
UMIACS-TR-95-48 April, 1994CS-TR-3457Transitive Closure of In�nite Graphs and its ApplicationsWayne Kelly William Pughwak@cs.umd.edu pugh@cs.umd.eduDept. of Computer Science Institute for Advanced Computer StudiesDept. of Computer ScienceEvan Rosser Tatiana Shpeismanejr@cs.umd.edu murka@cs.umd.eduDept. of Computer Science Dept. of Computer ScienceUniv. of Maryland, College Park, MD 20742AbstractInteger tuple relations can concisely summarize many types of information gathered from analysis ofscienti�c codes. For example they can be used to precisely describe which iterations of a statement aredata dependent of which other iterations. It is generally not possible to represent these tuple relationsby enumerating the related pairs of tuples. For example, it is impossible to enumerate the related pairsof tuples in the relation f[i] ! [i + 2] j 1 � i � n � 2 g. Even when it is possible to enumerate therelated pairs of tuples, such as for the relation f[i; j] ! [i0; j0] j 1 � i; j; i0; j0 � 100 g, it is often notpractical to do so. We instead use a closed form description by specifying a predicate consisting of a�neconstraints on the related pairs of tuples. As we just saw, these a�ne constraints can be parameterized,so what we are really describing are in�nite families of relations (or graphs). Many of our applicationsof tuple relations rely heavily on an operation called transitive closure. Computing the transitive closureof these \in�nite graphs" is very di�erent from the traditional problem of computing the transitive closureof a graph whose edges can be enumerated. For example, the transitive closure of the �rst relation aboveis the relation f [i] ! [i0] j 9� s:t: i0 � i = 2� ^ 1 � i � i0 � n g. As we will prove, this computationis not computable in the general case. We have developed algorithms that produce exact results in mostcommonly occurring cases and produce upper or lower bounds (as necessary) in the other cases. Thispaper will describe our algorithms for computing transitive closure and some of its applications such asdetermining which inter-processor synchronizations are redundant.This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Transitive Closure of In�nite Graphsand its ApplicationsWayne Kelly, William Pugh, Evan Rosser and Tatiana ShpeismanDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742fwak,pugh,ejr,murkag@cs.umd.eduAbstract. Integer tuple relations can concisely summarize many typesof information gathered from analysis of scienti�c codes. For examplethey can be used to precisely describe which iterations of a statementare data dependent of which other iterations. It is generally not possi-ble to represent these tuple relations by enumerating the related pairsof tuples. For example, it is impossible to enumerate the related pairsof tuples in the relation f[i] ! [i + 2] j 1 � i � n � 2 g. Even whenit is possible to enumerate the related pairs of tuples, such as for therelation f[i; j] ! [i0; j0] j 1 � i; j; i0; j0 � 100 g, it is often not practi-cal to do so. We instead use a closed form description by specifying apredicate consisting of a�ne constraints on the related pairs of tuples.As we just saw, these a�ne constraints can be parameterized, so whatwe are really describing are in�nite families of relations (or graphs).Many of our applications of tuple relations rely heavily on an operationcalled transitive closure. Computing the transitive closure of these \in�-nite graphs" is very di�erent from the traditional problem of computingthe transitive closure of a graph whose edges can be enumerated. Forexample, the transitive closure of the �rst relation above is the relationf [i]! [i0] j 9� s:t: i0 � i = 2� ^ 1 � i � i0 � n g. As we will prove, thiscomputation is not computable in the general case. We have developedalgorithms that produce exact results in most commonly occurring casesand produce upper or lower bounds (as necessary) in the other cases.This paper will describe our algorithms for computing transitive closureand some of its applications such as determining which inter-processorsynchronizations are redundant.1 IntroductionAn integer tuple relation is a relation whose domain consists of integer k-tuplesand whose range consists of integer k0-tuples, for some �xed k and k0. An integerk-tuple is simply a point in Zk. The following is an example of a relation from1-tuples to 2-tuples: f [i]! [i0; j0] j 1 � i = i0 = j0 � n gThese relations can concisely summarize many kinds of information gatheredfrom analysis of scienti�c codes. For example, the relation given above describes

