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In this thesis, we investigate the optimal design of wireless networks. We con-

sider wireless networks that have fixed and movable nodes, and we assume that all nodes

feature adjustable transmission power. Hence, we aim at maximizing network centric ob-

jectives, by optimizing over admissible choices of the positions of the movable nodes as

well as the transmission power at all the nodes. We adopt exponential path loss, which

is a realistic assumption in urban and sub sea environments, and we propose ways of us-

ing this assumption to obtain a tractable optimization problem. Our formulation allows

for the optimization of typical network centric objectives, such as power and throughput.

It also allows signal-to-interference based constraints, such as rate-regions and outage

probabilities, under the high signal to interference regime. We show that our optimiza-

tion paradigm is convex and that it can be solved up to an arbitrary degree of accuracy

via geometric programming techniques. By using a primal-dual decomposition, we also

provide a case-study that illustrates how certain instances of our optimization paradigm

can be solved via distributed iterative algorithms. We show that such a solution method



also leads to a convenient layering in the primal step, whereby the power allocation and

the node placement become two independent sub-problems.
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Chapter 1

Introduction

Optimal node placement in wireless networks has received significant attention in

the networking, robotics and computer science research communities. Examples of opti-

mal placement paradigms are the maximization of the coverage of a sensor network [1],

or the design of a wireless network so as to minimize the number of relays [3, 2], under a

combination of power, longevity and rate-region constraints. The resulting optimization

paradigm depends on the model of the wireless medium, the cost function and the con-

straints. Some of the existing paradigms are inherently combinatorial, while others rely

on suboptimal strategies. In this thesis, we observe that, by adopting an exponential path

loss model, we can integrate optimal node placement in existing convex programming

techniques, which so far have been used for optimal power allocation in wireless net-

works. Hence, we obtain an optimization paradigm, for wireless network design, that is

jointly parameterized by the power allocation of all nodes and by the placement of nodes

that can be moved. Notice that exponential path loss is characteristic of high absorption

media, such as radio frequency communication in urban [9] and in sub sea environments

[5].

Our formulation is general enough to model the effects of interference and to in-

clude constraints on the rate region and on the outage probability at pre-defined routing

paths, in the high signal to interference regime. In addition, we show that our paradigm
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is convex and that it can be solved with arbitrary accuracy using geometric programming

techniques, which are highly desirable due to their guaranteed polynomial time proper-

ties [11, 16]. We present a case study, where we exemplify how certain instances of our

paradigm can be solved via a primal-dual iterative scheme. An attractive characteristic

of such a scheme is that, in the primal step, the power allocation and the positions of

the nodes can be optimized independently, which can be viewed as layering. In addi-

tion, our case-study illustrates how the primal-dual algorithm might be implemented in a

distributed way.

This thesis is organized as follows: in the remaining of this chapter, we mention

some preliminary definitions and assumptions regarding our communication model while

in chapter 2, we give a precise description of our design problem and some examples

that comply with that formulation. In chapter 3, we give an approximate solution to the

placement problem by utilizing Geometric Programming. Then in chapter 4 we focus

on a particular placement optimization problem and we propose a layering approach to-

gether with an efficient primal-dual algorithm that leads to a decentralized solution to

that problem. Chapter 5, is dedicated to some simulations to picture the performance of

the proposed algorithms and finally in chapter 6, we give the possible extensions to our

optimization framework.

1.1 Preliminary definitions and assumptions

Before we give a description of the model of the wireless network adopted in this

work, we introduce the following basic notation:
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• Design parameters that are integers are represented using large caps Greek letters,

such as Ω, while scalar or finite vectors of real numbers are represented using small

caps Greek letters, such as φ.

• Optimization variables are indicated using boldface fonts, such as P and x.

• The letters i and j are reserved for use as subscripts for integer indexing, with

respect to the nodes of the wireless network. The letters k and l are also set aside

for integer indexing.

• Functions are represented in calligraphic font, such as U .

