THESIS REPORT
Master’s Degree

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

M.S. 87-3
Formerly TR 87-159

Integration of Manufacturing Resource
Planning (MRP II) and Computer

Aided Design (CAD) Through
Database Interoperability

by: ML.E. Bohse
Advisor: G. Harhalakis

Integration
of
Manufacturing Resource Planning
(MRP II)
and
Computer Aided Design
(CAD)
Through
Database Interoperability

by
Michael Edward Bohse

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of

Master of Science
1987

Abstract

Title of Thesis: Integration of Manufacturing Resource Planning (MRP II) and

Computer Aided Design (CAD) Through Database Interoperability
Name of Candidate: Michael Edward Bohse, Master of Science, 1987

Thesis directed by: Dr. George Harhalakis, Assistant Professor, Department of

Mechanical Engineering

The traditional, fragmented approach to increasing manufacturing efficiency has
_ resulted in “islands of automation” in our factories. Computer Integrated Manufac-
turing (CIM) is the goal of tying together these islands into a single coherent system
capable of controlling an entire manufacturing operation. The technical and orga-
nizational difficulties of such a massive undertaking require a modular approach to
CIM implementation, with an initial nucleus being gradually expanded by allowing
interaction between it and other systems’ databases. Manufacturing Resource Plan-
ning (MRP II) is best positioned to serve as this nucleus. The suggested first system
for integration is Computer Aided Design (CAD); the integration being centered
around part specification, product structure, and engineering changes.

A functional model of the MRP II/CAD integrated system, detailing the logical
interactions between the systems in these areas, is presented. In it, CAD serves as
the center for design related decisions, while MRP II handles the task of executing
and monitoring manufacturing activities. Integration is simulated using an inter-
operability system which allows for the specification of a set of rules to define and

enforce the update and retrieval dependencies of the databases.

Acknowledgements

I wish to express my sincere gratitude to Dr. Harhalakis, whose guidance,
support, and advice throughout this research were invaluable. I am also érateful to
Dr. Mark and Bobbie Cochrane of the Computer Science Department for providing
“me with an Update Dependency Language interpreter so quickly, and for their
considerable assistance with the language.

In addition, I wish to thank the members of my thesis committee, Dr. Harhalakis,
Dr. Mark, and Dr. Ssemakula, for their time, and their comments and suggestions.

Further, I wish to express my appreciation to the Systems Research Center and
the Department of Mechanical Engineering, especially Dr. Fourney, for providing
financial support during this project.

Finally, I would like to thank my family and friends for their uﬁdersta.nding and
support. I would especially like to thank the other members of the “CAPS” Lab,
whose help and friendship has meant a great deal: Tariq, Debbie, Phani, Susan,

Ramesh, Philippe, Anshuman, and Lin.

ii

Contents

Introduction

A Proposed Model of CIM Architecture

2.1 Manufacturing Resource Planning (MRPII)
2.2 Computer Aided Design e
2.3 Computer Aided Process Planning

2.4 Computer Aided Manufacturing

A Proposed CIM Design Strategy
3.1 Managementof CIM Data
3.2 A Starting Point: MRPII/CAD Integration

3.3 The Fundamental Similarities of MRPII and CAD

Functional Design of a Model MRP II1/CAD Integrated System

4.1 Model Assumptions and Framework
4.1.1 Designation of Authority between MRPII and CAD
4.1.2 Control of Information Flow in the Model

42 PartMasterData.,
4.2.1 Data Division and Organization
4.2.2 Adding New Parts Via CAD

4.2.3 Adding New Parts ViaMRPII

iii

12
14

15

18

21

25

27

33

4.3

4.2.4 Adding New Revisions Via CAD
4.2.5 Adding New Revisions ViaMRPII
4.2.6 Making PartsObsolete.
4.2.7 DeletingParts
Product Structures e
4.3.1 Adding Component Relationships Via CAD
4.3.2 Adding Component Relationships Via MRPII.
4.3.3 Deleting Component Relationships
4.3.4 Substituting Components in Relationships
4.3.5 Modifying Component Quantities.
4.3.6 Copying Component Relationships from one Assembly to An-

5 Database Interoperability through Update Dependencies

5.1 Database Interoperability,
5.2 Update Dependencies,
5.2.1 Syntax v v vt e e e e e e e e e e e e e e e e e
5.2.2 Semanticst i e e e e e e e e e e
5.2.3 Implementation Strategy

6 Demonstration and Discussion of Results

6.1 Implementing the Model System Using Update Dependencies

6.1.1

6.1.2

Relations Used by the System
Programing the Interoperability System
6.1.2.1 Backtracking o
6.1.2.2 “Failure Alternatives”

6.1.2.3 System Performance

iv

84
84
88
90
92

94

97

97

6.1.3 Problems with the Current Interoperability Model 110

6.1.3.1 Duplication of Application Functions 110
6.1.3.2 Operation “Chains” 110
6.1.3.3 UserlInterface 112
6.2 A Sample Session with the Model System 113
6.2.1 PartMasterData, 113
6.2.1.1 Adding New Parts Via CAD 113
6.2.1.2 Adding New Parts Via MRPII 117
6.2.1.3 Adding New Part Revisions Via CAD 119
6.2.1.4 Adding New Part Revisions Via MRPII 122
6.2.1.5 Part Supersession 124
6.2.1.6 Hold Functionsin CADand MRPIT 129
6.2.1.7 PartDeletions 133
6.2.2 Product Structures oo 138
6.2.2.1 Adding Component Relationships Via CAD 139
6.2.2.2 Adding Component Relationships Via MRPII . .. 143

6.2.2.3 Adding Component Relationships Requiring a New
Assembly Part Number 144
6.2.2.4 Deleting Component Relationships Via CAD 147
6.2.2.5 Deleting Component Relationships Via MRPII . . . 149
6.2.2.6 Mass Substitution of Components Via CAD 149
6.2.2.7 Mass Substitution of Components Via MRPII ... 152

6.2.2.8 Modifying the Quantity of Components per

Assembly L . 154
6.2.2.9 Copying Product Structures Via CAD 155
6.2.2.10 Copying Product Structures Via MRPII 157

7 Conclusions

8 Recommendations for Further Work

Bibliography

A Update Dependency Operations for the Model MRP I1/CAD

System

vi

160

164

168

171

List of Tables

4.1 Part Data Maintained by MRPII and CAD
4.2 Revision Data Maintained by MRPIIand CAD

4.3 Product Structure Data Maintained by MRPII and CAD in Rela-

tionship Records.

vii

List of Figures

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

4.1

4.2

4.3

4.4

4.5

Potential CIM Architecture.o 0L 7
Typical MRP IT Architecture. 8
MRPII from a Software View. 10
MRPII Linked to CAD. 13
CAPP Added to the MRPII/CAD System. 15
CAM Added to the MRP II/CAD/CAPP System. 17
A Systems Representation of Manufacturing. 18
The Single Database Concept of CIM Data Management. 23
The Multiple Database Concept of CIM Data Management. 24
System Representation of MRP IT/CAD Information Flow.. 26
A Typical Bill of Material. 29
Status Diagram for Adding New Parts Via CAD. 44

Status Diagram for Adding New Parts with Released Status Via
Status Diagram for Adding New Parts with Hold Status Via MRPII. 51

Status Diagram for Adding New Revisions Via CAD.. 54

Status Diagram for Adding New Revisions with Released Status Via

viil

4.6

4.7

4.8
4.9
4.10

4.11

4.12

4.13

4.14

5.1
5.2
5.3

5.4

6.1

Status Diagram for Adding New Revisions with Hold Status Via

Status Diagram for Making Parts Obsolete Via CAD from Released
Status. . . . v L e e e e e e
Status Diagram for Making Parts Obsolete Via CAD from Hold Status.
Status Diagram for Deleting CAD-Generated Parts Via CAD.
Status Diagram for Deleting CAD-Generated Parts Via MRP II.

Status Diagram for the Deletion of MRP II-Generated Parts Via

Transfer of Component Relationships from CAD to MRP Il beginning
with Assemblies having Working Status.
Transfer of Component Relationships from CAD to MRP II beginning
with Assemblies having Hold or Released Status.

Transfer of Component Relationships from MRPII to CAD.

A Global Schema between the Databases and the System.
A Global Schema between the Users and the Databases.
Database Integration.,

Database Interoperability.

A Demonstration of Backtracking.

ix

75

85

86

89

Chapter 1

Introduction

It is no secret that United States manufacturing industries have, in recent years,
experienced an ever-increasing level of foreign cqmpetition. Once the undisputed
. leader in the design and production of manufactured goods, the U.S. is now seeing
many of its industries lost to foreign countries. Today there is only one American
maker of television sets left; the vast majority of radio and small home appliance
manufacturers went overseas years ago. The traditionally strong U.S. steel and
auto industries are likewise under fire. By 1990, the U.S. will be importing a flood
of new cars produced in countries such as Czechoslovakia, Greece, Korea, Spain,
Taiwan, and Yugoslavia. Even the newer, high technology fields of computers and
semiconductors feel the effects of foreign competition.

Though there are many complex reasons for the success of foreign manufacturers,
one of the most often cited is that of cheaper labor, which seems to be justified by the
following statistics. In 1984, the average hourly manufacturing wage in the United
States [7] was $12.59. In West Germany, the rate is 76 percent of that amount; in
Japan, 56 percent. Similarly, in Great Britian, the rate is only 46 percent of this
amount; in South Korea, 11 percent; and in Brazil, 10 percent. To make matters
worse, the productivity of American workers, measured by manufacturing output

per worker-hour, now lags behind that of every other industrialized nation [7].

Further, the problem of foreign competition is compounded by a perception By
a considerable number of American consumers that the quality of foreign products
is higher than that of similar American-made products. Over the last several years,
for example, consumers have been willing to pay premiums on imported automo-
biles, most notably those from Japan, whose numbers have been limited by trade
agreements.

It is obvious that a major overhaul of American industry is necessary if the
U.S. is to remain competitive in the world market. The labor figures mentioned
above make it clear that the reliance on traditional, labor intensive manufacturing
systems and techniques must be reduced. New methods, technologies, and systems
" must therefore be employed, not only to increase productivity, but also to improve
product quality and responsiveness to changes in market demands and conditions.

To this end, manufacturers have been literally inundated with technologies
promising improved productivity, reduced costs, and improved quality, all suppos-
edly leading to the “factory of the future.” These include some of the hottest buz-
zwords since “interchangeable parts”: Computer Aided Design (CAD), Computer
Aided Manufacturing (CAM), Flexible Manufacturing Systems (FMS), Manufactur-
ing Resource Planning (MRP II), Group Technology (GT), Just-In-Time inventory
control (JIT), Automated Materials Handling (AMH), Computer Aided Process
Planning (CAPP), Artificial Intelligence (AI), and others. Given the potential ben-
efits of these ideas, it is no wonder that the interest of manufacturing firms, large
and small, has been aroused.

When properly planned, managed, and implemented, most of these systems have
proved beneficial to their specific areas of application. But too often, out of fear of
falling behind in the race towards automation and losing profitability, firms plunge

head on into one or more of these techniques without clear goals or long term plans.

2

The result is usually “islands of automation,” isolated areas that benefit from the
latest technologies, without communicating or interacting with related activities.

In fact, experience has shown that some firms may independently automate as
many as 50 different functional areas [2], often using unique hardware and software
for each. Over the past several decades, this practice of implementing specialized
activities and functions has been commonly accepted as the way to achieve effi-
ciency. Recently, however, this approach has been questioned. Based on findings of
the National Research Council [15], “In case after case, the absolute necessity of in-
tegrating each element of the manufacturing process from market a,pa,lysis through
design, fabrication, and sales to follow-on customer service has emerged as the key
. to achieving the productivity gains required.”

The prospect of integrating the various elements of the production cycle re-
quires the development of a global systems approach to manufacturing that has
been lacking in the past [9]. While there has been a tremendous growth in the
number of narrowly focused “solutions,” both hardware and software oriented, there
has been little tangible progress toward the solution of the overall manufacturing

” One impediment to a more global approach is the traditional special-

“problem.
ization of hardware and software vendors. With technology evolving so rapidly and
competition intensifying in each area of specialization, it is difficult for vendors to
broaden their focus. There are vendors producing engineering packages such as
Computer Aided Design and Finite Element Analysis, vendors selling manufactur-
ing hardware and software for such things as Numérically Controlled machinery and
robotics, vendors with operations management systems like Manufacturing Resource
Planning, vendors marketing financial packages like General Ledger and Accounts

Payable/Receivable, and so on. But none of these areas can exist in isolation. En-

gineering, manufacturing, operations, and finance are all unseparable components

of what has been called [16] the “Product Enterprise System.”

With this in mind, it is now time for industry to integrate the individual tools
into a single integrated manufacturing system. Because computers are generally
recognized as the means through which integration can be achieved, such a concept
is commonly referred to as Computer Integrated Manufacturing, or CIM (22}, one
of the latest buzzwords now circulating in industry.

But CIM means different things to different people. To many, it is the linking
of CAD and CAM; to others, it means a well tuned, closed-loop MRP II system.
These attitudes are, again, largely a product of specialization; the scope of CIM is
much larger. The goal of CIM is to streamline the flow of information throughout a
" manufacturing business as much as it is to streamline the manufacturing processes
themselves. In fact, the entire manufacturing cycle can be viewed as a series of
data processing functions [10], in\;olving creating, sorting, analyzing, transmitting,
modifying, and storing data. The information involved in manufacturing is quite
diverse, including geometrical data, tolerances, bills of material, costs, schedules,
inventory levels, and much more.

CIM has been referred to as a system, a project, a product, a philosophy, a
concept, and a program [2]. In the absence of a widely accepted definition, it can
perhaps be viewed as any or all of these. It should combine hardware, software, and
when appropriate, manual procedures to economically and efficiently provide disci-
plined interaction between every business activity, while remaining flexible enough
to respond to changing business and market conditions.

In this work, a general functional model of CIM is presented, aimed at satisfying
the above goals. An implementation strategy for integrating the various components
of CIM in a modular fashion is described, and a starting point, the integration of

Manufacturing Resource Planning (MRP II) and Computer Aided Deisgn (CAD),

is proposed. It is the design of the integrated MRP II/CAD system that is the
focus of the work. The areas common to MRP II and CAD, part specification, part
structure, and engineering change control, are then identified, and the flow of related
information between the two systems is detailed. Finally, the concept of database
interoperability as a means for achieving a model of such an integrated system is
presented. The integrated MRP II/CAD model is then described and demonstrated
using an Update Dependency Language, a tool for achieving interoperability of

systems.

Chapter 2

A Proposed Model of CIM
Architecture

Given the goal of CIM, to streamline the flow of information and the processing of
that information throughout the production cycle, how can such a system be config-
ured? Using the current technologies available, a suggested model of CIM is shown
in Figure 2.1. Manufacturing Resource Planning (MRP II), which plans, schedules,
and monitors production activities as well as maintaining financial accounts, serves
as the central coordinator of CIM. Computer Aided Design (CAD) handles the task
of aiding in the creation, updating, and transfering of design information to the rest
of the system. Computer Aided Process Planning (CAPP) translates design data
information into manufacturing data. And finally, Computer Aided Manufacturing
(CAM) converts the product data into physical parts.

Supporting the four major functional areas of CIM are several important, task
specific and proven systems, such as Artificial Intelligence (AI), Group Technology
(GT), Automated Materials Handling (AMH), and robotics. The role of each of the

major systems is described more fully in the following sections.

MRP |

CAD CAPP CAM

Figure 2.1: Potential CIM Architecture.

2.1 Manufacturing Resource Planning (MRP II)

From its beginnings in the crude inventory tracking systems in the late 1950’s and
early 1960’s, MRPII has become a highly sophisticated closed-loop information
system, one that is highly suitable to becoming the information center, or “hub” [8]
of CIM. The typical MRP II Architecture is shown in Figure 2.2.

Positioned at the highest level of MRP II is the Master Production Schedule
(MPS) module. Using independent demand, in the form of customer orders, and
sales forecasts as determined by the marketing department, it is MPS which es-
tablishes and monitors the production goals of the organization. By tracking the
accuracy of forecasts, MPS can adjust its plans to better suit business conditions.
Forecasts of slow selling products can be decreased to free resources for those that
are selling well. Production may also be increased to cover unanticipated orders.

At the MPS level, “rough-cut” capacity is explored. Many potential bottlenecks

are therefore identified before they occur, by comparing the availability of the most

Independent
Demand

Master
Production
Schedule

Inventory

Dependent
demand

v

Bills Of
Materials/

Routings

Material
Requirements s
Planning A A

Purchase
orders

Purchasing l

Recelvmg/
Quality Control

Manufacturing
orders
Shop Floor F

Capacity
Ok?

Manufacturing l

Delivery I_-

Figure 2.2: Typical MRP II Architecture.

critical resources with the approximate demand. Hence changes can be made, either
by reducing the demand for the critical resource(s) or by somehow increasing the
availibility of the resource(s).

Once established, the Master Production Schedule is executed by the other mod-
ules of MRPII. Materials Requirements Planning (MRP) translates the gross re-
quirements for end products from the Master Production Schedule into time phased
net requirements for individual parts. This is done with the help of information
contained in the Bills of Material/Routings and Inventory modules. The Bills of
Material /Routings module contains basic information about each part (part master
data), its product structure (bills of material), and the processes required to pro-
duce it (Routings). Along with the inventory and on-order quantities available from
the inventory module, MRP uses these data to produce a schedule of manufacturing
and purchasing activities necessary to meet the Master Production Schedule.

The primary result of an MRP run is a series of suggested manufacturing and
purchase orders. The purchase orders are then handled by the purchasing module,
where orders are firmed, released, and tracked. Upon receipt, the Receiving/Quality
Control module tracks the items through inspection and into stock, recording in-
ventory transactions in the inventory module.

Manufacturing orders are monitored by the Shop Floor Control module, which
produces a rough shop floor schedule using routing information. At this point,
capacity is also examined, with greater detail than the rough-cut check at the Master
Production Schedule level, and over- and under-utilization of resources is identified.

Orders are tracked as they move from work center to work center, and finally to
delivery of the final product. Actual shop floor data (e.g., time and labor booked),
for each order can be maintained for comparison to standard or expected values.

During the execution of the MRP generated purchase and manufacturing orders,

Master
Schedule

Bills of
Materials &
Routings

Accounts

Shop Floor

Control Inventory

Control

Material
Requirements
Planning

Receiving

Purchasing

Figure 2.3: MRPII from a Software View.

- MRP monitors the completion of individual activities, and alerts the users to late
orders, insufficient quantities, and other problems that may delay the completion
of the Master Schedule orders.

Not shown in Figure 2.2 but important to the complete operation of MRP II
are the accounting functions. Using inventory information and product cost data
from the Bill of Material/Routings module (part master data), the value of current
inventory can be determined. Using cost data, product structure, and routing
information, the manufactured cost of any item can be calculated. Accounts Payable
is also coordinated with Purchasing and Receiving, and Payroll is used to record
labor costs with data from Shop Floor Control.

Figure 2.3 depicts MRP Il from a software standpoint. A central database stores

the data required by each of the surrounding functional modules; it is the manage-

10

ment of this data that makes MRP II such a powerful system. All of the various
modules have access to the same data, retrieving and updating it as necessary. The
data maintained in the MRP II database includes static part and part structure
information, part routings, inventory quantities and locations, production goals,
activity schedules, manufacturing and purchase orders, vendor information, shop
floor capabilities and schedules, accounting figures, and more.

As described in the preceeding paragraphs, these data allow MRPII to coor-
dinate and monitor all the major functional areas of a manufacturing business.
Perhaps this is why some people consider MRP II to be Computer Integrated Man-
ufacturing in itself. But, although MRP II may be able to coordinate and monitor
" all the major functional areas, it cannot adequately control all of them. The weak-
nesses of MRP II are most apparent in the areas of design, process planning, zind
manufacturing. MRP II does not provide any of the design functions of a CAD sys-
tem, but can only record the static (non-geometric) design data of a part. The same
applies to process planning; MRP II has no facilities for creating process plans, only
for recording them. In the area of manufacturing, MRP II does generate a schedule
of shop floor activities, but it cannot control or monitor individual machines or
download Numerically Controlled machining data.

Because there are already systems available to provide the functions MRP II
does not, the logical approach seems to be to bring together MRPII and these
systems to form CIM. And because the other systems are either providing data
to or using data from MRP II and each other, MRP II plays the role of opera;tions

coordinator, or “hub” of the combined CIM system.

11

2.2 Computer Aided Design

Computer Aided Design (CAD) systems were developed to provide users with com-
puter aided tools for designing, drafting, and analyzing parts. The primary goals of
CAD a,.re to reduce design time, increase flexibility and adaptability, and to assist
the designers in performing tedious design calculations.

CAD systems have developed greatly since their introduction in the 1960’s, when
they functioned primarily as electronic drawing boards. With CAD (more appropri-
ately called Computer Aided Drafting at that stage), drawings requiring minor, or
even major changes couldabe easily modified instead of being completely redrawn.
_ Beyond improving drafting efficiency, however, CAD did little to streamline the rest
of the design function.

Today’s CAD systems are much more capable than those early predecessors,
though a suprisingly large number of CAD users continue to use them primarily for
drafting only [10]. In addition to the traditional drawing capabilities, many of the
current systems include design features such as automatic or semi-automatic mesh
generation for finite element analysis, clearance/interference studies, solid modeling,
and management of part information (i.e., part specifications and part lists).

The role of CAD in CIM is to serve as the center for design information for the
entire organization. It is with the help of CAD that design ideas are translated
into product data which, in turn, drives the remainder of the manufacturing cycle.
The data can be divided into two categories: part specification/product structure
data and geometric/design data. The part specification/product structure data
represent much of the same information contained in the Bill of Materials/Routings

module of MRP II; the linkage of CAD and MRP II through this module is shown

in Figure 2.4. This interface allows CAD to control the static part information used

12

Master
Schedule

Bills of
Materials &
Routings

Accounts

Shop Floor
Control

4——] Inventory
Control

Material
Requirements
Planning

Recesiving

Purchasing

Figure 2.4: MRP Il Linked to CAD.

13

by MRP II.
The geometric/design data maintained by CAD is to be interfaced with Com-

puter Aided Process Planning, described in the following section.

2.3 Computer Aided Process Planning

Computer Aided Process Planning (CAPP) is a fairly recent tool that is used to
either automatically or semi-automatically develop process plans for a part from the
geometric information provided by CAD. More specifically, the purposes of CAPP

are to [20]:
e Select tools and processes
e Determine process sequencing

e Determine cutting conditions and f:imes

Itentify non-machining elements and times

Select jigs and fixtures

CAPP systems are generally divided into two classes: variant and generative [14].
Variant CAPP systems develop process plans for new parts with the help of Group
Technology (GT) [3]. Parts are classified into families with common geometries,
machining requirements, and so on. To create a process plan for a new part, a
part similar in some manner to the part under consideration is identified, :;.Lnd the
process plans for the old part are modified as necessary for the new part to account
for the differences between them. Generative CAPP systems are designed to create
process plans for a new part from a “clean sheet of paper”, often using a rule

based expert system to make decisions. The rules, based on the experience of

14

Master

Schedule
CAD

Bills of
Accounts Materials &
Routings
CAPP
Shop Floor
Control Inventory
Controi

Material
Requirements
Planning

Receiving

Purchasing

Figure 2.5: CAPP Added to the MRP II/CAD System.

human process planners, specify the details of the process plans given the geometry,
features, surface finish, tolerances, and material specification of the part.

The suggested role of CAPP in CIM is shown in Figure 2.5. CAPP interfaces
with CAD through the geometric part information generated in QAD. And once
the process plans have been generated by CAPP, the information is shared with the
Bills of Material/Routings module of MRPII so that shop floor activities can be
scheduled. The third interface of CAPP is with Computer Aided Manufacturing,

which is the subject of the next section.

2.4 Computer Aided Manufacturing

Computer Aided Manufaacturing (CAM) systems of one form or another have been

in use since the late 1940’s. CAM is the use of computers to automate specific

15

manufacturing tasks with the intention of decreasing manufacturing time and cost
while increasing consistency and quality of parts. Early CAM systems consisted of
numerically controlled (NC) machine tools which read paper tapes with punched
holes to produce the required tool mévements in much the same way a player piano
works.

Today, the concept of Computer Aided Manufacturing is much grander. In-
stead of simply playing back pre-programmed movements, CAM should be capable
of interacting intelligently with its surroundings [1]. Given the needed production
quantities and process plans for each part, CAM should handle the detailed schedul-
ing, assigning tasks to specific work centers, downloading the specific manufacturing
instructions, and monitoring performance.

In support of these activities, work centers would be set up as Flexible Manufac-
turing Cells (FMC), consisting of basic tools and capable of producing a wide range
of parts simply by downloading the appropriate process plans. Automated Mate-
rial Handling (AMH) Systems would be used to facilitate the transfer of materials
between work centers.

Figure 2.6 shows the addition of CAM to the CIM system. From CAPP, CAM
receives the specific process plans for each part. The other CAM interface, with
Shop Floor Control, includes the communication of work orders and rough schedul-
ing to CAM, with an accompanying feedba,ck to Shop Floor Control to allow MRP 11

to monitor progress and report delays or other problems.

16

Master
Schedule

Bills of
Materials &
Routings

Accounts

Shop Floor
Control

Inventory
Control

Material
Requirements
Planning

CAM

Recesiving

Purchasing

Figure 2.6: CAM Added to the MRP II/CAD/CAPP System.

17

Chapter 3
A Proposed CIM Design Strategy

Beyond the general concept of CIM, to automate the flow of information through-
out a manufacturing organization, there remains the question of how such a system
. can be designed and implemented. While the model presented in Chapter 2 ad-
dressed the basic functional aspects of CIM and described the technologies that
could provide the necessary features, the details of the integrated system were not
considered.

To develop the detailed functional aspects of CIM, one must understand the
flow of information among the various production functions. Perhaps the best
way of analyzing this information flow to begin with a systems representation of
manufacturing, as suggested in Figure 3.1. The input to the system is a particular

consumer need, and the output is a particular product intended to fill the need.

Consumer
Need

Product
g

Manufacturing
System

Figure 3.1: A Systems Representation of Manufacturing.

18

The “system” between includes all the components of a manufacturing business
necessary to process the need and supply the end product: marketing, who inputs
the need from the market; design, who creates a product design to satisfy the need;
manufacturing, who determines how to produce the product and how much it will
cost; suppliers, who provide the raw materials for producing the product; accounts,
who pay the suppliers, designers, marketers, and so forth; and management, who
oversees all activities, making decisions such as whether or not to produce the
product, and so on.

The feedback in this system allows the comparison of the final product to the
original need responsible for its creation. If the two do not match well, the system
" can “process” the difference between the two, with the result being modifications
to the product definition and/or volume to improve its performance with respect
to the original need.

While such an example is useful for demonstrating the system concept, it is of
little value for representing the flow of information through an organization, since
the entire organization is shown as being within the system. However, as with most
systems, it is possible to decompose the representation of Figure 3.1 into smaller
units, or sub-systems, each representing a system with its own inputs and outputs.
If decomposed to a proper level of detail, the inputs and outputs of the various
sub-systems can be linked to create an information flow diagram for CIM.

From the system information flow diagrams for the various components of CIM,
formalized procedures for implementing the transfer of information are necessary.
These will serve as the basis for the functional design of the integrated system. Each
type of information should be placed under the control of a primary system, which
means that, in general, only one system will be capable of freely modifying a piece

of information, though any other systems requiring the data would have access to

19

it.

Information flow diagrams created in this way are not unique, however. Differ-
ent organizations will have somewhat different informational néeds, and different
approaches to solving these needs. Therefore, the idea of creating a turn-key CIM
system is not practical. The implementation of CIM will have to occur on an indi-
vidual basis, allowing an organization to choose those technologies and tools most
appropriate for solving its particular problems.

Research in the area of CIM should therefore be centered in two areas:
e Improvement of the individual manufacturing tools and techniques
o Development of tools for the integration of CIM components

Though there are some who believe that implementing CIM is only a matter of ap-
plying technology that is currently available, this attitude is short-sighted. Changes
and improvements are required in virtually all aspects of manufacturing, includ-
ing product design, material handling, processing, assembly, and management [1].
Particularly weak areas requiring research include machine tool technology, pro-
gramming languages, hardware and software architectures, robotics, and geometric
modeling.

The development of tools for integrating CIM components is equally important.
It is crucial that these tools be generic, and applicable to virtually any particular
systems being ?ntegrated. Given the functional details of a proposed integrated sys-
tem, the tools should provide the means for accomplishing the necessary operational

capabilities.

20

3.1 Management of CIM Data

Perhaps the most complex aspect of developing generic CIM integration tools is the
necessity of managing large amounts of data generated in different systems with

different formats. Some of the major data management concerns are [18]:

e Size. The combined data from several large computer systems may easily
run into hundreds of millions of pieces of information, even for a medium size

manufacturer, requiring large amounts of storage and increasing access time.

e Heterogeneity of data and users. Throughout a manufacturing organi-
zation, there are many different types of data, including text, numerical, and
graphical information, which must be handled by an integrated system. To
complicate matters, different users requiring similar information often require
different data formats and arrangements to meet their special needs. Thus
an integrated system must provide a number of user interfaces to cater to the

various user requirements.

e Update difficulties. One of the major concerns of data managment in an
integrated system is the problem of updating data within system and data
integrity constraints. Since a given piece of information may be modified
by users of several systems, means must be provided not only for ensuring
that all users will have immediate access to the new information, but also
for evaluating the impact of changes on other information stored throughout
the system. Thus the data management system must be aware of the detailed
data relationships such that either changes to related information can be made
automatically (e.g. changing a production schedule when an order due date

is changed) or messages sent to appropriate personnel for further action. In

21

such cases, in which the integrity of one or more systems may be temporarily
violated due to incomplete or inconsistent data, a freeze on related activities

may be necessary until the conflicts are resolved.

¢ Performance requirements. In addition to satisfying the above techno-
logical problems, the database must satisfy the users’ needs for performance.
Data access time must be reasonable, even when the data is distributed over
several geographic locations. The system must be able to handle the special
loads induced by graphical information as well as heavy numerical calcula-
tions required for engineering analysis. For an extensive integrated system,
these requirements will necessitate large-scale computing power, perhaps in
one large system, or more likely, a network of smaller machines. When the
organization’s needs change somewhat, the database should provide a means

for adapting to the change without extensive modification.

e Security. Finally, the database must provide a means of protecting data.
Because the whole organization will be using the same data, it is imperitive
that the data be secure. A detailed authorization structure, perhaps with sev-
eral levels of accessibility, should be maintained within the system to provide
the users with only the appropriate access to the information they need to

perform their work (read only, or read/modify).

There are two primary schools of thought concerning the management of CIM
data [18]. The first proposes the use of a single database to handle all CIM data,
while the second suggests the use of multiple databases, with an external “interop-
erability” system to manage the transfer and updating of data between the systems

as necessary.

22

F 1

Database

Figure 3.2: The Single Database Concept of CIM Data Management.

The concept of a single database surrounded by a number of application sys-
tems is depicted in Figure 3.2. In this configuration, each piece of information is
maintained only once in the system, eliminating the possibility of inconsistent data
for the same piece of information existing in different applications. The multiple
database concept is shown in Figure 3.3. AThe external interoperability system is
positioned between the individual applications and their databases. The interop-
erability system monitors the application functions, and, when an event occurs in
one that affects key data, executes aL preprogrammed response, involving related
applications, in order to maintain consistency between the applications involved.
Because copies of data shared by different applications are maintained in each of
these application, it is crucial that the interoperability operations be complete and
accurate, or inconsistent data will result.

The idea of a single database has some definite advantages over the muli-
database alternative. First, the single storage of each piece of information eliminates

the redundancy and consistency problems inherent in separate databases. And sec-

23

F 1 F2 . Fn

Interoperability System

Figure 3.3: The Multiple Database Concept of CIM Data Management.

ond, a single database avoids the communication overhead necessary to transfer
information between different databases.

In terms of response time, however, it is not clear which alternative would per-
form better. With a single database, the response time for all functions would be
increased as compared to their performance as isolated systems, due to the size of
the combined database. With separate databases, the response time of functions
that affect only their local database would be low, whereas the response time of
functions that affect other databases as well could be very significant, depending on
the amount of traffic (number of inter-database operation calls) needed to maintain
consistency.

A major limitation of the single database approach, however, is that it requires a
“ground-up” approach to CIM. The databases of existing systems would generally
have to be rebuilt in the process of creating a single database. Such extensive

modifications are expensive, and would limit, if not eliminate, the support provided

24

by the original system vendors. Further, the design of a single database requires
the consideration of all the data it will contain; future additions or modifications
required by the addition of new application may be very difficult.

In constrast, the multiple databse approach is suitable for the linking of ex-
isting systems, protecting committed investments in software and hardware, and
even more importantly, in user training and familiarity. Further, using multiple
databases allows systems to be integrated one by one, by enhancing the interoper-
ability system to include links to the additional systems. With this approach, it is
possible to begin implementing CIM with a small set of integrated systems, and to
add on additional modules as the implementation progresses. Being such a large
. undertaking, a modular approach such as this is perhaps the only practical way of
developing CIM, at least in the near future.

For these reasons, it is proposed that the multiple database approach be utilized
in implementing CIM, and further, that implementation be performed in stages. In
the following section, a starting point for this process is proposed: the integration

of Manufacturing Resource Planning and Computer Aided Design.

3.2 A Starting Point: MRP II/CAD Integration

The first systems to be integrated into the CIM framework should ha&e a well defined
interaction and should be functionally mature in the overlapping areas to the extent
that integration is possible. Of the four major systems described in Chapter 2,
MRPII, CAD, CAPP, and CAM, this criterion is best satisfied by MRPII and
CAD. While the interactions of CAPP and CAM with the other CIM areas are
conceptually understood, these technologies are not yet mature enough to handle
their CIM roles. Significant improvements in each of these are required before

integration into CIM may be considered.

25

Part Geometry Routings
to CAPP from CAPP
PMR

Product BOM

Concept | EC MRP || To Other

. CAD BOM/ MRP I
Routings Modules

Figure 3.4: System Representation of MRP II/CAD Information Flow.

The information shared by MRP Il and CAD is static part and product structure
information. Since part information management is so fundamental to MRP II and
- CAD, these two systems represent an ideal starting point for integration, allowing
attention to be focused on the interoperability functions rather than on thé details
of how each system can use or generate the data. The latter issues have already
been addressed by researchers working in these particular areas.

The integration of MRP II and CAD offers the addition of the design area of
manufacturing to the central hub of CIM, making design data directly accessible
to MRP II users. Figure 3.4 depicts a system representation of the MRPII/CAD
information flow. In addition to the “forward loop” transfer of static part informa-
tion from CAD to MRP I, there is a feedback loop from MRP II back to CAD. The
design of a part is an iterative process, and often the experiences of MRP II users
in manufacturing or purchasing a part enable them to propose design changes that
would improve manufacturability or reliability.

The area of interaction between MRP Il and CAD, part information manage-
ment, is a logical starting point for CIM. Until recently however, there has been
little attention focused on it. Perhaps the reason for this is once again specializa-

tion of software and hardware vendors, with MRP Il being operations management

26

oriented while CAD is engineering oriented. Complicating this problem is the fact
that until recently, most MRP II systems were designed for mainframe computers,
while most CAD systems were oriented torwards minicomputers.

Still another problem is the reluctance of CAD advocates to getting involved with
MRP II based on its fairly low success rate of about 25 percent [6]. Though MRP II
is a sophisticated and powerful system capable of providing significant benefits,
inadequate implementation strategy, lack of top management support, or insufficient
user education and training can all contribute to its failure [12], particularly in
organizations not accustomed to formalized systems.

Only an estimated 2 percent of MRP II users [21] have actually achieved the
" closed-loop information system made possible by the system. Thé majority of
MRP II users, perhaps 55 percent, are using the system primarily for open-loop
Materials Requirements Planning (MRP).

It is interesting to note, as mentioned earlier, that the majority of CAD instal-
lations also fail to take full advantage of the current technology [10]. However, such
cases are generally not considered as failures.

With the proper committment and a thorough systems analysis of the informa-
tional needs and flow through the organization, it is likely that integrated system
failures would be minimal. The transition to a formal system is always difficult,
but it is essential for CIM. With a modular implementation of CIM, this transition

can be planned and achieved gradually.

3.3 The Fundamental Similarities of MRP II and
CAD

The data elements common to MRP II and CAD include part specification and bills

of material [5]. Though these serve somewhat different functions in each, much of

27

the same data is used by both. Part specification involves the documentation of
parts, both purchased and manufactured. In MRP II, the collection of information
documenting each part is called a part master record (PMR). It contains information

used in the procurement, manufacture, and assembly of components, such as:
e Part Number
¢ Revision Number
e Part Description
¢ Drawing Number
e Make or Buy Code
e Unit of Measure
e Vendor Information (for purchased parts)
e Leadtimes
o Standard Cost

Required Quality Code

Part master record information is maintained in the Bill of Material/Routings
module of MRPIL. In addition, many of these same information fields are also
maintained in the CAD system as a means of documenting and cataloging design
drawings.

The bill of material (BOM) for a product is a family tree structure identifying
the component parts, their quantities, and their relationships. Parts of assemblies
on a given level in a BOM are said to be the “parents” of the “children” on the next

lower level. A well structured BOM models the logical sequence of manufacturing

28

Level O

Level 1 B (1) c () D (2

Level 2 |E (1) F (2) |E (2)| G (1) H (1)

Figure 3.5: A Typical Bill of Material.

operations for the assembly it represents. An example of a bill of material is shown
in Figure 3.5.

To MRPII, the BOM serves as the guide to production activities and material
purchases. Within the Material Requirements Planning (MRP) module of MRP II,
the requirements for end product production (as determined by the Master Schedule
of MRP II) are carried through the various levels of the BOM in order to determine
the quantity of each assembly and component, and the quantity of raw material,
and the timing of these requirements (using the leadtime information in the PMR
file). Inventory records are then checked for current stock and pending orders of
items to determine the net requirements of each. For purchased items, purchase
orders are generated. For manufactured items, work orders are created.

Within CAD, the BOM, commonly referred to as a parts list, is used for docu-
mentation purposes, representing the explosion of an assembly into its components
and subassembiies. It is the CAD BOM that introduces the product structure to
the rest of the organization. Ideally, the CAD and MRP II BOMs should be iden-

tical. Unfortunately, however, MRPII users often find it necessary to modify the

29

CAD BOM to better represent the manufacturing sequence of activities of an item.
Tor this reason, organizations often have two versions of bills of materials: The
Engineering BOM used by designers; and the Manufacturing BOM, used by man-
ufacturing. As part of the transition to formal manufacturing systems, it is crucial
that organizations maintain only one type of BOM, the Manufacturing BOM. To
do so, designers must be aware of the general manufacturing activities, procedures,
and facilities available for producing a part, so that the Manufacturing BOM may
be created during the de-sign process.

