coupled partial differential equations in the coefficients f;™.

We converted the independent variable from k to k£, which can be further
converted to the variable energy ¢ by the dispersion relation. By using the
band-structure information we can write a dispersion relation y(g) in terms of
an effective mass m*:

h2 k2
2m*

1e) = (2.16)

The function () can be an arbitrary function, though it is usually of the form
v(€) = & + ag?, or simply v(g) = &.

In fact, the equations take on a simpler form if we go a step further and
convert the independent variable from e to the Hamiltonian, H [35,36]. For
an electron (negative charge), we can transform:

(r,e) = (v, H) (2.17)
(z,y,2,€) = (2,9, 2, H) (2.18)
H=¢—q¢(r) (2.19)

We can define new variable F/™ when using H.

F"r,H) = f{"(r,H 4+ q¢(r)) = f"(x,¢€) (2:20)
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First-Order Truncation

Eq. (2.8) has infinite number of terms. It has been shown in [44] that a first-
order expansion is accurate by comparing it with the exact Monte Carlo solu-
tion. Computations in [21] for second-order expansion compare well with those
from first-order; this provides further justification for a first-order truncation.
This should not be surprising since the spherical-harmonic approach can be
interpreted as a spectral method. Spectral methods are accurate with lower-
order expansion, in fact that is why they are used in the first place. The error
with spectral methods decreases exponentially with increasing the number of
terms of the expansion [115]. Motivated by this, we can truncate the infinite
series in Eq. (2.8) to the first order: That is, we set F]™ = 0, for [ > 2. The
distribution then looks like

flek) =" > B (x, H)Y"(0,0)

1=0,1 m=-I

m=-1,0,1
= FyYy + Fy 'Yy '+ Y + FYg

Using this truncation, ignoring time-dependence and considering only one
space-dimension, we can derive

ug [0 OF) 04 OFy OFy
1D el o) _4rLl =0 20 =0 2.22
3 {8.’E (Tug o0x 1 vy Tty ox * Ot | oltision ( )

where 7(¢) is the reciprocal of the scattering rate; v’ = dvy(¢)/de is the deriva-
tive of the dispersion relation; and u4 is the group velocity, to be discussed
in Eq. (2.55). We have, in (2.22), abused notation slightly by retaining the
symbols for ug, 7, 7y, even though the independent variable has been changed
from € to H. This equation can be re-arranged in a self-adjoint form:

uy, 0 OF) OF}
= — — — =0 2.23
37 a‘r (Tuﬂ 8‘1‘ - at collision ( )

By noticing uy, = (1/2/m*)(/7/7') and g = g(e) = c4\/7Y We see that g
7v/uy; which allows us to write [31,35-37,39]

19 (o OF\ | [OF
39 a’L‘ gg 837 at collision

We will refer to Eq. (2.24) as the spherical-harmonic Boltzmann equation.
The spherical-harmonic expansion has some interesting consequences:

=0 (2.24)
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1. Original Boltzmann equation, ignoring time-dependence, had six dimen-
sions: three in real-space, three in wave-vector space. The spherical-
harmonic Boltzmann equation has four: three in real-space, one in Hamil-
tonian.

2. Original Boltzmann equation was a first-order integro-differential equa-
tion, the spherical-harmonic Boltzmann equation is second-order differ-
ential equation. This is makes it easier to specify boundary conditions in
a boundary-value problem.

3. The lower-order expansion coefficients have physical significance by them-
selves. f¢ is the isotropic symmetric part of the distribution—physically
it corresponds to the energy distribution function, it is a measure of how
electrons are distributed in energy. fi' and f° are the asymmetric part
of the distribution—physically they describes electron flow (current).

To proceed further we need expressions for the scattering terms. These are
derived in Section 2.5 on page 26. But before that we need to express the
average quantities in terms of spherical-harmonic expansion.

2.4 Average Quantities

2.4.1 Basics

For a function (k) we can compute its sum over all electrons in a volume €2
as

<NQ>= Y Qmfwm (2.25)

all e~ states in k-space

where N is the total number of electrons in in the volume. The average, or
moment of distribution, of the quantity @ (k) for all electrons in the volume is
defined as:

<Q>= djvﬁ (2.26)

2.4.2 Summation Over k-Space

Solution of Schrodinger equation for electrons in the periodic potential of a
semiconductor gives [74]

Ak, =" (2.27)
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where L, is the length of the sample in z-direction. Using similar expressions
in the other spatial directions we can write

Akg Aky Ak, = Volume of one k-space state
(2m)°
" L.L,L, (2.28)
(2m)°
Q

Where 2 = L,L,L, = is the volume of the crystal; volume (2 can be thought
of as a conceptual box whose dimensions are large compared to the electron
wavelength, but small as compared to the size of a device [74]. For every
k—space element there can be two electrons—one with up-spin and the other
with down-spin. Including this factor of two, we can write

Number of Electron States Q
= 2 2.2
k-space Volume (2m)3 % (229)

If a function A(k) = A(ks, ky, k) is a function of wave-vector. Sum of A(k)
over all electronic states is

doOAK) =2 > A(k)

all e~ states all k
1
= E Ak) Ak, Ak, Ak,
AkyAky Ak, £ (k) AkaAky Ak (2:30)

oy [, A0k

We have derived a general rule to convert a sum to an integral.

Y = 2(22)3/k d*k (2.31)

k

=2

2.4.3 Integration Over k-Space

Let us say there is a function B = B(k) which depends only on the magnitude
of wave-vector, k. Integration of such a function over the k-space takes on a
special frequently-used form, which we derive in this sub-section. In spherical
coordinates the differential k-space element is

&k = (dk) (k db) (k sin 0 d¢) = k*sin 0 dk d6 dp (2.32)
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Integrating over the entire k-space

kmax T 27
/ B(k) d*k = / / / B(k) k?sin 0 dk df d¢
k k=0 Jo=0J¢=0
kmax ™ 2T
:/ B(k) k? dk/ sinedo/ do
k=0 =0 $=0

szmmﬁw
k

(2.33)

From the dispersion relation of Eq. (2.16), v(¢) = h?k?/2m*, we can derive

W2k
v'(e) de = — dk
m
kdk = 7;:2 ' (€) de
2m*(e)
=Y 1
A

We can then introduce a new function ¢

m)3/2
k*dk = \/i(T)y'(s)\/fy(s) de

_9(e)
T A4r de

Which is defined as:

/3 ()32
o0 & TR ) @)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

For the sake of brevity we would often define a constant ¢, = 4mv/2(m*)%/2 /R3.
The complete the integration in Eq. (2.33) we change variable of integration

from k — . The function B in new variable is
2 *
B(k)=B (%@) = B(e)
Substituting Eq. (2.39) and Eq. (2.37) in Eq. (2.33)

/kB(k) &’k = 47T/B(k) k2 dk

k

(2.39)
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This translates to a simple rule: Integration over entire k-space of a function
which depends only on wave-vector magnitude can be done instead by multi-
plying it by g(e) and integrating over energy.

/k Bk) Pk — / B(e)g(e) de (2.41)

2.4.4 Electron Concentration

Electron concentration at a point in space can be computed by setting () = 1
in Eq. (2.25), and applying Eq. (2.31) and Eq. (2.32).

B Total Number of Electrons
B Volume

>, (2.42)

all e~ states

2
= f(k) d®k
all k

kma,x

k*sin 0 dk df d¢

k= 6=0 J ¢=0

kmax can be oo or the maximum of a band. Substituting the expansion f(k) =

Yo S (R)Y™(6, ¢) from Eq. (2.8)

= OE k?* sin 0 dk df d¢
)

o K)Y™(0,¢) k?sin6 dkdf do (2.43)

¢ m

— W;; /kflm(/f) dek/H/(bYlm(O, ¢) sin 0 df d¢
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From Eq. (2.9), Y7 = Y* = 1/v/4xr. Then Y *v/4r is simply unity. We can
then apply the orthogonality of spherical harmonics, Eq. (2.13), as follows:

2 m m
:W El Em /kfl (k) k2dk//Y sm0d0d¢
2 m m * 2
= (27r)3\/47r El Em /kfl (k) k? dk/()/qu; (0, 9)Y*sinf df do

k) k*dk - 6.00m,0 (2.44)

—W\/E /kfg(k) k2 dk
m* 3/2
°e>(1gﬁ¥—ﬂ«@vw@0¢k

to contain the burgeoning number of symbols we have flouted mathematical
rigor slightly by setting fJ(k) = fJ(¢). Re-arranging the above equation we
get:

)3/2
n= s [ R eviEE (2.45)

To put this equation in familiar terms, we can write it as

o= [ (BO5=) noa .
_ / (f2()Y0) h(e) de

£

The function h(e) is the density of states (DOS) [76]. It is proportional to the
function g(¢) from Eq. (2.38)
1
= 2.47
M) = 50(6) (2.47)

2.4.5 Electron Current and Velocity

To derive an expression for electron current density, or electron velocity, we set
@ = u,, where u, is the group velocity of electrons, in Eq. (2.25):

<Ny >= Y u,(k)f(k)
all e~ states (248)

Q 3
=2 W/kug(k)f(k)d k
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Basic definition of Current density is carrier density times velocity.

< Nuy >

J2c nu, >= (2.49)
Q
and average velocity is defined by
J

Few things need to be derived to proceed further.

relation Eq. (2.16) we write

From the dispersion

h2k? R, .
v(e(k)) = S = 5 (k2 + K2+ k2) (2.51)
The chain rule of differentiation,
oy 0y Oe
= — 2.52
Ok, Ot Ok, (2:52)
can be re-arranged to derive
Oe 1 Oy
Ok,  ~'(¢) Ok,
1 nm 0
= — (B2 + K2+ k2
v (e) 2m* Ok, (ke + v :)
L (2.53)
= — (2k,
7@ 2me )
1R
(o) m?

From quantum mechanics the group velocity of electrons, as stated in Eq. (2.3),
can be written in terms of the band structure:

u,(k) = = Vie(
Oe
ok,
K
e (h

*

k)

A
0

1+

HA

O, Oe -
3 k
ok, " Ok, )

o+ k) + szc)

+

(2.54)
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The symbols i, j, k, are unit vectors in z, y, z direction respectively. Magnitude
of uy(k) is

(
h 2m*y(e
_ %7%8) ( hV( )> (2.55)

Let us consider the z components. From Eq. (2.55) and Fig. 2.2 on page 16

Ugy = UgSinf cos ¢ = 4/ 2* . ;)ES) sin @ cos ¢ (2.56)
m* oy

Substituting in Eq. (2.49), the x component of current density is

< Nu,, >
Jo =< n ugy >= —25 =
Q
2

_ W/ugm(k)f(k)d?’k

/kmax /7r /27r( ) 0 ¢) (257)
Uqe SIN U COS .
27T k 6=0 J $=0 I

(ZZfz k)Y,™(0, ¢ ) k?sin 0 dk df d¢

Using the formulas for spherical harmonics, Eq. (2.10) and Eq. (2.12)

2
sinf cos ¢ = ?ﬂ (vi' -1 (2.58)
we can simplify Eq. (2.57) by using orthogonality from Eq. (2.13)
2 Fmax o
Jm = ng ?
/ / -1 - (ZZ (k) Y™ (8, qb)) sinfdfdo dk
=0 J $=0 —
2 g (7 0) = £1(00)
27r k— .
27 _ gle
2 [, (f1 e - Ae) L2 e

(2.59)
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Now we invoke the transformation of variables from energy to Hamiltonian, as
derived in Eq. (2.19) and Eq. (2.20).

file) — Fi(H) and  f7'(e) — Fy'(H) (2.60)

For the Hamiltonian variable, simple expressions have been derived in [41,49]
and [50,51].

u,T OFY
Fl(H)=—“2-"2=—-F'(H 2.61
) = TS = ) (2:61)
_ 2 OF)
FT'(H) — F/(H) = - 3 ugfa—; (2.62)
which can be substituted in Eq. (2.59) to read
Jp = ! 2, OF dH (2.63)
‘ 2473\ /T nggT oz '

Sometimes for brevity we will use ¢; = 1/247%\/7. Average velocity in z
direction is J, divided by the electron concentration n (Eq. (2.49)):
Ja

2.5 Collision Terms

The collision term in the Boltzmann equation for non-degenerate semiconduc-
tors is (p. 109 in [74])

[af (k)

T] S Y f)SK k)~ f(k)S(k,K)

all e~ states

= fK)SK k) - f(k)S(k,X) (2.65)
k1

_ (22)3 [ £0)S0¢ 1)~ 115 K) '

Transition rate S(k, k') = probability of an electron scattering from state k to
state k. The vertical arrow under the summation sign indicates that the sum
over final states includes only those with spin parallel to the incident electrons;
this is because scattering does not flip the sign of the electron (p. 46 in [74],
or p. 99 in [75]). Therefore, the usual factor of two while converting the
summation to an integral is omitted.
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From the quantum mechanical theory of scattering based on Fermi’s golden
rule [62] we get the transition rates that are used in Eq. (2.65) to evaluate
the scattering expressions. This leads to expressions like the following for all
scattering processes [21,23,32,33,41,43,47-51]:

[af(k)]total— —af(k):|1n B [af(k):|out
ot coll a L ot coll ot coll
_ [9f5(e) 0fi"(€) m
N L gt :| coll YE)O " lg;() Em: |: lat :| coll YE (266)
_ —%} 0 fi"(€) m
B L ot coll Yb lg;;o %: T, 0011(5) YE

We include all major scattering mechanisms for silicon in our work:

Optical Phonon Scattering
Inter-Band Optical Phonon Scattering
Inelastic Acoustic Phonon Scattering

Ionized Impurity Scattering

AR T

Impact Ionization Scattering

For all scattering mechanism, save for impact ionization, we present only the
final results; references [21,23,32,33,41,43,47-51] give details of the derivation.
The derivation of impact ionization closely parallels the derivation of [24,43,51],
but there are slight differences in the treatment of the scattering-in term. For
this reason, impact ionization is outlined in slightly more details.

2.5.1 Optical Phonon Scattering

The transition rate for optical phonon scattering is given by (p. 68 of Lund-
strom [74], p. 47 of Tomizawa [62], or [17,66]):

’ﬂ'Dopt 1

(Nope + 5 7 5)50 — kT Q) 8(=(K) — 2(k) F hsge) (267

S(k, k') = 5

where D, is the optical deformation potential; wop is the frequency of optical
phonons, and Aw,p, therefore, is the energy of optical phonons; q is the wave-
vector of optical phonons; and p the density of silicon. Upper sign is for
absorption of phonons; lower sign is for emission of phonons. Number of optical
phonons, Ny, are given by the Bose-Einstein factor for optical phonons (p.
39 Lundstrom [74]) as Nopt = 1/(exp(fuwopt/kpTr) — 1), where T}, is the lattice
temperature, and kz the Boltzmann constant.
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The scattering expressions derived for Yy and ¥;™ terms in Eq. (2.66) read

afd(e)]
IO — g (130 = ) = P 3(6) 4
4 opt
Copt g+ hwopt/kBTLfO 5 + hWOpt) f(?(‘f)) (2-68)
a m ] m
[ O] ) Fori4£0 (2.69)
Bt Jopt Topt (5)
The scattering rate is given as
1
Topt (€) = Copt g_eﬁwopt/kBTL + Copt g" (2.70)
op
where g = g(e & Twopy); the constant cop is
D? D? 1
opt opt = opt (2.71)

Copt = = 5
v 872W0pt 87T2pwopt ehwopt /kpTL _ ]

2.5.2 Inter-Band Optical Phonon Scattering

Inter-band scattering is similar to optical phonon scattering. Let us consider
a band (v) which is interacting with another band (v') through inter-band
scattering: Electrons can scatter out of the current band (v) to another band
V'; or, scatter in to band (v) to from band (¢'). The scattering term is evaluated
in a manner similar to optical phonons [23,50].

7 (ver')
8 O(V) E i 4 . v
[—f()at( 0 =g @) (e — ) — /o 180 4
dib
e g (ehanmTe (00 (o 4 ) — [0 (0))  (272)
mw) 1) m(v)
[L o (€) U PN (2.73)
t dib 7_ib (5)
And the inter-band scattering rate reads
1 ] . v
o),y Cib g~ ehemw/kaTe 4 ¢y g+ (2.74)
Tib (€)

where g2") = g0 (e & huwy); Fo¢) (e + hwy,) are evaluated in the band (v/');

fo 2 (¢) is evaluated in band (v). The constant c;, reads
Di N _ _Dh 1

8m2pwi, 0 8m2puwy, ewin/kaTr — 1

(2.75)

Where the symbols Dy, hwip, wi, have meanings similar to their counterparts
in optical phonons.
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2.5.3 Inelastic Acoustic Phonon Scattering

The transition rate for acoustic phonon scattering is (p. 44 in Tomizawa [62],
or p. 66 in Lundstrom [74], or references [17,66]):

n _ Do’ 1_1 0., :
Sk,X) = (Ng+ 5 F5) 0k —kFq)d(ek) — e(k) Fhw,) (2.76)
puwqsd 2 2

where D, is the acoustic phonon deformation potential; ¢, not to be confused
with the symbol for electronic charge, is the magnitude of acoustic phonon
wave-vector q; w, is the frequency of the acoustic phonons; p the density of
silicon; and N, is the number of acoustic phonons given by the Bose-Einstein
relation. The upper sign in Eq. (2.76) is for absorption, and the lower one is
for emission.

Acoustic phonons can be treated in either an elastic or inelastic approx-
imation. Inelastic approximation was used in the initial spherical-harmonic
work [20, 32, 33,47, 48]; while in later work elastic approximation was used.
Elastic approximation is sound from physical arguments [62,74], but we use the
inelastic approximation here for numerical reasons. Without inelastic acous-
tic phonons the distribution function displayed excessive numerical noise, as
discussed in Section 5.8 on page 91.

Scattering term for inelastic acoustic phonon was derived by J. Kolod-
ziejezak in 1967 [59]. Expression for the lowest-order term is

of (? inelasti D) V'Y” 0

" 0 2 £0
(2 (14 ) k) Yo 2EETLO S0 L
2! v'2 Oe

24! 0e?

where f) = fJ(e); and cnéstc = (44/2m*5/2D2))/(nh*p). Higher-order terms

ac
take on the familiar relaxation-type form:

— | == F\ l#0 2.78
|: at :|ac Tac o # ( )
Scattering rate is given by
1 D2 kpTy,
= o = 2.79
Tac(e)  (2m22 _ ph 9(€) = cac g(¢) (2.79)

where vgoung is the velocity of sound in silicon.
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2.5.4 lonized Impurity Scattering

Transition rate for ionized impurity scattering is (p. 35 Tomizawa [62]):

2r N1 Z%* 6 (e(K) —e(k))
ho Qe [2k2(1 — cosO) + @)

S(k, k) = (2.80)

Where Ny is the number of impurities per unit volume; Z is number of charge
units of the impurity; # = angle between the initial and final wave-vectors k
and k' respectively; e is the permittivity of silicon; and 1/¢p = is the Debye

length given by
q*no
= 2.81
iv \/ €sikpTL (2.81)

where ng is the equilibrium electron density. By expanding S(k, k') in Legendre
polynomials one can derive (p. 74 of [51]):

of (k) = - [2f(e)
—_J N7 — ym
|: ot impurity ;mzz_l ot impurity :
o 1 o) (2.82)
DIPIEC e
=0 m——1 7—l,impurity(g)
Since impurity scattering is elastic, it turns out that 1/7—gimpurity(¢) = 0.
Therefore for [ = 0 and [ = 1 we get:
0
[afg(g)} =0 (2.83)
t impurity
ot impurity Ti=1, impurity (6)

The scattering rate is

1 P 7' () <10g (47(6) +1)) - 4v(e) >

Tl:l,impurity(g) V m*73/2 (5) Yap (6) + Yap
(2.85)
Where
B h2q2D 4 B \/iz2q4 5
Tap = e o Cimpu = "G4 122 (2.86)
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2.5.5 Impact lonization Scattering

The scattering rates presented so far were derived by plugging the quantum-
mechanics-derived transition rate in Eq. (2.65). But for impact ionization, we
will use a heuristic approach. This approach is similar to, though not exactly
same as, the one in [24,43,51]. The difference is in the treatment of the
scattering-in term. We have used physical arguments to seek an expression
for impact ionization such that condition of soon-to-be-presented Eq. (2.96) is
satisfied. The derivation is as follows.

Due to impact ionization at any given point in k-space we loose electron due
to scattering-out, and gain electrons due to scattering-in. The net generation
rate of electron at k is simply the sum over all states while accounting for spin.

Net Generation (e”/time) = Z [8{9 (tk)]
impact

all e~ states

-y Z [%(tk)] (2.87)

all k impact

0 0f (k)
=2 (2m)? /an k [ ot ]impact Tk

The net generation rate per unit volume is

Net Generation (e~ /time)
Gimpact = 0

= oo Lo Lt
= (2303 /au ) [ngk)} L Yk (2.88)
=@ ) 90 [Wazf)]m

:/ h(e) {afgf)]. Y? de

Where we have used the relationship of Eq. (2.41) [ B(k) d®k = [ g(¢)B(e) de
and the relation h(e) = g(e)/4n® from Eq. (2.47). For the sake of brevity we
define h(e) = h(e)YQ = h(e)//4x.

The task now is to derive the expression for scattering term [0fS /0t]impact-
That integrand in the last line of Eq. (2.88) has physical significance:

Yy de

- afd(e
h(e) [ fgt( )} Ae = Net increase in electrons due to impact ~ (2.89)
impact ionization in an energy interval from ¢
to e + Ae
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The net increase is the difference between scattering-in and scattering-out:

i(e) [af G [%] " ke [W] . (2.90)

ot ot ot

:| impact impact impact

The scattering-out has a relaxation-type form [24]

[afé’(&)} " RBe)

2 L0 (2.91)

impact Timpact (5 )

The scattering-in at € requires a little more thought. Electrons scattering in
from two sources: (1) electrons at some higher energy loose energy by initiating
impact ionization and enter states of energy €; and (2) electrons in valence band
which are dislodged from the lattice and gain energy. Fig. 2.3 on the next page
illustrates the impact-ionization process. The initiating electron has energy &’.
When it impact ionizes, it dislodges an electron from the top of the valence
band, which is at energy —e,. €4 is the band gap, which is 1.15eV for silicon.
These two electrons, after the impact ionization event, are assumed to possess
the same final energy (p. 79 Liang [51], and [43] and references therein). By
energy-conservation the total initial and final energy can be equated. Total
energy of the two electrons before impact-ionization is ¢’ + (—¢,). The final
energy, which is same for both of them, is ¢ + ¢ = 2¢. Equating the two we get
2¢ = €'+ (—¢4). Hence €' = 2¢ +¢,.

Let us consider electrons that are scattering in form the higher energy.
Electron scattering into the energy range € to € + Ae are coming from a range
g =2 +¢e4to e + A = 2(e + Ag) + ¢,. From where we get Ae’ = 2Ae.
Electrons scattering in at € to € + Ae are simply the ones scattering out from
g’ to &' + Ae”:

PN ! 8f(())(g’) out _ f(())(gl) P !
hiehae [ 284 ]impact——ﬂmpact(g,)h@mg o
fo(2e +eg) - '

= h(2e +¢,) 2Ae
7—impact(25 + ‘Sg) ( g)

These electrons, along with the electrons dislodged from valence band, become
the scattering-in electrons at energy €. Multiplying the above equation by two,
to account for the electrons from valence band, we get

NG o2 +¢y) 5
Ae =2 h(2 2A
h(e) [ 5t = etz (2 +¢4) 2A¢
fo2e+e,) =
=4 h(2 A
P P (2e +¢4) Ac

impact

(2.93)
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________ -o------ E = 8’
----- o--@-----&=¢
— e=0
- E = —89

Figure 2.3: lllustration of the impact ionization process. An electron at energy
¢’ undergoes an impact-ionization event to dislodge an electron from the valence
band at energy —¢,. The two electrons, after impact-ionization, have the same
energy €. By energy-conservation, we have &' = 2¢ + ¢,.

Substituting Eq. (2.93) and Eq. (2.91) in Eq. (2.90) we get the scattering

term we were seeking:
fo (2 + &) fo(e)

0fo(e) _
50 257 s e O | 29

Where we used g(¢) instead of h(¢) since h(e) = (1/v/4r)(1/473)g(¢). For The

higher-order terms we can write

af"(e) _ f" ()
[ ot :|impact B Timpact (6) For 2 ! (295)

As a check we can see that we can calculate the number of particles gen-
erated per unit volume per unit time, Gimpact, due to impact ionization by
two means: integrating over the total rate or over the scattering-out part only.
More specifically, it is easy to verify that the following equation is indeed true.

Gimpnct = / i(e) [afg (8)]::; de = / i(e) [afgot(g)]m = (2.96)

at impact
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We will, however, calculate the generation rate by the scattering-out part:

B a 0 out
Gimpact :/ h,(&?) |:fg7t(€):| de
3 impact (297)

= /E h(e) _hE) de

Timpa,ct (5 )

The impact-ionization rate, 1/Timpact(€) can be taken from any source, in
this dissertation we use the rate given by Thoma et al. [60]:

(0 sec” ! For = < 1.128
eV
1
— = —Jo8m5x10% ( _1. 128) sec™! For 1.128 < —— < 1.750
Timpact (5) eV V
6.646 x 10'® <eV 1. 572) sec™! For 1.750 < iv
(2.98)

2.6 Final Form of the Boltzmann Equation

We collect all the scattering terms—after rewriting them in terms of FJ(H)
variable—together in the spherical-harmonic Boltzmann equation, Eq. (2.24):

0 OFy OFy
Oz <Tu’gg Ox > - [ ot :|collisi0n ( )
we get the final form
FO
% ( gga(9 ) (Space-Dependent)
+3g {coptg_ (F(?(H — Fiwopt) — eﬁ“"p“/kBTLF(?(H)) +
Coptg " (eﬁ“°P°/kBTLF(?(H + fiwopt) — F(?(H))} (Optical)

+3g {Cibg_(w) (FO(V’)(H _ hwib) _ eﬁwib/kBTLFé)(H)> +
Cibg+(u') ( hwlb/kBTLFO(V )(H + huwyp) — FO(H)) } (Inter-Band)
+3gclnelast1Cﬁ7’2 { (1 V’Y > FO
72

F? T; O2F?
+ ( 7 —|—< :nyy )kBTL) OF, —|—7kB 29 0} (Acoustic)

27 OH 2+ OH?
FY(2H + q¢ +¢,) B
7—impact(QEI + QQ¢ + ‘gg)

+3 {4g(2H + 290+ ¢,)
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Fy(H)
g(H * q¢) Timpact (H + q¢) }
=0 (2.100)

(Impact-Ionization)

The above equation is a self-adjoint elliptic differential equation. The form of
the equation is same as that of the classical diffusion equations [113].
The total scattering rate is the sum of individual scattering rates:

1 1 1 1 1 1

@) o) () | maele) T gt )

2.101
Ti=1,impurity (5) ( )

2.7 Boundary Conditions

In this dissertation there are three type of boundaries that will be encountered
for the spherical-harmonic-expanded Boltzmann equation: !

1. Ohmic boundary condition (Dirichlet type)
2. Insulator boundary condition (zero Neumann type)

3. Energy boundary condition (mixed type)

2.7.1 Ohmic Boundary Condition

Ohmic contact are present in all semiconductor devices. Non-rectifying metal
contacts to the semiconductor fall in this category. They are means by which
the currents and voltages are applied by the external world to the semiconduc-
tor device.

The physics of an ohmic contact is very complicated and not well under-
stood, there are still controversies about the proper ohmic boundary condition
to use in device simulation [63,67-69]. In the absence of physical insight the
exact mathematical statement of the boundary condition is not possible. We
can, however, use engineering judgment to construct the boundary condition.
For most semiconductor devices, ohmic contact are:

e Not part of the active or intrinsic region of the device,

e Sufficiently far from the active region,

e Near highly-doped electric-field-free low-average-velocity region of semi-
conductor.

IThere are potentially more types of boundaries that we haven’t considered in this dis-
sertation, for example rectifying Schottky contacts.
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The ohmic contact, therefore, is not expected to affect the intrinsic behavior
of the semiconductor device. The ohmic contact in a MOSFET transistor,
for instance, is far away from the the active region (the channel under the
oxide) and is also not part of the intrinsic transistor action either. Since the
semiconductor region close to the contact is usually highly-doped and has very
low electric field. The average electron velocity is low, and we can therefore
assume the contact to be in equilibrium.

The contact is believed to be an infinite supply or sink of electrons. We
assume that at the ohmic contact electrons are at equilibrium. The energy
distribution at equilibrium is Maxwellian: it has the form exp(—¢/kpTL). The
boundary condition for the distribution is, therefore, of Dirichlet type:

fo(e) = Coe/*nTr (2.102)

The constant Cj is selected such that the total charge density, n, at the contact
is the equilibrium density. Specifically, we set C to satisfy [ f§(e)h(e) de = n.
The electron concentration n is evaluated by by imposing charge neutrality at

the contact
p—n—N)—N;=0 (2.103)

where p is the hole concentration, and N;, and N, are the ionized donor and
acceptor doping concentrations respectively. Using the law of mass action,
np = n?, we get the electron charge density at equilibrium:

D+ /D% 1 dn?
n= o= . +an (2.104)

where D = N} — N, is the net doping concentration.

A Dirichlet-type boundary condition sets the solution at the boundary in-
dependent of the solution inside the semiconductor device. This provides an
element of stability to the numerical solution, and is therefore quite desirable
from a numerical standpoint (page 191 [79]). Dirichlet conditions also pro-
vide the one equation at which the inequality of Eq. (4.60) holds trues, this is
required for diagonal dominance.

2.7.2 Insulator Boundary Condition

Insulating boundaries in semiconductor devices occur in two situations: (a) in
the presence of semiconductor-insulator interface, and (b) artificial boundaries
in a device. A classic example of the first type is the semiconductor-oxide
interface in a MOSFET. Oxide is an insulator and does not allow electrons
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to conduct. 2 Artificial boundaries are used in simulations to isolate the de-
vice from rest of the chip. Imposing the condition that no current flows from
the device through that boundary ensures that the device being analyzed is
electrically isolated, and hence can be simulated in isolation from rest of the
chip.

An insulating boundary, therefore, is defined as an interface through which
the electron current density is zero. From Eq. (2.63) the current density is
J = ¢; [J.dH where J, = —gulr 0Fj/0x. For zero current flow at all
energies we have to impose the condition [J. = 0. This gives the boundary
condition

OFY
— = 2.1
g 0 (2.105)

In this boundary condition the derivative of the unknown is set to zero, there-
fore this is known as zero Neumann boundary condition. It is used at the
silicon-oxide interface and at the artificial boundary of the MOSFET.

2.7.3 Energy Boundary Condition

The boundary condition in energy for the spherical-harmonic Boltzmann equa-
tion is tricky and interesting. The first thing to notice is that the spherical-
harmonic Boltzmann equation, Eq. (2.24), does not have derivative in energy
or Hamiltonian H. But the domain of the equation is curvilinear, so the deriva-
tive OFy /Ox is still needed at the energy boundary. The energy boundary can
be either the lower boundary, ¢ = 0 (H = —g¢(z)), or the upper edge of the
band, ¢ = emax (H = €max — ¢P(x)). The boundary condition to be used is
not immediately obvious. Lin et al. [32,33,48] in a similar situation, used a
substitute boundary-condition derived by imposing current-continuity.

To derive the boundary condition we can use our knowledge of (a) math-
ematical structure of the equations, and (b) physical insight. The spherical-
harmonic Boltzmann equation is

o ( , OFY OFY
il -0 -0 = 2.1
al' (Tugg 837 > - 3g [ 8t collision ! ( 06)

The term in the parentheses, (ru2g 0F; /), is the differential electron current
flux in z direction. If we draw analogy from heat transfer, OFy /O is the driving
force (similar to a temperature gradient), and 7u’g is a coefficient (similar to
heat conductivity). This “conductivity” coefficient is a function of energy. As

2This, however, is strictly not true. If the electrons are very energetic, they can surmount
the oxide barrier and be injected into the oxide. This, however, happens for only a very
small fraction of electrons, therefore oxide can be safely considered to be an insulator
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e — 0 the conductivity TuZg ~ e32 — 0, because T ~ constant, u, ~ /g,

and g ~ y/e. This means that there is no flux of electrons at ¢ = 0. This is
satisfying from a physical and intuitive perspective too. There are no electron
states at € < 0, so an electron cannot leave the region 0 < ¢ < g, to go to
the € < 0 region. So, referring to Fig. 2.4 on page 40, there will be no electron
flux at point B.

This restriction on the flux at £ = 0 still does not directly translate into a
boundary condition because we still do not know 9F) /0z, all we know is that
the pre-multiplier, or conductivity, Tugg goes to zero. To derive the boundary
condition let us refer again to Fig. 2.4 on page 40. If we integrate Eq. (2.106)
from A (at o — Az) to B (at xg)

B 0 B 0
0 0F; 0F;
—|k—=—) d 39 | —=— dr =0 2.107
/A Ox (H Oz ) ! +[4 g |: ot :|c011ision ! ( )
where we have set kK = Tugg. For a small Az we can write
OF) OF? OF)
(n—()) - (/4;—0> + 39 {—0} Az =0 (2.108)
83: B 33: A at collision
Where kg = k(xy) = 0 because energy ¢ = 0. If we demand regularity

and boundedness of the solution, the product k(0F)/0z) is zero at point B.
Eq. (2.108) then becomes

azrg) [apg}
—\ k5] +39| =~ Az =0 (2.109)
< (9.%' A at collision
Which can be rewritten as
A.’E ( ax A at collision
O—HA <0F(§)) |:3F(?:|
Az 837 A at collision
_ FO FO
KB — KA (3 o) +3g [8_0] =0 (2.112)
Az 8:5 A at collision

In the limit Az — 0 (kg — ka)/Ax = (k(xo) — k(xo — Az))/Ax = Ok /0x. We
then get the boundary condition in energy:

i@_/ﬂ oOFy OF?
390z \ Oz Ot | conision

For the sake of physical insight, we derived the boundary condition equation
in a slightly round-about way—first integrating then taking the limits to get

=0 (2.113)
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a differential equation. We could have, as easily, just started from Eq. (2.106)
and obtained

0 9 OFy s [O*F) OFy _
P (Tulg) ( p ) + Tu,g 902 + 3¢ T 0 (2.114)

As e — 0 the coefficient of 92 F /0x? goes to zero faster (as £3/2) than the other
two terms (as £1/2). The second-order term, therefore, goes to zero faster than
the others, and can be neglected. The other two terms tend to zero with the
same power, so we can retain them; and, the resulting equation is the boundary
condition. This equation is identical to Eq. (2.113).

