UMIACS-TR-95-48 April, 1994
CS-TR-3457

Transitive Closure of Infinite Graphs and its Applications

Wayne Kelly William Pugh
wak@cs.umd. edu pugh@cs.umd.edu
Dept. of Computer Science Institute for Advanced Computer Studies
Dept. of Computer Science

Evan Rosser Tatiana Shpeisman
ejr@cs.umd.edu murka@cs.umd.edu
Dept. of Computer Science Dept. of Computer Science

Univ. of Maryland, College Park, MD 20742

Abstract

Integer tuple relations can concisely summarize many types of information gathered from analysis of
scientific codes. For example they can be used to precisely describe which iterations of a statement are
data dependent of which other iterations. It is generally not possible to represent these tuple relations
by enumerating the related pairs of tuples. For example, it is impossible to enumerate the related pairs
of tuples in the relation {[i]] — [i +2] |1 <1 < n—2 }. FEven when it is possible to enumerate the
related pairs of tuples, such as for the relation {[1,7] — [¢',7'] | 1 < 4,5,4',7" < 100 }, it is often not
practical to do so. We instead use a closed form description by specifying a predicate consisting of affine
constraints on the related pairs of tuples. As we just saw, these affine constraints can be parameterized,
so what we are really describing are infinite families of relations (or graphs). Many of our applications
of tuple relations rely heavily on an operation called transitive closure. Computing the transitive closure
of these “infinite graphs” is very different from the traditional problem of computing the transitive closure
of a graph whose edges can be enumerated. For example, the transitive closure of the first relation above
is the relation { [i] — [i'] | B st. i’ —i =28 A1 <1 < <n}. As we will prove, this computation
18 not computable in the general case. We have developed algorithms that produce exact results in most
commonly occurring cases and produce upper or lower bounds (as necessary) in the other cases. This
paper will describe our algorithms for computing transitive closure and some of its applications such as

determining which inter-processor synchronizations are redundant.

This work is supported by an NSF PYI grant CCR-9157384 and by a Packard Fellowship.

Transitive Closure of Infinite Graphs
and its Applications

Wayne Kelly, William Pugh, Evan Rosser and Tatiana Shpeisman

Department of Computer Science
University of Maryland, College Park, MD 20742
{wak,pugh,ejr,murka}@cs.umnd.edu

Abstract. Integer tuple relations can concisely summarize many types
of information gathered from analysis of scientific codes. For example
they can be used to precisely describe which iterations of a statement
are data dependent of which other iterations. It is generally not possi-
ble to represent these tuple relations by enumerating the related pairs
of tuples. For example, it is impossible to enumerate the related pairs
of tuples in the relation {[1] — [1+2] | 1 <1 < n —2 }. Even when
it is possible to enumerate the related pairs of tuples, such as for the
relation {[i,7] — [¢',7'] | 1 < 1,5,¢',5/ < 100 }, it is often not practi-
cal to do so. We instead use a closed form description by specifying a
predicate consisting of affine constraints on the related pairs of tuples.
As we just saw, these affine constraints can be parameterized, so what
we are really describing are infinite families of relations (or graphs).
Many of our applications of tuple relations rely heavily on an operation
called transitive closure. Computing the transitive closure of these “infi-
nite graphs” is very different from the traditional problem of computing
the transitive closure of a graph whose edges can be enumerated. For
example, the transitive closure of the first relation above is the relation
{[] =[] 3B st.i' —i=28A1<i<i <n}. As we will prove, this
computation is not computable in the general case. We have developed
algorithms that produce exact results in most commonly occurring cases
and produce upper or lower bounds (as necessary) in the other cases.
This paper will describe our algorithms for computing transitive closure
and some of its applications such as determining which inter-processor
synchronizations are redundant.

1 Introduction

An integer tuple relation is a relation whose domain consists of integer k-tuples
and whose range consists of integer k’-tuples, for some fixed k and %&’. An integer
k-tuple is simply a point in Z*. The following is an example of a relation from
1-tuples to 2-tuples:

{ll—[J]11<i=i=j<n}

These relations can concisely summarize many kinds of information gathered
from analysis of scientific codes. For example, the relation given above describes

b)) + a(iJ)

Fig.1. Example program

the data dependences from statement 1 to statement 2 in the program shown in
Figure 1.