By the time a part is released from a CAD system, it is given a number of

attributes, such as:

e Part Number

e Revision Level

e Drawing Number
e Description

e Unit of Measure
e Tolerances

o Surface Finish

Much of this information forms the basis of the part master record. Typically,
this information from CAD is printed out, transferred to MRP II users, and man-
ually entered into MRPII. From this “skeletal” information, the manufacturing
department determines whether the part will be manufactured or purchased, and

what its approximate cost will be. If it is to be purchased, vendors are sought and

30

price and time quotes requested. If it is to be manufactured, master and alterna-
tive routings are explored, based on existing in-house manufacturing capabilities.
The information resulting from these activities is then added to complete the PMR
information.

The transfer of BOM information has traditionally followed a similar proce-
dure [4]. BOMs are generally constructed by the aesigner, who traditionally reviews
each detail and assembly drawing to generate a list of needed components and ma-
terials, including consumable items such as welding rods, adhesives, and protective
finishes. This process is extremely time consuming, considering that even a rela-
tively simple product often requires reviewing more than 100 individual drawings.
- Complex assemblies require more time because the drawings have to be reviewed
repeatedly to achieve accurate quantity counts, appropriate dimensional tolerances,
and to ensure that no items are overlooked. While some CAD systems available
today better facilitate BOM construction, considerable effort is still generally re-
quired.

Once created by the designer, a paper copy of the BOM information is typically
manually entered into MRP II so that production control and purchasing may begin
the activities fequired to manufacture the new product.

The transcription of PMR and BOM data from CAD to MRPII is an extra
step involving an unnecessary delay and increasing the chance of errors. From the
very entry of the information into MRP II, there exists the possibility of having
data inconsistent from that in CAD. But PMR a;ld BOM data must serve the
organization throughtout a part’s life [19], from its design (which follows concept and
feasibility studies), through production, post production, and termination phases.
Over its lifetime, there may be numerous engineering changes to a part requiring

modification to either the PMR or the BOM, or both [11]. Keeping both CAD and

31

MRP II up-to-date with respect to these engineering changes is a major task, as
they must be entered and maintained independently on each system.

The obvious solution to this problem is for CAD and MRPII to share PMR
and BOM data. In the integrated MRP II/CAD system, common data can be
maintained and made available to users of either system, eliminating transcription
errors resulting from keying in the same data to both. The common data in botfn
systems can therefore always be up-to-date and consistent. Part specification data
from CAD drawings can be used at the time of a drawing’s release to establish a
part master record for the part, which will be completed by MRP II users. Bills
of material from CAD can likewise be transmitted to MRP II. Engineering change
* control may be simplified, since modifications to the shared data will automatically
be propagated between the two systems.

The goal of the MRP II/CAD integrated system is to achieve accurate and timely
exchange of information between MRP Il and CAD. In the following chapter, the

functional design of this system is presented.

32

Chapter 4

Functional Design of a Model
MRP II/CAD Integrated System

The design of the interoperability functions for integrating MRP IT and CAD are
. based on the flow of information between the two systems, as depicted in Figure 3.4.
The model to be presented addresses the transfer of part master data and bills of
material between the two systems; modifications in the form of engineering changes
are likewise considered.

The purpose of this model is to demonstrate the feasibility and practicality of
integrating MRP Il and CAD by exploring the interoperational capabilities required
to do so. However, to remain as general as possible, the model is not based on any
pa,rticulaf MRPII or CAD system, but instead relies only on the basic functions
and capabilities fundamental to most commercial systems. Further, this model is
not a unique solution to MRP II/CAD integration, but only an example of how such

an integrated system could operate.

4.1 Model Assumptions and Framework

The model is intended for application in a discrete parts environment, where end
products are made to stock; such an environment is well suited for the application of

MRP II as well as CAD. It is assummed that in this environment, only one version of

33

a given part is active at any given time throughout the organization. This contrasts
with a make-to-order environment, where planning is done on a contract basis, and
individual contracts may require different versions of the same part at the same
time [11].

Further, to remain as general as possible, the model is somewhat simplified;
the data represented consist of the most basic MRP II and CAD part information.
Most full-scale MRP Il and CAD packages maintain additional data. It is, of course,
possible to extend the model to consider these additional data.

It is also assumed that the integrated system is to be implemented with an
initially empty database. Thus the model will maintain consistency of data entered
through the system, but has not been designed to control data already present in

either CAD or MRP II.
4.1.1 Designation of Authority between MRP I1 and CAD

The roles of MRP II and CAD in the integrated system are crucial to the operation
of the model. CAD, being the center of design activity, is the primary controller
of design information. The evaluation of design alternatives, creation of new parts,
and the modification of existing parts is performed within CAD, though of course
using input from other departments. Marketing, for example, identifies the features
desired in a given product through marketing surveys, and analyzes what potential
customers may be willing to pay for them, an important design consideration. The
manufacturing department frequently requests design changes to improve a part’s
manufacturability. Unfortunately, too often this occurs only after designs have been
finalized, complicating the process. By improving the communication of information
between manufacturing and design, the “wall” that has traditionally existed between

these two departments can be lowered, increasing the role of manufacturing aspects

34

in the design process.

MRP II plays an execution role, planning for and monitoring the actual procure-
ment and manufacture of items. With the CAD design data as a starting point,
the decision whether to make or buy the part is made, and any changes to the bill
of material or part master record made necessary by the decision are performed.
For purchased parts, MRP II users seek and record information regarding vendors,
prices, terms, and leadtimes. For manufactured parts, routing information, man-
ufacturing leadtimes, and estimated manufacturing costs are recorded. It is this

manufacturing and procurement data that is controlled by the MRP Il system.

4.1.2 Control of Information Flow in the Model

The flow of information between the two systems is regulated by a series of status
codes assigned to each set of data within each system. The status codes are de-
signed to provide for the efficient transfer of information between the systems while
accomodating the timing of various design and manufacturing activities. For the

CAD system, four status codes are suggested:

e Working. The “working” status is assigned to CAD data related to designs
that have not yet been finalized. Such parts may still be under development,

or may be within the review process.

¢ Released. CAD part data with a “released” status indicates parts that are
currentlty active in the organization. Parts are generally released only after

some type of formal review procedure.

o Hold. Part data in CAD is given a “hold” status when the part is being
reviewed for possible revision or replacement and when the current design

should not be used during this process. This code would likely be used only

35

when the review for revision is triggered by safety or performance concerns.
Generally, therefore, parts being reviewed as part of their normal “evolution”

would not require the “hold” status.

e Obsolete. Data related to parts and/or revisions that have either been su-
perseded by other parts and/or revisions or simply eliminated from the list of

active parts are given an “obsolete” status, meaning they are inactive.
In contrast, the MRP II system has only two possible statuses for part data:

e Released. As in the CAD system, “released” MRPII part data relates to

active parts.

e Hold. A “hold” status on part data in MRP II indicates one of two situations.
The first is a part with an incomplete part master record, which should be
completed before its release. This corresponds roughly to the “working” status
used in CAD. The second use of the “hold” status is to temporarily suspend
the MRPII activities related to a part. This may be due to a review for
revision necessitated by safety or performance problems, as mentioned in the
description of the CAD “hold” status, or it may be due to manufacturing,

supplier; or other problems falling within the responsibility of MRP II users.

The “working” status is not used in MRP II, since by the time a part is released
from the CAD system to MRPII, it has been established as an finalized part.
Thus, the “tentative” nature of a “working” CAD drawing is not applicable. The
“obsolete” status used in CAD is likewise not necessary in MRP II, which monitors
“obsolescence” automatically, through the use of effectivity start and end dates for

each part and revision.

36

The detailed design of the model and the use of these status codes to regu-
late information exchange between the two systems are presented in the following

sections.

4.2 Part Master Data

The part master information maintained by the model includes the following fields:

e Part Number. In this model as well as in any formal manufacturing system,
a part number must uniquely identify a single part throughout the organiza-
tion; two or more parts cannot share a single part number, and a single part
number cannot represent two or more physical parts. The most efficient part
numbering system is one utilizing nonsignificant numbers and some form of
error checking algorithm [13|. Part numbers are assigned and maintained by

CAD users.

¢ Revision Level. During the life cycle of a part, it may undergo many design
changes. The different versions are tracked with a revision level. In a make-
to-stock environment, typically only one version per part (the latest) is active
(i.e., “released” status) at any given time. CAD users are responsible for

assigning revision levels.

o Effectivity Start Date. This is the date at which a specific version be-
comes active, replacing older versions, if any, for MRP Il planning. Generally,
MRPII users determine this date based on the status of activities related to
both the old revision if applicable (e.g., current stock and outstanding orders)
and the new revision (e.g., leadtimes, tooling requirements, and anticipated

orders).

37

¢ Effectivity End Date. This is the date at which a parﬁcular revision is
made inactive. If not explicitly entered, it is assumed that the revison is to be
kept active until further notice. When a new revision of the same part is made

. active, the effectivity start date of the new revision is made the effectivity end

date of the old revision.

e Status Code. This is the status code as described in the previous section,
which differs between CAD and MRP II. These are maintained by the system,
though users of both systems may change the status subject to the constraints

of the model.

e Drawing Number. The drawing number is used to identify the specific
drawing associated with each version of a part, and is the responsibility of
CAD users. Typically the drawing number is the same as the part number;
this field is provided in the event that it is not. Such a case would occur
when a single drawing has more than one part represented, such as a single
drawing depicting a series of similar bolts varying in length only. Each of
these bolts should have a different part number but all will share the same

drawing number.

e Drawing File Name. This field is used to identify the name of the file

containing the CAD drawing of the part; it is maintained by CAD users.

e Drawing Size. The drawing size is a code to represent the physical size of the
drawing. Its primary use is to aid in locating drawings, since different sized
drawings may be stored in different locations (e.g., different file cabinets or

different rooms). CAD users are responsible for maintaining this information.

38

e Description. The part description field is maintained by CAD users. The
description should be concise and as meaningful as possible. The use of generic
key words is recommended to facilitate retrieval of part information by de-

scription searching.

e Bill of Material Unit of Measure. This is the part’s unit of measure (i.e.,
how it is measured) in the bill of materials (BOM). Typical BOM units of
measure include each, foot, pound, box, and so on. The quantity per assembly
field in the bill of material of any assemblies using the part is based on this

unit. This field is maintained by CAD users.

e Purchasing/Inventory Unit of Measure. Often a part is purchased
and/or inventoried in a unit of measure different from that used in the bill of
materials. For example, a type of steel bar may be measured in feet in the bill
of materials but may be purchased and stored by the pound. Many MRP II
systems have separate units of measure for purchasing, inventory, and the bill
of material; in this model only two are used: one for the bill of material and

one for purchasing and inventory. MRP II users are responsible for this data.

e Unit of Measure Conversion Factor. If the bill of material unit of measure
differs from the purchasing/inventory unit of measure, the unit of measure
conversion factor relates the two, allowing MRPII to determine the proper
purchase order quantity, given the quantity required based on the analysis of

the bills of materials. This field is also the responsibility of MRP II users.

e Source Code. The source code identifies the orgin of the part, either manu-
factured (source code M) or purchased (source code P). This is generally de-

termined by MRP II users. Most MRP II systems allow for other part types,

39

such as family or phantom parts, but these do not represent physical parts

and therefore they are not considered in this model.

Standard Cost. The estimated cost of manufacturing or purchasing an
item is maintained by MRP II users. For purchased parts, this information
comes from vendor quotes. For manufactured items, this is determined by
a combination of the cost of the components (i.e., sub-assemblies and raw

materials) and the operations (i.e., routings required to make the part).

Leadtime. The leadtime of a manufactured item is the estimated total or
“standard” elapsed time required to produce it, assuming all of the items nec-
essary for its manufacture are already available. This includes time required
for paperwork and time spent idle on the shop floor as well as the actual
times of the routing activities. Similarly, the leadtime of purchased parts is
the total standard elapsed time required to order and receive parts from a ven-
dor. MRP II users are responsible for this information. Many MRP 1l systems
break down the leadtime into several time “fences,” such as “firmed planned”
and “ready for release,” which is useful for scheduling pre-order-release activ-

ities.

Supersedes Part Number. This field is used when the current part is to
replace a previously released part. The part number to be replaced is entered,
indicating that it is being made obsolete by the new part. This allows the
tracking of part supersession in much the same manner that the revision level
field tracks the engineering changes made to specific parts. Being part of the

design process, this field is controlled by CAD users.

40

MRP I1 CAD

Part Number Part Number
Drawing Number - Drawing Number
Drawing Size Drawing Size
Description Description

BOM Unit of Measure BOM Unit of Measure

Purch/Inv Unit of Measure
UOM Conversion Factor
Source Code

Standard Cost

Leadtime

Supersedes Part Number Supersedes Part Number
Superseded by Part Number | Superseded by Part Number

Table 4.1: Part Data Maintained by MRP Il and CAD

e Superseded by Part Number. For an obsolete part, this field is used if
the part was made obsolete because it was replaced by another part; the field
contains the number of the part replacing it. This field is likewise under the

control of CAD users.

4.2.1 Data Division and Organization

The data described above have been divided between CAD and MRPII based on
their relevance to each system. Some fields are maintained by both systems, while
others are unique to one or the other. Further, some of the data is maintained on a
part-by-part basis, while other dat;m, must be maintained separately for each version
of a part.

Each system therefére maintains two sets of part data: one to record data
common to all versions of a part and one set to record data specific to each revision
level. Table 4.1 shows the data maintained in the part data set in each system,
while Table 4.2 presents the data contained in the revision data set for each system.

Note that for each part number, there will be at least one set of revision data.

41

MRPI1 CAD
Part Number Part Number
Revision Level Revision Level
Effectivity Start Date | Effectivity Start Date
Effectivity End Date | Effectivity End Date
MRPII Status Code | CAD Status Code
Drawing File Name

Table 4.2: Revision Data Maintained by MRPII and CAD

In the following sections, the exchange of information during the creation, dele-
tion, and modification of new parts and revisions is detailed. Status diagrams,
showing the states of the data at each point in the operations, are used to pictori-

_ ally represent the operations.
4.2.2 Adding New Parts Via CAD

In the moriel of the integrated system, Computer Aided Design controls the creation
and modification of design data, introducing new parts as well as originating engi-
neering changes. However, the design of the model allows new parts to be entered
into the integrated system from either CAD or MRPII. It is assumed that, in gen-
eral, all manufactured parts including end products, assemblies, components, and
raw materials will enter the system through design activity in CAD. The majority
of purchased items will likely be entered into CAD as well, particularly if they re-
quire design drawings. The capability of adding new parts into MRP II is provided
to handle the case of commonly used items with no drawings. Office supplies is a
typical example; many companies enter these as parts into their MRP II systems
to facilitate ordering, yet there is obviously no need for design drawings. Another
example is standard, or “catalogued” items such as motors, which are not designed

or drawn up, but are only represented as a speciﬁcation sheet. Again the primary

42

need for information related to these items is within MRP I, although some firms
treat the specification sheet as a drawing. In this case, CAD will initiate the part
as in the general case.

Consider first the case where a new part is initiated within CAD. The basic
sequence of operations for the addition of a new part to the integrated system from
CAD is shown in the status diagram in Figure 4.1, where both the new part and
the previously released part being superseded by the new part (if applicable) are
shown.

While the part is still under development, it is entered into the integrated system.

To be entered, it must be assigned the following for the establishment of the part

" record:

° Par’t Number
e Description
¢ BOM Unit of Measure
Further, to establish the first revision record, the system requires;
e Revision Level of first version (usually 0, 1, or A)
e Drawing File Name

The designer may also choose to assign a separate drawing number, if applicable,
and/or complete the drawing size or supersedes part number fields, though these
are not required. With this information, the system performs a series of consistency
checks to ensure that the part number being added does not already exist in either
CAD or MRPII. If it does, an error message is generated and the part record is not

added. Using the data entered by the designer, a CAD part record is established

43

CAD

Superseded | (H) or (R) (O)
part
@uperseded by part no) CEff. end)
CAD
w R
New part W) (R) . I
)
MRP I
New part (H) (R)

CSuperseded by part no) (Eff. end)

MRP i + *

Superseded | (R) or (H)

part I l
} $ f -
New part New part New part time
established in released by released by
CAD CAD users MRP |l users

Figure 4.1: Status Diagram for Adding New Parts Via CAD.

44

for the new part by the system, with any unspecified optional fields given the value
“unknown.”

Though MRP II is checked by the system at this stage, no data about the new
part is created in MRP II. While a part is under development, all information about
the part remains local to CAD.

In addition to the part record, a revision record for the part’s first revision -
level is created within CAD. The status of this revision is set to “working” to
indicate that the design is still in progress, as shown in Figure 4.1. The name of
the drawing file containing the design is entered in the drawing file name field, and
the effectivity start and end dates are left as “unknown.” As with the part data,
" no revision information is transferred to MRP II at this point.

When the design of the new part is complete, it undergoes a formal review pro-
cess according to orga.nization#l procedures. When the design is approved, perhaps
after further modification, it is released. At this point several actions are initiated.
First, a “skeletal” part master record for the new part is established in MRP Ii,
containing the same information as recorded in the CAD part record; those data
fields maintained in MRPII but not in CAD (e.g., standard cost, leadtime, source
code) are assigned the value “unknown” until supplied by MRP II users.

Second, a revision record is also established in MRP II for the new part, as indi-
cated in Figure 4.1,using the part number and revision level from the CAD revision
record; the effectivity start and end dates for the revision are left as unknown. The
status of the MRP II revision is set to “hold,” since many of the fields required by
the MRP II system have been initialized to unknown and must be completed before
MRP II can consider the part to be active. A message is generated within MRP II
indicating that a new part has been created and that its part master record requires

attention.

45

Third, within CAD, the system checks for a value in the “supersedes part num-
ber” field of the new CAD part record. If it finds a valid part number in this field,
the part number of the new part is inserted into the “superseded by part number”
field of the CAD part record of the part number found. The MRP II part master
record of the superseded part is likewise modified to reflect the supersession. The
latest revision of the part being superseded, which may have a “released” or “hold”
status, is then given an “obsolete” status in CAD, as shown in Figure 4.1.

Finally, if the preceding steps are successfully completed, the status of the new
CAD revision is changed from “working” to “released” to complete the CAD release
function, as indicated in Figure 4.1.

As noted, however, the data in MRP II related to the newly released part is
initially given a status of “hold.” After the part has been released by CAD users, it
is the responsibility of MRP II users to research the part and supply the data fields
necessary for the release of the part within MRP II.

It must be decided whether the part is to be manufactured or purchased. If
this choice differs from that originally implied by the CAD bill of material (or lack
thereof) for the part, CAD users should be notified so that the required changes
can be made. For example, if CAD users plan for a part to be purchased, it will
not have a bill of material; if MRP II users later determine that it is most efficient
to manufacture the part, a bill of material identifying the necessary components
of the item should be created, most likely within CAD (and then automatically
transferred to MRP II by the system).

If it is to be manufactured, routings for the part must be developed. If it is to
be purchased, potential vendors must be contacted and evaluated. In either case,
a standard, or approximate cost should be computed, either from vendor quotes

(for purchased parts), or from the routings information, labor rates, and cost of

46

component parts (for manufactured parts). Also, the leadtime of the part should
be estimated for use by Materials Requirements Planning (MRP).

Depending on the value of the part and its criticality to the organization, an
inventory policy should be established, considering such aspects as buffer stock.
Finally, an effectivity date must be chosen so that MRP can begin planning for the
production or ordering of the new part. If the new part does not supersede any
other part, the choice of an effectivity start date is based largely on the anticipation
of the need for the new part; since MRP will not plan orders for the part until it is
needed, the choice of the effectivity start date is generally not critical.

If the part supersedes another however, the selection of an effectivity start date
is more significant. As of the effectivity start date, the new part replaces the super-
seded part in all bills of material requiring it (see section 4.3.4). The effect of this is
that MRP (Material Requirements Planning) begins to generate requirements for
the new part, while discontinuing the generation of requirements for the superseded
part. Therefore, unless significant safety or performance issues are involved, it is
desirable to choose an effectivity start date far enough into the future to allow for
the consumption of existing stock and pending orders for the part being superéeded.

Once these part data are determined and entered into the system, the part
and revision records can be released to MRPII. In addition to the data required
when the part was first entered into CAD, the model requires the following data to

complete the part record:

e Purchasing/Inventory Unit of Measure
o Unit of Measure Conversion Factor
e Source Code

o Leadtime

47

And to complete the revision record:
o Effectivity Start Date

The standard cost may also be entered into the part record and the effectivity end
date may be entered into the revision record, although neither is required.

As a further requirement for the release of a part within MRPII, the system
checks the status of the new revision in CAD. If the revision has been placed on
“hold” in CAD due to safety or performance problems, it cannot be released; a
message to this effect is given to the user and the data is not released.

Assuming the part data is still active in CAD, the status of the MRP II data is
changed from “hold” to “released,” as depicted in Figure 4.1, and the MRP II part
and revision records are updated to reflect the additional information. As the final
step in the release process, the effectivity start (and end, if supplied) date of the
first version of the new part is transferred back to CAD to update the CAD revision
record.

Once the part is released to the MRP II system, users of that system have the
ability to place the data on hold, if desired, to temporarily suspend MRP activities
involving the part. Such a hold is local to MRPII, involving no interaction with
CAD, and is intended for use in the event of manufacturing or purchasing problems,
such as broken equipment or a vendor’s inability to ship, which might interrupt
production activities.

Once part data is placed on hold, it may be rereleased at any time, but only

after the system has verified that the data is not on hold in CAD.
4.2.3 Adding New Parts Via MRP 11

For purchased parts with no design drawings associated with them, the ability to

add parts directly into MRP II is included in the model. Parts may be entered with

48

either a “released” or “hold” status. The status diagrams for this procedure are
shown in Figures 4.2 and 4.3, depending on the desired MRP II status of the new
part. Each of these figures depicts both the new part data and the data related to

the part being superseded by the new data, if applicable.

Regardless of the desired part status, the user must enter information into all

the required part record fields, namely:

e Part Number

e Description

e Bill of Material Unit of Measure

e Purchasing/Inventory Unit of Measure

Unit of Measure Conversion Factor

Source Code

e Leadtime

The user may also specify in the part record the standard cost and /or the supersedes
part number fields.

The information required for the establishment of a revision record depends on
the desired status of the new part. If the part is being entered with a “released”

status, as in Figure 4.2, the system requires:

e Revision Level

o Effectivity Start Date

The effectivity end date may also be specified.
If the part is being entered with a “hold” status, as in Figure 4.3, the only value

required is:

49

CAD

Superseded { (H) or (R) (0)] |
part k*)
Superseded by part no.
Eff. end
CAD
New part (R)

?

PMR, Eff. start

MRP i

Superseded by part no.
Eff. end

MRP I v
Superseded | (R) or (H) _ I
part } i
* >
New part time
established by
MRP |l users

Figure 4.2: Status Diagram for Adding New Parts with Released Status Via MRP 1.

50

CAD

Superseded | (H) or (R) (O)
part
(Superseded by part no) Eff. end
CAD
New part R I

m Eff. start

MRP I
New part LH) R) I
(Superseded by part ng) ((Eff. end)
MRP I #
Superseded | (R) or (H)]
part l | N
$ ’ g
New part New part time
established by released by
MRP Il users MRP Il users

Figure 4.3: Status Diagram for Adding New Parts with Hold Status Via MRP IL.

51

e Revision Level

This allows for the entry of parts before plans for procuring them are complete.

In either case, prior to inserting the part, the system performs a consisténcy
check in both the CAD and MRP II systems to verify that the part number does
not exist already, either as a part in both détabases, or as a working part in CAD.
If it does not, the part and revision records are added to MRP II.

Since it is assumed that parts added to the MRP II area of the integrated system
do not have drawings, the two part record fields, “Drawing Number” and “Drawing
Size,” are given the value “inapplicable.”

To maintain consistency in both areas of the integrated system, CAD p#rt and
revision records are aiso established for the new part. The part record consists of the
appropriate information from the MRP II record, including the value “inapplicable”
for the drawing number and size. The revision record uses the MRP II revision
record data, plus the value “inapplicable” for the drawing file name. The status of
the new CAD data is automatically set to “released” regardless of the status entered
by the MRP II user, allowing MRP II users to enter a part with a “hold” status and
subsequently release it without requiring any intervention from CAD users. |

If the part has been assigned a “released” status (Figure 4.2), then several other
activities occur. If the new part supersedes another, this fact is used to update the
record of the superseded part in both the MRP II and CAD databases. Further, the
effectivity start date of the new part’s revision, which was transferred to the new
revision record in CAD, is also used to update the effectivity end date of the latest
revision of the superseded part in both MRP IT and CAD, and the same revision is
given an “obsolete” status in CAD. No further operations are necessary to make
the part active.

if the part has been assigned a “hold” status (Figure 4.3), making the part fully

52

active is a two step process. As part of the insersion of the part, the “supersedes
part number” is used to update the “superseded by part number” of the old part,
if applicable. Also, the latest revision of the superseded part is given an “obsolete”
status in CAD. Because the effectivity date of the new part was not entered how-
ever, it is necessary to release the part as a separate operation. The only required

information for the release of the part is:
o Effectivity Start Date

When this operation is invoked, the status of the MRP II revisioﬁ record for the
part is changed from “hold” to “released.” In addition, the effectivity start date is
transferred to the CAD revision record for the new part, and is used to update the
effectivity end date of the latest revision of the superseded part in both MRP II and

CAD.

4.2.4 Adding New Revisions Via CAD

As with new parts, the creation of new revision levels of existing parts is assumed to
be primarily the responsibility of CAD users, though there are cases when MRP I1I
users require this capability (revising the parts created via MRP II). The creaﬁion of
a new revision level represents an engineering change to the part which is intended
to improve its design in some aspect, such as performance, safety, reliability, or
manufacturability. The status diagram for the exchange of data during the creation
of a new revision level initiated in CAD is shown in Figure 4.4, which depicts the
states of the previously active revision as well as the states of the new version.
The process begins when the CAD designers responsible for a particular part are
notified that a change in the part’s design is desired. This notification may come
from Manufacturing, concerned about manufacturing problems possibly attributed

to the design, such as a high scrap rate, or extensive machining time and/or cost.

53

CAD

Previous [(R) |(H) (O) l
Revision
Eff. end

CAD
New (W) (R) |
Revision ?

(PMR) Eff. start
MRP 1l
New (H) (R)
Revision

Previous [(R) [(H)
Revision

CEff. end)
MRP || v |
Iy

$ $ $ g
Previous New New New time
revision revision revision revision
placed on established released by released by

hold by CAD by CAD CAD users MRP |l users
users users

Figure 4.4: Status Diagram for Adding New Revisions Via CAD.

54

It may also come from Customer Service, if reliablity problems have been expressed
by customers. Or the request may be part of a regular design evaluation aimed
simply at bringing the product “up-to-date.”

Regardless of the source of the request for an engineering change, there are a
number of possible scenarios that may occur in response to it. The model of the
integrated system is intended to be flexible enough to handle these situations.

Assuming that the current revision data for the part initially has a “released”
status in both CAD and MRPII, either system may elect to place the data on hold
while the design is being reviewed. If the revision is placed on hold in the CAD
system, as shown in Figure 4.4, it is usually because there may be serious safety
or performance problems with the current design, and all use of the part should
be suspended. Accordingly, if this occurs, a hold on the same data in MRPII is
automatically triggered. If only MRP II users place the revision data on hold, the
CAD status is not affected. This may occcur if problems that become apparent
during manufacturing activities are thought to be correctable by design changes.
MRP II users may in such cases place a hold on the revision data while requesting
a design review.,

If the revision is on hold in CAD, and it is subsequently determined that the
current part design is adequate, then the part can be rereleased in CAD. The
data is not automatically rereleased in MRPII, but instead a message is sent to
MRP II users indicating that no design problems are apparent, and that the part
may be rereleased, subject to any-further investigation of MRP II related problems
(manufacturing, vendor quality) that may have been the cause for the design review.

If the part was not on hold in CAD or MRP II and the current design is found
to be satisfactory, no specific action is required. If the part was on hold in MRP II

but not in CAD, the only CAD action necessary is to notify MRP II users that the

55

design is not being revised, allowing MRP II users to concentrate on determining
the nature of the problems that precipitated the hold.
If it is determined that a revision to the design is necessary, the revised design is

created in CAD; its revision record is established by the designer, who must provide:

e Part Number
o New Revision Level

e Drawing File Name

If known to the designer, the effectivity start date may also be entered, though it
is not required.

The status of the new revision record is set to “working,” as indicated in Fig-
ure 4.4. If not specified, the effectivity start and end dates are left as unknown
quantities. Any number of revisions with “working” status may exist for a given
part at any time, allowing for the study of various alternatives. As with a new part,
the revision data is maintained locally by CAD prior to its release.

Upon its release from CAD, the subsequent chain of events involving both CAD
and MRPII is similar to that occuring when a new part is released, since that,
likewise, is regulated by the status of the revision record. First, a record containing
the new revision information (part number, revision level, and effectivity start date if
assigned) is established in MRP II; the status is set to “hold,” as shown in Figure 4.4,
to give MRP Il users time to prepare for the release of the new revision.

Second, in CAD, the status of the previously active revision is changed, from
either “hold” or “released” to “obsolete,” also shown in Figure 4.4. Since the model
is designed to operate in a discrete parts, make-to-stock environment, only one
revision of each part can be active at a given time; new revisions automatically

supersede all previous revisions of the same part.

56

Finally, the status of the new CAD revision is changed from “working” to “re-
leased,” as depicted in Figure 4.4, making the part active within CAD. For the
new revision to become active in MRP II, the effectivity start date must be deter-
mined, (assuming it was not specified by the designer), and any other changes to
the routings or vendor information required by the revision should be made. If
the revision corrects a serious design deficiency, the new revision should be made
effective as early as possible; otherwise the decision is based on current levels of
inventory and pending orders for the old revision, and the set-up time required to
begin producting or purchasing the new revision.

Once the revision data is finalized and complete, the new revision can be released
within MRP II. When this occurs, the MRP II status of the new revsion is changed
from “hold” to “released,” as shown in Figure 4.4. In addition, the effectivity start
date of the new revision is placed in the effectivity end date field of the previous
revision level in both databases, and is also used to update the effectivity start date
for the CAD revision record of the new revision. Because MRP II uses effectivity
dates to determine which revision is active, there is no need to explicitly make the

prior revision obsolete in MRP II.
4.2.5 Adding New Revisions Via MRP I1

As with the insersion of new parts, it is assumed that design revisions entered into
MRP II relate to parts without design drawings and therefore primarily under the
control of MRP II users. New revisions may be entered into MRP II with either a
“hold” or “released” status. Figure 4.5 depicts the status diagram for the insersion
of a revision with a “released” status, while Figure 4.6 shows the status diagram
for the insersion of a revision with a “hold” status. Each diagram shows both the

revision being added as well as the previously active revision.

57

CAD

Previous |[(R) V(O)
Revision
Eff. end
CAD ,
New (R) |
Revision f 3
(__PMR, Eff. start)
MRP i I ,
New (R)]
Revision '
Eff. end
MRP II y ;
Previous | (R) |(H) —
Revision I
$ $ -
Previous New time
revision revision
placed on established
hold in MRP i by MRP Ii
users

Figure 4.5: Status Diagram for Adding New Revisions with Released Status Via
MRPII

58

CAD

Previous (R) ()
Revision
Eff. end
CAD
New (R)
Revision
Eff. start
MRP Il
Revision
(Eff. end)
MRP 1l
Previous (R)
Revision |
$ $ g
New New time
revision revision
established released by
by MRP Il MRP Il users
users

Figure 4.6: Status Diagram for Adding New Revisions with Hold Status Via MRP II.

During the changeover to the new revision, MRP II users may choose to change
the status of the former revision to “hold,” as shown in Figure 4.5, or may leave it
“released,” which is shown in Figure 4.6. If the previous revision is placed on hold
and it is later decided that a revision to the design is not necessary, the old revision
can simply be rereleased. In either case, the status of the previous revision data in
CAD remains unchanged prior to the creation of the new revision.

To be added to MRP II with a “released” status, the revision must be identified

by:
e Part Number

e Revision Level

o Effectivity Start Date

Before the revision is added, the system first verifies that there is a part record
in MRP II with the same part number and that a revision with the same revision
level does not exist for the part. Second, a new revision record containing the
same information is generated in CAD, with the value “inapplicable” placed in the
drawing name field to indicate that there is no drawing for the part. The status of
the CAD revision is set to “released,” as indicated in Figure 4.6, and the status of
the previously active revision is changed to “obsolete.” When these actions have
been successfully performed, the new revision is added to the MRP II database, and
the effectivity start date of the new revision is recorded as the effectivity end date
of the previous revision, both in CAD and MRP I, as shown in Figure 4.6.

If the revision to the part is entered with a “hold” status, the effec'tivity start
date is not required. In this case, the activities preceding the actual addition of

the new revision to MRP II are similar to those just described: the system checks

for consistency, adds a new CAD revision record with “released” status, gives the

60

CAD
Revision R ©
Message
MRP i l
* -
Revision time
made obsolete
by CAD
users

Figure 4.7: Status Diagram for Making Parts Obsolete Via CAD from Released
Status.

previous CAD revision an “obsolete” status, and then adds thg new revision to
MRP II. These activities are shown in Figure 4.5.

The revision can then be released in MRPII at a later date by adding its ef-
fectivity start date. The status of the new revision is then changed to “released,”
and the effectivity start date is used to update the CAD revision record for the new
revision. Also, the effectivity end date of the old revision is set to the effectivity

start date of the new revision in both MRP II and CAD, as depicted in Figure 4.5.
4.2.6 Making Parts Obsolete

In addition to the implicit supersession process for making parts obsolete, the model
allows users to explicitly make parts obsolete in CAD. The status diagrams for this

are shown in Figures 4.7 and 4.8.

Revisions may be assigned an “obsolete” status in CAD from either a “released”

61

CAD
Revision R (H ©
(Message)
MRP I
Revision |(F) (H) - I
$ $ g
Revision Revision time
Placed on Made Obsolete
Hold by CAD by CAD
Users Users

Figure 4.8: Status Diagram for Making Parts Obsolete Via CAD from Hold Status.

or “hold” CAD status, since the obsolescence may be due to a routine phasing out
of a part or due to safety or performance problems. For routine phasing out, shown
in Figure 4.7, the change may be made directly from “released” status; the status of
the revision in CAD is changed to “obsolete,” and a message is sent to MRP II users
indicating the change in status. No change to the MRP II status occurs however,
allowing the use of existing inventory and pending orders.

If the revision is being made obsolete for safety or performance reasons, as shown
in Figure 4.8, it should be placed on hold in CAD prior to being made obsolete, so
that it will not be used by either system. As previously described, a hold in CAD
automatically invokes a similar hold on the same data in MRP 11, to prevent MRP II
related activities involving the part. Also, a message is sent to MRP II users t‘o alert
them to the obsolescence. This may eventually lead them to delete the part from

MRPIL

62

4.2.7 Deleting Parts

Part deletion may be initiated by either MRP II or CAD users. It is assumed that
most parts, and in particular, all parts with drawings associated with them, Will
be controlled by the CAD system. Hence the deletion of part data will generally
be initiated by CAD users. Parts without associated drawings, however, may be
controlled by MRPII users; the ability to delete such part data via MRPII is
thus provided. For further flexibility, design data with drawings can be deleted by
MRP II users while the same design data remains in CAD, allowing MRP II users
to eliminate obsolete data that CAD users wish to maintain for historical purposes
or for use in future designs.

Deletions are generally processed by part number; when a part is deleted, the
data describing all versions of the part, as well as the part record itself, are deleted.
The exception to this is that any revision of a part with a “working” status in
CAD may be individually deleted, providing for the deletion of designs that never
reach “released” status. Because revisions in this category are l.ocal to CAD, no
consistency checks in MRP II are required.

Before a part can be deleted, certain constraints must be satisfied. CAD users
may initiate the deletion of CAD-controlled parts only; those originally generated
by MRP II must be deleted via that application system. The process of deleting
a CAD-generated part via CAD is shown in Figure 4.9. To delete such a part
via CAD, all revisions of the part must have a CAD status of either “working” or
“obsolete;” if the part still has an active (i.e., “released” or “hold” status) revision,
it cannot be deleted. This is to prevent the accidental deletion of an active part.
Further, the part cannot be useé! in a product structure in the CAD database.

If these constraints are satisfied, the system checks MRP II to see if the part is

63

CAD
Part

MRP I
Part (R) or (H)

*

Part deleted time
by CAD users

Figure 4.9: Status Diagram for Deleting CAD-Generated Parts Via CAD.

used in any product structures in that database, has non-zero inventory, or has any
outstanding orders. If any of these are found to be true, the part cannot be deleted
in MRP II, and therefore cannot be deleted from CAD. If the part is not used in any
product structures, has zero inventory, and no outstanding orders, then all revision
records for the part in both MRP II and CAD are deleted, as are the CAD part and
MRP II part master records. There is no restriction on the status of the revisions
in MRP II; they may be either “hold” or “released.”

CAD-generated parts may also be deleted via MRP II, though the results of
this operation are somewhat different, as shown in Figure 4.10. The part is first
subjected to the checks on the MRP II database described above; it must not be
used in any product structures, must have zero inventory, and must have a zero
quantity on order. If the part fails any of these checks, indicating that it is still
active in MRP II, then nothing is deleted, and the operation fails. If the part passes

all of these checks, then the system checks the CAD database. Once again, the part

64

CAD
Part

MRP i
Part | (R)or (H)

*

Part deleted time
by MRP |l users

Figure 4.10: Status Diagram for Deleting CAD-Generated Parts Via MRP I1.

must not have any revisions with “released” or “hold” status, and must not be used
in a product structure. If these checks are successful, then the part master record
and all revision records associated with the part are deleted from MRP II. All part
and revision data remains in CAD however, since it is CAD that has control of the
final disposition of this information. CAD users may later decide to delete the pai't,
or it may be maintained for historical purposes or use in future designs.

Unlike CAD-generated parts, MRP II-generated parts may only be deleted via
MRPII, since these are assumed to have no design drawings, and thus be under the
control of MRPII. If a CAD user attemps to delete such a part, an appropriate
message is printed out and the operation fails. The status diagram for deleting an
MRP II-generated part via MRP II is shown in Figure 4.11.