This boundary condition involves the the value of the the variable Fy
(through the collision term) and its first derivative—it is, therefore, classi-
fied as a mired boundary condition. A few comments about this boundary
condition:

1. From the theory of differential equations, degenerate elliptic equations—
equations whose highest-order coefficients tend to zero—do not need
boundary conditions. It is easy to verify that the spherical-harmonic
expanded Boltzmann equation, Eq. (2.106), is a degenerate elliptic equa-
tion.

2. The boundary condition is contained within the spherical-harmonic Boltz-
mann equation—we used the equation itself to derive a boundary condi-
tion for it. This, although initially a little odd, is intuitively satisfying
for the following reason. The spherical-harmonic Boltzmann equation
describes electron transport. At an energy boundary € = 0 this equation
simply says that the flux of electrons into the region ¢ < 0 is zero—we
do not, and should not, need an external condition to tell us that; this
information is, and should be, contained in our transport equation.

3. In [32,33,48] a substitute boundary condition was used at lower energy,
which was a statement of conservation of electron current density. Bound-
ary condition at higher energy, from physical arguments, was Dirichlet:

f(g)(gmax) =0.

4. In our formulation too, we can set f§(¢max) = 0. But this is not necessary;
we can use the energy boundary condition Eq. (2.113) at € = €yay also.

5. The original Boltzmann equation, Eq. (2.5), does not have to worry about
the ¢ = 0 boundary—this boundary does not exist since the independent
variable, wave-vector k, extends from 400 to —oc. Spherical-harmonic
expansion has introduced the magnitude of wave-vector k& = |k| as the
independent variable, thus creating a new boundary which did not exist
before.
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€ = €max
€ > €max
e=20
A B
H Ty — Az To
e<0
T

Figure 2.4: Boundary condition in energy is derived by considering points A at
o — Az, and B at zy. In a given potential ¢(z) the domain of the spherical-
harmonic differential equation in z-H is —g¢(z) < H < gmax — qé(z) and Ly <
T < Lax.

6. A boundary condition is normally a constraint the external world sets
at a boundary. But the energy boundary is not available to us to apply
any constraint. This, perhaps, is the physical reason why the energy
boundary condition is contained within the Boltzmann equation itself.

7. Philosophically, we could go a step beyond. We can make a bold state-
ment that there is no boundary in energy. The domain of the spherical-
harmonic-expanded Boltzmann equation, as shown in Fig. 2.5 on the
facing page, is in the entire region L, < < Ly, and, the governing
equation is valid everywhere in the domain. For € > ¢, or € < 0, then,
we have () = 0 which sets variables like g(¢) and k(e) = Tujg to zero.

2.8 Chapter Summary

In this chapter the basic equations, that will be used throughout the disserta-
tion, were introduced. The chapter first gave a brief derivation of the Boltz-
mann transport equation, and then outlined the spherical-harmonic-expansion
approach to simplify it. Following that, some results pertaining to average
quantities in the spherical-harmonic expansion of the distribution functions
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00
T € = Emax
€ > Emax
e=10
e<0
H
L. |
—00

Figure 2.5: An alternate view of the energy boundary condition. We could consider
the domain of the governing spherical-harmonic Boltzmann equation to be just
Lin < 2 < Linax, with y(g) =0 for € > gnax or € < 0.

were derived. The scattering terms—which consist of optical, inter-band,
acoustic, ionized impurity, impact ionization—were discussed. The boundary
conditions for the resulting differential-difference equation were presented.
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CHAPTER 3

MULTI-BAND
BAND-STRUCTURE

3.1 Chapter Introduction

In the previous chapter basic expressions for the spherical-harmonic expansion
of the Boltzmann equation were presented. We purposely swept the band-
structure under the carpet, and discussed the derivation for a single band
only. The two most important ingredients of device simulation by Boltzmann
equation are (a) band-structure, and (b) scattering mechanisms. This chapter
introduces the multi-band band-structure, and the scattering and transport
constants.

In this dissertation a multi-band band-structure, with four conduction
bands, by Brunetti et al.  [57], and its improvement [58], is used. This
band-structure has gained considerable popularity in spherical harmonic work
[21,23,25,31,35-37,39,42, 43,46, 50,51]. Most spherical-harmonic simulations
used only the lower two bands [21,31,35-37,39,42,43,46,51], and only a few in-
corporated all four bands [23,25,50]—in fact, all four bands have been utilized
only in space-independent simulations. In contrast, this dissertation incorpo-
rates all four bands in space-dependent formulations: both in one-dimensional
and two-dimensional formulations. This is a salient feature of the dissertation.

The chapter is organized as follows. The multi-band band-structure is in-
troduced in Section 3.2 on the next page. The Boltzmann equation in this
band-structure is discussed in Section 3.3 on page 46. It is shown there that
we need to solve only two Boltzmann equations in this band-structure. This
band-structure also introduces some changes to the scattering term, these are
discussed in Section 3.4 on page 48.

43
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3.2 Multi-Band Band-Structure

Brunetti et al., 1989, proposed a new multi-band band-structure for silicon. If
¢ is the energy of electrons, and k£ the magnitude of the electron wave-vector,
then the relationship between ¢ and k is represented by the relations:

R k?

e+ag’= 572D (Band 1) (3.1)
e=¢? — ;Zlf;) (Band 2) (3.2)
e=¢el) 2ij(z) (Band 3) (3.3)
g=cW _ il (Band 4) (3.4)

max 2m*(4)

where £ is the usual reduced Planck’s constant; « is the non-parabolicity factor;
* 3 : . (2) (3) 4)

and m* is the effective mass; and constants emax, €, Emax are the energy

limits of the respective bands. To make the spherical-harmonic derivations

more general we express the above relations with a dispersion relation for each

band:

) h2k2
YW (e) = " For v =1, 2, 3, and 4 (3.5)
The specific form for each band is
YD (e) = ¢ + ae? (Band 1) (3.6)
YD) =@ —¢ (Band 2) (3.7)
YO (e) = ¢ — egi)n (Band 3) (3.8)
YW () =) —¢ (Band 4) (3.9)

The e-k relation of this band-structure is shown in Fig. 3.1 on the facing page,
and the numerical values are given in Table 3.1 on page 46.

This band-structure very closely approximates the density of states (DOS)
obtained from band-structure calculations [57]. In addition this band-structure
mimics the details of the actual band-structure of silicon: first two bands (1 &
2) reproduce the details along < 100 > crystallographic direction; and upper
two bands (3 & 4) reproduce details in the < 110 > direction [57,60, 61].

Using the expression for density of states, h(e), from Eq. (2.47) we can
calculate the total density of states for our band-structure

DOS = ZWrW (e) + ZOh® (e) + ZOr () + ZWrM (¢) (3.10)
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Figure 3.1: The multi-band band-structure of Brunetti et al. [57] used in this
dissertation. This spherical band-structure has four bands: lowest band is non-
parabolic, and the rest are parabolic. Bands 1 and 3 are electron-like (increasing
density of states) and bands 2 and 4 are hole-like (decreasing density of states).
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Band m*/my Emin Emax £ @«
(eV) (eV) eV!

0.320 0 1.75 6 0.35

0712 175 3.02 6

0.750 260 3.00 12

0.750 3.00 3.40 12

P OON =

Table 3.1: Numerical values for the four bands of the band-structure [57]. Effec-
tive mass m* is given in terms of the electron mass my. Each band extends from
Emin tO Emax. Z is the band multiplicity, or the number of equivalent symmetrical
bands. « is the non-parabolicity factor.

where Z() is the band multiplicity, or the number of equivalent symmetrical
bands, in band (v). In Fig. 3.2 on the facing page we notice that density of
states increases in the energy range 0 to 1.75 and 2.6 to 3eV; and it decreases
from 1.75 to 2.6 and 3 to 3.4eV.

3.3 Boltzmann Equation in Multi-Band Band-
Structure

When a band-structure has multiple bands we can think of electrons populating
each band as a distinct species—each band is described by a unique Boltzmann
equation, which is coupled to other Boltzmann equations by inter-band scat-
tering. We must therefore write a Boltzmann equation for all the four bands,
as well all their equivalent bands. It is, of course, always desirable to have a
parsimonious set of Boltzmann equations.

Since our multi-band band-structure has four bands with multiplicity, we
look for ways to reduce the number of Boltzmann equations. The first saving
comes from noting that electrons in equivalent valleys of the same band behave
identically, therefore one Boltzmann equation per band is sufficient.

The second saving comes by treating the bands (1) and (2) as one band,
which permits us to write only one Boltzmann equation for both. This has been
justified in reference [21]. At the boundary of bands (1) and (2) energy and
group velocity is continuous. Electrons can go from band (1) to (2) (and vice
versa) due to acceleration in electric field, in addition to inter-band scattering
[60]. One unique distribution function, therefore, describes population of both
bands. Same holds true for bands (3) and (4). Notationally we refer to the the
concatenated bands (1) and (2) by the symbol (12), and bands (3) and (4) by
the symbol (34).
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Figure 3.2: Density of states for the present multi-band band-structure. The
parameters of this simplified band-structure are chosen to closely approximate the

density of states of silicon by other calculations.

The spherical-harmonic Boltzmann equation of Eq. (2.24) for band (12) is

0(12
19 (R
3912 Ox

ox

oFL(?

=0

coll

(3.11)

ot

2
where we used the symbol 12 = 7(12) (u§12)> ¢(?) and the collision term is

s I 1 C N Y ) K
ot o e N
coll L - opt ib (312)
o oFy " oFy "
a | T Ta | o |
L dac impurity impact

Since ionized impurity scattering is elastic, it need not be mentioned in the
above formula. A similar Boltzmann equation can be written for band (34): we
would interchange the superscripts (12) and (34) in Eq. (3.11) and Eq. (3.12).
The inter-band collision term couples the two Boltzmann equations.
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3.3.1 Total Distribution

Expressing the distribution for the concatenated bands (1) and (2) is simple
since the two bands are non-overlapping. We can also define a total distribution
for all the bands as a weighted sum of density of states:

7(12) ,(12) (¢) fg (12) + ZBYRGY (€) f(()) (34)
Z2)p(12) (g) + ZBH Y

f(? (Total) — (3 1 3)

Where Z(12) = 7(1) — 7(2) gnd ZGY = ZB) = 7z(4)

3.4 Collision Term and Transport Model

The band-structure of Section 3.2 on page 44 needs transport parameters
to completely define electron transport. These transport parameters are not
unique, but are determined by numerical experiments to match experimental
results. Depending on which device we intend to simulate, we may tune our
parameters accordingly. The original paper by Brunetti et al. [57] contained
transport parameters suitable for bulk Silicon and low-field transport. Fiegna
and Sangiorgi [58] adopted the same band-structure, but used a larger set of
experiments to determine the transport parameters. They proposed two set of
parameters, one geared towards MOS (metal-oxide-semiconductor) devices and
other more suitable for bipolar devices. The transport parameters are listed in
Table 3.2 on the facing page. In the dissertation we use the MOS parameters
for simulating the n*nn™ device and MOSFET’s, whereas the bipolar param-
eters were used for the bipolar transistor. The n*nn™ device mimics a MOS
device, therefore, it inherits the MOS parameters.

The treatment of scattering in Section 2.5 on page 26 was a general treat-
ment for any band. The multi-band band-structure necessitates us to re-visited
and embellish that treatment.

3.4.1 Optical Phonon Scattering

In Section 2.5.1 on page 27 the expressions for optical phonon were derived
without considering band multiplicity. Therefor we multiply the transition
rate of Eq. (2.67) by Z, the multiplicity of the band. Z = 6 for bands (1) and
(2), and Z = 12 for bands (3) and (4). The factor Z would then be also find
its way to Eq. (2.71). Section II of reference [58] explains this in more detail.
Fig. 3.3 on page 50 plots the optical phonon scattering rate.
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MOS
Dopt 5 X 10°% eV/cm Optical deformation potential
Twope 0.0517eV Optical phonon energy (T, = 600K)

(Same for inter-band optical phonon)
Dac 8.3eV (e < 0.15eV) Acoustic deformation potential
4.0eV (e > 0.35eV) (Linear for 0.15eV < ¢ < 0.35eV)

Usound 9 X 10° cm/s Sound velocity
Simpurity 2.9 Impurity scattering enhancement factor
Prpace 4.0 x 1073 Impact ionization pre-factor
Bipolar
Dopr 4.9 x 10% eV/cm Optical deformation potential
Pipace 5.0 x 1072 Impact ionization pre-factor

Table 3.2: The values of transport parameters from Fiegna and Sangiorgi [58].
The first set of parameters is geared towards MOS (metal-oxide-semiconductor)
devices, and the second set is more suitable for bipolar devices. For the bipolar set
only those parameters that are different from the MOS set are mentioned.

3.4.2 Inter-Band Optical Phonon Scattering

The inter-band optical phonons scattering too is modified in a manner similar
to the optical phonons scattering. The ¢, in Eq. (2.75) is multiplied by the
multiplicity of final valleys Z;. For inter-band scattering between bands (1)
and (2) Zy = Z—1 = 6—1; and between bands (3) and (4) Z; = Z—1 = 12—1.
Scattering from band (12) to (34) we will have Z; = Z = 12; and scattering
from band (34) to (12) will have Zy = Z = 6. This too has been explained in
section II of reference [58].

3.4.3 Acoustic Phonon Scattering

Acoustic scattering formulas remain the same, but the only salient difference
is that the acoustic phonon deformation potential, D,., depends on energy,
as indicated in Table 3.2. Therefore the acoustic scattering rate, as shown in
Fig. 3.3 on the next page has a “hump” at low energies. It may also be seen
that, except at low energy, acoustic phonon scattering rate is much smaller
than optical phonon rate.

3.4.4 lonized Impurity Scattering

To obtain better agreement with experimental data, Fiegna and Sangiorgi [58]
multiply the Debye screening length, Eq. (2.81), by a factor, &mpurity, called the
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Figure 3.3: Optical and acoustic phonon scattering rate.

impurity scattering enhancement factor. The scattering rate for two impurity
doping concentrations is plotted in Fig. 3.4 on the facing page.

3.4.5 Impact lonization Scattering

To match experimental data that depends on impact ionization (ionization
coefficient, substrate current) the impact ionization scattering rate by Thoma
et al. [60], Eq. (2.98) in Section 2.5.5, is multiplied by a pre-factor Pmpact
[58].

1 1

R o —_
Timpact (€) o Tihoma (o)

(3.14)

This scattering rate, with Pimpact = 1, is plotted in Fig. 3.5 on page 52.

In addition we notice that for every lower band there are two upper bands
(Z = 6 for lower bands, while it is Z = 12 for upper bands). Therefore, the
scattering-in from the upper bands is multiplied by two.

3.5 Chapter Summary

In this chapter the multi-band band-structure was introduced. Boltzmann
equations were written in this band-structure and it was indicated that the
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tions: N; = 10'® and 107 cm—3.

sumed to be equal to the impurity concentration: ny = Ny.

The equilibrium electron concentration is as-
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number of Boltzmann equations can be reduced to two. Due to considerations
arising from multi-band band-structure, some changes necessary in scattering
terms were discussed. The transport parameters suitable for MOS (metal-
oxide-semiconductor) and bipolar devices were introduced.



CHAPTER 4

TRANSFORMATION AND
DISCRETIZATION OF THE
BOLTZMANN TRANSPORT
EQUATION

4.1 Chapter Introduction

In Chapter 2, the original Boltzmann equation (Eq. (2.5)) in wave-vectors was
projected on spherical-harmonics to derive a simple, easy-to-solve Boltzmann
equation involving the coefficients of the expansion (Eq. (2.24), or Eq. (4.3)
in this chapter). This simplified equation is written in terms of the energy
distribution function [31,35-37,39,41-43,46,49-51]. A close examination of
this equation reveals that it leads to discretized equations that do not have
the desirable property of diagonal dominance. Spoilers of diagonal dominance
are the scattering terms, especially optical phonons. In addition, diagonal
dominance is worse in the important low-energy region of the distribution—
average quantities are more sensitive to the distribution at low energies.

In this dissertation a new variable-transformation of the Boltzmann equa-
tion is proposed: Boltzmann equation is transformed from the original vari-
able of energy distribution to a new pre-Maxwellian variable.This is a salient
contribution of this dissertation. Devices are simulated by discretization of the
transformed Boltzmann equation. The new pre-Maxwellian variable has several
desirable properties. (a) It enhances the Diagonal dominance of the discretized
equations; the optical, inelastic-acoustic, and inter-band optical phonons are
transformed to diagonally-dominant forms. (b) It accounts for the rapid ex-
ponential variation of the distribution in both energy and space. (¢) The new
pre-Maxwellian variable allow us to write the electron concentrations in Slot-

53
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boom variables, which opens the possibility of using superior Poisson-equation
solvers like Mayergoyz’ fixed-point algorithm [95-97].(d) These advantages ac-
crue with no penalty in linearity: Boltzmann equation in the new variable is
still linear. In fact, the structure of the spherical-harmonic Boltzmann equation
before and after transformation is similar; therefore, old solvers, with minor
modifications, can be used for the new variable.

Change of variables in device simulation is not a new idea; the drift-
diffusion model has been cast in many variables: the potential and carrier-
concentration variable; Slotboom variables; and quasi-Fermi potential vari-
ables [98,102,104,105]. Variable transformations have also been applied to the
hydrodynamic device simulation model [51,55,56] and process simulation [112].
In fact, in spherical-harmonic approach we have transformed the equations
from the energy variable to the Hamiltonian variable, as shown in Section 2.3
on page 14. Mathematical properties and numerical behavior is different for
different variables [102], which can be exploited in designing the device simu-
lator.

In addition, this chapter presents a new formulation for the inelastic acous-
tic phonons. This formulation is suitable for numerical discretization: it is
self-adjoint and avoids first derivatives.

This chapter is organized as follows: Section 4.2 introduces the new pre-
Maxwellian variable and discusses the transformation of the spherical-harmonic
Boltzmann equation to the new variable. The discretization of the resulting
equations is formulated in Section 4.3 on page 61, where the control-volume
principles are enunciated and applied to the Boltzmann equation. Since the
advantages of the new variable cannot be discussed until the discretization has
been formulated, we wait till Section 4.4 on page 71 to discuss these advantages.
Finally in Section 4.5 the chapter is summarized.

4.2 Transformation

4.2.1 The Pre-Maxwellian Variable

The spherical-harmonic-expanded Boltzmann equation, Eq. (2.24), was written
in terms of the energy distribution function Fy(z, H); we transform it to a new
pre-Mazwellian variable:

Fl(z,H) = C(x,H) ¢ H/ksTr (4.1)

Since the Hamiltonian H = ¢ — g¢(x), the exponent term contains the
exp(—e/kpT,) Maxwellian factor. In addition, there is also a dependence on
space-dependent electric potential, exp(qp(x)/kpTy). This variable transfor-
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mation contains both the dependencies:
0 . —H/kpTr, _ —e/kBTr, q¢(z)/kBTL
Fy(z,H)=C(z,H) e =C(z,H) ¢ e (4.2)
Energy Dependence Space Dependence

Section 4.4 on page 71 discusses the motivation and advantages of this new
variable. Next task, for now, is to apply this transformation to the Boltzmann
equation and the scattering terms and derive a new equation in the unknown

C.

4.2.2 Boltzmann Equation in Pre-Maxwellian Variable

The starting point is the spherical-harmonic Boltzmann equation, Eq. (2.24):
0 , OF) OF)
— — 39 | —— =0 4.3
837 (Tugg 8:1: - g 8t collision ( )
We substitute for the distribution function Fy(x, H) = C(z, H)-exp(—H/kgTy)
in every term of the above equation. Space-dependent term is easy to evalu-

ate: the exponent factors out because the partial derivative is taken with H as
constant.

OFy  OF(x,H)
or ox
which leads to

9 o, OFg\ _ 0 o a1 9C Y _ _mjkpry, O 2 OC
oz (Tugg oz ) Oz (Tugg ¢ oz ) = °© oz \""97 0y

(4.5)

The space-dependent term, therefore, retains the original linear self-adjoint
form. We redefine the collision term as

[%“] —H/kaT; {%]
at collision at collision

by introducing a new symbol [0C/0t|comision- Substituting the last two equa-
tions, Eq. (4.6) and Eq. (4.5), into Eq. (4.3) we get
0 oC oC
—H/kpTr Y 2 UL —H/kpTyL 3 >
‘ Ox (Tugg Ox ) e g [ ot :|c011ision

which leads to the spherical-harmonic Boltzmann equation in the new pre-

Maxwellian variable:

0 , 0C 43 oC

Oz !]g Oz I ot collision
This new equation is noticeably similar in form and linearity to the original

equation, Eq. (4.3). We now turn our attention to the collision term to complete
the derivation.

7 oC(z, H
=e H/kBTLif% ) (4.4)

constant H

=e€

(4.6)

=0 (4.7)

=0 (4.8)
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4.2.3 Collision Terms in Pre-Maxwellian Variable

We apply the variable transformation on the five scattering terms:

1. Optical Phonon Scattering
2. Inter-band Optical Phonon Scattering
3. Inelastic Acoustic Phonon Scattering
4. Tonized Impurity Scattering

5. Impact Ionization Scattering

4.2.3.1 Optical Phonon Scattering

We start from from the expression for optical phonon scattering of the Y,
coefficient of the spherical-harmonic expansion (Eq. (2.68) in Section 2.5.1).

OF) (e
PO o (RO — ) — o a0+
opt

ot (4.9)

Coptg ™ (€M ML FY(H + hwope) — Fy (H))

Using the transformation FY(H) = C(H) exp(—H/kgTy) in FQ(H % hwept) we
get

FY(H 4 hwops) = C(H 4 huwp; ) e~ wort)/kp T (4.10)
FU(H — Tweps) = C(H — Twgp; ) e~ Hwert) /K511 (4.11)

Above two expressions can be substituted in Eq. (4.9) to yield

aFO g N w,
[%] = Coprg €™ F Lo KB TL (C(H — Buwepy) — C(H)) +
opt

Coprg e HEETL (C(H + Tiwops) — C(H)) (4.12)

— e—H/kBTL [%]
Ot | opt

This gives the expression for optical phonon scattering in the C' variable

ocC —_hwopt/k5T
= Coptg €"PIEIL (C(H — hwopy) — C(H)) +
G| = (CH = hitgy) — O (1) iy

Coptg T (C(H + hwopy) — C(H))
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4.2.3.2 Inter-band Optical Phonon Scattering

Transforming the inter-band phonon scattering is very similar to transforming
the optical phonons. We start from Eq. (2.72) in Section 2.5.2 and use the
transformation FY(H) = C(H) exp(—H/kgTy) to derive

|:8C:| (U(—)I/’)

5 - Cibg*(V')eﬁwib/kBTL (C(V')(H — Tiwy,) — cw) (H)) +

ib (4.14)
Cibg+(yl) (C(Vl)(H + hwib) — C(V)(H))

4.2.3.3 Inelastic Acoustic Phonon Scattering

Readers familiar with the derivation and discretization of inelastic inelastic
acoustic phonons in previous spherical-harmonic work [20, 32, 33,47, 48] may
notice the difference in the derivation here. In this sub-section a new deriva-
tion for the inelastic acoustic phonons is presented which results in a novel
self-adjoint formulation. The guiding aim is to seek self-adjoint second-order
derivatives; and, if possible, shun first-derivatives [113]. ! Let us start form
the expression for inelastic acoustic phonons, Eq. (2.77) in Section 2.5.3. If we
rewrite the expression using F{(H) instead fJ(g) we get

6F(? inelasti 19 77“ 0
] - { ()

v ' OF)  ~vkgTy O°F}

2v"  OH?

This formula is not very convenient to use in numerical discretization because
it has first derivatives. First-derivative terms are rather difficult to handle and
often are the cause of numerical problems. Second-derivative terms, on the
other, hand lead to stable discretizations. With this in mind, one may notice
that the collision term in the Boltzmann equation (Eq. (4.3) or Eq. (4.8)) never
occurs by itself; it always occurs as a product of g and the collision integral,
9[OF /Ot]conision- S0, one might as well seek a derivation for the product, in-
stead of just the collision term. In doing so, as we will soon see, we get a very
convenient expression for the inelastic acoustic phonon scattering. There is a

1Second-derivatives terms, after discretization, couple with the neighboring grid points
in a manner suitable for numerical solution; they usually produce diagonally dominant ma-
trices. First derivatives, on the other hand, have to be discretized very carefully; they
often have trouble giving diagonally-dominant matrices, and are often plagued by numeri-
cal noise. A good example is the electron continuity equation in the drift-diffusion model,
where the second-order self-adjoint term by itself poses no problem but the presence of the
first-derivative term complicates the discretization: We are forced to use schemes like the
exponential Scharfetter-Gummel [100], or upwind, or hybrid schemes [113,114].



58 4. TRANSFORMATION AND DISCRETIZATION OF BTE

physical reason for that too. Since g is proportional to the density of states,
the product g[0F/0t]conision AH is proportional to the net increase in number
of electrons in interval A H around H due to inelastic acoustic phonon scatter-
ing. Usually when we deal with actual electron populations the mathematical
expression come out in self-adjoint form.

Multiplying Eq. (4.15) by g = ¢4,/77" and taking 72 inside the brackets we
get

aFO ! n
|:a_t0:| _ C 1nelastlc,y,y {(72_1_7,7 )F(?
2 170
')/’)/ ( 19 Il) T ai _I T a F
+( 5 v+ ) kB L) o T o kB L8H2 (4.16)
By re-arranging the terms in the curly brackets
aF(g) 1 t 12 n aFO
-0 _ 1ne astic FO knT
g[@th CqC 044 (7 +’W> —i-BLaH
1 9 (10 OFy
—— | Fy T 4.1
+28H< +kBLaH (4.17)
and using a temporary variable T for brevity,
OFy 0
T =Fy+kpTr—> i e*H/kBTLa—H (kpTret/FTe 1Y) (4.18)
we can rewrite Eq. (4.17) by noticing that (yy') =2 +v7".
6_}?(? 1nelast1c ( 71)28_T
91 ot cpeyte {2 aH 2 oH
inetastic 0 (1Y)’
:Cgcacl ’ a_H< 2
inelastic
_ Cgcac2 aiH ((771)2 e—H/kBTLaiH (kBTLeH/kBTLF(?)> (419)
c C;Iéelastic a B 8
_ 9 : kBTLa—H ((’Y’Y) H/kgTy ~ oH (eH/kBTLF(?))

) .0 oC
___inelastic 2 —H/kgT,
= Cye, gC a—[-_[ ((’77’) € [k La—[_[>

We introduced new constant ¢34 = ¢,ci®*"k Ty, /2. From our definition

of collision term in C, Eq. (4.6), the expression for inelastic collision term in
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the C' variable is derived:
oC B OF?
2| = pH/kBTL, | ZZ0
g[ath ¢ g[ath
:cg(lflzsgic eH/kBTLa% ((77/)2 eH/kBTLg_fI>

(4.20)

This is good news. Inelastic acoustic scattering expression has taken a self-
adjoint form which is very convenient for discretization; there are no first
derivatives. This formulation, to the best of our knowledge, is new. Origi-
nal spherical-harmonic work in [20, 32, 33,47, 48| used the original expression
in Eq. (4.15) for discretization.

It may be pointed out that if we use inelastic acoustic phonons, we cannot
apply Vecchi’s scheme [27-29] to incorporate the full-band band-structure in
the spherical-harmonic approach. This is because the expression for inelastic
acoustic phonons, Eq. (4.20), has an explicit reference to the dispersion relation
v(g), while the other scattering terms and the space-dependent term have a
reference only to function g(e).

4.2.3.4 lonized Impurity Scattering

Ionized impurity is elastic, it does not change the energy of electrons after
scattering. The scattering term for the Y term was derived to be zero in
Eq. (2.83) of Section 2.5.4, and this remains the same in the new C variable:

dC(H)
ot

[aFé’(H)

=0 (4.21)

:| impurity :| impurity

4.2.3.5 Impact lonization Scattering

We start from Eq. (2.94) in Section 2.5.5. It was derived impact ionization in
f2(¢) variable, we re-write in terms of F{)(H) variable:

6F(?(H) _ F§(2H+q¢+6)
9(H +q9) [T} impact =49(2H + 299 +¢,) Timpact (2H + 2q¢ jsg)
Fy(H)
—a(H 0
9+ ad) (T + 49)
(4.22)

The first term on the right-hand side corresponds to the scattering in, and
the second term corresponds to the scattering out. By substituting Fy =
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Cexp(—H/kpT;) we get

OFy (H)
ot

9 (e~ 15T O(H))
ot

9(H +q9) [ =g(H + q9)

:| impact impact

= 4g(2H + 2q¢ + &) -
e~ GH+ad+ea)[keTL O(2H + q¢p + ¢,)
. Timpact(ZH +29¢ + &‘g)
e H/ksTrC(H)
—g(H+q
9( ¢) Timpacs(H + ¢&)

(4.23)

By using the definition of the collision operator in C variable (Eq. (4.6)):

— H/kBTL [GF(?

acC
[ = - (4.24)

ot :| impact :| impact

we can easily derive the expression for the impact ionization scattering in the
C variable:

o0C(H
g(H + q9) [ égt )} =49(2H + 29 +¢,) -
impact
. e_(H+q¢+Eg)/kBTLC(2H + (1(15 + 69) (4 25)
Timpact (2H + 2q¢ + €g) |
C(H)
—g(H +
g( ng) Timpact (H + qu)

If we compare the new expression, Eq. (4.25) in C variable, with the original
equation one, Eq. (4.22) in F_ variable, we see some similarities and some
differences. The scattering in term in both is similar; the scattering out term,
on the other hand, in the new expression Eq. (4.25) has an additional factor
exp(—(H + q¢ + €,)/kpTr). This factor at room temperature has the value
ranging from ~ 107! down to ~ 1078, This additional factor greatly reduces
the magnitude of the off-diagonal coefficient of the impact-ionization expression
in C' variable.

4.2.4 Final Equation in Pre-Maxwellian Variable

We are now in a position to assemble the pieces together to form our final
expression of the spherical-harmonic Boltzmann equation in the new C' vari-
able. In Eq. (4.8) we substitute the expressions for optical phonon, Eq. (4.13);
inter-band phonon, Eq. (4.14); acoustic phonon, Eq. (4.20); ionized impurity,
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Eq. (4.21); and impact ionization scattering, Eq. (4.25):

;—x (TU;g%) (Space-Dependent)
+3g { coprg ™ €™/ ¥ T (C(H — hwep) — C(H)) +
Coptg " (C(H + hwepy) — C(H)) } (Optical)
+3y {Cibg_(u')ehwib/kBTL (C(Ul)(H — fwpp) — C(H)) +
gt (C’(”')(H + hwsp) — C(H)) } (Inter-Band)
N 0 oC
inelastic H/kBTL_ N2 7H/kBTL_ 3
+3Che g € o <(’w ) e 5 H) (Acoustic)
+3 {4g(2H + 2q¢ + sg)e_(H+Q¢+Eg)/kBTL
 C@H+qdp+e)
7—impa,ct(QI_I + QQQS + sg)
C(H) } o
H + Impact-Ionization
g( q¢) TimpaCt(H + Q¢) ( P )
=0 (4.26)

This partial differential-difference equation, along with the boundary condi-
tions, represents the complete boundary-value problem to be solved within a
semiconductor device. This equation may be compared with the final form of
the Boltzmann equation in the original variable, Eq. (2.100).

4.3 Discretization

It is shown in Appendix A on page 173 that the spherical-harmonic Boltzmann
equation is essentially a conservation equation. Its discretization, too, must
reflect this conservative property. Therefore, for the spherical-harmonic Boltz-
mann equation we adopt the current-conserving control-volume discretization

[113,114], sometimes also known as box-integration discretization in semi-
conductor simulation [79,102-104]. The control-volume approach has a very
attractive property: the discretization itself assures the conservation of elec-
tron current over any group of control volumes, and, of course, over the whole
domain [113,114]. This conservation is true for any grid, even a coarse grid,
not just in the limiting case of large grid number of grid points. The global
conservation will ensure, for example, that the total current at the terminals
is conserved.
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4.3.1 Principles of Control-Volume Discretization

First step is to construct a grid, and then discretize the spherical-harmonic
Boltzmann equation on this grid. To ensure the conservation of electron
current, we follow some basic principles of control-volume (CV) discretiza-
tion [113]. While some principles are general in nature, others are specifically
tailored to the discretization of the Boltzmann equation.

CV Principle 1

CV Principle 2

CV Principle 3

CV Principle 4

CV Principle 5

CV Principle 6

CV Principle 7

Discretize the domain with non-overlapping control-volumes.
This can be done by constructing a grid in Hamiltonian, H,
and space, x, such that it covers the whole domain of simula-
tion.

Let the grid be orthogonal. This ensures that the fluxes through
the control-volume faces are easy to evaluate.

Locate the control-volume faces at the mid points of the grid
points [113,114].

While the grid is allowed to be non-uniform in space, it is re-
quired to be uniform in Hamiltonian. In addition, the spacing
in Hamiltonian A H should be an integer division of the optical
phonon energy: AH = Fwopt/kopt, Where ko is a positive inte-
ger. This is essential to ensure that optical phonons scatterings
conserve electron flux; or the identity of Eq. (A.8) is satisfied
by the discretization. Satisfying identity of Eq. (A.8) is crucial
to assuring current, current-conservation, as can be seen by the
proof of current-continuity in Appendix A on page 173.