do 2 i = 1, n1 a(i,i) = 0do 2 j = 1, i2 b(i,j) = b(i,j) + a(i,j)Fig.1. Example programthe data dependences from statement 1 to statement 2 in the program shown inFigure 1.We use the term dependence relation rather than tuple relation when theydescribe data dependences. A dependence relation is a much more powerful ab-straction that the traditional dependence distance or direction abstractions. Theabove program has dependence distance (0), but that doesn't tell us that onlythe last iteration of j loop is involved in the dependence. This type of addi-tional information is crucial for determining the legality of a number of advancedtransformations [3]. Tuple relations can also be used to represent other formsof ordering constraints between iterations that don't necessarily correspond todata dependences. For example, we can construct relations that represent whichiterations will be executed before which other iterations. We will see later howthese relations can be used to avoid redundant synchronization of iterations ex-ecuting on di�erent processors. As a third application of relations, we show howthey can be used to compute closed form expressions for induction variables.The next section describes the general form of the relations that we canhandle, and the operations that we can perform on them. The remainder of thepaper examines the transitive closure operation. First, we describe how transitiveclosure of relations leads to simple and elegant solutions to several programanalysis problems. We then describe the algorithms we use to compute transitiveclosure.2 Tuple RelationsThe class of scienti�c codes that is amenable to exact analysis generally consistsof for loops with a�ne loop bounds, whose bodies consist of accesses to scalarsand arrays with a�ne subscripts. The following general form of an integer tuplerelation is therefore expressive enough to represent most information derivedduring the analysis of such programs:f[s1; : : : ; sk]! [t1; : : : ; tk0] j n_i=19�i1; : : : ; �imi s:t: Fi gwhere the Fi's are conjunctions of a�ne equalities and inequalities on the inputvariables s1 : : : ; sk, the output variables t1; : : : ; tk0, the existentially quanti�edvariables �i1; : : : ; �imi and symbolic constants. These relations can be writtenequivalently as the union of a number of simpler relations, each of which can be

operation Description De�nitionF \ G Intersection of F and G x!y 2 F \ G, x!y 2 F ^ x!y 2 GF [G Union of F and G x!y 2 F \ G, x!y 2 F _ x!y 2 GF � G Di�erence of F and G x!y 2 F � G, x!y 2 F ^ x!y 62 Grange(F) Range of F y 2 range(F) , 9x s:t: x!y 2 Fdomain(F) Domain of F x 2 domain(F) , 9y s:t: x!y 2 FF � G Cross product of F and G x! y 2 (F �G) , x 2 F ^ y 2 GF � G Composition of F and G x! z 2 F � G, 9y s:t: y!z 2 F ^ x!y 2 GF � G Join of F and G x ! y 2 (F � G), x!y 2 (G � F)F � G F is subset of G x!y 2 F) x!y 2 GTable 1. Operations on tuple relationsdescribed using a single conjunct:n[i=1f[s1; : : : ; sk]! [t1; : : : ; tk0] j9�i1; : : : ; �imi s:t: Fi gTable 1 gives a brief description of some of the operations on integer tuplerelations that we have implemented and use in our applications. The implementa-tion of these operations is described elsewhere [2] (see also http://www.cs.umd.edu/projects/omega or ftp://ftp.cs.umd.edu/pub/omega)In addition to these operations we have also implemented and use in ourapplications the transitive closure operator:x!z 2 F � , x = z _ 9y s:t: x!y 2 F ^ y!z 2 F �and positive transitive closure operator:x!z 2 F+ , x!z 2 F _ 9y s:t: x!y 2 F ^ y!z 2 F+In previous work[4], we developed algorithms for a closely related operationcalled a�ne closure. A�ne closure is well suited to testing the legality of reorder-ing transformations and is generally easier to compute than transitive closure.But many of our applications require the full generality of transitive closure.Unfortunately, the exact transitive closure of an a�ne integer tuple relationmay not be a�ne. In fact, we can encode multiplication using transitive closure:f[x; y]! [x+ 1; y + z]g� is equivalent to: f[x; y]! [x0; y + z(x0 � x)] j x � x0gAdding multiplication to the supported operations allows us to pose undecidablequestions. Transitive closure is therefore not computable in the general case.3 ApplicationsThis section describes a number of applications of tuple relations and demon-strates the importance of the transitive closure operator.

Original program:do i = 1, 3do j = 1, 4a(i,j)=a(i-1,j)+a(i,j-1)+a(i-1,j-1)Program with posts and waits inserted:doacross i = 1, 3doacross j = 1, 4if (1<i) wait(1,i-1,j)if (1<j) wait(2,i,j-1)if (1<i and 1<j) wait(3,i-1,j-1)a(i,j)=a(i-1,j)+a(i,j-1)+a(i-1,j-1)if (i<3) post(1,i,j)if (j<4) post(2,i,j)if (i<3 and j<4) post(3,i,j)
Dependence pattern:

3

2

1

1 2 3 4

j

iFig.2. Example of redundant synchronization3.1 Simple redundant synchronization removalA common approach to executing scienti�c programs on parallel machinesis to distribute the iterations of the program across the processors. If thereare no dependences between iterations executing on di�erent processors thenthe processors can execute completely independently. Otherwise, the processorswill have to synchronize at certain points to preserve the original sequentialsemantics of the program. On a shared memory system, the simplest way toachieve the necessary synchronization is to place a post statement after thesource of each dependence and a corresponding wait statement before the sinkof each dependence. Figure 2 shows the results of inserting posts and waits forthe given example. As this example demonstrates, and is often the case, manyof the posts and waits inserted by this approach are redundant. In this example,we can see that the explicit synchronization that results from the dependencefrom the write of a(i,j) to the read of a(i-1,j-1) is redundant, since theappropriate execution ordering will always be achieved due to a chain of explicitsynchronizations that result from the other two dependences.The problem then is to identify which dependences need to be explicitly syn-chronized. In this section, we restrict ourselves to a simple case of this problemwhere: the loops are perfectly nested, the granularity of synchronization is be-tween entire iterations of the loop body (i.e., all posts occur at the end of theloop body and all waits occur at the start of the loop body), and we assumeeach iteration may execute on a di�erent processor. This is the class of problemsconsidered by some related work [5] in this area. We will show how our approachimproves on the related work in this limited domain, then in Section 3.3, we willshow how to extend the approach to the more general problem.We �rst compute a dependence relation d that represents the data depen-dences between di�erent iterations of the loop body (see Figure 3 for an exam-ple). Each of these dependences will have to be synchronized either explicitlyor implicitly. The transitive closure, d+, of this relation will contain all pairs ofiterations that are linked by a chain of synchronizations of length one or more.

doacross i ...doacross j ...a(i+3,j)=b(i-1,j-1)+ ...b(i,j) = = b(i-2,j+1)+c(i-1,j-1)c(i,j) = a(i,j) + z(i,j)d = f[i; j]! [i + 3; j]g [f[i; j]! [i + 2; j � 1]g [f[i; j]! [i+ 1; j + 1]gd2+ = f[i; j]! [i0; j � i + i0 � 3] j i � i0 � 3g [f[i; j]! [i0; j0] j i+ 2j = i0 + 2j0 ^ j0 � j � 2g [f[i; j]! [i0; j0] j 9� s:t: j + i0 = i+ j0 + 3� ^ 6 + i+ j0 � j + i0 ^ 3 + i + 2j � i0 + 2j0g [f[i; j]! [i0; j � i + i0] j i � i0 � 2g [f[i; j]! [i0; j0] j 3 + i + 2j = i0 + 2j0 ^ j0 � jg [f[i; j]! [i0; j0] j 9� s:t: j + i0 = i+ j0 + 3� ^ 3 + i+ j0 � j + i0 ^ 6 + i + 2j � i0 + 2j0gd � d2+ = f[i; j]! [i + 2; j � 1]g [f[i; j] ! [i + 1; j + 1]gThe dependence from the write of a(i+3,j) to the read of a(i,j) is found redundant.Fig.3. Example of determining dependences that must be explicitly synchronizedThe relation d+�d, which we denote d2+, therefore contains all pairs of iterationsthat are linked by a chain of synchronizations of length two or more will there-fore not have to be explicitly synchronized. So, the dependences that we do haveto explicitly synchronize are d� d2+. Note that this is equivalent to computingthe transitive reduction of d. An example of the technique is presented in Figure3, an example from [1].In cases where more complex dependence relations cause the transitive clo-sure calculation to be inexact, we can still produce useful results. We can safelysubtract a lower bound on the 2+ closure from the dependences and still producecorrect (but perhaps conservative) synchronization.Our approach improves on related work in the following ways:1. We use tuple relations as an abstraction for data dependences rather thanthe more traditional dependence distance representation. This allows us tohandle non-constant dependences, which previous work is not able to do (seeFigure 4).2. Using dependence relations also allows us to use our algorithm for multi-dimensional loops without having to make special checks in boundary con-ditions. Related work builds an explicit graph of a subset of the iterationspace, with each node representing an iteration of the loop body, and eachedge representing a dependence [5]. Redundancy is found either throughtaking the transitive closure or reduction of this graph, or using algorithmsthat search a subgraph starting at the �rst iteration. In a one-dimensionalloop, provided all dependence distances are constant, it is simple to �nd asmall subgraph such that if a dependence is redundant in the subgraph, itis redundant throughout the iteration space.But in a multidimensional loop, the existence of negative inner dependence