1.2 Basic description of the nodes in the network

Consider a wireless network consisting of a collection of nodes placed in a Carte-

sian plane. A non-empty sub-collection of these nodes is fixed, i.e., their positions in

the Cartesian plane are pre-selected, while the locations of the remaining nodes are op-

timization parameters. Denote by ∆ the number of fixed nodes and by Ω the number

of remaining (movable) nodes in the network. The nodes are uniquely identified by an

integer index in the set {1, . . . , ∆ + Ω}. We adopt the convention of allocating the first

∆ indexes for the fixed nodes and the last Ω indexes for the movable nodes. We indicate

the positions of the fixed nodes using ordered pairs (χ1, γ1) through (χ∆, γ∆), while the

locations of the remaining nodes are specified by (x∆+1,y∆+1) through (x∆+Ω,y∆+Ω) .
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1.3 Wireless medium sharing assumptions

Each node of the wireless network has a communication module comprising a re-

ceiver and a transmitter. In addition, we assume that each node has a distinct reception

channel assigned to it. As such, any given node will tune into and receive information

transmitted through its ascribed channel. In addition,we assume that inter-channel inter-

ference is negligible. However, in our formulation, we allow multiplexing at each chan-

nel, so as to allow more than one source node to send information to any given destination

node. In practice, multiple sources can send their messages through the same channel via

multiplexing techniques, such as CDMA (asynchronous code division multiplexing) [4]

among many other possibilities [12]. In order to quantify the impact of channel multi-

plexing, we adopt a formulation that is suitable for performance metrics and constraints

that are based on the signal to interference ratio (see Section 2).

1.4 Power allocation and propagation loss model

For each node index i, in the set {1, . . . , ∆ + Ω}, we adopt the following model for

quantifying the total power Ptotal
i used by node i, in dBmW power units:

Ptotal
i = 10 log10


 ∑

k∈{1,...,∆+Ω}−{i}
φ100.1Pi→k+αei,k


 (1.1)
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where ei,k is the Euclidean distance that separates nodes i and k, given by:

ei,k =





√
(xi − xk)2 + (yi − yk)2 if i, k ≥ ∆ + 1

√
(xi − χk)2 + (yi − γk)2 if i ≥ ∆ + 1, k ≤ ∆

√
(xk − χi)2 + (yk − γi)2 if k ≥ ∆ + 1, i ≤ ∆

√
(χi − χk)2 + (γi − γk)2 if i ≤ ∆, k ≤ ∆

(1.2)

In addition, the constants φ and α in (1.1) are positive real parameters that depend on

the characteristics of the wireless medium and Pi→k represents the received power in

dBmW , as measured at the destination node k, of the signal transmitted by node i. We

express power in dBmW not only because it is a standard and convenient option for

wireless communication [12], but also because commercial radio frequency amplifiers

often feature controllable amplification gains that have uniform (linear) resolution in the

dBmW scale. Similarly, commercially available radio frequency power meters usually

provide readings with a resolution that is uniform in the dBmW scale. Implicit in (1.1) is

the simplifying assumption that the transmitted signal between any two nodes, say i and

k, is attenuated in dB according to an affine law of the distance, given by− log(φ)−αei,k.

This assumption will be discussed in more detail in the following Section.

1.4.1 Validity of our propagation loss model for urban and sub sea envi-

ronments

It has been shown, both analytically and empirically, that in a (logarithmic) dB

scale (consistent with dBmW ), the path loss attenuation of radio frequency waves in ur-

ban [9] and in sub sea environments [5] is well approximated by an affine function of the
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Euclidean distance between the source and the receiver. More specifically, the authors of

[5] suggest that attenuation, in dBmW , is essentially an affine law for distances of four

meters or above. For distances below two meters our model may become conservative,

which is not an issue since most applications will not require placement of wireless nodes

that close. Commercial underwater radio frequency modems operate over distances as

large as fifty meters [7], which indicates that our propagation loss model is accurate for

underwater communications in the four to fifty meters range. Similarly, in urban environ-

ments, the authors of [9] have shown that an affine law is very accurate for distances of

fifty meters or above. In the setting of [9], transmitter and receiver can communicate over

distances of at least three hundred and fifty meters, which indicates that an affine law is

an accurate model for propagation loss in urban environments, for distances that range

from fifty to three hundred and fifty meters.

1.5 Comment on radio frequency communication underwater

In contrast to what was believed until recently, underwater radio modems are viable

with loop antennas of one meter radius or less and modem housing of thirty centimeters

(see [6] for an example). Underwater radio can be used for communication over ranges

up to (typically) fifty meters, where it is far superior to acoustic based communication

both in terms of delay and immunity to turbulence and noise. These features make un-

derwater radio communications very suitable for mobile applications or (and) when tight

clock synchronization is required for extended periods of time, such as in monitoring
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operations1.