We use the term dependence relation rather than tuple relation when they
describe data dependences. A dependence relation is a much more powerful ab-
straction that the traditional dependence distance or direction abstractions. The
above program has dependence distance (0), but that doesn’t tell us that only
the last iteration of j loop is involved in the dependence. This type of addi-
tional information is crucial for determining the legality of a number of advanced
transformations [3]. Tuple relations can also be used to represent other forms
of ordering constraints between iterations that don’t necessarily correspond to
data dependences. For example, we can construct relations that represent which
iterations will be executed before which other iterations. We will see later how
these relations can be used to avoid redundant synchronization of iterations ex-
ecuting on different processors. As a third application of relations, we show how
they can be used to compute closed form expressions for induction variables.

The next section describes the general form of the relations that we can
handle, and the operations that we can perform on them. The remainder of the
paper examines the transitive closure operation. First, we describe how transitive
closure of relations leads to simple and elegant solutions to several program
analysis problems. We then describe the algorithms we use to compute transitive
closure.

2 Tuple Relations

The class of scientific codes that is amenable to exact analysis generally consists
of for loops with affine loop bounds, whose bodies consist of accesses to scalars
and arrays with affine subscripts. The following general form of an integer tuple
relation is therefore expressive enough to represent most information derived
during the analysis of such programs:

n
{ls1, o] = [, ti] |\/ 3o, oy i, S8 Fy
i=1

where the F;’s are conjunctions of affine equalities and inequalities on the input
variables sy ..., sg, the output variables tq,...,t;s, the existentially quantified
variables a;1, ..., a;m, and symbolic constants. These relations can be written
equivalently as the union of a number of simpler relations, each of which can be

operation |Description Definition

FngG Intersection of £ and G r—=y€EFNGoo—oy€eFANs—y€G
FUG Union of F' and G r—=y€EFNGor—y€eFVe—y€edq
F -G Difference of F' and G r—=y€EF-Gor—yeE FAe—y &G
range(F) |Range of F y € range(F) & Iz st. e —y € F
domain(F)|Domain of F z € domain(F) < Jy st. e —y € F
FxG Cross product of F and G z—yE(FXG) s eFAYyEG
Fod Composition of Fand G |t - 2 € FoG & yst.y—z2€ FAz—y€G
FedG Join of F and G z—y€E(FeG)oarz—ye(GoF)
FCG F' is subset of G r—y€EF=>r—yeq

Table 1. Operations on tuple relations

described using a single conjunct:

n
UAlses - osk] = [tn, - te] Povin, - i, st Fy)
i=1
Table 1 gives a brief description of some of the operations on integer tuple
relations that we have implemented and use in our applications. The implementa-
tion of these operations is described elsewhere [2] (see also http://www.cs.umd.ed
u/projects/omega or ftp://ftp.cs.umd.edu/pub/omega)
In addition to these operations we have also implemented and use in our
applications the transitive closure operator:

r—zeF"or=zViyst.e—ye FAy—zel"
and positive transitive closure operator:
r—zE€EFT o r—2eFVIyst.e—yeEFAy—zeFt

In previous work[4], we developed algorithms for a closely related operation
called affine closure. Affine closure is well suited to testing the legality of reorder-
ing transformations and is generally easier to compute than transitive closure.
But many of our applications require the full generality of transitive closure.

Unfortunately, the exact transitive closure of an affine integer tuple relation
may not be affine. In fact, we can encode multiplication using transitive closure:

{lz,y] = [z + 1,y + 2]}* is equivalent to: {[z,y] — [2/,y + z(z' —2)] | z < 2’}

Adding multiplication to the supported operations allows us to pose undecidable
questions. Transitive closure is therefore not computable in the general case.

3 Applications

This section describes a number of applications of tuple relations and demon-
strates the importance of the transitive closure operator.

Original program: Dependence pattern:
doi=1,3
doj=1,4 j—=
a(ij)=a(i-1,))+a(ij-1)+ali-1j-1)

Program with posts and waits inserted:

doacrossi =1, 3
doacross j = 1, 4
if (1<i) wait(1,i-1,j)
if (1<j) wait(2,i,j-1)
if (1<i and 1<) wait(3,i-1,j-1)
a(i j)=a(i-1)+a(ij-1)+ati-1i-1)
if (i<3) post(1,i,j)
if (j<4) post(2,i.)
if (i3 and j<4) post(3,i,j)

Fig. 2. Example of redundant synchronization

3.1 Simple redundant synchronization removal

A common approach to executing scientific programs on parallel machines
is to distribute the iterations of the program across the processors. If there
are no dependences between iterations executing on different processors then
the processors can execute completely independently. Otherwise, the processors
will have to synchronize at certain points to preserve the original sequential
semantics of the program. On a shared memory system, the simplest way to
achieve the necessary synchronization i1s to place a post statement after the
source of each dependence and a corresponding wait statement before the sink
of each dependence. Figure 2 shows the results of inserting posts and waits for
the given example. As this example demonstrates, and is often the case, many
of the posts and waits inserted by this approach are redundant. In this example,
we can see that the explicit synchronization that results from the dependence
from the write of a(i,j) to the read of a(i-1,j-1) is redundant, since the
appropriate execution ordering will always be achieved due to a chain of explicit
synchronizations that result from the other two dependences.