Before processing the operation, the system imposes the same constraints as
those for CAD-generated parts: the part must not be used in a product structure,

it must not have any inventory, and it must not have an outstanding quantity on

65

CAD
Part

MRP I
Part (R) or (H)

*

Part deleted time
by MRP |l users

Figure 4.11: Status Diagram for the Deletion of MRP II-Generated Parts Via
MRPIIL

order. If this is the case, then all information related to the part, the part, revision,
and latest revision records are all deleted from MRPII, and from CAD as well,

without any additional checks in the CAD database.

4.3 Product Structures

The MRPII/CAD integrated system provides for the maintenance of single level
product structures, or bills of material, in both application systems. Bills of Material
identify the components of an assembly, and can be viewed as an extension of
the part master data of the assembly, providing further static information about
the item. As in the creation of new parts, it is CAD that typically initiates new
product structures as part of the design process, in order to describe assemblies. It
is also generally CAD that modifies the structures as necessary to reflect engineering
changes to the design. Changes to bills of material are occasionally made by MRP I1

users as well, in order to make the structures better reflect the manufacture of a

66

given product.

The handling of product structure maintenance by the system is similar to the
handling of part master data. Product structures are represented and recorded by
the individual parent-component relationships comprising them. For each relation-

ship, the following information is recorded in a relationship record:

e Parent Part Number. This is the part number of the parent assembly.
Each assembly will have as many relationship records as it has components

(greater than or equal to one).

e Parent Revision Level. This is the revision level of the assembly. Along
with the parent part number, it uniquely defines the particular assembly in-

volved in the relationship.

e Itemm Number. The item number is a sequence number used simply to

uniquely identify each component within an assembly.

e Component Part Number. This is the part number of the component in

the relationship.

e Quantity. This is the quantity of the component used per unit of measure

of the assembly in question.

It is the total set of relationships for a part that defines its single-level bill of
material. Through the concatenation of single level bills of material, a multi-level
bill of material for an assembly can be constructed, indicating all subassemblies and
components necessary to make that assembly. The same relationship information
is recorded in both the MRPII and CAD systems, as shown in Table 4.3. No
component revision level information is used in the relationship record. Because the

system is designed for a make-to-stock environment, in which there is only one active

67

MRPII CAD

Parent Part Number Parent Part Number
Parent Revision Level Parent Revision Level
Itemm Number Item Number

Component Part Number | Component Part Number
Quantity Per Assembly Quantity Per Assembly

Table 4.3: Product Structure Data Maintained by MRP II and CAD in Relationship
Records.

revision of each part at any given time, it is assumed that assemblies will always use
the most recent revisions of their components. The specific revision of a component
that is active in all product structures requiring the part is determined by the
effectivity dates of the various revisions of the component part. The revision level of
the assembly is maintained in the component relationship record so that the bills of
material of several revision levels of the assembly can be maintained simultaneously,
which is essential during the transition between different revisions. The combination
of parent part number and revision level refer back to the revision record of the
parent part, where the effectivity dates of the assembly are recorded. MRP II uses
these effectivity dates to determine which of the versions of the assembly is active,
and therefore which set of relationships is valid for planning.

There are two levels of changes that may occur in product structures. The first is
at the level of the components themselves, as reflected by revision changes to these
parts, while the second is at the level of the assembly itself, involving a change to
one or more of its relationship records. A difficulty arises in either of these‘ca.ses,
namely the determination of the effects of these changes on the assembly. When
a part is changed, the impact of the change on all related items, including both
the parent assemblies requiring the part as well as other parts at the same level

which interact with the part, must be determined. Typically, if a component of

68

an assembly experiences a revision level change, it is not necessary to change the
revision of the assembly. If however, a component relationship is changed, (e.g., a
particular component of an assembly is replaced by another part, or the quantity
of a given component in the bill of ma.terig,l is altered), a revision change at the
assembly level is usually appropriate. Alternatively, it may be necessary to change
the part number of the resulting assembly altogether, creating a new assembly. The
specific guidelines for such changes are documented in detail by Harhalakis [11].
Moreover, the impact of a revision change to a part on neighboring parts in bills
of material is virtually impossible to predict, as it always depends on the specific
design, i.e., whether or not physical changes to the neighboring pért are required.

The ihtegrated system is designed to facilitate changes at both levels, though
the crucial decision making is left to the user. When a new version of a part is
created, for example, the assemblies requiring the part should be checked to see if
there is any need for changes at the assembly level (e.g., a new revision level for
the assembly, a different quantity of the component, and so on). No change at the
assembly level is made automatically however; the decision making process and the
appropriate actions are left to the user. At all times, however, consistency befween
MRPII and CAD is preserved.

Changes that can be made at the assembly level include:

e Adding components
e Deleting components

e Replacing a component with another component

Changing the quantity of a component used in an assembly

Each of these will likely require at least a new revision level for the assembly. If

69

a new assembly revision level is necessary, then prior to making such changes to the
relationship records, the user should create a new revision record for the resulting
assembly following the procedures described in sections 4.2.4 or 4.2.5, depending
on whether the change is originating in CAD or MRP1I, respectively. If a new
assembly part number is required, the user should create a part master record for
the new assembly following the steps in sections 4.2.2 or 4.2.3, again depending on
whether the change is occuring via CAD or MRP II, respectively.

Whenever new revisions are created, the system copies all component relation-
ships for the previous revision to the new revision. These can then be modified
by making the additions, deletions, and so on, that differentiate the old and new
revision of the assembly. The effectivity dates of the new assembly revision hence
determine when the new structure is to be active for planning. When a new assem-
bly is created to replace another due to an engineering change, the relationships
from the old assembly are not automatically copied, since there may be significant
differences between the old and new structures. The system does provide a copying
feature for this case, in the event that the structures are similar.

To facilitate this procedure in the event that the user has not already created
a new revision or part, the system asks the user prior to making each assembly
level change whether the operation he or she is invoking will necessitate either a
new revision level or part number for the parent assembly. If the user answers
“yes” to one of these questions, he or she is prompted for the details of the new
part or revision, and it is added following the procedures outlined in sections 4.2.2
- 4.2.5, depending on the source of the operation. If the assembly level change is
initiated by a CAD user, the procedures are the same as adding a new revision
or part via CAD (sections 4.2.2 and 4.2.4, where the new part/revision data is

initially created locally within CAD with a “working” status, pending its formal

70

release.) Likewise the new product structure, and any changes to it, are maintained
locally until the new part/revision is released. If performed via MRP II, the system
will follow the procedures of sections 4.2.3 and 4.2.5 in creating the new part or
revision, respectively, which involves the immediate updating of the CAD database,
with respect to both the new part/revision data as well as the product structure
information.

The system does not ask the user about revision level or part number changes
however, if the assembly has a “working” status in CAD. Since parts and revisions
in this category are not yet finalized, the change is processed without any questions
to the user.

In addition to allowing users to create new parts and revisions within the as-
sembly level operation, all relationships defined for the current pé,rt /revision in the
database of the application initiating the operation are copied to the new one so
that the change being performed will be made on the proper bill of material.

Though this is the desired procedure, the system does not enforce it; additions,
deletions, and modifications can be performed on product structures without creat-
ing a new revision or part. This provides flexibility in the event that a new revision
or part number is not required by the change in question (such as correcting data en-
try errors or processing multiple operations as part of a single engineering change).
It is the user’s responsibility to follow established procedures in determining whether
a new revision level or part number is necessary.

In the following sections, the basic assembly level operations are described. The
updating of the CAD and MRPII databases is performed in a manner parallel to
that used in the creation and maintenance of part master data, based on the status

of the assembly and its components in the two applications.

71

4.3.1 Adding Component Relationships Via CAD

Component relationships may be added via CAD or MRP II. Typically CAD will be
the source of the first product structure for a given assembly, as well as the or'igin
of engineering changes requiring the modification of components in an assembly.
However, it may also happen that MRP II users will add components. This may
occur if MRP II users find it necessary to regroup the components of an assembly to
form one or more intermediate assembly stages to improve the representation of the
manufacturing operations. It may also occur if MRP II users decide to manufacture
a part that CAD users assumed would be purchased, and hence created no product
structure. MRPII users could in such cases create the product structure using
either existing or new parts.

If the addition of the component calls for either a revision change or new part
number at the assembly level, the new revision or part should be created first, and
the addition made to the new bill of material, regardless of whether the addition is
being made via CAD or MRP II. If the new revision or part is noi; created prior to
the operation, the system allows the user to create it as a part of the operation, as
described above.

To add a component relationship via CAD, all fields in the record must be

specified:
¢ Parent Part Number
e Parent Revsion Level
o Item Number
e Component Part Number

Quantity Per Assembly

72

The indicated revision of the parent part, or assembly, may have a CAD status
of either “working,” “hold,” or “released,” it cannot have an “obsolete” status.
Typically, designers will create the product structure of an assembly before it is
finalized, i.e., while it has “working” status. If the assembly revision has either a
“hold” or “released” status in CAD), the system also requires that the part/revision
combination exists in MRP II. These requirements allow the product structure of
an assembly to be compiled prior to its release from CAD, but prevent the creation
of a product structure for an assembly that has been deleted from MRP II but not
CAD.

The component part must have a revision level with a status of either “hold” or
“released” in both CAD and MRP II. Thus parts cannot be used as components in
product structures prior to the release of their first revision by CAD users and the
subsequent creation of a part master record in MRP II. Again, the system does not
allow the use of parts deleted from MRP II but not CAD to be used as components
in product structures.

In addition, the system checks to make sure the item number assigned to the
component part has not already been used by another relation in the same struc-
ture. The system does, however, allow, the same component to be recorded in two
different relationship records, allowing users to break up the quantity of a compo-
nent into two or more items to better represent the manufacturing operations of
the assembly.

Finally, the system ensures that the resulting relationship does not cause a
“loop,” i.e., a use of the assembly as a component of itself. To do so, the component
part number must not be the same as the assembly part number; in addition, the
system searches through all levels of the product structure of the component part

(if applicable) for occurences of the parent part number. If any are found, the

73

CAD

Parent |[(W) (R)
Part
(Comp. relationships) Eff. start
MRP Il
Parent (H) (R)
Part
¢ ¢
Component Parent Part Parent part time
relationships released released
added by CAD by CAD users by MRP Il users
users

Figure 4.12: Transfer of Component Relationships from CAD to MRP II beginning
with Assemblies having Working Status.

relationship cannot be added.

If the database checks are successful, the relationship record is added to the
CAD system. If any one of the database checks fails, a message describing the
failure is printed, and the operation fails.

The timing of the transfer of the component relationships from CAD to MRP II
is dependent on the CAD status of the parent part/revision combination. The two
possible cases are shown in Figures 4.12 — 4.13.

In the first case, shown in Figure 4.12, the revision of the assembly being con-
structed beéins with a “working” status. This is perhaps the most common situ-
ation, as designers typically construct the bill of material for an assembly before
it is released. As is the case with the data associated with the revision itself (and

the part data as well, if the revision in question is the first one for the assembly),

74

CAD

Parent |(R) or (H)
Part |
(Comp. relationships)
MRP i
Parent [(R) or (H) I
Part
* >
Component time

relationships
added by CAD
users

Figure 4.13: Transfer of Component Relationships from CAD to MRP II beginning
with Assemblies having Hold or Released Status.

the component relationship data remains local to CAD until the part is finalized
and released. When it is released, the component relationship data is added to the
MRP II database at the same time as the revision data, which is assigned an MRP II
status of “hold.” When MRP II users have determined and entered any information
not provided by the designers of the assembly, such as the effectivity start date, the
revision is released to MRP II (see section 4.2.2). It is then the effectivity dates of
the new revision which determine when the new relationship becomes effective.

In the second case, depicted in Figure 4.13, the revision of the assembly being
formed has already been finalized and has either a “hold” or “released” status
in CAD. Since parent parts such as these exist in MRPII as well as CAD, the
component relationships are immediately tranferred to MRP II as well. The system

allows the construction of product structures for parent parts with a “hold” status

75

in CAD since they may again be made active at some later date.

As mentioned in the previous case, the parent part/revision combination must
exist in both CAD and MRPII for a relationship to be defined. The assembly
revision may have an MRPII status of either “hold” or “released.” Because a
“hold” status on a part in CAD automatically ixﬁplies a “hold” status in MRP II,
the MRP II status of the parent part will be “hold” if the CAD status of the same
part is also “hold.”

If the parent part has a “released” status in MRP II, then the effectivity dates
of the revision should have already been defined. If it has a “hold” status, then the
effectivity starting date may or may not have been defined, depending on whether
the part had a “released” status prior to being put on hold, or was just transferred
from CAD. In either case, the effectivity start date will be defined prior to the

release or rerelease of the revision.
4.3.2 Adding Component Relationships Via MRP I1

Adding component relationships via MRP II again requires the complete specifica-

tion of the relationship, including:

e Parent Part Number

e Parent Revision Number
o Item Number

e Component Part Number

e Quantity per assembly

If a new revision level or part number at the assembly level is called for due to the
change, then the user may elect to create the new part master data either prior to

the addition operation, or as a part of it.

76

Before adding the relationship to either database, the system verifies that the
parent part and revision level exist in both CAD and MRP II. Further, the CAD
status of the parent revision must be either “released” or “hold,” but not ”obsolete,”
since obsolete parts cannot be used in product structures. There is no restriction
on the MRP II status of the parent revision. As before, the component part must
have a revision level with a status of either “hold” or “released” in both CAD and
MRPII.

Once again, in addition to these requirements, the system performs the same
checks describe& above to ensure that the itermn number is unique within the assembly
and that there are no “loops” formed by the addition of the relation. If all of the
checks are successful, the operation is completed by the system.

As in the creation of new parts and revisions via MRP II, relationship records are
transferred to CAD immediately, regardless of the status of the parent part/revision
in MRPII or CAD, since all parts involved are finalized. This is shown in Fig-
ure 4.14. Depending on the timing of the insersion and the status of the parent
part in MRPII, the parent part revision may or may not have an effectivity start
date assigned. If the part has a “hold” status and the effectivity start date is not

defined, it will be prior to the release of the part.

4.3.3 Deleting Component Relationships

Component relationships may be deleted via either MRP II or CAD, although it is
assumed that CAD users will be the primary initiators of deletions. As with the
addition of relationships, when the deietion of a relationship would result in a new
revision level or part number for the assembly involved, the new revision or part
should be created, and the deletion made on the new bill of material. This may

be done directly, before the operation is performed, or as part of the operation, as

7

CAD ' ,
Parent b
Part f

Comp. relationships

MRP I
parent |(B) or () l

Part

*

Component time
relationships
added by MRP I
users

Figure 4.14: Transfer of Component Relationships from MRP II to CAD.

described above.

To be deleted via either system, a relationship must be identified by:
e Parent Part Number

e Parent Revision Level

e Item Number

e Component Part Number

The only check necessary for this operation is for the existence of the relation-
ship record. The specific details of the operation depend on whether the deletion is
performed via CAD or MRP II. If the operation is performed via CAD, the process
further depends on the status of the assembly part/revision in CAD. If the rela-

tionship exists in CAD and the parent part/revision has a “working” status, then

78

the relationship record is local to CAD; the record is deleted from CAD with no
interaction with MRP IL. If the relationship exists and the parent part/revision has
either a “released” or “hold” status in CAD, then it should also exist in MRP II;
accordingly, the relationship record is deleted from both CAD and MRPII at the
same time.

If the operation is being performed via MRPII, then the system makes sure
the relationship exists both in CAD and MRPII, and if so, deletes it from both

application systems.

4.3.4 Substituting Components in Relationships

The combination of deleting a particular relationship and adding another can be
used to effectively substitute a given component part in a particular bill of material
with a different component part. The system also provides for “mass” substitutions,
i.e., the substitution of all occurences of a part as a component in a bill of material
with another part. This occurs, for example, when a new part is created that
supersedes a previous part. It may also occur when it is decided to replace a
currently active part by another part that is also already active. This is a powerful
transaction that should only be used with caution and perfomed by someone with
the proper authority.

Once again; if appropriate, a new revision level or new part number for all
assemblies involved should be created prior to this operation, and the operation
performed on the new structures. Obviously this is not always practical; again
the system lets any new revision levels and/or part numbers be created as part
of the operation. As it finds each occurence of the old part as a component in
a relationship record, the system asks the user if the substitution necessitates a

change in the revision level or part number of the particular assembly, unless the

79

assembly revision has a CAD “working” status. Each time the user answers “yes”
to one of these questions, the new part or revision is added as previously described,
the product structure of the current revision or part is copied to the new one, and
the operation is performed on the new structure. By sequencing through all of
the occurrances of a part as a component, the system can be used to make all the
necessary part number/revision level changes for this operation.

Users from either MRP II or CAD may originate this operation. To do so, the

user must enter:
¢ Current Part Number
o New Part Number

As long as each relationship involving the current part number meets the require-
ments for deletion, and each relationship involving the new part number meets the
requirements for addition, the operation is processed. For assembly revisions with
either a “released” or “hold” status in CAD, both the MRP II and. CAD databases
are immediately updated to reflect the change; for assemblies with a CAD “work-
ing” status, which are local to CAD, the change is made only in the CAD database,
and propagated to MRP II only after the new part or revision is released by CAD
users. This is likely to be the most common case, since CAD users are primarily
responsible for engineering changes; each new revision level or part created by CAD
users to accomodate the changes will have a “working” status.

This operation is automatically invoked when a new part that supersedes an-
other is released by CAD or MRP Il users. In fact, this is its primary purpose, to
replace all occurences of a part as a component with the part superseding it, at the
time the new part becomes active. In this case, the system will again prompt the

user about new revision levels and part numbers as it finds each occurence of the

80

superseded part as a component. As in the previous case, the timing of the transfer
of information between CAD and MRP II depends on the status of each assembly

revision being modified in the system releasing the new part.

4.3.5 Modifying Component Quantities

The final assembly level operation considered in the model is that of changing the
quantity of a given component in a bill of material. This generally requires a revision
change or new part number for the assembly, so a new revision or part should be
established prior to this operation, and the modification made to the new product
structure; alternatively, the user can create the new revision or part as part of the

operation. Changing a component quantity requires:
e Parent Part Number

Parent Revision Level

Item Number

e Component Part Number

New Quantity Per Assembly

If the indicated parent-component relationship exists, the modification is made.
If it does not, the operation fails. If performed by CAD users on an assembly
revision with a “working” status, the change is made in the CAD database only,
since the relationship record is local to CAD. When the revision is later released
by CAD users, all relationship records for the revision are transferred to MRP II. If
performed by CAD users on an assembly revision with “released” or “hold” status,
or by MRPII users, then both the CAD and MRP II databases are immediately

updated.

81

4.3.6 Copying Component Relationships from one Assem-
bly to Another ’

In addition to providing an automatic copying feature when new parts or revision

levels are established as part of an assembly level change to a product structure,

the system provides a direct copying function to allow users who create new parts

prior to invoking an operation to copy the product structure from the old part to

the new part. This operation can be performed by either CAD or MRPII users,

and requires the following information:
e Copy from Part Number
e Copy from Revision Level
e Copy to Part Number
e Copy to Revision Level

When this operation is invoked, all of the relationship records for the “copy from”
part number and revision level defined in the database in which the operation is
originating are copied to the “copy to” part number and revéion level. As discussed
in the above sections, the transfer of the newly created relationship records between
the two applications depends on the application in which the operation originated as
well as the status of the “copy to” assembly revision. If the operation is performed
by CAD users, and the “copy to” assembly revision has a “working” status in CAD,
then only the CAD database is immediately updated. The transfer of information
to MRPII occurs when the new assembly is released by CAD users. If performed
by CAD users and the “copy to” assembly revision has a status of either “hold” or
“released,” then both the CAD and MRPII databases are immediately updated.

Similarly, if the operation originates from MRP 11, regardless of the MRP II status of

82

the “copy to” assembly revision, both the CAD and MRP II databases are updated

as part of the operation.

83

Chapter 5

Database Interoperability through
Update Dependencies

To implement and demonstrate the integrated MRP II/CAD system described in
chapter 4, the concept of database interoperability is being utilized. This chapter
presénts this concept, which is based on the Update Dependency Language, cur-
rently under development in the department of Computer Science at the University
of Maryland (17] as a means for achieving interoperability. The language is being
applied to the current problem both as a means to critically analyze the design of
the integrated system, and to analyze the effectiveness of the language in specifying

such a system.

5.1 Database Interoperability

Database interoperability is a fairly new approcach to systems integration that
differs from the more traditional approach of database integration. Database in-
tegration involves the notion of a global schema, integrating the schemata of the
existing databases. There are basically two ways to integrate existing databases
using a global schema. The global schema can be placed between the databases
and the system. In this case, the schemata of the existing databases become exter-

nal schemata and the application software can be preserved, but the data must be

84

User User

DB DBn
Schema " Schema

Global
Schema

Figure 5.1: A Global Schema between the Databases and the System.

reorganized and stored under the global schema. This is illustrated in Figure 5.1.
Alternatively, the global schema can be placed between the users and the databases.
In this case, the application software must be rewritten, but the data need not be

reorganized. This is illustrated in Figure 5.2.

The basic problem in database integration is the required initial design of a
global schema which is the union of the schemata of the databases to be integrated.
If these databases are homogeneous, i.e., their schemata are all defined in terms

of the same data model, then one encounters the following:
e Easy problems:

- Domains may have different physical representation, e.g., integer or real

- Domains may have different units of measure , e.g., inches and centime-

ters

85

User

Global
Schema
DB4 ' DBn
Schema e Schema
D <>

Data- Data-
Base Base

Figure 5.2: A Global Schema between the Users and the Databases.

86

- Domains may have different structures, e.g., date may be mmddyy or

ddmmyy
- Domains that represent the same data may have different names

- Records that represent the same data may have different names
e Difficult problems:

- The same fact is modeled by different record structures

- Different constraints may apply to the same fact
e Very difficult problems:

- Conflicting models of similar facts

- Conflicting constraints applied to similar facts

If the databases to be integrated are heterogeneous, i.e., their schemata are

defined in terms of different data models, then one encounters:
e Very difficult problems:

- Defining mappings between data structures in different data models

- Defining mappings between Data Manipulation Languages of different

data models

It is noted that it is not the notion of a global schema as such that creates
problems in database integration. The problems stem from the requirement that
the global schema be designed from the very outset of the integration; and worse,

that the global schema is thought of as the union—without redundancy and internal

87

Union:
Conflicts must be resolved
No redundancy accepted

Figure 5.3: Database Integration.

conflicts—of the schemata of the existing databases. This situation is illustrated in
Figure 5.3.

The notion of database interoperability can be distinguished from database in-
tegration by considering the illustration in Figure 5.4.

The basic idea is to let the initial global schema be the concatenation of the
schemata of the existing databases. In other words, The global schema still consists
initially of all the schemata of the existing databases with all the redundancy and
all the conflicts this implies.

In addition, a rule set is constructed for each separate database called update
and retrieval dependencies, which controls inter-database consistancy through inter-
database operation calls. This rule set is used here to enforce the functionality of

the integrated MRP II/CAD system.

5.2 Update Dependencies

A relation R is said to be update dependent on relation S if there exists an update on

relation R that succeeds only if one or more implied updates on relation S succeed.

88

Concatenation:
Conflicts and redundancy
controlled by update and
retrieval dependencies

Figure 5.4: Database Interoperability.

Similarly, a relation R is retrieval dependent on relation S if there exists a
retrieval from relation R that succeeds only if one or more implied retrievals from
relation S succeed.

The structure of update and retrieval dependencies is demonstrated in the fol-

lowing example:

op1(R)

— condy,
op2 (S) s
ops3 (T) y
ops(R).

— cond,,
ops (S)’
OPG(U) 3
0p7(R) .

The meaning of this is as follows: operation op; on relation R is said to succeed
if a:qd only if for at least one of the alternatives in its update dependency, the
condition evaluates to true and all the implied operations succeed. It fails otherwise.
For the first alternative in the above example to succeed, for instance, the condition,

“cond,,” must evaluate to true, and the operation op, on S, the operation ops on

89

T, and the opertation opy on R must all succeed. The operations on the right hand
side may be primitive operations or they may themselves be specified as above.

The relations R, S, T, and U may reside in the same database or in different
databases. If all the relations reside in the same database, then the update de-
pendencies merely give an operational specification of a set of constraints in thai;
database. If, on the other hand, the relations reside in different databases, then
the update dependencies give an operational specification of a set of inter-database
constraints.

Communication is established through inter-database operation calls. The only
data passed between databases are the actual parameters of the operation calls.
Finally, messages about the success or failure of an operation are passed from the
site where the operation was executed to the site where the call of it originated.

In the following sections, the syntax and semantics of update dependencies are

more formally presented.

5.2.1 Syntax

A compound update operation is defined by an update dependency with the follow-

ing form:

< op>

— < ¢ >,
< op1,1 >,
< Op1,2 >,
< OP1,nt >.

— < g >,
< 0p2,1' >,
< Op2.2 >,
< 0pgn2 >

—

90

where < op > is the compound update operation being defined, < op;; > is
either an implied compound update operation or an implied primitive operation,
and < ¢; > is a condition on the database state.

A compound update operation < op; > has the following form:
e <operation name>(<relation name>(<tuple spec>))

where the <tuple spec> is a tuple variable for the relation with the name
<relation name> and consists of a list of <domain variable>s. The <tuple spec>
in <op> is the formal parameter for <op>. All the <domain variable>s in the
<tuple spec> of <op> are assumed to be universally quantified. All <domain
variable>s in the <tuple spec>s of < op;; >, that are not bound to a universally
quantified <domain variable> in <op>, are assumed to be existentially quantified.
All <domain variable>s are in upper case; nothing else is.

The implied primitive operators are: ‘add’ for adding a new fuple in a relation,
‘remove’ for eliminating one, ‘write’ and ‘read’ for retrieving data by and from the
user, ‘new’ for creating a unique new surrogate, and ‘break’ for temporarily stépping
the system to do some retrieval before giving the control back to the system. The

implied primitive operations < op; ; > have the following forms:
e add(<relation name>(<tuple spec>))
e remove(<relation name>(<tuple spec>))

write(‘ <any text>’), or write(<domain variable>)

read(<domain variable>)

new(<relation name>(<tuple spec>))

91

e break

The <relation name> used in the operation ‘new’ must be the name of a unary
relation defined over a non-lexical domain. The conditions <cond> are expressions
of predicates. The connectives used in forming the expressions are ‘and’ (A) and
‘not’ (7). The predicates are of the form <relation name>(<tuple spec>) to deter-
mine whether or not a given tuple is in a given relation; or of the form ‘nonvar(X)’ or
‘var(X)’ to decide whether or not a <domain variable>, X, has been instantiated;
or of the form X <comp> Y, where <comp> is a comparison operator.

Conditions, or retrieval dependencies, can also be used to retrieve data from the

system.
5.2.2 Semantics

A compound update operation succeeds if, for at least one of the alternatives in its
update dependency, the condition evaluates to true and all the implied operations
succeed; otherwise it fails.

When a compound update operation is invoked, its formal parameters are bound
to the actual parameters. The scope of a variable is one update dependency. Exis-
tentially quantified variables are bound to values selected by the database system
or to values supplied by the interacting user on request from the database system.
Evaluation of conditions, replacement of implied compound update operations, and
execution of implied primitive operations is left-to-right and depth-first for each
invoked update dependency. For the evaluation of conditions we assume a closed
world interpretation.

The non-deterministic choice of a replacement for an implied compound update
operation is done by backtracking, selecting in order of appearance the update

dependencies with matching left-hand sides. If no match is found, the operation

92

fails.
An implied compound update operation matches the left-hand side of an update

dependency if:
e the operation names are the same, and
e the relation names are the same, and

¢ all the domain components match. Domain components match if they are the
same constant or if one or both of them is a variable. If a variable matches
a constant it is instantiated to that value. If two variables match they share

value.
The semantics of the primitive operations are:

e add(r(t)); its effect is r := r U {t}; it always succeeds; all components of ‘¢’

are constants.

e remove(r(t)); its effect is r := r\{¢} where all components of ‘¢’ are constants.

It always succeeds.
o write(‘text’); it writes the ‘text’ on the user’s screen. It always succeeds.
o write(X); writes the value of ‘X’ on the user’s screen. It always succeeds.

e read(X); reads the value supplied by the user and binds it to ‘X’. It always

succeeds (if the user answers).

e new(r(D)); produces a new unique surrogate, from the non-lexical domain
over which ‘r’ is defined and binds the value of the variable ‘D’ to this surro-

gate. It always succeeds.

93

e break; suspends the current execution and makes a new copy of the interpreter
available to the user, who can use it to retrieve the information he needs to

answer a question from an operation.

The list of primitive operations is minimal for illustrating the concept. It can
easily be extended. It is emphasized that primitive operations are not available to
the user; he cannot directly invoke them.

The execution of ‘add’ and ‘remove’ operations done by the system in an at-
tempt to make a compound update operation succeed, will be undone in reverse
order during backtracking. This implies, that a (user invoked) compound update

operation that fails will leave the database unchanged.

5.2.3 Implementation Strategy

The strategy for implementing the model integrated MRP II/CAD system has been
planned to allow for the testing of the specification of the functional relationships
between MRP II and CAD early in the project.

The first step has therefore been to define the Update Dependency Language, a
formal language for specifying this functional relationship. The language allo;ivs for
the specification of operations in and between the MRP IT and CAD applications in
the form of an Artificial Intelligence production system.

The second step of the implementation strategy has been to implement an inter-
preter for the Update Dependencies Language. A first version of the interpreter has
been implemented in Prolog. Both the interpreter and the specification of the func-
tional relationship between the MRP Il and CAD aplications under one instance of
the interpreter have been tested. Chapter 6 discusses the results of this testing.

The third step is to integrate a remote procedure call facility into the interpreter.

This will allow for the running of functional copies of the MRP and the CAD system

94

under separate instances of the interpreter on the same machine.

The fourth step is to move the two interpreters to different machines by gener-
alizing the remote procedure call facility to allow calls over a network.

An important aspect of this implementation strategy is that it allows early
testing of the specification of the functional relationship between the MRPII and
the CAD system. Furthermore, step three and four should not imply any changes
in this specification, i.e. the distribution of information in the system should be
transparent to the user.

Whereas this implementation strategy does allow us to test the specification of
the functional dependencies within each system and between the two systems, it
does not provide an integration of two actual systems.

Though it is clearly desirable to integrate existing pieces of software rather than
developing new systems from scratch, it is not the purpose of this research to provide
a “bridge-box” that will allow users to hook up any two particular MRP IT and CAD
systems. What is provided is a functional description of how such a “bridge-box”
for two given systems could be specified. Update Dependencies can then be used
.to implement it.

To actually build a “bridge-box” for two given systems, one would proceed as
follows. First, the set of operations available to the users in each system should be
identified. These operations should continue to be available to the users and the user
interface should be kept unchanged to the extent possible. Second, The software
procedures that supports these operations should be identified. Third, through
calls to the interpreter, one would insert a set of update dependencies between
the operations available to the users and the software procedures supporting them.
These update dependencies would capture calls of operations made by the users and

would issue calls of the software procedures supporting them, i.e. the calls of the

95

software components would be implied operations in the update dependencies. This
épproach would allows the enforcement of consistency both within and between the
two systems, by reusing the software components already available.

It is important to realize that the above approach keeps the user interfaces
stable, reuses the software components that are already there, avoids redesign of
existing databases, and solves the problem. However, it is also important to realize,

that a certain amount of additional programming cannot be avoided.

96

Chapter 6

Demonstration and Discussion of
Results

In Chapter 4, the functional description of the model integrated MRP I1/CAD sys-
tem was presented. To describe the model, individual operations were proposed to
handle the tasks associated with particular part and product structure maintenance.
With the set of operations thus defined, part master data and bills of material infor-
mation can be exchanged between the two systems to maintain consistency between
them during normal design and manufacturing activities.

As mentioned earlier, the goal of this research is to develop the generic func-
tionality for an integrated MRP II/CAD system; accordingly, the model will not
be demonstrated by the actual integration of any two particular MRP II and CAD
systems. Instead, using the Update Dependency Language presented in Chapter 5,
it is possible to both demonstrate and test the specification of the functional rela-

tionships between MRP II and CAD in the model.

6.1 Implementing the Model System Using Up-
date Dependencies

The Update Dependencies Language provides a convenient formalism for organizing,

expressing, and communicating algorithms to implement an integrated system such

97

as the one described in this work. Because it uses a declarative representation,
algorithms can be expressed in a natural manner, as a concise statement of the
designer’s notions. Hence the translation from functional design to program code
is fairly straightforward and direct, reducing the tedious and error-prone phase of
translating algorithms into code.

Further, the Update Dependency Language allows for the definition of a system
as a modular series of operations, which can be easily modified or expanded to
improve the capabilities of the system. Each of these operations consists of a series
of rules to be applied in particular circumstances to achieve a particular goal. This
representation is particularly well suited for the MRP II/CAD integrated system,
which has likewise been presented in this manner.

Using the Update Dependency Language, thfz operations described in Chapter 4
have been coded; the resulting code is presented in Appendix A. As described in
section 5.2.3, these operations act within one instance of the Update Dependency
interpreter. This does not provide true “interoperability” between two systems;
instead, two sets of data, one for MRP II and one for CAD, are maintained within
the single database under the control of the interpreter. Interoperability is simulated
by treating the operations and data sets as if they were in separate databases. As
the Update Dependency interpreter evolves to include remote procedure calls, true
interoperability will be possible with little or no change to the curfent operation

definitions.
6.1.1 Relations Used by the System

All of the data maintained in the interoperability system are recorded in sets of
relations, one set representing the CAD database, and another representing the

MRP II database. In the CAD data set, the following relations are defined, following

98

the data formats specified in chapter 4:

cadpart. Records part master data by part number. FEach part in the CAD

database has a cadpart record. Fields include:

o Part Number

Drawing Number

Drawing Size

Description
e BOM Unit of Measure

e Supersedes Part Number

Superseded by Part Number

cadrev. Records information about the various revisions of a part. Each revision
of each part in the CAD database has a cadrev record. Included in this record

are:

e Part Number

Revision Level

Effectivity Start Date

Effectivity End Date

CAD Status Code

Drawing File Name

latestcadrev. Itentifies the most recent version of each part in the CAD database.
There is one record for each part, which is updated as each new revision is

released in CAD. This relation contains:

99

o Part Number

¢ Revision Level of most recent version

cadcomponent. Records component relationship information for the parts in the
CAD database. There is one cadcomponent record for each relationship; an
assembly part will therefore have as many cadcomponent records as it has

components. The information in this record consists of:

o Parent Part Number

Parent Revision Number

o Itemn Number

e Component Part Number

Quantity per Assembly

Similar records are defined for the MRP II data set; these include:

mrppmr. Contains the part master record for a part. Each part in the MRP II

database has one of these records. Its fields include:

e Part Number

Drawing Number

Drawing Size

Description

BOM Unit of Measure

o Purchasing/Inventory Unit of Measure

Unit of Measure Conversion Factor

100

e Source Code

e Standard Cost

Leadtime

Supersedes Part Number

Superseded by Part Number

mrprev. Contains revision-specific information. An mrprev record is produced for

each version of each part in the MRP II database, containing:

e Part Number

¢ Revision Level

Effectivity Start Date

Effectivity End Date

MRP II Status Code

latestmrprev. Identifies the most recent version of each part in MRP II. A single
relation is maintained for each part, and is updated as new revision levels are

released in MRP II. This relation contains:

o Part Number

o Revision Level of most recent version

mrpcomponent. Records relationship information for assemblies. One mrpcom-
ponent record is maintained for each relationship, such that each assembly in
the MRP II database will have as many relationship records as it has compo-

nents. The fields in this record include:

e Parent Part Number

101

Parent Revision Level

Item Number
e Component Part Number

Quantity per Assembly

In addition to these primary records, there is a series of secondary records used
on a temporary basis to alert MRP II users of activities requiring their attention,

such as the release of a new part or revision. These include:

newpmr. Notifies MRP Il users that a new part master record has been established
by the release of a part from CAD, allowing the MRP II users to begin planning
for its procurement. The record is deleted when the first revision of the new

part is released in MRP II. Its only field is:
e Part Number

newrev. Signifies that a new version of a part has been released by CAD, allowing
MRPII users to determine an effectivity starting date and to plan for any
changes required by the transition to the new revision. The record is deleted
when the new version is released to MRPIIL. The structuré of the record

includes the following fields:

e Part Number

e Revision Level

rereleased. Used to notify MRP II users that a part/revision formerly placed on

hold by CAD users (which would have invoked an MRPII hold as well) has

102

been rereleased to CAD without a design change. The revision is not auto-
matically rereleased to MRP II, as there may still be manufacturing or ven-
dor problems that MRP II users would want to explore before rereleasing the
part/revision. This relation is deleted when the part/revision is rereleased to

MRPII. The relation contains:

e Part Number

e Revision Level

obsolete. This record serves to alert MRP II users that a particular part and revi-
sion level has been given an “obsolete” status in CAD, and that the phase-out
of the part and revision level should be planned. The record is maintained

until the part is deleted from MRP II. It consists of:

e Part Number

o Revision Level

Finally, there are two relations used solely to represent MRP Il related activities
involving parts. The system provides for the insersion and deletion of these records
with minimal consistency checks, and uses their presence or absence for determining

whether parts may be deleted from the system. These records include:

inventory. Used to represent the quantity of a part in inventory. Following the
approach used in most commercial MRP II systems, inventory records are
maintained by part number only, not by the specific revision level. The system
thus assumes that the quantity relates to the active revision. The relation

consists of:

o Part Number

103

e Quantity in Inventory

onorder. This relation indicates an on-order quantity of a specific part. Again,
the record uses only the part number; the active revision level is implied. The

fields in the relation are:

¢ Part Number
¢ Quantity on order

e Order ID number

Due to the typical time lag between CAD and MRP II activities, the data in
equivalent CAD and MRP II relations may be different at times. For example, new
revisions created via CAD are not transferred to MRP II until they are released
by CAD users. Similarly, a part’s latestcadrev record is updated as soon as a
new revision is releasd from CAD; its latestmrprev record is not updated until the
revision is released from MRPII. In these exaxﬂples and in many others in the
model, the database conflicts are temporary, being resolved over the natural course

of design and manufacturing activities.
6.1.2 Programing the Interoperability System

The integrated system is comprised of operations for inserting, deleting, and mod-
ifying the relations. Each operation consists of a list of alternative actions, each
appropriate for a particular database state. Each alternative begins with a list of
conditions which must be satisfied prior to perforining any of the actions. These
conditions are thus used to channel control into the proper set of actions under a
given set of circumstances.

The list of actions to be performed as a result of calling an operation and satis-

fying a particular set of conditions often includes calling other operations on other

104

(fail) (end of
operation)

Figure 6.1: A Demonstration of Backtracking.

relations, either in the same database, or in another database. These operations
may again involve calling other operations, and so on. In order for the original op-
eration to succeed, all of the operations in the resultiné “chain” must also succeed.
If any one of them fails, and no alternatives are found by backtracking, then the
original operation fails, and no change to either database occurs. .Thus with a well

specified system, it is possible to protect the integrity of the databases.