1Note that clock synchronization underwater is critical for packet stamping and that it cannot be per-

formed using global positioning systems. The work by [8] explains the difficulties of clock synchronization

over networks, including sensitivity to communication delay
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Chapter 2

Problem formulation

In this chapter, we formulate the central optimization paradigm of this thesis. We

start by specifying the following class of functions, which we use to express the cost

function as well as the constraints of our optimization paradigm. In Section 2.2, we

provide network design examples and we show how they can be cast using the framework

put forward in this Section. Such examples are intended to illustrate the wide applicability

of our formulation.

Definition 2.0.1. Let ∆ and Ω be positive integers representing the number of fixed and

movable nodes of a wireless network, respectively. Given a non-negative integer Ξ repre-

senting the number of auxiliary optimization variables, we define F∆,Ω,Ξ as the set of all

functions F that can be written in the following form:

F (Q) =
Γ∑

k=1

ςk10
PΞ

l=1 ξl,kzl+
P∆+Ω,∆+Ω

i=1,j=1 βi,j,kPi→j+τi,j,kei,j (2.1)

where Γ is a positive integer, ςk and τi,j,k are non-negative real constants, while βi,j,k

and ξl,k are real constants. Moreover, z1 through zΞ are non-negative real auxiliary

optimization variables. In addition, Q is a shorthand notation for representing the entire

collection of optimization variables given by {Pi→j}∆+Ω,∆+Ω
i=1,j=1 , {xi,yi}∆+Ω

i=∆+1 and {zl}Ξ
l=1.

Notice that Definition 2.0.1 might be viewed as an extension of the class of posyn-

omial functions [11], so as to include the Euclidean distance between any pair of nodes.
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Indeed, if we select τi,j,k = 0 in (2.1) then the resulting function is a posynomial in P̃i→j

and z̃l, where P̃i→j
def
= 10Pi→j and z̃l

def
= 10zl .

Definition 2.0.2. (Main constraints) Let ∆ and Ω be positive integers representing the

number of fixed and movable nodes in a wireless network. Given a non negative con-

stant Ξ, a positive integer Φ and functions F1 through FΦ in the set F∆,ω,Ξ, we consider

constraints expressed by the following inequalities:

Fk (Q) ≤ 1, k ∈ {1, . . . , Φ} (2.2)

An immediate and central example of application of Definition 2.0.2 is imposing

constraints on the total power at every node, which could be expressed as Ptotal
i ≤ Ψ,

where Ptotal
i is given by (2.21) and Ψ quantifies the total power available at each node.

Similarly, we can adopt cost functions such as 10
P∆+Ω

i=1 λiP
total
i , where λ1 through λ∆+Ω

are nonnegative weights.

Further examples of constraints, with network-centric significance, can be expressed

using the following definition of signal-to-interference ratio:

Definition 2.0.3. (Signal to interference ratio) Let ∆ and Ω quantify the number of fixed

and movable nodes of a wireless network, respectively. Let i and j be distinct integers in

the set {1, . . . , ∆+Ω} representing nodes of a wireless network. The signal to interference

ratio for the logical link from node i to node j is defined as:

Si→j
def
=

ηi,i100.1Pi→j

∑
k∈{1,...,∆+Ω}−{i,j} ηk,j100.1Pk→j + σ2

N

(2.3)

In (2.3) ηk,i are positive real coding gains that quantify the fact that, for instance, mul-

tiplexing codes are not perfectly orthogonal and Pk→j represents the received power, as

measured at the destination node j, of the signal transmitted by node k.
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Clearly, constraints of the type Si,j ≥ λi,j can be cast as in Definition 2.0.2. In Sec-

tion 2.2 we provide more examples of constraints and cost functions that can be expressed

as in Definition 2.0.2.

Using the following class of constraints, we can impose that the movable nodes are

placed inside pre-specified polyhedral convex subsets of the Cartesian plane.

Definition 2.0.4. (Polyhedral convex set placement constraints) Let ∆ and Ω be posi-

tive integers representing the number of fixed and movable nodes in a wireless network,

respectively. Given a subset of {∆ + 1, . . . , ∆ + Ω} denoted by S, an integer Γ, real con-

stants ζi,k and ϑi,k with (i, k) in the set S×{1, . . . , Γ}, we consider the following class of

constraints:

ζi,kxi + ϑi,kyi ≤ 1, (i, k) ∈ S× {1, . . . , Γ} (2.4)

The following is the description of the main paradigm addressed in this thesis.