In our band-structure, as seen in Table 3.1 on page 46, the
inter-band energy is equal to the optical phonon energy: hwy, =
Tuwopt- Therefore, the same grid spacing in Hamiltonian will
work for inter-band phonons; identity of Eq. (A.11) will be
satisfied.

Discretize the equations while accounting for the flux at every
control-volume face.

If two control volumes share a face, then they must both
use same expression for the flux through it. The flux that
leaves one control-volume is identical to the flux entering an-
other. This ensures conservation. This principle applies to
both space-dependent term as well as the inelastic-acoustic-
phonon term. The expression for the flux, in other words, is
unique to the face and not to the control-volume.
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4.3.2 Discretization of the Boltzmann Equation

Our first task is to construct a grid on the domain of Eq. (4.8), which for a
one-dimensional case is —q¢(z) < H < epax — qd(x) and Lyin < & < Lipax.
A schematic of this orthogonal grid on the domain is shown in Fig. 4.1 on the
following page. Keeping the control-volume principles in mind, we construct
the grid in Fig. 4.2 on page 65. There are two possibilities to choose from
for deciding on the location of the control-volume faces [113,114]: (a) the
control-volume faces located exactly mid-way between grid points; and (b)
grid point located exactly at the center of the control-volume. We adopt the
first approach.
To derive the discretized equations we start from Eq. (4.8):

0 oC oC
% ( ax ) - 3g [ at :|collisi0n =0 (427)

We have used a new variable k = T’Ll,g g. The variable is reminiscent of conduc-
tivity, x, in the classical heat equation [113]:

d dr
o ( dx) + Source =0 (4.28)

The similarity of this heat equation with Eq. (4.27) is obvious. The driving
force, gradient of temperature 7', is the analogue of the gradient of the dis-
tribution. Conductivity k is analogous with the product Tugg. In Fig. 4.2 on
page 65 we consider a control volume:

sz[xnggxe} x[(k—%)AH§H§<k+%>AH] (4.29)

Integrating Eq. (4.27) in the control volume we get:

oC oC
// {ax ( ) " 3 [ at :|collision} = 0 (430)
oC
I Bl H - H = 4.31
//QP 83: (K: ) dmd +//Qp3g|:at:|collision dmd 0 ( 3 )

The two terms in the equation can be discretized with a second-order accurate
approximation:

//QP 52 (»:—) dz dH = AH/w % (%—f) dz + O ((AH)?) (432)

~ AH (Fe— Fuy)
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Figure 4.1: Schematic of the grid on the domain of the spherical-harmonic Boltz-
mann equation. In a given potential, ¢(x), the domain of the spherical-harmonic
differential equation in z-H is —¢¢(x) < H < emax—qd() and Lmin < 2 < Lpax.
The orthogonal grid is uniform in H and non-uniform in z. The intersections of
the grid lines are the grid points. Discretization of the Boltzmann is performed
only for those grid points that lies within the curvilinear domain.
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Figure 4.2: Grid for the solution of the spherical-harmonic Boltzmann equation.
This is a orthogonal Cartesian grid in space dimension, z, and Hamiltonian, H.
Filled circles indicate the stencil, or the computational molecule used in the dis-
cretization. Control-volume is indicated by the dashed line; control-volume faces
are located mid-way between grid points. Grid spacing in Hamiltonian is uniform
with AH as the spacing; AH is chosen such that kopt AH = fuwey the optical
phonon energy jump (In the figure ko, = 3). Grid spacing in space is non-uniform.
Inter-band phonon grid points, I B*, are not drawn, but they can be visualized to
be coincident with optical points, OP*, except that they are in a different band.
The point marked “In (Impact)” is the grid point for the scattering-in part of the
impact ionization term.
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// 39 [@} dxdH = 3gp oc AHAzp +
Qp ot coll

-E- coll, P
O ((AH)?) + O ((Azp)?) (4.33)
90T
~ 3gp | — AHAzp
L at d coll, P

Where Azp = 2, — 2, = (zg — xw)/2 where z, = (x; + x;11)/2, and z,, =
(xi—1 + 2;)/2 and gp = g(at point P) and [0C/0t|con, p evaluated at point P.
The collision term is discretized by assuming that the value at point P prevails
in the whole control volume. The fluxes are given by second-order accurate
central-difference approximations:

Fo = Ke (%ﬁ) + 0 ((Az.)?) (4.34)
Fo—ha (CA—*CW) +0((Az)) (4.35)

Where Az, = v — zp, and Az, = xp — Tw, and The “conductivities” at
the control-volume face are k. and k,. Our first guess might have been to
approximate the them as an arithmetic mean of the “conductivity” at the grid
points: at the point e we would have written k. = (kg + kp) /2. In fact,
this mean is second-order accurate. Patankar [113,116], for the heat-transfer
problem, proposed in 1978 that a harmonic mean is a better approximation
instead. The interface “conductivity,” as derived in Appendix C on page 179,
is:

2

ko = —1EEP (4.36)
Kg + Kp

- 2kw kp (4.37)
Kw + Kp

If, for instance, kg = 0 then the harmonic-mean formula will give k., = 0; the
arithmetic mean, on the other hand, will give a non-zero value. This behavior of
the harmonic mean helps in the energy boundary condition: If the grid point £
is outside the domain, then kg = 0, which would make k., = 0; this implies that
all references to the grid point C'r will vanish in the discretized equations. For
further discussion on harmonic-mean scheme, refer to Appendix C on page 179.

Eq. (4.31)—after substituting Eq. (4.34) and Eq. (4.35) in Eq. (4.32), along
with Eq. (4.33)—reads

1 Cg—Cp Cp—Cw oC
_ - " - = 4.
Azxp {Ke ( Az, ) e ( Azy ) } +99r [ ot :|coll,P 0 %)
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Which, after rearranging, is

1 Ke Ke R Ky 80 —
Azp {AxeCE - (Ame * Amw) Crt Achw} e |:(3t :|coll,P =0
(4.39)

This discretization is second-order accurate: the discretization error goes to
zero as the second power of the grid spacing.

Discretization Error = O ((Az)?) + O ((AH)?) (4.40)

4.3.3 Discretization of Collision Terms
4.3.3.1 Optical Phonon Scattering

The discretization of optical phonon term, Eq. (4.13), is also straightforward:

oC — hwopt /kBTr (=
gp | — = Copt P G5 p €9/ FBTL (O5, — Cp) +
" [at:|opt,P prarfor (Cor = Cr) (4.41)

Copt gp ggp (Cgp - CP)

Where ggp = g(at £hwep; from point P) = g(at point OP*); and Clp, =
C(xi, Hy + hwopy) and Cpp = O(wy, Hy — Aweps). Evaluating C5, has be-
come accurate because our grid in Hamiltonian is constructed such that AH =
Fiwopt / kopt, Where kopy is a positive integer (Refer to control-volume principle 4
on page 62 on page 62). If that was not the case we would have to do either of
the following: (a) interpolate to get a value for CZ,; or (b) change the value of
effective fuwopy t0 kopt AH where kopy = Integer(fwopt/AH + 0.5), as was done
in [32,33,48]. Both the methods introduce errors: Interpolating, specifically,
will prevent us from satisfying the identity of Eq. (A.8), which is crucial to
maintaining current continuity in the discretized equations.

4.3.3.2 Inter-Band Optical Phonon Scattering

Expression for inter-band optical phonons, Eq. (4.14), is similar to that for
optical phonons. Since in our band-structure the inter-band optical phonon
energy jump is the same as optical phonon energy jump, inter-band optical
phonon energy is an integer multiple of grid spacing in Hamiltonian too; there-
fore, same grid spacing works for both.

oC (This Band«v') , )
gp [E} = Cib gP gf_zgu ) hwin/kp T (Cf_éy) - CP) +
ib,P (4.42)

Cib gp g?é”) <C;FI§U) - CP)
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Where ng(,”I) and Cliéyl) is evaluated in the other bands to which we are scat-
tering. (Points IB* are not shown in Fig. 4.2 on page 65; the reader may
imagine these points to be coincident with points OP¥, except that they are
in a different band.)

4.3.3.3 Inelastic Acoustic Phonon Scattering

Inelastic acoustic phonons expression, Eq. (4.20), is discretized at point P as:

oC o 1
gr [E] = cacige exp(He/hsTi) 30
ac, P
CN - CP

N2 - H Ty ——M—

{(w ) exp(—Ha/kpTL) —1 7
| o C (4.43)

—-(); eXp(—Hs/kBTL)ZiHS}

. : 1 12

= s g ()7 exp(=AH/2ksTy) (Ci — Cr)

—(vY')? exp(AH/2kgTL) (Cp —Cs)}

Where the subscript n and s, as shown in Fig. 4.2 on page 65, refer to the
control-volume face to the north and south. Hp = Hy, H, = Hy + AH/2, and
H,=H, — AH/2.

4.3.3.4 Impact lonization Scattering

The expression for impact ionization, Eq. (4.25), is easy to discretize:

_AHimpact kBTL in
aC(H) =4 in . € P / Cimpa.ct,P
gp at - gimpact, P in
impact, P c Timpact, P (444)
P
—gr
Timpact, p

where Timpact, p — 7-impa.ct(I_IP + (](bp); AH}mpact = Hp + Q¢P + €g; OiirI;lpact,P =
C(2Hp + q¢p + €,) is evaluated at the closest grid point; giz 01, p = 9(2Hp +
2q¢p + &4) is also evaluated at that grid point; and 73} e p = Timpact (2Hp +
2q¢p +¢€,4) too is evaluated at the closest grid point. In Fig. 4.2 on page 65 the
grid point marked “In (Impact)” is the one used for the incoming electrons.

4.3.4 Putting it Together

By substituting the discretized scattering terms from Eq. (4.41), Eq. (4.42),
Eq. (4.43), and Eq. (4.44) into Eq. (4.39) we get the discretized version of the
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spherical-harmonic Boltzmann equation:

ApCr + AwCw + AnCy + AsCs +
ASPCOP + AOPCOP + A}FBCIB + AIBCIB + Almpactcllrrrllpact
- (AE+AW+AN+AS+AOP+AOP+AIB+AIB+
Aimpact) Cp =0 (4.45)

where the coefficients are as follows:

K
Ap = —— 4.46
E™ Az pAz, ( )
K
Ay = —"— 4.47
W A$PA$1U ( )
3 mela,stlc(,y,.y) —AH/QkBTL

Ay = 280 4.4

N AH? (4.48)
3 melastlc(,y,y) AH/2kBTL
Ag = —EC 4.49
5 AH? (4.49)
Agp = 3Copt gp ggp (450)
ABP = Z))Copt gp 9613 ehwom/kBTL (451)
Afp = 3cw gp g?éy) (4.52)
A[B = 3¢ gp g[]é V) eMin/keT (4.53)
e~ AHZ P [kpTy
Ainmpact 3 x 4glmpact P in (454)
impact, P
Aimpact =3 gr (455)
Timpact, p

The discretized Boltzmann equation Eq. (4.45), along with the boundary con-
dition equations, can be written as a matrix equation:

AC =Q (4.56)

The coefficients form the matrix Z; unknowns are in the vector C; and the
right-hand-side vector @) is the known part of the equation.

4.3.5 Boundary Conditions

Most publications in device simulation concentrate on the description of dis-
cretization at the interior grid points, but treat discretization at boundary a
little cavalierly (p. 189 in [79]). As a redress for this lament, we will discuss the
implementation of the boundary conditions in this sub-section. The boundary
conditions developed in Section 2.7 on page 35 for the ohmic, insulator, and
the energy boundary are discussed below.
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Figure 4.3: The control-volume at an insulator or ohmic boundary. The half
control-volume is half of its normal size, and has a grid point at the control-volume
face. The heavy line indicates a interface contact or an artificial boundary. The
interface contact could be an ohmic contact or an insulator. For the Dirichlet
boundary condition we set unknown to the known value. For Neumann boundary
condition we can set the flux at the “eastern” side to the specified value.

4.3.5.1 Ohmic and Insulator Boundary Condition

At a material interface or artificial boundary, as shown in Fig. 4.3, the control-
volumes is half of its normal size and has a grid point on its face. The ohmic
boundary condition, as discussed in Section 2.7.1, is a Dirichlet condition.
This poses no problem; we simply set the grid variable to a known value. At
an insulating boundary, as discussed in Section 2.7.2, the current flux is zero.
This is easily set in the code by setting the “conductivity” s on that control-
volume face to zero. In Fig. 4.3, for instance, we would set k. = 0; other fluxes
would be treated normally.

4.3.5.2 Energy Boundary Condition

The application of the energy boundary-condition is slightly less straightfor-
ward. In Section 2.7.3 the energy boundary condition was derived as Eq. (2.113).
One approach might be to simply discretize this equation. But this is not nec-
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essary. We recall from that section that the boundary condition in energy
was derived from the spherical-harmonic Boltzmann equation itself by setting
€ = 0 or € = enax. Therefore, we can set € — 0 or € — &, in the discretized
equation itself. This makes the code simple, and assures that all fluxes are
accounted consistently.

As e — 0 or ¢ — £max the “conductivity” xk = Tugg — 0. The harmonic-
mean formula, Eq. (4.36) or Eq. (4.37), would result in the interface “conduc-
tivity” becoming zero as well. The interface “conductivity” going to zero would
ensure that the flux associated with that face is zero, and any reference to the
unknown C' at boundary is removed from the final discretized equation. For
example, let us consider the case shown in Fig. 4.4 on the next page. Since
the grid point E is outside the domain, we set kg = 0. By the harmonic-
mean formula of Eq. (4.36) we get k. = kg - kp/(kg + kp) = 0. This sets
the flux on the face “e” to zero; which is the intent of the energy boundary
condition. When k., = 0, all references to the grid point C'r will be killed in
the discretized equation Eq. (4.39). Thus, the boundary condition is realized.
It may be mentioned that our implementation of the boundary condition using
harmonic-mean of conductivity is similar to what was proposed by Patankar

[116] for fluid-flow in domain of arbitrary shape.

For the discretized inelastic acoustic phonons at grid point P in Fig. 4.4,
we set (79/)2 = 0 in Eq. (4.43). This sets the flux on control-volume face “s”
to zero, as well as removes any reference to grid point Cs.

4.4 Advantages of Pre-Maxwellian Variable

Having completed the transformation and discretization of the Boltzmann
equation, we come to a very important question: Why transform the Boltz-
mann equation to the pre-Maxwellian variable? There are four main advan-
tages of using this variable:

1. By rewriting the spherical-harmonic Boltzmann equation in pre-Max-
wellian variable, the diagonal dominance of the discretized equations is
enhanced. Without this variable transformation, the optical, inter-band
optical, and inelastic acoustic phonons spoil the diagonal dominance of
the discretized equations; with the transformation, they do not. For im-
pact ionization, the diagonal dominance is not restored, but is improved
tremendously: the off-diagonal impact-ionization coefficient is drastically
reduced, thus enhancing diagonal dominance.

2. The pre-Maxwellian variables account for the rapid exponential variation
of the distribution function in both energy and space.
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Figure 4.4: Application of the energy boundary condition on the grid. The domain
of the equation is marked by the curved line which represents the curve H =
e —qp(x), with ¢ = 0 or € = gax. For energy ¢ = 0 the boundary is shown in the
figure. Point E and S are outside the domain of the equation (¢ < 0). Although
the inner control-volume faces, n and w, are at the mid point of grid points, the
boundary control-volume faces, ¢ and s, are assumed to coincide with the domain

boundary.

3. The new pre-Maxwellian variable also allow us to write the electron con-
centrations in Slotboom variables; [98,102, 104, 105]; and the Poisson
equation can be written as a non-linear equation, instead of the usual
linear form [70]. this opens the possibility of using superior Poisson-
equation solvers, like Mayergoyz’ fixed-point algorithm [95-97].

4. These advantages accrue with no penalty in linearity: Boltzmann equa-
tion in the new variable is still linear. The structure of the spherical-
harmonic Boltzmann equation before and after the transformation is sim-
ilar; old code, therefore, can be reused with only minor modifications.

Let us discuss some of these advantages in the following sub-sections.
lucidity, the order of discussion has been slightly changed.

For
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4.4.1 \Variation of Distribution in Energy and Space

The electron energy distribution function, f, at equilibrium is Maxwellian, that
is, it has the form

f = Constant - e¢/k5Tz (4.57)

This Maxwellian shape results from the fact that the distribution at equilib-
rium is dictated by the scattering terms. Mathematically we can show that a
Maxwellian distribution is a solution of the optical phonon, acoustic phonon,
and inter-band phonons terms equated to zero.

When there are large currents in the presence of strong electric field, elec-
trons are heated. The shape of the distribution for heated electrons is non-
Maxwellian. But at high energies the scattering rate is large and the high-
energy tail may still show a near Maxwellian shape. This means that we can
consider the heated distribution to be a perturbation of the Maxwellian case;
the constant in Eq. (4.57) is not a constant, but is a function of energy and
space. This means that even before we have solved the Boltzmann equation, we
have some a priori knowledge of the distribution function. We, therefore, de-
fine the transformation to new variables FQ(z, H) = C(x, H) exp(—H /kgTy).
Since H = € — q¢(z), the exponent term has the Maxwellian factor. Fy is
also shown depending on exp(g¢/kpTy). This also makes physical sense as the
electron concentration has an exponential dependence on the potential too. In
one swoop we have explicitly expressed the energy- and potential-dependence
of the distribution:

F(z,H) = C(z, H)e H/ksTe — C(x, H) ¢ ¢/*»Tr e?@/kpTL (4 58)

Energy Dependence Space Dependence

4.4.2 Diagonal Dominance in Pre-Maxwellian Variable

A matrix A whose diagonal element Ap is different in sign than the off-diagonal
elements A;, and satisfies the property

|Ap| > Z |4 For all equations (4.59)
1

|Ap| > Z | Ay For at least one equation (4.60)
I

is said to be diagonally-dominant. For matrix solvers, this is a desirable quality
for the solution of matrix equations: direct methods, like Gauss elimination, do
not need pivoting; and some iterative methods, like Gauss-Seidel, are assured
of convergence [113].

We claim that diagonal-dominance of the discretized Boltzmann equation
is enhanced if it is cast in pre-Maxwellian variables. To verify this claim let us
examine the Boltzmann equation in original, as well as, new variables.
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Comment on Notation Diagonal dominance is a property of a system of
equations; it is not property of one equation, or one term in it. But for the
sake of discussion below we will refer to a term of the equation being diagonally
dominant. This should be interpreted as follows: If this term was the only term
in the differential equation, and we discretized it, we would get a diagonally-
dominant matrix. Therefore, a diagonally-dominant term, in our notation,
would be one which contributes equally, or more, to the diagonal than it does
to the off-diagonal. And a non-diagonally-dominant term is the one which
contributes more to off-diagonal coefficients than to the diagonal one.

4.4.2.1 Original Variable

When the spherical-harmonic Boltzmann equation in the original form is dis-
cretized the equations do not come out to be diagonally dominant. To show
this, let us examine the discretization of various components of Eq. (4.3), which

reads
o ([ OFP OFy
o ([ O0Fy olg — 4.61

ox (K oz ) 9 [ ot collision " ( " )

The space-dependent part of the equation can be discretized easily:

0 OFy 1 K K Ke Ke

— | k— |~ — Cw— | — C C 4.62

oz (” 8:5) Axp{Axw w (Axw+Axe) P AL E} (462)
Which can be seen to be diagonally dominant (contributes equally to the di-
agonal as well as off-diagonal terms).

We Turn our attention to the collision term. Optical phonon collision term,
described by Eq. (2.68), term can be discretized at point P to read

aF(?} — — hwops /ksT.
9P |~ = Copt gp Jop (Fop — €771 Fp) +
P |: ot opt.P pt YP Gop ( oP P) (463)

+ fwopt /knTr T+
Copt 9P 9o p (e vt/ "Fop _FP)

where F5p = F (H—Twept) Fp = Fy(H+hwept). The first term in parenthesis
involves the optical phonon absorption and emission between energy ¢p and
ep — lwopt; we can consider the symbol ep = H + q¢ to be the energy at point
P. When the energy ep is less than hw,p, this term is absent, and the second
term remains. The second term deals with emission and absorption between
energies ep and €p + Aweps. The coefficient of the off-diagonal unknown in the
second term is larger than the coefficient for the diagonal unknown by a factor
of exp(fiwopt/kpTr), which is approximately seven for the given Awqp in our
band structure at room temperature.
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Even at energies larger than /Aw,y, diagonal dominance is not readily
achieved. Eq. (4.63) after re-arrangement reads

OF?
ap W = Copt P
opt,P
{95P Fop — (gap ghwore/RBTL gJorP) Fp+ gJorP ehwort/knTr FJP}
(4.64)

To have diagonal dominance the diagonal coefficient must be at least as large
as the sum of off-diagonal coefficients: (g5p exp(fwopt/ksTL) + 9bp) > 9op +
9op exp(Awopt/kpTr). This is true only if gop > gbp, that is, the function
g(¢) is decreasing with energy, €. The function g(¢) is proportional to the
density of states, as seen in Eq. (2.47); the density of states, as seen in Fig. 3.2
on page 47, increases with energy from 0 to 1.75eV, and then again from 2.6
to 2.9eV. Optical phonon does not give diagonally dominant discretization
in these energy ranges. This means that the optical phonon scattering term
in the original variable will not be diagonally dominant over a large energy
range. Same conclusions apply to the inter-band optical phonon term, since it
is similar in form to the optical phonon term.

Collision term for the inelastic acoustic phonons, Eq. (4.19) in F} variable,
can discretized in the usual manner. It can be easily shown that such a
discretization is diagonally dominant if and only if (y7')? is decreasing with
energy. Say if y(¢) = € + ag?, then (v7)? = (¢ + ae?)?*(1 + 2ae)? is not
decreasing with energy. The discretized inelastic acoustic phonon equation,
therefore, is not diagonally dominant either.

Impact Tonization, Eq. (4.22) or Eq. (2.94), is seen to be

(9F(§)(H) B F(?(2H+q¢+5g)
g(H + C]¢) [T} mpact = 4g(2H + 26]‘15 + 5!]) Timpact (2H + 2q¢ + ‘Sg)
Fy(H)
—olH 0
A gy
(4.65)

The second term is the scattering-out, and the first one is the scattering-
in term. The scattering-out term involves the diagonal unknown; and the
scattering-in term involves an off-diagonal unknown. At energies below the
threshold energy of impact ionization (= band gap of silicon, 1.1eV), scattering-
out term is zero, while the scattering-in term is not. The impact ionization
term, then, has an off-diagonal entry, which hurts diagonal dominance.

At energy larger than the threshold energy of impact ionization, both
scattering-in and scattering-out terms are present. The impact ionization term
would discretize to a diagonally-dominant equation only if g(H+¢¢)/Timpact(H+
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q®) > 49(2H 4 29 +€4) / Timpact (2H + 2g¢ + €,). This inequality is clearly vio-
lated if both the density of states (o< g) and impact-ionization scattering rate
(1/Timpact) increase with energy.

4.4.2.2 Pre-Maxwellian Variable

Now let us turn our attention to the discretization of the spherical-harmonic
Boltzmann equation in the pre-Maxwellian variable. We start by reproduc-
ing below the spherical-harmonic Boltzmann equation in the pre-Maxwellian
variable, Eq. (4.27):

— | k— — = 4.66
695 <I€ 8$ ) N 3g [ at :|collisi0n 0 ( )

The first term was discretized using control-volume formulation in Eq. (4.39).
This discretization is diagonally dominant—sum of the off-diagonal coeffi-
cients is equal to the diagonal one. This is similar to discretization of the
space-dependent term with the original distribution-function variable, as in
Eq. (4.62).

The diagonal dominance of the optical phonon scattering term is shown
below. The discretized optical phonon term, Eq. (4.41), reads

aC o )
— =cC, ehwort/ksTL (O O +
gp |: ot :|0pt’P pt 9P Jop ( oP P) (467)

Copt P gJOrP (CgP - CP)

On comparing with the optical phonon discretization for normal F{ variable,
Eq. (4.63), we see that this expression is diagonally dominant for at all energies.
A definite improvement.

The discretized inter-band optical phonon scattering term (Eq. (4.42)) is
similar to discretized optical phonon term (Eq. (4.41) or Eq. (4.67)); therefore,
same conclusions apply to it: discretization of the inter-band optical phonon
term results in diagonally-dominant equations at all energies.

It is easy to show that the discretization of the inelastic acoustic phonons,
as derived in Eq. (4.43), also results in diagonally-dominant equations at all
energies.

The impact ionization, however, is still slightly problematic. Impact ion-
ization in C variable was derived in Eq. (4.25), and is reproduced here for
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reference.
0C(H
9(H + q¢) [ é?(t )] =49(2H +2q¢ + &) -
impact
LU ST OO  +qd+ey) (g
7—impact (2H + 2q¢ + 69) |
C(H)
—g(H +
g( C]¢) Timpact (H + q¢)

Similar to Eq. (4.65), the second term is the scattering-out part, and the first
term is the scattering-in part. Further comparing to Eq. (4.65) we see that
while the scattering-in term has the same form, the the scattering-out term is
different: it has an additional exponential factor of exp(—(H +g¢+¢,)/ksTL).
This factor is very small; in Silicon at room temperature it ranges from ~ 10~
down to ~ 10738, It reduces the off-diagonal coefficient by multiplying it, this is
very beneficial for diagonal dominance. Even though impact ionization is still
not diagonally dominant, situation has been drastically improved—oft-diagonal
coefficient is much smaller than before.

4.4.2.3 Discussion
With regard to the diagonal dominance, we can summarize our observations:

1. The space-dependent term in the new, as well as the old, formulation is
diagonally dominant.

2. The spoilers of diagonal dominance are the collision terms: optical, inter-
band, and inelastic acoustic phonon terms; and the impact ionization
term.

3. Using the pre-Maxwellian variable, C', makes the optical, inter-band, and
inelastic acoustic phonon terms diagonally dominant.

4. The impact-ionization term still does not become diagonally dominant;
the scattering-in term spoils this.

5. Even though the impact-ionization term does not become diagonally
dominant, using the pre-Maxwellian variable makes the situation much
better—it reduces the off-diagonal scattering-in coefficient by a very large
exponential factor.

To conclude, we can make the following statement:

If we rewrite the spherical-harmonic Boltzmann equation in pre-
Maxwellian variable and include scattering mechanism of optical,
inter-band, acoustic, impurity, and scattering-out impact ioniza-
tion, then the discretized equations are diagonally dominant.
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Term in Equation Diagonal Dominance
Distribution Pre-Maxwellian
Variable Variable
Space-Dependent Yes Yes
Optical Phonon No Yes
Inter-band Phonon No Yes
Inelastic Acoustic Phonon No Yes
Impact lonization No No

Table 4.1: Diagonal dominance of the discretized Boltzmann equation when writ-
ten in the two variables: the original distribution-function variable, F; and the new
pre-Maxwellian variable, C'. Pre-Maxwellian variables make all, but the impact-
ionization, terms diagonally dominant. Even though the impact-ionization term
does not become diagonally dominant, its off-diagonal coefficient is reduced by a
large exponential factor. Since ionized-impurity scattering is elastic, it correspond-
ing term is zero; therefore, it is not mentioned here.

Table 4.1 summarizes our discussion by comparing the the diagonal dom-
inance of the discretized equations with the original variable, and the new
pre-Maxwellian variable.

4.4.2.4 Alternate Notation

We can express the conclusions in a more formal fashion. If the coefficient ma-
trix of the discretized pre-Maxwellian-variable Boltzmann equation of Eq. (4.56)
is split into the various contributing elements

Z = ZElliptic + Zopt + Zib + Zac + Zimpact (469)

and the boundary conditions are conveniently divided into the various matri-
ces, then we can say the following: all matrices, except the matrix Ajnpact, are
diagonally dominant. But if we expanded the matrix for the discretized Boltz-
mann equation in original variable, the only matrix that would be diagonally
dominant would be the Agpipic matrix.

4.4.2.5 Why Pre-Maxwellian Variables Give Diagonal Dominance?

Maxwellian distribution (f) = Cyexp(—¢/kgTy), where Cy = Constant) is the
non-trivial solution of the equation

[G_fé’

o —0 (4.70)

:| collision
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if the collision term is optical, inter-band optical, or inelastic acoustic phonon.
This can be easily verified by substituting fJ = Cyexp(—¢/kpTy) in the follow-
ing equations: Eq. (2.68) for optical phonons; Eq. (2.72) for inter-band optical
phonons; and Eq. (2.77) for inelastic acoustic phonons. For these collision
terms, therefore, C'= Cj (Constant) satisfies the equation

oC
— =0 4.71
[ ot :|collision ( )
If the discretization of the above equation is
D AC — ApCp =0 (4.72)
l

then C' = C, (Constant) must also satisfy this discretized equation (Eq. (4.72)).
This is the case if and only if

Ap =) A (4.73)

This equation is a statement of diagonal-dominance. Thus, we have shown
that diagonal dominance emerges in pre-Maxwellian variables because the
Maxwellian distribution satisfies the collision-term-equated-to-zero equation.

This explanation has some interesting consequences: (a) We did not see
diagonal dominance in the original distribution-function variable because fJ =
Constant is not a solution of the equation Eq. (4.70). (b) Impact ionization did
not give diagonal dominance because [0 /0], .c = 0 admits only the trivial
solution f§ = 0. (c) In addition, this insight allows us to predict that future
scattering mechanisms which have Maxwellian as the solution of Eq. (4.70) will
also give diagonal dominance when transformed to pre-Maxwellian variables.
(d) It may be pointed out that this is an interesting situation where physics
and numerics are related.

4.4.3 Poisson-Equation Solvers with Pre-Maxwellian Vari-
able

Electron concentration with pre-Maxwellian variable, from Eq. (2.45) and
Eq. (2.46), can be expressed in terms of the Slotboom variable u(z) [98,102,
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104,105]:

n(z) = 47T?’\/E/gFOa:H )YdH

1 1
7T3 Vi
e,
1 1
eQ¢($)/kBTL/ C(z,H e~/kBTL JIT
= 43 \/E Hg ( )

= u(z) e19(@)/kpTL

g C(x, H)e M/ksTe gq

gC(z, H)e —(e—q¢(@)/kBTL g1 (4.74)

This expression of electron concentration can be put to good use by incorporat-
ing it in a superior Poisson-equation solver, like Mayergoyz’ fixed-point algo-
rithm [95-97]. It is important in this algorithm to express the concentration in
Slotboom variables; Poisson equation in this variable then becomes non-linear,
as written in Eq. (D.6). In fact, it has been reported that non-linear Poisson
equation may be better for self-consistent Monte Carlo simulations [70]. Using
pre-Maxwellian variables allows us to express the concentration in Slotboom
variables, which makes the Poisson equation non-linear, and thereby permits
us to use the fixed-point algorithm.

This fixed-point iteration method has numerous advantages [95]: (a) it is
fast; (b) it has global convergence; and (c) it updates the potential by explicit
formulas, therefore avoids the solution of matrix equations. Refer to [96,97]
for improvements and comments on this technique. Boltzmann equation in
original distribution variable, does not offer this luxury; the choice of Poisson
solvers, therefore, is more restrictive.

4.5 Chapter Summary

In this chapter the spherical-harmonic Boltzmann equation was transformed.
The distribution function was expressed in a new pre-Maxwellian variable.
The inelastic acoustic phonon term was transformed to a novel self-adjoint
form. The Boltzmann equation in new variable was discretized by current-
conserving control-volume scheme. This chapter then concluded by presenting
the advantages of the pre-Maxwellian variables.



CHAPTER 5

SIMULATION OF NTNNT
DEVICE STRUCTURE

5.1 Chapter Introduction

To simulate a semiconductor device we need to self-consistently solve four cou-
pled partial differential equations: two Boltzmann equations, one for the lower
bands and another for the upper bands; Poisson equation; and hole-continuity
equation. Hole transport, being less important than electron transport, is sim-
ulated by the drift-diffusion hole-continuity equation, rather than a rigorous
hole Boltzmann equation [62]. Discretization of these equations has been dis-
cussed elsewhere in the dissertation—Boltzmann equation discretization was
discussed in the previous chapter, and the Poisson and hole-continuity equa-
tions are discretized in Appendix D on page 183 and Appendix E on page 189
respectively. This chapter is devoted to developing solution techniques for the
discretized equations. The techniques developed and tested on a nTnn™ device
in this chapter are used in subsequent chapters to simulate other devices.

The line successive over-relaxation (SOR) matrix solver was found to be an
efficient solver for the Boltzmann equations [113,114]. The four equations are
solved self-consistently by decoupled scheme [114], which, in device simulation
parlance, is known as the Gummel’s decoupled scheme [99,101,102]. A one-
dimensional sub-micron n*nn* device structure is simulated by this technique.
The choice of the n*tnn™ structure is not accidental: It is a common device
structure for testing new simulators because (a) it displays non-equilibrium
behavior typical of modern devices; (b) it approximates the channel region of
a MOSFET in one-dimension; and (c) requires the solution of only one type of
carriers. The thermal-equilibrium test case from Appendix B on page 177 was
applied on the simulator.

It was observed that the distribution function is susceptible to numerical
noise—indicative of a poor numerics. The origin of this noise was detected
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to be an absence of coupling to neighboring points in energy. This was cor-
rected by using acoustic phonons in an inelastic approximation. Although
elastic approximation is more common [17,21,31, 35-37, 39, 41, 43], the in-
elastic approximation of Kolodziejczak [59] is not new to spherical-harmonic
work [20, 32, 33,47,48]. Therefore, the usage of inelastic phonons by itself is
not new; what is new is that it is identified as the cure for numerical noise. It
may be noted that a new discretization for the inelastic acoustic phonons has
already been discussed in Chapter 4.

This chapter is organized as follows: Section 5.2 discusses the matrix solu-
tion technique for the Boltzmann equation. In Section 5.3 on the facing page
the solution of the coupled system of equations by the Gummel method is dis-
cussed. The simulator is described in Section 5.4 on page 85, and the results
for the n*nn™ device are presented in Section 5.5 on page 85. The thermal-
equilibrium test case is applied in Section 5.6 on page 89. Convergence of the
Gummel loop and matrix solvers is discussed in Section 5.7 on page 90. Sec-
tion 5.8 on page 91 discusses the important aspect of noise in the solution and
how it is cured.

