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Chapter 1

Introduction

What are the correct coordinate and velocity scales for compressible wall-bounded turbu-

lent flows?

In incompressible wall-bounded turbulent flows, the “law of the wall” scaling collapses

mean velocity profiles onto roughly the same “universal” profile:

U
uτ

= f
(

ρwuτy
µw

)
(1.1)

U+ = f (y+) (1.2)

Prandtl and von Kármán originally considered these “plus-unit” scales (see references

Prandtl [1925], Kármán [1930], Prandtl [1932], and Prandtl [1933]), but they also emerge

from a conventional dimensional analysis of the system (see Langhaar [1951] for more

discussion).

These scales are correct for incompressible flows in the inner layer. The inner layer is

the region of flow closest to the wall, and the outer layer is the region of the flow farthest

from the wall. In the inner layer, the dominant length scale is the viscous length scale

`ν = µw/(ρwuτ) due to the presence of the wall; in the outer layer, the dominant length

scale is the boundary layer thickness δ due to eddies being roughly that size. In the inner
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layer, the “law of the wall” scaling for both coordinate y and velocity U (equation 1.1)

works well. The inner layer is special in that it contains the three universal regions of

wall-bounded turbulent flow:

0≤ y+ ≤ 5 Viscous sublayer (1.3)

5≤ y+ ≤ 40 to 50 Buffer layer (1.4)

50≤ y+ Logarithmic region (1.5)

Previous research has sought to extend the “law of the wall” scaling to compressible

flows by posing another question: What procedure converts compressible flows into equiv-

alent incompressible flows? The goal is to derive a transformation that collapses the entire

compressible mean velocity profile onto an equivalent incompressible mean velocity profile

in the universal “law of the wall” scaling for all Mach numbers and heat transfer scenarios.

These transformations consider how compressibility alters the flow. Compressibility in-

troduces property variation and compressible effects including acoustics and shock waves.

For non-hypersonic flows, the property variation alters the flow more than shocks or acous-

tics do, so most transformations ignore the compressible effects and concentrate on the

property variation (for more discussion of compressible effects, see the reviews of Brad-

shaw [1977] and Lele [1994]).

Density variation motivates the most successful compressibility transformation, the Van

Driest transformation:

U+
VD =

∫ u+

0

(
ρ̄

ρw

)1/2

du+ (1.6)

This equation was developed informally by Van Driest [1951], generalized by Danberg

[1964], and popularized by Bradshaw [1977] and Bushnell et al. [1977] and Fernholz et al.

[1981]. It accounts for changes in density by transforming the compressible mean velocities

back to an incompressible (constant density) state with the same wall normal coordinate y+.

The Van Driest transformation derives from the same arguments as the logarithmic velocity
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Figure 1.1: The Van Driest transformation applied to adiabatic wall flows, Bq = 0.

, incompressible boundary layer reference at Reτ = 578 from DNS by
Jiménez et al. [2010].

, Van Driest transformed Mach 2 boundary layer at Reτ = 583 from DNS by
Pirozzoli and Bernardini [2013].

, Van Driest transformed Mach 4 boundary layer at Reτ = 505 from DNS by
Pirozzoli and Bernardini [2013].

Circles, Van Driest transformed Mach 4.8 boundary layer at Reτ = 1549 from exper-
iment by Voisinet and Lee [1972] (72020205).

profile:

U+ = 1
κ

logy++C (1.7)

For adiabatic walls — walls through which no heat flows — the Van Driest transfor-

mation collapses mean velocity profiles onto the incompressible profiles, as illustrated in

figure 1.1. This figure plots both experimental data from Voisinet and Lee [1972] and di-

rect numerical simulation (DNS) data from Pirozzoli and Bernardini [2013] and compares

these profiles to an incompressible reference profile from Jiménez et al. [2010]. All 4

curves meld together into the same “law of the wall” profile. This collapse for adiabatic

walls is supported by the DNS studies of Guarini et al. [2000], Maeder [2000], Pirozzoli
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et al. [2004], Martín [2007], Duan et al. [2011], Lagha et al. [2011], and Pirozzoli and

Bernardini [2013].

Another way to examine how well the Van Driest transformation collapses compressible

profiles is to look at the log-law intercept C from equation 1.7. For incompressible flows,

values of C between 5.2 and 5.5 are normal. After examining most available experimental

compressible turbulent boundary layer data, Danberg [1964] concluded (in figure 38) that

for adiabatic situations the Van Driest transformed intercept C is independent of the Mach

number and matches the incompressible value.

In short, the Van Driest transformation’s success for adiabatic wall data has established

it as the “accepted standard” for the mean velocity scaling of compressible wall turbulence

(Spina et al. [1994]). As an accepted standard, it fits into the current paradigm of trans-

formation concepts for compressible wall turbulence. This current paradigm consists of

several components:

Characteristic Reynolds number Reδ2 This Reynolds number Reδ2 = ρeueδ2/µw was de-

rived by Walz [1956] and described in detail in Fernholz and Finley [1980] as the

characteristic Reynolds number for comparing two different flow scenarios (for ex-

ample, for comparing an incompressible flow to a compressible one).

Velocity transformation U+
VD with coordinate y+ The Van Driest transformation and the

untransformed “law of the wall” coordinate y+ = yρw
√

τw/ρw/µw, as discussed ear-

lier.

Reynolds stress transformation ρ̄r/τw with coordinate y∗ These scales are Morkovin’s

scaling and the “semi-local” coordinate scaling y∗= yρ̄
√

τw/ρ̄/µ̄ . Morkovin [1962]

originally derived this Reynolds stress scaling (with r being a Reynolds stress com-

ponent). Huang et al. [1995] observed that Reynolds stresses transformed accord-

ing to Morkovin’s scaling collapse well onto incompressible Reynolds stresses when

plotted in the “semi-local” coordinate y∗.
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These components form the analytical backbone to transform compressible data onto

incompressible data. However, they were created over a large span of time — Van Driest

[1951] in 1951 to Huang et al. [1995] in 1995 — and despite their success individually,

they are unrelated and were created on a somewhat piece-meal basis. For that reason, they

clash with each other.

For example, the current paradigm considers two wall-normal coordinates — y+ for

velocities and y∗ for fluctuations — and the reason why two different coordinates seem to

work has not yet been established. Furthermore, the characteristic Reynolds number Reδ2

works well to compare and contrast different flows, but it remains disconnected from the

analyses concerning the velocity transformation and Reynolds stress transformations.

Regardless, the current paradigm as described here works well to transform adiabatic

wall-bounded turbulence.

1.1 The failures of the Van Driest transformation

At least one component of this current paradigm breaks down noticeably under reasonable

circumstances. The Van Driest transformation does not collapse compressible mean veloc-

ity profiles onto incompressible ones when the wall is cooled – that is, when heat leaves

the domain through the wall.

In wall-bounded turbulence, a dimensionless measure of wall heat transfer is

Bq =
qw

ρwcpuτTw
(1.8)

Figure 1.2 plots the incompressible channel DNS of Moser et al. [1999] against two

cases of direct numerical simulations run for this present study. The details of the present

study are discussed later in chapter 2. Unlike adiabatic boundary layers, the entire pro-

files no longer match: the lightly cooled Bq = −0.053 case stays near the incompressible

reference, but the highly cooled Bq =−0.131 case veers far from the reference profile.
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Figure 1.2: The Van Driest transformation applied to cooled wall flows, Bq < 0.

, incompressible channel reference at Reτ = 587 from DNS by Moser et al.
[1999].

, Van Driest transformed Mach 1.7 channel at Bq = −0.053 and Reτ = 663
from present DNS.

, Van Driest transformed Mach 3.0 channel at Bq = −0.131 and Reτ = 650
from present DNS.