6.1.2.1 Backtracking

Backtracking is used by the Update Dependency Language to search out and at-
tempt to satisfy as many of the possible solutions to an operation as necessary to
either obtain a successful solution or exhaust all possible solutions. The concept of
backtracking is demonstrated with the tree structure in Figure 6.1. Each node in
the tree represents an operation, which is comprised of several alternatives, repre-
sented by the branches descending from it. Many of these alternatives, in turn, call
other operations. Each level of the tree then can be viewed as a depth in a chain

of operations. Starting at the top of the tree, the system begins down a particular

105

path. If any branch in the path fails, control is returned to the node above the failed
branch, and another branch is found. Again progress is made in the descending (or
forward) direction until either the bottom of the tree is successfully reached, or
another failure occurs. If no new branches from a particular node are available, the
system returns to the node one level higher on the same path, and again looks for
an alternate path. The operation is completed when either the endpoint of a path
is successfully reached, or the original (top) node is reached after backtracking and
all of its descending branches have been attempted. In the first case, the operation
succeeds, while in the second, it fails.

Several of the nodes in Figure 6.1 have been labeled to demonstrate a back-
tracking sequence. The complete path taken is indicated by the letters a — b —
¢ =+ d — e — f. The search begins at node a, the top-level operation. The first
path searched is toward node b, meaning that if operation b succeeds, operation a
will succeed as well. Operation b will succeed if either operation ¢ or d succeed.
Operation ¢, however, fails in this example, without trying its in:iplied operations.
Thus backtracking occurs to operation b, and the search continues to operation d.
Operation d can succeed only if either operation e or operation f succeeds: The
first path found, operation e, fails, initiates backtracking to d, and then operation
[is attempted. Because operation f is at the bottom of the tree and it succeeds,
the original operation, a, as well as operations b and d succeed as well.

Backtracking is an important feature of the Update Dependency Language, as
it ensures that all possible solutions to an operation will be attempted before the
operation is said to fail. However, backtracking occasionally has undesirable effects,

as discussed in the following sections.

106

6.1.2.2 “Failure Alternatives”

To detect particular actions that preclude the success of an operation, such as an
attempt to insert a part that already exists in the database, it is necessary to spécify
“failure alternatives,” i.e., alternatives whose conditions are met only if there is an
inconsistency in the user’s attempted operation. In such cases, a message is printed
out and the operation is made to fail, preventing changes to either database.

The need for “failure alternatives” elicits several comments on the Update De-
pendency Language. First, if it were not for the desire to alert the user to errors
by describing the inconsistency, there would be no need for such alternatives. Only
sucessful alternatives would need to be specified, and operations would automat-
ically fail whenever none of the alternatives could succeed. The amount of code
required to implement an operation would be greatly reduced, at the expense of
making it much more difficult for the user to catch errors and diagnose failures.

The second comment relates to the need to make the “failure alternatives” fail.
It would seem logical that if all of the conditions of one of these 'alternatives were
satisfied, and if its only action were to print out a message, then it should suc-
ceed and end the operation. This approach would work if the user were directly
invoking the operation in which the “failure alternative” was located; the operation
would “succeed,” but no changes to any database would be made. If, however, the
operation in which the “failure alternative” was located were called as an implied
operation of another operation, a “successful” “failure alternative” would indicate
the success of the implied operation to the calling operation, which would proceed
to satisfy any further operations without recognizing the constraint violation found
in the implied operation. By making the “failure alternative” fail, however, the sys-

tem is forced to search for alternate solutions, and if none are found, the operation

107

with the “failure alternative” will fail, forcing the operation that called it to seek
alternative solutions, and so on. The entire chain of operations will then fail if a

successful solution is not found, and the database will remain unchanged.

6.1.2.3 System Performance

The next several comments involve the effect of the “failure alternatives” on the
performance of the system. Simply because they greatly increase the number of
alternatives defining an operation, the performance of the system is hindered some-
what. A more significant effect however, is the increase in backtracking they cause.
As mentioned above, each “failure alternative” is made to fail after all of its con-
ditions have been satisfied and it has printed an appropriate message. Because all
of its conditions have been satisfied at this point, control of the system has been
channelled into the proper set of actions for the specific set of circumstances. Func-
tionally, there is no need to seek alternatives. However, when it is forced to fail,
the interpreter responds as if one of the conditions or implied operations had failed,
and it seeks other alternatives, as explained in section 6.1.2.1.

Though in general backtracking is desirable, it produces a number of undesirable
side effects when combined with “failure alternatives.” The first is simply the extra
time involved. In the design of this particular system, the alternatives are specified
as mutually exclusive cases; it is impossible for an operation to succeed if it satisfies
the conditions of a “failure alternative.” In spite of this, the interpreter searches
for a successful solution, which it cannot find, delaying the eventual failure of the
operation.

The second side effect is more troublesome. When a new branch is initiated
by attempting to resatisfy an implied operation after the conditions of a “failure

alternative” have been satisfied, the resulting backtracking is often both confusing

108

and unnecessary. For example, when a part is being deleted from the system, all
of its revision records must be deleted. If any one of the revision records has a
“released” status in CAD, the deletion fails. The system may find the revision
with “released” status after marking several of the other revisions for deletion.
When the “released” revision is found, a “failure alternative” causes a failure and
initiates backtracking. During backtracking, the order in which the system finds the
revisions becomes significant; each different sequence represents a different possible
solution, or branch, for the operation to follow. If a part has two revisions, for
instance, one of which has a “released” status, and the other an “obsolete” status,
the system can either successfully mark the obsolete revision for deletion first, and
then find the released revision and fail, or it can find the released revision first and
fail without finding the obsolete revision. The effect of the backtracking is that
both of these sequences are attempted, despite the fact that neither can succeed.
As the number of revisions increases, so does the number of possible sequences, and
the time consumed by backtracking through each of these. Also, since messages
are printed out during such operations to indicate that particular actions have been
performed and describing errors that are detected, it is very confusing for the user
to see the same error message appear several times prior to the final failure of an
operation.

Backtracking after a “failure alternative” may also cause a similar phenomenon
if an operation is specified such that the conditions of more than one alternative
are satisfied during a particular call to the operation. Again, the sequence in Whiqh
the interpreter attempts to satisfy alternatives is significant; during backtracking,
each possible sequence is attempted, whether it provides a true alternative path
or just a permutation of the initial path. Eliminating this behavior, however, is

fairly simple; operations should be specified such that the conditions of only one

109

alternative should be satisfied during each call to the operation, unless more than

one true alternative is possible.
6.1.3 Problems with the Current Interoperability Model
6.1.3.1 Duplication of Application Functions

Due to the early stage of the development of the Update Dependency interpreter,
and the desire to remain as general as possible in the solution to MRPII/CAD
integration, the model is coded to function only as an isolated system. Instead of
interacting with commercial MRP II and CAD interfaces, the user must interact di-
rectly with the interoperability system. Though this is sufficient to demonstrate the
specification of the functional relationships between MRP II and CAD applications,
it complicates the development and use of the system. In addition to providing
functions for physically transferring information between MRP II and CAD, pro-
gramming the model as an independent system means incorporating functions that
should be inherent in the applications themselves, particularly in MRP II, with no
need to reproduce them. Functions such as mass substitution of components in bills
of material and copying bills of materiai from one assembly to another, for exa;mple,
are provided in typical MRP II systems, but have also been programmed into the
model to provide the user with the ability to perform transactions which exercise

particular portions of the interoperability system.

6.1.3.2 Operation “Chains”

A problem with including such activities as interoperability functions is that invok-
ing them often results in very long chains of operations that must succeed before the
original operation can succeed; in some cases, the chains involve combinations of

activities that the interpreter cannot satisfy. In contrast, if actual application sys-

110

tems were interfaced with the interoperability system, the chain of activities could
often be broken down into smaller chains that could be performed independently
by separate calls from the applic#tions to the lower level interoperability functions.

For example, the current implementation of the product structure operations is
intended to allow a user to make a part number or revision level change as part of
an operation. If he or she chooses to do so, the resulting chain of activities includes
the insersion of the new part or revision level, the copying of the bill of material
from the previous part and revision level, and then performing the desired operation
on the new bill of material. If augmented by the application systems, this process
could be broken down into a separate chain for each of these activities.

With the current version of the Update Dependency interpreter and the current
implementation of the model, the full chain can only succeed if the operation on
the new bill of material is a component addition. This is due to the fact that
the interpreter does not allow changes to or deletions of relations inserted in the
same operation. If the operations could be broken down as described above, this
problem would not occur, since the insersibn of new relations would be performed
as a separate operation prior to the changes or deletions to be made to them.
In the meantime, the operations are being left in their current state, with the
recognition that exercising the feature of new part or revision creation during a
product structure operation will not be fully successful.

For operations involving only one assembly, such as adding or deleting a compo-
nent, the user should insert a new part or revision if required, prior to performing the
assembly operation, which will eliminate the problem. For operations that involve
several assemblies, notably the mass substitution of a component by another, this
is more complicated, since the particular assemblies involved may not be known

by the user, making it difficult to make changes to them before the operation is

111

invoked.

6.1.3.3 User Interface

Another result of the current implementation of the model is its poor user interface.
To invoke any of the operations in the system, the user must, as a minimum,
type the operation name as well as the relation it operates on. The system will
then request from the user the minimum information it requires to process the
transaction. If the user wishes to enter any values beyond those required, he or she
must enter the operation, the relation, and the optional values; the required values
may also be specified, or may be left as variables. This arrangement is used as a
compromise between flexiblity and ease of use, to avoid having the system ask the
user for a long series of values that may be left unknown. However, it must be
remembered that once the interpreter is capable of interacting between two actual
systems, the interoperability system can become completely transparent to the user;
as described in section 5.2.3, the calls to the Update Dependency interpreter will be
positioned between the operations available to the users and the software procedures
supporting them. The users will interact with the applications’ user inteffaces,
which will, in turn, be internally interfaced with the interoperability system. Hence
the interoperability system need not be designed to provide a commercial-quality
user interface directly.

Similarly, the system does not perform validity checks on most of the data fields
entered by users. For example, units of measure are not checked against a table
of acceptable values; any value is accepted. Though such capabilities could be
programmed into the system, it is assumed that the application systems would

perform any such checks prior to calling the interoperability functions.

112

6.2 A Sample Session with the Model System

In the following sections, the basic part master data and product structure main-
tenance operations of the model MRP II/CAD system are demonstrated. At the

beginning of the demonstra,tion,.both the CAD and MRPII databases are empty.

6.2.1 Part Master Data
6.2.1.1 Adding New Parts Via CAD

The first demonstration of part master data operations follows the insersion of a
part via CAD and its subsequent release from CAD to MRP II.

The first operation, insert(cadpart), is used to enter both cadpart and cadrev
records for the first version of the new part into the CAD database. The subsequent
listing of part records in both the CAD and MRPII databases verifies that the
information is stored in CAD only at this stage, and that the first version of the
part has a working status. Accordingly, there is no latestcadrev record. Because no
optional fields were given values in the call to the operation, the system asks only

for those fields required, and the remaining fields are assigned the value “unknown.”

ud> insert(cadpart).

Part Number? 123.

Description? cad_part_1.

Unit of Measure? each.

New Revision Level? 1.

Drawing File Name? file_1.
Revision has been added to CAD
Part has been added to CAD

ud> listing(cadpart).

cadpart (123, unknown,unknown,cad_part_1,each,unknown,unknown) .

113

ud> listing(cadrev).

cadrev(123,1,unknown,unknown,w,file_1).
ud> listing(latestcadrev).
ud> listing(mrppmr).

ud> listing(mrprev).

The next step is the release of the first version of the part by CAD users using
releasework(cadrev). Again, the listings following the call to the operation Sh(;W
the results of its actions. The first version of the new part is given a released
status in CAD, a latgstca.drev record is inserted in the CAD database, and the part
information is transferred to MRP II where skeletal mrppmr a.nd mrprev records
are created to describe the first version of the new part to MRP II users.. To nptify
MRP II users that the new part and revision records have been inserted, newpmr and
newrev records are also inserted into‘the MRPII database. Fields not maintained
by CAD in the cadpart record are assigned the value “unknown” in the mrppmr
record. The status of this version is set to “hold” to allow MRP II users to complete
the fields required for the release of the part in MRPII. A latestmrprev record is

not established until the part is released in MRP II.

ud> releasework(cadrev).

Part Number? 123.

Revision Level? 1.

Part has been added to MRP II
Revision has been added to MRP II

114

Revision has been released in CAD

ud> listing(cadpart).

cadpart (123,unknown,unknown,cad_part_1,each,unknown,unknown) .

ud> listing(cadrev).

cadrev(123,1,unknown,unknown,r,file_1).

ud> listing(latestcadrev):

latestcadrev(123,1).

ud> listing(mrppmr).

nrppar (123, unknown,unknown,cad_part_1,each,unknown,unknown,
unknown, unknown, unknown , unknown,unknown) .

ud> listing(mrprev).

mrprev(123,1,unknown,unknown,h) .
ud> listing(latestmrprev).

ud> listing(newpmr).

newpnmr (123) .

ud> listing(newrev).

newrev(123,1).

The additional part master record fields required by MRPII may be entered

prior to the MRP II release of the version using the modify (mrppmr) operation.

115

Alternatively, the user can simply invoke the releasehold(mrprev) operation to
release the part, which will check and ask the user for any required fields that still
have the value “unknowﬁ.” This approach is used in in the demonstration. The
listings after this final operation show the first version of the part with a released
status in both CAD and MRP II. It also shows the effectivity starting date assigned
by MRPII users in the revision records of both databases. Note that some of the
optional fields in both the part and revision records of both application systems
remain unknown. Finally, it is shown that the newpmr and newrev records have
been deleted from the MRP II database, and a latestmrprev record has been inserted

for the new part. _ '

ud> releasehold(mrprev).

Part Number? 123.

Revision Level? 1.

Effectivity Start Date? 7/01/87.
Purchasing/Inventory Unit of Measure? each.
Unit of Measure Conversion Factor? 1.
Source Code? m.

Lead Time? 4.
Revision has been released in MRP II

ud> listing(cadpart).

cadpart (123,unknown,unknown,cad_part_1,each,unknown,unknown) .

ud> listing(cadrev).

cadrev(123,1,7/1/87 ,unknown,r,file_1).

ud> listing(latestcadrev).

latestcadrev(123,1).

116

ud> listing(mrppmr) .

mrppmr (123, unknown,unknown,cad_part_1,each,each,1,m,
unknown, 4 ,unknown,unknown) .

ud> listing(mrprev).
mrprev(123,1,7/1/87 ,unknown,r) .
ud> listing(latestmrprev).

latestmrprev(123,1).
ud> listing(newpnr).

ud> listing(newrev).

6.2.1.2 Adding New Parts Via MRP 11

The next scenario demonstrated is the insersion of a new part via MRP II. Using
the insert(mrppmr) operation, the user is prdmpted for the fields required to
specify the first version of the new part to MRPIL. The user is given the option
of establishing the part with either a hold or released MRP Il status, as appropri-
ate. The results of this operation are shown in the subsequent listings. The part
master and revsion records, mrppmr and mrprev, have been created in the MRP 11
database, as has a latestmrprev record. Data from these records have also been
used to establish cadpart, cadrev, and latestcadrev records in the CAD database.
Because parts entered via MRP II are assumed to have no drawings and to be pri-
marily under the control of MRP II users, the three fields in the cadpart and cadrev

records related to the drawing are assigned the value “inapplicable.” Further, the

117

status of the part version in CAD is set directly to released, regardless of the status
entered in MRP II. This is to avoid the need for any CAD action to make the part

active.

ud> insert(mrppnmr) .

Part Number? 234.

Description? mrp_part_1.

BOM Unit of Measure? each.
Purchasing Unit of Measure? each.
Unit of Measure Conversion Factor? 1.
Source Code? b.

Lead Time? 7.

Part has been added to CAD
Revision Level? 1.

Effectivity Start Date? 7/15/87.
Status Code? r.

Revision has been added to CAD
Revision has been added to MRP II
Part has been added to MRP II

ud> listing(mrppmr) .

mrppmr (123, unknown,unknown,cad_part_1,each,each,1,m,
unknown, 4 ,unknown,unknown) .

mrppmr (234, inapp, inapp,mrp_part_1,each,each,1,b,
unknown, 7 ,unknown ,unknown) .

ud> listing(mrprev).

mrprev(123,1,7/1/87,unknown,r) .

mrprev(234,1,7/156/87 ,unknown,r) .

ud> listing(latestmrprev).

latestmrprev(123,1).
latestmrprev(234,1).

118

ud> listing(cadpart).

cadpart (123, unknown,unknown,cad_part_1,each,unknown,unknown) .
cadpart (234, inapp,inapp,mrp_part_1i,each,unknown,unknown) .

ud> listing(cadrev).

cadrev(123,1,7/1/87 ,unknown,r,file_1).
cadrev(234,1,7/16/87 ,unknown,r, inapp) .

ud> listing(latestcadrev).

latestcadrev(123,1).
latestcadrev(234,1).

6.2.1.3 Adding New Part Revisions Via CAD

The next set of operations demonstrated is the insersion of a new version of a part
via CAD. The session begins with the insert(cadrev) operation, which the user
uses to enter data about a revision to the part created in section 6.2.1.1. A new
cadrev record for the revision is created with a working status; as shown in the
subsequent listings, no information about the revision is transferred to MRPII at

this stage, nor is the latestcadrev updated to reflect the new revision.

ud> insert(cadrev).

Part Number? 123.

New Revision Level? 2.

Drawing File Name? file_2.
Revision has been added to CAD

ud> listing(cadrev).

cadrev(123,1,7/1/87 ,unknown,r,file_1).
cadrev(234,1,7/15/87 ,unknown,r, inapp) .

119

cadrev(123,2,unknown,unknown,w,file_2).

ud> listing(latestcadrev).

latestcadrev(123,1).
latestcadrev(234,1).

ud> listing(mrprev).

mrprev(123,1,7/1/87 ,unknown,r) .
mrprev(234,1,7/16/87 ,unknown,r) .

The next operation shown is the release of the new revision, using release-
work(cadrev). This operation makes the previous revision obsolete, releases the
new revision, and updates the latestcadrev record for the part. It also triggers the
establishment of an mrprev record for the new version in MRP II; this record is given
a hold status, as shown in the listings following the operation. A newrev record is
also created in MRPII to alert users to the new revision level. The latestmrprev

record for the part is not yet updated, however.

ud> releasework(cadrev).

Part Number? 123.

Revision Level? 2.

Revision has been given obsolete status in CAD
Revision has been added to MRP II

Revision has been released in CAD

ud> listing(cadrev).
cadrev(234,1,7/15/87 ,unknown,r, inapp) .

cadrev(123,2,unknown,unknown,r,file_2).
cadrev(123,1,7/1/87 ,unknown,o,file_1).

120

ud> listing(latestcadrev).

latestcadrev(234,1).
latestcadrev(123,2).

ud> listing(mrprev).

mrprev(123,1,7/1/87 ,unknown,r) .
mrprev(234,1,7/16/87 ,unknown,r) .
mrprev(123,2,unknown,unknown,h) .

ud> listing(latestmrprev).

latestmrprev(123,1).
latestmrprev(234,1).

ud> listing(newrev).

newrev(123,2).

The final operation in this sequence is the release of the new revision in MRP II,
using the operation releasehold(mrprev). The effectivity start date for the new
revision is entered, and the revision is released. The listings after the operation show
the transfer of the effectivity starting date of the new revision to the effectivity end
date of the previous revsion, both in MRPII and CAD. Also, the newrev record

has been deleted, and the latestmrprev record has been updated.

ud> releasehold(mrprev).

Part Number? 123.

Revision Level? 2.

Effectivity Start Date? 9/01/87.
Revision has been released in MRP II

121

ud> listing(cadrev).
cadrev(234,1,7/156/87 ,unknown,r, inapp) .
cadrev(123,2,9/1/87 ,unknown,r,file_2).
cadrev(123,1,7/1/87,9/1/87,0,file_1).
ud> listing(latestcadrev).
latestcadrev(234,1).
latestcadrev(123,2).

ud> listing(mrprev).
nrprev(234,1,7/16/87 ,unknown,x) .
mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r).

ud> listing(latestmrprev).
latestmrprev(234,1).
latestmrprev(123,2).

ud> listing(newrev).

listing(newrev)

6.2.1.4 Adding New Part Revisions Via MRP 11

Revisions may also be inserted via MRP II, but only if they relate to an MRP II-

generated part. In the following session, a second revision level for the part estab-

1ished' in section 6.2.1.2.

Only the single operation, insert(mrprev), is necessary to do so. The user is

prompted by the system for the necessary input data, including the desired status of

the revision; the remaining fields are left as “unknown,” since they were not specified

122

in the call. As shown in the subsequent listings, the data are used to establish an
mrprev record and update the latestmrprev record for the part in MRP II; in CAD,
a cadrev record with a released status is created, and the latestcadrev record for the
part is likewise updated to reflect the new revision. To minimize the involvement
of CAD users with such revisions, the previous revision recored for the part is also
left as “released.” Finally,the effectivity start date of the new revision is used to

update the effectivity end date of the previous revsion, in both databases.

ud> insert(mrprev).

Part Number? 234.

Revision Level? 2.

Status Code? r.

Effectivity Start Date? 10/1/87.
Revision has been added to CAD
Revision has been added to MRP II

ud> listing(mrprev).

mrprev(123,2,9/1/87,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r).

mrprev(234,2,10/1/87 ,unknown,r).
mrprev(234,1,7/15/87,10/1/87,r).

ud> listing(latestmrprev).

latestmrprev(123,2).
latestmrprev(234,2).

ud> listing(cadrev).
cadrev(123,2,9/1/87 ,unknown,r,file_2).
cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(234,1,7/15/87,10/1/87,0,inapp) .

123

ud> listing(latestcadrev).

latestcadrev(123,2).
latestcadrev(234,2).

6.2.1.5 Part Supersession

The final part addition, via CAD, demonstrates the processes that result when a
new part supersedes another. In this demonstration, the new part will supersede
the part entered into CAD in section 6.2.1.1.

Because the “supersedes part number” field is not required by the interoperabil-
ity system, the user must specify the value in the call to operation insert(cadpart).
In this example, a few of the required values are left blank in the call to show that
the system will request all of the fields required, regardless of those supplied in the
call.

The part and revision records, cadpart and cadrev, for the first version of the
new part, are inserted in the same manner as in section 6.2.1.1, using the in-
sert(cadpart) operation. The revision record is given a working status, and both

records remain local to CAD.

ud> insert(cadpart(_,_,_,cad_part_2,_,123,.)).

Part Number? 124.

Unit of Measure? each.

New Revision Level? 1.

Drawing File Name? file_3.
Revision has been added to CAD
Part has been added to CAD

ud> listing(cadpart).

124

cadpart (123,unknown,unknown,cad_part_1,each,unknown,unknown) .
cadpart (234, inapp,inapp,mrp_part_1,each,unknown,unknown) .
cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .

ud> listing(cadrev).

cadrev(123,2,9/1/87 ,unknown,r,file_2).
cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,1,7/15/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(124,1,unknown,unknown,w,file_3).

ud> listing(latestcadrev).

latestcadrev(123,2).
latestcadrev(234,2).

ud> listing(mrppmr).

mrppmr (123, unknown,unknown,cad_part_1,each,each,i,m,
unknown, 4,unknown,unknown) .

mrppmr (234, inapp, inapp,mrp_part_1i,each,each,l,b,
unknown, 7 ,unknown,unknown) .

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r).
mrprev(234,1,7/16/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .

The revision record is then released using operation releasework(cadrev); the

listings following this operation show the effects of this action. The “superseded by
part number” field in the cadpart record of the superseded part is updated to show
the supersession. Also, the latest revision of the superseded part is made obsolete

in CAD, and the latestcadrev record for the superseded part is deleted. Next, a

125

latestcadrev record is established for the new part. Finally, the part and revision
data are used to establish mrppmr and mrprev records for the new part in the
MRP II database. As before, the first version of the new part is given a hold status
in MRPII, and therefore no latestmrprev record is created for the part. Note that

the part record of the superseded part in MRP II already reflects the supersession.

ud> releasework(cadrev).

Part Number? 124.

Revision Level? 1. .

Part has been added to MRP II

Revision has been added to MRP II

Part substitution has been completed

Revision has been given obsolete status in CAD
Revision has been released in CAD

ud> listing(cadpart).
cadpart (234, inapp,inapp,mrp_part_1,each,unknown,unknown) .

cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .
cadpart(123,unknown,unknown,cad_part_1,each,unknown,124).

ud> listing(cadrev).
cadrev(123,1,7/1/87,9/1/87,0,file_1).
cadrev(234,1,7/16/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r,inapp) .

cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,unknown,unknown,r,file_3).

ud> listing(latestcadrev).
latestcadrev(234,2).
latestcadrev(124,1).

ud> listing(mrppmr).

126

mrppmr (234, inapp,inapp,mrp_part_1,each,each,1,b,
unknown, 7 ,unknown,unknown) .

mrppmr (123, unknown,unknown,cad_part_1,each,each,1,m,
unknown, 4 ,unknown,124) .

mrppmr (124, unknown,unknown,cad_part_2,each,unknown,
unknown , unknown ,unknown,unknown, 123,unknown) .

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r) .

mrprev(234,1,7/15/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,unknown,unknown,h) .

ud> listing(latestmrprev).
latestmrprev(123,2).
latestmrprev(234,2).

ud> listing(newpnmr) .

newpnr (124) .

ud> listing(newrev).

newrev(124,1).

The final operation in this scenario is the release of the new part by MRP II
users, using operation releasehold(mrprev). At this point, the revision record
of the new part is given a released status, a latestmrprev record is created for the
new part, and the effectivity start date of the first version is transferred back to
the CAD revision record of the new part. The effectivity start date is also used to
update the effectivity end date of the latest revision of the superseded part in both
CAD and MRPIIL

127

ud> releasehold(mrprev).

Part Number? 124.

Revision Level? 1.

Effectivity Start Date? 11/01/87.
Purchasing/Inventory Unit of Measure? each.
Unit of Measure Conversion Factor 1.

Source Code? m.

Lead Time? 5.

Revision has been released in MRP II

ud> listing(cadpart).

cadpart (234, inapp,inapp,mrp_part_1i,each,unknown,unknown) .
cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .
cadpart (123 ,unknown,unknown,cad_part_1,each,unknown,124).

ud> listing(cadrev).

cadrev(123,1,7/1/87,9/1/87,0,file_1).
cadrev(234,1,7/156/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,11/1/87 ,unknown,r,file_3).

ud> -listing(latestcadrev).

latestcadrev(234,2).
latestcadrev(124,1).

ud> listing(mrppmr) .

mrppmr (234, inapp, inapp,mrp_part_1,each,each,1,b,
unknown, 7 ,unknown,unknown) .

mrppmr (123, unknown,unknown,cad_part_1,each,each,1,m,
unknown, 4 ,unknown, 124) .

mrppmr (124, unknown ,unknown,cad_part_2,each,each,i,m,
unknown, 5,123, unknown) .

1

128

ud> listing(mrprev).
mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r).
mrprev(234,1,7/15/87,10/1/87,r).

mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,r).

ud> listing(latestmrprev).
latestmrprev(123,2).

latestmrprev(234,2).
latestmrprev(124,1).

ud> listing(newpmr).

ud> listing(newrev).

6.2.1.6 Hold Functions in CAD and MRP II

The next set of operations demonstrates the hold functions in CAD and MRP II.
In the following session, a CAD user invokes the operation hold(cadrev) to place
a hold on a particular version of a part. The subsequent listings show that both the
cadrev record in the CAD database and the mrprev record in the MRP II database

have both been given hold status.

ud> hold(cadrev).
Part Number? 124.
Revision Level? 1.

Revision has been given hold status in MRP II
Revision has been given hold status in CAD

ud> listing(cadrev).

129

cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,1,7/15/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r,inapp) .
cadrev(123,2,9/1/87,unknown,o0,file_2).
cadrev(i24,1,11/1/87 ,unknown,h,file_3).

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r) .

mrprev(234,1,7/15/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,h) .

In the next operation, releasehold(cadrev), a CAD user rereleases the part,

which would occur if the current design were determined to be satisfactory. As seen
in the listings following the operation, the status of the cadrev record is changed
from hold to released, but the status of the mrprev record remains hold. To alert

MRP II users that the part has been rereleased in CAD, a rereleased record is

created.

ud> releasehold(mrprev).

Part Number? 124.
Revision Level? 1.

Revision Has Hold Status in CAD--Cannot Be Released

failure

ud> releasehold(cadrev).
Part Number? 124.

Revision Level? 1.
Revision has been rereleased in CAD

130

ud> listing(cadrev).

cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,1,7/15/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r,inapp) .
cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,11/1/87 ,unknown,r,file_3).

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r) .

mrprev(234,1,7/15/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,h) .

ud> listing(rereleased).

rereleased(124,1).

After an MRP II user invokes the releasehold (mrprev) operation, the status of
the mrprev record is changed back to released, and the rereleased record is deleted,

as shown in the listings following the operation.

ud> releasehold(mrprev).

Part Number? 124.
Revision Level? 1.
Revision has been released in MRP II

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r) .
mrprev(234,1,7/15/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,r) .

131

ud> listing(rereleased).

In the next demonstration, a hold on a part revision is invoked via MRPII
instead of CAD.

This is done with the hold(mrprev) operation. As the subsequent listings
show, the status of the mrprev record changes to hold, but the status of the cadrev
record remains released, since an MRP II hold is a local function. Rereleasing the
part revision would be done with the releasehold(mrprev) operation, in the same

manner as in the previous section.

ud> hold(mrprev).

Part Number? 124.
Revision Level? 1.
Revision has been given hold status in MRP II

ud> listing(mrprev).

mrprev(123,2,9/1/87 ,unknown,r) .
mrprev(123,1,7/1/87,9/1/87,r).

mrprev(234,1,7/156/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,h).

ud> listing(cadrev).

cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,1,7/16/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,11/1/87 ,unknown,r,file_3).

132

6.2.1.7 Part Deletions

The following three demonstrations involve the deletion of parts. In the first of these,
a CAD user deletes the part added in section 6.2.1.1. Because both versions of this
part have already been made obsolete, and since no product structure relationship,
inventory, or on-order records have been created, the part is successfully deleted
with the delete(cadpart) operation. The listings following the operation verify
that the part, all revision, and latest revision records have been deleted in both CAD
and MRP II (cadpart, cadrev, and latestcadrev in CAD, and mrppmr, mrprev, and

latestmrprev in MRP II, respectively).

ud> delete(cadpart).

Part Number? 123.

Revision information has been deleted from MRP II
Revision has been deleted from CAD

Revision information has been deleted from MRP II
Revision has been deleted from CAD

Part has been deleted from MRP II

Part has been deleted from CAD

ud> listing(cadpart).

cadpart (234, inapp,inapp,.mrp_part_1,each,unknown,unknown).
cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .
ud> listing(cadrev).
cadrev(234,1,7/15/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(124,1,11/1/87 ,unknown,r,file_3).

ud> listing(latestcadrev).

latestcadrev(234,2).

133

latestcadrev(124,1).

ud> listing(mrppmr).

mrppmr (234, inapp, inapp,mrp_part_1,each,each,1,b,
unknown, 7 ,unknown,unknown) .

mrppmr (124 ,unknown,unknown,cad_part_2,each,each,1,m,
unknown,5,123,unknown) .

ud> listing(mrprev).

mrprev(234,1,7/16/87,10/1/87,r).
mrprev(234,2,10/1/87 ,unknown,r) .
mrprev(124,1,11/1/87 ,unknown,h) .

ud> listing(latestmrprev).

latestmrprev(234,2).
latestmrprev(124,1).

After successfully deleting the part entered via CAD in section 6.2.1.1, an at-
tempt is made to delete the part entered via CAD in section 6.2.1.5. However in
this case, the part has a released revision, so it cannot be deleted; the system‘ prints

out a message alerting the user to this fact, and the operation fails.

ud> delete(cadpart).
Part Number? 124.

Revision has Released Status--Cannot be Deleted
failure

The second delete scenario is the deletion of a CAD-generated part by an MRP 11

user.

134

For_convenience, the database is returned to its state prior to the first dele-
tion, and the part created in the previous session will again be deleted. Using the
delete(mrppmr) operation, the subsequent listings confirm that while the system
deletes the part, revision, and latest revision records from MRP II, they remain in

CAD.

ud> delete (mrppmr) .

Part Number? 123.

Revision information has been deleted from MRP II
Revision information has been deleted from MRP Il
Part has been deleted from MRP II

ud> listing(mrppnr).

mrppmr (234, inapp,inapp,mrp_part_1,each,each,1,b,
unknown, 7 ,unknown,unknown) .

mrppar (124 ,unknown,unknown,cad_part_2,each,each,1,m,
unknown,5,123,unknown) .

ud> listing(mrprev).

mrprev(234,1,7/156/87,10/1/87,r).

mrprev(234,2,10/1/87 ,unknown,r).

nrprev(124,1,11/1/87 ,unknown,h) .

ud> listing(latestmrprev).

latestmrprev(234,2).
latestmrprev(124,1).

ud> listing(cadpart).
cadpart (234, inapp, inapp,nrp_part_1,each,unknown,unknown) .

cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .
cadpart(123,unknown,unknown,cad_part_1,each,unknown,124).

135

ud> listing(cadrev).

cadrev(123,1,7/1/87,9/1/87,0,file_1).

cadrev(234,1,7/16/87,10/1/87,r,inapp) .
cadrev(234,2,10/1/87 ,unknown,r, inapp) .
cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,11/1/87 ,unknown,r,file_3).

ud> listing(latestcadrev).

latestcadrev(234,2).
latestcadrev(124,1).

Though nothing is deleted from CAD, the CAD records must meet the same
requirements as if they were actually being deleted. This is shown by the following
attempt by an MRP II user to delete the other CAD-generated part. Just like the
CAD user in the previous scenario, the MRP II user is not allowed to delete any

information about this part because it has a released revision in CAD.

ud> delete(mrppmr).

Part Number? 124.
Revision has released status in CAD--cannot delsete
failure

The third delete scenario is the deletion of the part generated by an MRP II
user in section 6.2.1.2.

This session begins with a CAD user attempting to delete the part using the
delete(cadpart) operation; because the part is controlled by MRP II, however, he

or she is not permitted to do so.

ud> delete(cadpart).

136

Part Number? 234.

Revision can only be deleted via MRP II
Revision can only be deleted via MRP II
failure

Next, an MRP II user uses delete(mrppmr), and the part is sucessfully deleted.
As shown in the listings following the operation, the part, revision, and latest re-
vision records are removed from both MRP II and CAD. Note that there are no

restrictions on the status of the revsions in CAD in this case.

ud> delete(mrppnr) .

Part Number? 234.

Revision information has been deleted form MRP II

Revision information has been deleted form MRP II

Part has been deleted from CAD

Part has been deleted from MRP II

ud> listing(mrppmr).

mrppur (124 ,unknown ,unknown,cad_part_2,each,each,1,m,
unknown, 5, 123, unknown) .

ud> listing(mrprev).

mrprev(124,1,11/1/87 ,unknown,h) .

ud> listing(latestmrprev).

latestmrprev(124,1).

ud> listing(cadparst).

cadpart (124 ,unknown,unknown,cad_part_2,each,123,unknown) .

cadpart (123,unknown,unknown,cad_part_1,each,unknown,124).

137

ud> listing(cadrev).

cadrev(123,1,7/1/87,9/1/87,0,file_1).
cadrev(123,2,9/1/87 ,unknown,o,file_2).
cadrev(124,1,11/1/87 ,unknown,r,file_3).

ud> listing(latestcadrev).

latestcadrev(124,1).

6.2.2 Product Structures

In this section, the basic product structure operations are demonstrated. For this
portion of the demonstration, a different database, containing several parts, is used.
These parts are shown in the following listing; note that one of these parts is local

to CAD with its version having a “working” status.

ud> listing(cadpart).

cadpart (123 ,unknown,unknown,assemblyl,each,unknown,unknown) .
cadpart (124,unknown, unknown,assembly2,each,unknown,unknown) .
cadpart(izs.unknown,unknown.assemblyS.each.unknown.unknown).
cadpart (234, unknown, unknown, componenti,each,unknown,unknown) .
cadpart (2356, unknown, unknown, component2, £t ,unknown,unknown) .
cadpart (236,unknown, unknown,component3, each,unknown,unknown) .
cadpart (237 ,unknown, unknown, component4,1lb,unknown,unknown) .
cadpart (238, unknown,unknown, component5,each,unknown,unknown) .

ud> listing(cadrev).

cadrev(123,1,unknown,unknown,w,file_al).
cadrev(124,1,7/1/87 ,unknown,r,file_a2).
cadrev(1256,1,8/1/87,unknown,r,file_a3).
cadrev(234,1,6/1/87 ,unknown,r,file_ci).
cadrev(235,1,6/15/87 ,unknown,r,file_c2).
cadrev(236,1,7/15/87 ,unknown,r,file_c3).
cadrev(237,1,7/1/87 ,unknown,r,file_c4).
cadrev(238,1,6/30/87 ,unknown,r,file_cb).

138

ud> listing(mrppmr).

mrppmr (124 ,unknown,unknown,assembly2,each,each,1,m,
unknown, 3 ,unknown,unknown) .

nrppmr (126, unknown,unknown, assembly3,each,each,1,n,
unknown, 1 ,unknown ,unknown) .

mrppmr (234, unknown , unknown, componenti,each,box,12,b,
unknown,9,unknown,unknown) .

mrppnr (235, unknown, unknown, component2,ft,ft,1,b,
unknown, 6 ,unknown ,unknown) .

nrppmr (236 ,unknown , unknown , component3,each,each,1,m,
unknown, 2,unknown ,unknown) .

mrppmr (237 ,unknown, unknown , component4,1b,1b,1,b,
unknown, 14 ,unknown ,unknown) .

mrppmr (238, unknown ,unknown, componentb,each,each,1,m,
unknown, 4 ,unknown, unknown) .

ud> listing(mrprev).

mrprev(124,1,7/1/87 ,unknown,r) .
mrprev(126,1,8/1/87 ,unknown,r) .
mrprev(234,1,6/1/87 ,unknown,r) .
mrprev(236,1,6/15/87 ,unknown,r) .
nrprev(236,1,7/16/87 ,unknown,r) .
mrprev(237,1,7/1/87 ,unknown,r) .
mrprev(238,1,6/30/87 ,unknown,r) .

6.2.2.1 Adding Component Relationships Via CAD

In the first product structure scenario, a simple bill of material for the working CAD

revision will be constructed via CAD with the operation insert(cadcomponent).