The problem then is to identify which dependences need to be explicitly syn-
chronized. In this section, we restrict ourselves to a simple case of this problem
where: the loops are perfectly nested, the granularity of synchronization is be-
tween entire iterations of the loop body (i.e., all posts occur at the end of the
loop body and all waits occur at the start of the loop body), and we assume
each 1teration may execute on a different processor. This is the class of problems
considered by some related work [5] in this area. We will show how our approach
improves on the related work in this limited domain, then in Section 3.3, we will
show how to extend the approach to the more general problem.

We first compute a dependence relation d that represents the data depen-
dences between different iterations of the loop body (see Figure 3 for an exam-
ple). Each of these dependences will have to be synchronized either explicitly
or implicitly. The transitive closure, d¥, of this relation will contain all pairs of
iterations that are linked by a chain of synchronizations of length one or more.

doacross i ...
doacross j ...
a(i4+3,))=b(i-1,j-1)+ ...
b(i,j) = ...
o = b(i-2,j4+1)4c(i-1,j-1)
c(ij) = a(ij) + 2(i4)

i+ 3, Ul =i+ 2,7 — 1ol 1= [+1,5+ 1]}

i j—i4+i'=3]]i<i’ =3}u

i i+ 2 =i 42 Ag <5 —2}u

i3 3Bt j i =i+ +B30A6+ i+ <j+i'AB+i+25<i'+25 0
i —i4i'l i< = 21U

i3t =i 2 A < GYu

1

i3 st i =i+ 4 BBAB i+ <G AG i+ 25 <i' 425}
P42, -1} u{li,j] = [+ 1,5+ 11

=

A

d—da*t =

The dependence from the write of a(i+3,j) to the read of a(i,j) is found redundant.

Fig. 3. Example of determining dependences that must be explicitly synchronized

The relation dt od, which we denote d?t, therefore contains all pairs of iterations
that are linked by a chain of synchronizations of length two or more will there-
fore not have to be explicitly synchronized. So, the dependences that we do have
to explicitly synchronize are d — d?>t. Note that this is equivalent to computing
the transitive reduction of d. An example of the technique is presented in Figure
3, an example from [1].

In cases where more complex dependence relations cause the transitive clo-
sure calculation to be inexact, we can still produce useful results. We can safely
subtract a lower bound on the 24 closure from the dependences and still produce
correct (but perhaps conservative) synchronization.

Our approach improves on related work in the following ways:

1. We use tuple relations as an abstraction for data dependences rather than
the more traditional dependence distance representation. This allows us to
handle non-constant dependences, which previous work is not able to do (see
Figure 4).

2. Using dependence relations also allows us to use our algorithm for multi-
dimensional loops without having to make special checks in boundary con-
ditions. Related work builds an explicit graph of a subset of the iteration
space, with each node representing an iteration of the loop body, and each
edge representing a dependence [5]. Redundancy is found either through
taking the transitive closure or reduction of this graph, or using algorithms
that search a subgraph starting at the first iteration. In a one-dimensional
loop, provided all dependence distances are constant, it is simple to find a
small subgraph such that if a dependence is redundant in the subgraph, it
is redundant throughout the iteration space.

But in a multidimensional loop, the existence of negative inner dependence

doacrossi = 1, n

doacross j = 1, m
AGj+2%) = A + Z(i4)
B(i,j) = B(i,j-4) + Y(iJj)

di1 ={[¢,j]—=[},2i4+35]|1<i<nA2+j<mal<j}
dag = A{[i,j] =[5 +4] | 1<i<nAl<j<m}
d = djg Uda2
dt =[] =[5 138 st ' =j+48A1<i<nA1<j<j —4nj <m}u
{Gil=[h2i+j111<i<nA2i+j<mAal<j)

T =dtod
={[i,j]—= 1,511 38st. j+48 =20+ A1 <i<nAj ' <mAl1<jA4+2i+j<j'}u
{li,j1—=[,4+]111<i<nAdi+j<mAal<jIu
{,]1= 1,5 1138 st j+48=3'A1<i<nAl<j<j =8A5 <m}
d—d*t = {[i,j]1=[i,2i+j]11<i<3,nA2+j<mAl<j}IU
{[6,j1—[6,2+35] | 3 st. 0=1+i4+26A5<i<nAl<jA24j<m}u
{li, 51—, +412<i<nAl<j<m-—4}

We find that dq; does not need to be enforced when i > 3 and i is even (and thus 2i is a multiple
of 4.)