5.2 Solution of Discretized Equations
There are four coupled differential equations to be solved:

1. Boltzmann equation for band (12) (concatenation of bands (1) & (2))
2. Boltzmann equation for band (34) (concatenation of bands (3) & (4))
3. Poisson Equation
4

. Hole-continuity Equation

This section discusses their solution.

The Boltzmann equation was discretized by control-volume formulation in
the previous chapter where Eq. (4.45) was derived. The discretized Boltzmann
equation can be written in terms of a system of equations of the form

> AC - ApCp = Qp (5.1)
l

where C can be either C(*?) or C©®% . Subscript P indicates the point at which
the discretized Boltzmann equation is written; summation is over all other
points in Eq. (4.45). Qp is contains the C of the other band due to the inter-
band scattering.

Boltzmann equation is solved by the line successive over-relaxation (SOR)
method, as illustrated in Fig. 5.1 on page 84; it can be described as follows:



5.3. SOLUTION OF THE COUPLED EQUATIONS 83

1. Since all line-SOR matrices are tridiagonal, solve them by the Thomas’
tridiagonal matrix algorithm (TDMA) [113,114].

2. Use SOR when updating the unknown: C™V = @w(C%ma 4 (1 — u)C°ld;
where the solution obtained by TDMA is C%™2 and w is the over-
relaxation factor.

3. Use line-SOR in space for points in grid with constant H. Repeat for all
possible H.

4. Use line-SOR in energy and group only points connected by the phonon
energy jump fw,p:. Repeat this for all possible groups at a spatial point,
and then loop over all space points.

5. Use line-SOR in energy for all points in energy connected by acoustic
phonons. Since acoustic phonons at H are connected with points H+AH,
all points at a spatial location are included in one group. Loop over all
space points.

The discretization and numerical solution of the Poisson and hole-continuity
equations is discussed in Appendix D on page 183 and Appendix E on page 189
respectively.

5.3 Solution of the Coupled Equations

The four differential equations are coupled, that is, the dominant variable of
one equation occurs in other equations. The coupled system is solved by decou-
pling the equations: Each equation equation is solved in its dominant variable
while treating the other variables as constant, then iterating this through all
equations until the whole system is solved [114]. This decoupled scheme is
known in device simulation as the Gummel’s decoupled method [99,101,102].

Fig. 5.2 on page 86 illustrates this procedure. Initial guesses are gener-
ated from a drift-diffusion simulation of the device. The drift-diffusion output
provides the initial potential ¢(z), hole concentration, and electron concen-
tration n(z). The distribution function is assumed to be Maxwellian shaped
(C(x, H) = Constant) with a electron concentration equal to that provided by
the drift-diffusion solution. We then solve the two Boltzmann equations by
line-SOR method, followed by a solution the Poisson and hole-continuity equa-
tion. Then convergence of the whole system is checked, if it has not converged
we iterate over all the equations again. This outer loop, iteration over the
equations, is known in semiconductor device simulation as the Gummel loop
[101].

When solving the Boltzmann equations, the inner loops of line-SOR method
need not be taken to full convergence because the other variables are tentative
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Figure 5.1: lllustration of the line-SOR approach to solve the Boltzmann equation.
Grid points are grouped together in either space or Hamiltonian (energy). Within
the group, the matrix is tridiagonal, and is solved by a direct solver. The tridiagonal
solver is applied to all grid points in alternating directions. The process is repeated
until the iterations converge.

at best [113]. This is achieved in the code by limiting the maximum number
of inner loops.

The convergence criterion for the Boltzmann equation is little tricky. One
would be tempted to compare C(z, H) from a previous Gummel loop to the
new one. This, however, may not be accurate representation of convergence.
Every Gummel the electric potential ¢(z) changes. This changes the domain
of the Boltzmann equation. A grid point (z, H) no longer represent, the same
energy in different Gummel loops. The way out of this is to use the relative
change of electron concentration between Gummel loops. If m is the current
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Gummel loop index, then, the convergence criteria is:

nEm) . Z(.mfl)
(m)

n;

max < 107% t0 107 (5.2)

Vi

To make the convergence test more robust, the code also checks the relative
current density between nodes:

m m—1
Ji(+1)/2 B i(—|-1/2)
(m)

Ji+1/2

< 107% to 107° (5.3)

max
Vi

The Poisson is considered converged when

< (107%to 107 V; (5.4)

max | ¢ — ¢ "

Vi

where V; = kT /q, the thermal voltage. Hole-continuity equation is consid-
ered converged when

pgm) B pz(m—l)
p"

< 107° to 107 (5.5)

max
Vi

5.4 The Simulator

A one-dimensional simulator is written for ntnn* devices and bipolar transis-
tors. It solves the drift-diffusion as an initial guess, followed by a self-consistent
solution of the two multi-band Boltzmann equations and the Poisson and hole-
continuity equations. It has 2,500 lines of uncommented code in FORTRAN 77,
which were executed on a 200 MHz Pentium Pro personal computer (PC) with
64 MB of RAM (Random-Access Memory) running a Linux RedHat 4.0 oper-
ating system using the Gnu Fortran compiler. The same simulator is used also
used for the one-dimensional BJT of Chapter 6.

5.5 Simulation of a ntnnT Device

In this section the simulation results for a sub-micron n*nn* device are pre-
sented and discussed. The n*nn™ device structure is a convenient test vehicle
to test modern device simulation codes—it displays non-equilibrium behavior
typical of sub-micron MOSFET’s and Bipolar transistors; requires solution of
only one type of carriers; and roughly approximates the channel of a MOSFET
unencumbered by two-dimensional effects (p. 265 of [74]).
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Drift-Diffusion
Use ¢(z), n(z) and p(x) for initial guess

A

Y

Solve for C'(z, H) in band (12)

Y

Solve for C(x, H) in band (34)

Y

Solve for ¢(x)

Y

Solve for p(x)

No

Converged 7

Yes

STOP

Figure 5.2: The four coupled discretized equations are solved in a decoupled
Gummel scheme. Each equation is solved for the dominant variable while assuming
the other variables known. After looping through all equations, which is known as
the Gummel loop, convergence checks are made to determine whether to terminate
the loop or to continue with the iterations. The inner loops of the individual
equations are not shown.
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5.5.1 Device Structure & Grid

The device structure is shown in Fig. 5.3 on page 94. It has two nt “source”
and “drain” regions of 0.1um width and doping of 5 x 107 cm ™ sandwiching
a lightly-doped n-region of width 0.4um and doping 2 x 10'® cm™. There are
two ohmic contacts: one at source end, x = 0; and the other at drain end,
x = 0.6pm. This device structure, in fact, is quite typical for testing silicon
device simulators [109].

The grid is uniform in z and has approximately 60 points. In H the grid
is also uniform, the grid spacing is AH = Fwp /6, which translates to 349
points in band (12), and 91 points in band (34). The total number grid points
is approximately 26,400. For a typical run the code converges in around a
hundred Gummel loops and takes about ten wall-clock minutes.

5.5.2 Simulation Results at Various Biases

The ohmic contact at x = 0 is grounded, and a bias is applied at the ohmic
contact at x = 0.6um. This sub-section presents the results for three biases:
Vapplied bias = 1, 3, and 5V. All simulations are at room temperature, Tj, =
300K. Fig. 5.4 on page 95 plots the self-consistent electric potential within
the device at these biases. There is very little potential drop in the heavily
doped n* regions, most of it occurs in the lightly doped middle region. This
is reflected in the electric-field profile within the device as shown in Fig. 5.5
on page 95. Electric field is essentially zero in the heavily doped regions. The
maximum occurs at the right n-n™ junction. Near the left n*-n junction we
can see the built-in field, which is in the direction opposite to the field in most
of the device.

This average velocity resulting from these three biases is shown in Fig. 5.6
on page 96. We can see three regions of interest: (a) low-velocity regions;
(b) saturation region; and (c) velocity-overshoot region. In the heavily-doped
regions there a large number of electrons, therefore the average velocity is much
smaller. As the electrons leave the “source” region to enter into the lightly-
doped region (near ~ 0.1um) they suddenly experience a large electric field,
this causes their velocity to overshoot the saturation velocity. * While velocity
overshoot can be clearly seen at around 0.2um for the 5V bias, it is not present
for 1V bias because the electric field, and its gradient, is not large enough
to cause it. After overshooting the electrons tend to approach the saturation
velocity, which in silicon is ~ 107 cm/s.

Velocity overshoot, as we shall see in later chapters too, occurs in devices

Velocity overshoot is said to occur when the local average velocity of electrons is larger
than what it would have been had the electrons been at equilibrium with the local electric
field.
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whenever electrons enter a region of high electric-field gradient [74,107]. Elec-
trons entering such a region do not have enough time to gain energy and “heat-
up”—in other words, they are not in equilibrium with the local electric field.
Lower average energy means less scattering and higher mobility and higher
velocity. When the electrons do come to an equilibrium, electron velocity sat-
urates. Saturation velocity is a balance between energy gained from electric
field, and lost to optical phonons.

Fig. 5.7 on page 96 shows the electron concentration at the three applied
biases. Electron concentration is lower in regions of high velocity, this is be-
cause the current, which is J = nv, has to be conserved. In fact the current
as function of position, which is plotted in Fig. 5.8 on page 97, is constant.
This is very satisfying as it validates the current-conserving nature of the
control-volume discretization.

Average electron energy is displayed in Fig. 5.9 on page 98. In the “source”
region the electrons are near equilibrium and have the average energy of a
Maxwellian, 3/2kgT}, which is equal to 0.0388e¢V at room temperature. As
the electrons enter the electric-field region they drift and gain energy. In the
“drain” region the average energy relaxes back to its equilibrium value.

The impact-ionization coefficient impact is the ratio of Generation due to
impact ionization Gimpact, and the current density J:

Gim act \ L
Qimpact (iL') £ ;Tt)()

(5.6)
Generation rate is calculated in Eq. (2.97) by integrating over the high-energy
tail: Gimpact(z) = [. h(e)(fI(€, %)/ Timpacs(€)) de. Impact-ionization coefficient
is a measure of impact ionization. For the three biases in the ntnn™ device, we
see the impact-ionization coefficient in Fig. 5.10 on page 98. Impact ionization
is higher for higher bias because the electrons are heated by the larger electric
field. If we compare the location of the maximum of Qimpact in Fig. 5.10 on
page 98 with the location of maximum average energy in Fig. 5.9 on page 98,
or the location of maximum electric field in Fig. 5.5 on page 95, we notice that
it occurs a little further to the right. This is indicative of the non-equilibrium
nature of electron transport—mneither electric field, nor average energy can ac-
curately model hot-electron effects like impact-ionization, instead the complete
distribution function is required. This phenomenon of delay in impact ioniza-
tion is also referred to as dead-space effect [94], or also as the dark-space effect
[69].

5.5.3 Drift-Diffusion versus Boltzmann Equation

We have solved the Boltzmann equation self-consistently with the Poisson and
the hole-continuity equations. In Fig. 5.11 on page 99 we compare the solution
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by the self-consistent Boltzmann equation to the solution of drift-diffusion (DD)
equations. Near x = (0.15um the electron concentration by Boltzmann equation
shows a small dip, this is because of the velocity overshoot. Drift-diffusion
equations do not show a dip because of the absence of velocity overshoot.
Fig. 5.12 on page 99 compares the electric field obtained by the solution of
the self-consistent Boltzmann system with that from a drift-diffusion solution.
The differences in electric field are originating directly from the difference in
electron concentrations shown in Fig. 5.11 on page 99.

5.5.4 Distribution Function at 5V

Fig. 5.13 on page 100 shows the multi-band distribution function computed
by the spherical-harmonic technique. The distribution function at the ohmic
contacts is forced by Dirichlet boundary-condition to be Maxwellian (ox
exp(—e/kpTy)) at lattice temperature. As the electron travel from the “source”
region they gain energy from the electric field and the distribution function
slowly departs from the Maxwellian shape and heats-up. These energetic hot
electrons scatter, inter-band scattering, to the upper bands of silicon, as seen
by the distribution in band (34). The population of upper bands increases by
many orders of magnitude. In the “drain” region electric field is small so the
electrons tend to relax back to the Maxwellian shape, until at the ohmic contact
at x = 0.6um they are forced to be Maxwellian by the Dirichlet boundary-
condition. In fact, in the n™ “drain” region one can see two slopes of the
distribution, indicative of two populations of electrons coexisting: one which
is Maxwellian at room temperature; and the other due to the injection of hot-
electrons from the “channel” region [110].

5.6 Thermal Equilibrium

The case of thermal equilibrium in a device is very interesting. There are three
motivating factors for the study of the thermal equilibrium. Firstly, this is
the only non-trivial case for which the analytical solution of the Boltzmann-
Poisson system is available. Hence, it can serve as good check for the model,
numerical technique and the computer code. Secondly, since the resulting
distribution function is exponential (Maxwellian), this case also represents the
worst, case scenario for the numerical technique because the solution exhibits
boundary-layer phenomena (it is concentrated near zero energy). Thirdly, the
solution at thermal equilibrium is interesting in its own right: At thermal
equilibrium there can be large electric fields in the device, but there is no
current flow (electrons have zero velocity). This can be interpreted as velocity
undershoot or velocity damping: Electron velocity much smaller than what is
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to be expected from the local electric field.

It is shown in Appendix B on page 177 that at thermal equilibrium the
distribution function in a device is Maxwellian, and the potential distribution
is given by the thermal-equilibrium non-linear Poisson equation. Our device-
simulation computer program was tested for the thermal-equilibrium test case

by applying a zero bias to the n*nn™* device. The distribution, as shown in
Fig. 5.14 on page 101, is Maxwellian for both the bands; even though there are
large electric fields, as seen in Fig. 5.15 on page 102.

5.7 Convergence of Numerical Solution

In this section the convergence behavior of the numerical solution is examined;
both for the self-consistent Boltzmann-Poisson system, as well as for the non-
self consistent situation.

Fig. 5.16 on page 103 plots the error criteria for all the equations against
the outer Gummel loop. The n™nn™ device was biased at 5V. The successive
over-relaxation (SOR) factor, w, was set to 1.4, which was the optimal value as
determined by numerical experimentation. The decrease is erratic in the first
80 Gummel loops; after that it decreases smoothly. The erratic behavior can
be explained as follows. During the initial Gummel loops the electric potential
¢(z) changes more. The change in ¢(x) causes the domain of the Boltzmann
equations to change, causing some grid points to move out, and some grid
points to move in. This is a severe change for the numerical scheme and the
Boltzmann equations react with large change in electron concentration. When
the change in ¢(x) is less, and no grid points are moving-in or moving-out,
then the error for the entire system is decreases smoothly. This dependence
of the domain on the solution of the Poisson equation has adverse effects in a
self-consistent solution. This is an area of potential improvement in the future.

Next we examine the performance of various matrix solvers used for the
solution of the discretized Boltzmann equation. From the discussion in Sec-
tion 5.2 on page 82 four successive over-relaxation (SOR)-type matrix solvers
were tested:

1. Line-SOR alternating in space and Hamiltonian (Line-SOR in z & H)
2. Line-SOR in space only (Line-SOR in only z)
3. Line-SOR in Hamiltonian only (Line-SOR in only H)
4. Point-by-point SOR, (Point-SOR)
To isolate the convergence of the matrix solver from the rest of the solution,
Boltzmann equation in band (12) was solved in a non-self-consistent manner—

the potential distribution, which came from the drift-diffusion solution, re-
mained unchanged. The SOR factor w was set to a convenient value of 1.2.
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Since the potential remained unchanged we can now use a different measure of
error, relative change in C?)(z, H):

m m—1
Ci(,k) - Ci(k )

maximum V %, k

From the Fig. 5.17 on page 104, which plots the convergence behavior of the
four solvers, following observations can be made. The convergence of point-
SOR technique is painfully slow. This is not surprising; the point-SOR method
transmits the boundary-condition information at a rate of one grid interval per
iteration [113]. The line-SOR technique would be better as we could bring
boundary-condition information to the interior at a faster rate. Two line-
SOR possibilities are (a) line-SOR in only H, and (b) and line-SOR in only
x are, therefore, faster converging than point SOR, as seen in the figure. We
also see that line-SOR in z is more efficient than line-SOR in H. This is easily
understandable from the structure of the Boltzmann equation: The Boltzmann
equation has coupling in H direction by the optical phonon, equation at H is
coupled to equations at H =+ fiwepy. If the grid spacing in H is AH = fiwep /1,
then the Boltzmann equation at H naturally couples to, and hence transmits
information to, grid points H £nAH. Since this optical phonon coupling in H
transmits information in H direction efficiently, line-SOR in H is not as badly
needed as line-SOR in z. Of course, if we still use both, line-SOR in z & H,
we get much better convergence rate, as seen in the figure.

5.8 Numerical Noise and Inelastic Acoustic
Phonons

5.8.1 Summary of the Idea

In the initial stages of development of the numerics and code for the solution
of the Boltzmann equation the computed distribution function often had nu-
merical noise. Numerical noise—wiggles or oscillations in the solution—is an
artifact of the numerical solution, and it points to a weakness of the numerical
technique. Careful investigation of the numerical technique revealed this to
be due to the absence of coupling to neighboring points in Hamiltonian. In
fact, the spherical-harmonic Boltzmann equation intrinsically does not have
a derivative in Hamiltonian—this can seen in Eq. (2.24); or in Eq. (2.100)
or Eq. (4.26) without the inelastic-acoustic-phonon term. The prognosis of
noise also suggested its cure: Introduction of coupling in the Hamiltonian di-
rection. Coupling was introduced by changing the acoustic phonons from the
commonly-used elastic approximation to an inelastic approximation. This hy-
pothesis is corroborated by examining the distribution with elastic acoustic
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phonons (Fig. 5.18 on page 105) against the one obtained with the inelastic
acoustic phonons (Fig. 5.19 on page 106). Next sub-section explains this idea
in more detail.

5.8.2 Detailed Explanation

The elastic approximation for acoustic phonons is quite common, and perhaps
also justified—the energy of electrons changes very little by acoustic phonon
scattering [62,74]. Most spherical-harmonic work, therefore, has also embraced
this approximation [17,21,31,35-37,39,41,43]. Elastic approximation makes the
acoustic collision term in spherical-harmonic-expanded Boltzmann equation
zero, which makes the equation simpler to solve and discretize—no derivative
in Hamiltonian to worry about. This, therefore, was also my starting approach,
but the computed distribution function was turned out to be noisy, as shown
in Fig. 5.18 on page 105.

The distribution function in Fig. 5.18 on page 105 is clearly not correct. To
debug the problem, we can look at the line plot of the distribution function at
a convenient location in the device. The oscillations are clearly visible. The
interesting observation is that these oscillations are regular; they occur every
fourth grid point. Since the grid spacing in H was chosen to be such that
AH = fwp /4, this meant that the noise was somehow related to the optical-
phonon energy. If in Fig. 5.9 (b) we connect every fourth point we will get a
very smooth distribution function !

The cause of numerical oscillations can, therefore, be explained as follows:
The Boltzmann equation with elastic acoustic phonons does not have a deriva-
tive in H. The discretized Boltzmann equation at H is only coupled to another
Boltzmann equation at H £ n AH = H =+ hwept, where n = hwep /AH. This
implies that the discretized Boltzmann equations can be divided into n inde-
pendent system of equations. The distribution at H =A H has no direct impact
at distribution at H. This is neither numerically very promising, nor physically
very sound.

Numerically, we want the the solution at neighboring points to be be cou-
pled. If we have proper coupling then it follows that an increase in the value
of C(H + AH) should, with other conditions remaining same, lead to an in-
crease in C'(H). But in our case this would not necessarily happen, because
the two grid points are not coupled. In the limiting case of AH — 0 it leads
to absurd conclusion: If we let AH — 0, then the we should be able to recover
C(H £ AH) — C(H); but with elastic acoustic phonons we cannot prove this
in our discretized equations.

Physically too, it is not very sound. If the distribution is much larger at
H+ dH than at H, then there has to be some scattering mechanism to exchange
infinitesimal amount of energy to bring the distribution to equilibrium. Optical
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phonons cannot be such a mechanism as they possess a finite energy, fwopt;
but acoustic phonons in the inelastic approrimation are a viable mechanism to
exchange infinitesimal amount of energy between the electrons and the lattice.

Inelastic acoustic phonons have been used in early spherical-harmonic Boltz-
mann work [20,32,33,47,48]. In this dissertation, the inelastic acoustic phonons
were derived in a new self-adjoint form (refer to Eq. (4.20)), whose discretiza-
tion couples the neighboring points in H (refer to Eq. (4.43) & Fig. 4.2 on
page 65). The self-adjoint form leads to stable discretization, which provides
the much-needed coupling.

The above hypothesis is corroborated by incorporating acoustic phonons in
inelastic approximation in our simulation. The resulting distribution function,
as shown in Fig. 5.19 on page 106, is now noise-free.

5.9 Chapter Summary

In this chapter the matrix solver for the Boltzmann equation was introduced.
The four coupled equations were solved self-consistently by a Gummel-type
decoupled scheme. A n*tnn™ device was simulated by the simulator. The
simulator was also tested on a the thermal-equilibrium test case, as well its
convergence characteristics were analyzed. Numerical noise in the distribution
function was analyzed and it was shown that it could be eliminated by inelastic
acoustic phonons.
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from the electric field and heat-up. Heated electrons scatter to bands (34) and its

population increases drastically.
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Figure 5.19: Distribution function obtained by considering acoustic phonons in
inelastic approximation. The distribution function, when compared to the one with
elastic approximation, is free of noise. The ntnn* device is at 5V bias. The grid
spacing in Hamiltonian is related to the optical-phonon energy by AH = hwgpt /4.



CHAPTER 6

SIMULATION OF BIPOLAR
JUNCTION TRANSISTOR

6.1 Chapter Introduction

The numerical discretizations introduced in Chapter 4 on page 53 were applied
to the simulation of a n*nn™ device in Chapter 5 on page 81, where the two
multi-band Boltzmann equations were solved self-consistently with the Poisson
and hole-continuity equations by a decoupled Gummel-type method. ntnn™
is a test device, often used to validating modern device simulators [109]. In
this chapter we apply the same numerical techniques to simulate a npn bipolar
junction transistor (BJT).

Choice of BJT is not accidental, there are five main reasons governing this
choice. Firstly, BJT, after MOSFET, is one of the most common device in
silicon technology. Secondly, it is essentially a one-dimensional device, making
it a good candidate for our one-dimensional simulator. Thirdly, transport in a
BJT, as opposed to a MOSFET and n*nn* device, is essentially bipolar (two-
carrier) in nature: transport is governed by both holes and electrons. Simulat-
ing hole-transport, by the hole-continuity equation, is no longer an ornamental
addition—it is a necessity. Fourthly, BJT is an interesting device to simulate
in its own right; there is a richness of physical detail to study. It contains an
important devices like p-n junction diodes as a sub-element. And lastly, from
the numerical standpoint, BJT device is a challenging device to simulate for
the following reasons: very severe coupling among the equations, leading to
complex convergence problems; there are very large changes in electron and
hole densities over short distances; large electric-fields with rapid variations
(large gradient); tendency of the electron-hole plasma to form in large part of
the device (p. 259 [63]).

Bipolar transistors have been simulated by drift-diffusion and hydrody-
namic or energy transport for a long time [62,72,86]. Simulation by solving

107
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the Boltzmann transport equation using Monte Carlo [62, 87-90, 92-94] or
scattering-matrix approach [91] is relatively new. Spherical-harmonic tech-
nique has been applied to simulate one-dimensional BJT’s [34,36,37,44]. Self-
consistent simulations, with one conduction band, were performed in [34];
whereas, lower two bands from [57] were used in [36,37] in a non-self-consistent
solution. In this chapter all the bands of the bands are incorporated in a self-
consistent simulation of a one-dimensional BJT .

This chapter is organized as follows: Section 6.2 provides a brief introduc-
tion to the bipolar transistor. Simulations details specific to BJT’s, like base
boundary conditions, are discussed in Section 6.3 on the facing page. Results
from the simulation of BJT’s are presented in Section 6.4 on the next page.

6.2 Introduction to Bipolar Junction Transistor

Bipolar junction transistor (BJT) was the first useful three-terminal semicon-
ductor device invented [78]. It is a very prominent device used in variety of
high-speed high-power circuits. Its preeminence, in recent years, has been
somewhat overshadowed by metal-oxide-semiconductor field-effect transistor
(MOSFET). BJT has many advantages over MOSFET technology: higher
speed, higher current-drive capability, higher transconductance. But it also has
many disadvantages: low input impedance, higher power-dissipation, complex
processing, and higher area [78]. Nevertheless, bipolar technology continues
to make progress: most notably the hetero-junction BJT technology (HBT);

the marriage of bipolar with complimentary MOSFET technology (BiCMOS);
and the poly-silicon emitter BJT technology [78]. These developments, and
high-speed circuit needs, continue to ensure the longevity of bipolar junction
transistors.

Bipolar transistor is essentially a one-dimensional device—two-dimensional
effects, like current crowding, are usually parasitic in nature—therefore a one-
dimensional simulation is adequate. To achieve high gains and faster speeds the
base width of the BJT is kept small (< 100nm). This results in large electric-
field and high impact-ionization in the base-collector region. Electrons in such
situation routinely gain high energies; therefore, a multi-band band-structure is
required. Monte Carlo simulation of BJT’s can incorporate high-energy bands,
but are computationally too expensive because of the presence of retarding
potential barrier (emitter-base junction) in the BJT [44,63,64,67,89]. The
retarding potential, however, poses little problem for the spherical-harmonic
approach.
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6.3 Simulation of the Bipolar Junction Transistor

The one-dimensional simulator of Chapter 5, which was used for simulating a
n*tnn™ device, is applied to a BJT. Multi-band band-structure with the trans-
port parameters suitable for bipolar devices was employed (refer to Section 3.2
on page 44 & Section 3.4 on page 48). The Gummel’s decoupled method, as
shown in the flow chart of Fig. 5.2 on page 86, was used.

Bipolar transistor requires special care for the solution to converge. Firstly,
a dense grid in space is required to account for rapid variations in electric field,
and carrier density. In addition, it is often necessary for the drift-diffusion to
slowly ramp into the desired bias.

Emitter and collector contacts have the normal Dirichlet ohmic boundary-
conditions: Eq. (2.102) for the Boltzmann equation; Eq. (D.7) for the Poisson
equation; and Eq. (E.7) for the hole-continuity equation. The base-contact
boundary-condition, on the other hand, requires a slightly different treatment.

6.3.1 Base Boundary Condition

For a two-dimensional BJT boundary-value problem, the base contact is a
simple ohmic contact, which would be treated in normal fashion. But in a
one-dimensional formulation the base-contact requires special treatment. To
apply the base boundary-condition we select one grid point in the quasi-neutral
base and consider it be the base contact. This point could either be the center
of the quasi-neutral base, or it could be the point of maximum doping [86,
99]. At this point we apply the normal ohmic boundary-condition for the
Poisson equation (Eq. (D.7)) and hole-continuity equation (Eq. (E.7)). We do
not, however, apply the ohmic boundary condition to the electron Boltzmann
transport equation at this point—if we were to do so, the contact will “suck”
all the current. The base contact, as mentioned by [81] on pp. 355-356, is not
a normal ohmic contact; it is “biased” towards one carrier.

6.4 Simulation Results

6.4.1 Device Structure & Doping

The structure of an integrated-circuit two-dimensional BJT is shown in Fig. 6.1
on page 117. Since BJT is essentially a one-dimensional device—two-dimen-
sional effects, like current crowding, are only parasitic in nature—it can be
designed and optimized by a one-dimensional simulation. This one-dimensional
simulation is on the active region of the device. The active region, as shown
in Fig. 6.1, is in the vertical dimensional; it starts from the base, goes through
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the emitter ending in the collector. This is the path that current takes; doping
in this direction critically determines device performance.

Two BJT structures have been simulated in this work: n-type and p-type
collector design. The piece-wise linear doping profiles for the two BJT is
shown in Fig. 6.2 on page 117. This doping profile was used in Monte Carlo

[87] as well as spherical-harmonic BJT simulations [36,37].

The n-type BJT is the conventional collector design; maximum electric
field occurs near the base. The p-type represent the other extreme; maximum
electric field is located near the nt collector [87]. The lightly doped region of
the collector, for both designs, is depleted; base width is 0.05um.

6.4.2 Grid & Simulation Time

Grid is uniform in space and energy. There are about 200 points in space; 440
points in energy, out of which 349 were in band (12), and 91 were in band (34).
Grid spacing in Hamiltonian is AH = fuwept /6. Thus, there for totally around
88,000 points for both the Boltzmann equations. The simulations were run
on a 200-MHz Pentium Pro personal computer (PC) with 64 MB of RAM
(Random-Access Memory) running a Linux RedHat 4.0 operating system using
the simulator described for the ntnn™ device in Section 5.4 on page 85. The
complete self-consistent solution, as shown in the flow chart of Fig. 5.2 on
page 86, is obtained in around 20-30 minutes within 100 Gummel iterations.

Same bias was used in almost all the BJT simulations: Base-emitter voltage,
VBE, set to 0.95V; and collector-emitter voltage, Vg, set to 3.95V. This bias
was selected so the resulting current density was approximately 10°A/cm?,
which meant that the electron density in the lightly-doped collector is of the
same order as the doping concentration. This ensures nearly low-level injection
conditions, while still keeping the biases high.

6.4.3 Electric Potential & Field

The self-consistent potential, ¢(x), and electric field, E(z) are shown in Fig. 6.3
on page 118 for the two designs. The conventional n-type BJT has the maxi-
mum electric field at the base-collector junction (z ~ 0.1um). For the p-type
BJT the electric field is inverted, the maximum occurs at the collector-sub-
collector junction (z ~ 0.2um) [36,37,87]

6.4.4 Distribution Function

This multi-band energy distribution function is shown in Fig. 6.4 on page 119
for the n-type design, and Fig. 6.5 on page 120 for the p-type design. A brief
explanation follows.
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Electric motion in the BJT’s is from left-to-right. In the emitter and neu-
tral base, electric field is close to zero, therefore the distribution function is
Maxwellian (o< exp(—e/kpTy)). Since the electron density is lower in the
base, the distribution is lower too. Near the base-collector space charge region
there is large electric field: electron accelerate and gain energy from the elec-
tric field. This is seen in the shape of the distribution function, it is loosing its
Maxwellian shape as electrons are accelerating to higher energy. Electrons from
band (12) scatter to band (34) by inter-band optical scattering; the population
of the band (34), therefore, increases by many orders of magnitude. These hot
electrons are important, and one needs accurate multi-band band-structure
to model them. These hot electrons contribute to impact ionization, which
in turn determines the breakdown voltage of the BJT; this is an important
hot-electron effect in BJT’s. The sub-collector region is field-free; the elec-
trons, then, loose energy to the phonons, and the distribution tends to relax
to a Maxwellian. Electrons scatter from the upper bands back to the lower
bands, distribution in bands (34) decreases. At the collector ohmic contact,
a Dirichlet Maxwellian boundary-condition has been enforced; this causes a
slight discontinuity in the distribution near the contact as the distribution has
not had enough time to fully relax to a Maxwellian. We can also notice that
in the sub-collector region, based on the slope of the distribution functions,
there seem to be two populations in existence: one is the background sea of
cold electrons, and the other is the injected hot electrons [110].

The distribution function provides complete information about the device.
The average quantities, calculated from the distribution, will now be discussed.

6.4.5 Electron Velocity & Concentration

Electron velocity and concentration are plotted in Fig. 6.6 on page 121. Elec-
tron density is high in the field-free emitter region, therefore the electron ve-
locity is negligible. In the quasi-neutral base there is no electric field, but there
is a gradient of electron density, which results in a small velocity.

Electrons at the base-collector junction experience a sudden increase in
electric-field. This large gradient of electric-field causes wvelocity overshoot in
electrons, as explained on page 88 in Section 5.5.

There is slight, but perceptible, difference in the n-type and velocity over-
shoot: it is higher for the n-type design. This is a satisfying result because
electric field, as shown in Fig. 6.3, at the base-collector junction is higher for
the n-type design. In addition, since the electric field in p-type BJT increases
with depth, electrons maintain their saturated velocity in p-type design for a
more depth than n-type design.
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6.4.6 Current Density

The discretization by control-volume approach was undertaken with the in-
tention of retaining the current-conserving nature of spherical-harmonic the
Boltzmann equation. This is validated in Fig. 6.7 on page 122, where we see
that current density is constant.

6.4.7 Hole Concentration

As part of the self-consistent solution we solved the hole-continuity equation.
Hole transport is very important in a bipolar device, it forms the majority
carrier in the base as well as contributes to device operation. Hole concentration
is plotted in Fig. 6.8 on page 122. We see that in the neutral base, where holes
are the majority carrier, hole concentration is the highest. A sharp decrease in
hole concentration is seen near the emitter and collector ohmic contact, this is
because of the Dirichlet boundary-condition on hole concentration.

6.4.8 Average Energy

Average electron energy in the n-type and p-type BJT’s is plotted in Fig. 6.9
on page 123. The p-type BJT has a larger average energy, this is due to an
electric-field profile which is slowly varying and has a large magnitude, thus
allowing the electrons to heat up. Also, the average-energy profile in the p-
type collector follows the electric field profile closely, this is because of smaller
gradient of of the electric field. In fact it actually peaks 0.012um before the
electric field, this is due to the diffusion of cold electrons from the heavily-doped
sub-collector. For the n-type design, average energy peaks 0.057um after the
electric field maximum. This delay is known as the dead-space effect [94],
or sometimes as the dark-space effect [69]. This non-local behavior was also
observed in Monte Carlo simulation of the two BJT’s [87].