The user session for this procedure follows.

In the first call to the operation, the user enters the values of the parent part

and revision. Because the status of the parent revision is “working,” indicating
the construction of a new product structure, the system does not ask the user if

a new assembly part number or revision is necessary. The system then asks the

139

user for each of the three remaining fields, all of which are required. The listings
following the operation show that the relationship has been added to CAD as a
cadcomponent record, but not to MRP II, since the parent part revision still has a

“working” status in CAD.

ud> insert(cadcomponent(123,1,_,_,.)).

Item Number? 1.

Component part number? 234.

Quantity per assembly? 2.

Component relationship has been added to CAD

ud> listing(cadcomponent).

cadcomponent(123,1,1,234,2).

ud> listing(mrpcomponent).

Before entering another relationship, the parent part’s first version is released,
so that the addition of a relationship to a released CAD revision can be demon-
strated. This version is released as shown in the previous section, using operation
releasework(cadrev). In addition to the actions triggered in those examples, the

component relationship is inserted into an mrpcomponent record.

ud> releasework(cadrev).

Part Number? 123.

Revision Level? 1.

Part has been added to MRP II-

Revision has been added to MRP II

Component relationship has been added to MRP II
Revision has been released in CAD

140

ud> listing(cadcomponent).

cadcomponent(123,1,1,234,2).

ud> listing(mrpcomponent) .

mrpcomponent (123,1,1,234,2) .

ud> listing(mrppmr).

mrpprr (124 ,unknown ,unknown,assembly2,each,each,1,n,
unknown, 3,unknown,unknown) .

mrppmr (125, unknown ,unknown, assembly3,each,each, 1 o1,
unknown, 1,unknown ,unknown) .

mrppmr (234 ,unknown ,unknown, component1,each,box,12,b,
unknown, 9,unknown,unknown) .

mrppmr (235, unknown ,unknown, component2,ft ,ft,1,b,
unknown,6,unknown,unknown) .

mrppur (236, unknown , unknown, component3,each,each,1,m,
unknown, 2,unknown,unknown) .

mrppar (237 ,unknown,unknown, component4,1b,1b,1,b,
unknown, 14 ,unknown ,unknown) .

mrppnr (238, unknown ,unknown, component5,each,each,1,m,
unknown, 4 ,unknown,unknown) .

mrppor (123, unknown,unknown, assemblyl,each,
unknown ,unknown,unknown,unknown,unknown,unknown,unknown) .

ud> listing(mrprev).

mrprev(124,1,7/1/87 ,unknown,r) .
mrprev(126,1,8/1/87 ,unknown,r) .
mrprev(234,1,6/1/87 ,unknown,r) .
mrprev(235,1,6/15/87 ,unknown,r) .
mrprev(236,1,7/15/87 ,unknown,r) .
mrprev(237,1,7/1/87 ,unknown,r) .
mrprev(238,1,6/30/87 ,unknown,r) .
mrprev(123,1,unknown,unknown,h) .

With the parent part’s first revision released, a second component relationship

141

is added with insert(cadcomponent). Again, no part number or revision level
change at the assembly level is required, since the operation is part of the con-
struction of the same bill of material. First, the user tries to insert the same item

number as in the previous relationship, but a different component part number.

This violates the system constraints, however, and the operation fails.

ud> insert(cadcomponent).

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 123.

Parent revision level? 1.

Item Number? 1.

Component part number? 236.

Quantity per assembly? 3.

Item number already exists in CAD

fajilure

The user next corrects the mistake and enters the relationship with a new item
number. As shown in the subsequent listings, the operation is successful, and both

cadcomponent and mrpcomponent records are created to represent the relationship.

ud> insert(cadcomponent).

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 123.

Parent revision level? 1.

Item Number? 2.

Component part number? 235.

Quantity per assembly? 3.

Component relationship has been added to MRP II

Component relationship has been added to CAD

ud> listing(cadcomponent).

142

cadcomponent (123,1,1,234,2).
cadcomponent (123,1,2,235,3) .

ud> listing(mrpcomponent).

mrpcomponent (123,1,1,234,2) .
mrpcomponent (123,1,2,235,3) .

6.2.2.2 Adding Component Relationships Via MRP 11

In the next scenario, the insersion of a relationship component via MRP II is demon-
strated. For convenience, the database is returned to its state just after the release
of the first version of the parent part from CAD, and the second relationship is
added again. The MRPII user invokes operation insert(mrpcomponent), and
this time the parent part number and revision level are entered as part of the call.
No assembly level part number or revision level change is required, and after entering
the remaining values, the relationship is created in both databases, as represented
by the cadcomponent and mrpcomponent records. These are shown in the listings

following the operation.

ud> insert(mrpcomponent(123,1,_,_,.)).

Current assembly part number: 123

Current assembly revision level: 1

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Item Number? 2.

Component part number? 235.

Quantity per assembly? 3.

Component relationship has been added to CAD

Component relationship has been added to MRP II

143

ud> listing(mrpcomponent) .

mrpcomponent (123,1,1,234,2) .
mrpcomponent (123,1,2,235,3).

ud> listing(cadcomponent) .

cadcomponent(123,1,1,234,2).
cadcomponent(123,1,2,235,3).

To demonstrate another system constraint, an MRP II user attempts to insert
a relationship consisting of the component from the previous relationship as the
parent and the parent from the previous relationship as the component. Since
adding such a relationship would result in a looping of the product structure, where
an assembly has itself as a lower level component, the system does not allow the

relationship to be added.

ud> insert(mrpcomponent).

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 235.

Parent revision level? 1.

Item Number? 1.

Component part number? 123.

Quantity per assembly? 4.

Relationship results in loop, cannot be added

failure

6.2.2.3 Adding Component Relationships Requiring a New Assembly

Part Number

As a final demonstration of the addition of component relationships, a CAD user

adds a third relationship. Following engineering change control procedures, it has

144

been determined that this addition requires a new assembly part number, so the
user uses the option in the insert(cadcomponent) operation to create the new
part. Following the insersion of the new part, the bill of material from the existing
assembly is copied to the new assembly. The system then requests the details of the
new relationship for the new part, and it is added. As shown in the listings following
the operation, since the first version of the part just added is automatically given a
working status in CAD, the copied relationships as well as the one just added are
local to CAD. Also note in the listing following the operation that the new part
record is automatically inserted with the orignial assembly number in its supersedes
part number field. When the part is released using releasework(cadrev), all three

relationships will be transferred to MRP IL.

ud> insert(cadcomponent(123,1,_,_,_)).

Current assembly part number: 123

Current assembly revision level: 1 ,
Does this change require a new assembly part number? yes.
Part Number? 126.

Description? new_assemblyl.

Unit of Measure? each.

New Revision Level? 1.

Drawing File Name? file_a3.

Revision has been added to CAD

Part has been -added to CAD

Component relationship has been added to CAD
Component relationship has been added to CAD
Product structure has been copied

Item Number? 3.

Component part number?. 236.

Quantity per assembly? 1.

Component relationship has been added to CAD

ud> listing(cadpart).

cadpart (123, unknown,unknown,assemblyl,each,unknown,unknown) .

145

cadpart (124 ,unknown, unknown,assembly2,each,unknown,unknown) .
cadpart (125,unknown, unknown ,assembly3,each,unknown,unknown) .
cadpart (234, unknown, unknown, component1,each,unknown,unknown) .
cadpart (236, unknown, unknown,component2,ft,unknown,unknown).
cadpart (236, unknown, unknown, component3,each,unknown,unknown) .
cadpart (237 ,unknown, unknown,component4,1b,unknown,unknown) .
cadpart (238, unknown,unknown,component5,each,unknown,unknown) .
cadpart (126, unknown,unknown ,new_assemblyi,each,123,unknown) .

ud> listing(cadrev).

cadrev(124,1,7/1/87 ,unknown,r,file_a2).
cadrev(126,1,8/1/87 ,unknown,r,file_a3).
cadrev(234,1,6/1/87 ,unknown,r,file_c1).
cadrev(236,1,6/15/87 ,unknown,r,file_c2).
cadrev(236,1,7/156/87 ,unknown,r,file_c3).
cadrev(237,1,7/1/87 ,unknown,r,file_c4).
cadrev(238,1,6/30/87 ,unknown,r,file_c5).
cadrev(123,1,unknown,unknown,r,file_al).
cadrev(126,1,unknown,unknown,w,file_a3).

ud> listing(cadcomponent).

cadcomponent (123,1,1,234,2).
cadcomponent(123,1,2,236,3) .
cadcomponent(126,1,3,236,1) .
cadcomponent(126,1,2,235,3) .
cadcomponent (126,1,1,234,2).

ud> listing(mrppnmr).

mrppmr (124, unknown,unknown,assembly2,each,each,1,m,
unknown, 3, unknown ,unknown) .

mrppmr (125, unknown, unknown, assembly3,each,each,1,m,
unknown, 1 ,unknown,unknown) .

mrppmr (234, unknown ,unknown, componenti,each,box,12,b,
unknown,9,unknown, unknown) .

mrppmr (235, unknown , unknown, component2,ft,ft,1,b,
unknown,6,unknown,unknown) .

nrppmr (236, unknown ,unknown, component3,each,each,1,m,
unknown, 2,unknown,unknown) .

mrppmr (237 ,unknown , unknown, component4,1b,1b,1,b,

146

unknown, 14 ,unknown,unknown) .

mrppmr (238 ,unknown, unknown, component5,each,each,1,m,
unknown, 4 ,unknown ,unknown) .

nrppmr (123,unknown,unknown,assemblyl,each,unknown,
unknown, unknown,unknown,unknown,unknown ,unknown) .

ud> listing(mrprev).

mrprev(124,1,7/1/87 ,unknown,r) .
mrprev(126,1,8/1/87,unknown,r) .
mrprev(234,1,6/1/87 ,unknown,r) .
mrprev(235,1,6/156/87 ,unknown,r) .
mrprev(236,1,7/15/87 ,unknown,r) .
mrprev(237,1,7/1/87 ,unknown,r) .
mrprev(238,1,6/30/87 ,unknown,r) .
mrprev(123,1,unknown,unknown,h) .

ud> listing(mrpcomponent).

mrpcomponent (123,1,1,234,2).
mrpcomponent (123,1,2,235,3).

6.2.2.4 Deleting Component Relationships Via CAD

Next the deletion of component relationships is demonstrated. For these operations,
the database is reset to its state prior to the previous operation, leaving only the

single, two component bill of material, as shown in the following listing:

ud> listing(cadcomponent).
cadcomponent(123,1,1,234,2).
cadcomponent(123,1,2,235,3).
ud> listing(mrpcomponent).

mrpcomponent (123,1,1,234,2) .
mrpcomponent (123,1,2,235,3) .

147

In this demonstration, one of these two components is deleted by a CAD user. Due
to the previously mentioned limitation of the current combination of the interpreter
and model, it is not possible for the user to make a revision or part number change
to the assembly as part of the delete operation. Hence the user answers “no” to
these questions. If the deletion requires either a new part number or revision level
for the assembly, the user should insert the appropriate record and make the change
to the new bill of material. For this demonstration, the change will be made to the
original structure. The user calls the operation delete(cadcomponent), enters
the four required values, and the deletion is processed. Because the component
relationship exists both in CAD and in MRP II, it is removed from both databases,
as shown in the subsequent listings. If the parent part revision had a working status,

the relationship would have been local to CAD, and would have been deleted from

CAD without any interaction with MRPII.

ud> delete(cadcomponent).

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 123.

Parent revision level? 1.

Item number? 1.

Component part number? 234.

Relationship has been deleted from MRP II

Relationship has been deleted from CAD

ud> listing(cadcomponent) .

cadcomponent (123,1,2,235,3) .

ud> listing(mrpcomponent) .

148

mrpcomponent (123,1,2,236,3) .

6.2.2.5 Deleting Component Relationships Via MRP 11

In the next session, the second component relationship is deleted by an MRP II user.
Again no part number or revision level change can currently be made as part of the
delete operatioﬁ. The delete process in MRP II is invoked by the delete(mrpcom-
ponent) operation, which is essentially the same as the delete(cadcomponent)
operation in CAD: the system asks for the required values, and the relationship is

deleted from both MRP Il and CAD, as shown in the listings following the operation.

ud> delete(mrpcomponent) .

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 123.

Parent revision level? 1.

Item number? 2.

Component part number? 235.

Relationship has been deleted from CAD

Relationship has been deleted from MRP II

ud> listing(mrpcomponent) .

ud> listing(cadcomponent).

6.2.2.6 Mass Substitution of Components Via CAD

In the next scenario, a user performs a mass substitution of a component. For this
part of the demonstration, the database is returned to its state at the beginning

of the product structures demonstration, with the addition of several relationships,

149

involving several assemblies, to make the operation more realistic. The component

relationships are shown in the following listings:

ud> listing(cadcomponent).

cadcomponent (123,1,1,234,2).
cadcomponent(123,1,2,236,3) .
cadcomponent(124,1,1,234,3).
cadcomponent(124,1,2,236,1) .
cadcomponent (125,1,1,234,2) .
cadcomponent (126,1,2,237,5) .

ud> listing(mrpcomponent) .

mrpcomponent (124,1,1,234,3) .
mrpcomponent(124,1,2,236,1) .
mrpcomponent (125,1,1,234,2) .
mrpcomponent(1256,1,2,237,5) .

In this demonstration, the mass substitution is initiated in CAD using operation
substitutepartcad. Note that because of the nature of this operation, in which
the values required are not part of any existing relation, no relation name is included
in the call.

After the user enters the old and new part numbers, the system begins searching
for occurences of the old part as a component in relationships in the CAD database.
Each time it finds one, it asks the user if that particular substitution necessitates a
new assembly part number or revision level. Because the current interpreter/model
combination cannot properly handle these operations as part of the substitution
(which would include a modification to a relation added in the same operation),
the user answers “no” to each question. The listings after the operation show that

each instance of the old part as a component has been replaced by the new part in

150

the CAD database. Further, for all of these relationships having a parent that has

already been released to MRP II, the substitution is made in MRP II as well.

ud> substitutepartcad.

Current part number? 234.
Part number to substitute? 238.

Current assembly
Current assembly
Relationship has
Relationship has

part number: 123
revision level: 1

been deleted from MRP II
been deleted from CAD

Component relationship has been added to MRP II
Component relationship has been added to CAD

Current assembly
Current assembly
Does this change
Does this change
Relationship has
Relationship has

part number: 124

revision level: 1

require a new assembly part number? no.
require a new assembly revision level? no.
been deleted from MRP II

been deleted from CAD

Component relationship has been added to‘MRP II
Component relationship has been added to CAD

Current assembly
Current assembly
Does this change
Does this change
Relationship has
Relationship has

part number: 126

revision level: 1

require a new assembly part number? no.
require a new assembly revision level? no.
been deleted from MRP II

been deleted from CAD

Component relationship has been added to MRP II
Component relationship has been added to CAD

Part substitution has been completed

ud> listing(cadcomponent).

cadcomponent (123,
cadcomponent (123,
cadcomponent (124,
cadcomponent (124,
cadcomponent (126,

1,1,238,2).
1,2,235,3).
1,1,238,3).
1,2,236,1).
1,1,238,2).

151

cadcomponent(126,1,2,237,5) .

ud> listing(mrpcomponent) .

mrpcomponent (124,1,2,236,1) .
mrpcomponent(124,1,1,238,3).
mrpcomponent (125,1,1,238,2).
mrpcomponent (125,1,2,237,5) .

6.2.2.7 Mass Substitution of Components Via MRP 11

In the next session, the equivalent operation is performed by an MRP II user using
operation substitutepartmrp. Prior to the call, the database is reset to its state
just before the part substitution from CAD so that the same substitutaion may be

made:

ud> listing(cadcomponent) .

cadcomponent (123,1,1,234,2).
cadcomponent (123,1,2,235,3).
cadcomponent(124,1,1,234,3).
cadcomponent(124,1,2,236,1).
cadcomponent(125,1,1,234,2).
cadcomponent (125,1,2,237,5) .

ud> listing(mrpcomponent).
mrpcomponent(124,1,1,234,3) .
mrpcomponent (124,1,2,236,1) .

mrpcomponent (125,1,1,234,2) .
mrpcomponent(126,1,2,237,5) .

Once again the user answers “no” to the creation of a new part number or re-

vision for each assembly in which the old component is found. The substitution is

152

completed, and the results are shown in the subsequent listings. All of the mrpcom-
ponent records with the old part as a component have been modified to show the
new part as a component. The cadcomponent records of the same relationships have
also been modified to reflect the substitution. Note that the relationship involving
the old part as a component of a CAD parent pa;rt revision with a working status
has not been updated in CAD, since the operation was invoked by an MRP II user
and this relationship does not exist in MRP II. As long as the parent revision is

local to CAD, substitutions may be made only by CAD users.

ud> substitutepartmrp.

Current part number? 234.
Part number to substitute? 238.

Current assembly
Current assembly
Does this change
Does this change
Relationship has
Relationship has

part number: 124

revision level: 1

require a new assembly part number? no.
require a new assembly revision level? no.
been deleted from CAD

been deleted from MRP II

Component relationship has been added to CAD
Component relationship has been added to MRP Il

Current assembly
Current assembly
Does this change
Does this change
Relationship has
Relationship has

part number: 1256

revision level: 1

require a new assembiy part number? no.
require a new assembly revision level? no.
been deleted from CAD

been deleted from MRP II

Component relationship has been added to CAD
Component relationship has been added to MRP II

Part substitution has been completed

ud> listing(mrpcomponent).

mrpcomponent (124,

1,1,238,3).

153

mrpcomponent (124,1,2,236,1).
mrpcomponent (125,1,1,238,2) .
mrpcomponent (125,1,2,237,5) .

ud> listing(cadcomponent).

cadcomponent (123,1,1,234,2).
cadcomponent(123,1,2,235,3) .
cadcomponent(124,1,1,238,3).
cadcomponent(124,1,2,236,1).
cadcomponent(125,1,1,238,2).
cadcomponent (126,1,2,237,5).

6.2.2.8 Modifying the Quantity of Components per Assembly

The modification of the quantity per assembly is the subject of the next sce-
nario. Again this process may be initiated by either CAD or MRP II users. Be-
cause the two operations, modifyquantity (cadcomponent) and modifyquan-
tity (mrpcomponent) work in essentially the same manner, only one of them, the
CAD operation, will be demonstrated.

When the user enters the operation, he or she is again asked if the change
necessitates a new assembly part number or revision level. To avoid the current
problem with the system, the user responds “no.” In the likely event that either
a new part number or revision level were required, the user would perform these
operations prior to making the change, and the modification would Abe made to the
new product structure.

The listings following the operation verify that the quantity per assembly has
been changed in both the cadcomponent and mrpcomponent records. If the oper-
ation were performed on a CAD part revision with a working status, the change

would have only been made in CAD, since the part would be local to CAD in that

154

case. If the operation were made via MRP II, the change would have also been made

in both MRPII and CAD.

ud> modifyquantity(cadcomponent).

Does this change require a new assembly part number? no.
Does this change require a new assembly revision level? no.
Parent part number? 124.

Parent revision level? 1.

Item number? 1.

Component part number? 238.

New quantity per assembly? 4.

Quantity per assembly has been changed in MRP II

Quantity per assembly has been changed in CAD

ud> listing(cadcomponent) .

cadcomponent (123,1,1,234,2) .
cadcomponent (123,1,2,2356,3).
cadcomponent(124,1,1,238,4) .
cadcomponent(124,1,2,236,1) .
cadcomponent (125,1,1,238,2) .
cadcomponent(126,1,2,237,5) .

ud> listing(mrpcomponent) .

mrpcomponent(124,1,1,238,4) .
mrpcomponent (124,1,2,236,1) .
mrpcomponent (126,1,1,238,2) .
mrpcomponent (125,1,2,237,56) .

6.2.2.9 Copying Product Structures Via CAD

The final product structure scenario demonstrates the copying of a product structure
of one assembly to another. The product structure consists of the entire collection of
component relationships containing the “copy from” assembly as the parent. This

operation is intended for use when a change to an assembly calls for a new part

155

number. In such cases, the user could insert the new part using insert(cadpart);
the bill of material from the previous assembly can then be copied to the new
assembly, and the change made to the new bill of material.

In the following operation, a bill of material is copied from a released part revi-
sion in CAD to a working part revision which will have a similar product structure.

The existing relationships are shown in the following listing:

ud> listing(cadcomponent).

cadcomponent (124,1,2,236,1) .
cadcomponent (124,1,1,238,4) .

ud> listing(mrpcomponent) .

mrpcomponent (124,1,2,236,1) .
mrpcomponent (124,1,1,238,4) .

To copy the bill of material, the operation copybomcad ié used. As with
the substitutepartcad operation, the values required do not correspond to any
existing relation, so no relation is used in the call.

The user enters the part and revision of the assembly to copy the bill of material
from, and the part and revision of the assembly to copy the bill of material to. In the
subsequent listings, it can be seen that all of the relationships with the “copy from”
assembly as the parent have, in fact, been copied to new relationships with the “copy
to” assembly as parent. The CAD user can next use any of the previously described
operations to complete the construction of the new product structure. Because the
part revision of the copy to assembly is local to CAD, the copied relationships exist

only in the CAD database. As previously demonstrated, the relationships will be

156

copied to the MRP II database at the time of the release of the new assembly from
CAD.

ud> copybomcad.

From part number? 124.

From revision level? 1.

To part number? 123.

To revision level? 1.)
Component relationship has been added to CAD
Component relationship has been added to CAD
Product structure has been copied

ud> listing(cadcomponent).

cadcomponent(124,1,2,236,1) .
cadcomponent(124,1,1,238,4) .
cadcomponent (123,1,1,238,4) .
cadcomponent (123,1,2,236,1) .

ud> listing(mrpcomponent) .

mrpcomponent (124,1,2,236,1) .
mrpcomponent(124,1,1,238,4).

If the copy to assembly were to have had a “released” status in CAD, then the

new relationship records would have been immediately transferred to MRP II.

6.2.2.10 Copying Product Structures Via MRP I1

The equivalent operation, copybommrp, is next performed by an MRPII user,
also as part of the creation of the bill of material for a new assembly. The user
is asked for the same information requested of the CAD user, and the transaction
is processed. As the listings following the operation show, the relationships are

copied to the new assembly as both mrpcomponent and cadcomponent records.

157

Subsequent to this operation, the MRP II user would modify the copied assembly

to complete the creation of the assembly for the new part.

ud> copybommrp.

From part number? 124.

From revision level? 1.

To part number? 125.

To revision level? 1.

Component relationship has been added to CAD
Component relationship has been added to MRP II
Component relationship has been added to CAD
Component relationship has been added to MRP II
Product structure has been copied

ud> listing(mrpcomponent).

mrpcomponent(124,1,2,236,1) .
mrpcomponent(124,1,1,238,4) .
mrpcomponent (125,1,1,238,4) .
mrpcomponent (126,1,2,236,1) .

ud> listing(cadcomponent) .

cadcomponent (124,1,2,236,1) .
cadcomponent(124,1,1,238,4) .
cadcomponent(123,1,1,238,4).
cadcomponent(123,1,2,236,1).
cadcomponent (126,1,1,238,4) .
cadcomponent(125,1,2,236,1) .

The sample operations performed in this section represent the basic capabilities
of the interoperability system. The model is a simplification of the activities and
data exchange involved in a typical organization, a result of the desire to remain
as general as possible in the solution to MRP II/CAD integration. In its present

version, the usefullness of the model is limited by its isolation from actual CAD

158

and MRP II systems, forcing the users to interact directly with the interoperability
system. As the research progresses, the sophistication of the model will increase and
the interoperability system will become more transparent to the user, intera.cﬁing

with the application programs directly.

159

Chapter 7

Conclusions

The need to reexamine the traditional, fragmented approach to manufacturing and
production automation has become quite clear. Though technology has provided
significant advances in many of the individual production activities, there has been
a distinct lack of long-term planning concerning the issue of how all of the various
pieces might eventually work together to provide support for the entire range of
production and manufacturing activities, from design conception to distribution
and customer service.

There are many reasons why current efforts are often narrowly focused. Perhaps
the most significant is the fact that many of the systems available today, including
Computer Aided Design (CAD), Computer Aided Manufacturing (CAM), Robotics,
and so on, fall short of what has been envisioned to be their potential capabilities.
Thus considerable resources are being expended to further develop these individual
technologies, often with little consideration of related activities.

Computer Integrated Manufacturing (CIM) offers the promise of uniting the var-
ious computer aided systems and tools into a single comprehensive manufacturing
system. Just how this will be achieved is a subject of considerable debate. It has
been proposed in this work that perhaps the most practical approach to CIM is to

attempt to integrate the existing manufacturing hardware and software systems in

160

a modular fashion. This provides the flexibility of selecting the best suited system
for each individual task, and allows the conservation of the investment in resources,
training, and user-familiarity that a company may already have in particularpsys-
tems.

Manufacturing Resource Planning (MRP II), with its focus on the planning,
scheduling, and monitoring of manufacturing activities, is best qualified to become
the central “hub” of CIM, coordinating the flow of information among the satellite
systems. The satellite systems include: Computer Aided Design, whose role it is
to support design activities and supply product information to the rest of the orga-
nization; Computer Aided Process Planning, which serves to develop the detailed:
process plans, or instructions, for manufacturing products; and Computer Aided
Manufacturing, which supports the physical transformation of raw materials into
finished parts.

The proposed starting point for this system is the integration of MRP II and
CAD, involving static part and product structure information. The roles of each
application in the integrated system have been defined, with CAD controlling ac-
tivitiesi relating to the creation and modification of design information, and MRP II
controlling activities relating to the procurement or manufacture of all items. In
general, CAD users have the primary responsibility of the disposition of all designed
parts, while MRP II users are given the responsibility only for parts that are not
designed, such as catalogued purchased parts.

Given this framework, the functional desc:iption of an integrated MRP II/CAD
system has been presented. When developing this description, an intentional effort
was made to avoid following the format of any particular CAD or MRP II systems.
Instead, the generic capabilities in keeping with the roles just described were used

as a basis for the construction of the model. However, actual systems, such as

161

CONTROL Manufacturing™ from Cincom Systems, and ICEMTM from Control
Data Corporation have been used to check most of the logic incorporated into the
model. |

The model considers the basic activities involved in the addition and mainte-
nance of part data and product structures, including engineering changes requiring
design revisions. The information maintained by the system includes some of the
typical part attributes maintained in CAD systems, and the basic part master data
maintained in MRP II systems. It is assumed that there are additional data main-
tained in each system beyond those considered in the integration. The goal of the
system is to provide the ability to enter and modify data from either system as
appropriate, while ensuring consistency between them at all times. The transfer
of information between the two applications is controlled by status codes assigned
to the data pertaining to each version of each part in each system. With these
status codes, it is possible to control the natural “time lag” between design and
manufacturing or purchasing activities that results from MRP 11 planning, while
maintaining data consistency.

To demonstrate the MRP II/CAD integrated model, the functional speciﬁc;w.tions
have been programmed in the Update Dependency Language developed by members
of the Computer Science Department at the University of Maryland. This language
is designed specifically to provide interoperability between two or more application
systems using a declarative, rather than procedural, representation. The resulting
code is in the form of operations, each comprised of a series of “rules,” that include
a set of conditions followed by a list of implied operations. If the conditions of a
particular rule are satisfied, the system attempts to perform the implied operations
given in that rule. Each rule thus specifies the specific actions to be taken under

specific circumstances.

162

At this early stage in the implementation of the language, actual interoperabil-
ity is not possible. The model MRP II/CAD system functions as an independent
system, not interfaced with either an actual MRP II or CAD system. Even so; the
system as programmed demonstrates the basic functionality of the integrated sys-
tem, though the lack of a commercial interface makes the system somewhat difficult
to use. Another consequence of the isolation of the system is that in order to demon-
strate particular portions of the integrated system, one must program functions that
already exist in the applications, which requires extra coding. More importantly,
making the extra functions part of the interoperability system has resulted in some
problems with the current version of the Update Dependency Language interpreter.
As the Update Dependency Language moves closer to its goal of making true inter-
operability possible, the extra programming currently required will be considerably
reduced, as will the problems associated with it, as many of the longer operations
will naturally be broken down into a series of smaller operations.

Database interoperability offers a convenient tool for specifjing the behavior
of an integrated system, allowing a natural representation of complex interactions
simply by enumerating the possible courses of action. This approach can aiso be
used to modify the behavior of a single system. Because the system is comprised
of lists of individual cases, it is easy to expand or modify simply by adding or
changing cases. One drawback of this approach, however, is that as the size of
the interoperability system increases, the performance of the system tends to suffer.
The need to enumerate cases such as tests for key attribute instantiation contributes
to this problem. A further detriment to system performance is the fact that the
current version of the language is interpreted instead of compiled. Nonetheless, the

need to express such complex dependency operations merits the use of the language.

163

Chapter 8

Recommendations for Further
Work

The integration of Manufacturing Resource Planning and Computer Aided Design
presented in this work is only a first step toward Computer Integrated Manufac-
turing. There are many areas deserving attention in the future. The first is the
enhancement of the current model to include features to assist in maintaining con-
sistency between the two databases, but not often found in commercial systems,

such as:

e Automatic generation of part numbers based on any particular numbering

system

e An automatic look-up table to match bill of material and purchasing/inventory
units of measure and determine the proper conversion factor without the user

having to enter this value.

The part number generator could be implemented as an interoperability function
called each time a part is created via either application, with the resulting number
being eventually propagated to the other application. The conversion factor look-up
table would be implemented purely to serve MRP 1], since that particular field is

not maintained in CAD. An operation such as this demonstrates how the Update

164

Dependency Language can be used to support a particular application as well as
supporting the interoperability of multiple applications.

One area of the current system that may not deserve much effort is the re-
construction of the product structure routines to avoid the current problem which
prevents the user from taking advantage of the ability to insert a new assembly
part number or revision level while making a modification to a bill of material other
than the addition of a new component. This problem occurs because the current
version of the Update Dependency Language interpreter does not allow the deletion
or modification of a relation added in the same operation, which is the approach
cﬁrrently taken when using this feature; the new part or revision is created, the
bill of material from the old part or revision is copied to the new one, and changes
are made to the new bill of material. This approach was used because it allowed
maximum use of already-existing routines; correcting the problem at this stage may
take considerable reprogramming of a large number of routines. Alternatevely, if
the interpreter were changed, such that this restriction was rembved, no changes
would be necessary. On the other hand, as the interpreter evolves to handle true
interoperability between actual MRP II and CAD systems, it is anticipated th;tt the
problem will disappear, as the chain of operations causing the problem should be
naturally broken down into smaller series of operations called successively by the
application.

This last statement elicits the mention of an obvious direction for this research
to take: the extension of the Update Dependency Language to a true interoper-
ability system. As described in section 5.2.3, the next steps in the development
of the Update Dependency Language are to evolve from the single instance of the
interpreter used in the current model to two instances of the interpreter running on

the same machine, and then to two instances of the interpreter running on different

165

machines. During these two stages, however, the users of the model system will be
insulated from the changes; the model should behave as it does now, though the
system may have to be modified somewhat to handle the multiple instances of the
interpreter. When the interpreter reaches the stage in its development that it can
handle the interoperability of two actual application systems, the interoperability
system will need to be reprogrammed to match the cababilities of the particular
applications, though the model presented here should serve as a basis for the new
system.

As the Update Dependency Language evolves, it is likely that the approach
of using an interpreted language will prove to be a serious detriment to system
performance. It is therefore recommended that as part of the evolution, the language
be rewritten as a compiler, which should significantly improve its speed.

Another extension of this work is the application of the interoperability concept
to the intégra.tion of other systems involved in CIM. For example, the addition
of Computer Aided Process Planning to the model MRP II/CAD system could be
programmed using three sets of operations to tie the systems together: one set in
CAD, one set in MRP II, and one set in CAPP itself. The basis of interopefability
between CAD and CAPP includes a part’s geometry, material specification, desired
tolerances and surface finish. The basis of interoperability between MRP II and
CAPP includes the routings, or process plans, for each manufactured part, though
MRP II does not require the same level of detail as provided by CAPP.

Similarly, Computer Aided Manufacturing could be added to the model, though
this appears to be a more distant possibility. The two primarly areas of interoper-
ability between CAM and the previous system include MRP II and CAPP, though
the type of information being exchanged between theése systems differs from the pre-

vious cases in that it should be dynamic as opposed to static. MRP II should feed

166

a shop floor schedule to CAM based on its requirements for end products, and its
rough-cut routings obtained from CAPP. CAM should provide feedback to MRP II
as the activities progress. CAPP should provide the detailed process plans and part
programs that actually “instruct” the machines how to make the parts. Because of
the dynamic nature of the interoperability, it would be much harder to adequately
demonstrate this integration with the current approach; perhaps adding CAM to

the integrated system would require the use of actual application systems.

167

Bibliography

1]

(2]

3]

4]

5]

6]

7l

Anderson, D. C., J. J. Solberg, and R. P. Paul. “Factories of the Future: How
will Automation Research be Integrated?,” Computers in Mechanical Engi-

neering, vol. 2, no. 4 (January 1984), 31-36.

Appleton, Daniel S. “The State of CIM,” Datamation, vol. 30, no. 21 (Decem-

ber 15, 1984), 66-72.

Baer, Tony. “With Group Technology, No One Reinvents the Wheel,” Mechan-

ical Engineering, vol. 107, no. 11 (November 1985), 60-69.

Bauer, Curtis P. “Automating Bill of Material Generation,” Auerbach Industry
Application Series: Computer-Aided Design, Engineering, and Drafting, vol. 1

(1984), 1-16.

Bohse, Michael E. and George Harhalakis. “Integrating CAD and MRP,” Auer-
bach Industry Application Series: Manufacturing Resource Planning, vol. 1

(1986), 1-12.

Burgam, Patric. “Marrying MRP and CIM,” CAD/CAM Technology, vol. 2,

no. 4 (Winter, 1983), 25-27.

Francis, Philip H. “Toward a Science of Manufacturing,” Mechanical Engineer-

ing, vol. 108, no. 5 (May, 1986), 32-37.

168

[8] Fox, Kenneth A. “MRP II Providing a Natural ‘Hub’ for Computer Integrated
Manufacturing Systems,” Industrial Engineering, vol. 16, no. 10 (October,

1984), 44-50.

[9] Gershwin, Stanley B., et. al. “A Control Perspective on Recent Trends in Man-
ufacturing Systems,” IEEE Control Systems Magazine, vol. 6, no. 2 (April,

1986), 3-15.

[10] Gunn, Thomas G. “CAD/CAM/CIM: Now and in the Future,” I§CS, vol. 58,

no. 4 (April, 1985), 59-64.

[11] Harhalakis, George. “Engineering Changes for Made-to-Order Products: How
an MRP II System Should Handle Them,” Engineering Management Interna-

tional, vol. 4, no. 1 (October, 1986), 19-36.

[12] Harhalakis, George. An Integrated Production Managment System for Engi-
neered Equipment, PhD thesis, University of Manchester Institute of Science

and Technology (1984).

[13] Harhalakis, George, Michael E. Bohse, and B. J. Davies. “Non—Signiﬁcant,
Self-Validated Part Identification Numbers,” to be published in Engineering

Management International.

[14] Harvey, Robert E. “CAPP: Critical to CAD/CAM Success,” Iron Age, vol 226,

no. 24 (September 23, 1983), 61-69.

[15] Hazen, David C. “The Engineering Research Centers as a Tool for Change
in the Culture and Attitudes of Academic Engineering,” Presentation at the
Second Meeting of the Steering Group on Systems Aspects of Cross Disciplinary

Engineering, August 8, 1985.

169

[16] Kutcher, Mike and Eli Gorin. “Moving Data, not Paper, Enhances Productiv-

ity,” IEEE Spectrum, vol. 20, no. 5 (May, 1983), 84-88.

[17] Mark, Leo and Nick Roussopoulos. “Operational Specification of Update De-

pendencies,” Department of Computer Science, University of Maryland.

[18] Melkanoff, Michael. “The CIMS Database: Goals, Problems, Case Studies,
and Proposed Approaches Outlined,” Industrial Engineering, vol. 16, no 11

(November, 1984), 78-92.

[19] Schmuland, Rodney H. “Managing Bill of Material and CAD/CAM Data,”
Auerbach Industry Applications Series: Computer Aided Design, Engineering,

and Drafting, vol. 1 (1985), 1-14.

[20] Ssemakula, M. and B. J. Davies. “Integrated Process Planning and NC Pro-
gramming for Prismatic Parts,” Proceedings, First International Machine Tool

Conference, IF'S Publication, June 1984.

[21] Wight, Oliver. MRP II: Unlocking America’s Productivity Potential, O.W. Ltd.

Publications, 1981.

[22] Yeomans, R. W., A. Choudry. and P. J. W. ten Hagen. Design Rules for a CIM

System, North Holland, 1985.

170

Appendix A

Update Dependency Operations
for the Model MRP II/CAD
System

% *kkxkdkxkkx Operations on relation cadpart
YAETEE T

% **%*x Routine to insert part records into CAD
% kdokdok

insert(cadpart)

--> insert(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)).

insert(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum))

% *** Part has already been inserted

%

--> nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum, Sbnum) .

% *** Request part number if not provided
--> var(Pnum),

write('Part Number? '),

read (Pnum) ,

insert(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)) .

% *x* Request description if not provided

171

%
--> var(Des)
/\ nonvar(Pnum),
write(’'Description? '),
read(Des),
insert(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) .

% *** Request unit of measure if not provided
%
--> var(Buom)
/\ nonvar(Pnum) /\ nonvar(Des),
write('Unit of Measure? '),
read (Buom) ,
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) .

% *#*x Let drawing number be unknown if not provided

%

--> var(Dnum)
/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom),
insert(cadpart (Pnum,unknown,Dsize,Des,Buom,Spnum,Sbnum)) .

% *** Let drawing size be unknown if not provided
%
--> var(Dsize)
/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)
/\ nonvar(Dnum),
insert (cadpart (Pnum,Dnum,unknown,Des,Buom, Spnum, Sbnum)) .

% *** Let supersedes part number be unknown if not provided

h

--> var(Spnum)
/\ nonvar(Buom) /\ nonvar(Pnum) /\ nonvar(Des)
/\ nonvar(Dnum) /\ nonvar(Dsize),
insert(cadpart(Pnum,Dnum,Dsize,Des,Buom,unknown,Sbnum)) .

% **x Let superseded by part number be unknown if not provided
%
--> var(Sbnum)
/\ nonvar(Buom) /\ nonvar(Pnum) /\ nonvar(Des)
/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Spnum),
insert(cadpart (Pnum,Dnum,Dsize,Des,Buomn, Spnum,unknown)) .

% **% Same part number with different attributes already exists

%

--> nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

172

Y Aok

%

% owkx

%

/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)

/\ ~(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)),
write(’Part Number Already Exists in CAD’),

nl, o

fail.