Fig. 4. Example of non-constant dependence distances and partial redundancy

distances (such as (1,-2)) can result in non-uniformly redundant synchroniza-
tions [1]. A chain of synchronizations may exist within part of the iteration
space, but at the edges of the iteration space, the chain may travel outside
the bounds of the loops, and so intermediate iterations in the chain do not
execute; thus it is difficult to find a small graph that finds all uniform re-
dundancy. Figure 5 shows an example of finding an alternate path to handle
the boundary cases. Methods that search a small graph, but which may miss
some redundancy when nesting is greater than 2 have been developed[5].

1 <:j <=n] =
1w 02 n-1 n M1 hon-redundant
! O <+ O N dependences
Ch b ~
i 2.0 Lo O S O dependencesto/from
\L P iterations not executed
3 O cos O E b - =
;oA alternate path
14 7 ‘ b
s 0 w0 O F o -

redundant dependences

Fig.5. Finding alternate paths at boundaries; (3,0) is redundant when n > 1

Because we start with more precise dependence information, we do not have
the same problem. No out-of-bounds iteration is in the range or domain of
any dependence relation. Thus, we never need to worry that the 24 closure
will contain chains that are illegal at the edges of the iteration space. At the
same time, since the 2+ closure contains all chains of two or more ordering
constraints, all possible alternate paths are contained in 1t.

3. When a dependence is only partially redundant, we produce the conditions
under which it needs to be explicitly enforced, and we can use that informa-
tion to conditionally execute synchronization.

3.2 Testing the legality of iteration reordering transformations

Optimizing compilers reorder the iterations of statements so as to expose or
increase parallelism and to improve data locality. An important part of this
process is determining for each statement, which orderings of the iterations of
that statement will preserve the semantics of the original code. Before we decide
which orderings will be used for other statements, we can determine necessary
conditions for the legality of an ordering for a particular statement by considering
the direct self dependences of that statement. For example, it is not legal to
interchange the ¢ and j loops for statement 1 in Example 1 in Figure 6 because
of the direct self dependence from a(i — 1,5 + 1) to a(é, 7). It is legal, however,
to interchange the ¢z and j loops for statement 2.

We can obtain stronger legality conditions by considering transitive self de-
pendences, as is demonstrated by Example 2 in Figure 6. In this example, execut-
ing the ¢ loop in reverse order is legal for both statements with respect to direct
self dependences (there aren’t any), but is not legal with respect to transitive
self dependences.

To compute all transitive dependences we use an adapted form of the Floyd-
Warshall algorithm for transitive closure. The algorithm is modified because we
need to characterize each edge, not simply determine its existence. The algorithm
is shown in Figure 7. In an iteration of the k loop, we update all dependences to
incorporate all transitive dependences through statements 1..k. The key expres-
sion in the algorithm is d,4 o (d,r)* o dpr. We include the (d,,)* term because we
want to infer transitive dependences of the following form:

If there is a dependence from iteration ¢; of statement s, to iteration

doi=1,n .
doj=1,m do 2.1:1,.4
1 a(ij) = a(ij) + a(i-1,j+1) ! a(i) = b(i)
2 b(i,j) = b(i,j) + a(iy) 2 b(i) = a(i-1)
Example 1 Example 2

Fig. 6. Examples of direct and transitive self dependences

for each statenment r
for each statement p
for each statement ¢
dpg = dpg U drg 0 (drr)* 0 dpr

Fig. 7. Modified Floyd-Warshall algorithm

19 of statement s, and a chain of self dependences from iteration i5 to
iteration i3 and finally a dependence from iteration iz to iteration iy of
statement s, then there is a transitive self dependence from iteration ¢,
to iteration 74.

3.3 General redundant synchronization removal

In this section, we consider a more general form of the problem described in
Section 3.1. We no longer require the loops to be perfectly nested, the granularity
of synchronization is now between iterations of particular statements (i.e. posts
and waits occur immediately before and after the statements they are associated
with) and we know how iterations will be distributed to the physical processors.
For example, iterations may be distributed to a virtual processor array via a
data distribution and the owner computes rule, and the virtual processor array
may be folded onto the physical processor array in say a blocked fashion.