Increased cooling (increasingly negative Bq reveals two distinct changes in the mean

velocity profile:

An upwards shift The log-layer increases in velocity (the intercept C increases). For this

thesis, C is defined as

C =
1

y+2 − y+1

∫ y+2

y+1

(
U+− 1

κ
logy+

)
dy+ (1.9)

An outwards shift The viscous sublayer’s slope drops (its slope S decreases). For this

thesis, S is defined as

S =
1
4

∫ y+=4

y+=0

dU+

dy+
dy+ (1.10)
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(a) The Van Driest transformed log-law intercept
C increases with cooling.
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(b) S decreases with cooling

Figure 1.3: Properties of Van Driest transformed mean velocity profiles are functions of
wall cooling rate Bq.

Previous researchers noticed the upwards shift in the 1960s. Danberg [1964] noticed the

near perfect collapse of adiabatic boundary layers using the Van Driest transformation, but

remarked on page 67 that “C increases quite rapidly with heat transfer into the wall,” and

illustrates this trend in figure 39 of Danberg [1964]. To some degree, the results of Danberg

[1964] are exaggerated due to the shear stress at the wall being calculated from the gradient

outside the viscous sublayer — it is difficult to place instruments close enough to the wall to

measure velocities in the viscous sublayer — but the trend is clear and supported by DNS of

cooled wall turbulent flows. The boundary layer DNS of Maeder [2000], the channel DNS

of Coleman et al. [1995], and the channel DNS Foysi et al. [2004] all display an increased

C in the transformed profiles, but the boundary layer DNS of Duan et al. [2010] shares the

same intercept C as the incompressible log-law.

Figure 1.3a depicts a scatter-plot with cooling rate −Bq on the horizontal axis and the

Van Driest transformed log-law intercept C on the vertical axis using data from the present

DNS. The shaded region represents the range of C in the incompressible channel reference

of Moser et al. [1999]. The data scatter slightly due to a low Reynolds number effect

(discussed in chapter 5) but generally increase with cooling.

The outwards shift took longer to notice. In incompressible flow, the viscous sublayer
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obeys the profile

U+ = y+ (1.11)

up to around y+≈ 5. For cooled flows, however, the viscous sublayer’s slope plummets.

This drop is evidenced by the most cooled DNS of Duan et al. [2010] and the most cooled

boundary layer experiment of Voisinet and Lee [1972] (see figure 8).

Figure 1.3b depicts a scatter-plot with cooling rate −Bq on the horizontal axis and the

transformed viscous sublayer slope S on the vertical axis for two different transformations:

the Van Driest transformation (equation 1.6) as circles, and the viscous sublayer transfor-

mation (equation 1.12) as diamonds. The viscous sublayer transformation derives from a

stress balance at the wall, and serves as the parallel to the Van Driest transformation for

viscous sublayer. The viscous sublayer transformation is

U+
VS =

∫ u+

0

(
µ̄

µw

)
du+ (1.12)

The Van Driest transformed S plummets cleanly with cooling, but the viscous sub-

layer transformed velocity gradient hovers around incompressible reference’s (Moser et al.

[1999]) range. Ideally, the velocity gradient in the viscous sublayer is 1, matching the vis-

cous sublayer profile (equation 1.11), but this profile is only a fourth-order approximation

of the near-wall velocity profile (see Monin and Yaglom [1971] for more information) so

the incompressible reference is always slightly below 1 but not far off. Regardless, the vis-

cous sublayer transformation is only correct for the viscous sublayer — it gets the correct

S but not C — so the hard part is finding out what works for the entire inner layer.

In addition to these two easily measured shifts, other changes occur when the boundary

layer is cooled. The buffer layer tends to grow in size, and the friction Reynolds number

Reτ also tends to grows in size.
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1.2 Objectives of the present work

As detailed in the previous section, the Van Driest transformation — the cornerstone of the

current paradigm of compressible wall turbulence — behaves incorrectly when the wall is

cooled.

If the Van Driest transformation is incorrect, what is the correct transformation to trans-

form compressible mean velocities into equivalent incompressible mean velocities? Recent

research by Brun et al. [2008], Zhang et al. [2012], and Pei et al. [2013] looked for an im-

proved transformation that restores universality in wall-bounded compressible turbulent

flows, but none of these new works seemed definitive. As discussed previously, many dif-

ferent changes occur with cooling — C increases, S decreases, Reτ increases — and these

changes all suggest that both the transformed velocity U+
VD and the coordinate y+ are no

longer correct. Therefore, the objective of this thesis is to find a new velocity and coor-

dinate transformation that matches equivalent incompressible profiles for a broad range of

Mach numbers and heating or cooling rates.

Developing a new transformations alters the current paradigm, and offers an oppor-

tunity to re-examine other problems in the current paradigm, including which Reynolds

number characterizes the flow, and what is the proper Reynolds shear stress scaling.
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Chapter 2

Numerical setup

To explore new transformation concepts for compressible wall turbulence, 9 different direct

numerical simulations (DNS) of compressible turbulent channel flows were run using the

DNS code named Hybrid. The Hybrid code is a solution-adaptive central/WENO scheme

finite-difference code for 6th/5th order accuracy in space. This code has been used in

the past for several other compressible turbulence studies — Larsson and Lele [2009],

Bermejo-Moreno et al. [2013], and Larsson et al. [2013], for example —- and is described

in greater detail in these references.

This research was conducted on Deepthought2, a high-performance computing cluster

maintained by the University of Maryland Department of IT.

2.1 Physical setup of channels

Channels are an ideal situation to easily generate wall-cooled DNS data over a large range

of cooling rates and Reynolds numbers. Two properties of compressible channel flows

make them ideal for a DNS study of wall cooling on turbulence:

1. Channels reach fully-developed turbulence easily by using periodic boundary condi-

tions and letting the outflow serve as the inflow. Eventually, without much trial and
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error, the channel transitions and reaches a statistically stationary state in the channel

that is easy to average over.

2. Channels offer an easy way to control the cooling rate in a compressible wall-bounded

flow, since the Mach number directly determines the cooling rate. Viscous dissipa-

tion is controlled by the Mach number and heats the flow, reaching a temperature of

Tc at the center of the channel. This heat leaves the domain through the isothermal

channel walls. The wall temperature Tw is constant and arbitrary, since the center-

line temperature Tc will always be higher due to viscous heating, so only the ratio

Tc/Tw matters ultimately. In short, the higher the Mach number, the more cooled the

channel is.

The wall heat transfer parameter Bq (equation 1.8) can be rewritten as

Bq =−
1
Pr

d(T̄/Tw)

dy+

∣∣∣
w

(2.1)

so it is clear that Bq describes the wall heat transfer well, since for higher Tc/Tw, the

temperature gradient (and therefore the magnitude of Bq) increases.

2.2 Reach and span of DNS study

The present DNS study considered 3 sets of transformed Reynolds numbers (the trans-

formed Reynolds number Re∗τ is defined in equation 5.1). Each transformed Reynolds

number has 3 cases, from low to high cooling rate. The transformed Reynolds numbers

Re∗τ were chosen to match the incompressible turbulent channel DNS data of Moser et al.

[1999]. Therefore, the DNS data of Moser et al. [1999] serves as a direct incompressible

comparison to the present compressible cases.

In all cases, Pr = 0.7, γ = 1.4, and the domain size was [`x, `y, `z]/h = [10,2,3].