doacross i = 1, ndoacross j = 1, mA(i,j+2*i) = A(i,j) + Z(i,j)B(i,j) = B(i,j-4) + Y(i,j)d11 = f[i; j]! [i;2i+ j] j 1 � i � n ^ 2i+ j � m ^ 1 � jgd22 = f[i; j]! [i; j + 4] j 1 � i � n ^ 1 � j < mgd = d11 [d22d+ = f[i; j]! [i; j0] j 9� s:t: j0 = j + 4� ^ 1 � i � n ^ 1 � j � j0 � 4 ^ j0 � mg [f[i; j]! [i;2i+ j] j 1 � i � n ^ 2i+ j � m ^ 1 � jgd2+ = d+ � d= f[i; j]! [i; j0] j 9� s:t: j + 4� = 2i+ j0 ^ 1 � i � n ^ j0 � m ^ 1 � j ^ 4 + 2i+ j � j0g [f[i; j]! [i;4i+ j] j 1 � i � n ^ 4i+ j � m ^ 1 � jg [f[i; j]! [i; j0] j 9� s:t: j + 4� = j0 ^ 1 � i � n ^ 1 � j � j0 � 8 ^ j0 � mgd � d2+ = f[i; j]! [i;2i+ j] j 1 � i � 3; n ^ 2i+ j � m ^ 1 � jg [f[i; j]! [i;2i+ j] j 9� s:t: 0 = 1 + i+ 2� ^ 5 � i � n ^ 1 � j ^ 2i+ j � mg [f[i; j]! [i; j + 4] j 2 � i � n ^ 1 � j � m � 4gWe �nd that d11 does not need to be enforced when i > 3 and i is even (and thus 2i is a multipleof 4.) Fig.4. Example of non-constant dependence distances and partial redundancydistances (such as (1,-2)) can result in non-uniformly redundant synchroniza-tions [1]. A chain of synchronizations may exist within part of the iterationspace, but at the edges of the iteration space, the chain may travel outsidethe bounds of the loops, and so intermediate iterations in the chain do notexecute; thus it is di�cult to �nd a small graph that �nds all uniform re-dundancy. Figure 5 shows an example of �nding an alternate path to handlethe boundary cases. Methods that search a small graph, but which may misssome redundancy when nesting is greater than 2 have been developed[5].
redundant dependences

j

i 2

1
1 n-2 n-1 n n+1

1 <= j <= n

non-redundant
dependences

dependences to/from
iterations not executed

3

4
alternate path

.

.Fig.5. Finding alternate paths at boundaries; (3,0) is redundant when n > 1

Because we start with more precise dependence information, we do not havethe same problem. No out-of-bounds iteration is in the range or domain ofany dependence relation. Thus, we never need to worry that the 2+ closurewill contain chains that are illegal at the edges of the iteration space. At thesame time, since the 2+ closure contains all chains of two or more orderingconstraints, all possible alternate paths are contained in it.3. When a dependence is only partially redundant, we produce the conditionsunder which it needs to be explicitly enforced, and we can use that informa-tion to conditionally execute synchronization.3.2 Testing the legality of iteration reordering transformationsOptimizing compilers reorder the iterations of statements so as to expose orincrease parallelism and to improve data locality. An important part of thisprocess is determining for each statement, which orderings of the iterations ofthat statement will preserve the semantics of the original code. Before we decidewhich orderings will be used for other statements, we can determine necessaryconditions for the legality of an ordering for a particular statement by consideringthe direct self dependences of that statement. For example, it is not legal tointerchange the i and j loops for statement 1 in Example 1 in Figure 6 becauseof the direct self dependence from a(i � 1; j + 1) to a(i; j). It is legal, however,to interchange the i and j loops for statement 2.We can obtain stronger legality conditions by considering transitive self de-pendences, as is demonstrated by Example 2 in Figure 6. In this example, execut-ing the i loop in reverse order is legal for both statements with respect to directself dependences (there aren't any), but is not legal with respect to transitiveself dependences.To compute all transitive dependences we use an adapted form of the Floyd-Warshall algorithm for transitive closure. The algorithm is modi�ed because weneed to characterize each edge, not simply determine its existence. The algorithmis shown in Figure 7. In an iteration of the k loop, we update all dependences toincorporate all transitive dependences through statements 1::k. The key expres-sion in the algorithm is drq � (drr)� �dpr. We include the (drr)� term because wewant to infer transitive dependences of the following form:If there is a dependence from iteration i1 of statement sp to iterationdo i = 1, ndo j = 1, m1 a(i,j) = a(i,j) + a(i-1,j+1)2 b(i,j) = b(i,j) + a(i,j)Example 1 do 2 i = 1, 41 a(i) = b(i)2 b(i) = a(i-1)Example 2Fig.6. Examples of direct and transitive self dependences