Part being added via CAD

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)

/\ “(cadpart(Pnum,_,_,_,_,_,_))

/\ T(mrppmr(Pnum, _,_,_ ..y s)),

add (cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)),
insert(cadrev(Pnum,Rev,unknown,unknown,w,Dfname)),
write('Part has been added to CAD’),

nl.

Part being added via MRP II

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)

/\ ~(cadpart(Pnum,_,_,_,_,_,.))

/\ mrppmr(Pnum,Dnum,Dsize,Des,Buom,_,_,_,_,.,Spnum,Sbnum),
add(cadpart (Pnum,Dnum,Dsize,Des,Buomr, Spnum, Sbnum)),
checksup(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)),
write('Part has been added to CAD’),

nl.

% **%%* Routine to delete a part from CAD
Y okkkokk

delete(cadpart)

-->

delete(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)) .

delete(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum))

% #+% Stop if part does not exist

%

-->

nonvar (Pnum)
/\ ~(cadpart(Pnum,_,_,_,_.,_._)).

173

% *** Request part number if not provided
%
--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
delete(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) .

% **% Part is used in a product structure, cannot be deleted

%

-=> nonvar (Pnum)

/\ cadpart(Pnum,_,_,_,_.,_,_)

/\ ~findnone(cadcomponent(Pnum,_,_,_,.)),

write('Part is used in a Structure--cannot be deleted’),
nl,

fail.

% *%* Delete revision records associated with the part

%

--> nonvar(Pnum)

/\ cadpart(Pnum,_,_,_,_,_,_)

/\ cadrev(Pnum,Rev,_,_,_,_)

/\ findnone(cadcomponent(Pnum,_,_,_,_)),
delete(cadrev(Pnum,Rev,_,_,_,_)).,

delete(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) .

% *x*% Delete the part from CAD
%

--> nonvar(Pnum)

/\ cadpart(Pnum,_,_,_,_,_,_)
/\ “(cadrev(Pnum,_,_,_,_,_))
/\ findnone(cadcomponent(Pnum,_,_,_,_)),

remove (cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) ,
delete(latestcadrev(Pnum,_)),

delete (mrppmr (Pnum, _, _,_,_\v_sesrmros_>s_)),
write('Part has been deleted from CAD'),

nl.

% **%x* Routine to modify fields in CAD part records
YAETE T T

modify(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum))

174

YAET T

%

-->

% Aokok

]

YSET TS

%

YRS

%

ySET T

%

Y Hkk

%

% Hxx
% xxx

%

Stop if desired part record is the same as existing one

nonvar (Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ nonvar (Pnum)

/\ cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum) .

Stop if part number is not provided
var (Pnum) .
Stop if part does not exist in CAD

nonvar (Pnum)
/\ ~(cadpart(Pnum,_,_,_,_._,.)).

Instantiate drawing number to current value if not provided

var (Dnum)

/\ nonvar(Pnum)

/\ cadpart(Pnum,Dnum,_,_,_,_,_),

modify(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)) .

Instantiate drawing size to current value if not provided

var(Dsize)

/\ nonvar (Dnum)

/\ nonvar (Pnum)

/\ cadpart(Pnum,_,Dsize,_,_,_,_),

modify(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)).

Instantiate description to current value if not provided

var(Des)

/\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar (Pnum)

/\ cadpart(Pnum,_,_,Des,_,_,_),

modify(cadpart (Pnum,Dnum,Dsize,Des,Buon, Spnum,Sbnum)) .

Instantiate BOM unit of measure to current value if
not provided

var (Buom)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Pnum)

175

% kkok
% kkx

%

yAET T

%

/\ cadpart(Pnum,_,_,_,Buom,_,_),
modify(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum, Sbnum)) .

Instantiate supersedes part number to current value if
not provided

var (Spnum)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Pnum)

/\ cadpart(Pnum,_,_,_,_,Spnum,_),

modify(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)) .

Instantiate superseded by part number to current value if
not provided

var (Sbnum)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Spnum) /\ nonvar(Pnum)

/\ cadpart(Pnum,_,_,_,_,_,Sbnum),

modify(cadpart (Pnum,Dnum,Dsize,Des,Buon, Spnum,Sbnum)) .

Modify part record

nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ nonvar (Pnum)

/\ cadpart(Pnum,_,_,_,_,_.,.)
/\ ~(cadpart(Pnum,Dnum,Dsize,Des,Buon,Spnum, Sbnum)),
remove (cadpart (Pnum, _,_,_,_,_,_)),

add(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) ,
modify(mrppmr (Pnum,Dnum,Dsize,Des,Buom, _,_,_,_,_,
Spnum, Sbnum)) .

% #%xx% Internal routine to perform supersession of parts
% *%kkx% in CAD
% Aokskokk

checksup(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum))

yAET T

%

-->

Part does not supersede another

f

cadpart (Pnum, _,_,_,_,unknown,).

176

% **x Superseded part does not exist in CAD

)
--> cadpart(Pnum,_,_,_,_,_,_)
/\ ~(cadpart(Pnum,_,_,_,_,unknown,_))
/\ ~(cadpart(Spnum,_._,_._,_..)),
write(’Superceded Part Number Does Not Exist in CAD’),
nl,
fail.

% **% Perform supersession

h

--> cadpart(Pnum,_,_,_.,_,_,_)
/\ ~(cadpart(Pnum,_,_,_,_,unknown,_))
/\ cadpart(Spnum,_,_,_,_,_,_),
modify(cadpart(Spnum,_,_,_,_,_,Pnum)),
substitutepartcad(Spnum,Pnum),
obsolete(cadpart(Spnum,_,_,_,_,_,_)).

% #*%%%* Routine to make a part obsolete in CAD
% ko

obsolete(cadpart)

--> obsolete(cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)) .

obsolete(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum))

% *** Request part number if not provided
%
--> var(Pnum),

write ("Part number? '),

read (Pnum) ,

obsolete(cadpart (Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum)) .

% *%* Part number as entered does not exist in CAD

%

--> nonvar(Pnum)

/\ “cadpart(Pnum,_,_,_,_,_,.),
write('Part does not exist in CAD’),
nl,

fail.

177

% %%% Make all released or hold revisions obsolete

y .

--> nonvar(Pnum)
/\ cadpart(Pnum,_,_,_,_._.,_),
checkrev(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)),
write(’'Part has been made obsolete in CAD’),
nl.

178

% **xkkkkkk% Operations on relation cadrev
% Aokook sk

% **%x% Routine to insert revision records into CAD
% Hkokokok

insert (cadrev)

-->

insert(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

insert(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

Y Aok

%

-->

yAET 2]

h

% ko

%

% kkk

%

U okkk

»

Revision has already been inserted

nonvar (Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Dfname)
/\ cadrev(Pnum,Rev,Estart,Eend,Dfname).

Request part number if not provided

var(Pnum) ,

write('Part Number? '),

read (Pnum) , :
insert(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

Request revision level if not provided

var(Rev)

/\ nonvar(Pnum),

write('New Revision Level? '),

read(Rev),
insert(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

Request drawing file name if not provided
var (Dfname)

/\ nonvar(Pnum) /\ nonvar(Rev),
write(’'Drawing File Name? '),

read (Dfname) ,

insert(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)) .

Let effectivity start date be unknown if not provided

179

yAET T

»

% kkx

%

% skxk

%

% Hxx

%

% ko

%

var(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Dfname),
insert(cadrev(Pnum,Rev,unknown,Eend,Cstat,Dfname)).

Let effectivity end date be unknown if not provided

var(Eend)

/\ nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Dfname)

/\ nonvar(Estart),
insert(cadrev(Pnum,Rev,Estart,unknown,Cstat,Dfname)).

Part number entered does not exist in CAD
nonvar (Pnum)

/\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar(Dfname)

/\ "“(cadpart(Pnum,_,_,_.,_,_,_)),
write('Part Does Not Exist in CAD’),
nl,

fail.

Same revision level exists with different attributes

nonvar (Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Dfname)

/\ cadrev(Pnum,Rev,_,_,_,_)

/\ “(cadrev(Pnum,Rev,Estart,Eend,_,Dfname)),
write('Revision Level Already Exists in CAD'),
nl,

fail.

Revision is being added via CAD

nonvar (Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Dfname)

/\ cadpart(Pnum,_,_,_,_,_,_)

/\ ~(cadrev(Pnum,Rev,_,_,_,_))

/\ ~(mrprev(Pnum,Rev,_,_,_)),
add(cadrev(Pnum,Rev,Estart,Eend,w,Dfname)),
copybom(cadrev(Pnum,Rev,_,_,_,_)),
write('Revision has been added to CAD'),
nl.

Revision is being added via MRP II

180

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Dfname)
/\ cadpart(Pnum,_,_,_,_,_,_)
/\ ~(cadrev(Pnum,Rev,_,_,_,_))
/\ mrprev(Pnum,Rev,Estart,Eend,Mstat),
checkrev(cadrev(Pnum,Rev,Estart,Eend,Mstat,Dfname)),
add(cadrev(Pnum,Rev,Estart,Eend,r,Dfname)),
nake (latestcadrev(Pnum,Rev)),
write('Revision has been added to CAD’),
nl.

% *%x%x Internal routine to delete a specific revision of a part

% *®#kxk in CAD
% kokork

delete(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

% *x% Stop if revision level does not exist
A
--> nonvar(Pnum) /\ nonvar(Rev)

/\ ~“(cadrev(Pnum,Rev,_,_,_,_)).

% **% Request part number if not provided

%

--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
delete(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *%% Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
write('Revision Level? '),
read(Rev),
delete(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *%x Delete an MRP II-generated revision being deleted
% *%x via MRP II
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,_,inapp)
/\ ~(mrprev(Pnum,Rev,_,_,_)),

181

% kkk
% Hokok

%

% kkx

%

yAET T

%

% ook

%

% kkk

%

remove (cadrev(Pnum,Rev,_,_,_,inapp)).

CAD user trying to delete MRP II-generated part,
not allowed

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,_,inapp)

/\ mrprev(Pnum,Rev,_,_,_),

write('Revision can only be deleted via MRP II'),
nl,

fail.

Delete revision has working status

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_.,w,_)
/\ “(cadrev(Pnum,Rev,_,_,_,inapp)),
remove{cadrev(Pnum,Rev,_._,w,_)),

write('Revision information has been deleted from CAD’),
nl. ‘

Revision has released status in CAD, cannot be deleted

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,r,_)

/\ ~(cadrev(Pnum,Rev,_,_,_,inapp)),

write(’Revision has Released Status--Cannot be Deleted’),
nl,

fail.

Revision has hold status in CAD, cannot be deleted

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,h,_)

/\ ~(cadrev(Pnum,Rev,_,_,_,inapp)),

write(’'Revision has Hold Status--Cannot be Deleted’),
nl,

fail.

Delete revision from CAD

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,0,_)
/\ ~“(cadrev(Pnum,Rev,_,_,_,inapp)),

remove (cadrev(Pnum,Rev,_,_,_,_)),

182

delete (mrprev(Pnum,Rev,_,_,_)),
write('Revision has been deleted from CAD'),
nl.

% #*%*%%* Internal routine to modify a cad revision record
% sokokokk

modify(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

%h %%k Stop if desired record is the same as existing one

%

--> nonvar(Estart) /\ nonvar(Eend) /\ nonvar(Cstat)
/\ nonvar(Dfname) /\ nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname).

h **% Stop if part number is not provided
%

--> var(Pnum).
h **% Stop if revision level is not provided

-—> var(Rev)
/\ nonvar(Pnum) .

%h **x Stop if revivision does not exist

-=> nonvar(Pnum) /\ nonvar(Rev)
/\ ~“(cadrev(Pnum,Rev,_,_,_,_)).

% **x Instantiate effectivity start date to current value if
% *** not provided '
h
--> var(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,Estart,_,_,_),
modify(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% **x Instantiate effectivity end date to current value if
% *** not provided
%
--> var(Eend)
/\ nonvar(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev)

183

% kkk

%

ySET T

%

% ok

%

/\ cadrev(Pnum,Rev,_,Eend,_,_),
modify(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

Instantiate Cad status to current value if not provided

var(Cstat)

/\ nonvar(Estart) /\ nonvar(Eend)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,Cstat,_),
modify(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

Instantiate drawing file to current value if not provided

var (Dfname)

/\ nonvar(Estart) /\ nonvar(Eend) /\ nonvar(Cstat)
/\ nonvar(Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,_,Dfname),
modify(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

Make modification to revision record

nonvar (Estart) /\ nonvar(Eend) /\ nonvar(Cstat)
/\ nonvar(Dfname) /\ nonvar(Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_._,_)
/\ “(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)), -
remove (cadrev(Pnum,Rev,_,_,_,_)),

add(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)),
modify(mrprev(Pnum,Rev,Estart,Eend,_)).

% #*%k%k Routine to release a working revision record in CAD
% wkokkk

releasework(cadrev)

-->

releasework(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

releasework(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

% ok

»

-->

Request part number if not provided

var (Pnum) ,
write ('Part Number? '),

184

read (Pnum) ,
releasework (cadrev (Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *** Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
write('Revision Level? ’),
read(Rev),
releasework(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *x%x Part entered does not exist in CAD
%
--> nonvar(Pnum)

/\ nonvar(Rev)

/\ ~(cadpart(Pnum,_,_,_.,_,_,_)),
write('Part Number Does Not Exist in CAD’),
nl,

fail.

% %%% Revision level entered does not exist in CAD
%

--> nonvar(Pnum) /\ nonvar(Rev)

/\ cadpart(Pnum,_,_,_,_,_,_)

/\ ~(cadrev(Pnum,Rev,_,_,_._)),
write('Revision Level Does Not Exist in CAD'),
nl,

fail.

% *** Revision level entered does not have working status

%

--> nonvar(Pnum) /\ nonvar{Rev)

/\ cadrev(Pnum,Rev,_,_,_,_)

/\ ~(cadrev(Pnum,Rev,_,_,w,_)),

write(’Part Does Not Have Working Status’),
nl,

fail.

% *** Release first version of a part
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,Estart,Eend,w,Dfname)
/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum, Sbnum)
/\ “(mrppmr(Pnum, _, _,_,_ s s_vscroran)),
checkrev(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)),

185

make (latestcadrev(Pnum,Rev)),
modify(cadrev(Pnum,Rev,_,_,r,)),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,unknown,unknown,
unknown , unknown ,unknown, Spnum, Sbnum)) ,

insert (newpmr (Pnum)),

insert (mrprev(Pnum,Rev,unknown,unknown,h)),

insert (newrev(Pnum,Rev)),

checksup(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)),

release(cadcomponent (Pnum,Rev,_,_,_)),
write(’Revision has been released in CAD'),
nl.

% *%* Release subsequent:revisions to a part

%

--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,Estart,Eend,w,Dfname)
/\ mrppmr(Pnum, _,_,_,_,_ssesmrcra)
checkrev(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)),
make (latestcadrev(Pnum,Rev)),
modify(cadrev(Pnum,Rev,_,_,r,_)),
insert(mrprev(Pnum,Rev,Estart,Eend,h)),
insert (newrev(Pnum,Rev)),

release(cadcomponent (Pnum,Rev,_,_,_)),
write(’Revision has been released in CAD'),
nl.

% *#*i*x Internal routine to process obsolescence of old revisions
% *x*xxx when a new revision is released or inserted in CAD
YAETI T

checkrev(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

% *%* Make released revisions obsolete

%

--> cadrev(Pnum,R,_,_,r,_),
obsolete(cadrev(Pnum,R,_,_,_.,_)),
checkrev(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *%% Make hold revisions obsolete

[

--> cadrev(Pnum,R,_,_,h,_) ,
/\ “(cadrev(Pnum,_,_,_,r,_)),
obsolete(cadrev(Pnum,R,_,_,_._)).

186

checkrev(cadrev(Pnum,Rev,Estart ,Eend,Cstat,Dfname)).

% **+ All revisions have been made obsolete
h
--> “(cadrev(Pnum,_,_,_,r,_))

/\ ~(cadrev(Pnum,_,_,_,h,_)).

% #*%*x#% Internal routine to co bills of material from the
Py

% *%%x% previous revision of an assembly to a new one in CAD

% Aokokkok

copybom(cadrev)

--> copybom(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).
copybom(cadrev(Pnum,Rev,Estart ,Eend,Cstat,Dfname))

% **%% Stop if part number not provided

h

--> var(Pnum).

% **x Stop if revision level not provided

--> var(Rev)
/\ nonvar (Pnum) .

% **% Stop if the part revision is the first one for the part

--> nonvar(Pnum) /\ nonvar(Rev)
/\ "“latestcadrev(Pnum,_).

% **% Stop if the part revision is the latest one
--> nonvar(Pnum) /\ nonvar(Rev)
/\ latestcadrev(Pnum,R)
/\ R=Rev.
h **% copy the bom from the last revision to the new one
--> nonvar(Pnum) /\ nonvar(Rev)
/\ latestcadrev(Pnum,R)

/\ " (R=Rev),
copybomcad (Pnum,R,Pnum,Rev) .

187

% **%%x* Routine to place a hold on a part in CAD
% kkk ook '

hold{(cadrev)

-=> hold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

hold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

%h *** Request part number if not provided
%
--> var(Pnum),
write(’Part Number? '),
read (Pnum) ,
hold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

h *%* Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
write('Revision Level? '),
read(Rev),
hold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% *** Part entered does not exist in CAD

%
-——> nonvar (Pnum)
/\ nonvar(Rev)

/\ “(cadpart(Pnum,_,_,_,_,_,_)),
write(’'Part Does Not Exist in CAD’),
nl, '
fail.

% **% Revision level entered does not exist in CAD
%

--> nonvar(Pnum) /\ nonvar(Rev)

/\ cadpart(Pnum,_,_,_,_,_,_)

/\ ~(cadrev(Pnum,Rev,_,_,_,_)),
write('Revision Level Does Not Exist in CAD’),
nl,

fail.

188

% *** Revision is already on hold in CAD

%

--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,h,_),
write('Revision Already Has Hold Status’),
nl, |
fail.

% *** Revision has working status

%

--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,w,_),
write('Revision Has Working Status’),
nl,
fail.

% *** Revision has obsolete status

%

--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,o0,_),
write('Revision Has Obsolete Status’),
nl,
fail.

% *%% Give revision hold status
%

--> nonvar(Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,r,_),
hold(mrprev(Pnum,Rev,_,_,h)),
modify(cadrev(Pnum,Rev,_,_,h,_)),

write('Revision has been given hold status in CAD'),
nl.

% **%i+% Routine to release a part on hold in CAD
% Aok

releasehold(cadrev)

-=> releasehold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

releasehold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))

189

% *%x Request part number if not provided

%

--> var(Pnum),
write('Part Number? °),
read (Pnum) ,
releasehold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% **x Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
write('Revision Level? '),
read(Rev),
releasehold(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname)).

% x%% Part entered does not exist in CAD

%

--> nonvar(Pnum)
/\ nonvar(Rev)

/\ ~(cadpart(Pnum, _,_,_._,_._)),
write('Part Does Not Exist in CAD’),
nl,

fail.

% #*%% Revision level entered does not exist in CAD
%

--> nonvar(Pnum) /\ nonvar(Rev)

/\ cadpart(Pnum,_,_,_,_,_,_.)

/\ ~“(cadrev(Pnum,Rev,_,_,_,_)),
write(’Revision Level Does Not Exist in CAD’),
nl,

fail.

Y% **x%x Revision is not on hold
%

-=> nonvar(Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,_,_)

/\ ~(cadrev(Pnum,Rev,_,_,h,_)),
write('Revision Not On Hold'),
nl,

fail.

% *** Rerelease revision

%

--> nonvar(Pnum) /\ nonvar(Rev)

190

"~ /\ cadrev(Pnum,Rev,_,_,h,_),
modify(cadrev(Pnum,Rev,_,_.r,_)),
insert(rereleased(Pnum,Rev)),
write('Revision has been rereleased in CAD’),
nl.

% *%xi% Internal routine to make a specific revision of a part
% *kxik obsolete in CAD
yAET LT

obsolete(cadrev(Pnum,Rev,Estart,Eend,Cstat,Dfname))
% *%% Stop if part number if not provided

%

--> var(Pnum) .

% **x% Stop if revision level not provided

--> var (Rev)
/\ nonvar(Pnum) .

% #*** Stop if part entered does not exist in CAD
--> nonvar(Pnum)
/\ nonvar(Rev)
/\ ~(cadpart(Pnum,_,_,_,_,_,_)).
% *** Stop if revision level entered does not exist in CAD
b
--> nonvar(Pnum) /\ nonvar(Rev)

/\ “(cadrev(Pnum,Rev,_,_._._)).

% **%x Stop if revision entered has working status, cannot be
% #*** made obsolete

--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_.w,_).

% #*%% Give revision obsolete status

-=> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,_._)

191

/\ “(cadrev(Pnum,Rev,_,_,w,_)),
modify(cadrev(Pnum,Rev,_,_,0,.)),

insert (obsolete (Pnum,Rev)),
delete(latestcadrev(Pnum,Rev)),

write('Revision has been given obsolete status in CAD’),

nl.

192

% *xxxixkikik Operations on relation latestcadrev
% ok

% **x*%* Internal routine to update the latest revision record
% *x%%% in CAD
yAETT T

make (latestcadrev (Pnum,Rev))

% #x*% Stop if record already exists

%

--> latestcadrev(Pnum,Rev).

% **% Update existing record for new revision

%

--> latestcadrev(Pnum,R)
/\ "latestcadrev(Pnum,Rev),
delete(latestcadrev(Pnum,R)),
insert(latestcadrev(Pnum,Rev)).

% **x Insert record for first revision

%

--> “latestcadrev(Pnum,R),
insert(latestcadrev(Pnum,Rev)).

% *%*xx Internal routine to insert latest revision record
% xkxkx in CAD
% kokokokk

insert(latestcadrev(Pnum,Rev))

% *%x Stop if record already exists

%

-—> latestcadrev(Pnum,Rev).

% *%% insert record

%

-=> ~“latestcadrev(Pnum,Rev),
add(latestcadrev(Pnum,Rev)).

193

% *x*%*x Internal routine to delete a latest revision record
% s%kkx from CAD
% Hokskokok

delete(latestcadrev(Pnum,Rev))

% *** Stop if record does not exist
%

--> ~“latestcadrev(Pnum,Rev).

% *%* Delete record

%
--> latestcadrev(Pnum,Rev),
remove (latestcadrev(Pnum,Rev)).

194

% **kkxkxxk*k Operations on relation cadcomponent
Y kxR

% **%%% Routine to insert a relationship record into CAD
% *xxxx%x (top level)

insert(cadcomponent)

-->

insert(cadcomponent (Pnum,Rev,Item,Cpn,Qty)).

insert (cadcomponent (Pnum,Rev,Item,Cpn,Qty))

yAET TS
AL T

%

-->

% owok
% ek

%

% owkx

%

% wkk

%

Assembly number and revision specified, has working status,
don’t consider part/revision changes

nonvar (Pnum) /\ nonvar(Rev)

/\ cadrev(Pnum,Rev,_,_,w,_),

ecnheader (Pnum,Rev),

insert2(cadcomponent (Pnum,Rev,Item,Cpn,Qty)).

Assembly number and revision specified, does not have
working status, consider part/revision changes

nonvar (Pnum) /\ nonvar(Rev)

/\ “cadrev(Pnum,Rev,_,_,w,_),

ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
insert2(cadcomponent (Ppn,Prn,Iten,Cpn,Qty)).

Assembly revision specified, consider part/revision changes

var(Pnum) /\ nonvar(Rev),

ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

Assembly number specified, consider part/revision changes
nonvar(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),

checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

195

% #** No assembly details specified, consider part/revision

% *** changes

%

--> var(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *#x*% Internal routine to actually perform insersion of

% **x*x relationship into CAD
P dokkokk

insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

% **x Stop if record already exists

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ cadcomponent(Ppn,Prn,Item,Cpn,Qty).

% *** Insert relationship via MRP II -

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ “cadcomponent(Ppn,Prn,Item,Cpn,Qty)
/\ mrpcomponent(Ppn,Prn,Item,Cpn,Qty),
add(cadcomponent (Ppn,Prn,Item,Cpn,Qty)),
write(’Component Relationship has been added to CAD’),
nl.

% *x* Request parent part number if not provided
h
--> var(Ppn),

write(’Parent part number? °),

read(Ppn),

insert2(cadcomponent (Ppn,Prn,Iten,Cpn,Qty)).

% *** Request parent revision level if not provided
%
--> var(Prn)

/\ nonvar(Ppn),

write('Parent revision level? '),

196

read(Prn),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Request item number if not provided
%
--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’'Item Number? '),
read(Item),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request component part number if not provided
h
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write(’'Component part number? '),
read(Cpn),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **%* Request Quantity per assembly if not provided
h
--> var(Qty)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item)
/\ nonvar(Cpn),
write(’Quantity per assembly? °),
read (Qty),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Parent part entered does not exist in CAD

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ " (cadcomponent (Ppn,Prn,Item,Cpn,Qty))

/\ ~(cadpart(Ppn,_,_._._._,_)),
write(’Parent part does not exist in CAD'),
nl,

fail.

% *%% Parent revision level does not exist in CAD
A
--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty) ,
/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)
/\ ~(cadcomponent(Ppn,Prn,Item,Cpn,Qty))
/\ cadpart(Ppn,_,_,_,_,_,_)

197

ySETE

%

% ok

%

% kkx
% wkk

%

/\ ~(cadrev(Ppn,Prn,_,_,_,_)),

write('Parent Revision does not exist in CAD’),
nl,

fail.

Parent revision is obsolete, cannot be used in a structure

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty) '

/\ " (cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent(Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,0,_),

write(’Parent Revison has obsolete status in CAD'),

nl,

fail.

Component part entered does not exist in CAD

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,_)
/\ ~(cadrev(Ppn,Prn,_,_,0,.))
/\ ~(cadpart(Cpn,_,_,_._._,_)),

write(’'Component part does not exist in CAD'),
nl,
fail.

Component part does not have a released or hold revision
in CAD

nonvar (Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ " (cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,_)
/\ ~(cadrev(Ppn,Prn,_,_,0,_))
/\ cadpart(Cpn,_,_,_,_,_,.)
/\ ~(cadrev(Cpn,_,_,_,r,_.))
/\ “(cadrev(Cpn,_,_,_,h,_)),

write(’Component Part does not have released or hold
revision in CAD'),

nl,

fail.

198

% kkok
yAET T

%

-->

yAET L]
% Hxk

%

Y kkk
% kkok

%

Item number already exists in CAD, compénent has released
revision in CAD

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ ~“mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,_)

/\ ~(cadrev(Ppn,Prn,_,_,0,.))

/\ cadrev(Cpn,_,_.,_,r,.)

/\ cadcomponent (Ppn,Prn,Item,_,.),
write('Item number already exists in CAD'),
nl,

fail.

Item number already exists in CAD, component part has a
hold revision on

nonvar (Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,.)

/\ ~(cadrev(Ppn,Prn,_,_,0,_))

/\ cadrev(Cpn,_,_,_,h,_)

/\ cadcomponent (Ppn,Prn,Item,_,_),
write('Item number already exists in CAD’),
nl,

fail.

Component has no revisions in MRP II
(component has released revision in CAD)

nonvar (Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,w,_)
/\ cadrev(Cpn,_,_,_.r,_)
/\ ~(mrprev(Cpn,_,_,_,.))

/\ ~(cadcomponent(Ppn,Prn,Item,_,_)),

write('No Component revisions exist in MRP II'),
nl,

fail.

199

% ok
% kkk

%

-->

% doxk
% kst
% okokk

%

% Rk
YAETE
% kK

%

Component has no revisions in MRP II
(component has hold revision in CAD)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

/\ "“mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,w,_.)
/\ cadrev(Cpn,_,_,_,h,_)
/\ ~(mrprev(Cpn,_,_,_,.))

/\ ~(cadcomponent(Ppn,Prn,Item,_,_)),

write(’No Component revisions exist in MRP II’),
nl,

fail.

Insert component relationship in CAD
(parent part revision has working status)
(component has released revision in CAD)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ " (cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ "“mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,w,_)

/\ cadrev(Cpn,_,_,_,r,_)

/\ mrprev(Cpn,_,_,_,_)

/\ ~(cadcomponent(Ppn,Prn,Item,_,_)),
add(cadcomponent (Ppn,Prn, Iten,Cpn,Qty)),

~ (makesloop(cadcomponent (Ppn,Prn,Item,Cpn,Qty))),
write(’Component relationship has been added to CAD'),
nl.

Insert component relationship in CAD
(parent part revision has working status)
(component part has hold revision in CAD)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ " (cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,w,_)

/\ cadrev(Cpn,_,_,_,h,_)

/\ mrprev(Cpn,_,_,_,_)
/\ ~(cadcomponent (Ppn,Prn,Item,_,_)),

200

YA LT
ySET T
% ckx

%

% ek
yAET T
Y kokok

%

add(cadcomponent (Ppn,Prn,Item,Cpn,Qty)),

“ (makesloop(cadcomponent (Ppn,Prn,Item,Cpn,Qty))),
write(’'Component relationship has been added to CAD’),
nl.

Insert component relationship in CAD
(parent part revision has released or hold status)
(component part has revision with released status)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent(Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn, Item,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,_)

/\ ~(cadrev(Ppn,Prn,_,_,0,.))
/\ ~(cadrev(Ppn,Prn,_,_,w,_))
/\ cadrev(Cpn,_,_,_,r,_)

/\ " (cadcomponent (Ppn,Prn,Item,_,_)),

add (cadcomponent (Ppn,Prn,Item,Cpn,Qty)),

~ (makesloop(cadcomponent (Ppn,Prn,Item,Cpn,Qty))),
insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)),
write(’Component relationship has been added to CAD’),
nl.

Insert component relationship in CAD
(parent part revision has released or hold status)
(component part has revision with hold status)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ ~(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

/\ “mrpcomponent (Ppn,Prn,Iten,Cpn,Qty)

/\ cadrev(Ppn,Prn,_,_,_,_)

/\ ~(cadrev(Ppn,Prn,_,_,0,_))
/\ ~(cadrev(Ppn,Prn,_,_,w,_))
/\ cadrev(Cpn,_,_,_,h,_)

/\ ~(cadcomponent(Ppn,Prn,Item,_,_)),

add(cadcomponent (Ppn,Prn,Item,Cpn,Qty)),

~(makesloop (cadcomponent (Ppn,Prn,Item,Cpn,Qty))),
insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)),
write(’Component relationship has been added to CAD'),
nl.

201

% **%%* Internal routine to check for looping of components
% ***%% in CAD prior to the addition of a component
YSETET T

makesloop(cadcomponent (Ppn,Prn,Item,Cpn,Qty))
% *** This operation will ’'fail’ if no looping is found

% *%*% Parent part number is the same as the component part number

%

--> cadcomponent(Ppn,_,_,Ppn,_),
write('Relationship results in loop, cannot be added'),
nl.

% *** Look for relationship with parent as component of component

--> cadcomponent(Cpn,_,_,Ppn,_)
/\ ~(cadcomponent(Ppn,_,_,Ppn,_)),
write(’Relationship results in loop, cannot be added’),
nl.

% *%* No looping at this level, make a component a parent and try
% *x* next level

%

-=> cadcomponent(Cpn,_,_,Com,)
/\ ~(cadcomponent(Cpn,_,_,Ppn,_))
/\ ~(cadcomponent(Ppn,_,_,Ppn,_)),
makesloop (cadcomponent (Ppn,_,_,Com,_)).

% *%x%% Routine to delete component relationships from CAD
% #*x%% (top level)
% kkkoesk

delete(cadcomponent)

- -=> delete(cadcomponent (Pnum,Rev,Item,Cpn,Qty)).

delete(cadcomponent (Pnum,Rev,Item,Cpn,Qty))
% %%x Parent part and revision specified, has working status,

% ***% do not consider assembly part number or revision level
% *** changes

202

9,
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,w,_),
ecnheader (Pnum,Rev),
delete2(cadcomponent (Pnum,Rev,Item,Cpn,Qty)).

% *#* Parent part and revision specified, does not have
% *** working status, consider assembly part number or revision
% *%% level changes
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ “cadrev(Pnum,Rev,_,_,w,_),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *%* Parent revision only specified, consider assembly part

% *** number or revision level changes

%

--> var(Pnum) /\ nonvar(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *%* Parent part number only specified, consider assembly part

% *** number or revision level changes

%

--> nonvar(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #*x No parent part details specified, consider assembly part

% **x% number or revision level changes

L/

h

--> var(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% ***+% Internal routine to actually delete relationshps from CAD
% wkkkk

203

delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

% **% Stop if component relationship does not exist

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ ~(cadcomponent(Ppn,Prn,Item,Cpn,_)).

% *%%x Request parent part number if not provided
q P P P

--> var(Ppn),
write('Parent part number? '),
read(Ppn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *%* Request parent revision level if not provided
h
--> var(Prn)

/\ nonvar(Ppn),

write('Parent revision level? °),

read(Prn),

delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #** Request item number if not provided
h
--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’'Item number? '),
read(Item),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *x*% Request component part number if not provided
%
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write(’Component part number? '),
read(Cpn),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Delete component relationship from CAD
% *x% (parent revision has working status)
% : -
-=> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ cadcomponent (Ppn,Prn,Item,Cpn,_)
/\ cadrev(Ppn,Prn,_,_,w,_),
remove (cadcomponent (Ppn,Prn,Item,Cpn,_)),

204

% kX
% krx

%

write('Relationship has been deleted from CAD'),
nl.

Delete component relaionship from CAD
(parent revision does not have working status)

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ cadcomponent(Ppn,Prn, Item,Cpn,_)

/\ cadrev(Ppn,Prn,_,_,_,_)

/\ ~(cadrev(Ppn,Prn,_,_,w,_)),

remove (cadcomponent (Ppn,Prn,Item,Cpn,_)),
delete2(mrpcomponent (Ppn,Prn,Item,Cpn,_)),
write(’'Relationship has been deleted from CAD'),

nl.

% #%%xx Internal routine to transfer component relationships
% *%xx% from CAD to MRP II when the parent part is released
% kokskokeok

release(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

% kkk

%

% wkok
% okskok

Stop if no parent part is specified
var(Ppn) .
Stop if no parent revision level is specified

var(Prn)
/\ nonvar(Ppn) .

Stop if there are no component relationships for the parent
part/revision

nonvar(Ppn) /\ nonvar(Prn)
/\ ~(cadcomponent(Ppn,Prn,_,_,_)).

Relationship local to CAD is found, copy to MRP II

nonvar(Ppn) /\ nonvar(Prn)

/\ cadcomponent(Ppn,Prn,_,_,_)

/\ findrelease(cadcomponent(Ppn,Prn,It,Cp,Qt)),
insert2(mrpcomponent (Ppn,Prn,It,Cp,Qt)),
release (cadcomponent (Ppn,Prn,_,_,_)).

205

% *** No more relationships local to CAD, stop
)
--> nonvar(Ppn) /\ nonvar(Prn)
/\ cadcomponent(Ppn,Prn,_,_,_)
/\ ~“(findrelease(cadcomponent(Ppn,Prn,It,Cp,Qt))).

% ***%* Internal routine to look for components to transfer
% **x%*x*x from CAD to MRP II when a new assembly is released

% #%kx4 from CAD
YSETT T

findrelease(cadcomponent (Ppn,Prn,Item,Cpn,Qty))

% *%** Look for a component relationship of parent part/revision
% *x* that does not already exist in MRP II

h
-=> cadcomponent (Ppn,Prn,Item,Cpn,Qty)
/\ ~(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #*xkkx Internal routine to search for component relationships
% **%ix involving a part to be deleted from CAD
YAET TS T

findnone(cadcomponent (Pnum,Rev,Item,Cpn,Qty))

% *x% Look for part as a parent or component in a relationship
% **x* record
h
--> “cadcomponent(Pnum,_,_,_,_)
/\ “cadcomponent(_,_,_.Pnum,_).

% x%xi% Routine to performrm a mass substitution of one
h *%kx% component with another in CAD
% kkskokok

substitutepartcad

--> substitutepartcad(0ldpt,Newpt).

206

substitutepartcad(0ldpt,Newpt)

% Ak

%

-->

% kkx

h

% ek

%

% kokok

)

% ok
% ek

%

Request part to be substituted if not provided

var(0ldpt),
write(’Current part number? '),
read(0ldpt),
substitutepartcad(0ldpt,Newpt).

Request part to substitute if not provided

var (Newpt)

/\ nonvar(0ldpt),

write('Part number to substitute? °),
read(Newpt),
substitutepartcad(0ldpt, Newpt) .

Part to be substituted as entered does not exist

nonvar(0ldpt) /\ nonvar(Newpt)

/\ “cadpart(0ldpt, _,_._,_._,_),
write('Current part number does not exist'),
nl,

fail.

Part to substitute as entered does not exist

nonvar(0ldpt) /\ nonvar(Newpt)
/\ cadpart(0ldpt,_,_,_,_.,_,_)

write('Substitute part number does not exist’),
nl,
fail.

Subsitute part does not have any released or hold
revisions in CAD

nonvar(0ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_,_.,_.,.)
/\ cadpart(Newpt,_,_,_,_,_._)
/\ “cadrev(Newpt,_,_,_,r,_)
/\ ~cadrev(Newpt,_,_,_,h,_),

write('Substitute part does not have released or hold

207

% ko
% Ekk

%

% kokok
% kkok
% Aok

h

YARETE’
ySET T

%

revision in CAD’),
nl,
fail.

Make substitution, assembly part revision has working
status (part to substitute has a released revision)

nonvar (01ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_,_,_,_)

/\ cadpart(Newpt,_,_,_,_.,_._)

/\ cadrev(Newpt._,_,_,r._)

/\ findsubcomp(cadcomponent (Pnum,Rev,Item,0ldpt,Qty))
/\ cadrev(Pnum,Rev,_,_,w,_),

delete2(cadcomponent (Pnum,Rev,Item,01dpt,Qty)),
insert2(cadcomponent (Pnum,Rev,Item,Newpt,Qty)),
substitutepartcad(0ldpt,Newpt) .

Make substitution, assembly part revision does not have
working status (part to substitute has a released

revision)

nonvar(0ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_._,_,_,_,.)

/\ cadpart(Newpt,_,_,_,_,_.,.)

/\ cadrev(Newpt,_,_,_,r,_)

/\ findsubcomp(cadcomponent (Pnum,Rev,Item,01ldpt, Qty))
/\ ~“cadrev(Pnum,Rev,_,_,w,_),

ecnheader (Pnum,Rev) ,
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,0ldpt,Qty)),
insert2(cadcomponent (Ppn,Prn,Item,Newpt,Qty)),
substitutepartcad(0ldpt,Newpt) .