Table 2.1 lists all 9 DNS cases in the present channel DNS. These cover a range of

11



Table 2.1: Quantities from present channel DNS

Casename Ma Reh Reτ Re∗τ −Bq Tc/Tw nx ny nz ∆x+ ∆y+min ∆ymax/h ∆z+

M0.7R400 0.7 7500 437.4 396.4 0.011 1.082 416 176 208 10.515 0.855 0.0180 6.309
M0.7R600 0.7 11750 652.1 591.1 0.010 1.082 608 256 320 10.725 0.875 0.0124 6.113
M1.7R200 1.7 4500 321.6 196.6 0.057 1.483 304 128 160 10.579 0.867 0.0247 6.030
M1.7R400 1.7 10000 663.1 406.3 0.053 1.481 800 246 400 8.288 0.926 0.0129 4.973
M1.7R600 1.7 15500 971.7 595.8 0.050 1.480 896 384 480 10.845 0.868 0.0082 6.073
M3.0R200 3.0 7500 649.9 208.3 0.131 2.487 608 256 320 10.689 0.872 0.0124 6.093
M3.0R400 3.0 15000 1232.5 395.5 0.123 2.486 1152 480 576 10.699 0.880 0.0066 6.419
M3.0R600 3.0 24000 1876.1 600.7 0.116 2.491 1728 416 896 10.857 0.849 0.0093 6.282
M4.0R200 4.0 10000 1017.5 202.8 0.189 3.637 1260 384 644 8.075 0.909 0.0082 4.740

Mach numbers from 0.7 to 4.0, and a range of Reh from 4500 to 24000.

Again, notice the direct relationship between−Bq and Tc/Tw. For these isothermal wall

channels, the temperature itself does not matter much to set the cooling rate, but the ratio

of temperatures does.

2.3 Grid convergence

The M4.0R200 case served as the basis for the other 8 channels’ grid sizes. This case had

several properties that required its grid to be the strictest:

It engages the WENO scheme the most. M4.0R200 has the highest Mach number. It

will generate the most shocks, and to capture these shocks correctly, the WENO

scheme needs to be engaged more as the Mach number increases. WENO schemes

are highly dissipative and in the Hybrid code are only 5th-order accurate — in con-

trast, the central scheme is 6th-order accurate. M4.0R200 therefore requires addi-

tional precision over the other cases to resolve all the scales correctly without dissi-

pation altering the results.

Its temperature changes the most. For M4.0R200, Tc/Tw = 3.637. The density and vis-

cosity change drastically from the wall to the channel center.

Its transformed friction Reynolds number changes the most. Re∗τ = 203 compared to

Reτ = 1018, so the coordinate changes the most and requires a stricter grid to prop-

erly resolve this extreme change in the coordinates.
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For these reasons, the M4.0R200 case requires the strictest grid requirements out of

all 9 cases considered, so this case’s relevant grid scales (∆x+, ∆y+min, ∆y/h, and ∆z+) need

to be the strictest and smallest. All other cases would not require this level of refinement,

and as seen in table 2.1 were at similar levels of refinement.

Figure 2.1a shows the grid convergence of the Van Driest transformed velocity pro-

files for M4.0R200, and figure 2.1a shows the grid convergence of the dimensionless ũ′v′

Reynolds stress. The symbols correspond to the grid sizes in table 2.2. Only grid C dis-

agreed slightly in the Van Driest transformed velocity profile (by much less than 1 in U+
VD),

and only far from the wall. All other grids followed each other closely despite the large

change in grid resolution, strongly suggesting grid independence.
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(a) Van Driest transformed velocity profiles,
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Figure 2.1: Grid convergence of M4.0R200. The letters correspond to the grid sizes given
in table 2.2.

Table 2.2: Grid sizes for M4.0R200

Label nx ny nz ∆x+ ∆y+min ∆ymax/h ∆z+

A 620 272 272 16.467 1.289 0.0116 11.261
B 940 272 480 10.799 1.281 0.0116 6.344
C 760 384 380 13.571 0.921 0.0082 8.143
D 940 384 480 10.789 0.906 0.0082 6.339
E 1260 384 644 8.075 0.909 0.0082 4.740
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Chapter 3

Derivation of proposed transformation

3.1 Notation

The goal of this thesis is to develop a method to collapse compressible mean velocity

profiles onto incompressible ones, so it is important to distinguish between two states:

an incompressible state with constant reference density ρw and constant reference vis-

cosity µw, and

a compressible state with spatially-varying mean density ρ̄ and mean viscosity µ̄ .

The incompressible reference state is the wall values of density and viscosity. So the

goal is to convert a flow with variable properties into one that has the same properties as

the values at the wall.

The rest of the notation is

Capitalized letters and variables with a ∗ superscript are incompressible, transformed,

constant property values. For example, velocity U , coordinate Y , Reynolds stress R,

and friction Reynolds number Re∗τ .

Lowercase letters and variables without a ∗ superscript are compressible, untransformed,

variable property values. For example, velocity u, coordinate y, Reynolds stress r,
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and friction Reynolds number Reτ .

Plus-units denote dimensionless values, which are dimensional values divided by their

corresponding scale. There is only one friction velocity uτ and one viscous length

scale `ν shared by both the incompressible and compressible states. These are

uτ = (τw/ρw)
1/2 (3.1)

`ν = µw/(ρwuτ) (3.2)

From these two scales, the velocity scale is uτ , the coordinate scale is `ν , and the

Reynolds stress scale is u2
τ .

Universal variables are transformed dimensionless values, so they are capitalized with

plus-units. The goal is to develop a method to arrive at these universal variables.

In this notation, this goal is to go from untransformed, compressible, dimensional

values to transformed, incompressible, dimensionless values (universal values):

y→ Y+

u→U+
(3.3)

All of this notation is compared in table 3.1.

Untransformed, compressible, dimensional u y τ r
Untransformed, compressible, dimensionless u+ y+ r+ Reτ

Transformed, incompressible, dimensional U Y τ∗ R
Transformed, compressible, dimensionless and universal U+ Y+ R+ Re∗τ

Table 3.1: Notation

3.2 Transformation basics

This goal motivates a search for a coordinate transformation and a velocity transformation,

both generalized as differential transformations operating directly on velocity gradients.
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The chain rule reveals how these transformations change the gradients:

dU
dY

=
dU
du

dy
dY

du
dy

(3.4)

Here, the transformed velocity gradient dU/dY is a function of the velocity transforma-

tion dU/du, the coordinate transformation dY/dy, and the untransformed velocity gradient

du/dy. To obtain the coordinate and velocity, integrate the transformation functions:

U+ =
∫ u+

0

dU
du

du+, Y+ =
∫ y+

0

dY
dy

dy+. (3.5)

Given the definition of the dimensionless units (equations 3.1 and 3.2), the transforma-

tion functions in this thesis have the property that

dU
du

=
dU+

du+
,

dY
dy

=
dY+

dy+
.

so for brevity this thesis uses only the dimensional form without plus-units.

Note that all prior transformations can be written in this format. The Van Driest trans-

formation then is dY/dy = 1 and dU/du = (ρ̄/ρw)
1/2; the viscous sublayer transformation

is dY/dy = 1 and dU/du = (µ̄/µw).

3.3 Derivation of log-law condition

This thesis derives the proposed transformation in three parts. First, a condition from the

log-law is derived. Second, a stress balance condition is derived. And lastly, these two

conditions combine to obtain the full transformation.

The log-law condition comes first. Van Driest [1951] and Danberg [1964] considered

a similar condition (see section B for others), which they used to derive the Van Driest

transformation. More recently, Brun et al. [2008] considered a more general form of this
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condition that includes the possibility of a coordinate transformation. This section gener-

alizes all of this previous work.