for each statenment rfor each statement pfor each statement qdpq = dpq [drq � (drr)� � dprFig.7. Modi�ed Floyd-Warshall algorithmi2 of statement sr and a chain of self dependences from iteration i2 toiteration i3 and �nally a dependence from iteration i3 to iteration i4 ofstatement sq then there is a transitive self dependence from iteration i1to iteration i4.3.3 General redundant synchronization removalIn this section, we consider a more general form of the problem described inSection 3.1. We no longer require the loops to be perfectly nested, the granularityof synchronization is now between iterations of particular statements (i.e. postsand waits occur immediately before and after the statements they are associatedwith) and we know how iterations will be distributed to the physical processors.For example, iterations may be distributed to a virtual processor array via adata distribution and the owner computes rule, and the virtual processor arraymay be folded onto the physical processor array in say a blocked fashion.For each pair of statements p and q, we construct a relation that representsall ordering constraints on the iterations that are guaranteed to be satis�ed inthe distributed program. Such ordering constraints come from two sources:1. If there is a data dependence from iteration i of statement p to iteration jof statement q (denoted i! j 2 dpq), then i is guaranteed to be executedbefore j in any semantically equivalent distributed version of the program.2. If iteration i of statement p and iteration j of statement q will be executedon the same physical processor (denoted sp(i) = sq(j)), and iteration i isexecuted before iteration j in the original execution order of the program(denoted i �pq j), then i is guaranteed to be executed before j in the dis-tributed program.Combining these ordering constraints gives:cpq = dpq [fi!j j i �pq j ^ sp(i) = sq(j)gUnlike in Section 3.1, we cannot determine which dependences need not be ex-plicitly synchronized simply by computing (cpq)2+. A synchronization may beredundant because of a chain of synchronizations through other statements. Todetermine such chains of ordering constraints, we �rst apply the algorithm inFigure 7 substituting cpq for dpq and producing c0pq. This gives us all chains ofordering constraints of length one or more. We then �nd all chains of orderingconstraints of length two or more using:c00pq = [r2fstatementsgcrq � c0pr

We do not need to explicitly synchronize iterations if they will be executedon the same physical processor, or if there is a chain of ordering constraints oflength two or more. Therefore the only dependences that we have to synchronizeexplicitly are: dpq � fi!j j sp(i) = sq(j) g � c00pqIf the number of physical processors is not known at compile time, the ex-pression sp(i) = sq(j) may not be a�ne. In such cases, we can instead use thestricter requirement that the two iterations will execute on the same virtual pro-cessor. This expression is always a�ne for the class of programs and distributionmethods that we are able to handle and is a su�cient condition for the twoiterations to be executed on the same physical processor. So, any redundancythat we �nd based on this stronger requirement can be safely eliminated.Related work[6, 7, 1] considers the case of synchronization between state-ments with methods similar to the simple case. All of the methods build anexplicit graph of a subset of the iteration space, with each node representing aniteration of a statement. Redundancy is found either by searching the graph[1]or using transitive closure of the graph[6, 7]; dependences are restricted to con-stant distances; and the problem regarding boundary cases still exists. Thesemethods search a small graph which �nds all redundancy when nesting level is2, but may miss some redundancy when the nesting level is greater[1]. Noneof the above methods consider non-perfectly nested loops, and they do not useinformation regarding distribution. One previous technique has such the abilityto generate the conditions under which a non-uniformly redundant dependencemust be enforced[7], but the authors indicate that their technique may requiretaking transitive closure of a large subset of the iteration space.3.4 Induction variablesTuple relations and the transitive closure operation can also be used to computeclosed form expressions for induction variables.We will use the program in Figure8 as an example. In this example, we will be using 4-tuples because there are fourscalar variables of interest in this program: i, j, n and m. For each edge in thecontrol
ow graph, we create a state transition relation which summarizes thechange in value of the scalars as a result of executing the code in the control
ownode corresponding to that edge and under what conditions execution occurs (seeFigure 8). To investigate the state of the scalar variables at statement 6, we coulduse the algorithm in Figure 7 to compute (along with other things) all transitiveedges from the start node to the node containing statement 6. Alternatively, wecan directly calculate:R1 � (R2 � (R3 �R4)� �R5)� �R2 � (R3 �R4)� �R3Which in this case evaluates to:f[i; j; p; q]! [i0; j0; i0 � 1; 20i0 + 2j0 � 20] j 2 � i0 � n ^ 1 � j0 � 10g[f[i; j; p; q]! [1; j0; n; 2j0] j 1 � j0 � 10 ^ 1 � ng

1 q = 02 p = n3 for i = 1 to n4 for j = 1 to 105 q = q + 26 x[q] = y[p]7 p = iR1 = f[i; j; p; q] ! [1; j; n;0]gR2 = f[i; j; p; q] ! [i; 1; p; q] j i � ngR3 = f[i; j; p; q] ! [i; j; p; q + 2] j j � 10gR4 = f[i; j; p; q] ! [i; j + 1; p; q]gR5 = f[i; j; p; q] ! [i + 1; j; i; q] j j > 10gR6 = f[i; j; p; q] ! [i; j; p; q] i > ng
Start

R 2

R 3

4R

R 5

i <= n

j<=10

x[q] = y[p]

q=q+2

j++

j = 1

q = 0
p = n

i = 1

p = i
i++

End

R 6

R1

.