6.4.9 Impact lonization

Fig. 6.10(a) on page 124 plots the impact-ionization coefficient, qimpact for the
n-type and p-type BJT. The two profiles are very different. Owing to the larger
average energy achieved, the impact-ionization coefficient of p-type design is
much larger than n-type design. Due to non-local, or non-equilibrium, nature
of transport the impact ionization peak does not necessarily coincide with the
peak of either the electric field or average energy [87,94]. The delay of impact
ionization is also known as the dead-space effect [94], or as the dark-space
effect [69].

In both designs the impact-ionization coefficient peak does not coincide with
the respective average-energy peak: For the p-type BJT it occurs 0.014um
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deeper; and for the n-type BJT it occurs 0.015um deeper. This difference
can be attributed to the fact that average energy is not necessarily a perfect
representation of the hot-electron effects like impact ionization. Average energy
is an averaging of the distribution over all energies, while impact ionization
depends only on the high-energy tail. A sea of cold electrons, like the heavily-
doped sub-collector, can result in lower average energies [87].

Using electric field as a measure of impact ionization is even more inac-
curate. For the n-type collector design, maximum impact ionization occurs
0.072pm after the maximum electric field. The mismatch is not so severe for
the p-type design; the two maxima are virtually coincident. The two BJT be-
have differently because of the n-type design has larger gradient of the electric
field at the base-collector junction. An impact ionization model based on the
local electric field would tend to be erroneous in such situations. Fig. 6.10(b) on
page 124 shows the impact-ionization coefficient computed from the local elec-
tric field in a Chynoweth model [72]. The n-type impact-ionization coefficient
actually peaks at the wrong side of the depletion region!

6.4.10 Effect of Including Impact lonization

Fig. 6.11 on page 125 shows the effect of including impact ionization in the
simulator. Total distribution function is plotted at two locations in the n-type
BJT at two locations. The total distribution function is the weighted sum of
distribution in band (12) and band (34), where weighing is done by density of
states in the two bands.

Fig. 6.11(a) plots the total distribution at a point in the high-electric-field
collector region. At this point electrons are very hot, and impact ionization
is high. There is a loss of electrons form the high-energy tail due to impact
ionization.

Fig. 6.11(b) plots the distribution at a point in the field-free sub-collector
region. Presence of impact ionization drives the distribution towards equilib-
rium (Maxwellian) faster.

6.4.11 Effect of Including lonized Impurity

Ionized impurity scattering is more pronounced for low-energy carriers (refer
to Fig. 3.4 on page 51 and [62]). It affects, therefore, low-energy transport
properties. Velocity overshoot is a low-energy phenomena: when low-energy
electrons suddenly experience a high gradient of electric field, they overshoot
their saturation velocity [107]. The low-energy velocity is higher because the
low-energy scattering is lower (or low-energy mobility is higher) [107]. (Refer
also to page 88 in Section 5.5.2).
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Scattering rate at low-energies is increased by including ionized impurity
scattering. Fig. 6.12 on page 126 plots the average electron velocity in the
n-type BJT with and without the impurity scattering. When we include this
scattering, three things are obvious: (a) Velocity overshoot is less pronounced;
(b) velocity in neutral base, which is due to low-energy near-Maxwellian elec-
trons, is much lower; and (c) saturation velocity, which is a high-energy balance
of electric field with optical phonons, is not affected.

6.4.12 Comparison with Drift-Diffusion

Fig. 6.13 on page 126 compares the Boltzmann-equation solution with the drift-
equation (DD) solution. The electron density from the two models differs in
the collector region, this is possibly because drift-diffusion neglects the thermal
component in the electron current. In addition, near the base-collector junction
(~ 0.1um) electron density is lower in the Boltzmann model; this is dip occurs
due to velocity overshoot in Boltzmann model, which is absent in the drift-
diffusion model.

6.4.13 Ballistic Transport

Ballistic transport occurs in small semiconductor devices where electrons may
travel short distances without scattering [108]. An electron traveling ballisti-
cally for a distance Az in an electric field E gains kinetic energy Ae which,
from the usual Newton’s laws, is given by

Ae =—qE Az =qA¢ (6.1)

where A¢ is the change of potential over this distance. If all electrons undergo
ballistic transport, then the distribution just shift in energy; therefore, the
distribution at xq + Az is

(o + Az, e + Ae) = fJ (20 + Az, e + g AP) = f2 (20, €) (6.2)

This signature of ballistic transport—distribution displaced in energy—is
present in the high-field base-collector space-charge region of the BJT, as shown
in Fig. 6.14 on page 127. The figure plots the total distribution at three loca-
tions: = 0.11, 0.12, and 0.13um; where the potential is ¢(x) = 0.95, 1.38, and
1.73V respectively. The distribution shows two distinct slopes: a tail region
in equilibrium with the lattice (x exp(—e/kpTL)); a low-energy region at a
very high effective temperature (almost flat in energy). In addition, there is a
distinct breakpoint between the two regions. This breakpoint gives a marker
to measure the shift of the distribution in energy. We see that the distribution
are shifted in energy by an amount Ae = ¢ A¢ from one another, which proves
the existence of ballistic transport.
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We examine ballistic transport further. Since the Hamiltonian H = ¢ —
q ¢ the change in Hamiltonian, from Eq. (6.1), during ballistic transport is
AH = Ae — ¢A¢ = 0; which implies that a electron in ballistic transport
conserves its Hamiltonian. This aspect of ballistic transport is illustrated in
Fig. 6.15 on page 128. Plotted in this figure are the contours of electron
population f@(x,)g(g), which is proportional to distribution times the density
of states. The Hamiltonian H is the y-axis. Bending of the conduction band
in the base-collector space-charge region indicates a region of high electric field
region. Electrons entering the region between the two arrows (region labeled
“ballistic transport” ) experience a sudden electric field. For a short distance the
electrons that enter this region are accelerated by the field ballistically; without
scattering. 'This ballistic transport is revealed by the contours of electron
density (between the arrows) are flat in H even though the conduction band
is bent; AH = 0 for the electrons. This ballistic transport ends, and electrons
scatter and loose energy; this is indicated by the contours bending downward
beyond the arrows.

6.4.14 Graded Doping in Base

In a uniformly-doped base there are no electric fields, so electrons motion in
neutral base is diffusion dominated. A non-uniformly doping produces a built-
in electric field in the base, which helps accelerate electrons [80]. Fig. 6.16 on
page 129 illustrates the effect of base doping profiles. Fig. 6.16(a) shows the
three doping profiles with varying gradient in the base. Doping gradient causes
a built-in electric field (o< (dp/dx)/p = dlnp/dzx), which accelerates electrons.
Fig. 6.16(b) plots the corresponding average velocities. Velocity for electrons
in the neutral base is higher for larger doping gradient. This improves cut-off
frequency since the base-transit time is reduced.

It can also be seen in Fig. 6.16 velocity overshoot is less pronounced if the
electric field is less sudden (less gradient of electric field).

6.4.15 Thermal Equilibrium

Thermal equilibrium, as discussed in Section 5.6 on page 89, is a very important
test case. It is proved in Appendix B on page 177 that at thermal equilibrium
the distribution function in a device is Maxwellian. Fig. 6.17 on page 130 plots
the distribution function for both the bands of our band-structure. We can
see that the distribution function in both bands is a straight line on the log
scale: It is Maxwellian at lattice temperature (it is o< exp(—e/kpTL)).

The Maxwellian nature of the of the distribution is further proved by the
plot of the average energy in the device in Fig. 6.18(a) on page 131. The
average energy of a Maxwellian distribution is 3/2 kgT}, (p. 106 of [74]); which
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at room temperature of 300K is approximately 0.0388eV. In Fig. 6.18(a) the
average energy is virtually constant at this thermal-equilibrium value, thus
further proving that the distribution function is Maxwellian.

It is interesting to note that equilibrium conditions hold despite the presence
of large electric fields in the device. Fig. 6.18(b) shows the built-in electric
fields at zero bias conditions. There is large electric field at the emitter-base
junction (> 800kV/cm), and base-collector junction. These fields cause no
current in the device: drift and diffusion currents cancel out exactly. Electron
velocity, not plotted, was found to be virtually zero throughout the device.
This, as pointed out in Section 5.6 on page 89, can be interpreted as velocity
undershoot or wvelocity damping: electron velocity is much smaller than what
is to be expected from the local electric field.

6.5 Chapter Summary

Numerical techniques developed in the previous chapter were applied to simu-
late a one-dimensional short-base bipolar junction transistor (BJT). Simulation
were performed by a self-consistent solution of four equations: Two Boltzmann
equations for all bands of the multi-band band-structure; Poisson equation;
and hole-continuity equation. Two BJT structures were analyzed. Numerous
physical phenomena—Iike ballistic transport, velocity overshoot, non-local non-
equilibrium transport, impact ionization, ionized impurity, graded doping—
were analyzed. The thermal equilibrium test was studied for the BJT.
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Figure 6.1: Two-dimensional structure of a planar n-p-n integrated-circuit bipolar
junction transistor. For the sake of clarity, the vertical dimension is much more
magpnified than the horizontal dimension. Emitter (“E"), base (“B"), and collector
(“C") contact are shown. Active region of the device is shown shaded. the p-type
dopings on the sides are for junction isolation. The n*t buried layer reduces the
series resistance. After [80].
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Figure 6.2: The doping profiles for the n-type and p-type BJT's. The various parts
of the bipolar transistor have been marked: emitter (“E"), base (“B"), collector
(“C"), and sub-collector ( “sub-C"). The collector is doped differently for the n-type
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p-type BJT's. Bias is Vgg = 0.95V, and Vg = 3.95V. This gives a Vo =3.0V.
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Figure 6.7: Electron current density in the n-type and p-type BJT's. The con-
stant current demonstrates the current-conserving property of the control-volume
discretization. Bias for both BJT's is Vg = 0.95V, and Vo = 3.95V
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consistently with the Boltzmann and Poisson equations. Bias is Vg = 0.95V, and
Ver = 3.95V.



FIGURES

123

BJT Vbe=0.95V, Vce =395V

1 T
E B c sub-C

0.8 7 o \
— - ! -type ——
?3, j p-type --——--
P 0.6 ‘
E /
c
w ¥
) J 1'
2 0.4 o ‘
o / .
> :
X :

0.2 : \¥

0
0 0.05 0.1 0.15 0.2 0.25

Depth, x (um)

0.3

Figure 6.9: Average electron energy profile in the n-type and p-type BJT's. Bias

is VBE = 095V, and VC’E‘ = 3.95V.



124 6. SIMULATION OF BIPOLAR JUNCTION TRANSISTOR

BJT Vbe =0.95V, Vce=3.95V

30000 ;
E B c . sub-C
25000
n-type —
;IT p-type -----
£ 20000 ,
S ]
= j
'_
@ 15000
3
[e]
(@)
< 10000
S
5000 ¥ \\i\\
0 - —
0 0.05 0.1 0.15 0.2 0.25 0.3

Depth, x (um)
(a) Computed by using the distribution function after solving the BTE

BJT Vbe =0.95V, Vce =3.95V

70000 ;
E B c sub-C
60000
type —
p-type -
o 50000
£
8 / I
2 40000 |
T 30000 - i
(@) o ';
o //,\i
2 20000 g :
10000 i
0 | s
0 0.05 0.1 0.15 0.2 0.25 0.3

Depth, x (um)
(b) Computed from a field-dependent model in drift-diffusion

Figure 6.10: Profile of impact ionization coefficients, cimpact, in the n-type and
p-type BJT's computed by two methods: (a) solution of the Boltzmann transport
equation by spherical harmonics; and (b) field-dependent ionization coefficient,
using the Chynoweth formula. Bias is Vg = 0.95V, and Vg = 3.95V.



FIGURES 125

Collector, n-type BJT Vbe =0.95V, Vce =3.95V

0
with impact ionization —
5 without impact ionization -----
T X = 0.16um
-10
g
= -15
<
5
< 20 (a) In the collec-
3 ’ tor
5 -25
s}
-30
-35
-40
0 0.5 1 15 2 25 3 35
Energy (eV)
Sub Collector, n-type BJT Vbe =0.95V, Vce =3.95V
0
with impact ionization —
5 without impact ionization -----
T X =0.27um
-10
g
= -15
5 20 i (b) In the sub-
3 collector
5 -25
s}
-30
-35
-40
0 0.5 1 15 2 25 3 35

Energy (eV)
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Figure 6.14: Ballistic transport in the n-type BJT. Distribution function is plotted
at three locations, x = 0.11, 0.12, and 0.13um; where the potential is ¢(z) = 0.95,
1.38, and 1.73V respectively. The distribution is a weighted sum of distribution in
bands (12) and (34); weighted by density of states. Distributions are shifted from
each other in energy by an amount Ae = g A¢, indicating the presence of ballistic
transport. Bias is Vg = 0.95V, and Vo = 3.95V.
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Figure 6.15: Ballistic transport in the base-collector space charge region of BJT.
Contour plot of the electron density (fJ(x,€)g(g)) in Hamiltonian, H, and space, ,
for band (12) in n-type BJT. Units of the quantity being plotted has been purposely
left unspecified; the only thing that is is important is that it is proportional to actual
distribution of electrons in energy and space. Lower bound of contours is the edge
of conduction band, ¢ = 0; and the upper bound is top of band (12), ¢ = 5&}3)(.
Bias is Vg = 0.95V, and Vg = 3.95V.
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Figure 6.18: Average electron energy and electric field in the n-type BJT at
thermal equilibrium. The bias at thermal equilibrium is Vg = 0V, and Vg = 0V.
Strong electric fields are present but the the distribution is still at equilibrium. The

average energy is virtually constant at the room-temperature equilibrium value of
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CHAPTER (

SIMULATION OF MOSFET

7.1 Chapter Introduction

After developing the discretization for the spherical-harmonic Boltzmann equa-
tion in Chapter 4, and the Gummel’s decoupled method for self-consistency in
Chapter 5, we simulated n*nn™ device and bipolar junction transistor (BJT).
Now we turn our attention in this chapter to the most important semiconductor
device: Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET).

The MOSFET is, by any standard, the most ubiquitous and technologically-
significant semiconductor device in human history. It is used for practically all
digital circuits, from microprocessors to memories. In fact, MOSFET has be-
come the measure for semiconductor technology itself: gate length of MOSFET
in a technology, and the number of MOSFET’s on a chip are a metric of semi-
conductor processes.

Traditional drift-diffusion equations for simulating semiconductors tend to
loose validity for sub-micron (channel-length < 1um) and deep sub-micron
(channel-length < 1pum) MOSFET’s [9,10]. For modern MOSFET’s we need to
model electron transport by the more-accurate Boltzmann transport equation,
which can be solved either by the popular Monte Carlo method [52,53,62-65,
67,70,92], or the new spherical-harmonic approach [39,41-44,46,50,51]. Monte
Carlo method is accurate and powerful, but has numerous disadvantages: it is
computationally prohibitive; and has high statistical noise in the high-energy
tail of the distribution, especially in high-doping low-field regions. Spherical-
harmonic method, on the other hand, promises to be a good alternative; it is
computationally efficient, and does not suffers from any statistical noise.

The first simulation of MOSFET’s by spherical-harmonic approach in liter-
ature was by Gnudi, Ventura, and Baccarani in 1993 [39]. This was followed
by [41-44,46,50,51]. While simulations in [42-44, 51] were self-consistent,
those in [39,41,46,50] were not. All MOSFET simulations employed only the
lower two bands of the multi-band band-structure from Brunetti et al. [57].
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In this chapter we present the results of simulation for sub-micron MOS-
FET’s. In contrast to previous simulations, all four bands from the multi-band
band-structure [57] were used. Since a MOSFET is a two-dimensional device,
the discretization developed in Chapter 4 has been extended to two space di-
mensions. Multi-band Boltzmann equations were cast in the pre-Maxwellian
variables to enhance diagonal dominance and improve numerical properties.
To keep the problem simple the Poisson and hole-continuity equation were
dropped; the solution, therefore, is not self-consistent. While self-consistency
is desirable, this approximation should not introduce significant error. It may
be noted that now the Boltzmann equation has three dimensions—two in real
space, one in energy—the complexity of this problem is comparable to a three-
dimensional drift-diffusion simulation.

This chapter is organized as follows: Section 7.2 introduces the MOSFET
device. The extensions of the previous numerical techniques are discussed
in Section 7.3 on the facing page. In particular, this section introduces the
boundary conditions used for MOSFET’s, and the extension of the solver to
two space dimensions. It also discusses the decoupled solution technique and
grid generation. Section 7.4 on page 137 gives details of the MOSFET sim-
ulator. Results of the simulations are presented in Section 7.5 on page 138,
where, amongst other issues, we analyze ballistic transport, velocity overshoot,
thermal equilibrium, and effect of channel length in MOSFET’s.

7.2 Introduction to MOSFET'’s

MOSFET is the most important semiconductor device invented. It is used for
almost all digital, and many analog applications. MOSFET has gained a pre-
eminent status in mainstream semiconductor industry and other semiconductor
devices have been relegated to only highly-specialized applications.

The structure and principle of operation of a MOSFET is simple. Fig. 7.1
on page 146 shows a cross section through a MOSFET. First part of the name—
metal-oxide-semiconductor, or MOS—underscores the structure of the device,
we can see the gate terminal connected to the metal layer on top of the oxide,
which resides on the semiconductor substrate. Second part of the name—field-
effect transistor, or FET-—emphasizes the principle of operation. Electric field
generated by the voltage on the gate terminal results in transistor action. The
word transistor itself comes from the word “trans-resistor,” which refers to
resistance modulation between two terminal due to electrical signal at some
other terminal.

In addition we can see the source, drain, and substrate terminal. These
terminals are ohmic contact to the device. The two elliptical, n*-doped re-
gions are the source and drain region of the MOSFET, with a junction depth
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Of Yjunction- The oxide has thickness ¢, and it resides on the lightly doped sub-
strate. It overlaps the source and drain by an amount Zoyernap. Amongst many
measures of channel-lengths, two are shown in the figure: the metallurgical
channel-length, Ly ctaiiurgical; and the gate length, Lgaie.

7.3 Numerics for MOSFET Simulation

Simulation of MOSFET’s is different from the previous simulations of n*nn™
device and bipolar junction transistors (BJT). Although most numerical tech-
niques developed for those devices can be directly used for simulating MOS-
FET’s, some require modifications. This section concentrates on giving a brief
description of such modifications.

7.3.1 Boundary Conditions

Fig. 7.1 on page 146 shows the cross-section of a MOSFET. Boundary condi-
tions from Section 2.7 on page 35 are applied at the various interfaces of the
MOSFET.

Ohmic contacts to the semiconductor exist at the source (B-C), drain (D-E),
and the substrate (A-F). At these contact we apply the usual ohmic Dirichlet
boundary condition from Section 2.7.1.

Artificial boundaries (A-B & E-F) are introduced to isolate one MOSFET
from rest of the chip for the purpose of simulation. This aim is best served by
assuming zero current flux and applying the insulator boundary-conditions of
Section 2.7.2.

Silicon-dioxide is one of the best insulators known to man. Therefore the
semiconductor-oxide interface (C-D) is assumed to be insulating and we ap-
ply the insulator boundary-conditions of Section 2.7.2. It should be pointed
out that some high-energy electrons can surmount the silicon-dioxide potential
barrier and contribute to current across this interface. Such electrons are very
few, and we can therefore choose to ignore their effect in our simulations.

7.3.2 Two Space Dimensions

The n*tnn™ device and bipolar junction transistor were one-dimensional struc-
tures. Chapter 4 discussed the one-dimensional control-volume discretization
which was applied to their simulation. But a MOSFET is essentially a two-
dimensional device; in the channel region, for example, the electric field is
orthogonal to electron flow direction. The spherical-harmonic Boltzmann equa-
tion in two space dimensions, after transforming to the pre-Maxwellian vari-
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ables, is

0 oC 0 oC oC
| = — | k== — = .1
oz (K, ox ) * ay (K ay ) - 3g [ ot :|collisi0n ’ (7 )

The control-volume discretization of this two-dimensional equation is a simple
extension of the one-dimensional case and need not be discussed in detail.

7.3.3 Decoupled Solution Technique

The multi-band Boltzmann equations are solved as post-processor to the drift-
diffusion solution: Electric potential from the solution of Poisson equation
in drift-diffusion equations remains unchanged during the solution of the the
Boltzmann equations. If the electron densities from the drift-diffusion model
and the Boltzmann equation do not differ appreciably, we have incurred negli-
gible error by having the solution as a post-processing.

The new flow-chart for the solution of the multi-band Boltzmann equation
is shown in Fig. 7.2 on page 147. Solution of the drift-diffusion equations
provides the electric potential ¢(z,y) for the Boltzmann equations. Electron
density from drift-diffusion, n(z,y), is used to construct good initial guess for
the variable C(z,y, H); the distribution function is assumed to be Maxwellian
(C(z,y,H) = Cy(z,y)) with the pre-Maxwellian factor chosen to yield the
drift-diffusion electron density.

The two individual Boltzmann equations are solved by line successive over-
relaxation (SOR) in the space and Hamiltonian direction. Boltzmann equation
in one band is solved while keeping the other distribution from the other band
constant. This procedure is repeated till distributions in both bands con-
verges. The convergence criterion to stop iterations is the relative change of
the C(x;,y;, Hy) in every band:

o™ _ om-1)
max |2 (m)””’“ < 107" to 10°° (7.2)
vk Ciik

where m is the iteration count. In the initial stages of solution of one band the
distribution in the other band has not converged, therefore, we need not take
the solution to full convergence; we limit the maximum inner loops to around
thirty.

7.3.4 Grid Generation

The spherical-harmonic Boltzmann equation for MOSFET’s, Eq. (7.1), is three-
dimensional: two in real-space dimensions; and one in Hamiltonian (energy).
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Discretization of this equation, therefore, can be result in large number of grid
points. Large number of grid points result in more computation time, as well
as require more computer memory (RAM). Therefore, we need to be to very
frugal with grid points. We achieve this by making our grid nonuniform in
space; in Hamiltonian (energy), unfortunately, we are forced to keep a uniform
grid (refer to control-volume principle 4 on page 62). We allocate more grid
points in the channel region and near the channel-drain and source-channel
interface since the solution there varies rapidly; this can be seen in the grid
shown in Fig. 7.3 on page 148 This is automatically done by the simulator in
the following fashion.

First let us discuss the grid in the vertical, or y, direction. The MOSFET in
vertical direction is divided into three regions: channel region, source-diffusion
depth, and the remaining substrate. In each region the grid expands with
a constant factor as the grid is specified from the top (semiconductor-oxide
interface) towards the bottom (substrate contact):

ij—l =Te ij (73)

The constants 7. and the first Ay for each region are user-specified inputs to
the program.

In the lateral, or x, direction a similar procedure first divides the MOSFET
in four regions: source region; source-channel interface to the middle of the
device; middle of the device to the channel-drain interface; and the drain region.
In each region the user-specified r, and Az are used to expand or contract the
grid gradually:

Az =71, Az or Ax,_1 =1, Ax; (7.4)

This has proved to be an efficient method to generate a smooth grid. Of
course, some experimentation is required to give intelligent values for r., Ax,
and Ay for each region. Three points need emphasis. Firstly, for the grid in
vertical direction we need an extra-fine grid spacing close to the semiconductor-
oxide interface: in fact, for the for the simulation we used Ay = 4A which
expanded at the rate of r, = 1.15. Secondly, in the lateral direction the channel-
drain region, and the source-channel region to a lesser extent, need a higher
grid density. This is because the electric field and doping varies more rapidly in
this region. Thirdly, for simplicity the same grid is used for the drift-diffusion
as well as the Boltzmann equation, this eliminates the need to interpolate.

7.4 The Simulator

The simulation program for the MOSFET, comprising of about 2,500 lines of
uncommented FORTRAN 77 code, was run on a 200-MHz Pentium Pro per-
sonal computer (PC) with 64 MB of RAM (Random Access Memory) running
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a Linux RedHat 4.0 operating system using the gnu Fortran compiler. The
drift-diffusion portion is external to the simulator, and was borrowed from a
previous project [98]. Simulation time for the complete multi-band Boltzmann
equation for one bias point was typically 30—45 minutes.

7.5 Results

This section presents some results for the simulation of sub-micron MOSFET"s.
A sub-micron MOSFET of effective channel-length of 0.17um is analyzed in
detail at various biases and thermal equilibrium. Following that, MOSFET’s
of varying channel-lengths are discussed.

7.5.1 Device Structure & Doping

A representative test-MOSFET was constructed by culling typical physical val-
ues from published sub-micron structures. The structure is realistic yet simple;
the aim of this MOSFET is to serve as a test vehicle for the simulations, there-
fore, features like lightly-doped drain or channel implants have been ignored.
Table 7.1 on page 145 lists the numerical values of various parameters. Effec-
tive channel-length of the MOSFET—which can be defined in a many ways; we
define it as the metallurgical channel-length—is 0.17um, while the gate length
is 0.24pm.

Doping profile of the MOSFET is shown in Fig. 7.4 on page 149. In the
source and drain region doping is constant in an elliptical region and then
decays as a half-Gaussian, as exp(—(r — 79)?/20?). The background substrate
doping is constant. The gate is assumed to be heavily-doped n-type poly-silicon
whose Fermi level is at the conduction-band level (refer to p. 206 of [81]).

7.5.2 Grid & Simulation Time

The grid for the MOSFET was generated by using the grid-generation approach
described in Section 7.3.4 on page 136. This grid, as shown in Fig. 7.3 on
page 148, has 38 points in the x-direction and 36 points in the vertical direction.
Grid-spacing in energy is one-fifth of optical phonon energy jump: AH =
fuwopt /5. This resulted in a grid in energy that has 291 points in band (12), and
76 points in band (34). The total number of grid points are 38 x36x (291+476) =~
500,000. Solution of the multi-band Boltzmann equations on this grid usually
takes around 30-45 minutes for one bias point.



7.5. RESULTS 139

7.5.3 1-V Curves

From the usual MOSFET theory, the I-V characteristics in the strong-inversion
regime is [83]:

Ips = '%C%W ((VGS —Vr)Vps — %) For  Vgs>Vr & (7.5)
Vbs < Vs — Vr
Ipg = “"(;TW (Vas — V) For  Vgs>Vr & (7.6
Vs > Vas — Vr
and in the sub-threshold regime it is
Ips = % Tpo exp (nqk‘;G;L) For  Vas<Vr & (7.7)

VDS > 3k‘BTL/q

where Ipg is the drain-to-source current; Vpg is the drain-to-source voltage;
Vs is the gate-to-source voltage; and Vi is the threshold voltage; W is the
width and L is the effective channel length of the MOSFET. Other constants
need not be explained. We can use these simple idealized equations to compare
the simulated I-V curves.

The plot of the simulated drain-to-source current Ipgs against the drain-
to-source voltage Vg, also known as the transfer characteristics, is shown in
Fig. 7.5 on page 150. In Fig. 7.5(a) the drain current is plotted at a constant
drain-to-source voltage of Vpg = 50mV. This is a typical value chosen to infer
the threshold voltage (p. 438, [84]). For gate voltage larger than 1V the curve
is seen to be linear, as expected from Eq. (7.5) for small drain voltage. From
the intersection of this straight line with the gate-voltage axis we can infer a
threshold voltage Vr = 0.7V. This method of threshold-voltage extraction is
called linear extrapolation method (p. 439, [84]).

In the sub-threshold regime the simple MOSFET theory predicts the drain
current to depend exponentially on the gate voltage, as seen in Eq. (7.7). This
is seen in Fig. 7.5 where the I-V curve is a straight line for Vgg < Vr.

Fig. 7.6 on page 151 plots the simulated output characteristics of the
MOSFET. It displays features that are typical to a MOSFET I-V curve: a
linear region for low drain voltages; a saturation region for high drain voltages;
and a transition to saturation at the drain voltage of approximately Vpg sat =
Vas — Vr.

Substrate current is produced due to holes generated by impact ionization
(Chapter 8, [84]; and [85]). In fact, substrate currents are used as a mea-
sure of hot-electron effects in a MOSFET (Chapter 8, [84]; and p. 29, [85]).
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The simulator estimates substrate current assuming that all generated holes
drift to the substrate contact. Fig. 7.7 on page 151 shows the substrate cur-
rent versus gate voltage, for various drain voltages; this is a customary way of
plotting substrate current (p. 370, [84]). For a given drain voltage, substrate
current initially increases with increasing gate voltage because of increasing
drain current. Further increase in gate voltage results in lower substrate cur-
rent; this is due to a reduction of electric field. The maximum occurs at about
VGS ~ (03 to 05) VDS (p. 370, [84])

Note On Current calculations

Since we used the current-conserving control-volume discretization for the
Boltzmann equation, the current at the source contact is equal to current
at the drain ohmic. In addition, this current is equal to current crossing a
vertical cross-section through the MOSFET oxide. Fig. 7.8 on page 152 shows
the current crossing through a vertical cross-section. Current is constant when
the cross-section passes through the oxide. The current, therefore, is the same
regardless of how we calculate it.

7.5.4 Distribution Function

To present the simulation results we apply the following voltage: Gate voltage,
Vis, 1s set to 1.5V, drain voltage, Vpg, is set to 2.5V. The drain voltage is
sufficiently high to show hot-electron effect. Electric potential calculates from
the drift-diffusion solution at this bias is shown in Fig. 7.9 on page 152.

Vector plot of the electric field is shown in Fig. 7.10 on page 153. Even
though the electric field is vertical in the channel region, the transport occurs
mainly in the lateral direction. The device has high electric fields that vary
rapidly in space. This is due to both the applied bias, as well as the built-in
electric fields originating from high doping concentrations.

The multi-band distribution function is presented here at three cross-
sections in the MOSFET. The cross-sections are horizontal, parallel to the
channel, at three levels inside the device: (a) just below the semiconductor-
oxide interface; (b) at the level of the source/drain junction-depths; and (c) at
a level deep into the substrates, away from the active region.

Fig. 7.11 on page 154 plots the distribution very near the semiconductor-
oxide interface. Electron are move from the source to the drain. Distribution
is Maxwellian (ox exp(—e¢/kgTy)) in the heavily-doped field-free source region.
As the electrons enter the channel region they experience mild lateral electric
field, and gain some velocity. Nearer to the drain region is high, electric field is
high; electrons gain energy and heat-up considerably and scatter to the upper
bands. This can be seen by the non-Maxwellian shape of the distribution near
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the drain region. We also see the distribution of band (34) increase by many
orders of magnitude. Finally electrons in the heavily-doped field-free drain the
distribution tends to relax to the Maxwellian shape. In fact, based on the slope
of the distribution in the drain, we can identify two types of electron: sea of
cool equilibrium Maxwellian electrons in the drain, as seen by the slope at low
energies; and a small population of hot high-temperature electrons injected
from the channel, as seen by the slope at higher energies [110].

Fig. 7.12 on page 155 plots the distribution along the cross-section at the
source/drain junction-depth. Although electrons at this level are not as heated
as those near the interface, we can see a little non-Maxwellian shape near the
drain region, which is actually the lower edge of the drain region. Distribution
function deep into the substrate, as shown in Fig. 7.13 on page 156, is expected
to be equilibrium Maxwellian because there is negligible electron current and
almost no electric field.

7.5.5 Average Quantities

Fig. 7.14 on page 157 displays the current density in the MOSFET as calcu-
lated by two methods: drift-diffusion and Boltzmann transport equation. One
principal difference to notice between the two is the spreading of the electrons
near the drain in the Boltzmann equation method. This is not surprising;
it has been explained by Meinerzhagen [111] as thermal diffusion. Electrons
at the drain are hot, hence, have more tendency to diffuse; this results in a
higher electron concentration than one might get from drift-diffusion [52,111].
Semiconductor models which account for electron energy, like hydrodynamic,
energy balance, or Monte Carlo, encounter this “thermal difusion” spreading:
refer to Fig. 17 & 19 in [93]; or Fig. 8.5 in [55]; and [52,111].

Fig. 7.15 on page 158 shows the current density in the MOSFET. Current
is conducted mainly in a very thin channel region. Fig. 7.16 on page 159
displays the average electron velocity in the device. Surface plot of average
electron energy is shown in Fig. 7.17 on page 160. While electrons in most
of the device are at equilibrium, electrons near the drain region possess high
energies. These hot electrons cause impact ionization, as shown in Fig. 7.18 on
page 161. We see that impact ionization is negligible in the rest of the device,
but extremely high near the drain. The holes generated by impact ionization
cause undesirable substrate currents.

From the previous discussion it is clear that the active region of the MOS-
FET is the channel created directly under the gate oxide. One-dimensional
plots of quantities in the channel would make the presentation more lucid.
Fig. 7.19 on page 162, and Fig. 7.20 on page 163 plot some quantities in the
channel. We can see Fig. 7.19 that most of the potential drops near the drain,
therefore, the electric field is high near the drain. Average energy follows the
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electric field, although its peak is somewhat beyond the maximum of the elec-
tric field. This delay is known as the dead-space effect [94], or sometimes also
as the dark-space effect [69]. In Fig. 7.20 on page 163 we see that electrons
that enter this high-electric-field area overshoot their saturation velocity of
107 cm/s. The high energy electrons also impact ionize, as shown in Fig. 7.20;
the peak of impact ionization is located beyond the maximum of either electron
energy or electric field. This can be explained as follows. Even though there
are substantial number of hot electrons, average energy is low because of the
sea of cool electrons. Impact ionization depends only on the tail of the distri-
bution function; average energy, however, is more sensitive to the distribution
function at low energies.

Fig. 7.21 on page 164 displays the electron concentration in bands (1),
(2), (3), and (4) under the oxide. In the source region the distribution is
equilibrium Maxwellian; the upper bands, therefore, are sparsely populated. As
electrons travel through the channel, electron concentration in the upper bands
increases drastically due to both electric field and inter-band scattering. These
hot electrons are a serious reliability concern for small-channel MOSFET’s.
In the highly-doped low-field region of the drain, electrons in higher bands
begins to relax to the lower bands by inter-band scattering. If we included a
very long drain in the simulation, the distribution would approach equilibrium
Maxwellian.