Problem 2.0.1. (Jointly optimal placement and power allocation) Consider that ∆ and

Ω are positive integers quantifying the number of fixed and movable nodes in a wireless

network, respectively. Let a non negative integer Ξ, positive integers Φ and Γ, functions

F1 through FΦ in the set F∆,Ω,Ξ, a subset of {1, . . . , ∆ + Ω} denoted by S and real

constants ζi,k and ϑi,k, with (i, k) in the set S × {1, . . . , Γ}, be given design parameters.

Given a cost function U in the set F∆,Ω,Ξ, we want to find the solution to the following

optimization paradigm:

Q∗ = arg min
Q
U(Q) (2.5)

subject to constraints (2.2)-(2.4), where Q represents the entire collection of optimization

variables given by {Pi→j}∆+Ω,∆+Ω
i=1,j=1 , {xi,yi}∆+Ω

i=∆+1 and {zl}Ξ
l=1. In (2.5) Q∗ is used to
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indicate the collection of optimization variables at an optimum.

2.1 Basic optimality properties of Problem 2.0.1

In Section 2.1.1, we show that Problem 2.0.1 is convex. This is very useful attribute

because it guarantees that an optimum can be found via standard constrained optimization

techniques.

We also show, in Section 3, that Problem 2.0.1 can be arbitrarily well approximated

by a geometric program. This is quite desirable, since geometric programs can be solved

via polynomial time algorithms, which are available in existing software packages. In

addition, in a like manner to linear programs, geometric programming solvers provide a

certificate of infeasibility, in case the problem is not feasible.

Since constrained optimization algorithms may feature slow converge, we propose

the use of geometric programs for obtaining a first approximate solution, which can be

used as an initial condition in any method that is adopted for solving the exact problem.

2.1.1 Proof that Problem 2.0.1 is convex.

In order to prove that Problem 2.0.1 is convex, it suffices to prove that the class

of functions specified in Definition 2.0.1 is convex. The main argument is given in the

following Proposition:

Proposition 2.1.1. Given positive integers ∆, Ω and Ξ, along with nonnegative real con-

stants {τi,j}∆+Ω,∆+Ω
i=1,j=1 and real constants {βi,j}∆+Ω,∆+Ω

i=1,j=1 and {ξl}Ξ
l=1, consider the follow-
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ing function:

G (Q) = 10
PΞ

l=1 ξlzl+
P∆+Ω,∆+Ω

i=1,j=1 βi,jPi→j+τi,jei,j (2.6)

where ei,j is the Euclidean distance (1.2), while Q is a shorthand notation for represent-

ing the entire collection of optimization variables, given by {Pi→j}∆+Ω,∆+Ω
i=1,j=1 , {xi,yi}∆+Ω

i=∆+1

and {zl}Ξ
l=1. The function G is convex.

Proof. We start by defining the following functions:

G2(Q)
def
=

∆+Ω,∆+Ω∑
i=1,j=1

τi,jei,j (2.7)

G1(Q)
def
=

Ξ∑

l=1

ξlzl +

∆+Ω,∆+Ω∑
i=1,j=1

βi,jPi→j + G2(Q) (2.8)

Now notice that τi,j are nonnegative and the Euclidean distance is itself a convex function

of its parameters. Hence, G2 is convex function of {(xi,yi)}∆+Ω
i=∆+1 because it is a sum of

convex functions. This also implies that G1 is convex and since exponentiation is a convex

function too 1, we can conclude that G (Q) = 10G1(Q) is convex.

Recall that the coefficients ςk, in Definition 2.0.1, are non-negative. Therefore, it

follows from Proposition 2.1.1 that functions in the set F∆,Ω,Ξ are convex because they

are the sum of convex functions. This implies that the cost U of Problem 2.0.1 and all

of its constraints are convex, which includes the ones specified in Definitions 2.0.2 and

2.0.4. This fact leads to the conclusion that Problem 2.0.1 is convex.

1Recall that the composition of a convex function with another increasing convex function is convex.
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2.2 Examples of design problems that comply with the problem formu-

lation of Section 2

In this Section, we give design examples that we can cast in the framework of Sec-

tion 2. By way of these examples, we expect to illustrate the pertinence of our framework

for the design of wireless networks, with respect to jointly optimal power allocation and

node placement.