For each pair of statements p and ¢, we construct a relation that represents
all ordering constraints on the iterations that are guaranteed to be satisfied in
the distributed program. Such ordering constraints come from two sources:

1. If there 1s a data dependence from iteration i of statement p to iteration j
of statement ¢ (denoted i — j € dp,), then 7 is guaranteed to be executed
before j in any semantically equivalent distributed version of the program.

2. If iteration i of statement p and iteration j of statement ¢ will be executed
on the same physical processor (denoted s,(i) = s4(j)), and iteration i is
executed before iteration j in the original execution order of the program
(denoted i <,q j), then ¢ is guaranteed to be executed before j in the dis-
tributed program.

Combining these ordering constraints gives:

Cpg = dpg U{i—J | i <pg J A 5p(i) = 54(4)}

Unlike in Section 3.1, we cannot determine which dependences need not be ex-
plicitly synchronized simply by computing (cp,)?T. A synchronization may be
redundant because of a chain of synchronizations through other statements. To
determine such chains of ordering constraints, we first apply the algorithm in
Figure 7 substituting ¢, for d,, and producing c;,,. This gives us all chains of
ordering constraints of length one or more. We then find all chains of ordering
constraints of length two or more using:

"o /
pg = U Crq © Cpr

ré{statements}

We do not need to explicitly synchronize iterations if they will be executed
on the same physical processor, or if there is a chain of ordering constraints of
length two or more. Therefore the only dependences that we have to synchronize
explicitly are:

oy =i =3 | () = 50) } =

If the number of physical processors is not known at compile time, the ex-
pression s,(i) = s4(j) may not be affine. In such cases, we can instead use the
stricter requirement that the two iterations will execute on the same virtual pro-
cessor. This expression is always affine for the class of programs and distribution
methods that we are able to handle and is a sufficient condition for the two
iterations to be executed on the same physical processor. So, any redundancy
that we find based on this stronger requirement can be safely eliminated.

Related work[6, 7, 1] considers the case of synchronization between state-
ments with methods similar to the simple case. All of the methods build an
explicit graph of a subset of the iteration space, with each node representing an
iteration of a statement. Redundancy is found either by searching the graph[1]
or using transitive closure of the graph[6, 7]; dependences are restricted to con-
stant distances; and the problem regarding boundary cases still exists. These
methods search a small graph which finds all redundancy when nesting level is
2, but may miss some redundancy when the nesting level is greater[1]. None
of the above methods consider non-perfectly nested loops, and they do not use
information regarding distribution. One previous technique has such the ability
to generate the conditions under which a non-uniformly redundant dependence
must be enforced[7], but the authors indicate that their technique may require
taking transitive closure of a large subset of the iteration space.

3.4 Induction variables

Tuple relations and the transitive closure operation can also be used to compute
closed form expressions for induction variables. We will use the program in Figure
8 as an example. In this example, we will be using 4-tuples because there are four
scalar variables of interest in this program: ¢, j, n and m. For each edge in the
control flow graph, we create a state transition relation which summarizes the
change in value of the scalars as a result of executing the code in the control flow
node corresponding to that edge and under what conditions execution occurs (see
Figure 8). To investigate the state of the scalar variables at statement 6, we could
use the algorithm in Figure 7 to compute (along with other things) all transitive
edges from the start node to the node containing statement 6. Alternatively, we
can directly calculate:

R1 L 4 (Rz L 4 (Rg L 4 R4)* L 4 R5)* L 4 Rz L 4 (Rg L 4 R4)* L 4 R3
Which in this case evaluates to:

{60 pa =[5 7 = 1,200 + 25 = 20] | 2< " <n A1 <5 <10}U
{Lspad—1[1,7,n21| 1<) <10A1 < n}

1 gq=0

2 p=n

3 fori=1ton

4 forj =1 to 10

5 q=q+ 2

6 x[a] = y[p]

7 p=i
Rl ={[¢,4,p,q] — [1,§,n,0]}
R2=A{[i,j,p,q] = [i,1,p,q] | t <n}
R3={[i,j,p,q] = [t,5,p, ¢ +2] | j <10}
Ra={[i,j,p,q] = 5,5 +1,p, 4]}
R5 ={[i,j,p,q] = [t +1,4,4,¢] | j > 10}
R6 ={[i,j,p,q] = [1,§,p, q] i >n}

Fig. 8. Induction Variable Example

From this result, we can deduce that at line 6 we can replace the induction
variable p with (i=1?n:i-1) and the induction variable ¢ with 20i+2j-20.