7.5.6 Ballistic Transport

It was shown in Section 6.4.13 on page 114 that when electrons encounter
large electric fields they may travel ballistically, or without scattering. It was
also shown that the distribution function has signature in ballistic transport:
The distribution of electrons traveling ballistically simply shifts in energy by
an amount equal to the energy gained from the field. If an electron travels
ballistically for a distance Az during which the potential changes by A¢ then
the distribution function at z¢ + Az is simply a shifted version of distribution
at zg:

fd(xo + Az, e + Ae) = f3 (20 + Az, e + g AP) = f3 (20, €) (7.8)

With this in mind we can view the distribution at three locations in the MOS-
FET channel just under the oxide in Fig. 7.22 on page 165. Similar to the
discussion in Section 6.4.13 on ballistic transport in BJTs, we see that the dis-
tribution has two distinct slopes: a tail region in equilibrium with the lattice
(o< exp(—e/kpTy)); a low-energy region at a very high effective temperature
(almost flat in energy). There is a distinct breakpoint between the two regions.
The distribution at 0.15um, however, has a negligible high-temperature region;
it is almost entirely at equilibrium. Based on the position of the breakpoint
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in the distributions, we see that the distributions are shifted in energy by an
amount Ae = ¢ A¢ from one another. This points to the existence of ballistic
transport.

7.5.7 Thermal Equilibrium

The distribution function at thermal equilibrium, as proved in Appendix B on
page 177, is Maxwellian. Thermal equilibrium is a good test for the numerics
and the code, as well an interesting phenomena by itself. It was applied in
Section 5.6 on page 89 for the ntnn™ device, and in Section 6.4.15 on page 115
to the BJT. In this section we examine the MOSFET at thermal equilibrium.

Thermal equilibrium is defined as a state of no currents in the device.
In a MOSFET that we need to set the drain voltage Vpg to zero; the gate
voltage Vgs can be set to anything since it does not cause any current, but
we will set to zero also for simplicity. Fig. 7.23 on page 166 displays the
distribution function in the MOSFET at thermal equilibrium. We can see that
the distribution function in both bands is Maxwellian at lattice temperature
(it is < exp(—e/kpTL)).

The distribution is a Maxwellian despite the presence of large electric fields,

as seen in Fig. 7.24(a). The Maxwellian nature of the distribution is further

proven by the plot of the average energy in the device in Fig. 7.24(b); it is
virtually constant at the thermal-equilibrium value. The average energy of a
Maxwellian distribution is 3/2 kT, (p. 106 of [74]), which at room tempera-
ture is approximately 0.0388eV.

Electron velocity at thermal equilibrium, not plotted, was found to be virtu-
ally zero throughout the device. This, as pointed out in Section 5.6 on page 89,
can be interpreted as velocity undershoot or velocity damping: electron velocity
is much smaller than what is dictated by the local electric field.

7.5.8 Effect of Channel-Length

Fig. 7.25 on page 168 displays the effect of channel-length on MOSFET oper-
ation, where average quantities in the channel of four MOSFET’s of effective
channel-lengths 0.05, 0.15, 0.25, and 0.35um are displayed. Applied bias is
same for all MOSFET’s. The maximum electric field at all lengths is quite
similar; this is because most of the potential drops near the drain. The electric
field profile in the 0.35-ym MOSFET is typical of a long-channel MOSFET:
negligible electric field in the channel, most of it appearing near the drain. Ve-
locity overshoots its saturation value of 107cm/s for all channel-lengths. The
average velocity in the long-channel 0.35-ym MOSFET is small in the channel,
but overshoots in the drain depletion region. For the short-channel 0.05-pm
MOSFET, most of the channel is under the velocity overshoot region. This
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underscores the importance of non-equilibrium transport, which can model
velocity overshoot, in device operation.
Transconductance of a MOSFET, which is defined as

_ 0Ips
 OVgg

Im (7.9)

Vps=Constant

is plotted in Fig. 7.26 on page 169 for the four channel-lengths. As expected,
it increases for smaller channel-lengths.

7.6 Chapter Summary

In this chapter the spherical-harmonic Boltzmann-equation solver was extended
to two space dimensions. This two-dimensional solver is comparable to a three-
dimensional drift-diffusion solver in complexity. The simulator was applied to
simulate MOSFET’s in a post processing fashion; potential was assumed to be
same as that obtained by drift-diffusion. A sub-micron MOSFET of channel-
length of 0.17um was analyzed in detail. Various non-equilibrium non-local
effects were studied. It was shown that there is ballistic transport and velocity
in the channel. I-V curves were plotted and compared to the usual MOSFET
theory to demonstrate the capabilities of the simulator. Four MOSFET’s, with
channel-lengths down to deep sub-micron regime, were simulated. Velocity
overshoot was found to be an important element in MOSFET’s, especially at
shorter channel-lengths. The case of thermal equilibrium in a MOSFET was
analyzed, it revealed equilibrium conditions at high built-in electric fields.
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Parameter Value Comment

Lgate 0.24pm Gate length

Lefrective 0.17um Metallurgical channel-length

Np. peak 10%° cm3 Peak doping of Gaussian in source and drain
o 0.28um Standard deviation of Gaussian doping

Ny 6.5x10'7 cm™® p-type Substrate doping

tox 50A Oxide Thickness

Vr 0.7V Threshold Voltage

Toverlap 0.035um Oxide overlapping n™ diffusion

Yjunction 0.025um Junction depth

Table 7.1: Numerical values of the various parameters for the simulated MOSFET.
Physical meaning of these parameters is explained in Fig. 7.1 on the next page.
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Figure 7.1: Schematic of a conventional n-channel MOSFET. n* source and
drain, and p substrate is shown. B-C, D-E, and A-F are ohmic contacts. Channel
length can be specified as either the metallurgical or the and gate length. Oxide
thickness is to; source/drain junction diffusion depth is ¥junction; and overlap of
source/drain with oxide is Zoyeriap-
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Figure 7.2: Flow chart for MOSFET simulation. Drift-diffusion simulation pro-
vides the electric potential, ¢(z,y), and the initial electron concentration, n(z,y).
Boltzmann equation is solved iteratively in band (12) and (34).
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Figure 7.3: Grid in the simulated MOSFET. Lateral direction, z, is along the
channel from the source to the drain. Depth, ¥, is in the direction perpendicular
to the channel. Boundary of the Source and Drain is demarcated by heavy lines.
At this boundary net doping is zero: Np = N4. Number of grid points in lateral
direction N, = 38, and in the vertical direction N, = 36. Bands (12) and (34)
have 291 and 76 grid points respectively; and AH = Fwqp /5. Total number of

grid points are N, X N, x (N}}Q) + N§’4)) ~ 500,000.
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Figure 7.4: Doping profile of the simulated MOSFET. Plotted doping concen-
tration is the net doping, difference between donor- and acceptor-type doping:
D = Np — N4. Source, gate, and drain are marked as “S,” “G,” and “D" respec-
tively. Doping near the source and drain is n-type, while it is p-type in the rest of
the device. Metallurgical channel-length is 0.17um. The source and drain doping
is constant in an elliptical region, then decays as a Gaussian, exp(—(r —y)?/202).
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Figure 7.5: The simulated transfer characteristics of the MOSFET. The transfer
characteristic is the drain-current-versus-gate-voltage (Ips-Vgs) characteristic of
the MOSFET. Sub-figure (a) plots the transfer characteristics at a drain voltage
Vps = 50mV on a linear scale. From this curve we infer the threshold voltage,
Vr & 0.7V. In sub-figure (b) the sub-threshold transfer characteristics are plotted
for Vps = 50mV and 2.5V on a logarithmic scale. For Vz5 < V7, the -V curve is
seen to be linear on a log scale.
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Figure 7.6: The simulated output characteristics of the MOSFET. Drain current
Ips is plotted against drain voltage Vps at gate voltages Vs = 1.5, 2.0, and

2.5V.
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Figure 7.7: Simulated substrate current as function of gate voltage, Vg, for
various drain voltages, Vpg, in the MOSFET.



152 7. SIMULATION OF MOSFET

Current through vertical x-section
1.2

Source Channel Drain

0:6 / \
L \

0 0.05 0.1 0.15 0.2 025 03 035 04
Lateral, x (um)

Current (mA/um)

Figure 7.8: Current crossing through a vertical cross-section in the MOSFET.
the current is constant when the vertical cross-section passes through the oxide.
The figure demonstrates the current-conserving property of the control-volume
formulation. The current in the center is equal to the terminal drain current,
which in turn is equal to the terminal source current. Gate voltage Vgg = 1.5V;
drain voltage Vps = 2.5V.
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Figure 7.9: Electric potential, ¢(z,y), within the MOSFET. Source, gate, and
drain are marked as “S,” “G,” and “D" respectively. Gate voltage Vgs = 1.5V,
drain voltage Vpgs = 2.5V.
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Figure 7.10: Vector plot of the negative of electric field within the MOSFET.
Plotting the negative of the electric field indicates the direction in which the electron
is experiencing force due to the electric field. Scale is shown in the lower left corner.
Gate voltage Vs = 1.5V; drain voltage Vpgs = 2.5V.



154
7
SIM
]
LATION O
FM
0S
FET

Jus
t Be
low
th

e Oxide (4

An
gstro
m)

Dist. i
.in
Band 12 (
log)

||“|‘“{
||||||||
i

1
il
‘\‘\llllll

1!
3!

gt
ol

i
11
il
1
1|
\\\\\\\\ll
\\\\\\ il
\\\\\\\\\
\\\\\\\“
‘\\\\
<X

7

\\\\\\\\
(T \‘\‘

“““‘“
\\\\“‘\\\
N
D
‘\“\“
=

==

=

il
\\\\\\‘\\\\\\\\\l
\\\\‘\\\\\\
IR

ll“
IIIIIIII
|IIIIII||I|
TR
=
T
3

\\\‘l‘l\\\\\\\
\\\\\\\\\\\\\\\\\\\\\

|\|‘|||||||||

|||||||II

\\\\\\\\

Q\e“‘\&*‘

S
N
R

SRR
N

\\\\\\\\ T
\\\\\\\\\\\\
\\\‘\\\\\\\\\\\\\

T

SN

X

"’/’///i\f:‘:“:f‘?é
/,’l/,/i/// =

/
i
/

ot

!
S

)

QR

A2
Q\o“‘

il
il

il

=

==

=

==

==

\\\\\\\\\\&\\\\

\
\\\\\\\\\\\\
\\\\\\\\\\

\\\\\\\\
!

i
\\\\\\\\\\\\\\

II||I
\||||||||||

s

s5usy

|IIIIIIIIlI
T

e
N
——
=

.

N

N
N

\\\\\?

A
!
ANE

\\\\\\\\\\\
\\\\\\

\\\\\\\

a
T

\\\\\\\\\\\\\\\\\\\\

|||||III
|||||\||||

\\\\\\\\\\\\\\

L

\\\\\\\\\\\\
\\\\\\\\\\

s

=

==

||||||II
\\\\\

\\‘\‘\‘

jui

IIIIIII
o

—
=
=—

o
>
=S

o
=
33

=
s:‘:

i h
\\\\\\\‘\\\\\\
A
\\‘\
‘\“t‘

R
S
o\

i\
!
b

S

!
S
N

i\
1)
\\\\\\\\\\\\\\\\\\\\

it
1
Il
\
!

ust!
!‘IIIIIIII

B

ot
Tl
\
!

rgy

!\H\J
ol

3
0
6]
0.05
1
0. n
0.15
0.2 0.2
3
3
0.35
0.4

La
teral, x (

Jus
t Be
low
th

e Oxide (4

An
gstro
m)

Dist. i
.in
Band 34 (
log)

-10

26
28

rgy (
eV)

La
teral, X (
Um)

Fi
gure
unde 7.11:
oxi xid tributi
the hi ide. T eatt ution
Igher Op f he d fun i
b 1gu . epth ctio

ands, b;scjs o tﬁf ak "T;:Ong a
e ) e hori
(34). G lower b'S ‘o act orizont
ate v and uall al s
oltage "/band 3E1at the ection of
s = 2); very fi the
15V: and t irst ori MOS
- drai he lo grid li FET

In vo Wer | ne u
Ita figu nde
ge V; re is r
DS = for
2 BV



155

0.15 0.2
Lateral, x (um)

0.05 0.1

7
7/
77 7
7

At the S/D junctions (0.02 um)
At the S/D junctions (0.02 um)

N
N
)

0

2.5

Dist. in Band 12 (log)
Dist. in Band 34 (log)

Energy (eV) 1.5

FIGURES

0.35 0.4

025 0.3

NE
o S
W 19 =
Sy b
Rttt BER
| ©
ottt
o ity /8
il
o

Energy (eV)

Figure 7.12

Distribution function along a horizontal section that is 0.02m below

the semiconductor-oxide interface, which is approximately the same as source/drain
junction depths. Top figure is for the lower band, band (12); and the lower figure
is for the higher bands, band (34). Gate voltage Vzs = 1.5V; drain voltage Vpg

2.5V.
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Figure 7.13: Distribution function deep into the MOSFET substrate along a
horizontal section at a depth of 0.095um below the semiconductor-oxide interface.
Top figure is for the lower band, band (12); and the lower figure is for the higher
bands, band (34). Gate voltage Vs = 1.5V; drain voltage Vps = 2.5V.
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Figure 7.14: Electron concentration in the MOSFET computed by two methods:
(a) Drift-diffusion and (b) Boltzmann transport equation. Electrons density at the
drain is more spread in the Boltzmann-equation solution. Gate voltage Vgs =

1.5V; drain voltage Vpgs = 2.5V.
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Current Density

03 T T T T T T T
028 | Gate i
026 L Source Drain i
>3
N/Y
£ 024 -’/
2
>
<
= 0.22 | E
(]
[a)
0.2 B
0.18 | B
10**8 A/lcm**2
0.16 | —_— E
1 1 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Lateral, x (um)

Figure 7.15: Vector plot of the current density, J, in the MOSFET. Current flows
only in a thin channel under the oxide. Scale is shown in the lower left corner.
Gate voltage Vs = 1.5V; drain voltage Vps = 2.5V.
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Figure 7.16: Electron velocity in the MOSFET. Sub-figure (a) is the vector plot
of electron velocity; the scale appears at the lower left corner. Sub-figure (b) is
the surface plot of electron velocity magnitude. Gate voltage Vs = 1.5V, drain
voltage Vps = 2.5V.
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Average Energy
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Figure 7.17: Average energy of electrons in the MOSFET. Electrons near the
drain have posses large energy; electrons in the substrate and source are at equi-
librium thermal energy of 3/2 kg7, which, at room temperature of 77, = 300K, is
0.0388eV. Gate voltage Vs = 1.5V; drain voltage Vps = 2.5V.
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Figure 7.18: Generation rate due to impact ionization in the MOSFET. Most of
the generation occurs near the drain. Holes generated by impact ionization cause
substrate currents. Gate voltage Vs = 1.5V; drain voltage Vps = 2.5V.
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Figure 7.19: Doping profile, electric potential, lateral electric field, average energy
under the oxide of the MOSFET. All quantities have been averaged over a depth of
4.96nm. The vertical lines delineate the metallurgical source, channel and drain.
Gate voltage Vs = 1.5V, drain voltage Vps = 2.5V.
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Figure 7.20: Average electron velocity, electron concentration, impact-ionization
generation rate under the oxide of the MOSFET. All quantities have been averaged
over a depth of 4.96nm. The vertical lines delineate the metallurgical source,
channel and drain. Gate voltage Vs = 1.5V; drain voltage Vps = 2.5V.
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Figure 7.21: Electron concentration in bands (1), (2), (3), and (4) under the oxide
of the MOSFET. Electron concentration in the upper bands increases drastically
due to both electric field and inter-band scattering. All Concentrations have been
averaged over a depth of 4.96nm. The vertical lines delineate the metallurgical
source, channel and drain. Gate voltage Vs = 1.5V, drain voltage Vpg = 2.5V.
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MOSFET, Vgs =15V, Vds = 2.5V, under the oxide
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Figure 7.22: Ballistic Transport in the MOSFET. The distribution function is
plotted at three points in the channel; the lateral position, z, is 0.15um, 0.28m,
and 0.3um; and the depth from the oxide is 4A for the three points. In fact all three
points are on the very first horizontal grid line under the oxide. Electric potential,
¢, at the three points is 0.7V, 1.4V, and 2.2V respectively. The distribution is a
weighted sum of distribution in bands (12) and (34); weighted by density of states.
Distributions are shifted from each other in energy by an amount Ae = g Adg,
indicating the presence of ballistic transport. Gate voltage Vs = 1.5V; drain
voltage Vps = 2.5V.
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Figure 7.23: Distribution function in the MOSFET at thermal equilibrium. The
distribution is shown to be Maxwellian (ox exp(—¢/kpTy)). Distribution is plotted
along a horizontal grid line, 4A below the oxide. Gate voltage Vg = OV; drain
voltage Vpg = OV.
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Figure 7.24: Electric field and average energy at thermal equilibrium in the MOS-
FET. All quantities are plotted along a horizontal grid line, 4A below the oxide.
Sub-figure (a) plots the lateral and vertical electric fields. Sub-figure (b) plots
the average energy, which is virtually constant at the thermal equilibrium value
of 3/2kgT;, = 0.0388eV at room temperature. Gate voltage Vs = 0V; drain
voltage Vpgs = OV.
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Figure 7.25: Effect of channel-length on MOSFET operation. Three quantities
in the MOSFET channel are plotted: Lateral electric field, E,; average electron
energy, < ¢ >; and average electron velocity. These variables were averaged over
a depth of 4.96nm under the oxide. The effective channel-lengths, Les, which
in our case is defined as the metallurgical channel-length, are 0.05um, 0.15um,
0.25um, and 0.35um. The gate-lengths, Lgate, are 0.11pum, 0.21pm, 0.33um, and
0.42um rrespectively. Gate voltage Vs = 1V; drain voltage Vpgs = 1V for all
channel-lengths.
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Figure 7.26: Simulated transconductance, g,,, of the MOSFET's as a function
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CHAPTER 8

CONCLUSION

In this dissertation the spherical-harmonic-expansion approach to solve the
semiconductor Boltzmann transport equation was developed further. The
salient features of the dissertation is the use of all four bands from the popular
multi-band band-structure of silicon. The Boltzmann equation was solved self-
consistently with the Poisson and hole-continuity equation to simulate the one-
dimensional n*nn™ device and bipolar junction transistor (BJT). The Boltz-
mann equation was extended to two spatial dimensions to simulate a metal-
oxide-semiconductor field-effect transistor (MOSFET). The simulator was ap-
plied to investigate non-equilibrium non-local phenomena of velocity overshoot
and ballistic transport.

As part of the numerical schemes the most salient contribution is the devel-
opment of a new diagonally-dominant formulation for the Boltzmann equation.
This approach transforms the Boltzmann equation to a new pre-Maxwellian
variable. This variable has many desirable qualities: (a) It enhances the Diag-
onal dominance of the discretized equations. (b) It accounts for the rapid expo-
nential variation of the distribution in both energy and space. (c¢) In addition,
the new pre-Maxwellian variable allows us to write the electron concentrations
in Slotboom variables, which opens the possibility of using superior Poisson
equation solvers like Mayergoyz’ fixed-point algorithm. (d) The transformed
equations retain their linearity.

It was found that the commonly-used elastic approximation for the acoustic
phonons resulted in spurious noise in the computed distribution function. This
numerical noise was analyzed and corrected by incorporating acoustic phonons
in inelastic approximation. To this end, a new formulation for inelastic acoustic
phonons was developed. This formulation is self-adjoint, and is ideally suited
for numerical simulation.

The multi-band Boltzmann equations were discretized by a current-
conserving control-volume discretization. This discretization preserves the
conservative nature of the spherical-harmonic Boltzmann equations. The dis-
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cretized multi-band Boltzmann equations were solved by a line successive-over-
relaxation (SOR) method. The coupled system was solved by the Gummel’s
decoupled method.

In addition, the interesting case of thermal equilibrium was discussed. It
was proven that the analytical solution of the multi-band Boltzmann equations
is Maxwellian distribution. The thermal-equilibrium was used to test the code,
as well as studied as an interesting phenomena in its own right.



APPENDIX A

CURRENT-CONSERVATION
PROPERTY OF THE
SPHERICAL-HARMONIC
BOLTZMANN EQUATION

A.1 Proof of Current-Continuity

The Boltzmann equation, after a first-order spherical-harmonic expansion of
the distribution function, reads (Section 2.3, Eq. (2.24)):

1 90 2 OF) N OF}
3g Oz " u Ot | conision

The aim of this appendix is to prove that Eq. (A.1) satisfies the electron
current-continuity equation:

=0 (A.1)

0J(x)
ox

= G(2) = Gimpaci(v) (A.2)

where J(z) is the current density at z, measured as number of electrons per unit
area per unit time; and G(z) is the net generation of electrons at x, measured
as electrons per unit volume per unit time. The only generation mechanism
we consider in this dissertation is impact-ionization, therefore G has been set
equal to Gimpact-

To prove current-continuity property, we multiply Eq. (A.1) by 3¢ and
integrate from Hamiltonian Hpyin, = —¢d(x) 10 Hmax = Emax — ¢0()

0 ( OF OFY ~
/H % (K)W> dH+ /H3g [W . dH =0 (A3)
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where we have set x = Tu’g. Current density is known from Eq. (2.63):

0
J(z) = —¢; 8612? dH (A.4)

where ¢; = 1/(2473/7). Multiplying Eq. (A.3) by —c¢; and using Eq. (A.4):

9 [ OFD OFD
P — dH —
% 9w oz /<; ox d c]/ 59 [ ot :|c011isi0n

dJ(z) OF}
— =0 H = A.
a‘r CJ /H 3g [ at collision d 0 ( 6)

The collision term for the scattering mechanism is:

OFY OFY OFY OFY OFY
20 ==L 20 —0 20 A,
[ at :|collision [ at opt " at ac - 8t impurity " at impact ( 7)

Scattering due to inter-band optical phonons is not written because we are
implicitly considering only one conduction band; including it is not important,
it has the same form as optical phonon term, therefore same conclusions would
apply to it (refer to item 4 on the facing page). Ionized impurity scattering
term, Eq. (2.83), is identically equal to zero, therefore it need not be considered
any further.

It is easy to prove the following identities:

6F(§)]
— dH =0 A8
/Hg[at (A.8)
AFD
- H = A.
/Hg[athd ’ (A-9)

This mathematical identity is physically sound: It tells us that that there is
no net generation due to either optical or acoustic phonons, The only non-
zero term left in the collision terms is impact ionization scattering. This, by
considering Eq. (2.96) and Eq. (2.97), can be written as follows:

8F(§) (H) total BFO out
j — dH = dH
“ /H 59 [ ot |, 247r3\/_

impact impact

_ R(H) (A.10)
=1/ h 0 dH
/1;1 Timpa.ct(H + Q¢)

= Gimpact

where we used the relation h(e) = (1/v/4m)(1/47%)g(¢) from Section 2.5.5. We
can now substitute Eq. (A.10) in Eq. (A.6) and see that it is same as the
current-continuity condition, Eq. (A.2), we set out to prove. This concludes
the proof.

dH =0 (A.5)
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A.2 Discussion

Following points are worth noting:

1.

The original Boltzmann equation, Eq. (2.5), is a statement of conserva-
tion of electrons: it tracks particles in k-space as well as real-space. The
spherical-harmonic Boltzmann equation, Eq. (2.24) or Eq. (A.1), is also
a conservation equation: it tracks particles in energy or Hamiltonian as
well as real-space. The conserving nature of the equation is not lost by
spherical-harmonic expansion.

It would be desirable to have a discretization which also ensures this
current continuity. The control-volume discretization of Chapter 4 is
ideally suited.

. Identities Eq. (A.8) and Eq. (A.9) indicate that there is no net generation

of electrons due to optical or acoustic phonons. Generation of electrons
in one region of energy is due to loss of electrons from other regions. The
total net loss or generation is zero.

Inter-band phonons have the same functional form as optical phonons.
Total net generation due to inter-band phonons is also zero. If we consider
inter-band phonons we could write an identity similar to Eq. (A.8):

)
e

where (v) is the band index.

dH =0 (A.11)
ib

aFy )
ot

Identity Eq. (A.8) has a physical interpretation. It is saying that the in
a energy or Hamiltonian range AH the net generation of electrons due
to optical phonons is proportional to g [0Fy/0t],,, AH.

Using the identity from Eq. (A.9) the same may be said about acoustic
phonons: net generation of electrons due to acoustic phonons is propor-
tional to g [0F} /0t],. AH.

Satisfying the identities Eq. (A.8), Eq. (A.9), and Eq. (A.11) is crucial
to proving current-conservation. A numerical scheme which aspires for
current-continuity must also satisfy these identities.
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APPENDIX B

MULTI-BAND BOLTZMANN
EQUATION AT THERMAL
EQUILIBRIUM

In this appendix the analytical solution of the Boltzmann-Poisson system
at thermal equilibrium is derived. At thermal equilibrium, we will prove, the
analytical solution of the multi-band Boltzmann equation is Maxwellian distri-
bution function; and the electric potential satisfies the equilibrium non-linear
Poisson equation.

The proof starts by assuming that the distribution at thermal equilibrium is
Maxwellian, which is shown to satisfy the Boltzmann transport and non-linear
Poisson equation. Since the Boltzmann-Poisson system has a unique solution,
this is the only solution at thermal equilibrium.

Thermal equilibrium is defined as a situation when there are no currents in
the device: J(r) = 0. The collision integral for a non-degenerate semiconductor
can be written as (same as Eq. (2.65)):

[31” (k)] Y
ot collision a (27T)3 k’

Here S(k,k’) is the probability of an electron scattering from state k to state
k', and it satisfies the following relationship [73,77]:

S(k, k') exp (‘i,;(TIZ)) = S(K, k) exp (-i}ig)) (B.2)

FK)S(K, k) — f(k)S(k, k') &k’ (B.1)

where £) (k) represents the -k relationship for band (). Let us assume that
the distribution function in two bands, bands (12) and (34) is given by

(12)
F92(r, k) = A1102(r) exp _e k) (B.3)
kgTr,
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(34) (
00 (2, k) = ABROD (1) exp (=2 K) (B.4)
kpTt
We choose the constants A such that 1/47* [ f(k) d°k = n, which leads to
1 1 £(12) (k)
=— - 4’k B.5
A(12) 43 Band 12 P ( kBTL ) ( )
1 1 64 (k)
= — — d*k B.6
ABY g /Band v ( ket ) (B6)

If we substitute the distribution of Eq. (B.3) and Eq. (B.4) in the Boltzmann
transport equation Eq. (2.5), the collision term Eq. (B.1) is nullified due to
Eq. (B.2) and an additional constraint of A(?n(12 = ABGYpB4 For band (12)
this results in

1 12)(k
—Vie -V, {A(12)n(12) (r) exp (—E ( )) }

h ksTr,
gE(r) e (k)
_ . — =0 (B.7
% Vk {exp ( ]{,‘BTL ( )
Using E(r) = —V,¢(r) we can analytically solve the above equation, which
gives
n(2(x) = ™ exp ('d)—g )> (B.8)
t

(12)

where V; = kgTL/q is the thermal voltage, and n; ™ is a constant. Similarly

for band (34) we get:

n(34) (r) = n§34) exp (_¢(r)) (B.9)
Vi
By substituting the total electron concentration n(r) = n(!?(r) + n®¥(r)
in the Poisson equation we obtain:

Vo) = L (02 40 e (42) ) -2} @10

This, as we can see, is the non-linear equilibrium Poisson equation. The sum
of constants n§12) + n§34) can be interpreted as the intrinsic carrier density n;.

The above exercise has shown that if the distribution function is of the
Maxwellian form as given by Eq. (B.3) and Eq. (B.4), then it satisfies the
Boltzmann equation as well as the the non-linear equilibrium Poisson equation.
Since the coupled Boltzmann-Poisson system can be shown to possess a unique
solution [77], this is the only solution at thermal equilibrium. Thus, for the
thermal equilibrium case, we have obtained an analytical solution of the multi-
band Boltzmann equation. The resultant distribution function is Maxwellian,
given by Eq. (B.3) and Eq. (B.4).



APPENDIX C

HARMONIC-MEAN SCHEME

In this appendix we derive the harmonic-mean scheme of Patankar [113,116].
We will also point out the similarity of this harmonic-mean scheme to the
Scharfetter-Gummel discretization scheme and another scheme used for Boltz-
mann equation, the Liang-Goldsman-Mayergoyz scheme.

C.1 Derivation

Let us consider the one-dimensional equation

oJ
i 1
ox (€.1)
where S is the source term; and current, or the flux, J, is given by
ou
J=—k— C.2
i (C.2)

where u is a state variable, and & the “conductivity.” Eq. (C.1) and Eq. (C.2)
could be thought of as a generalized representation for many equations: (a)
the spherical-harmonic Boltzmann equation, Eq. (2.24) or Eq. (4.27); (b) heat
equation, Eq. (4.28), [113]; or (c) drift-diffusion equations in Slotboom variables
[98,102,104,105].

Let us consider the grid shown in Fig. C.1 on the next page. Integrating

Eq. (C.1) from z,, to .
/e s dx = /e Sdx (C.3)

Je — Jw
ASEP

leads to
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w e
w , P | E
] ]
| O ® i ® i ® o— 7
I I
Ti—1 T Ti+1

Figure C.1: Grid for derivation of the harmonic-mean scheme. Filled circles
indicate the computational molecule.

where Azp = ., — 7, and S is the average of the source term in the interval.
J. and J,, are the fluxes at the interface e and w respectively. The problem is
now to approximate these fluxes.

By rearranging Eq. (C.2) and integrating from points P to E, we get

ou

1 __vu
kK J= 9 (C.5)
E E
/ k' dr = —/ Ou dx = — (ug — up) (C.6)
P p Oz

Now we make critical assumption: flux J is constant between point P and FE.
This allows us to take J out of the integral:

J/E k! dz = — (up — up) (.7)

P

which leads to

E
/ k71 dx
P

Now it boils down to assuming a profile for x [113]. If we assume that k =
constant = (kp+kg)/2 in the interval from P to F, then we obtain the normal
arithmetic-mean scheme:

Kp+ Kg Ug —up

J=- 2 Az,

(C.9)

where z. = g — zp.
If, however, we make the assumption that x is constant in the control-
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volume surrounding the grid points, that is kK = kp for x € [y, z.], we get

E e E
/ Kkt de = / kp' dx +/ k' dx
P P e

A A
= kp! = 4 kgt o (C.10)
2 2
_ KE + KE A.’L’e
2/4)]:» RE

Substituting Eq. (C.10) into Eq. (C.8) leads to the harmonic-mean scheme:

2l€p Kg Ug — Up
J=— C.11
kp+ kg Az, ( )

The interface conductivity has been approximated by a harmonic mean;

2 Kp KE
= — C.12
fre Kp + KE ( )

This scheme has many desirable properties, as discussed in [113,116]. It is ideal
to use in situations with rapid variations in conductivity x. Following sub-
sections point out the similarity of this scheme to other discretization schemes.

C.2 Similarity to Scharfetter-Gummel Discretiza-
tion

An astute reader may notice the similarity between the harmonic-mean scheme
and the Scharfetter-Gummel discretization [100]. In the derivation for both
schemes, we make the same crucial assumption: flux J is constant between
the grid points. After making this assumption, we solve the in-homogeneous
ordinary differential equation to obtain a profile of the dependent variable
(refer to Section E.2 on page 190 for an application to the hole-continuity
equation). The only difference is that the starting equation for Scharfetter-
Gummel discretization, in addition to having the diffusion term, also has the
convection term. The harmonic-mean scheme and the Scharfetter-Gummel,
therefore, arise from the same basic assumption [106].

! The similarity between harmonic-mean and the Scharfetter-Gummel scheme was pointed
out to me by Dr. Paul M. de Zeeuw of CWI, Netherlands.
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C.3 Similarity to Liang-Goldsman-Mayergoyz
Scheme
If, instead of assuming a constant, or piece-wise constant, profile of x in

Eq. (C.8), we assume a linear profile, we obtain the scheme used by Liang,
Goldsman, and Mayergoyz for the Boltzmann equation [43,51].



APPENDIX D

POISSON EQUATION

D.1 The Boundary-Value Problem

From the usual electromagnetic theory, the divergence of displacement vector
is equal to the charge density [72]:

V., D=V, (E)=p (D.1)

where € is permittivity of silicon, and €; = €q69. Relative permittivity of
silicon € = 11.7, and permittivity of free space ¢y = 8.85418 x 107!2 F/m. p
is the total charge density at r, and is given by:

p(r) = q (p(r) — n(r) + Nj(r) — N, (r)) (D.2)

Where n(r) and p(r) are the electron and hole concentration at r. N (r) and
N, (r) are ionized impurity concentration for donor and acceptor type. We can
assume from now on that all the impurities are ionized, hence we will drop the
superscripts T and ~. Furthermore, since it is the difference of these dopings
that is of importance, we can define a total net doping D(r) = Np(r) — N4(r).
Expressing the electric field as the gradient of a scalar electric potential, ¢(r),

E(r) = -V, ¢(r)

0p ; 0¢ : 0¢ - (D.3)
=——i-—j——%k
or oy 0z
we get the linear Poisson equation for semiconductors:
r
v2o(r) = -2 = L (n(x) — p(r) - D(r) (D.4)

As an aside we may also write down the form of the non-linear Poisson equa-
tion [95,98]. If we express the carrier concentrations in terms of the Slotboom
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variables v and v,
n(r) = n; u e/ Ve p(r) =n;v AL (D.5)
and substitute in Eq. (D.4), we get the non-linear Poisson equation:

V2p(r) = 62 (ni ue?®Ve _ g e ¢V _ D(r)) (D.6)
S1

It has been reported that the non-linear Poisson equation in self-consistent
Monte Carlo simulation results in faster convergence [70]. This is perhaps
because the non-linear Poisson equation anticipates the electron-concentration
change with the changing electric potential [52]. In this dissertation, however,
we have only used the linear Poisson equation; rest of this Appendix focuses
on that.