Now, consider the compressible log-law velocity gradient. Previous researchers have

derived this gradient using many methods, but the dimensional analysis of Bradshaw [1994]

explains the important variables and their relationships well. In the turbulent region of the

flow, viscosity µ̄ is unimportant; the important variables are the shear stress at the wall

τw, the local density ρ̄ , and the distance from the wall y, as per Townsend’s attached eddy

hypothesis. Dimensional analysis then obtains a velocity scale
√

τw/ρ̄ and a length scale

y. In the form of a velocity gradient, these two variables yield

du
dy

=
1
κ

1
y

(
τw

ρ̄

)1/2

(3.6)

Multiply by Y/Y and (ρw/ρw)
1/2:

du
dy

=
1
κ

Y
Y

1
y

(
τw

ρ̄

)1/2(
ρw

ρw

)1/2

(3.7)

Rearrange and group terms:

du
dy

=
Y
y

(
ρw

ρ̄

)1/2 1
κ

1
Y

(
τw

ρw

)1/2

(3.8)

By analogy to equation 3.6, the incompressible log-law velocity gradient is

dU
dY

=
1
κ

1
Y

(
τw

ρw

)1/2

(3.9)

and this gradient simplifies the equation to

du
dy

=
Y
y

(
ρw

ρ̄

)1/2 dU
dY

(3.10)
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Solve for the incompressible velocity gradient:

dU
dY

=
y
Y

(
ρ̄

ρw

)1/2 du
dy

(3.11)

This gradient equation is important and enters later. First, it is important to reveal the

underlying velocity transformation in this equation. Apply the chain rule to both sides of

the equation and cancel out terms:

dU
du�

�
�du

dY
=

y
Y

(
ρ̄

ρw

)1/2 dY
dy �

�
�du

dy
(3.12)

Simplify to obtain the velocity transformation as a function of the coordinate transfor-

mation:
dU
du

=
y
Y

(
ρ̄

ρw

)1/2 dY
dy

(3.13)

The Van Driest transformation is a subset of this equation when dY/dy = 1.

3.4 Derivation of stress balance condition

Earlier, the chain rule (equation 3.4) revealed that all similar differential transformations

— including both the Van Driest and viscous sublayer transformations — operate directly

on velocity gradients, and only indirectly operate on the velocities themselves (through

integration).

This observation motivates an additional condition involving the velocity gradients

themselves. The Van Driest transformation works by adjusting the velocity gradient of a

variable density flow to the constant density value. It adjusts the gradients without worrying

about the underlying physical mechanisms that determine their values. In other words, the

Van Driest transformation obtains the correct slope while violating the stress balance (mo-

mentum conservation). Any change in the velocity gradient changes the viscous stresses,

disrupting the stress balance. This fact motivates seeking to preserve the stress balance
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between the untransformed and transformed states.

So, where does a stress balance equation come from? For Newtonian fluids, the com-

pressible Navier-Stokes equations can be simplified and integrated to yield several equa-

tions with roughly the same form. These equations provide an approximately correct stress

balance condition for the entire inner layer.

For zero pressure gradient boundary layers, analysis of the region close to the wall (see

Cebeci and Smith [1974] on pages 113 to 114 and 143 to 144 for more details) obtains.

µ
du
dy
−ρu′′v′′ ≈ τw (3.14)

For channels, integration of the momentum equation obtains

µ
du
dy
−ρu′′v′′ = τw

(
1− y

h

)
≈ τw (3.15)

which is approximately equal to τw for y/h� 1.

Here, variables with double-primes are Reynolds-averaged fluctuations, and variables

with single-primes (as seen later) are Favre-averaged (mass-averaged) fluctuations. For

more information on this notation, see page 53 of Cebeci and Smith [1974] or page 63 of

Smits and Dussauge [2006].

For both channels and boundary layers, the form of the stress balance comes to

µ
du
dy
−ρu′′v′′ = τtotal ≈ constant (3.16)

How correct is this equation? To characterize its correctness, non-dimensionalize the

incompressible version of equation 3.16 to obtain

dU+

dY+
−R+

uv =
τtotal

τw
≈ 1 (3.17)
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Figure 3.1: Near-wall stress balance for incompressible boundary layers
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Figure 3.2: Near-wall stress balance for incompressible channels
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Now, compare this dimensionless stress balance (equation 3.17) to figures 3.1 and 3.2.

Figure 3.1 checks the validity of this equation for low and high Reynolds number boundary

layers, and figure 3.2 checks the validity of this equation for low and high Reynolds number

channels. For low Reynolds number flows, this equation remains mostly valid until around

y+ ≈ 50; for high Reynolds number flows, this equation should be valid throughout the

entire inner layer, since the curve for τtotal/τw barely deviates from 1. So in general, this

simple stress balance is valid for the inner layer.

Now, the stress balance given in equation 3.16 is in an difficult to use form, so simpli-

fication is the next step. Favre-averaging simplifies the second term:

ρu′′v′′ = ρ̄ ũ′v′ (3.18)

The first term simplifies for low turbulent Mach numbers (see Smits and Dussauge

[2006] pages 73 to 75 for reference):

µ
du
dy

= µ̄
dũ
dy

(3.19)

Here, the mean velocity is Favre-averaged, but the log-law condition (equation 3.6)

only considers Reynolds-averaged velocities. Cebeci and Smith [1974] on pages 73 to 74

argue that for a boundary layer approximation — applicable to channels too — mass flux

fluctuations in the x-direction are small compared to the overall mean density, so

ũ− ū =
ρ ′′u′

ρ̄
≈ 0 (3.20)

so the Favre-averaged velocity ũ equals the Reynolds-averaged velocity ū (but only for

velocities in the x direction). The final stress balance equation comes to

µ̄
dū
dy
− ρ̄ ũ′v′ = τtotal (3.21)
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Now here is the important part of this derivation: set the universal stress balance equal

to the compressible stress balance. What this step means is that the total stress balance is

assumed to be universal, the same between the untransformed variable-property case and

an equivalent transformed constant property case.

τ
∗
total = τtotal (3.22)

µw
dU
dY
−ρwRuv = µ̄

du
dy
− ρ̄ruv (3.23)

This equation is quite powerful. In fact, it can derive two seemingly disconnected ideas:

Morkovin’s scaling for the Reynolds stresses, and the viscous sublayer transformation. And

it also derives the stress balance condition used in the proposed transformation.

First, before arriving at this final stress balance condition, the Reynolds stresses need

to be addressed.

Equation 3.23 acts as a general stress balance and relates both the incompressible and

compressible states and the viscous stresses and turbulent stresses. As shown in figures 3.1

and 3.2, the Reynolds stress R+
uv tends towards a constant value near 1 at high Reynolds

number. R+
uv always starts at zero, so to develop a reasonably proper scaling for this

Reynolds shear stress, only the peak magnitude needs to be accounted for — provided

a proper coordinate scaling is used, of course.

Naively, turbulence flattens the velocity profile. Where turbulence dominates — where

the Reynolds shear stress R+
uv reaches its peak — the viscous stresses are low and viscosity

is unimportant, meaning that the velocity gradient itself is small, tending towards zero

in fact. This observation helps derive Morkovin’s scaling for the Reynolds stresses (see

Morkovin [1962]). Use equation 3.23 and presume that both the incompressible velocity

gradient dU/dY is nearly zero and that the compressible velocity gradient du/dy is nearly
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zero:

µw
�
�
�dU

dY
−ρwRuv = µ̄

�
�
�du

dy
− ρ̄ruv

ρwRuv = ρ̄ruv

Non-dimensionalize this equation by dividing by u2
τ and then solve for R+

uv:

R+
uv =

ρ̄ruv

τw
(3.24)

This scaling, first derived by Morkovin [1962], is well-known to properly scale the

Reynolds stresses in the turbulent region, so it can simplify the general stress balance con-

dition (equation 3.23) into solely a function of velocities.

However, Morkovin’s scaling does have a limitation. The limitation is that it does not

appear to properly scale R+
uv in the viscous sublayer or the buffer layer. The derivation

shown here reveals why: Morkovin’s scaling is only correct for the most turbulent part of

the flow. Still, the scaling does have the correct trend — starting from zero and going to

the peak value — and for that reason it remains the most correct scaling found so far.

A quick note before moving back to the final stress balance condition: many previ-

ous researchers (including Brun et al. [2008]) have presumed that the velocity transfor-

mation and the Reynolds stress scaling are the same. That is, they have presumed that

R = (dU/du)r. Here, no such assumption is made, and the velocity transformation and

the Reynolds stress scaling should be independent of each other to yield the most general

solution possible.