This general approach has uses other that induction variable recognition,
such as deriving or proving assertions about scalar variables. The fact that we
could use transitive closure to potentially completely describe the effect of arbi-
trary programs consisting of loops and conditionals with affine bounds and con-
ditions and assignment statements involving affine expressions further demon-
strates that transitive closure cannot always be computed exactly, since such
analysis 1s known to be uncomputable.

4 Computing the Transitive Closure of a Single Relation

In this section we describe techniques for computing the positive transitive clo-
sure of a relation. The transitive closure R* can be computed from the positive
transitive closure Rt as Rt U I, where I is the identity relation. In the following
text we will use the term transitive closure for both Rt and R*. The difference
will be evident from the context.

The exact transitive closure R of a relation R can be equivalently defined as
Rt =i, RF where R¥ = Ro Ro...o R, We will shortly describe techniques

k times

that will often compute RT exactly. In situations where they do not apply, we
can produce increasingly accurate lower bounds using the following formula:

Rip) = kL—J1 R (1)

In some cases R"L'B(n) = R for all n greater than some small value. The follow-
ing theorem allows us to determine when a lower bound is equal to the exact
transitive closure:

Theorem 1. For all relations P and R such that R C P C Rt the following
holds: P = Rt if and only if Po R C P.

Proof. The “only if” part is trivial. To prove the “if” part we will prove by
induction on k that ¥ C P. The assumption R C P proves the base case. If
R* C P then R**! = (R¥ o R) C (Po R) C P. Since RT = |J;—, R* and
Yk > 1, R*F C P, we know that RT C P. Thus P = Rt. O

Corollary 2. R"L'B(n) =Rt ff R-IL_B(H) oRC R-IL—B(n) :

Thus, one approach to computing transitive closure would be to compute
more and more accurate lower bounds until the result becomes exact. Although
this technique works in some cases, there is no guarantee of termination. For
example, the exact transitive closure of R = {[{] — [¢ + 1]} cannot be computed
using this approach. Thus more sophisticated techniques are required. Section
4.1 describes techniques that work in the special case of relations that can be
described by a single conjunct. Section 4.2 describes techniques for the general
case, making use of the techniques used for the single conjunct case.

4.1 Single conjunct relations

For a certain class of single conjunct relations, the transitive closure can be
calculated straightforwardly. Consider the following example:

R= {[ilaiz] - [jlajZ] | jl - il Z 2/\]2 — iz = 2 A Ja s.t. j1 _il = 20[}
For any k > 1 the relation R* can be calculated as:

RF = {[i1,i2] — [j1,ja] | j1 — i1 > 2k A jo — i> = 2k A s.t. j1 — i1 = 20}
By making k in the above expression existentially quantified, we get the union
of R* for all k > 0; that is, R*:

{[il,iz] — [jl,jz] | dk > 0 s.t. j1 —il Z 2]6’/_]2 —iz = 2k AN Ja s.t. j1 —il = 20[}

This method can be used for any relation that only contains constraints on the
differences between the corresponding elements of the input and output tuples.
We call such relations d-form relations.

Definition 3. A relation R is sald to be in d-form iff it can be written as:
{liz, i2, i) = [1,d2 - dm] VP, 1 <p<m, Ly <jp—iy SUpAjp—ipy=Mpa,}
where L, and U, are constants and M, is an integer. If L, is —oo or U, is 400

the corresponding constraints are not included in the above equation.

The transitive closure of a d-form relation is:

{li1,i2, - im] = Uyd2 - im] 13k > 05,6 ¥p, 1 < p < m, Lk < jp—ip < UpkAjp—ip = M,y a(p};
2

For any relation R, it is always possible to compute a d-form relation d such
that ® C d. We can then use dt as an upper bound on R* since for any two

R = {[f1,92] = [1,d2] | j1 —d1 = 1A j2 —ix 2 2A 1< dp, 1,72 <nA
17 <ip < n}

d = {[f1,92] = [j1,41] | j1 — i1 = 1 A2 — iz > 2}

at = {[f1,92] = [j1,d2] | i1 < j1 Aj2 —d2 > 2(j1 —41)}
Domain(R) = {[i1,72] | 1 < i3 <ix <n—2}

Range(R) = {[j1,j2]12 <j1 <j2 <n}

h = {li1,92] = [1,42] | 1< i1 S in n—2A2< 41 < gp < n}
Dy = {[f1,92] = [j1,42] | 1 <é1 < dx Adg <j1 Aja <nA

J2 =2 > 2(j1 —d1)}

D is lexicographically forward and Dy C Ro Dy U R, thus Rt = Dy

Fig.9. Example of calculating transitive closure of a single conjunct relation

relations Ry and Rs, if Ry C R then R"' C R"' To improve this upper bound we
can restrict the domain and range of d"’ to those of R by computing Dy = dTnh,
where h = Domain(R) x Range(R).