2.2.1 Optimal relay placement, power allocation and routing, under the

high signal to interference ratio assumption

In this Subsection, we delineate a design example which involves the maximization

of the bit-rate between a pre-specified collection of fixed nodes. Throughout, we will

describe how our design example can be cast in the formulation of Section 2. An inter-

esting attribute of such an exercise is that it also shows, for the present example, how we

can integrate optimization of routing, in addition to power allocation and placement of the

movable nodes. For simplicity of notation, we describe our example for two fixed and two

movable nodes, but our approach can be used for any number of nodes at the expense of

a potentially large number of auxiliary variables. In addition, this example admits routing

with at most two hops, but the number of hops can be increased at the expense of using

more auxiliary variables.

Example 2.2.1. Consider a wireless network with two fixed and two movable nodes. The

movable nodes, indexed by 3 and 4, are intended to act as relays so as to as to maximize
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the rate of communication between the fixed nodes, which are identified by indices 1 and

2. In order to precisely state our design example, assume that we are given the following

design parameters:

• We are given the parameters φ and α that are needed in the total power formula

(1.1).

• We pre-specify a positive real constant Ψ representing the maximal power available

at each node.

• We are given the positions of the fixed nodes (χ1, γ1) and (χ2, γ2).

In addition, we adopt the following cost function:

U example 2.2.1(Q) = −min{Rtotal
1→2,R

total
2→1} (2.9)

where Rtotal
1→2 and Rtotal

2→1 represent the total aggregated rates that stream from node 1 to

node 2 and from node 2 to node 1, respectively. These aggregated rates can be computed

by the following formulae:

Rtotal
1→2 = R1→2 + min{R1→3,R3→2}︸ ︷︷ ︸

(A)

+ min{R1→4,R4→2}︸ ︷︷ ︸
(B)

(2.10)

Rtotal
2→1 = R2→1 + min{R2→3,R3→1}︸ ︷︷ ︸

(C)

+ min{R2→4,R4→1}︸ ︷︷ ︸
(D)

(2.11)

Here we use Ri→j to represent the average rate through the direct communication link

(point-to-point, i.e., no relaying) from node i to node j, in bits per time unit. An inter-

pretation for the flux constraints (2.10)-(2.11) is that the information that is transferred

between nodes 1 and 2 can flow through three different routes. It can flow directly (point-

to-point) between nodes 1 and 2 and it can be routed through nodes 3 and 4.
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Hereon, we use the following formula for relating the point-to-point rate Ri→j with

the signal to interference ratio [11, page 68], which is valid in the high signal to interfer-

ence regime:

Ri→j =
1

Υ
log10 (κSi→j) (2.12)

where Υ and κ are positive real constants. We can now precisely state the optimization

paradigm of our example, which consists of finding {Pi,j}i=4,j=4
i=1,j=1 and {xi,yi}4

i=3 so as to

minimize U example 2.2.1(Q), subject to the following constraints:

Ptotal
i ≤ Ψ, i ∈ {1, . . . , 4} (2.13)

Now we show that (2.9)-(2.13), which constitute the specification of Example 2.2.1,

can be put in the framework of Section 2. We start by noticing that the following opti-

mization paradigm is equivalent to Example 2.2.1:

min 10−z1 (2.14)

subject to the following constraints:

z2 ≥ z1 and z3 ≥ z1 (2.15)

κS
1
Υ
1→2︸ ︷︷ ︸

10R1→2

≥ 10z2−z4−z5 and κS
1
Υ
2→1︸ ︷︷ ︸

10R2→1

≥ 10z3−z6−z7 (2.16)

κS
1
Υ
1→3︸ ︷︷ ︸

10R1→3

≥ 10z4 and κS
1
Υ
3→2︸ ︷︷ ︸

10R3→2

≥ 10z4 (2.17)
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κS
1
Υ
1→4︸ ︷︷ ︸

10R1→4

≥ 10z5 and κS
1
Υ
4→2︸ ︷︷ ︸

10R4→2

≥ 10z5 (2.18)

κS
1
Υ
2→3︸ ︷︷ ︸

10R2→3

≥ 10z6 and κS
1
Υ
3→1︸ ︷︷ ︸

10R3→1

≥ 10z6 (2.19)

κS
1
Υ
2→4︸ ︷︷ ︸

10R2→4

≥ 10z7 and κS
1
Υ
4→1︸ ︷︷ ︸

10R4→1

≥ 10z7 (2.20)

10Ptotal
i −Ψ ≤ 1, i ∈ {1, . . . , 4} (2.21)

In the inequality constraints above, the auxiliary variables z1 through z7 are intro-

duced to construct the cost function (2.9). In particular, (2.15) implements the minimum

in (2.9), while the auxiliary variables z2 and z3 represent Rtotal
1→2 and Rtotal

2→1, respectively.