Now, back to the final stress balance condition. Morkovin’s scaling simplifies the final
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stress balance condition (equation 3.26) to an adjustment of the velocity gradients:

µw
dU
dY
−����ρwRuv = µ̄

du
dy
−���ρ̄ruv (3.25)

µw
dU
dY

= µ̄
du
dy

(3.26)

A more useful form is the universal velocity gradient:

dU
dY

=
µ̄

µw

du
dy

(3.27)

If the coordinate remains untransformed (if Y = y), this equation becomes the viscous

sublayer transformation. However, here the coordinates are presumed to be different, so

the action of this equation is quite different — especially since it presumes that Morkovin’s

scaling for the fluctuations holds — whereas the viscous sublayer transformation presumes

that the Reynolds shear stress is always zero. In short, the action of this equation is to

maintain the overall stress balance provided that Morkovin’s scaling works for Reynolds

shear stress.

Still, it is important to note what equation 3.27 does not imply: it does not imply that

viscosity is important in the fully turbulent zone. In fact, the opposite is true. Equation

3.27 adjusts the velocity gradients to obey a transformed stress balance. But in the fully-

turbulent zone, as noted in the previous derivation of Morkovin’s scaling, the velocity pro-

file is nearly flat and the viscous stresses are nearly zero. So in effect, no adjustment due

to viscosity happens here (or no large adjustment, at least) since nearly zero times any

order-one quantity is still nearly zero. In short, the viscous stresses approach zero far from

the wall and only the smallest possible adjustment due to viscosity will occur in the fully

turbulent zone.
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3.5 Final steps to derive proposed transformation

Set the log-law velocity gradient condition (equation 3.11) equal to the stress balance ve-

locity gradient condition (equation 3.27):

dU
dY

=
y
Y

(
ρ̄

ρw

)1/2

�
�
�du

dy
=

µ̄

µw �
�
�du

dy
(3.28)

This obtains
µ̄

µw
=

y
Y

(
ρ̄

ρw

)1/2

(3.29)

which directly reveals the transformed and dimensional coordinate Y :

Y =

(
µw

µ̄

)(
ρ̄

ρw

)1/2

y (3.30)

The universal coordinate (transformed and dimensionless) then comes to

Y+ =
ρ̄(τw/ρ̄)1/2y

µ̄
=

y(τwρ̄)1/2

µ̄
(3.31)

This coordinate is known as “semi-local” coordinate scaling. Researchers have studied

it before — including by Lobb et al. [1955] — but the most important observation about

it came from Huang et al. [1995], who called it y∗ and showed that it correctly scales the

fluctuations. Huang et al. [1995] and its companion paper Coleman et al. [1995] argued

that this coordinate only works to scale the fluctuations and that the standard coordinate y+

and the Van Driest transformed velocity U+
VD correctly scale the mean velocities.

Here, this thesis derived this coordinate by only considering the mean velocities and

Morkovin’s scaling, making this coordinate a direct consequence of assuming that the

transformed log-law obeys a transformed stress balance. Ultimately, this result suggests

that “semi-local” scaling will correctly scale the velocities too, provided the correct trans-

formation is used.
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This corresponding velocity transformation emerges from the two conditions. Use the

chain rule to solve for dU/du in equations 3.11 or 3.27:

dU
du

=
y
Y

(
ρ̄

ρw

)1/2 dY
dy

(3.32)

dU
du

=

(
µ̄

µw

)
dY
dy

(3.33)

Differentiating equation 3.30 obtains the coordinate transformation:

dY
dy

=

(
µw

µ̄

)(
ρ̄

ρw

)1/2[
1+

1
2

1
ρ̄

dρ̄

dy
y− 1

µ̄

dµ̄

dy
y
]

(3.34)

Plug the transformed coordinate (equation 3.31) and the coordinate transformation

(equation 3.34) into the log-law velocity transformation equation (equation 3.13) to ob-

tain
dU
du

=

(
ρ̄

ρw

)1/2[
1+

1
2

1
ρ̄

dρ̄

dy
y− 1

µ̄

dµ̄

dy
y
]

(3.35)

This equation contains several property gradients that are difficult to measure exper-

imentally. Section 4 details an alternative form of this equation that is mathematically

identical but does not require property gradients.

So, in summary, the complete transformation in closed-form is

Y+ =
ρ̄(τw/ρ̄)1/2y

µ̄

U+ =
∫ u+

0

(
ρ̄

ρw

)1/2[
1+

1
2

1
ρ̄

dρ̄

dy
y− 1

µ̄

dµ̄

dy
y
]

du+

R+
uv =

ρ̄ruv

τw

Re∗τ =
ρc(τw/ρc)

1/2h
µc︸ ︷︷ ︸

For channels

=
ρe(τw/ρe)

1/2δ

µe︸ ︷︷ ︸
For boundary layers
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Chapter 4

Implementation of proposed

transformation

Equation 3.35 is the proposed velocity transformation in closed-form, but it remains dif-

ficult to use on computational or experimental data sets. Instead, it can be re-written in a

second, equivalent way. The stress balance condition (equation 3.26) is

µw
dU
dY

= µ̄
du
dy

(4.1)

Apply the chain rule on the left and right hand sides of the equation:

µw
dU
du�

�
�du

dY
= µ̄

dY
dy�

�
�du

dY
(4.2)

dU
du

=
µ̄

µw

dY
dy

(4.3)

Equation 4.4 is mathematically identical to 3.35 (the “long” method), but in an unclosed

form. To use the transformation, the coordinate Y+ = y∗ must be calculated, so calculating

its gradient requires little extra work.

U+ =
∫ u+

0

(
µ̄

µw

)
dY
dy

du+ =
∫ u+

0

(
µ̄

µw

)
dY+

dy+
du+ (4.4)
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Figure 4.1: Intercept robustness for increasingly incomplete data sets

To transform data using this “short” method, use these three steps:

1. Calculate the transformed coordinate Y+ = y∗ = yρ̄
√

τw/ρ̄/µ̄ (equation 3.31).

2. Calculate dY/dy = dY+/dy+ numerically.

3. Calculate the transformed velocity (equation 4.4).

It is also possible to calculate steps 2 and 3 together when using a simple quadrature

method as well.

This “short” form of the transformation is more robust than the “long” form on incom-

plete data sets. A data set is incomplete if it is missing points in the viscous sublayer or

buffer layer.

Figures 4.1a and 4.1b compare the robustness of the Van Driest transformation, the

“long” form of the proposed transformation, and the “short” form of the proposed trans-

formation as data is removed from the viscous sublayer up through the buffer layer. These

plots compare the transformed value of the log-law intercept C against ∆Y+, the location

of the first non-wall point in the flow.

For the adiabatic experimental data in figure 4.1a, both the Van Driest transformation

and the “short” form of the proposed transformation agree well with the incompressible
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reference (black line) until around ∆Y+ ≈ 10, at which point the “short” form of the pro-

posed transformation becomes less accurate. The Van Driest transformed value of C does

not change appreciably over the interval, indicating that the Van Driest transformation is

robust even when the viscous sublayer and buffer layer are missing from the data.

This same pattern occurs in the cooled-wall DNS data in figure 4.1b. Here, the Van

Driest transformation fails to match the correct transformed value of C. Both the “short”

form and the “long” form of the proposed transformation do match the incompressible

reference value of C, but the “long” form’s value of C plummets after ∆Y+ ≈ 5, while the

“short” form’s value of C drops after ∆Y+ ≈ 10. The Van Driest transformed value of C

is inaccurate, but it does not change as much as the proposed transformation does over the

interval, indicating again that the Van Driest transformation is robust.

In both figures, however, the proposed transformation is the only transformation that

works in both adiabatic and cooled scenarios. Its values of C in both are very close to the

incompressible reference when the data set is mostly complete.

What conclusions should you draw from these two figures? The main conclusion is that

even if τw or c f is measured correctly, as it is in these cases, the proposed transformation

will not transform the data correctly if there are no points below Y+ ≈ 10. The proposed

transformation does not work for incomplete data sets, while the Van Driest transformation

works well for incomplete data sets, provided of course that the data is for adiabatic wall

boundary layers.