D.1.1 Boundary Conditions

An ohmic contact to the semiconductor is the most the most common boundary
condition that arises for the Poisson equation. This boundary condition takes
on a Dirichlet form:

¢ = Viapplied T Pbuilt in

kT, D D D2 (D.7)
= Vapptioa + ~22 =1 ot
pplied T g D n (27%' + in? +

where n; is the intrinsic concentration.

We may also have a boundary condition where the electric field is specified,
usually zero. The boundary condition takes the Neumann form; zero Neumann
if the right-side is zero:

Vr¢ = _Especiﬁed (D8)

D.2 Discretization

One-dimensional Poisson equation reads:

T _ 2 (n(2) - pla) - D) D.9)

We construct a control-volume grid in Fig. D.1 on the next page. Integrating
in the control-volume from z,, to z.

/we djx(f) dz = / L (n(z) - p(z) — D(x)) da (D.10)

w 6Si
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w , P , E
] ]
| O ® i ® i ® o——» 7
I I
Ti—1 Z; Ti+1

Figure D.1: Grid for the discretization of the Poisson equation. Filled circles
indicate the computational molecule.

The left-hand side can be integrated:

“ d*¢(z) do(x) d(z)
dr = — D.11
/w dz2 dr ], dr ), ( )
The first-order derivative can be approximated by a central-difference dis-

cretization. This discretization scheme can be easily shown to be is second-
order accurate [114]:

() oo o

Where Az, = x5 — xp, and Az, = zp — Tw.

To approximate the integral on the right-hand side of the Poisson equation,
Eq. (D.10), we can assume that the average value of the variables of n, p, and
D in the control-volume around the point P is the same as the nodal value of
the variables at point P. Such an approximation is second-order accurate. To
illustrate this, let us consider a quantity S(x), then

Where Azp = 2. — 2y = (xr — 2w)/2, and Sp = S(xp) This approximation
is second-order accurate. The right side of the Poisson equation, Eq. (D.10),
is then approximated as

[ £ 0) = pa) = D) do = L (np = pp = D) Ay + 0 (M)
w (D.15)
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Where the subscript P indicates that the np, pp, and Dp are evaluated at the
point zp.
Putting it together we have the following second-order-accurate discretiza-
tion of the Poisson equation:
1 O —¢Op  Op— dw q
— —(np—pp—D D.16
Azp < Az, Ay, - (ne —pr ) )

€si

1 dw 1 1 Pr q
— — —pp—DD D.1
Azp (Amw (Azw * Axe) or + Axe) €si (ne = pp ) (D7)

D.2.1 Damping Term

There are serious numerical oscillations when we solve the Boltzmann and
Poisson equation self-consistently [33,48,70]. The reason for this is easy to
understand: potential ¢ depends on the electron concentration, n; electron
concentration varies roughly exponentially with potential, n ~ exp(¢#/kt). This
coupling is very strong and the solution oscillates violently, and soon diverges.
The damping technique from (refer to p. 211 of [72]) was used in the self-
consistent spherical-harmonic simulations by [33,42,43,48, 51].

If we are solving the Poisson equation iteratively, like in a Gummel loop,
we can use the solution at the previous iteration to damp the solution in the

current iteration. Damping term we add is i (60 — ¢\""™), where the

damping coefficient 7" at the m' iteration is given by

o _mp VP g

r
P
V;i €si

(D.18)

where V; = kgT}1/q, the thermal voltage. This damping is added to the Poisson
equation

Damping term

1 o 1 1 o) L B\ T e Y
Azp (Aww_<Afvw+Axe> P +A:1;e — e (d)P —0r )

= g (nﬁ”) —pgn) — Dp) (D.19)

The damping term goes to zero at convergence.

D.2.2 Final Form

The final form of the Poisson equation, both for the inner points as well as the
boundary points, can be easily written to be:

Awow — Apdp + Apdr = Qp (D.20)
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Where the coefficients can be shown to posses the following property of diagonal
dominance:

Ap > AW + Ag And A >0 AW >0 Ap >0 (D21)
These equations can be put into a matrix form
Ap=Q (D.22)

The matrix A is tridiagonal for a one-dimensional problem; it can be solved
efficiently by the Thomas’ tridiagonal matrix algorithm (TDMA) [113,114].
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ArPPENDIX E

HOLE-CONTINUITY EQUATION

E.1 The Boundary-Value Problem

The drift-diffusion hole-continuity equation can be written by equating the
divergence of the flux to generation.
V-J,=—qR (E.1)
Where R is the net recombination, and the hole current density, J,, is the sum
of the drift and diffusion components:
Jp = apupE — qD,Vp (E.2)

p is the hole concentration; p, is the hole mobility; the diffusivity of holes is
D, = p,Vy; and V; = kT /q is the thermal voltage.

Recombination R is taken to be the standard Shockley-Hall-Read formula
(Selberherr [72] p. 105):

np — n?
(1 + i) + Tu(p + 1)

where n; is the intrinsic concentration, and the time constants, 7, and 7,, have
the form (p. 106 [72])

R = RSHR =

(E.3)

Tp = 77—”? | and 7, = 7TPTD| (E.4)
1 + Nref 1 + N;ef

Where D = Np — N4 is the net doping concentration, and the constants
take on the values as follows: 7,0 = 3.94 x 107* sec, 70 = 3.94 x 107> sec,
NFf=71x 10" cm™, NJ*f = 7.1 x 10" cm ™. And the mobility is given by

s
Hp = (E.5)

D|
1 + ref |D|
G+ Sp
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Figure E.1: Grid for the discretization of the hole-continuity equation. Filled
circles indicate the computational molecule.

And the constants have values C}* = 4 x 10'® cm™3, and S, = 81 (dimension-
less) ,ul(,o) = 480 cm?/(V sec)

E.1.1 Boundary Conditions

To complete the description for the hole-continuity boundary-value problem we
need boundary conditions. At the ohmic contact we can assume a Dirichlet
boundary condition, that is, the hole concentration is specified to be equal to
the equilibrium hole concentration. By charge neutrality at the ohmic bound-
ary we have

p—n+D=0 (E.6)

using the law of mass action, np = n?, we get the boundary condition for the
hole-continuity equation

_ =D+ /D*+4n; (E.7)
= 5 ,

p

Eq. (E.7) is convenient to use if D < 0 (p-type doping). For D > 0 (n-type
doping) we can use

D+ \/D? + 4n? (E8)

2

p= where n=

3|

E.2 Scharfetter-Gummel Discretization

We discretize the hole-continuity equation by the celebrated Scharfetter-Gum-
mel discretization [100]. Let us consider the one-dimensional hole-continuity
equation

dJ
~ L gR=0 E.9
oo T (E.9)
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J is the hole current density, the subscript “,” has been dropped for clarity.
Integrating this equation from x, to x. over the control volume shown in
Fig. E.1 on the facing page:

/w%dahk/wqux:O (E.10)

The first integral is straight-forward:

“dJ
=J —J, E.11
/ . de = J, — J, ( )

w

The second integral is approximated by assuming that that the nodal value of
R at point P dominates, and it is approximately the same as the average of R
around P. This approximation is second-order accurate [114].

€
/ gRdx = gqRpAxzp + O ((A.’Ep)z) (E.12)
w

where Azp = 1, — 2 = (g — Tw)/2. By substituting in Eq. (E.10) the two
integrals we get the second-order accurate central-difference approximation of
the hole-continuity equation

€ Jw

AiEP

+ qu =0 (E13)

We now need discretized approximations for J, and J,, to be substituted in
Eq. (E.13). With this in mind Eq. (E.2) for current density .J in one dimension
reads

d
J = qpup By — qué -
=~y — quth%

If we assume that J = J, and E, = —d¢/dzr are constant in the interval
x € zp,zgl, the above equation is then a in-homogeneous ordinary differential
equation in p with p(zp) = pp as the boundary condition, whose solution is

Je — e
p(z) = | pp+ a5 | &P (_qﬁ(x)v ¢P) - Jd¢ (E.15)
anp ! G

Setting © = xg and pg = p(zg) we can solve for the constant J,

qus Vi
J, = A’; " (ppB(at) — peB(—a™)) (E.16)
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where Az, = 2 —2p and at = (¢r — dp)/V; is the argument of the Bernoulli
function B:

A
B(A) & ——— E.17
(4) op(d) =1 (E.17)
Similar expression can be written for J,
qpy Vi _ _
Ju =32 (pwB(a”) —ppB(~a")) (E.18)
where Az, = zp — zw and o~ = (dp — dw)/V;.

By substituting the expression for J., Eq. (E.16), and J,, Eq. (E.18), into
Eq. (E.13) we get

¢V ( eppBla®) —peB(=a®)  ,pwB(a’) —ppB(-a’)
Azp K Az, Hp Az,

) + C]RP =0
(E.19)

The recombination term Rp, given by Eq. (E.3), is split into two parts: The
constant known part is moved to the right-hand side; and the unknown por-
tion, involving pp, is added to the diagonal term, which enhances diagonal-
dominance. This splitting is known as the Seidman modification. The system
of equations in matrix notation are

Ap=Q (E.20)

The coefficient matrix A is tridiagonal, and can be easily and efficiently solved
by the Thomas’ tridiagonal matrix algorithm (TDMA) [113,114].
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LIST OF SYMBOLS

Symbol Meaning

C Pre-Maxwellian variable

cinelastic Coefficient in expression for inelastic acoustic phonon

chaclastic Coefficient in expression for inelastic acoustic phonon in
pre-Maxwellian variable

Cq Coefficient in definition of g(g) (= 4mv/2(m*)3/2/h%)

Cib Coefficient in expression for inter-band optical phonon

Cimpu Coefficient in expression for ionized impurity scattering

cj Coefficient in expression for current (= 1/2473/7)

Copt Coefficient in expression for optical phonon

D Net doping (= N, — N)

Dac Deformation potential for acoustic phonon

Dip Deformation potential for inter-band optical phonon

Dopt Deformation potential for optical phonon

E Electric field

E Electric-field magnitude (= |E|)

F™(H) Coefficient of spherical harmonic Y;™

f(r,k,t) Distribution function

™ (e) Coefficient of spherical harmonic Y,

Gimpact Generation due to impact ionization

g(e) Function proportional to density of states (= ¢,7'(€)y/7(€))

9% (e) 9( + Awopt)

g9 (e) 9(e — hwopt)

H Hamiltonian

h Planck’s constant

h Reduced Planck’s constant (= h/27)

hwi, Energy of inter-band optical phonon

hwopt Energy of optical phonon
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Symbol Meaning

Ipg Drain-to-source current

i, j, k Unit vectors in Cartesian directions z, y, 2
i, 7, k Index for grid (z;, y;, Hy)

J Current density vector

J Current density magnitude (= |J|)

Iz x-component of current density J

k Wave-vector

k Wave-vector magnitude (= |k|)

k, 0, ¢ Spherical component of wave-vector k
ks Boltzmann constant

kg, ky, k, Cartesian components of wave-vector k
L Effective channel length of MOSFET
Lgate Gate length of MOSFET

Lmetallurgical
*

m
Ny
Ny
Np
Np
Nr
Nopt

Metallurgical channel length of MOSFET
Effective mass

Number of acceptors per unit volume
Number of ionized acceptors per unit volume
Number of donors per unit volume

Number of ionized donors per unit volume
Number of impurities per unit volume
Number of optical phonons

Number of phonons

Electron concentration

Equilibrium electron concentration

Intrinsic concentration

Impact ionization scattering pre-factor
Quantum-mechanical momentum of electron
Hole concentration

Wave-vector of phonon

Magnitude of electronic charge

Reciprocal of Debye length

Real-space vector

Expansion factor for MOSFET grid generation
Transition rate from k to k'

Lattice temperature

Time

Oxide thickness in MOSFET

Slotboom variable

Group velocity

Group-velocity magnitude (= |ug|)

Micron (um), or micro-meter (1ym = 10=%m)
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Symbol Meaning

v Slotboom variable

VsE Base-to-emitter voltage

Ve Collector-to-base voltage

Ver Collector-to-emitter voltage

Vps Drain-to-source voltage

Vas Gate-to-source voltage

Vr Threshold voltage of MOSFET

Vi Thermal voltage (= kgT1L/q)

Usound Velocity of sound

W Width of MOSFET

T, Y, 2 Cartesian space directions

x Cartesian space direction: position for n*nn™;
depth for BJT; lateral direction for MOSFET

Zoverlap Oxide overlap with source/drain in MOSFET

Y Cartesian space direction: depth direction for MOSFET

Yjunction Source/Drain junction-depth in MOSFET

Y™ (0, ¢) Spherical-harmonic function

VA Number of charge units of the impurity

A Band multiplicity (number of equivalent symmetrical
bands) of band (v)

« Non-parabolicity factor

Qlimpact Impact ionization coefficient

v(¢) Dispersion relation

AH Grid spacing Hamiltonian

Az Grid spacing in z

Ay Grid spacing in y

€ Energy of electron

€0 Perimittivity of free space

€rel Relative permittivity of Silicon

€si Perimittivity of Silicon

0 Polar angle

K “Conductivity” in Boltzmann equation (= 7u}g)

pm Micron, or micro-meter (1um = 107%m)

v Band index in multi-band band-structure

Eimpurity Impurity scattering enhancement factor

P Density of silicon

o Standard deviation of Gaussian doping in MOSFET

T Reciprocal of scattering rate

Tac Reciprocal of acoustic phonon scattering rate

(vesr')

Tib

Reciprocal of inter-band optical phonon scattering rate
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Symbol

Meaning

Timpact
Ti=1, impurity
7—opt

Reciprocal of impact ionization scattering rate
Reciprocal of ionized impurity scattering rate
Reciprocal of optical phonon scattering rate
Azimuthal angle

Electric potential

Volume of semiconductor crystal sample (= L,L,L,)
Relaxation factor for SOR (Successive Over-Relaxation)
Frequency of inter-band optical phonon

Frequency of optical phonon

Frequency of phonon

Nabla (or del) operator

Nabla (or del) operator in wave-vector space

Nabla (or del) operator in real space




BIBLIOGRAPHY

Introduction

[1] T. Forester, Silicon Samurai: How Japan Conguered the world’s I.T.
Industry, Blackwell Publishers, Cambridge, USA, pp. 56 & 43, 1993.

[2] The  National  Technology = Roadmap  for  Semiconductors,
http://notes.sematech.org/97melec.htm in the Sematech web-
site at http://www.sematech.org/public/roadmap, 1997.

[3] R. J. G. Goossens, and R. W. Dutton, “Device CAD in the ’90s: At
the Crossroads,” IEEE Circuits & Devices Magazine, Vol. 8, No. 4, pp
18-26, 1992.

[4] M. E. Law, “The virtual IC Factory ... Can it be Achieved ?” IEEE
Circuits € Devices Magazine, Vol. 11, No. 2, pp 25-31, 1995.

[5] P. A. Blakey and T. E. Zirkle, “An Industrial Perspective on Semicon-
ductor Technology Modeling,” The IMA Volumes in Mathematics and
its Applications, Semiconductors, Part II, Edited by W. M. Coughran,
J. Cole, P. LLoyd, and J. White, Vol. 59, pp. 75-87, Springer-Verlag,
1994.

[6] P. Packan, “Simulating Deep Sub-Micron Technologies: An Industrial
Perspective,” Proc. SISDEP, Vol. 6, pp. 34-41, September 1995.

[7] H. Kosina, E. Langer, and S. Selberherr, “Device Modelling for the
1990s,” Microelectronics Journal, Vol. 26, pp. 217-233, 1995.

[8] J. W. Specks and W. L. Engl, “Computer-Aided Design and Scaling of
Deep Submicron CMOS,” IEEE Trans. Computer-Aided Design, Vol. 12,
No. 9, pp. 1357-1367, 1993.

[9] P. Rohr, F. A. Lindholm, and K. R. Allen, “Questionability of Drift-
Diffusion Transport in the Analysis of Small Semiconductor Devices,”
Solid-State Electron., Vol. 17, pp. 729-734, 1974.

197



198

BIBLIOGRAPHY

[10]

[11]

G. Baccarani, F. Odeh, A. Gnudi, and D. Ventura, “A Critical Review
of the Fundamental Semiconductor Equations,” The IMA Volumes in
Mathematics and its Applications, Semiconductors, Part II, Edited by
W. M. Coughran, J. Cole, P. LLoyd, and J. White, Vol. 59, pp. 19-32,
Springer-Verlag, 1994.

Refer to the web site at http://www-groups.cs.st-and.ac.uk/
“history/Mathematicians/Boltzmann.html

Basic Device Simulation

[12]

[13]

[14]

[15]

[16]

A. Abramo et al., “A Comparison of Numerical Solutions of the Boltz-
mann Transport Equation for High-Energy Electron Transport Silicon,”
IEFEE Trans. Electron Devices, Vol. 41, No. 9, pp. 1646-1654, 1994.

M. A. Alam, M. A. Stettler, and M. S. Lundstrom, “Formulation of
the Boltzmann Equation in Terms of Scattering Matrices,” Solid-State
Electron., Vol. 36, No. 2, pp. 263-271, 1993.

F. J. Mustieles and F. Delaurens, “Numerical Simulation of Non-

Homogeneous Submicron Semiconductor Devices by a Deterministic Par-
ticle Method,” Solid-State Electron., Vol. 36, No. 6, pp. 857-868, 1993.

G. Zandler, A. D. Carlo, K. Kometer, P. Lugli, P. Vogl, and E. Gornik,
“A Comparison of Monte Carlo and Cellular Automata Approaches for
Semiconductor Device Simulation,” IEEFE Electron Device Lett., Vol. 14,
No. 2, pp. 77-79, 1993.

B. H. Floyd and Y. L. Le Coz, “Iterative Spectral Solution of the Poisson-
Boltzmann Equation in Semiconductor Devices,” J. Appl. Phys., Vol. 76,
No. 12, pp. 7889-7898, 1994.

Spherical Harmonics

[17]

18]

K. Rahmat, J. White, and D. A. Antoniadis, “Simulation of Semicon-
ductor Devices Using a Galerkin/Spherical Harmonic Expansion Ap-
proach to Solving the Coupled Poisson-Boltzmann System,” IEEE Trans.
Computer-Aided Design, Vol. 15, No. 10, pp. 1181-1196, 1996.

K. Rahmat, J. White, and D. A. Antoniadis, “Solution of the Boltzmann
Transport Equation in Two Real-Space Dimensions using a Spherical
Harmonic Expansion in Momentum Space,” IEDM-1994 Tech. Dig., pp.
359-362, 1994.



BIBLIOGRAPHY 199

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

K. Rahmat, J. White, and D. A. Antoniadis, “A Galerkin Method for
the Arbitrary Order Expansion in Momentum Space of the Boltzmann
Equation using Spherical Harmonics,” Proc. of the NUPAD V Conf.,
Honolulu, HI, pp. 133-136, June 1994.

N. Goldsman, L. Henrickson, and J. Frey, “A Physics Based Analyti-
cal/Numerical Solution to the Boltzmann Transport Equation for Use in
Device Simulation,” Solid-State Electron., Vol. 34, No. 4, pp. 389-396,
1991.

D. Ventura, A. Gnudi, and G. Baccarani, “An Efficient Method for Eval-
uating the Energy Distribution of Electrons in Semiconductors Based on
Spherical Harmonics Expansion,” IEICE Trans. FElectron.,Vol. E75-C,
No. 2, pp. 194-199, 1992.

H. Lin, and N. Goldsman, “An Efficient Solution of the Boltzmann Trans-
port Equation which Includes the Pauli Exclusion Principle,” Solid-State
Electron., Vol. 34, No. 10, pp. 1035-1047, 1991.

Y.-J. Wu and N. Goldsman, “An Efficient Solution of the Multi-Band
Boltzmann Transport Equation in Silicon,” COMPEL, Vol. 12, No. 4,
pp. 475485, 1993.

N. Goldsman, Y.-J. Wu, and J. Frey, “Efficient Calculation of Ionization
Coefficients in Silicon from the Energy Distribution Function,” J. Appl.
Phys., Vol. 68, No. 3, pp. 1075-1081, 1990.

Y.-J. Wu and N. Goldsman, “Deterministic Modeling of Impact Ioniza-
tion with a Random-k Approximation and the Multiband Boltzmann
Equation,” J. Appl. Phys., Vol. 78, No. 8, pp. 5174-5176, 1995.

S. L. Wang, N. Goldsman, and K. Hennacy, “Calculation of Impact Ion-
ization Coefficients with a Third-Order Legendre Polynomial Expansion
of the Distribution Function,” J. Appl. Phys., Vol. 68, No. 3, pp. 1815—
1822, 1992.

M. C. Vecchi and M. Rudan, “Modeling Impact-Ionization in the Frame-
work of the Spherical-Harmonic Expansion of the Boltzmann Trans-
port Equation with Full-Band Structure Effects,” Proc. SISDEP, Vol.
6, Fdited by H. Ryssel and P. Pichler, pp. 416—419, September 1995.

M. C. Vecchi, D. Ventura, A. Gnudi, and G. Baccarani, “Incorporat-
ing Full Band-Structure Effects in the Spherical Harmonics Expansion
of the Boltzmann Transport Equation,” Proc. of the NUPAD V Conf.,
Honolulu, HI, pp. 55-58, June 1994.



200

BIBLIOGRAPHY

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

[37]

M. C. Vecchi and M. Rudan, “Modeling Electron and Hole Transport
with Full-Band Structure Effects by Means of the Spherical-Harmonic
Expansion of the BTE,” IEEE Trans. Electron Devices, Vol. 45, No. 1,
pp- 230238, 1998.

D. Ventura, A. Gnudi, and G. Baccarani, “Inclusion of Electron-Electron
Scattering in the Spherical Harmonic Expansion Treatment of the Boltz-
mann Transport Equation,” Proc. SISDEP, Vol. 5, Edited by S. Selber-
herr, H. Stippel, and E. Strasser, pp. 161-164, 1993.

A. Gnudi, D. Ventura, G. Baccarani, and F. Odeh, “Macroscopic and
Microscopic Approach for the Simulation of Short Devices,” The IMA
Volumes in Mathematics and its Applications, Semiconductors, Part 11,
Edited by W. M. Coughran, J. Cole, P. LLoyd, and J. White, Vol. 59,
pp- 135-157, Springer-Verlag, 1994.

H. Lin, N. Goldsman, and I. D. Mayergoyz, “An Efficient Determinis-
tic Solution of the Space-Dependent Boltzmann Transport Equation for
Silicon,” Solid-State Electron., Vol. 35, No. 1, pp. 33-42, 1992.

H. Lin, N. Goldsman, and 1. D. Mayergoyz, “Device Modeling by Deter-
ministic Self-Consistent Solution of Poisson and Boltzmann Transport
Equations,” Solid-State FElectron., Vol. 35, No. 6, pp. 769-778, 1992.

H. Lin, N. Goldsman, and I. D. Mayergoyz, “Deterministic BJT Mod-
eling by Self-Consistent Solution to the Boltzmann, Poisson and Hole-
Continuity Equations,” Proc. International Workshop on Computational
Electronics, Univ. of Leeds, England, pp. 55-59, 1993.

D. Ventura, A. Gnudi, G. Baccarani, and F. Odeh, “Multidimensional
Spherical Harmonic Expansion of Boltzmann Equation for Transport in
Semiconductors,” Appl. Math. Lett., Vol. 5, No. 3, pp. 85-90, 1992.

A. Gnudi, D. Ventura, and G. Baccarani, “One-Dimensional Simulation
of a Bipolar Transistor by means of Spherical Harmonics Expansion of
the Boltzmann Transport Equation,” Proc. SISDEP, Vol. 4, Edited by
W. Fichtner, D. Aemmer, ’91 Conf. (Zurich), pp. 205-213, September
1991.

A. Gnudi, D. Ventura, and G. Baccarani, “Modeling Impact Ionization
in a BJT by Means of Spherical Harmonics Expansion of the Boltzmann
Transport Equation,” IEEE Trans. Computer-Aided Design, Vol. 12, No.
11, pp. 1706-1713, 1993.



BIBLIOGRAPHY 201

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

D. Schroeder, D. Ventura, A. Gnudi, and G. Baccarani, “Boundary
Conditions for Spherical Harmonics Expansion of Boltzmann Equation,”
Electronics Letters, Vol. 28, No. 11, pp. 995-996, 1992.

A. Gnudi, D. Ventura, and G. Baccarani, “Two-Dimensional MOSFET
Simulation by Means of a Multidimensional Spherical Harmonic Expan-
sion of the Boltzmann Transport Equation,” Solid-State Electron., Vol.
36, No. 4, pp. 575-581, 1993.

K. A. Hennacy and N. Goldsman, “A Generalized Legendre Polyno-
mial /Sparse Matrix approach for determining The Distribution Func-
tion in Non-Polar Semiconductors,” Solid-State Electron., Vol. 36, No. 6,
pp. 869-877, 1993.

K. A. Hennacy, Y. -J. Wu, N. Goldsman, and I. D. Mayergoyz, “ Deter-
ministic MOSFET Simulation Using a Generalized Spherical Harmonic
Expansion of the Boltzmann Equation,” Solid-State Electron., Vol. 38,
No. 8, pp. 1485-1495, 1995.

W.-C. Liang, Y.-J. Wu, K. Hennacy, S. Singh, N. Goldsman, and I.
Mayergoyz, “2-D MOSFET Simulation by Self-Consistent Solution of
the Boltzmann and Poisson Equations Using a Generalized Spherical
Harmonic Expansion,” Proc. SISDEP, Vol. 6, Edited by Ryssel and P.
Pichler, pp. 122-125, 1995.

W. Liang, N. Goldsman, I. D. Mayergoyz, and P. J. Oldiges, “2-D
MOSFET Modeling Including Surface Effects and Impact Ionization by
Self-Consistent Solution of the Boltzmann, Poisson, and Hole-Continuity
Equations,” IEEE Trans. Electron Deuvices, Vol. 44, No. 2, pp. 257-267,
1997.

C.-H. Chang, C.-K. Lin, W. Liang, N. Goldsman, I. D. Mayergoyz, P.
Oldiges, and J. Melngailis, “The Spherical Harmonic Method: Corrobo-
ration with Monte Carlo and Experiment,” Int. Conf. on Simulation of
Semiconductor Processes and Devices (SISPAD), 1997, Cambridge, MA,
USA, pp. 225228, 1997.

A. Pierantoni, M. C. Vecchi, and A. Gnudi, “Sub-Domain Solution of the
Boltzmann Equation in MOS Devices by Means of Spherical Harmonic
Expansion,” Int. Conf. on Simulation of Semiconductor Processes and
Devices (SISPAD), 1997, Cambridge, MA, USA, pp. 229-232, 1997.

M. C. Vecchi, J. Mohring, and M. Rudan, “An Efficient Solution Scheme
for the Spherical-Harmonic Expansion of the Boltzmann Transport Equa-



202

BIBLIOGRAPHY

tion,” IEEFE Trans. Computer-Aided Design, Vol. 16, No. 4, pp. 353-361,
1997.

PhD Theses

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

N. Goldsman, Modeling FElectron Transport and Degradation Mechanisms

i Semiconductor Submicron Devices, PhD Thesis, Cornell University,
Ithaca, NY, 1989.

H. C. Lin, Efficient Self-Consistent Semiconductor Device Modeling by
Deterministic Solution to the Boltzmann Transport Equation, PhD The-
sis, University of Maryland, College Park, MD, 1992.

K. A. Hennacy, Spherical Harmonics and Effective Field Formulations of
Boltzmann’s Transport Equation: Case Studies in Silicon, PhD Thesis,
University of Maryland, College Park, MD, 1993.

Y.-J. Wu, Multi-Band and Two Dimensional Submicron Semiconductor
Device Modeling by Direct Solution to the Boltzmann Transport Equation,
PhD Thesis, University of Maryland, College Park, MD, 1994.

W. Liang, Two-Dimensional Submicron Semiconductor Device TCAD
by Hydrodynamic and Numerical Boltzmann Simulation, PhD Thesis,
University of Maryland, College Park, MD, 1996.

X. Wang, SLAPSHOT: An Engineering Oriented Monte Carlo Tool for
Hot Carrier Studies in Deep Submicron MOSFETs, PhD Thesis, Univer-
sity of Texas, Austin, TX, 1994.

A. W. Duncan, Full-Band Monte Carlo Simulation of Hot FElectrons
in Scaled Silicon Devices, PhD Thesis, University of Illinois, Urbana-
Champaign, 11, 1996.

M. Liang, Composite Thermodynamic System for Advanced Semiconduc-
tor Device Simulation, PhD Thesis, University of Florida, Gainesville,
FL, 1994.

D. C. Kerr, Three-Dimensional Drift-Diffusion and Hydrodynamic Sim-
ulation of Semiconductor Devices, PhD Thesis, University of Maryland,
College Park, MD, 1995.

C.-F. Yeap, UT-MiniMOS: A Hierarchical Transport Model Based Sim-
ulator for Deep Submicron Silicon Devices, PhD Thesis, University of
Texas, Austin, TX, 1997.



BIBLIOGRAPHY 203

Band Structure & Scattering

[57]

[58]

[59]

[60]

[61]

R. Brunetti and C. Jacoboni, F. Venturi, E. Sangiorgi, and B. Ricco, “A
Many-Band Silicon Model for Hot-Electron Transport at High Energies,”
Solid-State Electron., Vol. 32, No. 12, pp. 1663-1667, 1989.

C. Fiegna and E. Sangiorgi, “Modeling of High-Energy Electrons in MOS
Devices at the Microscopic Level,” IEEE Trans. Electron Devices, Vol.
40, No. 3, pp. 619-627, 1993.

J. Kolodziejczak, “On the Scattering Process in Semiconductors,” Phys.
Stat. Sol., Vol. 19, pp. 231-237, 1967.

R. Thoma, H. J. Peifer, W. L. Engl, W. Quade, R. Brunetti, and C.
Jacoboni, “An Improved Impact-lIonization Model for High-Energy Elec-
tron Transport in Si with Monte Carlo Simulation,” J. Appl. Phys., Vol.
69, No. 4, pp. 2300-2311, 1991.

F. Venturi, E. Sangiorgi, R. Brunetti, C. Jacoboni, and B. Ricco, “Monte
Carlo Simulation of Electron Heating in Scaled Deep Submicron Mos-
fets,” IEDM-1989 Tech. Dig., pp. 485488, 1989.

Monte Carlo

[62]

[63]

[64]

[65]

[66]

[67]

K. Tomizawa, Numerical Simulation of Submicron Semiconductor De-
vices, Artech House, Boston, MA, 1993.

C. Moglestue, Monte Carlo Simulation of Semiconductor Devices, Chap-
man & Hall, London, 1993.

C. Jacoboni, and P Lugli, The Monte Carlo Method for Semiconductor
Device Stmulation, Springer-Verlag Wien, New York, 1989.

K. Hess, Monte Carlo Simulation: Full Band and Beyond, Kluwer Aca-
demic Publishers, Norwell, MA, 1991.

C. Jacoboni and L. Reggiani, “The Monte Carlo Method for the Solution
of Charge Transport in Semiconductors with Applications to Covalent
Materials,” Reviews of Modern Physics, Vol. 55, No. 3, pp. 645-705,
1983.

P. Lugli, “The Monte Carlo Method for Semiconductor Device and Pro-
cess Modeling,” IEEE Trans. Computer-Aided Design, Vol. 9, No. 11,
pp. 1164-1176, 1990.



204 BIBLIOGRAPHY

[68] D. L. Woolard, H. Tian, M. A. Littlejohn, and K. W. Kim, “The Imple-
mentation of Physical Boundary Conditions on the Monte Carlo Simu-
lation of Electron Devices,” IEEE Trans. Computer-Aided Design, Vol.
13, No. 10, pp. 1241-1246, 1994.

[69] P. Lugli, “Monte Carlo Models and Simulations,” in Compound Semi-
conductor Device Modelling, Edited by C. M. Snowden and R. E. Miles,
Springer-Verlag, London, 1993.

[70] F. Venturi, R. K. Smith, E. C. Sangiorgi, M. R. Pinto, and B. Riccd, “A
General Purpose Device Simulator Coupling Poisson and Monte Carlo
Transport with Application to Deep Submicron MOSFET’s,” IFEE
Trans. Computer-Aided Design, Vol. 8, No. 4, pp. 360-369, 1989.

Books

[71] G. Arfken, Mathematical Methods for Physicists, Academic Press, New
York, 1985.

[72] S. Selberherr, Analysis and Simulation of Semiconductor Devices,
Springer-Verlag Wien, New York, 1984.

(73] S. Datta, Quantum Phenomena, Modular Series on Solid State Devices,
V. 8, Addison-Wesley Publishing Company Inc., Reading, MA, 1989.

[74] M. Lundstrom, Fundamentals of Carrier Transport, Modular Series on
Solid State Devices, V. X, Addison-Wesley Publishing Company Inc.,
Reading, MA, 1990.

[75] B. K. Ridley, Quantum Processes in Semiconductors, 3rd ed., Oxford
University Press, Oxford, United Kingdom, 1993.

[76] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., John Wiley &
Sons, New York, 1981.

[77] P. A. Markowich, C. A. Ringhofer, and C. Schmeiser, Semiconductor
Equations, Springer-Verlag Wien, New York, 1990.

[78] S. M. Sze, Editor, High-Speed Semiconductor Devices, John Wiley & Sons
Inc., New York, 1990.

[79] D. Schroeder, Modelling of Interface Carrier Transport for Device Sim-
ulation, Springer-Verlag Wien, New York, 1994.



BIBLIOGRAPHY 205

[80] R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits,
John Wiley & Sons Inc., New York, second edition, 1986.

[81] R. W. Dutton and Z. Yu, Technology CAD—Computer Simulation of IC
Processes and Dewvices, Kluwer Academic Publishers, Norwell, MA, 1993.

[82] K. M. Cham, S.-Y. Oh, D. Chin, J. L. Moll, K. Lee, and P. V. Voorde,
Computer-Aided Design and VLSI Device Development, Second edition,
Kluwer Academic Publishers, Boston, MA, 1988.

[83] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford
University Press, New York, 1987.

[84] N. Arora, MOSFET Models for VLSI Circuit Simulation Theory and
Practice, Springer-Verlag Wien, New York, 1993.