In most of our applications the relations R and D, have the property of
being lezicographically forward.

Definition4. A relation A is lexicographically forward iff Ve —y € A0 < y—=
(y — x is lexicographically positive).

For lexicographically forward relations we can check whether the upper bound
is an exact transitive closure using the following theorem:

Theorem 5. V lexzicographically forward relations P R: RC P = (P = Rt &
PC(RURoP)).

Proof. Firstly, we prove that (P C (RU Ro P)) = (P C R*). Rewriting this
proposition in the terms of the relation elements yields: (VYo — 2z € P,e — =z €
RV3idyst.z—y€ RAy—z€ P)= (Vr—z € Pr—z € R"). This is proved by
induction on z—a using lexicographical ordering. The base case x = z is vacuous.
For the induction step consider any t —y € P. If x — 2 € R then z — 2 € Rt.
Otherwise, Jy s.t. t—y € RAy—z € P. Because P and R are lexicographically
forward, z — ¢ > z — y. Thus, by induction hypothesis, y — z € RT, and,
consequently x — 2z € Rt ,ie. P C RT. RT C P is in the theorem assumption,
so P = RT. The reverse statement P = Rt = P C Ro PU R is trivial. O

Corollary 6. If Dy s lexicographically forward, then
D_|_ —R+ ZﬁD+ (RUROD+) (3)

4.2 Multiple conjunct relations

Computing the transitive closure of a relation with more than one conjunct via
a naive application of Equation 1 is prohibitively expensive due to the possible
exponential growth in number of the conjuncts. We have developed techniques
that try to limit this growth. We first describe how to compute the transitive
closure of a two conjunct relation; then we show how to generalize this technique
for relations with an arbitrary number of conjuncts.

Input: R = Lle1 C;
Qutput: Rt or RT
Invariant: (RT DT UWt) A (exact = RY =Tuw)
T =0; W = R; exact= true
while not (W = § or “accept W as W;’B”) do
choose a conjunct A € W; remove A from W
if AT is known then
T=TuAt
Wiew =0
for all conjuncts C; € W do
if (A" —At)oCio(A" —AT) = Ci then Wiy = Woew U(AT 0 Ci0 A7)
else if C;0(A" —AT) = C, then Wyep, = Woew U(CioAYU(AT 0C047)
elseif (A" —AT)oC; = Ci then W,o, = WoewU(A 0CHU(A T 0Cr0aT)
else Wiew = Waew U(Cio ATYu At ocyuatocioatuc,

endfor
W =Wnew
else
T=TuUAJ,
W=(Woaf Juat,owuat yowoaf Huw
exact = false
endwhile
if (W = 0 and exact = true) or (TUW)o (TUW) C (T UW) then
Rt=Tuw
else

+
Rf_=Tuw

Fig.10. The algorithm for computing transitive closure

Computing the transitive closure of two-conjunct relations Let R be a
two-conjunct relation, R = Cy U C5. The transitive closure of R is:

(CLUCy)* =CFU(CToCroC)? (4)

If C7 o Cy 0 CF is a single conjunct relation, its closure can be calculated using
the techniques described in the Section 4.1. Unfortunately, C7 is often not a
single conjunct relation even if C’f’ 1s. To overcome this difficulty, we use a single
conjunct approximation of C7, that we will denote C7 and call ?-closure. We try
to select an C7 that has the following desirable property

CroCy0CT=C0Cy0CT (5)

If this is the case, we can use C{ instead of C* in Equation 4. If not, it may still
be possible to limit the number of conjuncts in (Cy U Cy)* through the use of
Clif CFoCy=CfoCy or CyoCf = CyoC. Testing the property described in
Equation 5 directly is rather expensive, so instead we test a weaker predicate:

(C7=Cf)oCyo(C]—C)=Cs.

Heuristics for computing 7-closure We try to compute 7-closure for a rela-
tion R only if Rt is a single conjunct relation. In such cases we are trying to
compute a R’ that is a superset of Rt and includes some elements from I and
also some other elements required to make it a single conjunct relation. In many
cases, these additional elements do not affect the result of the composition.