In practical terms, this conclusion means that the proposed transformation will incor-

rectly transform some experimental data, despite being much more accurate, since many

experimental data sets exclude the viscous sublayer and start around y+ = 20. For this rea-

son, this thesis has chosen experimental data to validate against that tends to have points in

the viscous sublayer, and this requirement limits the experimental data that can be used to

validate the transformation.
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Chapter 5

Discussion of proposed transformation

To validate the proposed transformation, its performance is compared against the Van Dri-

est transformation using data from the present DNS study and data from experiments avail-

able in Fernholz and Finley [1977] and Fernholz et al. [1981].

After validation, several properties of the transformation will be discussed.

5.1 Numerical validation

Details for all 9 DNS cases are in table 5.1. First, consider the performance of the proposed

transformation for 3 specific cases: Mach 4 and Reh = 10000, Mach 3 and Reh = 15000,

and Mach 3 and Reh = 24000. These are the 3 most cooled cases for each transformed

friction Reynolds number Re∗τ .

The plots include 3 quantities: the mean velocity profiles, to show the highly improved

collapse using the proposed transformation; the velocity gradients, to show the viscous

stress aspect of the stress balance; and the dimensionless transformed Reynolds stress R+
uv,

to show the turbulent stress aspect of the stress balance. These plots are figures 5.1 to 5.3.

In all three cases, the proposed transformation collapses the mean velocity profiles

excellently, as previously discussed by the excellent agreement of transformed C and S.

The velocity gradient plots are important for two reasons: the gradients form an important
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Figure 5.1: Velocity, velocity gradient, and Reynolds stress profiles of the Ma = 4.0 and
Reh = 10000 case.

, incompressible reference Moser et al. [1999] (Reτ = 178).

, present DNS data transformed with Van Driest transformation (Reτ =
1017).

, present DNS data transformed with proposed transformation (Re∗τ = 203).
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Figure 5.2: Velocity, velocity gradient, and Reynolds stress profiles of the Ma = 3.0 and
Reh = 15000 case.

, incompressible reference Moser et al. [1999] (Reτ = 392).

, present DNS data transformed with Van Driest transformation (Reτ =
1232).

, present DNS data transformed with proposed transformation (Re∗τ = 396).
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Figure 5.3: Velocity, velocity gradient, and Reynolds stress profiles of the Ma = 3.0 and
Reh = 24000 case.

, incompressible reference Moser et al. [1999] (Reτ = 587).

, present DNS data transformed with Van Driest transformation (Reτ =
1876).

, present DNS data transformed with proposed transformation (Re∗τ = 601).
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Table 5.1: Results of present compressible DNS

Casename Ma Reh Reτ Re∗τ −Bq CVD Cproposed SVD SVS Sproposed
M0.7R400 0.7 7500 437.4 396.4 0.011 5.592 5.472 0.963 0.978 0.978
M0.7R600 0.7 11750 652.1 591.1 0.010 5.499 5.384 0.963 0.978 0.978
M1.7R200 1.7 4500 321.6 196.6 0.057 6.716 6.017 0.902 0.981 0.977
M1.7R400 1.7 10000 663.1 406.3 0.053 6.040 5.427 0.910 0.984 0.982
M1.7R600 1.7 15500 971.7 595.8 0.050 6.080 5.461 0.913 0.982 0.978
M3.0R200 3.0 7500 649.9 208.3 0.131 7.503 5.913 0.824 0.982 0.976
M3.0R400 3.0 15000 1232.5 395.5 0.123 6.937 5.429 0.832 0.982 0.976
M3.0R600 3.0 24000 1876.1 600.7 0.116 6.894 5.406 0.839 0.983 0.977
M4.0R200 4.0 10000 1017.5 202.8 0.189 8.020 5.883 0.780 0.992 0.984

part of the stress balance, and more importantly, they show where transformations fail

locally. The mean velocity profiles lack this property, because errors are cumulative. In all

3 velocity gradient plots, the largest errors in the Van Driest transformed velocity gradient

are in the viscous sublayer and buffer layer, but the gradient in the log-law is correct because

the Van Driest transformation derives directly from the log-law velocity gradient. The fact

that the Van Driest transformation strongly disagrees with the velocity gradients in highly

cooled cases motivates a stress balance condition, since it becomes clear that the Van Driest

transformation changes the gradients and then therefore the viscous stresses themselves.

The proposed transformation, even at high cooling, agrees throughout both the velocity

profiles and the velocity gradients, due to the fact that it considers the stress balance in the

entire inner region rather than just in a single region or ignoring it completely (like the Van

Driest transformation).

The Reynolds stress figures agree well. Again, the transformation properly accounts for

the Reynolds number effects. The plots disagree minutely, but this disagreement is likely

due to the slight mismatch in the reference data’s friction Reynolds number Reτ and the

transformed data’s transformed friction Reynolds number Re∗τ . As discussed in the section

deriving the stress balance condition (chapter 3.4), Morkovin’s scaling for the fluctuations

is used here, and it tends to under-predict the Reynolds shear stress in the viscous sublayer

and early on in the buffer layer. This under-prediction accompanies an over-prediction in

the velocity gradient, but neither discrepancy is enough to prevent the velocity profile from

collapsing.
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Table 5.2: Results of incompressible DNS of Moser et al. [1999]

Reτ C S
178.1 5.774 0.976
392.2 5.331 0.978
587.2 5.399 0.980

Catalog number Mae −Bq Reτ Re∗τ Reδ2 Reθ c f ·104 SVD Sproposed Source
65050801 2.200 0.000 2134.5 4899.2 5851.7 9829.2 17.100 - - Jackson et al. [1965]
72020205 4.823 0.005 1549.4 13925.1 6962.5 28764.0 7.392 1.039 1.026 Voisinet and Lee [1972]
72021501 4.929 0.069 9675.8 13379.6 21288.0 25494.0 10.800 0.687 0.895 Voisinet and Lee [1972]
73020505 1.400 0.000 41544.4 61500.2 96076.0 122450.0 14.800 - - Winter and Gaudet [1973]
7702S0301 3.028 0.042 992.1 1811.8 2479.1 3656.4 23.300 - - Laderman and Demetriades [1977]

Table 5.3: Experimental cases considered

So far, the discussion has centered on the three most cooled cases. How does the pro-

posed transformation work on the present DNS data globally, for all cases?

The DNS results for the Van Driest transformation, viscous sublayer transformation,

and the proposed transformation are in table 5.1. The table compares the Van Driest trans-

formed values of the log-law intercept C and the viscous sublayer slope S with the results

of the proposed transformation. As show in figures 1.3a and 1.3b, the Van Driest trans-

formed log-law intercept C increases with cooling, and the Van Driest transformed velocity

gradient in the viscous sublayer S decreases.

The proposed transformation performs remarkably better than the Van Driest transfor-

mation when comparing the transformed values of C and S. The Van Driest transformed

values of S drop considerably with strong cooling compared to the incompressible refer-

ence, but the proposed transformation’s values of S remain close to the incompressible

reference in all 9 cases. In fact, the proposed transformation always agrees in the viscous

sublayer and never suffers from an outwards coordinate shift.

The values of C for the proposed transformation more or less match the corresponding

values for a given Re∗τ in the Moser et al. [1999] data given in table 5.2. These Reynolds

number effects are discussed more in section 5.3.
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5.2 Experimental validation

Fernholz and Finley [1977] and Fernholz et al. [1981] compiled many sets of experimental

boundary layer data, and several of these data sets are used to validate the proposed trans-

formation (see table 5.3). The experimental validation is divided into an adiabatic portion

(figure 5.4) and a cooled portion (figure 5.5).

The skin friction values for 65050801, 73020505, and 7702S0301 came from

their respective compilations as given. The skin friction value for 72020205 was calcu-

lated from the gradient at the second point in the data set, which gave the best fit. Given the

high resolution of the data in the viscous sublayer, this approximation is reasonable. The

skin friction value for 72021501 was the corrected value given in Voisinet [1977] by way

of Fernholz and Finley [1980].

Probe effects distort the velocities in the viscous sublayer in 65050801 and 7702S0301.