Make substitution, assembly part revision has working
status (part to substitute has a hold revision)

nonvar(01dpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_,_,_,_)

/\ cadpart(Newpt, _._._._._,_)

/\ cadrev(Newpt,_,_,_,h,_)

/\ findsubcomp(cadcomponent (Pnum,Rev,Item,01ldpt,Qty))
/\ cadrev(Pnum,Rev,_,_,w,_),

delete2(cadcomponent (Pnum,Rev,Item,01ldpt,Qty)),
insert2(cadcomponent (Pnum,Rev, Item, Newpt,Qty)),
substitutepartcad(0ldpt, Newpt).

208

% *** Make substitution, assembly part revision does not have
% *%*% working status (part to substitute has a hold revision)
%

--> nonvar(0ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_,_,_,_)

/\ cadpart(Newpt,_,_,_.,_.,_,_)

/\ cadrev(Newpt,_,_,_,h,_)

/\ findsubcomp(cadcomponent (Pnum,Rev,Item,0ldpt,Qty))
/\ ~“cadrev(Pnum,Rev,_,_,w,_),

ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(cadcomponent (Ppn,Prn,Item,0ldpt,Qty)),
insert2(cadcomponent (Ppn,Prn,Item,Newpt,Qty)),
substitutepartcad(0ldpt,Newpt).

% *%% All substitutions have been made

% **x (part to substitute has released revison)
%

--> nonvar(0ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_._.,_,.)
/\ cadpart(Newpt,_,_._,_,_,.)
/\ cadrev(Newpt,_,_,_.r,_)

/\ ~findsubcomp(cadcomponent (Pnum,Rev,Item,01dpt,Qty)),
write('Part substitution has been completed’'), nl.

% **% All substitutions have been made

% *** (part to substitute has hold revision)
%

--> nonvar(0ldpt) /\ nonvar(Newpt)

/\ cadpart(0ldpt,_,_,_,_,_,_.)
/\ cadpart(Newpt,_,_,_,_.,_,_)
/\ cadrev(Newpt,_,_,_,h,_)

/\ ~“findsubcomp(cadcomponent (Pnum,Rev,Item,01dpt,Qty)),
write(’'Part substitution has been completed'), nl.

% *%x*% Internal routine to search for relationships for

% ***%** mass component substitution in CAD
YARET LT

findsubcomp (cadcomponent (Pnum,Rev, Item,Cpn,Qty))

% **% Look for a relationship with the part to be substituted

209

% *%* ag a component, and the parent being the latest revision
% **%x of a part
%
--> cadcomponent (Pnum,Rev,Item,Cpn,Qty)
/\ latestcadrev(Pnum,Rev).

% *** Look for a relationship with theApart to be substituted
% **% as a component, and the parent having working status
h
--> cadcomponent (Pnum,Rev,Iten,Cpn,Qty)
/\ cadrev(Pnum,Rev,_,_,w,_).

% *%*ix% Routine to modify the quantity per assembly of a
% *x%*%x component in CAD (top level)
% ke

modifyquantity(cadcomponent)

--> modifyquantity(cadcomponent(Pnum,Rev,Item,Cpn,Qty)).

modifyquantity(cadcomponent (Pnum,Rev,Item,Cpn,Qty))

% *%% Parent part and revision specified, has working status,
% *x% do not consider assembly part or revision changes
»
--> nonvar(Pnum) /\ nonvar(Rev)
/\ cadrev(Pnum,Rev,_,_,w,_),
modifyquant (cadcomponent (Pnum,Rev,Item,Cpn,Qty)).

% *%* Parent part and revision specified, doesn’'t have working
% *** status, consider assembly part or revision changes
0/. .
--> nonvar(Pnum) /\ nonvar(Rev)
/\ ~ cadrev(Pnum,Rev,_,_,w,_),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *%* Parent revision specified, consider assembly part or
% *x* revision changes

%

--> var(Pnum) /\ nonvar(Rev),

210

ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #x* Parent part number specified, consider assembly part or

% *** revision changes

%

--> nonvar(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** No parent part details specified, consider assembly part or
% *** revsion changes
%
--> var(Pnum) /\ var(Rev),
ecnheader (Pnum,Rev),
checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **%x* Internal routine to actually perform modification of
h **kxk quantity per assembly in CAD
% korskokk

modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty))

% *** Relationship as desired already exists
%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ cadcomponent (Ppn,Prn,Item,Cpn,Qty).

% *x% Request parent part number if not provided

--> var(Ppn),
write('Parent part number? °),
read(Ppn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request parent revision level if not provided
%
--> var(Prn)

/\ nonvar(Ppn),

211

write(’'Parent revision level? '),
read(Prn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request item number if not provided
h
--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’Item number? '),
read(Item),
modifyquant(cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request component part number if not provided
%
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write('Component part number? '),
read(Cpn),
modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

h *** Request new quantity per assembly if not provided
h
--> var(Qty)

/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item)

/\ nonvar(Cpn),

write(’'New quantity per assembly? °),

read(Qty),

modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Relationship as entered does not exist
[]
/)
--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ ~(cadcomponent (Ppn,Prn,Item,Cpn,_)),
write(’Component relationship does not exist'),
nl,
fail.

%h **%* Modify quantity per assembly
h
=-> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ cadcomponent (Ppn,Prn,Item,Cpn,_)
/\ “cadcomponent (Ppn,Prn,Item,Cpn,Qty),
remove (cadcomponent (Ppn,Prn,Item,Cpn,_)),

212

add(cadcomponent (Ppn,Prn,Itemn,Cpn,.Qty)),

modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)),
write(’Quantity per assembly has been changed in CAD’),
nl.

% **%x% Routine to copy a bill of material to another assembly

% *%xx% in CAD (top level)
% koK

copybomcad

-->

copybomcad (Fpn,Frl,Tpn,Trl).

copybomcad (Fpn,Frl,Tpn,Trl)

% KA
Y okkk

%

-->

yAET T
ko

[/

% owkx
% ks

%

yAET T

Request part number of assembly to copy bom from if
not provided

var(Fpn),

write('From part number? ’),

read(Fpn),

copybomcad (Fpn,Frl,Tpn,Trl).

Request revision level of assembly to copy bom from if
not provided

var (Frl)

/\ nonvar(Fpn),

write(’From revision level? '),
read(Frl),
copybomcad(Fpn,Frl,Tpn,Trl).

Request part number of assembly to copy bom to if
not provided

var(Tpn)

/\ nonvar(Fpn) /\ nonvar(Frl),
write('To part number? °’),
read(Tpn),
copybomcad(Fpn,Frl,Tpn,Trl) .

Request revision level of assembly to copy bom to if

213

9wk

%

-—>

% okokx

"

y AR T T

%

% ke

h

% kkx

%

ySET T

not provided

var(Trl)

/\ nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn),
write('To revision level? '),

read(Trl),

copybomcad(Fpn,Frl,Tpn,Trl).

From part number does not exist in CAD

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ " (cadpart(Fpn,_,_,_._.,_,.)),

write('From part number does not exist in CAD’),

nl,

fail.

From revision level does not exist in CAD

nonvar (Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ cadpart(Fpn,_,_,_,_,_..)

/\ ~cadrev(Fpn,Frl,_,_,_,.),

write('From revision level does not exist in CAD’),

nl,

fail.

To part number does not exist in CAD

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ cadrev(Fpn,Frl,_,_,_,_.) .
/\ “cadpart(Tpn,_,_,_._._,_),

write('To part number does not exist in CAD’),
nl,

fail.

To revision level does not exist

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ cadrev(Fpn,Frl,_,_,_,_)

/\ cadpart(Tpn,_,_,_,_,_,_)

/\ ~cadrev(Tpn,Trl,_,_,_,.),

write(’'To revision level does not exist’),
nl,

fail.

To part revision already has a product structure

214

%

--> nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ cadrev(Fpn,Frl,_,_,_,_.)
/\ cadrev(Tpn,Trl,_,_,_,_.)
/\ ~“findnone2(cadcomponent(Tpn,Trl,_,_,.)),

write(’To part number/revision level already has
a structure'),

nl,

fail.

% *** From part revision has no product structure

%

--> nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ cadrev(Fpn,Frl,_,_,_,_)

/\ cadrev(Tpn,Trl,_,_,_,_)

/\ findnone2(cadcomponent(Tpn,Trl,_,_,_))
/\ “cadcomponent(Fpn,Frl,_,_,_).

% *** copy product structure

h

--> nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ cadrev(Fpn,Frl,_,_,_,_)

/\ cadrev(Tpn,Trl,_,_,_,.)

/\ findnone2(cadcomponent(Tpn,Trl,_._,_))
/\ cadcomponent(Fpn,Frl,_,_,_),

copybomcad2(Fpn,Frl,Tpn,Trl),
write(’Product structure has been copied’),
nl.

% #x%x%x Internal routine to make sure the copy to assembly
% **%%% has no component relationships in CAD
% ok

findnone2(cadcomponent (Ppn,Prn,Item,Cpn,Qty))
% #x* Succeeds if there are no components of the copy-to part

% *%% revision
% wAok

--> “cadcomponent(Ppn,Prn,_,_,_).

% sx+#% Internal routine to actually copy bill of material in CAD

215

Y ek
copybomcad2(Fpn,Frl,Tpn, Trl)

% #x*% Copy a component relationship

%

--> findbomcad(Fpn,Frl,Tpn,Trl,Item,Cpn,Qty),
insert2(cadcomponent (Tpn,Trl,Item,Cpn,Qty)),
copybomcad2(Fpn,Frl,Tpn, Trl) .

% *%+ All relationships have been copied

%
--> “findbomcad(Fpn,Frl,Tpn,Trl,Item,Cpn,Qty).

% *%%x% Internal routine to search for relationships to
% **%x* copy in CAD
% kokokskek

findbomcad (Fpn,Frl,Tpn,Trl,Item,Cpn,Qty)

% *** Look for components of the copy from assembly that are not
% **x components of the copy to assembly

»
--> cadcomponent (Fpn,Frl,Item,Cpn,Qty)
/\ “cadcomponent(Tpn,Trl,Item,Cpn,Qty).

216

% xdckkickkkk Other CAD operations without specific
% dkdkkekkkkkk relations
yAETET T

% *#x%% Internal routine to ask about engineering changes

% %*%%x% in CAD
Y kokokoksk

checkecncad(Newpart,Newrev,Pnum,Rev,Ppn,Prn)

% *** Ask if change necessitates a new assembly part number
%
--> var(Newpart),
write(’Does this change require a new assembly part
number? '),
read (Newpart),
checkecncad(Newpart ,Newrev,Pnum,Rev,Ppn,Prn) .

% *x* Ask if change necessitates a new assembly revision level
% *** (user answered no to new part number)

h

--> var(Newrev) /\ nonvar(Newpart) /\ ~(Newpart = ’'yes’),
write('Does this change require a new assembly revision
level? '),
read (Newrev),

checkecncad (Newpart,Newrev,Pnum,Rev,Ppn,Prn).

% *** User answered yes to a new part number, so a new revision
% ***% is not
% *%x appropriate
%
--> var(Newrev)
/\ nonvar(Newpart) /\ (Newpart = ’yes’),
checkecncad(Newpart,no,Pnum,Rev,Ppn,Prn).

% ***% User answered no to new part, new revision
--> nonvar(Newpart) /\ nonvar(Newrev)
/\ “(Newpart = 'yes’') /\ “(Newrev = ’'yes’),
Ppn=Pnum,

Prn=Rev.

% **x Let user insert a new assembly part

%

217

Y kkk

%

nonvar (Newpart) /\ nonvar(Newrev)

/\ (Newpart = 'yes’) /\ “(Newrev = ’'yes’),
insert(cadpart (Ppn,Dnum,Dsize,Des,Buom,Pnum, Sbnum)),
cadrev(Ppn,Prn,_,_._,.),

copybomcad (Pnum,Rev,Ppn,Prn).

Let user insert a new assembly revision level

nonvar(Newpart) /\ nonvar(Newrev)

/\ (Newrev = ’'yes’)

/\ ~(Newpart = ’yes'),

Ppn=Pnunm,
insert(cadrev(Ppn,Prn,Estart,Eend,Cstat,Dfname)).

% *%xk* Internal routine to print out current assembly part
% *x%%* number and revision level for engineering change

% **%%% consideration (Used in both CAD and MRP II)

yAET T

ecnheader (Pnum,Rev)

ySET S

%

ySETE

%

% ke
% Hkx

%

Stop if part number and revision are not provided

var(Pnum) /\ var(Rev).

Write assembly number if only it is provided

nonvar(Pnum) /\ var(Rev),

nl, write(’'Current assembly part number: '), write(Pnum),
nl.

Write revision level if only it is provided

var(Pnum) /\ nonvar(Rev),

nl, write(’Current assembly revision level: ’), write(Rev),

nl.

Write assembly number and revision level if both are
provided

nonvar (Pnum) /\ nonvar(Rev),

nl, write(’Current assembly part number: '), write(Pnum),
nl,

218

write(’Current assembly revision level: '), write(Rev),
nl.

219

% #xkkkkkkkk Operations on relation mrppmr
P
yAET T LT

% **%%* Routine to insert part master records into MRP II
% wodokokk

insert (mrppnr)

-->

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum, Sbnum)) .

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode,Cost,

% Hokk

%

-->

AT

%

AT 2]

% kkx

%

Lt,Spnum, Sbnum))
Part master record has already been inserted

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Des) /\ nonvar(Buom) /\ nonvar(Spnum)

/\ nonvar(Sbnum)

/\ mrppmr(Pnum,Dnum,Dsize,Des,Buom,_,_,_,_,_,Spnum, Sbnum) .

Request part number if not provided

var (Pnum) ,

write('Part Number? °),

read(Pnunm) ,

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum, Sbnum)) .

Request description if not provided

var(Des)

/\ nonvar(Pnum),

write(’Description? '),

read(Des),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom, Scode,
Cost,Lt,Spnum,Sbnum)) .

Request BOM unit of measure if not provided
var (Buom)

/\ nonvar(Pnum) /\ nonvar(Des),
write("BOM Unit of Measure? '),

220

% kkx

read (Buom) ,
insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Request purchasing/inventory unit of measure if

% *** not provided

%

-->

Y Aekk

%

yAET Y

%

% ks

%

% ke

var (Puom)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom),
write('Purchasing/Inventory Unit of Measure? '),

read (Puom) ,

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Request UOM conversion factor if not provided

var(Cfuom)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom),

write('Unit of Measure Conversion Factor? '),
read(Cfuom), ,

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum, Sbnum)) .

Request source code if not provided

var(Scode) ,

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom),

write(’Source Code? '),

read(Scode),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Request lead time if not provided

var(Lt)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode),
write(’Lead Time? ’),

read(Lt),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Let drawing number be unknown if not provided

221

%

% okkx

%

% wEx

%

% Hxx

%

% Hxx

%

var (Dnum)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Lt),

insert (mrppmr (Pnum, inapp,Dsize,Des,Buom,Puom,Cfuom, Scode,
Cost,Lt,Spnum,Sbnum)) .

Let drawing size be unknown if not provided

var(Dsize)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Lt) /\ nonvar(Dnum),

insert (mrppur (Pnum,Dnum, inapp,Des, Buom,Puom, Cfuom, Scode,
Cost,Lt,Spnum,Sbnum)) .

Let cost be unknown if not provided

var(Cost)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Lt) /\ nonvar(Dnum) /\ nonvar(Dsize),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
unknown, Lt ,Spnum, Sbnum)) .

Let supersedes part number be unknown if not provided

var (Spnum)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Lt) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Cost),

insert (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode ,
Cost,Lt,unknown,Sbnum)) .

Let superseded by part number be unknown if not provided

var (Sbnum)

/\ nonvar(Pnum) /\ nonvar(Des) /\ nonvar(Buom)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Lt) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Cost) /\ nonvar(Spnum),
insert(mrppmr(Pnum.Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,unknown)) .

222

% ek
% owokk
%

-->

% okkx
% keskox

Same part number with different attributes already
exists in MRP II

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Des) /\ nonvar(Buom) /\ nonvar(Puom)

/\ nonvar(Cfuom) /\ nonvar(Scode) /\ nonvar(Cost)

/\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)

/\ mrppmr(Pnum, _, _,_,_ s s ssrsms)

/\ ~(orppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)),

write(’'Part Number Already Exists in MRP II’),

nl,

fail. '

Part number does not exist in MRP II, but does exist
in CAD with different attributes (has not been released

% **xto MRP II yet)

%

-->

Y kkx

%

nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Des) /\ nonvar(Buom) /\ nonvar(Puom)

/\ nonvar(Cfuom) /\ nonvar(Scode) /\ nonvar(Cost)

/\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)

/\ " (mrppmr(Pnum, _, _, .y vermsmrmrms))

/\ cadpart(Pnum,_,_,_,_,_,_) :

/\ ~(cadpart(Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)),
write('Part Number Already Exists in CAD'),

nl,

fail.

Part is being inserted via MRP II

nonvar (Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Des) /\ nonvar(Buom) /\ nonvar(Puom)

/\ nonvar(Cfuom) /\ nonvar(Scode) /\ nonvar(Cost)
/\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ "(mrppmr(Pnum, _,_,_.,_,_ ')

add (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom, Scode,Cost,
Lt,Spnum,Sbnum)),

insert(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum, Sbnum)),
insert(mrprev(Pnum,Rev,Estart,Eend,Mstat)),

checksup (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)),

write('Part has been added to MRP II’),

223

nl.

% *** Part is being inserted via the release of a CAD part
%
--> nonvar(Pnum) /\ nonvar(Dnum) /\ nonvar(Dsize)
/\ nonvar(Des) /\ nonvar(Buom) /\ nonvar(Puom)
/\ nonvar(Cfuom) /\ nonvar(Scode) /\ nonvar(Cost)
/\ nonvar(Lt) /\ nonvar(Spnum) /\ nonvar(Sbnum)
/\ " (mrppmr(Pnum, _,_,_ .oy vosmrmsoras2))
/\ cadpart(Pnum,Dnum,Dsize,Des,Buom,Spnum,Sbnum),
add (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,
Lt,Spnum, Sbnum)),
write('Part has been added to MRP II’),
nl.

% **xxx Routine to delete a part from MRP II
% etk

delete (mrppmr)

--> delete(mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

delete (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,
Lt,Spnum, Sbnum))

% **% Stop if part does not exist in MRP II
%
--> nonvar(Pnum)
/\ T(mrppmr(Pnum, _, _, _,_ s mrmrmss))

% *** Request part number if not provided
h
--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
delete (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)).

% *%x Part is used in a product structure, cannot be deleted

%

-=> nonvar (Pnum)

224

/\ mrppmr(Pnum, _,_, _,_._ s s ssoes)

/\ “findnone(mrpcomponent(Pnum,_,_,_,_)),

write('Part is used in a Structure--cannot be deleted’),
nl,

fail.

% x%x Part is on order, cannot be deleted

%

--> nonvar(Pnum)

/\ mrppmr(Pnum, _, _,_,_vvorrrmrms)

/\ onorder(Pnum,_,_)

/\ findnone(mrpcomponent (Pnum,_,_,_,.)),
write('Part is on order--cannot be deleted’),
nl,

fail.

% **% Part is in inventory, cannot be deleted

% :

--> nonvar(Pnum)
/\ mrppmr(PRum, _,_,_u_vosrrrras)
/\ inventory(Pnum,)
/\ findnone (mrpcomponent (Pnum,_,_,_,_))

/\ ~(onorder(Pnum,_,_))

/\ write(’'Part is in inventory--cannot be deleted’),
nl,

fail.

% *%** Delete revision records associated with part

h

--> nonvar (Pnum)

/\ mrppmr(Pnum, _,_,_,_s_s_s_srmss)
/\ mrprev(Pnum,Rev,_,_,_)
/\ findnone (mrpcomponent (Pnum,_,_,_,_))

/\ ~(onorder(Pnum,_,_))

/\ ~(inventory(Pnum,_)),

delete(mrprev(Pnum,Rev,_,_,_)),

delete (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

% *x% Delete CAD-generated part from MRP II
--> nonvar(Pnum) ’

/\ mrppmr(Pnum, _, _,_,_,_, v s)
/\ ~(mrprev(Pnum,_,_,_,_))

/\ ~(cadpart(Pnum, inapp, inapp,_,_,_,_))
/\ findnone(mrpcomponent (Pnum,_,_,_,_))

225

/\ ~(onorder(Pnum,_,_))

/\ ~(inventory(Pnum,_)),

remove (mrppmr (Pnum, _, _,_,_ v s rrmrmsar)),
delete (newpmr (Pnum)),
delete(latestmrprev(Pnum,_)),

write (’Part has been deleted from MRP II’),
nl.

% *** Delete MRP II-generated part from MRP II
h
--> nonvar(Pnum)
/\ mrppmr(PRum, _,_,_ s rosmrrmrmrms)
/\ ~(mrprev(Pnum,_,_,_,_))
/\ cadpart(Pnum,inapp,inapp,_,_._,.)
/\ findnone(mrpcomponent (Pnum,_,_,_,_))
/\ ~(onorder(Pnum,_,_))
/\ ~(inventory(Pnum,_)),

remove (mrppmr (PRUM, _, sy vererrmraras)),
delete(latestmrprev(Pnum,_)),
delete(cadpart(Pnum,_,_,_,_._.,_)),

write ('Part has been deleted from MRP II'),
nl.

% **%%* Routine to modify fields in MRP II part master record
% okokokckk

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,
Lt,Spnum, Sbnum))

% *** Stop if desired part record is the same as existing one
l/. ¥
--> nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Scode) /\ nonvar(Cost) /\ nonvar(Lt)

/\ nonvar(Spnum) /\ nonvar(Sbnum) /\ nonvar(Pnum)

/\ mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,Cost,

Lt,Spnum, Sbnum) .

% *** Stop if part number not provided
%

--> var(Pnum).

% *x* Stop if part number does not exist in MRP II

226

)

% skkx
% ko

%

% Kok

A

Y okkx

%

Y kekk
Y wkx

%

FAET 2"
y AT T

%

nonvar (Pnum)
/\ “(mrppmr(Pnum, _,_._,_,_s_vrroras)).

Instantiate drawing number to current value if
not provided

var (Dnum)

/\ nonvar (Pnum)

/\ mrppmr(Pnum,Dnum, _, _, _,_ s sesmrms_s_)

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate drawing size to current value if not provided

var(Dsize)
/\ nonvar(Dnum)
/\ nonvar (Pnum)

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate description to current value if not provided

var(Des)

/\ nonvar(Dnum) /\ nonvar(Dsize)

/\ nonvar(Pnum)

/\ mrppmr(Pnum,_,_,Des,_,_,_,_.s_._s_r_),

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate BOM unit of measure to current value if
not provided

var (Buom)
/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Pnum)

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate purchasing/inventory UOM to current value if
not provided

var (Puom)

227

YT
AT

%

YRS T

%

% Aokk

%

YA T

h

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Pnum)

/\ mrppmr(Pnum,_,_,_,_,Puom,_,_,_._,_,_),

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuon,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate UOM conversion factor to current value if
not provided

var (Cfuom)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Pnum)

/\ mrpponr(Pnum,_,_,_,_,_,Cfuom,_,_,_,_,_),

modify(mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate source code to current value if not provided

var (Scode)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar (Pnum)

/\ mrppmr(Pnum,_,_,_,_,_.,_,Scode,_,_,_,_),

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buon,Puom,Cfuom,Scode,
Cost,Lt,Spnum, Sbnum)) .

Instantiate cost to current value if not provided

var(Cost)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Scode) /\ nonvar(Pnum)

/\ mrppmr(Pnum,_,_._,_._._,_,Co8t,_,_,_),

modify (mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

Instantiate lead time to current value if not provided

var(Lt)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Scode) /\ nonvar(Cost) /\ nonvar(Pnum)

/\ mrppmr(Pnum,_,_,_,_,_,_,_,_,Lt,_,_),

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom, Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

228

% *%* Instantiate supersedes part number to current value if
% *** not provided
%
--> var(Spnum)
/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)
/\ nonvar(Scode) /\ nonvar(Cost) /\ nonvar(Lt)
/\ nonvar(Pnum)
/\ mrppmr(Pnum,_,_,_,_,_»_._,_,_,Spnum,_),
modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)) .

% ***% Instantiate superseded by part number to current value if not
% **% provided
--> var(Sbnum)

/\ nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)

/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Scode) /\ nonvar(Cost) /\ nonvar(Lt)

/\ nonvar(Spnum) /\ nonvar(Pnum)

/\ mrppmr(Pnum,_,_,_,_»_s-»reso»_»_,Sbnum),

modify (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,

Cost,Lt,Spnum,Sbnum)) .

% *** Modify part record
A
--> nonvar(Dnum) /\ nonvar(Dsize) /\ nonvar(Des)
/\ nonvar(Buom) /\ nonvar(Puom) /\ nonvar(Cfuom)
/\ nonvar(Scode) /\ nonvar(Cost) /\ nonvar(Lt)
/\ nonvar(Spnum) /\ nonvar(Sbnum) /\ nonvar(Pnum)
/\ mrppmr(Pnum, _, _,_,_s_ s srrs)
/\ ~ (mrppmr(Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum,Sbnum)),
remove (mrppmr (Pnum, _, _, .,y rerormreses)),
add (mrppmr (Pnum,Dnum,Dsize,Des, Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum, Sbnum)),
modify(cadpart (Pnum,Dnum,Dsize,Des,Buom, Spnum,Sbnum)) .

% #**%x% Internal routine to process supersession of parts

% **%%% in MRP II
yAET TS

checksup (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puon,Cfuom,Scode,Cost,

229

Lt,Spnum, Sbnum))

% **x Part does not supersede another

%

--> mrppmr(Pnum,_,_,_,_,_s_»—,_,_,unknown,_),
nl.

% *** Superseded part does not exist in MRP II

h

==> mrppmr(PRum, _, _,_,_s_sormrr—r_s)
/\ ~(mrppmr(Pnum,_,_,_,.+_s_+_»_,_,unknown,_))
/\ " (mrppmr(Spnum, _, _,_._s_srrmrarns))
write(’'Superceded Part Number Does Not Exist in MRP II'),
nl,
fail.

% **x Perform supersession

h

-~> mrppmr(Pnum, _,_,_,_,_s_srrmss)
/\ ~(mrppmr(Pnum,_,_,_,_._._s_,_,_,unknown,_))
/\ mrppmr(Spnum, _,_,_,_ s s d
modify (mrppmr(Spnum, _, _,_,_ s s_ves—s_.—,Pnum)),

substitutepartmrp (Spnum,Pnum) .

% **xx* Internal routine to check for minimum part master data
% ***%x entries prior to the release of a part in MRP II
% wdokkk

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,Scode,
Cost,Lt,Spnum, Sbnum))

% ***x Stop if part number not provided
h
--> var(Pnum).

% *** Stop if the part does not exist in MRP II

--> nonvar (Pnum)
/\ “(mrppmr(Pnum, _,_,_._ . e rvrs_. D).

% *** Request purchasing/inventory unit of measure if it is
% *** unknown in the part master record

230

%

% kxx
% Aok

[

% kokk
yAET T

%

% kxk
% ko

%

U okwok
% kkx

%

var (Puom)

/\ mrppmr(Pnum,_,_,_,_,unknown,_,_,_,_,_,.)

/\ nonvar(Pnum),

write('Purchasing/Inventory Unit of Measure? '),

read (Puom) ,

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuon,
Scode,Cost,Lt,Spnum,Sbnum)) .

Instantiate purchasing/inventory unit of measure if it
is already in the part master record

var (Puom)
/\ "~ (arppmr(Pnum,_,_,_,_,unknown,_,_,_,_,_,_))
/\ mrppur(Pnum,_,_,_,_,Puom,_,_,_,_,_,_)

/\ nonvar(Pnum),
checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,
Scode,Cost,Lt,Spnum, Sbnum)) .

Request UOM conversion factor if it is unknown in the
part master record

var(Cfuom)

/\ mrppmr(Pnum,_,_,_,_,_,unknown,_,_,_,_,_)

/\ nonvar (Puom)

/\ nonvar(Pnum),

write('Unit of Measure Conversion Factor? '),
read(Cfuom) ,

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puonm,Cfuonm,
Scode,Cost,Lt,Spnum,Sbnum)) .

Instantiate UOM conversion factor if it is already in
the part master record

var (Cfuom)
/\ ~(mrppmr(Pnum,_,_,_,_,_,unknown,_,_,_,_,_))
/\ mrppmr(Pnum,_,_,_,_,_,Cfuom,_,_,_,_,_)

/\ nonvar (Puom)

/\ nonvar(Pnum),

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,
Scode,Cost,Lt,Spnum, Sbnum)) .

Request source code if it is unknown in the part
master record

231

% *xk
% mokok

%

yAEL T
AT

%

% kokok
% dokk

%

PAET T

%

var (Scode)

/\ mrppmr(Pnum,_,_,_,_,_,_,unknown,_,_,_,_)

/\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Pnum),

write('Source Code? °),

read(Scode),

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,
Scode,Cost,Lt,Spnum,Sbnum)) .

Instantiate source code if it is already in the part
master record

var(Scode)
/\ ~(arppmr(Pnum,_,_,_,_,_,_,unknown,_,_,_,_))
/\ mrppmr(Pnum,_,_,_,_,_.,_,Scode,_,_,_,.)

/\ nonvar(Puom) /\ nonvar(Cfuom)

/\ nonvar(Pnum),

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuon,
Scode,Cost,Lt,Spnum,Sbnum)) .

Request lead time if it is unknown in the part
master record

var(Lt)

/\ mrppmr(Pnum,_,_,_,_.,_,_,_,_,unknown,_,_)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Pnum),

write(’Lead Time? '),

read(Lt),

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buon,Puom,Cfuon,
Scode,Cost,Lt,Spnum, Sbnum)) .

Instantiate lead time if it is already in the part
master record

var(Lt)
/\ ~(mrppmr(Pnum,_,_,_,_,_,_.,_,.,unknown,_,_))
/\ mrppmr(Pnum, _,_,_,_s_r-s_r_> Lt.d._)

/\ nonvar(Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)

/\ nonvar(Pnum),

checkentries (mrppmr (Pnum,Dnum,Dsize,Des,Buom,Puom,Cfuom,
Scode,Cost,Lt,Spnum, Sbnum)) .

Update mrppmr record

232

nonvar (Puom) /\ nonvar(Cfuom) /\ nonvar(Scode)
/\ nonvar(Lt) :

/\ nonvar(Pnum)
/\ mrppmr(Pnum, _,_, . v i)

modify (mrppmr(Pnum,_,_,_,_,Puom,Cfuom,Scode,_,Lt,_,_)).

233

% *kkxikkxikk Operations on relation mrprev
% skkokdkok

% ***%% Routine to insert revsion records into MRP II
YSETT T

insert(mrprev)
--> insert(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

insert (mrprev(Pnum,Rev,Estart,Eend,Mstat))

% *** Revision has already been inserted

%

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Mstat)
/\ mrprev(Pnum,Rev,Estart,Eend,Mstat).

% *** Request part number if not provided
h
--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
insert (mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% *%** Request revision level if not provided
h
--> var(Rev)
/\ nonvar(Pnum),
write(’'Revision Level? '),
read(Rev),
insert (mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% **% Request desired initial status if not provided

%
--> var(Mstat)
/\ nonvar(Pnum) /\ nonvar(Rev),
write(’'Status Code? '),
read (Mstat) ,
insert (mrprev(Pnum,Rev,Estart,Eend,Mstat)) .

% *%*% Make sure status code is either r or h

%

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Mstat)

234

/\ “Mstat='r’' /\ "Mstat='h’,

write('Status must be either r or h’),

nl,

insert (mrprev(Pnum,Rev,Estart,Eend,Mstat2)).

% *** Request effectivity start date if not provided and
% *** gtatus code is r ‘
%
--> var(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Mstat)
/\ Mstat='r’,
write('Effectivity Start Date? '),
read (Estart),
insert (mrprev(Pnum,Rev,Estart,Eend ,Mstat)).

% **x* Let effectivity start date be unknown if not provided
% *** and status code is h
--> var(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Mstat)
/\ Mstat='h’,
insert(mrprev(Pnum,Rev,unknown,Eend,Mstat)).

% **% Let effectivity end date be unknown if not provided
%
--> var(Eend)

/\ nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)

/\ nonvar(Mstat)

/\ “("Mstat='r’ /\ “Mstat='h’),

insert (mrprev(Pnum,Rev,Estart,unknown,Mstat)).

% *#% Part entered does not exist in MRP II

%

--> nonvar (Pnum)
/\ nonvar(Rev) /\ nonvar(Estart) /\ nonvar(Eend)
/\ nonvar(Mstat)
/\ “("Mstat='r' /\ “Mstat='h’)

/\ “(mrppmr(Pnum,_,_,_,_,_,__s_r_r_Hr)),
write('Part Number Does Not Exist in MRP II’),
nl,

fail.

% *%% Same revision level with different attributes already
% *%% exists in MRP II

%

--> nonvar{(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)

235

/\ nonvar(Eend) /\ nonvar(Mstat)

/\ “("Mstat='r’ /\ ~“Mstat='h’)

/\ mrprev(Pnum,Rev,_,_,_)

/\ ~(mrprev(Pnum,Rev,Estart,Eend,Mstat)),
write('Revision Level Already Exists in MRP II'),
nl,

fail.

% *%x MRP II user attempting to insert a revision to a
% *%x CAD-generated part, not allowed
'/. .
--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Mstat)
/\ "("Mstat='r’ /\ "Mstat='h’)

/\ mrppmr(Pnum, _,_,_s_v_v_sser_rs)

/\ “mrprev(Pnum,Rev,_,_,.)

/\ “cadrev(Pnum,Rev,_._,_._)

/\ cadpart(Pnum,_,_,_,_,_,.)

/\ ~“cadpart(Pnum,inapp,inapp,_,_,_,_),

write(’Revisions to this part may be made only by
CAD users’),

nl,

fail.

% ***% Revision being inserted via MRP II with hold status
%
--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)

/\ nonvar(Eend) /\ nonvar(Mstat)

/\ Mstat='h’

/\ mrppmr(Pnum, _, _,_,_,_s_v_ssmses)
/\ ~(mrprev(Pnum,Rev,_,_,_))

/\ ~(cadrev(Pnum,Rev,_,_,_,_))

/\ cadpart(Pnum, inapp,inapp,_,_._,.),

add(mrprev(Pnum,Rev,Estart,Eend,Mstat)),
insert(cadrev(Pnum,Rev,Estart,Eend,r,inapp)),

copybom(mrprev(Pnum,Rev,_,_,_)),
write(’Revision has been added to MRP I1I’),
nl.

% *** Revision being inserted via MRP II with released status

%

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Mstat)
/\ Mstat='r’
/\ mrppmr(Pnum, _, _,_, s yrrmrmms)

236

/\ ~(mrprev(Pnum,Rev,_,_,_))

/\ ~(cadrev(Pnum,Rev,_,_,_,_.))

/\ cadpart(Pnum, inapp,inapp._._._,_).

add (mrprev(Pnum,Rev,Estart,Eend ,Mstat)),
insert(cadrev(Pnum,Rev,Estart,Eend,r,inapp)),
copybom(mrprev(Pnum,Rev,_,_,_)),

checkrev(mrprev(Pnum,Rev,Estart,_,_)),
write(’'Revision has been added to MRP II’),
nl.

% *** Revision being inserted via CAD

%

--> -nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ nonvar(Eend) /\ nonvar(Mstat)
/\ “("Mstat='r’' /\ "Mstat='h’)

/\ mrppmr(Pnum, _, _,_,_,_s_s_s_sror)
/\ ~(mrprev(Pnum,Rev,_,_,_))
/\ cadrev(Pnum,Rev,_,_,_._),

add (mrprev(Pnum,Rev,Estart,Eend,h)),
write('Revision has been added to MRP II'),
nl.

-

% **xixx Internal routine to delete a specific revision of a
% ***%% part in MRP II
% wAockkk

delete(mrprev(Pnum,Rev,Estart,Eend,Mstat))
% *#* Stop if revision does not exist
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ ~(mrprev(Pnum,Rev,_,_,_)).
h **%x Request part number if not provided
--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
delete(mrprev(Pnum,Rev,Estart,Eend,Mstat)) .

% *%* Request revision level if not provided

--> var(Rev)

237

o kkok

%

-—>

% xxk

%

% ek
% kokok

[

yAET T

/\ nonvar(Pnum),

write('Revision Level? '),

read(Rev),
delete(mrprev(Pnum,Rev,Estart,Eend, Mstat)).

Delete revision via CAD

nonvar (Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,_)
/\ ~(cadrev(Pnum,Rev,_,_,_,_)),
remove (mrprev(Pnum,Rev,_,_,_)),

delete (newrev(Pnum,Rev)),

delete(rereleased(Pnum,Rev)),

delete(obsolete (Pnum,Rev)),

write('Revision information has been deleted
from MRP II’),

nl.

Delete MRP II-generated revision

nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,_)

/\ cadrev(Pnum,Rev,_,_,_,inapp),

remove (mrprev(Pnum,Rev,_,_,_)),

delete(newrev(Pnum,Rev)),

delete(rereleased(Pnum,Rev)),

delete(obsolete (Pnum,Rev)),

delete(cadrev(Pnum,Rev,_,_,_,_)),

write('Revision information has been deleted
from MRP II’),

nl.

Revision was CAD-generated, has released status
in CAD, cannot delete

nonvar (Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,_)

/\ cadrev(Pnum,Rev,_,_,r,_)

/\ ~“(cadrev(Pnum,Rev,_,_,_,inapp)),

write('Revision has released status in CAD--cannot
delete’),

nl,

fail.

Revision was CAD-generated, has hold status in CAD,

238

%ok

%

-->

% Hxx

%

cannot delete

nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,_)

/\ cadrev(Pnum,Rev,_,_,h,_)

/\ “(cadrev(Pnum,Rev,_,_,_,inapp)),

write(’'Revision has hold status in CAD--cannot delete’),
nl,

fail.

Delete CAD-generated revision from MRP II

nonvar (Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,_)

/\ cadrev(Pnum,Rev,_,_,0,.)

/\ " (cadrev(Pnum,Rev,_,_,_,inapp)),
remove (mrprev(Pnum,Rev,_,_,_)),

delete(newrev(Pnum,Rev)),

delete(rereleased(Pnum,Rev)),

delete(obsolete (Pnum,Rev)),

write('Revision information has been deleted from
MRP II°),

nl.

% **%x**x Internal routine to modify an MRP II revision record
% skskokxk

modify(mrprev(Pnum,Rev,Eatart,Eend,Mstat))

Y okkk

%

Stop if desired record is the same as existing one
nonvar(Estart) /\ nonvar(Eend) /\ nonvar(Mstat)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,Estart,Eend,Mstat) .