Similarly, the auxiliary variables z4 and z5 implement the two terms, denoted by (A) and

(B), at the right hand side of (2.10), while z6 and z7 implement the two terms (C) and (D)

at the right hand side of (2.11). The power constraint (2.13) is also re-written in the form

(2.21).

In order to show that (2.14)-(2.21) comply with the formulation of Section 2, it

suffices to notice the following facts:

• By a direct substitution of (2.3), we can write inequalities (2.17)-(2.20) as in Defi-

nition 2.0.2.

• Similarly, by using (1.1), (2.21) can be re-written so as to comply with Defini-

tion 2.0.2.
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2.2.2 Further examples of optimization constraints that comply with the

formulation of Section 2

The following Example illustrates how linear inequalities on the rates among dis-

tinct nodes can be expressed as in Definition 2.0.2.

Example 2.2.2. (Linear inequalities on rates) Let Λ be a given integer and λ1 through

λΛ be given positive real constants. In addition, consider real parameters given by %i,j,k,

with (i, j) ∈ {1, . . . , ∆ + Ω}2 and k ∈ {1, . . . , Λ}. We consider the following collection

of constraints
∑

(i,j)∈{1,...,∆+Ω}2
%i,j,kRi→j ≥ λk, k ∈ {1, . . . , Λ} (2.22)

where Ri→j represents the rate of transmission (in bits per channel use) from node i to

node j. Using (2.12), we can re-write (2.22) as:

∏

(i,j)∈{1,...,∆+Ω}2
(κSi→j)

%i,j,k
Υ ≥ 2λk , k ∈ {1, . . . , Λ} (2.23)

which clearly complies with Definition 2.0.2.

Inequalities of the form (2.22) can be used to specify any convex polyhedral rate

region among any subcollection of source and destination nodes. In addition, necessary

and sufficient conditions for multi-terminal omniscience, in the presence of an overlay

node [14], can be cast as in (2.22). This class of inequalities can also be used to specify

the rate of certain distributed secret key generation mechanisms [13].

Yet another example is the specification of constraints on the outage probabilities

over a path, which can be cast as in Definition 2.0.2, under the assumption of no single

dominant interferer (see [11, Page 68] for more details).
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Chapter 3

Approximate Solutions to Problem 2.0.1 via Geometric Programming

Geometric programming is an optimization paradigm that has been widely studied

for more than thirty years. Due to the increase in computational power verified in re-

cent years, efficient solvers for geometric programs are now easily accessible. Hence, the

recent significant interest in casting the optimal design of communication systems as ge-

ometric programs [11]. In a way that is similar to linear programs, solvers for geometric

programs can efficiently handle hundreds of variables and constrains, which is very rele-

vant for the method proposed in this Section, where a large number of auxiliary variables

might be needed. Even when the original problem cannot be cast as a geometric program,

in many cases a satisfactory solution can be found via an approximate geometric program

[11, 15]. In this section, we follow such an approach, by proposing an approximate solu-

tion to Problem 2.0.1 via geometric programming. In order to accomplish this goal, we

follow a strategy where it suffices to approximate the Euclidean distance by a geometric

program. No other approximations are needed. A comprehensive account of the uses of

geometric programming in various other fields can be found in [15], where a rich portfolio

of examples is also provided.

Below we give a brief description of the standard geometric programming paradigm.

We start with the definition of the class of posynomial functions.

Definition 3.0.1. Given a finite collection of non-negative real variables denoted by
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W
def
= {wi}Ξ

i=1. The class of posynomials over W is formed by functions P with the

following structure:

P(W) =
Γ∑

k=1

ςk

Ξ∏

l=1

w
ξl,k

l (3.1)

where ςk are positive real and ξl,k are real (possibly negative) constants.

The following is the definition of the general form of a geometric program in stan-

dard form.