However, the log-law values are intact and reasonable.

In general in these experimental cases, the proposed transformation works as well as

the Van Driest transformation in both the adiabatic and cooled situations. Table 5.3 omits

values of S for data sets without points in the viscous sublayer. Values of C generally are

close, but the robustness issues discussed in section 4 do reveal themselves in the data

of Winter and Gaudet [1973] (73020505). Here, the first data is well above Y+ ≈ 10,

and the proposed transformation’s value of C is slightly above the Van Driest transforma-

tion’s value of C. The proposed transformation works noticeably better than the Van Driest

transformation in 72021501. Here, the slope in the viscous sublayer is too low, and the

proposed transformation corrects it within a reasonable experimental level of error.

5.3 Re∗τ as a characteristic Reynolds number

As discussed in the introduction (chapter 1), the current paradigm supports Reδ2 as a char-

acteristic Reynolds number for these wall-bounded flows. But the proposed transformation
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Figure 5.4: Adiabatic experimental boundary layer cases, Bq ≈ 0.

, incompressible boundary layer reference at Reτ = 1989 from DNS by
Sillero et al. [2013].

Circles, compressible boundary layer transformed by Van Driest transformation at
Reτ from stated experiment.

Diamonds, compressible boundary layer transformed by proposed transformation at
Re∗τ from stated experiment.
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Figure 5.5: Cooled experimental boundary layer cases, Bq < 0.

• , incompressible boundary layer reference at Reτ = 1989 from DNS by
Sillero et al. [2013].

• Circles, compressible boundary layer transformed by Van Driest transformation at
Reτ from stated experiment.

• Diamonds, compressible boundary layer transformed by proposed transformation at
Re∗τ from stated experiment.

also has a Reynolds number: its transformed friction Reynolds number Re∗τ . The trans-

formed friction Reynolds number for channels is

Re∗τ =
ρc(τw/ρc)

1/2h
µe

=
h(τwρc)

1/2

µc
(5.1)

and for boundary layers is

Re∗τ =
ρe(τw/ρe)

1/2δ

µe
=

δ (τwρe)
1/2

µe
(5.2)

which in both cases is the transformed coordinate Y+ at the boundary layer thickness
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Figure 5.6: Reynolds number effects in the log-law intercept
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or the channel half-height.

This Reynolds number appears to properly characterize these wall-bounded flows. What

does “properly characterize” mean? “Properly characterize” means that a compressible

flow at Re∗τ corresponds to the equivalent incompressible flow at Reτ . A compressible

flow’s velocity profile transformed by the proposed transformation will match an equiva-

lent incompressible flow with the same Re∗τ .

This observation is more subtle that it appears. Consider the value of C. As already

discussed in the numerical validation, the values of C from the proposed transformation

match the incompressible case (they collapse the profile). But it is important to consider

this collapse in a more global sense, to demonstrate the importance of Re∗τ in characterizing

a flow.

Figure 5.6 compares the performance of each transformation in matching the log-law

intercept C (vertical axis) for a given transformed friction Reynolds number Re∗τ (hori-

zontal axis). This figure compares the transformed values of C to values of C from the

incompressible channel flow DNS of Moser et al. [1999], Hoyas and Jiménez [2008], and

Lee and Moser [2014]. The incompressible values of C increase for lower Reynolds num-

bers due to a low Reynolds number effect, and the transformed friction Reynolds number
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Re∗τ correctly picks up this low Reynolds number effect. This observation means that the

proposed transformation accounts for Reynolds number effects as well, provided the trans-

formed profile is compared to an equivalent incompressible profile with the same Re∗τ .

The Van Driest transformed values of C (circles) blanket the figure, landing anywhere

from 2 percent to 49 percent higher than the incompressible values at the same Reτ . This

disorder means that Reτ = hρw
√

τw/ρw/µw is a poor Reynolds number to describe the

problem, unlike the proposed transformation’s Re∗τ . The proposed transformation’s values

of C (diamonds) cling to the incompressible trend line, varying only 4 percent higher than

the incompressible reference at most, despite the large change in cooling rates. Compared

to the closest incompressible DNS case in Moser et al. [1999], the Re∗τ ≈ 200 cases are

at most 4 percent off in C, the Re∗τ ≈ 400 cases are at most 3 percent off in C, and the

Re∗τ ≈ 600 cases are at most 1 percent off in C, indicating that the proposed transformation

more or less obtains the correct value of C.

The values of CVD also appear to have a slight Reynolds number effect, but appear

to level out when Reτ > 400. What this means is that the upwards shift in CVD is not a

Reynolds number effect, but is mostly due to wall cooling.

How do these results involving Re∗τ fit into the current paradigm? Walz [1959] derived

Reδ2 by considering the skin friction and fluid inertia. Similarly, Re∗τ does relate both inertia

and wall friction. After some manipulation, it can be written as

Re∗τ =
(c f

2

)1/2
Ree (5.3)

so it is directly related to both the near-wall friction (through c f ) and the far-from-the-

wall inertia (through Ree).
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5.4 Summary and future work

Early on in this thesis , the current paradigm of transformation concepts in compressible

wall turbulence was discussed, and some of the ideas, while functional and adequate,

seemed quite disconnected and piecemeal.

Now, with a new velocity transformation, and new characteristic Reynolds number, and

a single coordinate (rather than two), the paradigm has united all the ideas underneath it.

The derivations here connected many ideas that seemed entirely independent of each other.

They connected (using mathematics) concepts like Morkovin’s scaling, the “semi-local”

scaling, the ideas behind the Van Driest transformation, and the ideas behind the viscous

sublayer transformation under a single unified framework.

Still, many scientific questions remain unanswered. How well does this transformation

perform in direct numerical simulations of boundary layers? In boundary layers, the heat

transfer at the wall is completely disconnected from the Mach number, so it can be var-

ied independently to quantify shifts in the velocity profile. How does this transformation

perform at hypersonic Mach numbers? How does this transformation perform for incom-

pressible flows with wall heating or wall cooling? How does this transformation perform

for variable density flows with constant viscosity?

Engineering questions remain too, including how this new transformation could change

existing skin friction formulas like Van Driest I (Van Driest [1951]) or Van Driest II (Van Dri-

est [1955]).

These questions should drive future work. The only question left is how soon the an-

swers will come.
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Appendix A

Table of symbols

Bq Dimensionless wall heat transfer parameter (see equation 1.8).

C Log-law intercept. This thesis calculates it by a least squares fit using κ = 0.41 between

Re∗τ /3 and Re∗τ /4.

c f Skin friction. c f = τw/(
1
2ρeu2

e).

cp Specific heat at constant pressure.

`ν Viscous length scale based on wall properties (see equation 3.2).

`x Streamwise channel length.

`y Wall normal channel length.

`z Lateral channel length.

h Channel half height. For Hybrid channels, h = 1.

k Thermal conductivity.

Ma Bulk Mach number for a channel. Ma = 〈u〉/(γR̄Tw)
1/2.

Mac Centerline Mach number for a channel. Mac = uc/(γR̄Tc)
1/2.
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Mae Edge Mach number for a boundary layer. Mae = ue/(γR̄Te)
1/2.

n Number of grid points.

Pr Prandtl number. Pr = cpµ/k.

qw Heat flux through the wall.

r Dimensional, compressible and untransformed Reynolds stress.

R Dimensional, incompressible and transformed Reynolds stress.

r+ Dimensionless, compressible and untransformed Reynolds stress. r+ = r/u2
τ .

R+ Dimensionless, incompressible and transformed Reynolds stress. R+ = R/u2
τ .

R̄ Specific gas constant.

Ree Boundary layer edge Reynolds number. Ree = ρeueδ/µe.

Reh Bulk Reynolds number based on the channel half height. Reh = 〈ρ〉〈u〉h/µw.

Reδ2 Reδ2 = ρeueθ/µw.

Reτ Friction Reynolds number based on wall properties. Reτ = ρwuτh/µw.