. .Fig.8. Induction Variable ExampleFrom this result, we can deduce that at line 6 we can replace the inductionvariable p with (i=1?n:i-1) and the induction variable q with 20i+2j-20.This general approach has uses other that induction variable recognition,such as deriving or proving assertions about scalar variables. The fact that wecould use transitive closure to potentially completely describe the e�ect of arbi-trary programs consisting of loops and conditionals with a�ne bounds and con-ditions and assignment statements involving a�ne expressions further demon-strates that transitive closure cannot always be computed exactly, since suchanalysis is known to be uncomputable.4 Computing the Transitive Closure of a Single RelationIn this section we describe techniques for computing the positive transitive clo-sure of a relation. The transitive closure R� can be computed from the positivetransitive closure R+ as R+[I, where I is the identity relation. In the followingtext we will use the term transitive closure for both R+ and R�. The di�erencewill be evident from the context.The exact transitive closure R+ of a relation R can be equivalently de�ned asR+ = S1k=1Rk, where Rk = R �R � : : : �R| {z }k times . We will shortly describe techniquesthat will often compute R+ exactly. In situations where they do not apply, wecan produce increasingly accurate lower bounds using the following formula:R+LB(n) = n[k=1Rk (1)In some cases R+LB(n) = R+ for all n greater than some small value. The follow-ing theorem allows us to determine when a lower bound is equal to the exacttransitive closure:

Theorem1. For all relations P and R such that R � P � R+ the followingholds: P = R+ if and only if P �R � P .Proof. The \only if" part is trivial. To prove the \if" part we will prove byinduction on k that Rk � P . The assumption R � P proves the base case. IfRk � P then Rk+1 = (Rk � R) � (P � R) � P . Since R+ = S1k=1Rk and8k � 1; Rk � P , we know that R+ � P . Thus P = R+. 2Corollary2. R+LB(n) = R+ i� R+LB(n) �R � R+LB(n) .Thus, one approach to computing transitive closure would be to computemore and more accurate lower bounds until the result becomes exact. Althoughthis technique works in some cases, there is no guarantee of termination. Forexample, the exact transitive closure of R = f[i]! [i+ 1]g cannot be computedusing this approach. Thus more sophisticated techniques are required. Section4.1 describes techniques that work in the special case of relations that can bedescribed by a single conjunct. Section 4.2 describes techniques for the generalcase, making use of the techniques used for the single conjunct case.4.1 Single conjunct relationsFor a certain class of single conjunct relations, the transitive closure can becalculated straightforwardly. Consider the following example:R = f[i1; i2]! [j1; j2] j j1 � i1 � 2 ^ j2 � i2 = 2 ^ 9� s:t: j1 � i1 = 2�gFor any k � 1 the relation Rk can be calculated as:Rk = f[i1; i2]! [j1; j2] j j1 � i1 � 2k ^ j2 � i2 = 2k ^ 9� s:t: j1 � i1 = 2�gBy making k in the above expression existentially quanti�ed, we get the unionof Rk for all k > 0; that is, R+:f[i1; i2]! [j1; j2] j 9k > 0 s:t: j1� i1 � 2k^ j2 � i2 = 2k ^9� s:t: j1 � i1 = 2�gThis method can be used for any relation that only contains constraints on thedi�erences between the corresponding elements of the input and output tuples.We call such relations d-form relations.De�nition3. A relation R is said to be in d-form i� it can be written as:f[i1; i2; : : : im] ! [j1; j2 : : : jm] j8p;1 � p � m; Lp � jp � ip � Up ^ jp � ip = Mp �p gwhere Lp and Up are constants and Mp is an integer. If Lp is �1 or Up is +1the corresponding constraints are not included in the above equation.The transitive closure of a d-form relation is:f[i1; i2; : : : im] ! [j1; j2 : : : im] j9k > 0 s:t: 8p;1 � p � m;Lpk � jp�ip � Upk^jp�ip = Mp �p g(2)For any relation R, it is always possible to compute a d-form relation d suchthat R � d. We can then use d+ as an upper bound on R+ since for any two