[85] Y. Leblebici and S. M. Kang, Hot-Carrier Reliability of MOS VLSI Cir-
cuits, Kluwer Academic Publishers, Norwell, MA, 1993.

Bipolar Junction Transistor

[86] A. Chryssafis and W. Love, “A Computer-aided Analysis of One-
dimensional Thermal Transients in n-p-n Power Transistors,” Solid-State
Electron., Vol. 22, pp. 249-256, 1979.

[87] E. F. Crabbé, J. M. C. Stork, G. Baccarani, M. V. Fischetti, and S. E.
Laux, “The Impact of Non-Equilibrium Transport on Breakdown and
Transit time in Bipolar Transistors,” IEDM-90 Tech. Dig., pp. 463-466,
1990.

[88] G. Baccarani, C. Jacoboni, and A. M. Mazzone, “Current Transport in
Narrow-Base Transistors,” Solid-State Electron., Vol 20, pp. 5-10, 1977.

[89] Y.-J. Park, D. H. Navon, and T. W. Tang, “Monte Carlo Simulation of
Bipolar Transistors,” IEEE Trans. Electron Devices, Vol. ED-31, No. 12,
pp- 1724-1730, 1984.

[90] W. Lee, S. E. Laux, M. V. Fischetti, and D. D. Tang, “Monte Carlo
Simulation of Non-Equilibrium Transport in Ultra-Thin Base Si Bipolar
Transistors,” IEDM-89 Tech. Dig., pp. 473476, 1989.

[91] M. A. Stettler and M. S. Lundstrom, “A Microscopic Study of Transport
in Thin Base Silicon Bipolar Transistors,” IEEE Trans. Electron Devices,
Vol. 41, No. 6, pp. 1027-1033, 1994.



206

BIBLIOGRAPHY

[92]

[93]

[94]

S. E. Laux, M. V. Fischetti, and D. J. Frank, “Monte Carlo Analysis
of Semiconductor Devices: The DAMOCLES Program,” IBM J. Res.
Develop., Vol. 34, No. 4, pp. 466-493, 1990.

W. Lee, S. E. Laux, M. V. Fischetti, G. Baccarani, A Gnudi, J. M. C.
Stork, J. A. Mandelman, E. F. Crabbé, M. R. Wordeman, and F. Odeh,
“Numerical Modeling of Advanced Semiconductor Devices,” IBM J. Res.
Dewelop., Vol. 36, No. 2, pp. 208-232, 1992.

A. D. Carlo and P. Lugli, “Dead-Space Effects Under Near-Breakdown
Conditions in AlGaAs/GaAs HBT’s,” IEEFE Electron Device Lett., Vol.
14, No. 3, pp. 103-106, 1993.

Device Simulation

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[. D. Mayergoyz, “Solution of Nonlinear Poisson Equation of Semicon-
ductor Device Theory,” J. Appl. Phys., Vol. 59, No. 1, pp. 195-199, 1986.

G. J. L. Ouwerling, “Further Improved algorithm for the Solution of the
Nonlinear Poisson Equation in Semiconductor Devices,” J. Appl. Phys.,
Vol. 66, No. 12, pp. 6144-6149, 1989.

H. Kobeissi, F. M. Ghannouchi, and A. Khebir, “Finite Element Solution
of the Nonlinear Poisson Equation for Semiconductor Devices using the
Fixed-Point Iteration Method,” J. Appl. Phys., Vol. 74, No. 10, pp. 6186—
6190, 1993.

C. E. Korman and I. D. Mayergoyz, “A Globally Convergent Algorithm
for the Solution of the Steady-State Semiconductor Device Equations,”
J. Appl. Phys., Vol. 68, No. 3, pp. 1324-1334, 1990.

H. K. Gummel, “A Self-Consistent Iterative Scheme for One-Dimensional
Steady State Transistor Calculation,” IEEFE Trans. Electron Devices, Vol.
11, No. 10, pp. 455-465, 1964.

D. L. Scharfetter and H. K. Gummel, “Large-Signal Analysis of a Silicon
Read Diode Oscillator,” IEEE Trans. Electron Devices, Vol. 16, No. 1,
pp. 64-77, 1969.

R. E. Bank, W. M. Coughran, M. A. Driscoll, R. K. Smith, and W. Ficht-
ner, “Iterative Methods in Semiconductor Device Simulation,” Computer
Physics Communications, Vol. 53, pp. 201-212, North-Holland, Amster-
dam, 1989.



BIBLIOGRAPHY 207

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

C. S. Rafferty, M. R. Pinto, and R. W. Dutton, “Iterative Methods in
Semiconductor Device Simulation,” IEEE Trans. FElectron Devices, Vol.
ED-32, No. 10, pp. 20182027, 1985.

A.F. Franz, G. A. Franz, S. Selberherr, C. Ringhofer, and P. Markowich,
“Finite Boxes—A Generalization of the Finite-Difference Method Suit-
able for Semiconductor Device Simulation,” IEEE Trans. Electron De-
vices, Vol. ED-30, No. 9, pp. 1070-1082, 1983.

R. E. Bank, D. J. Rose, and W. Fichtner, “Numerical Methods for Semi-
conductor Device Simulation,” IEEE Trans. Electron Devices, Vol. Ed-
30, No. 9, pp. 1031-1041, 1983.

W. Fichtner, D. J. Rose, and R. E. Bank, “Semiconductor Device Simu-
lation,” IEEFE Trans. Electron Devices, Vol. ED-30, No. 9, pp. 1018-1030,
1983.

P. M. de Zeeuw, CWI (Centre for Mathematics and Computer Science)
Netherlands, Private Communication, 1998.

D. Sinitsky, F. Assaderaghi, M. Orshansky, J. Bokor, and C. Hu, “Veloc-
ity Overshoot of Electrons and Holes in Si Inversion Layers,” Solid-State
Electron., Vol. 41, No. 8, pp. 1119-1125, 1997.

K. Hess and G. J. lafrate, “Theory and Applications of Near Ballistic
Transport in Semiconductors,” Proc. of IEEFE, Vol. 76, No. 5, pp. 519-
532, 1988.

S. Ramaswamy and T. W. Tang, “Comparison of Semiconductor Trans-
port Models Using a Monte Carlo Consistency Test,” IEEE Trans. Elec-
tron Devices, Vol. 41, No. 1, pp. 76-83, 1994.

T. J. Bordelon, V. M. Agostinelli, Jun., X.-L. Wang, C. M. Maziar,
and A. F. Tasch, “Relaxation Time Approximation and Mixing of Hot
and Cold Electron Populations,” FElectronics Letters, Vol. 28, No. 12,
pp- 1173-1174, 1992.

B. Meinerzhagen and W. L. Engl, “The Influence of the Thermal Equi-
librium Approximation on the Accuracy of Classical Two-Dimensional
Numerical Modeling of Silicon Submicrometer MOS Transistors,” IEEE
Trans. FElectron Devices, Vol. 35, No. 5, pp. 689-697, 1988.

S. Jog and V. P. Sundarsingh, “New 2D Diffusion Simulator Using Spatial
Variable Transformation,” Microelectronics Journal, Vol. 27, pp. 571—
575, 1996.



208 BIBLIOGRAPHY

Computational Fluid Dynamics

[113] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere
Publishing Corporation, Washington D.C., 1980.

[114] J. H. Ferziger and M. Peri¢, Computational Methods for Fluid Dynamics,
Springer-Verlag, Berlin Heidelberg, 1996.

[115] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zhang, Spectral
Methods in Fluid Mechanics, Springer-Verlag, Berlin, 1987.

[116] S. V. Patankar, “A Numerical Method for Conduction in Composite Ma-
terials, Flow in Irregular Geometries and Conjugate Heat Transfer,” Sizth
International Heat Transfer Conference, Toronto, pp. 297-302, 1978.



INDEX

A

Acoustic Phonon

Bose-Einstein relation, 29

deformation potential, 29

discretization, see Discretiza-
tion

elastic, 8, 29, 82, 91, 92

elastic versus inelastic, 29

elastic, justification of, 92

frequency of, 29

generation due to, 174, 175

inelastic, 8, 27, 29, 29, 79, 82,
91, 93

inelastic, energy exchange in, 93

inelastic, new formulation, 54

Kolodziejczak’s derivation, 29,
82

number of, 29

numerical noise and, 8, 29, 82,
91, 91, 105f, 106f

pre-Maxwellian variable, see
Pre-Maxwellian Variable

scattering rate, 29, 50f

self-adjoint form, 8, 9, 54

transition rate, 29

transport model in, 49

Vecchi’s scheme and, 59

Active Region

BJT, 109, 117f
MOSFET, 36, 140, 141
semiconductor devices, 35

Antoniadis, Prof. Dimitri, 6

B

Baccarani, Giorgio, 133

Ballistic Transport, 114
BJT, 114, 127f, 128f
distribution function in, 114,
142, 165f
Hamiltonian conservation in,
115
MOSFET, 142, 165f
signature of, 114
Band-Structure, 14
Boltzmann equation in multi-

band, 46
Brunetti’s, 8, 43, 44, 45f 48,
133

Brunetti’s and actual DOS, 44
concatenation, 46
dispersion relation, see Disper-
sion Relation
e-k, 44, 45f
full-band in Spherical Har-
monic, 8
multi-band, 44
non-parabolicity factor, 44
spherical symmetry, 6
transport model, see Transport
Model
Bernoulli Function, 192
BiCMOS, 108
BJT (Bipolar Junction Transistor)
1-D structure & doping, 110,
117f
2-D effects, 108, 109
2-D structure, 117f
active region, 109, 117f
advantages of, 108

209



INDEX

as 1-D device, 107, 108, 109

ballistic transport in, 114, 127f,
128f

band-structure in simulation,
108

base boundary condition, 109

base-transit time, 115

BiCMOS, 108

bipolar nature of, 107

breakdown voltage, 111

convergence problems, 107

current crowding, 109

cut-off frequency, 115

DD versus BTE, 114, 126f

dead-space effect, 112

disadvantages of, 108

distribution function, 110, 119f,
120f

doping, 110, 117f

drift-diffusion, 107, 109, 114

electric field, 110, 118f

electric potential, 110, 118f

electron concentration, 111,
121f

electron current, 112, 122f

electron energy, 112, 123f

electron-hole plasma in, 107

energy-transport, 107

graded base doping, 115, 129f

grid, 109, 110

HBT, 108

holes, 112, 122f

hot-electron effect in, 111

hydrodynamic, 107

impact ionization, 111, 112,
113, 124f

impact ionization coefficient,
112, 124f

low-level injection, 110

Monte Carlo simulation of, 108

motivation for choice, 107

non-self-consistent, 108

n-type collector, 110

poly-silicon emitter, 108

p-type collector, 110

retarding potential in, 108

scattering-matrix approach, 108

self-consistent simulation, 108

simulation time, 110

simulator, 85, 110

spherical-harmonic simulation,
6, 9, 108

thermal equilibrium, 115

thermal equilibrium distribu-
tion, 115, 130f

thermal equilibrium electric
field, 116, 131f

thermal equilibrium energy,
115, 131f

velocity, 111, 121f

velocity overshoot, 111, 115

why simulate, 107

Bologna, University of, 6
Boltzmann Transport Equation, 12

analogy to heat transfer, 37, 63,
179

as conservation equation, 14,
61, 173, 175

as first-order integro-differential
equation, 19

as integro-differential equation,
11, 14, 19

band concatenation, 46

Boltzmann-Poisson system, 9,
177, 178

cellular-automata approach, 11

comparison with drift-
diffusion, 89, 114

coupling in Hamiltonian, 92

current-conservation property,
173

degenerate elliptic, 39

derivation of, 12

deterministic particle method,
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diagonal dominance, see Diago-
nal Dominance

difficulty in numerical solution

of, 11, 14

dimensionality, see Dimension-
ality

discretization, see Discretiza-
tion

elastic phonon, 92
energy boundary, 39
in equivalent valleys, 46
in multi-band band-structure,
46
iterative-spectral, 11
linearity of, 8, 54, 55, 72
Monte Carlo, see Monte Carlo
pre-Maxwellian variable, see
Pre-Maxwellian Variable
reducing the number of, 46
scattering-matrix approach, 11
semi-classical transport in, 14
set of independent equations, 92
spherical harmonic, see Spheri-
cal Harmonic
thermal equilibrium, see Ther-
mal Equilibrium
two-dimensional, 135
Boltzmann, Ludwig, 13f
Boltzmann-Poisson system
analytical solution of, 9, 89, 177
convergence of, 90, 186
uniqueness of solution, 178
Bose-Einstein Relation
in acoustic phonon, 29
in optical phonon, 27
Boundary, see Interface
Boundary Condition, 35
base of BJT, 109
charge neutrality at ohmic con-
tact, 36, 190
Dirichlet, 35, 36, 89, 109, 111,

112, 135, 184, 190
Dirichlet and diagonal domi-
nance, 36
Dirichlet, advantage of, 36
discretization, 69
energy boundary, 35, 37, 40f
411, 70, 72
energy boundary & original
Boltzmann equation, 39
grid for, 70f, 72f
in boundary-value problem, 19
insulator, 35, 36, 70, 135
mixed, 35, 39
MOSFET, 135
Neumann, 70f, 184
ohmic, 35, 35, 70, 89, 109, 111,
184, 190
Schottky, 35n
substitute, 37, 39
zero Neumann, 35, 37, 184
Boundary-Value Problem, 12, 19,
61, 109, 183, 189
Box-Integration Discretization, 61
Brunetti, Rossella, see Band-
Structure, Brunetti’s

C
CAD (Computer-Aided Design), 2
Electronic CAD, see ECAD
hierarchy of, 2
Technology CAD, see TCAD
Cartesian Coordinates System, see
Wave Vector
CFD (Computational Fluid Dy-
namics), 6, 15
diffusion equation, 35
Channel Length, 1, 135, 146f, see
also Gate Length
effect on MOSFET operation,
143
effective, 138, 145t
future, 2
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gate, 133, 135, 145t, 146f
metallurgical, 135, 138, 146f,
149f
Charge Neutrality, 36, 190
Chynoweth Model, 113
Circuit Simulation, 2
Classical Mechanics, 14
Code
BJT simulator, 85
MOSFET simulator, 137
nnn*simulator, 85
validation by thermal-equi-
librium, 9, 90
Collision, see Scattering
Computational Fluid Dynamics, see
CFD
Computer Used, 85, 110, 137
Computer-Aided Design, see CAD
Conductivity, 63, 179
at interface, 66, 181
Conservation
in Boltzmann Transport Equa-
tion, 14
Contact
ohmic, 35, 35, 87, 89, 109, 111,
112, 134, 135, 184, 190
ohmic, physics, 35
Schottky, 35n

Control-Volume Discretization,
see Discretization, control-
volume

Convergence

Gummel loop, 90, 103f
matrix solvers, 90, 104f
numerical solution, 90
self-consistent solution, 90, 103f
SOR, 90
Convergence Criterion
Boltzmann equation, 84, 85, 136
hole-continuity equation, 85
Poisson equation, 85
Coordinates System, see Wave Vec-

tor
Current-Conservation Property
of BTE, 14, 61, 112, 173, 175
of control-volume discretiza-
tion, 61, 62, 88, 97f, 112,
122f, 140, 152
Curse of Dimensionality, 11, 14

D
Dark-Space Effect, 88, 112, 142, see
also Dead-Space Effect
Dead-Space Effect
in BJT, 112
in MOSFET, 142
in nTnn*, 83
Debye Length, 30, 49
Degenerate Equation, see Equation,
degenerate elliptic
Density of States, see DOS
Device Simulation
choice of variables in, 54
closed-form solution, 3
comparison of approaches, 7f
definition, 3
drift-diffusion, see  Drift-
Diffusion
energy-transport, 4, 107
hierarchy, 3
hydrodynamic, 4, 7f, 54, 107,
141
hydrodynamic as pre-processor,
6
in TCAD hierarchy, 2, 3f
Monte Carlo, see Monte Carlo
numerical solution, 3
spherical harmonic, see Spheri-
cal Harmonic
Diagonal Dominance
advantage of, 73
at low energy, 53
Boltzmann equation, 53
definition, 73
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first derivatives and, 57n
hole-continuity equation, 192
impact ionization, 75, 76
inelastic acoustic phonon, 75, 76
inter-band optical phonon, 75,
76
optical phonon, 53, 74, 76
original variable, 74
Poisson equation, 187
pre-Maxwellian variable, 71, 73,
76, 78
second derivatives, 57n
space-dependent term, 74, 76
Diffusion Equation, 35
Dimensionality
curse of, 11, 14
of Boltzmann transport equa-
tion, 6, 14, 19
of distribution function, 6
reduction by spherical harmon-
ics, 6, 14
Dirichlet, see Boundary Condition,
Dirichlet
Dirichlet Boundary  Condition,
see Boundary Condition,
Dirichlet
Discretization
arithmetic-mean, 66, 180
Boltzmann equation, 61, 63
Boltzmann equation, final form,
68
boundary condition, 69
box-integration, 61
central-difference, 66, 185, 191
control-volume, 8, 61, 62, 136,
140, 175, 184
current-conserving property,
61, 88, 97f, 112, 122f, 140,
152f
control-volume face, 62, 63
control-volume principles, 62
current-conserving, 61, 62, 175

discretization error, 15, 63, 66,
67, 191

energy boundary condition, 70

equations in matrix form, 69

finite-difference, 6, 15

flux conservation & optical
phonon, 62

harmonic-mean, see Harmonic-
Mean Scheme

hybrid, 57n

impact ionization, 68

inelastic acoustic phonon, 8, 68,
75

insulator boundary condition,
70

inter-band optical phonon, 67

Liang-Goldsman-Mayergoyz
scheme, 179, 182

ohmic boundary condition, 70

optical phonon, 67, 74

scattering terms, 67

Scharfetter-Gummel, see
Scharfetter-Gummel  Dis-
cretization

second-order accurate, 63, 66,
67, 185, 186, 191
space-dependent term, 74, 76
upwind, 57n
Dispersion Relation, 15, 17, 21, 24,
44, 59
Dissertation
organization, 9
summary & contribution, 8
Distribution Function
asymmetric part, 19
definition of, 12
dimensionality, see Dimension-
ality
effect of impact ionization on,
113, 125f
energy distribution function, 19
equilibrium, see Thermal Equi-
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exponential variation in energy
of, 71, 73

exponential variation in space
of, 71, 73

exponential variation of, 8

impact ionization dependence
on, 142

in ballistic transport, 114, 142,
165f

in BJT, 110, 119f, 120f

in MOSFET, 140, 154f, 155f,
156f

in ntnn™, 89, 90, 100f, 101f

isotropic part of, 19

Maxwellian, see Maxwellian
Distribution

non-Maxwellian, 141

numerical noise, see Numerical
Noise

symmetric nature of, 6, 14

symmetric part, 19

tail, 5, 113, 114, 142

thermal equilibrium, see Ther-
mal Equilibrium

total, 48

two populations, 89, 111, 141

DOS (Density of States), 23, 44, 47f
Drift-Diffusion, 4, 141

as initial guess, 83

as pre-processor, 6, 9, 136, 138,
147f

BJT, 107, 109

choice of variables in, 54

comparison with BTE, 89, 114

comparison with other ap-
proaches, 7f

validity of, 4, 133

E
ECAD (Electronic CAD), 2, 3f
Effective Mass, 17, 44

Electron Concentration, 22
in BJT, 111, 121f
in higher bands, 142, 164f
in MOSFET, 141, 142, 157f,
163f, 164f
in nTnn™, 88, 96f
potential-dependence, 73, 79,
184, 186
Slotboom variables, 54, 72, 79,
184
Electron Current
BJT, 112, 122f
definition, 24
ntnnt, 88, 97f
Electron Current Density
MOSFET, 141, 158f
Electron Energy, 14
in BJT, 112, 123f
in nTnn™*, 88, 98f
MOSFET, 141, 160f, 162f, 168f
Electron Mass, see Effective Mass
Electron Spin, see Spin
Electron Velocity, see Velocity
Elliptic Equation, see Equation, el-
liptic
Energy-Transport, see Device Sim-
ulation, energy transport
Equation
coupled differential, 83
degenerate elliptic, 39
differential, 19
differential-difference, 14
diffusion equation, 35
dominant variable, 83
elliptic, 35, 39
integro-differential, 11, 14, 19
ordinary differential, 191
self-adjoint, 35
Equipment Simulation, 2

F
Feature Size, 1
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Fermi’s Golden Rule, 27
Finite-Difference Discretization, 6,
15
First Derivatives, disadvantage of,
57n
FORTRAN 77, 85, 137
Gnu compiler, 85, 138

G
Gate Length, 133, 135, 146f, see also
Channel Length
Gate Oxide, 36, 37n, 134, 137, 141,
146f
thickness, 135, 145t, 146f
Gnudi, Antonio, 133
Goldsman, Prof. Neil, 6, 8, 179, 182
Grid
BJT, 109, 110
computational molecule, 65f,
180f, 185f, 190f
for Boltzmann equation, 62, 63,
64f, 65f, 70f, 72f
in Hamiltonian, 62
in Hamiltonian and inter-band
optical phonon, 62
in Hamiltonian and optical
phonon, 62
in self-consistent solution, 90
in space, 62
MOSFET, 138, 148f
MOSFET grid generation, 136
near oxide in MOSFET, 137
ntnn't, 87
stencil, 65f
Gummel Loop, 83, 84, 86f, 87, 90
Gummel’s Decoupled Scheme, 81,
83, 86f, 109, 186

H
Hamiltonian, 15, 17, 19, 26, 54
Harmonic-Mean Scheme, 66, 179,
181

energy boundary condition and,
66
interface conductivity, 66, 181
similarity to Liang-Goldsman-
Mayergoyz scheme, 179, 182
similarity to Scharfetter-Gum-
mel discretization, 179, 181
HBT (Hetero-Junction BJT), 108
Heat Equation, 63, 179
conductivity, 63
Hennacy, Kenneth A.; 15
Hole Concentration
in BJT, 112, 122f
Slotboom variables, 184
Hole-Continuity Equation, 81, 181,
189
base boundary condition, 109
boundary conditions, 190
in 1-D BJT, 109
in BJT, 107
in spherical-harmonic approach,
6
Hot Electrons, 73
definition, 5
distribution function, 89, 111,
141
in BJT, 111
in MOSFET, 141
Hot-Electron Effect
in BJT, 111
in MOSFET, 5, 142
MOSFET substrate current,
139
Hydrodynamic, see Device Simula-
tion, hydrodynamic

|
Impact Ionization
BJT, 111, 112, 113, 124f
Chynoweth model, 113
effect on distribution function,
113, 125
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generation due to, 173
MOSFET, 141, 142, 161f, 163f
MOSFET substrate current,
139
ntnnt, 88, 98f
threshold energy, 75
Impact Ionization Coefficient, 88
BJT, 112, 124f
ntnn™, 88, 98f
Impact Tonization Scattering, 11,
27, 31, 33f
discretization, see Discretiza-
tion
energy-conservation in, 32
pre-factor (Pmpact), 50
pre-Maxwellian variable, see
Pre-Maxwellian Variable
scattering rate, 50, 52f
Thoma’s expression, 34
transport model in, 50
Integration Over k-Space, 20
Inter-Band Optical Phonon, 27, 28,
62, 79, 111, 142, 174, 175
discretization, see Discretiza-

tion
effect on upper-band popula-
tion, 142

pre-Maxwellian variable, see
Pre-Maxwellian Variable
scattering rate, 28
similarity to optical phonon, 28
transport model in, 49
Interface
artificial, 36, 135
semiconductor-insulator, 36
semiconductor-metal, 35
semiconductor-oxide, 36, 135
Intrinsic Concentration (n;), 178,
184
Intrinsic Region of Device, 35
Ionized Impurity Scattering, 27, 30
Debye length, 30, 49

discretization, see Discretiza-
tion

effect on velocity, 113, 126f

elastic nature of, 30

enhancement factor (&mpurity),
50

equilibrium electron density in,
30

pre-Maxwellian variable, see
Pre-Maxwellian Variable

scattering rate, 30, 50, 51f

transition rate, 30

transport model in, 49

Italian Spherical-Harmonic Group,

6, 15

J
Junction Depth in MOSFET, 134,
145t, 146f
Junction Isolation in BJT, 117f

K
k-Space
conversion of sum to integral, 20
integration over, 20

summation over, 19
Kolodziejczak, K., 29

L
Law of Mass Action, 36, 190
Legendre Polynomials, 6, 30
Liang-Goldsman-Mayergoyz
Scheme, 179, 182
Lin, Hongchin, 37

M
Maryland, University of, 6
Mass, see Effective Mass
Maxwell-Boltzmann Distribution,
see Maxwellian Distribution
Maxwellian Distribution, 14, 36, 73,
78, 79, 88, 89, 90, 113, 114,
143, 177, 178
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as initial guess, 83, 136
average energy of, 88, 115, 143
BJT, 111, 115
MOSFET, 140, 142
ntnn*t, 90, 101f
Maxwellian Factor, 54
Mayergoyz, Prof. Isaak, 6, 179, 182
fixed-point technique advan-
tages, 80
fixed-point technique of, 8, 54,
72, 80
Meteorology, Spherical Harmonics
in, 15
MIT (Massachusetts Institute of
Technology), 6
Momentum
quantum mechanical, 14
Monte Carlo, 4, 11, 80, 133, 141, 184
BJT, 112
BJT doping, 110
BJT simulation, 108
comparison with other ap-
proaches, 7f
CPU-time comparison with
spherical harmonic, 5, 7f
full-band, 8
retarding potential, 108
self-consistent, 80, 184
statistical noise in, 5
Moore’s Law, 1
MOSFET, 133, 134
as 2-D device, 135
ballistic transport, 142, 165f
band-structure in simulation,
133, 134
boundary conditions, 135
channel length, 1, 135, 146f
channel length, effective, 138,
145t
channel length, future, 2
channel length, gate, 133, 135
channel length, metallurgical,

135, 145t, 146f, 149f
convergence criterion, 136
current through cross-section,
140, 152f
DD versus BTE, 141, 157f
dead-space effect, 142
decoupled solution scheme,
136, 147f
deep sub-micron, 133
distribution function, 140, 154f,
155f, 156f
distribution function at thermal
equilibrium, 166f

doping profile, 138, 149f

effect of channel-length, 143

electric field, 140, 141, 143,
153f, 162f, 168f

electric potential, 140, 141,
152f, 162f

electron concentration, 141,
1571, 163f
electron concentration in higher
bands, 142, 164f
electron concentration spread-
ing near drain, 141, 157f

electron current density, 141,
158f

electron energy, 141, 160f, 162f,
168f

electron velocity, 141, 142, 143,

1591, 163f, 168f
gate current, 5
grid, 138, 148f
grid generation, 136
grid near oxide, 137
half-Gaussian doping, 138
hot-electron, 139, 141, 142
hot-electron effects, see Hot-

Electron Effects, in MOS-

FET
hot-electrons, 142
Ips-Vps characteristic, 139, 151
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150f

impact ionization, 141, 142
161f, 163f

Ia-Vas characteristic, 139,
151f

I-V characteristics, 139, 150f,
151f

junction depth, 134, 145t, 146f

long channel-length, 143

output characteristics, 139, 151f

poly-silicon gate, 138

principle of operation, 134

saturation, 139

self-consistent simulation, 133

simulation time, 138

simulator, 137

spherical-harmonic simulation,
6,9, 133

strong inversion, 139

structure, 134, 146f

structure for simulation, 138,
145t

sub-micron, 133, 134

sub-threshold, 139

sub-threshold transfer charac-
teristic, 139, 150f

substrate current, 5, 139, 151f

substrate current & impact ion-
ization, 139, 141

thermal equilibrium, 143

thermal equilibrium electric
field, 143, 167f

thermal equilibrium energy,
143, 167t

threshold voltage, 139, 145t,
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transconductance, 144, 169f

transfer characteristic, 139, 150f

transistor count, 1, 133

velocity, 141, 142, 143, 159f,
163f, 168f

velocity overshoot, 142, 143
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ntnn't, 81, 85
comparison with MOSFET, 81,
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DD versus BTE, 89, 99f
dead-space effect, 88
distribution function, 89, 90,
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doping & structure, 87, 94f
electric field, 87, 95f
electric potential, 87, 95f
electron concentration, 88, 96f
electron current, 88, 97f
electron energy, 88, 98f
grid, 87
Gummel loops, 87
impact ionization coefficient,
88, 98f
self-consistency, 88, 99f
simulation time, 87
simulator, 85
spherical-harmonic simulation,
6,9
thermal equilibrium, 90, 101f
thermal equilibrium electric
field, 90, 102f
velocity, 87, 96f
velocity overshoot, 87
Non-Degenerate  Semiconductors,
26
Non-Equilibrium Transport, 5
BJT, 112
MOSFET, 144
ntnnt, 81, 85, 88
Non-Local Effect, 5
BJT, 112
Non-Parabolicity Factor, 44



INDEX

219

Numerical Noise, 8, 81, 91
due to absence of coupling, 91
first derivatives, 57
inelastic acoustic phonons and,
91, 93, 105f, 106f
numerical cause, 92
physical cause, 92
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Optical Phonon, 27, 27, 79
Bose-Einstein relation in, 27
conservation of flux, 62
deformation potential, 27
discretization, see Discretiza-

tion
energy exchange in, 93
energy of, 27
frequency of, 27
generation due to, 174, 175
number of, 27
pre-Maxwellian variable, see
Pre-Maxwellian Variable
scattering rate, 28, 50f
transition rate, 27
transport model in, 48
velocity saturation, 114

Orthogonality, see Spherical Har-

monic, orthogonality

Oxide, see Gate Oxide

P
p-n Junction, 107
Patankar, Suhas V., 66, 71, 179
harmonic-mean scheme of, see
Harmonic-Mean Scheme
Permittivity of free space, 183
Permittivity of Silicon, 30, 183
Phonon
acoustic, see Acoustic Phonon
inter-band optical, see Inter-
Band Optical Phonon
optical, see Optical Phonon
Planck’s Constant, 14, 44

Poisson Equation, 2, 183, 183
base boundary condition, 109
Boltzmann-Poisson system, 9,
177,178, 186
boundary conditions, 184
damping, 186
discretization, 184
in 1-D BJT, 109
linear, 183, 184
Mayergoyz’ fixed-point tech-
nique, see Mayergoyz, fixed-
point technique of
non-linear, 72, 80, 90, 177, 178,
183, 184
self-consistent, 6
solvers, 72
thermal equilibrium, see Ther-
mal Equilibrium
Poly-Silicon, 138
Pre-Maxwellian Variable, 8, 54
acoustic phonon, 57, 78t
advantages of, 8, 53, 71
Boltzmann equation in, 55, 60
code reuse, 72
diagonal dominance, 71, 73, 76,
78, 78t
impact ionization, 59, 78t, 79
inter-band optical phonon, 57,
78t
ionized impurity scattering, 59,
78t
linearity of BTE, 8, 54, 72
Maxwellian factor, 54
optical phonon, 56, 78t
Poisson equation, 72, 79
Slotboom variables, 54, 72, 79
space-dependent factor, 54
Process Simulation, 2

Q
Quantum Mechanics, 12, 14

Quasi-Fermi Potential Variables, 54
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Reduced Planck’s Constant, 14
Reliability, 8
MOSFET, 142

S
Scattering, 26
acoustic, see Acoustic Phonon
analytical evaluation of, 6
Collision, 26
discretization, see Discretiza-
tion
energy exchange in, 92
impact ionization, see Impact
Ionization Scattering
in non-degenerate semiconduc-
tors, 26
inter-band optical, see Inter-
Band Optical Phonon
ionized impurity, see Ionized
Impurity Scattering
optical, see Optical Phonon
phonon, see Phonon
pre-Maxwellian variable, 56
randomizing nature of, 6, 14
spin in, 26
total rate, 35
transition rate, see Transition
Rate
transport model, see Transport
Model
Scattering Integral
analytical evaluation of, 6
Scattering-Matrix Approach, 11,
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Scharfetter-Gummel Discretization,
5Tn, 190
similarity to harmonic-mean
scheme, 179, 181
Schrodinger Equation, 19
Second Derivatives, advantage of,
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Seidman Modification, 192
Self Adjoint
Boltzmann equation, 18
inelastic acoustic phonon, 8, 9
Semiconductors
non-degenerate, 26
rice of industry, 1
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density of, 27
DOS (density of states), see
DOS
permittivity of, 30, 183
relative permittivity of, 183
sound velocity in, 29
Silicon Dioxide, 135
Simulation
BJT, see BJT
device, see Device Simulation
equipment, 2
MOSFET, see MOSFET
ntnnt, see ntTnn™
process, 2, 54
small-circuit, 2
Simulator
BJT, 85
MOSFET, 137
ntnn*, 85
Slotboom Variables, 54, 72, 79, 80,
179, 184
SOR (Successive Over-Relaxation),
8, 81, 90
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rate of convergence, 91
SOR factor, 83, 90
Spectral Methods
errors in, 15, 18
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Spherical Harmonic, as
spectral method
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Wave Vector
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Spherical Harmonic

advantages, 5

as spectral method, 6, 15, 18

band-structure in, 8

basic idea, 5

BJT, see BJT

Boltzmann equation as degener-
ate elliptic, 39

comparison with other ap-
proaches, 5, 7f

CPU-time comparison with
Monte Carlo, 5, 7f

expanded Boltzmann equation,
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functional form of, 16

hybrid simulator, 6
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in Boltzmann transport equa-
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summary of derivation, 15
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literature review, 6
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post-processing, 6, 9

second-order differential equa-
tion, 19
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space-dependent, 8

space-independent, 6, 8

summary of derivation, 15

truncation, 15, 18

Spin

in scattering, 26
in summation over k-space, 20

Substrate Current, see MOSFET,

substrate current
Summation Over k-Space, 19
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131f
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unique solution at, 178
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Thesis, see Dissertation
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Thomas’ Tridiagonal Matrix
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see also MOSFET, thresh-
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for acoustic phonon scattering,
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for ionized impurity scattering,
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for optical phonon scattering,
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Transport Model, 48
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