Re∗τ Friction Reynolds number based on local properties and τw (see equation 5.1).

Reθ Reθ = ρeueθ/µe.

S Average velocity gradient in the viscous sublayer up to Y+ = 4.

T Temperature.

T̄ Reynolds-averaged mean local temperature.

Tw Temperature at the wall. For Hybrid channels, Tw = 1.

Tc Reynolds-averaged channel centerline temperature.
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Te Reynolds-averaged boundary layer edge temperature.

u Dimensional, compressible and untransformed mean local velocity.

U Dimensional, incompressible and transformed mean local velocity.

u+ Dimensionless, compressible and untransformed mean local velocity. u+ = u/uτ .

U+ Dimensionless, incompressible and transformed mean local velocity. U+ =U/uτ . For

the proposed velocity transformation, see equation 3.35.

uc Reynolds-averaged channel centerline velocity.

U+
VD Dimensionless Van Driest transformed velocity (see equation 1.6).

U+
VS Dimensionless viscous sublayer transformed velocity (see equation 1.12).

uτ Friction velocity based on wall properties (see equation 3.1).

ue Reynolds-averaged mean boundary layer edge velocity.

〈u〉 Mean velocity for entire channel. For Hybrid channels, 〈u〉= 1.

ũ′iu
′
j Favre-averaged Reynolds stress.

ρu′′i u′′j Reynolds-averaged density-weighted Reynolds stress.

x Streamwise coordinate.

y Dimensional, compressible and untransformed wall normal coordinate.

Y Dimensional, incompressible and transformed wall normal coordinate.

y+ Dimensionless, compressible and untransformed wall normal coordinate. y+ = y/`ν .

Y+ Dimensionless, incompressible and transformed wall normal coordinate. Y+ = Y/`ν .

For the proposed coordinate scaling, see equation 3.31.
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y∗ The “semi-local” scaling based on local properties and τw. For the proposed transfor-

mation, Y+ = y∗ (see equation 3.31).

z Lateral coordinate.

δ Boundary layer thickness.

δ2 Momentum thickness.

γ Ratio of specific heats.

κ The von Kármán constant. For this thesis , κ ≈ 0.41 for all calculations of C.

µ Viscosity.

µ̄ Reynolds-averaged mean local viscosity.

µw Viscosity at the wall. This value also serves as the incompressible value of viscosity.

ρ Density.

ρ̄ Reynolds-averaged mean local density.

ρw Density at the wall. This value also serves at the incompressible value of density.

〈ρ〉 Mean density for entire channel. For Hybrid channels, 〈ρ〉= 1.

τ Compressible shear stress.

τ∗ Incompressible shear stress.

τw Shear stress at the wall.

θ Momentum thickness.
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Appendix B

A short history of transformations in

compressible wall turbulence

During the late 1940s to the early 1950s, several researchers initially developed several rea-

sonably similar ideas that we now collectively call the Van Driest transformation. Van Dri-

est [1951] provided a thorough analysis of skin friction in turbulent boundary layers, and

during his analysis he noted the importance of density ratios in deriving a compressible

equivalent to the logarithmic velocity distribution — a compressible form of the law of the

wall, in other words. Wilson [1950], Young [1951], and Ferrari [1950] all have somewhat

similar analyses with some parts of Van Driest’s observations, but the accuracy of Van Dri-

est’s skin friction formula in Van Driest [1951] meant that this paper remains much more

cited and consulted than these others, despite their similar content.

None of these early forms are the same as the integral Van Driest transformation we

use today. That form came out slowly. Both Ferrari [1957] and Dorrance [1961] (also see

Dorrance [1962]) contain obfuscated forms of the integral Van Driest transformation, but

neither received much notice.

Other researchers picked up on Van Driest’s compressible law of the wall and refor-

mulated it as a transformation theory. The integral form of the Van Driest transformation
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that we all use today (equation 1.6) was a generalization of Van Driest’s law of the wall by

Danberg [1964], who did the first large scale investigation of its performance. Many early

papers assumed particular temperature-velocity relationships in their version of the Van

Driest transformation. Danberg [1964] realized this limitation because he wanted to gener-

alize the transformation to include porous surfaces, remarking in his section “Transforma-

tion of Compressible Velocity Profile (with Heat and Mass Transfer) into the Incompress-

ible Velocity Profile” on page 61 that “Results of the compressible but zero mass transfer

analysis of Van Driest [1951], Harkness [1959], and Moore [1962] can be produced from

[equation 1.6].” Danberg realized that this equation was not a velocity profile or distribu-

tion but a method to transform compressible data into roughly equivalent incompressible

data. Danberg’s simplified form of the Van Driest transformation as given in figure 40 of

Danberg [1964] is largely what is used today.

During this period in the 1960s and 1970s, before the Van Driest transformation became

an accepted standard, Coles [1964] also represented an alternative, but it has not stood the

test of time.

Danberg continued his analysis with the integral form of the Van Driest transformation

in Danberg [1971] and one of his students used it in his dissertation (Sturek and Danberg

[1971]). Other researchers, like Kemp and Owen [1972], began to compare the perfor-

mance of this integral to the original Van Driest transformation and noticed similar results.

Later review papers then began to call this integral form the Van Driest transformation and

recommended its use (see Bushnell et al. [1977] and Fernholz et al. [1981]).

The viscous sublayer transformation’s original derivation remains elusive, but several

people have derived it over the years. Fernholz [1969] contains the same idea as it in

a velocity distribution. The first reference to the viscous sublayer transformation in its

modern integral form was in Carvin et al. [1988].

In the early 21st century, researchers began to see the limitations of the Van Driest

transformation. Seeking to correct the Van Driest transformation, Brun et al. [2008] and
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Transformation name Velocity Coordinate Reynolds stress Sources
Howarth dY

dy =
ρ

ρw Howarth [1948]

Cope and Hartree dY
dy = µw

µ
Cope and Hartree [1948]

Van Driest dU
du =

(
ρ̄

ρw

)1/2 dY
dy = 1 Van Driest [1951] and Danberg [1964]

Lobb et al. U+ = u
u∗τ

Y+ = y
`∗ν

Lobb et al. [1955]

Morkovin R+ =
ρ̄r
τw Morkovin [1962]

Viscous sublayer dU
du = µ̄

µw
dY
dy = 1 R+ = 0 Carvin et al. [1988]

Huang et al. Y+ = y
`∗ν

Huang et al. [1995]

Brun et al. dU
du = y

Y

(
µw
µ̄

)(
ρ̄

ρw

)1/2 dY
dy = µw

µ
R =

( y
Y
)2 ( µw

µ̄

)2 (
ρ̄

ρw

)
r Brun et al. [2008] and Haberkorn [2004]

“Howarth with log-law” dU
du = y

Y

(
ρ̄

ρw

)3/2 dY
dy =

ρ

ρw Present thesis

Proposed dU
du =

(
ρ̄

ρw

)1/2 [
1+ 1

2
1
ρ̄

dρ̄

dy y− 1
µ̄

dµ̄

dy y
]

Y+ = y
`∗ν

R+
uv =

ρ̄ruv
τw Present thesis

Table B.1: A history of transformations

Haberkorn [2004] sought to apply the transformation of Cope and Hartree [1948] to wall

turbulence, arguing that it is related to the viscous sublayer transformation. This transfor-

mation, however, does not achieve a collapse to the incompressible law of the wall, but it

was the first attempt to generalize a log-law condition to include any coordinate transfor-

mation.

Table B.1 lists many of the transformations considered over the years. Notice the trans-

formation labeled “Howarth with log-law.” This transformation uses the coordinate trans-

formation of Howarth [1948] and is easy to think of in light of the transformation of Brun

et al. [2008], and forms an equivalent transformation to this thesis ’s proposed one if mass

conservation matters more than momentum conservation. But momentum transfer matters

much more in wall turbulence, so this transformation works about as well as the transfor-

mation of Brun et al. [2008].
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