R = f[i1; i2] ! [j1; j2] j j1 � i1 = 1 ^ j2 � i2 � 2 ^ 1 � i1; j1; j2 � n^i1 � i2 � ngd = f[i1; i2] ! [j1; j1] j j1 � i1 = 1 ^ j2 � i2 � 2gd+ = f[i1; i2] ! [j1; j2] j i1 < j1 ^ j2 � i2 � 2(j1 � i1)gDomain(R) = f[i1; i2] j 1 � i1 � i2 � n� 2gRange(R) = f[j1 ; j2] j 2 � j1 < j2 � ngh = f[i1; i2] ! [j1; j2] j 1 � i1 � i2 � n� 2 ^ 2 � j1 < j2 � ngD+ = f[i1; i2] ! [j1; j2] j 1 � i1 � i2 ^ i1 < j1 ^ j2 � n^j2 � i2 � 2(j1 � i1)gD+ is lexicographically forward and D+ � R �D+ [R, thus R+ = D+ .Fig.9. Example of calculating transitive closure of a single conjunct relationrelations R1 and R2, ifR1 � R2 then R+1 � R+2 . To improve this upper bound wecan restrict the domain and range of d+ to those of R by computingD+ = d+\h,where h = Domain(R) � Range(R).In most of our applications the relations R and D+ have the property ofbeing lexicographically forward.De�nition4. A relation A is lexicographically forward i� 8x!y 2 A; 0 � y�x(y � x is lexicographically positive).For lexicographically forward relations we can check whether the upper boundis an exact transitive closure using the following theorem:Theorem5. 8 lexicographically forward relations P;R : R � P) (P = R+ ,P � (R [R � P)).Proof. Firstly, we prove that (P � (R [R � P))) (P � R+). Rewriting thisproposition in the terms of the relation elements yields: (8x! z 2 P; x! z 2R _ 9y s:t: x!y 2 R^y!z 2 P)) (8x!z 2 Px!z 2 R+). This is proved byinduction on z�x using lexicographical ordering. The base case x = z is vacuous.For the induction step consider any x!y 2 P . If x! z 2 R then x! z 2 R+.Otherwise, 9y s:t: x!y 2 R^y!z 2 P . Because P and R are lexicographicallyforward, z � x � z � y. Thus, by induction hypothesis, y ! z 2 R+, and,consequently x! z 2 R+, i.e. P � R+. R+ � P is in the theorem assumption,so P = R+. The reverse statement P = R+) P � R � P [R is trivial. 2Corollary 6. If D+ is lexicographically forward, thenD+ = R+ i� D+ � (R [R �D+) (3)4.2 Multiple conjunct relationsComputing the transitive closure of a relation with more than one conjunct viaa naive application of Equation 1 is prohibitively expensive due to the possibleexponential growth in number of the conjuncts. We have developed techniquesthat try to limit this growth. We �rst describe how to compute the transitiveclosure of a two conjunct relation; then we show how to generalize this techniquefor relations with an arbitrary number of conjuncts.

Input: R =Smi=1 CiOutput: R+ or R+LBInvariant: (R+ � T [W+) ^ (exact) R+ = T [W+)T = ;; W = R; exact= truewhile not (W = ; or \accept W as W+LB") dochoose a conjunct A 2 W ; remove A from Wif A+ is known thenT = T [A+Wnew = ;for all conjuncts Ci 2 W doif (A? �A+) �Ci � (A? �A+) � Ci then Wnew = Wnew [(A? �Ci �A?)else if Ci�(A?�A+) � Ci thenWnew = Wnew[(Ci�A?)[(A+ �Ci�A?)else if (A?�A+)�Ci � Ci thenWnew = Wnew[(A? �Ci)[(A? �Ci�A+)else Wnew = Wnew [(Ci � A+) [(A+ � Ci) [(A+ � Ci � A+) [CiendforW =WnewelseT = T [A+LBW = (W �A+LB) [(A+LB �W [A+LB) � (W � A+LB) [Wexact = falseendwhileif (W = ; and exact = true) or (T [W) � (T [W) � (T [W) thenR+ = T [WelseR+LB = T [WFig.10. The algorithm for computing transitive closureComputing the transitive closure of two-conjunct relations Let R be atwo-conjunct relation, R = C1 [C2. The transitive closure of R is:(C1 [C2)+ = C+1 [(C�1 �C2 �C�1)+ (4)If C�1 � C2 �C�1 is a single conjunct relation, its closure can be calculated usingthe techniques described in the Section 4.1. Unfortunately, C�1 is often not asingle conjunct relation even if C+1 is. To overcome this di�culty, we use a singleconjunct approximation of C�1 , that we will denote C?1 and call ?-closure. We tryto select an C?1 that has the following desirable propertyC�1 �C2 �C�1 � C?1 �C2 �C?1 (5)If this is the case, we can use C?1 instead of C� in Equation 4. If not, it may stillbe possible to limit the number of conjuncts in (C1 [C2)+ through the use ofC?1 if C�1 �C2 � C?1 �C2 or C2 �C�1 � C2 �C?1 . Testing the property described inEquation 5 directly is rather expensive, so instead we test a weaker predicate:(C?1 � C+1) �C2 � (C?1 �C+1) � C2.Heuristics for computing ?-closure We try to compute ?-closure for a rela-tion R only if R+ is a single conjunct relation. In such cases we are trying tocompute a R? that is a superset of R+ and includes some elements from I andalso some other elements required to make it a single conjunct relation. In manycases, these additional elements do not a�ect the result of the composition.