Stop if part number not provided

var (Pnum) .

Stop if revision level not provided

var (Rev)
/\ nonvar(Pnum) .

239

YAET T

h

% okkek
% kkk

%

% Aok
YRR T T

%

% woxk

%

YRET L]

%

Stop if revision level does not exist in MRP II

nonvar (Pnum) /\ nonvar(Rev)
/\ ~(mrprev(Pnum,Rev,_,_,_)).

Instantiate effectivity start date to current value if
not provided

var(Estart)
/\ nonvar(Pnum) /\ nonvar(Rev)
/\ mrprev(Pnum,Rev,Estart,_,_),

modify(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

Instantiate effectivity end date to current value if
not provided

var (Eend)

/\ nonvar(Estart)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,Eend,_),

modify (mrprev(Pnum,Rev,Estart,Eend,Mstat)).

Instantiate MRP II status to current value if not provided

var(Mstat)

/\ nonvar(Estart) /\ nonvar(Eend)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,_,_,Mstat),
modify(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

Modify the revision record

nonvar (Estart) /\ nonvar(Eend) /\ nonvar(Mstat)
/\ nonvar(Pnum) /\ nonvar(Rev) '

/\ mrprev(Pnum,Rev,_,_,_)
/\ "~ (mrprev(Pnum,Rev,Estart,Eend,Mstat)),
remove (mrprev(Pnum,Rev,_,_,_)),

add (mrprev(Pnum,Rev,Estart,Eend,Mstat)),
modify(cadrev(Pnum,Rev,Estart,Eend,_,_)).

% *#%%*x%x Routine to release a revision record from hold in MRP II
% kskokokok

240

releasehold(mrprev)

--> releasehold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

releasehold (mrprev(Pnum,Rev,Estart,Eend,Mstat))

% *** Request part number if not provided

%

--> var(Pnum),
write(’'Part Number? '),
read (Pnum) , :
releasehold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% #**% Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
write('Revision Level? '),
read (Rev),
releasehold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% *%* Request effectivity date if value in record is unknown
h
--> var(Estart)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,unknown,_,_),

write('Effectivity Start Date? '),

read (Estart),

releasehold(mrprev (Pnum,Rev,Estart,Eend,Mstat)).

% *x% Instantiate effectivity start date if previously known
%
--> var(Estart)

/\ nonvar(Pnum) /\ nonvar(Rev)

/\ mrprev(Pnum,Rev,Estart,_,_)

/\ ~(mrprev(Pnum,Rev,unknown,_,_)),

releasehold(mrprev (Pnum,Rev,Estart,Eend,Mstat)).

% *xx Part entered does not exist in MRP II
%
--> nonvar(Pnum)
/\ nonvar(Rev) /\ nonvar(Estart)
/\ “(mrppmr(Pnum, _,_,_,_ ... voscscsos)),

241

% kokok

%

% ke

%

% ko
% skok

%

% kkk

%

write ("Part Number Does Not Exist in MRP II'),
nl,
fail.

Revision level entered does not exist in MRP II

nonvar (Pnum) /\ nonvar(Rev)

/\ nonvar(Estart)

/\ mrppmr(Pnum, _, _,_,_ s ssmrmsmsms)

/\ “(mrprev(Pnum,Rev,_,_,_)),

write('Revision Level Does Not Exist in MRP II'),
nl,

fail,

Revision level entered already has released status

nonvar (Pnum) /\ nonvar(Rev)

/\ nonvar(Estart)

/\ mrprev(Pnum,Rev,_,_.,r),
write('Revision Has Released Status’),
nl,

fail.

Revision level entered is on hold in CAD, cannot be
released

nonvar (Pnum) /\ nonvar(Rev)

/\ nonvar(Estart)

/\ mrprev(Pnum,Rev,_,_,h)

/\ cadrev(Pnum,Rev,_,_,h,_),

write(’Revision has hold status in CAD--cannot
be released’),

nl,

fail.

Rerelease part/revision in MRP II

nonvar(Pnum) /\ nonvar(Rev)
/\ nonvar(Estart)

/\ cadrev(Pnum,Rev,_,_,_,_)
/\ “cadrev(Pnum,Rev,_,_.h,_)
/\ mrprev(Pnum,Rev,_,_,h)

/\ latestmrprev(Pnum,Rev),
modify(mrprev(Pnum,Rev,_,_,r)),
delete(rereleased(Pnum,Rev)),

242

write('Revision has been released in MRP II'),
nl.

% *** Release part/revision for the first time in MRP
%
--> nonvar(Pnum) /\ nonvar(Rev)
/\ nonvar(Estart)
/\ cadrev(Pnum,Rev,_,_,_,_)
/\ ~(cadrev(Pnum,Rev,_,_,h,_))
/\ mrprev(Pnum,Rev,_,_,h)
/\ “latestmrprev(Pnum,Rev),
checkentries(mrppmr(Pnum, _, _, _,_sesesosmrormr)),
checkrev(mrprev(Pnum,Rev,Estart,_,.)),
delete (newpmr (Pnum)),
delete (newrev(Pnum,Rev)),
delete(rereleased(Pnum,Rev)),
modify(mrprev(Pnum,Rev,Estart,_,r)),
write('Revision has been released in MRP II’),
nl.

% ***x%% Internal routine to make the newly released revision the
% **xx* latest one in MRP II

% kstokokok

checkrev(mrprev(Pnum,Rev,Estart,Eend,Mstat))

% *** Stop if parent part number not provided

--> var(Pnum).

% *** Stop if parent revision level not provided

--> var(Rev)
/\ nonvar(Pnum).

% *%* Stop if effectivity start date not provided
%
--> var(Estart)

/\ nonvar(Pnum) /\ nonvar(Rev).

% *** Make first version of part the latest one and put

% **%*x effectivity start date as effectivity end date of latest
% #x* revision of part being superseded

243

%

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ "latestmrprev(Pnum,R)
/\ mrppmr(Pnum,_,_,_,_,_,_+_._.,_,Spnum,_)
/\ latestmrprev(Spnum,R),
modify(mrprev(Spnum,R,_,Estart,_)),
make (latestmrprev(Pnum,Rev)).

% *%% Make first version of part the latest one, no part being
% *** superseded
%
--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ "latestmrprev(Pnum,R)
/\ mrppmr(Pnum,_,_,_._,_,_+_,_,_,Spnum,_)
/\ = latestmrprev(Spnum,R),
make (latestmrprev(Pnum,Rev)).

% *%* Make new version of part the latest one, update previous
% *** revision's effectivity end date

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ latestmrprev(Pnum,R)
/\ mrprev(Pnum,R,_,unknown,_),
modify (mrprev(Pnum,R,_,Estart,_)),
make (latestmrprev(Pnum,Rev)).

% **% Make new version of part the latest one

h

--> nonvar(Pnum) /\ nonvar(Rev) /\ nonvar(Estart)
/\ latestmrprev(Pnum,R)
/\ “mrprev(Pnum,R,_,unknown,_),
make (latestmrprev(Pnum,Rev)).

h *x*xxx Internal routine to copy bills of material from the
% *%kxk previous revision of an assembly to the new one in
% *%kx%x MRP II

% kokkkok

copybom (mrprev)

--> copybom(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

copybom(mrprev(Pnum,Rev,Estart,Eend,Mstat))

244

% **%x Stop if the part number is not provided
%
--> var(Pnum).

% *%* Stop if the revision level is not provided

-—> var(Rev)
/\ nonvar(Pnunm).

% **% Stop if the revision is the first for the part

--> nonvar(Pnum) /\ nonvar(Rev)
/\ "latestmrprev(Pnum,_).

% *** Stop if the revision is the latest one
--> nonvar(Pnum) /\ nonvar(Rev)
/\ latestmrprev(Pnum,R)
/\ R=Rev.
% **% copy the bom from the last revision to the new one
--> nonvar(Pnum) /\ nonvar(Rev)
/\ latestmrprev(Pnum,R)

/\ “(R=Rev),
copybommrp (Pnum,R,Pnum,Rev) .

% ®%x** Routine to place a hold on a part in MRP II
% dekokokk : '

hold(mrprev)

--> hold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

hold(mrprev(Pnum,Rev,Estart,Eend,Mstat))

% **x Revision is already on hold

%

-=> nonvar(Pnum) /\ nonvar(Rev)
/\ mrprev(Pnum,Rev,_,_,h).

245

% *%% Request part number if not provided

%

--> var(Pnum),
write('Part Number? '),
read (Pnum) ,
hold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% *** Request revision level if not provided
%
--> var(Rev)
/\ nonvar(Pnum),
" write('Revision Level? °),
read(Rev),
hold(mrprev(Pnum,Rev,Estart,Eend,Mstat)).

% *%% Part entered does not exist in MRP II

%

--> nonvar(Pnum)
/\ nonvar(Rev)
/\ T (mrppmr(Pnum, _, _, s v imrmrmrms))
write("Part Does Not Exist in MRP II’),
nl,
fail.

% *%% Revision level entered does not exist in MRP II .

%

--> nonvar(Pnum) /\ nonvar(Rev)

/\ mrppmr(Pnum, _,_,_,_ v sesrmrmres)

{\ ~(mrprev(Pnum,Rev,_,_,_)),

write('Revision Level Does Not Exist in MRP II’),
nl, '

fail.

% *** Give revision hold status

h

--> nonvar(Pnum) /\ nonvar(Rev)
/\ mrprev(Pnum,Rev,_,_,r),
modify (mrprev(Pnum,Rev,_,_,h)),
write('Revision has been given hold status in MRP II’),
nl. g

246

% *kkikkxikkk Operations on relation lastestmrprev
% Aokokokok

% **%%*x Internal routine to update the latest revision record
% *%xk% in MRP II
% kkkokx

make (latestmrprev (Pnum,Rev))

% *x% Stop if record already exists
%

--> latestmrprev(Pnum,Rev).

% *** Update existing record for new revision

%

--> latestmrprev(Pnum,R)
/\ ~latestmrprev(Pnum,Rev),
delete(latestmrprev(Pnum,R)),
insert(latestmrprev(Pnum,Rev)).

% **% Insert record for first revision

h
--> Tlatestmrprev(Pnum,R),
insert(latestmrprev(Pnum,Rev)).

% *%kx% Internal routine to insert a latest revision record

% *x*k%xx in MRP II
% koo

insert(latestmrprev(Pnum,Rev))

% *** Stop if record already exists
h

--> latestmrprev(Pnum,Rev).

% #*%% Insert record

A .
--> Tlatestmrprev(Pnum,Rev),
add(latestmrprev(Pnum,Rev)).

247

% #*x%%*% Internal routine to delete a latest revision record

% *x%kx from MRP II
% kkskckok

delete(latestmrprev(Pnum,Rev))

% #x* Stop if record does not exist

%

--> “latestmrprev(Pnum,Rev).

% *%*% Delete record

h
--> latestmrprev(Pnum,Rev),
remove (latestmrprev(Pnum,Rev)).

248

% #xkkkkxikk*x Operations on relation mrpcomponent
% kkokoxk

% #x%%x Routine to insert relationship records into MRP II

% x%xkx (top level)
% eskokokok

insert (mrpcomponent)

--> insert(mrpcomponent(Pnum,Rev,Item,Cpn,Qty)).

insert (mrpcomponent (Pnum,Rev,Item,Cpn,Qty))

% *** Check for assembly part number or revision change prior

% *** to insersion

%

--> ecnheader(Pnum,Rev),
checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
insert2(mrpcomponent (Pnum,Rev,Item,Cpn,Qty)) .

% #xk** Internal routine to actually perform insersion of
% #x*%x* relationships into MRP II
% ekkokok

insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty))

% **x Relationship has already been inserted

h

-=> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ mrpcomponent(Ppn,Prn,Item,Cpn,Qty).

% *x* Request parent part number if not provided
h
--> var(Ppn),

write('Parent part number? '),

read (Ppn),

insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request parent revision level if not provided

%

249

--> var(Prn)
/\ nonvar(Ppn),
write('Parent revision level? '),
read(Prn),
insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #** Request item number if not provided

--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’Item Number? '),
read(Item),
insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *#%%x Request component part number if not provided
%
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write(’Component part number? '),
read(Cpn),
insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request quantity per assebly if not provided
./. .
--> var(Qty)

/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item)
/\ nonvar(Cpn),

write(’'Quantity per assembly? '),

read(Qty),

insert2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Parent part as entered does not exist

L

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item)
/\ nonvar(Cpn) /\ nonvar(Qty)
/\ “mrpcomponent(Ppn,Prn,Item,Cpn,Qty)

/\ “(mrppmr(Ppn, _, _,_. sy)),
write('Parent part does not exist in MRP II'),
nl,

fail.

% **x Parent revision as entered does not exist

h
--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

250

% Kok

%

% kkx

%

% ok

%

% okkk

%

/\ mrppmr (PPN, st s rmimrmros)

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ ~(mrprev(Ppn,Prn,_,_,_)),

write(’'Parent revision does not exist in MRP II’),
nl,

fail.

Component part as entered does not exist

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ mrprev(Ppn,Prn,_,_,_)
/\ “mrpcomponent(Ppn,Prn,Item,Cpn,Qty)
/\ " (mrppmr(Cpn, _ .\ o)),

write(’Component part number does not exist in MRP II'),
nl,
fail.

Component part as entered has no revisions in MRP II

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ mrprev(Ppn,Prn,_,_,_)

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)
/\ mrppmr(Cpn, L.y mrcrmsmrmras)
/\ ~(mrprev(Cpn,_,_,_._)),

write(’Component part has no revisions in MRP II’),
nl,
fail.

Item number already exists

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ mrprev(Ppn,Prn,_,_,_)

/\ mrprev(Cpn,_,_,_,.)

/\ “mrpcomponent (Ppn,Prn,Item,Cpn,Qty)

/\ mrpcomponent (Ppn,Prn,Item,_,_),

write('Item number already exists in MRP II’),

nl,

fail.

Insert component relationship in MRP II

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)

251

/\ nonvar(Qty)

/\ mrprev(Ppn,Prn,_,_,_)

/\ nrprev(Cpn,_,_,_,_)

/\ " (mrpcomponent(Ppn,Prn,Item,_,_)),

add (mrpcomponent (Ppn,Prn,Iten,Cpn,Qty)),

~(makesloop (mrpcomponent (Ppn,Prn,Item,Cpn,Qty))),
insert2(cadcomponent (Ppn,Prn,Item,Cpn,Qty)),
write(’Component relationship has been added to MRP II'),
nl.

% #x*x*x Internal routine to check for looping of relationships
h **kxx* in MRP II
% okokokok

makesloop(mrpcomponent (Ppn,Prn,Item,Cpn,Qty))

Y Aokk

o Aok

[

-->

% kokk
% ok

%

% kkk
% ko
Y wokk

This operation will ’'fail’ if no looping is found
Parent and component parts are the same

mrpcomponent (Ppn,_,_,Ppn,_),
write(’Relationship results in loop, cannot be added'),
nl.

Look for relationship with parent part as component of
component part

mrpcomponent (Cpn, _,_,Ppn,_)

/\ ~(mrpcomponent(Ppn,_,_,Ppn,_)),

write(’Relationship results in loop, cannot be added’),
nl.

No looping found at this level, make a component a parent
and look at next level

mrpcomponent (Cpn, _,_,Com, _)

/\ ~(mrpcomponent(Cpn,_,_,Ppn,_))

/\ ~(mrpcomponent(Ppn,_,_,Ppn,_)),
makesloop (mrpcomponent (Ppn,_,_,Com,_)).

h **%xx Routine to delete component relationships from MRP II
% **x*x (top level)

252

% Rk
delete (mrpcomponent)

--> delete(mrpcomponent (Pnum,Rev,Item,Cpn,Qty)).

delete (mrpcomponent (Pnum,Rev,Item,Cpn,Qty))

% *** Consider assembly part number and revsion level changes

% *%* prior to deletion

%

--> ecnheader(Pnum,Rev),
checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(mrpcomponent (Ppn,Prn,Item,Cpn,_)).

% %%*%* Internal routine to actually perform deletion of
% *%%%% relationships from MRP II
yAET T T

delete2(mrpcomponent (Ppn,Prn,Item,Cpn,_))

% **x Stop if component relationship does not exist

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ "~ (mrpcomponent (Ppn,Prn,Item,Cpn,_)).

% *** Request parent part number if not provided

--> var(Ppn),
write(’Parent part number? '),
read(Ppn),
delete2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Request parent revision level if not provided
%
--> var(Prn)

/\ nonvar(Ppn),

write(’'Parent revision level? '),

read(Prn),

delete2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #x* Request item number if not provided

253

h
--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’'Item number? '),
read(Item),
delete2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% #*%* Request component part number if not provided
%
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write(’Component part number? '),
read(Cpn),
delete2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Delete component relationship from MRP II

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ mrpcomponent (Ppn,Prn,Item,Cpn,_),
remove (mrpcomponent (Ppn,Prn,Item,Cpn,_)),
delete2(cadcomponent (Ppn,Prn,Item,Cpn,_)),
‘write('Relationship has been deleted from MRP II’),
nl.

% #**xx%x Internal routine to search for component relationships
% *%ix* involving a part to be deleted from MRP II.
yAETET

findnone (nrpcomponent (Pnum,Rev,Item,Cpn,Qty))

% *xx Look for part as either a parent or component in a
% *** relationship
%
--> “mrpcomponent(Pnum,_,_,_,_)
/\ “mrpcomponent (Pnum, _) .

% **x** Routine to perform mass substitution of one component
% **x%% with another in MRP II
% kokckokok

substitutepartmrp

254

--> substitutepartmrp(0ldpt,Newpt).

substitutepartmrp(0ldpt, Newpt)

% *%* Request part to be substituted if not provided
%
--> var(0ldpt),

write(’Current part number? '),

read(0ldpt) .

substitutepartmrp(0ldpt,Newpt).

% ***% Request part to substitute if not provided
h
--> var(Newpt)
/\ nonvar(0ldpt),
write(’'Part number to substitute? '),
read(Newpt) ,
substitutepartmrp(0ldpt,Newpt) .

% *%%x Part to be substituted as entered does not exist

h ‘
--> nonvar(0ldpt) /\ nonvar(Newpt)

/\ "mrppmr(01dpt, _, s i) ,
write(’'Current part number does not exist in MRP II'),
nl,

fail.

% *%%* Part to substitute does not exist

--> nonvar(0ldpt) /\ nonvar(Newpt)
/\ mrppmr(01dpt, . s s mrmimimamreal)
/\ “mrppmr(Newpt, ., _, s v)
write(’'Substitute part number does not exist in MRP II'),
nl,
fail.

% *%% Part to substitute has no released or hold revisions in CAD

%
--> nonvar(0ldpt) /\ nonvar(Newpt)

/\ mrppmr(01dpt, _, v sos s)
/\ mrppmr(Newpt, _, _, _, s v_ssses)
/\ "cadrev(Newpt,_,_,_,r,.)
/\ “cadrev(Newpt,_,_,_,h,_),

255

% ko
% xEk
KT T
YAET L

ySET T
% Aok

%

% Hkk
% ko

%

YAET T

write(’'Substitute part has no released or hold revisions
in CAD’),

nl,

fail.

Make a substitution, part to substitute has a released
revision in
CAD

nonvar(01ldpt) /\ nonvar(Newpt)

/\ mrppmr(01dpt, ..y l)

/\ mrppmr(Newpt, ., _ . s s rrmrer)

/\ cadrev(Newpt,_,_,..r,_)

/\ findsubcomp(mrpcomponent (Pnum,Rev,Item,0ldpt,Qty)),
ecnheader (Pnum,Rev),
checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(mrpcomponent (Ppn,Prn,Item,01ldpt,Qty)),
insert2(mrpcomponent (Ppn,Prn,Item,Newpt,Qty)),
substitutepartmrp(0ldpt,Newpt) .

Make a substitution, part to substitute has a hold
revision in CAD

nonvar(0ldpt) /\ nonvar(Newpt)

/\ mrppmr(01dpt, _, . v)
/\ mrppmr(Newpt, _, . v vrmrmr)
/\ cadrev(Newpt,_,_,_,h,_)

/\ findsubcomp (mrpcomponent (Pnum,Rev,Item,01dpt,Qty)),
ecnheader (Pnum,Rev),
checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
delete2(mrpcomponent (Ppn,Prn,Item,01dpt,Qty)),
insert2(mrpcomponent (Ppn,Prn,Item,Newpt,Qty)),
substitutepartmrp(0ldpt,Newpt).

All substitutions made, part to substitute has a released
revision in CAD

nonvar (01dpt) /\ nonvar(Newpt)

/\ mrppmr(01dpt, _, _, . vvsss)
/\ mrppmr(Newpt, _._._._._._._,_._,_,_)
/\ cadrev(Newpt,_,_,_,r,_)

/\ ~“findsubcomp(mrpcomponent (Pnum,Rev,Item,0ldpt,Qty)),
write('Part substitution has been completed’), nl.

All substitutions made, part to substitute has a hold

256

% *%* revision in CAD

%

--> nonvar(0ldpt) /\ nonvar(Newpt)
/\ mrppmr(01dpt, _, v i)
/\ mrppmr(Newpt, _, . ' vsimcses)
/\ cadrev(Newpt,_,_,_,h,_)

/\ findsubcomp(mrpcomponent (Pnum,Rev,Item,0ldpt,Qty)),
write(’Part substitution has been completed’), nl.

% *x%%% Internal routine to search for relationships for
% *x*%kx mass substitution of components in MRP II
YARETE T

findsubcomp (mrpcomponent (Pnum,Rev,Item,01dpt,Qty))

% *x* Look for a component relationship with the part to be
% *** gsubstituted as a component of the latest revision level
% *%* of a parent part

%
--> mrpcomponent(Pnum,Rev,Item,0ldpt,Qty)
/\ latestmrprev(Pnum,Rev).

% *x%%% Routine to modify the quantity per assembly of a
% **%+* component in MRP II (top level)
% kokokokox

modifyquantity (mrpcomponent)

--> modifyquantity(mrpcomponent (Pnum,Rev,Item,Cpn,Qty)).

modifyquantity(mrpcomponent (Pnum,Rev,Item,Cpn,Qty))

% **% Consider assembly part number and revision level éhanges

% *x*% prior to modifying the quantity per assembly

%

--> ecnheader(Pnum,Rev),
checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn),
modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

257

% **xx% Internal routine to actually perform modification of

% *%kxk quantity per assembly in MRP II
% ksenok

modifyquant (mrpcomponent (Ppn,Prn,Iten,Cpn,Qty))

% *%% Desired relationship already exists

%

--> nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ mrpcomponent (Ppn,Prn,Item,Cpn,Qty).

% #%% Request parent part number if not provided

--> var(Ppn),
write('Parent part number? ’),
read(Ppn) ,
modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Request parent revision level if not provided
%
--> var(Prn)
/\ nonvar(Ppn), _
write('Parent revision level? '),
read(Prn),
modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *** Request item number if not provided
h
--> var(Item)
/\ nonvar(Ppn) /\ nonvar(Prn),
write(’'Item number? '),
read(Item),
modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% *x% Request component part number if not provided
h
--> var(Cpn)
/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item),
write(’Component part number? '),
read(Cpn),
modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

% **% Request new quantity per assembly if not provided

%

258

AR T

%

AT TS

%

var(Qty)

/\ nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item)

/\ nonvar(Cpn),

write('New quantity per assembly? '),

read(Qty),

modifyquant (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)).

Stop if parent part revision has a working status in CAD

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)
/\ cadrev(Ppn,Prn,_,_,w,_).

Component relationship as entered does not exist in MRP II

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ “cadrev(Ppn,Prn,_,_,w,_)

/\ “mrpcomponent(Ppn,Prn,Item,Cpn,_),

write('Component relationship does not exist in MRP II'),
nl,

fail.

Modify quantity in relationship

nonvar(Ppn) /\ nonvar(Prn) /\ nonvar(Item) /\ nonvar(Cpn)
/\ nonvar(Qty)

/\ “cadrev(Ppn,Prn,_,_,w,_)

/\ mrpcomponent(Ppn,Prn,Iten,Cpn,_)

/\ “mrpcomponent(Ppn,Prn,Item,Cpn,Qty),

remove (mrpcomponent (Ppn,Prn,Iten,Cpn,_)),

add (mrpcomponent (Ppn,Prn,Item,Cpn,Qty)),

modifyquant (cadcomponent (Ppn,Prn,Item,Cpn,Qty)),
write('Quantity per assembly has been changed in MRP II'),
nl.

% **xx% Routine to copy a bill of material to another assembly
% *xx%x in MRP II (top level)
% Fkskokok

copybommrp

-->

copybommrp(Fpn,Frl,Tpn,Trl) .

259

copybommrp (Fpn,Frl,Tpn,Trl)

% **x Request part number of assembly to copy bom from if
% **% not provided
%
--> var(Fpn),
write('From part number? '),
read(Fpn),
copybommrp (Fpn,Frl,Tpn,Trl).

% *x% Request revision level of assembly to copy bom from if
% *** not provided
%
--> var(Frl)
/\ nonvar(Fpn),
write('From revision level? '),
read(Frl),
copybommrp (Fpn,Frl,Tpn,Trl).

% *** Request part number of assembly to copy bom to if
% *** not provided ‘
%
--> var(Tpn)

/\ nonvar(Fpn) /\ nonvar(Frl),

write(’'To part number? °’),

read(Tpn),

copybommrp(Fpn,Frl,Tpn,Trl).

% *** Request revision level of assembly to copy bom to if
% *x*% not provided
)
--> var(Trl)
/\ nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn),
write(’To revision level? '),
read(Trl),
copybommrp (Fpn,Frl,Tpn,Trl).

% **%x From part number does not exist in MRP II

%

--> nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(TIpn) /\ nonvar(Trl)

/\ “T(orppmr(Fpn, o, sovesmvmiscsoin),
write('From part number does not exist in MRP II’),
nl,

260

% wkx

%

YRR T

%

YSET 2

%

% kkx

%

% kKo

%

fail.
From revision level does not exist in MRP II

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ mrppmr(Fpn, . _y s vcsrmrmssms)

/\ “mrprev(Fpn,Frl,_,_,.).,

write('From revision level does not exist in MRP II'),
nl,

fail.’

To part number does not exist in MRP II

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ cadrev(Fpn,Frl,_,_,_.)

/\ "mrppmr(TPn, _, s) s

write('To part number does not exist in MRP II'),

nl,

fail.

To revision level does not exist in MRP II

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ mrprev(Fpn,Frl,_,_,_)
/\ mrppmr(TPn, .\ smrrmrmrcrcran)
/\ “mrprev(Tpn,Trl,_,_,_),

write('To revision level does not exist in MRP II°'),
nl,
fail.

To part revision already has a structure

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)

/\ mrprev(Fpn,Frl,_,_,_)
/\ mrprev(Tpn,Trl,_,_,_)
/\ “findnone2(mrpcomponent(Tpn,Trl,_,_,_)),

write(’'To part number/revision level already has
a structure’),

nl,

fail.

From part revision has no bom

nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ mrprev(Fpn,Frl,_,_,_)

261

/\ mrprev(Tpn,Trl,_,_,_.)
/\ findnone2(mrpcomponent(Tpn,Trl,_,_,_))
/\ “mrpcomponent(Fpn,Frl,_,_,_).

% **x copy relationships

%

--> nonvar(Fpn) /\ nonvar(Frl) /\ nonvar(Tpn) /\ nonvar(Trl)
/\ mrprev(Fpn,Frl,_._,_) '
/\ mrprev(Tpn,Trl,_,_,.)
/\ findnone2(mrpcomponent(Tpn,Trl,_,_,_))
/\ mrpcomponent(Fpn,Frl,_,_,_),

copybommrp2(Fpn,Frl,Tpn,Trl),
write(’Product structure has been copied’),
nl.

% **%4% Internal routine to check that the copy to assembly
% **%%* has no component relations before the copy
% kkkkok

findnone2(mrpcomponent (Ppn,Prn,Item,Cpn,Qty))

% **% succeeds if the to part revision has no components
%

--> “mrpcomponent(Ppn,Prn,_,_,_).

% #*xk%x Internal routine to actually copy bills of material
h #kxxk in MRP II
% derokokok

copybommrp2(Fpn,Frl,Tpn, Trl)

% *** copy a relationship

h

--> findbommrp(Fpn,Frl,Tpn,Trl,Item,Cpn,Qty),
insert2(mrpcomponent (Tpn,Trl,Item,Cpn,Qty)),
copybommrp2(Fpn,Frl,Tpn,Trl).

% *x* All relationships have been copied
--> “findbommrp(Fpn,Frl,Tpn,Trl,Item,Cpn,Qty).

262

% #x*xx Internal routine to search for relationships to
% *%*x% copy in MRP II
% kkokokk

findbommrp(Fpn,Frl,Tpn,Trl,Item,Cpn,Qty)

% *** Look for components of from part revision that are not
% *** components of the to part revision

)
--> mrpcomponent(Fpn,Frl,Item,Cpn,Qty)
/\ “mrpcomponent(Tpn,Trl,Item,Cpn,Qty).

263

% *xkkkkxkk* Operations on relation newpmr
% skokskokok

% #xk%% Internal routine to insert a new part message to
% #kxkk MRP II users
% wkkokk

insert (newpmr (Pnum))

% *x* Stop if record already exists
]
/)

--> newpnr(Pnum) .

% *** Insert record

h

--> “(newpmr(Pnum)),
add (newpmr (Pnum)) .

h *xkxx Internal routine to delete new part message from MRP II
L/
% dekkdok

delete (newpmr (Pnum))

% **% Stop if record does not exist
%

--> “(newpmr(Pnum)).

% ***x Delete record

%
--> newpnr{(Pnum),
remove (newpmr (Pnum)) .

264

% ®xxkkikxxk Operations on relation newrev
Y kskokokk

% #%%%* Internal routine to insert a new revision message to

% skkkx MRP II
% Ekkokk

insert (newrev(Pnum,Rev))

% #*x% Stop if record already exists

%

--> newrev(Pnum,Rev).

% *%* Insert record

%
--> “(newrev(Pnum,Rev)),
add (newrev(Pnum,Rev)).

% #xx%x% Internal routine to delete new revision message

% **%x% from MRP II
yAET T E T

delete (newrev(Pnum,Rev))

% *%* Stop if record does not exist
%

--> ~(newrev(Pnum,Rev)).

% *%x% Delete record

%
-—> newrev(Pnum,Rev),
remove (newrev(Pnum,Rev)) .

265

% *kkxkkkxikkk Operations on relation rereleased
% kdokokk

% **xx% Internal routine to insert rereleased message to
% *kxx%x MRP II

% keokoekeok
insert(rereleased (Pnum,Rev))

% *x% Stop if record already exists

%

--> rereleased (Pnum,Rev).

% *%%* Insert record

%

-=> ~“(rereleased(Pnum,Rev)),
add(rereleased (Pnum,Rev)).

% **%%%* Internal routine to delete a rereleased message

% *%%%* from MRP II
% eskokokk

delete(rereleased (Pnum,Rev))

% *%% Stop if record does not exist

%

--> “(rereleased(Pnum,Rev)).

% *** Delete record
%
--> rereleased(Pnum,Rev),
remove (rereleased (Pnum,Rev)).

266

% *xxxxikikikk Operations on relation obsolete
% Aokdkokok

% **%*+ Internal routine to insert an obsolete message into
% *xxk% MRP II
% koo

insert (obsolete (Pnum,Rev))

% #*x* Stop if record already exists
%

-—> obsolete (Pnum,Rev) .

% **%* Insert record

%

-=> ~(obsolete(Pnum,Rev)),
add(obsolete (Pnum,Rev)).

% **%** Internal routine to delete obsolete message
% *x%*xx from MRP II
% ok

delete (obsolete (Pnum,Rev))

% *x% Stop if record does not exist

%

--> ~(obsolete(Pnum,Rev)).

% *** Delete record
%
--> obsolete(Pnum,Rev),
remove (obsolete(Pnum,Rev)).

267

% #xickxskkkkk Operations on relation inventory
% kkkkok

% #***%%% Routine to insert an inventory record into MRP II
% wokdokk

insert(inventory)

--> insert(inventory(Pnum,Qty)).

insert (inventory(Pnum,Qty))

% x** Stop if record already exists

% .

--> nonvar(Pnum) /\ nonvar(Qty)
/\ inventory(Pnum,Qty).

% *x* Request part number if not provided

--> var(Pnum),
write(’'Part number? '),
read (Pnum) ,
insert(inventory(Pnum,Qty)).

% *** Request total inventory quantity if not provided
%
--> var(Qty)
/\ nonvar(Pnum),
write(’'Total quantity in inventory? '),
read(Qty),
" insert(inventory(Pnum,Qty)).

% *%* update inventory record to reflect new quantity
%
--> nonvar(Pnum) /\ nonvar(Qty)
/\ “inventory(Pnum,Qty),
delete(inventory(Pnum,Qold)),
add (inventory(Pnum,Qty)), _
write(’Inventory record has been updated’),
nl.

268

% #*%%%* Routine to delete inventory records from MRP II
% dekckokok

delete(inventory)

--> delete(inventory(Pnum,Qty)).

delete(inventory(Pnum,Qty))

% *x% Stop if record does not exist
h
--> nonvar(Pnum)

/\ ~inventory(Pnum,Qty).

% *#** Request part number if not provided

--> var(Pnum),
write('Part number? '),
read (Pnum) ,
delete(inventory(Pnum,Qty)).

% *%* Delete record

%

--> nonvar(Pnum)
/\ inventory(Pnum,_),
remove (inventory(Pnum,_)).

269

% **xkxxkx%k* Operations on relation onorder
% kkdokok

% *%%x% Routine to insert an on-order record in MRP II
% edokokok

insert (onorder)

--> insert(onorder(Pnum,Qty,Ordno)).

insert (onorder (Pnum,Qty,Ordno))

% *** Stop if record already exists

%

--> nonvar(Pnum) /\ nonvar(Qty) /\ nonvar(Ordno)
/\ onorder (Pnum,Qty,0rdno).

% #x*% Request part number if not provided
%
--> var(Pnum),

write(’Part Number? °*),

read (Pnum) ,

insert (onorder(Pnum,Qty,O0rdno)) .

% #**% Request quantity on order if not provided
%
--> var(Qty)

/\ nonvar(Pnum),

write(’Quantity? '),

read(Qty),

insert(onorder (Pnum,Qty,0rdno)) .

% #+** Request order number if not provided
'/' .
--> var(Ordno)
/\ nonvar(Pnum) /\ nonvar(Qty),
write('Order number? '),
read(Ordno),
insert (onorder (Pnum,Qty,Ordno)) .

% x%% Insert record

%

--> nonvar(Pnum) /\ nonvar(Qty) /\ nonvar(Ordno)

270

/\ “onorder (Pnum,Qty,0Ordno),

add (onorder (Pnum,Qty,0Ordno)),
write(’On-order record has been added’),
nl.

% *x%%% Routine to delete an on-order record from MRP II
% keckokx

delete(onorder)

--> delete(onorder(Pnum,Qty,0rdno)).

delete (onorder (Pnum,Qty,0rdno))

% **x% Stop if record does not exist

%

--> nonvar(Pnum) /\ nonvar(0Ordno)
/\ “onorder (Pnum,_,Ordno).

% *** Request part number if not provided

-=> var(Pnum),
write(’Part number? '),
read (Pnum) ,
delete (onorder (Pnum,Qty,0rdno)) .

% **x Request order number if not provided

--> var(0Ordno)
/\ nonvar(Pnum),
write('0Order number? °),
read(Ordno) ,
delete(onorder (Pnum,Qty,0rdno)) .

% **x Delete record

%

--> nonvar(Pnum) /\ nonvar(Ordno)
/\ onorder(Pnum,_,Ordno),
remove (onorder (Pnum, _,0rdno)),
write('On order record deleted’),
nl.

271

% **kxxxxxxk Other MRP II operations without specific
% Hxkkskokkkrk relations
% kkkokok

% **xxx Internal Routine to ask about engineering changes
% **x*% for assembly level changes in MRP II
YAEET T

checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn)

Y oAokk
Y ko

%

-->

% kkok
% ek

%

% ek
% okkok

%

Y okkk
% ok

%

Ask user if change necessitates a new assembly
part number

var (Newpart),

write('Does this change require a new assembly
part number? '),

read(Newpart),

checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn) .

Ask user if change necessitates a new assembly revision
level (user indicated a new part number was not necessary)

var (Newrev)

/\ nonvar(Newpart) /\ ~“(Newpart = ’yes’),

write(’'Does this change require a new assembly revision
level? °’),

read(Newrev),

checkecnmrp(Newpart,Newrev,Pnum,Rev,Ppn,Prn).

User indicated a new assembly part number is needed, so
a new revision level is not appropriate

var (Newrev)
/\ nonvar(Newpart) /\ (Newpart = 'yes’),
checkecnmrp(Newpart,no,Pnum,Rev,Ppn,Prn).

User indicated that neither a new assembly part number
nor revision level is needed

nonvar (Newpart) /\ nonvar(Newrev)

/\ ~(Newpart = ’yes’) /\ ~(lewrev = ’'yes’'),
Ppn=Pnum,

Prn=Rev.

272

% ko

%

-->

% doksk

%

Let the user insert a new assembly part

nonvar(Newpart) /\ nonvar(Newrev)

/\ (Newpart = ’yes’) /\ "(Newrev = ’'yes'),

insert (mrppmr(Ppn,Dnum,Dsize,Des,Buom,Poum,Cfuom,Scode,
Cost,Lt,Pnum,Spnum)),

mrprev(Ppn,Prn,_,_,_),

copybommrp (Pnum,Rev,Ppn,Prn) .

Let the user insert a new assembly revision

nonvar(Newpart) /\ nonvar(Newrev)

/\ (Newrev = 'yes’)

/\ ~(Newpart = 'yes’),

Ppn=Pnum,
insert(mrprev(Ppn,Prn,Estart,Eend,Mstat)).

% **#kx Internal routine to print out current assembly part
% *%%i*x number and revision level for engineering change

% *xk%x consideration (Used by both CAD and MRP II)

% deockskokk

ecnheader (Pnum,Rev)

ySETTY

%

% ok
Y kekok

%

Stop if part number and revision are not provided

var(Pnum) /\ var(Rev).

Write assembly number if only it is provided

nonvar(Pnum) /\ var(Rev),

nl, write(’'Current assembly part number: *), write(Pnum),
nl.

Write revision level if only it is provided

var(Pnum) /\ nonvar(Rev),

nl, write(’Current assembly revision level: '), write(Rev),

nl.

Write assembly number and revision level if both are
provided

273

nonvar (Pnum) /\ nonvar(Rev),
nl, write(’'Current assembly part number: '), write(Pnum),
nl,

write(’Current assembly revision level: '), write(Rev),
nl.

274