Definition 3.0.2. Let a finite collection of non-negative real variables denoted by W
def
=

{wi}Ξ
i=1, and posynomials over W denoted by U and P1 through PΦ be given. The

following optimization paradigm is a geometric program:

W∗ = arg min
W

U(W) (3.2)

subject to the following inequality constraints:

Pi(W) ≤ 1, i ∈ {1, . . . , Φ} (3.3)

3.1 Specification of a geometric program that approximates Problem 2.0.1

In what follows, we specify a geometric program that approximates Problem 2.0.1,

to an arbitrary degree of accuracy. However, we should note that higher accuracy is

attained at the expense of a larger number of optimization variables. Nonetheless, as we

explain in Section 2.1, obtaining an approximate solution is important because it can be

used as an initial condition on any constrained optimization algorithm that is applied to

19



the exact problem. Another reason for adopting this procedure is that solvers provide a

certificate if a geometric program is unfeasible.

Notice that Problem 2.0.1 is not a geometric program because the constraints in-

volve the Euclidean distance. The main idea, in what follows, is to approximate the

Euclidean distance in Problem 2.0.1 with an appropriate function so as to obtain a ge-

ometric program. No other approximations are required. The following is the class of

distance functions that we will use in our approximate geometric program.

Definition 3.1.1. (Convex polygonal distances) LetD be a distance function in the Carte-

sian plane that satisfies the properties of a norm. We qualify D as a convex polygonal

distance if and only if the unit ball, according to D, is a convex polygon[10, Chapter 19].

We define the class of convex polygonal distances as D.

The following remark states the main reason why the class D is a suitable choice

for approximating the Euclidean distance.

Remark 3.1.1. Given any two positive real constants ℘1 and ℘2 satisfying ℘1 < 1 and

℘2 > 1, we can always find a distance function D in the set D such that the following

holds:

℘1D(u1, u2) < ‖u1 − u2‖2 < ℘2D(u1, u2), u1, u2 ∈ R2 (3.4)

where ‖u1 − u2‖2 is the Euclidean distance between u1 and u2.

In order to prove Remark 3.1.1, one only needs to realize that the unit ball, as-

sociated with the Euclidean distance, can be approximated arbitrarily well by a convex

polygon. Hence, the proof follows by selecting the convex polygonal distance that corre-
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sponds to the approximating convex polygon. The following remark provides a system-

atic method for obtaining such a distance function, which will also be useful later in this

subsection.

Remark 3.1.2. If D is a convex polygonal distance then there an integer m and a finite

collection of m vectors (ν1,1, ν2,1) through (ν1,m, ν2,m) in the Cartesian plane, for which

the following holds [10, pp. 173]:

D((xi, yi), (xj, yj)) = arg minh (3.5)

subject to:

ν1,k(xj − xi) + ν2,k(yj − yi) ≤ h, k ∈ {1, . . . , m} (3.6)

for any vectors (xi, yi) and (xj, yj) in the Cartesian plane.

Example 3.1.1. Now we consider an example of application of Remark 3.1.2. Consider

that we wish to specify a distance whose unit ball is the unit square, centered at the origin.

The corresponding distance can be obtained from Remark 3.1.2 by selecting the four

vectors (ν1,1, ν2,1) = (1, 0), (ν1,2, ν2,2) = (−1, 0), (ν1,3, ν2,3) = (0, 1) and (ν1,4, ν2,4) =

(0,−1). Likewise, if the unit ball is an hexagon then the distance would be specified by

(ν1,i, ν2,i) = (cos(iπ
3
), sin(iπ

3
)), with i ∈ {1, . . . , 6}.

The class of functions specified in Definition 2.0.1 plays a central role in the state-

ment of Problem 2.0.1. By replacing the Euclidean distance with an approximating con-

vex polygonal distance we obtain the class of functions defined below. From Remark

3.1.1, we conclude that functions in such a class may be used as an approximation to the

functions given in Definition 2.0.1.
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Definition 3.1.2. Let ∆ and Ω be positive integers representing the number of fixed and

movable nodes of a wireless network, respectively. Given a convex polyhedral distance D

and a non-negative integer Ξ representing the number of auxiliary optimization variables,

we define H∆,Ω,Ξ,D as the set of all functions H that can be written in the following form:

H (Q) =
Γ∑

k=1

ςk10
PΞ

l=1 ξl,kzl+
P∆+Ω,∆+Ω

i=1,j=1 βi,j,kPi→j+τi,j,kdi,j (3.7)

where di,j = D ((xi,yi), (xj,yj)), Γ is a positive integer, ςk, ξl,k and τi,j,k are non-

negative real constants, while βi,j,k are real constants. Moreover, z1 through zΞ are non-

negative real auxiliary optimization variables. In addition, Q is a shorthand notation

for representing the entire collection of optimization variables given by {Pi→j}∆+Ω,∆+Ω
i=1,j=1 ,

{xi,yi}∆+Ω
i=∆+1 and {zl}Ξ

l=1.