R = f[i; j]! [i0; j + 1] j 1 � i; j; j + 1 � n ^ i0 = ig[f[i; n] ! [i + 1;1] j 1 � i; i+ 1 � ngC+1 = f[i; j]! [i; j0] j 1 � j < j0 � n ^ 1 � i � ngC?1 = f[i; j]! [i; j0] j 1 � j � j0 � n ^ 1 � i � ngC?1 �C2 �C?1 = f[i; j]! [i + 1; j0]0 j 1 � i < n ^ 1 � j � n ^ 1 � j0 � ngSince, C?1 � C2 �C?1 � C�1 � C2 � C�1(C�1 � C2 �C�1)+ = (C?1 � C2 �C?1)+= f[i; j]! [i0; j0] j 1 � i < i0 � n ^ 1 � j; j` � ngR+ = C+1 [(C�1 � C2 � C�1)+= f[i; j]! [i0; j0] j (1 � j < j0 � n ^ 1 � i � n ^ i = i0)g[f[i; j]! [i0; j0] j (1 � i < i0 � n ^ 1 � j � n ^ 1 � j0 � n)gFig.11. Example of transitive closure calculationFor a d-form relation d (see Section 4.1) we compute d? as:f[i1; i2; : : : im] ! [j1 ; j2 : : : im] j9k � 0 s:t: 8p;1 � p � m;Lpk � jp�ip � Upk^jp�ip = Mp�p)g(6)For a relation R s:t: R+ = D+, we calculate R? by restricting the domain andrange of d? to a single conjunct tuple set h0 that contains both the domain andrange of R. In other cases we assume that ?� closure cannot be computed andset R? to ;.Computing the transitive closure of multiple conjunct relations Thetransitive closure of a relation with an arbitrary number of conjuncts can becomputed similarly to the transitive closure of a relation with two conjuncts.Let R be a m-conjunct relation R = Smi=1Ci. Its transitive closure is:R+ = C+1 [(C�1 � m[i=2Ci �C�1)+ = C+1 [(m[i=2C�1 �Ci �C�1)+For i 2 f2; : : : ;mg, C�1 �Ci�C�1 can be computed using the techniques describedin the two conjunct case. After all these terms are computed, the same algorithmcan be applied recursively to compute the transitive closure of their union. Thealgorithm is shown in Figure 10. The algorithmwill terminate when the transitiveclosure has been computed exactly or when we are willing to accept the currentapproximation as a lower bound. In many cases, what we accept as a lowerbound turns out to be exact after all, and can be proved to be so using Theorem1. An example of a transitive closure calculation using this algorithm is shownin Figure 11. The order in which we consider the conjuncts in a relation cansigni�cantly a�ect the performance of our algorithm. One heuristics that we useis to consider �rst those conjuncts Ci for which we can �nd a C?i that satis�esthe Equation 5. In some cases, pre-computing positive transitive closure of someof the conjuncts in the original relation can also simplify the calculations.The above algorithm allows us to compute the exact transitive closure of amultiple conjunct relation or its lower bound. If an upper bound is required, itcan be calculated in a manner similar to that of the single conjunct relation.

5 ConclusionWe have presented a number of applications for the transitive closure of tuplerelations. These applications include:{ Avoiding redundant synchronization of iterations executing on di�erent pro-cessors.{ Precisely describing which iterations of a statement are data dependent onwhich other iterations, and using this information to determine which itera-tion reordering transformations are legal.{ Computing closed form expressions for induction variables.We also presented algorithms for transitive closure that produce exact resultsin most commonly occurring cases and produce upper or lower bounds (as nec-essary) in the other cases. Our preliminary experiments show that we produceexact results for most of the programs we have considered. We will providedetailed experiential results in the �nal version of this paper. We believe thatthe applications described in this paper are only a small subset of the possibleapplications of this general purpose program abstraction and set of operations.References1. Ding-Kai Chen. Compiler Optimizations for Parallel Loops With Fine-Grained Syn-chronization. PhD thesis, Dept. of Computer Science, U. of Illinois at Urbana-Champaign, 1994. Also available as CSRD Report 1374.2. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, andDavid Wonnacott. The omega library interface guide. Technical Report CS-TR-3445, Dept. of Computer Science, University of Maryland, College Park, March1995.3. Wayne Kelly and William Pugh. A framework for unifying reordering transfor-mations. Technical Report CS-TR-3193, Dept. of Computer Science, University ofMaryland, College Park, April 1993.4. Wayne Kelly and William Pugh. Finding legal reordering transformations usingmappings. In Lecture Notes in Computer Science 892: Seventh International Work-shop on Languages and Compilers for Parallel Computing, Ithaca, NY, August 1994.Springer-Verlag.5. V.P. Krothapalli and P. Sadayappan. Removal of redundant dependences inDOACROSS loops with constant dependences. In Proc. of the 3rd ACM SIGPLANSymposium on Principles and Practice of Parallel Programming, pages 51{60, July1991.6. S.P. Midki� and D.A. Padua. Compiler algorithm for synchronization. IEEE Trans.on Computers, C-36(12):1485{1495, 1987.7. S.P. Midki� and D.A. Padua. A comparison of four synchronization optimizationtechniques. In Proc. 1991 IEEE International Conf. on Parallel Processing, pagesII{9 { II{16, August 1991.This article was processed using the LaTEX macro package with LLNCS style