R ={(] =i+ 1<6,5,5+1<nAi =dju
{fn] = [i+1,1]11<4i+1<n}
cf =] =111 <j <nAal<i<n}
o o =B = 1< < <nAal<i<n}
CroCr0C; ={l,jl=li+1,jT[1<i<nAl<j<nAl<j <n}
Since, CloCroCl=CtoCyoCh
(CioCroCH)t = (Clocyoch?t
={l]1 =111 <i<i’ <nAl <45 <n}
Rt =Cfu(CiocrochH?t
= {6l =011 (<< SnAal<i<nAi=i)u
Ll =0 <i<i’ <nALl<j<nAl <) <)}

Fig.11. Example of transitive closure calculation

For a d-form relation d (see Section 4.1) we compute d* as:

{li1 iz, im] = U1,d2 - im] 135 2 088 ¥p,1 < p < m, Lok < jp—ip < UpkAjp—ip = Myay)}
6

For a relation R s.t. Rt = Dy, we calculate R’ by restricting the domain and
range of d’ to a single conjunct tuple set A’ that contains both the domain and
range of K. In other cases we assume that 7 — closure cannot be computed and
set R” to 0.

Computing the transitive closure of multiple conjunct relations The
transitive closure of a relation with an arbitrary number of conjuncts can be
computed similarly to the transitive closure of a relation with two conjuncts.
Let R be a m-conjunct relation R = Uzn:l C;. Its transitive closure is:

Rt =Ctu(Crol JCioCt =Ctu(|CroCioch)t

1=2 i=2

Forie {2,...,m}, CfoC;0CT can be computed using the techniques described
in the two conjunct case. After all these terms are computed, the same algorithm
can be applied recursively to compute the transitive closure of their union. The
algorithm is shown in Figure 10. The algorithm will terminate when the transitive
closure has been computed exactly or when we are willing to accept the current
approximation as a lower bound. In many cases, what we accept as a lower
bound turns out to be exact after all, and can be proved to be so using Theorem
1. An example of a transitive closure calculation using this algorithm is shown
in Figure 11. The order in which we consider the conjuncts in a relation can
significantly affect the performance of our algorithm. One heuristics that we use
is to consider first those conjuncts C; for which we can find a C that satisfies
the Equation 5. In some cases, pre-computing positive transitive closure of some
of the conjuncts in the original relation can also simplify the calculations.

The above algorithm allows us to compute the exact transitive closure of a
multiple conjunct relation or its lower bound. If an upper bound is required, it
can be calculated in a manner similar to that of the single conjunct relation.

5

Conclusion

We have presented a number of applications for the transitive closure of tuple
relations. These applications include:

Avoiding redundant synchronization of iterations executing on different pro-
Cessors.

Precisely describing which iterations of a statement are data dependent on
which other iterations, and using this information to determine which itera-
tion reordering transformations are legal.

Computing closed form expressions for induction variables.

We also presented algorithms for transitive closure that produce exact results
in most commonly occurring cases and produce upper or lower bounds (as nec-

€88

ary) in the other cases. Our preliminary experiments show that we produce

exact results for most of the programs we have considered. We will provide
detailed experiential results in the final version of this paper. We believe that
the applications described in this paper are only a small subset of the possible
applications of this general purpose program abstraction and set of operations.

References

Ding-Kai Chen. Compiler Optimizations for Parallel Loops With Fine-Grained Syn-
chronization. PhD thesis, Dept. of Computer Science, U. of Illinois at Urbana-
Champaign, 1994. Also available as CSRD Report 1374.

. Wayne Kelly, Vadim Maslov, William Pugh, Evan Rosser, Tatiana Shpeisman, and

David Wonnacott. The omega library interface guide. Technical Report CS-TR-
3445, Dept. of Computer Science, University of Maryland, College Park, March
1995.

. Wayne Kelly and William Pugh. A framework for unifying reordering transfor-

mations. Technical Report CS-TR-3193, Dept. of Computer Science, University of
Maryland, College Park, April 1993.

Wayne Kelly and William Pugh. Finding legal reordering transformations using
mappings. In Lecture Notes in Computer Science 892: Seventh International Work-
shop on Languages and Compilers for Parallel Computing, Ithaca, NY, August 1994.
Springer-Verlag.

V.P. Krothapalli and P. Sadayappan. Removal of redundant dependences in
DOACROSS loops with constant dependences. In Proc. of the 3rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 51-60, July
1991.

S.P. Midkiff and D.A. Padua. Compiler algorithm for synchronization. IFEF Trans.
on Computers, C-36(12):1485-1495, 1987.

S.P. Midkiff and D.A. Padua. A comparison of four synchronization optimization
techniques. In Proc. 1991 IEEFE International Conf. on Parallel Processing, pages
11-9 — 11-16, August 1991.

This article was processed using the IANTRpX macro package with LLNCS style