The following Problem 3.1.1 is a modified version of Problem 2.0.1, where the class

of functions F is replaced with H. Since functions in F can be approximated by functions

inH, we can view Problem 3.1.1 as an approximate version of Problem 2.0.1. In addition,

as we show in Theorem 3.1.1, Problem 3.1.1 can be cast as a geometric program.

Problem 3.1.1. (Jointly optimal placement and power allocation with polyhedral dis-

tances) Consider that ∆ and Ω are positive integers quantifying the number of fixed

and movable nodes in a wireless network, respectively. Let a polyhedral convex dis-

tance D, a positive integer Φ, functions H1 through HΦ in the set H∆,Ω,Ξ,D, a subset

of {1, . . . , ∆ + Ω} denoted by S and real constants ζi,k and ϑi,k, with (i, k) in the set

S× {1, . . . , Γ}, be given design parameters. Given a cost U in the set H∆,Ω,Ξ,D, we want

to find the solution to the following optimization paradigm:

Q∗ = arg min
Q
U(Q) (3.8)
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Hk (Q) ≤ 1, k ∈ {1, . . . , Φ} (3.9)

subject also to the placement constraints (2.4). Here Q∗ is used to indicate the entire

collection of optimization variables{Pi→j}∆+Ω,∆+Ω
i=1,j=1 , {xi,yi}∆+Ω

i=∆+1 and {zl}Ξ
l=1 at an op-

timum.

Theorem 3.1.1. Problem 3.1.1 can be cast as a standard geometric program.

Proof. Let the parameters of Problem 3.1.1 be given. In particular, consider the class

of functions H∆,Ω,Ξ,D, along with the associated optimization variables {Pi→j}∆+Ω,∆+Ω
i=1,j=1 ,

{xi,yi}∆+Ω
i=∆+1 and {zl}Ξ

l=1. We start the proof by defining the following supplemental

variables P̃i→j
def
= 10Pi→j , x̃i

def
= 10xi , ỹj

def
= 10xj , z̃l

def
= 10zl and d̃i,j

def
= 10di,j , where

di,j = D ((xi,yi), (xj,yj)). The proof follows as a conclusion based on the following

two facts: (Fact 1) By inspecting (3.7), we conclude that any function in class H∆,Ω,Ξ,D

can be re-written as a posynomial in terms of the supplemental variables P̃i→j ,x̃i, ỹj , z̃l

and d̃i,j . In fact, the cost function in (3.8) and the left hand side of the inequality con-

straints in (2.4) and (3.9) can be re-cast as posynomial functions. As a result, we infer that

Problem 3.1.1 can be written as a Geometric program with respect to the supplemental

variables. However, according to the statement of Problem 3.1.1, d̃i,j is not one of the

desired optimization variables, i.e., we want to obtain an answer in terms of the positions

and not the distances. In addition, if we optimize with respect to d̃i,j directly, and without

further constraints, then the optimum may be such that the resulting distances are not con-

sistent with the positions. In order to address this problem, we make use of the following

fact: (Fact 2) From Remark 3.1.2, we conclude that there exists a positive integer m and

vectors (ν1,1, ν2,1) through (ν1,m, ν2,m) such that d̃i,j can be expressed as a function of x̃i
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and ỹj via the following geometric program:

d̃i,j = arg min h̃i,j (3.10)

subject to:

(x̃jx̃
−1
i )ν1,l(ỹjỹ

−1
i )ν2,lh̃−1

i,j ≤ 1, l ∈ {1, . . . , m} (3.11)

Now notice that in the definition of H∆,Ω,Ξ,D (see (3.7)), the coefficients of the distances

di,j , by definition, satisfy τi,j,k ≥ 0. This means that if any given di,j is present in the

cost U or in an active constraint, say Hk ≤ 1, then d̃i,j is implicitly minimized. This

observation, together with Fact 1 and Fact 2 show that Problem 3.1.1 can be written as a

geometric program by re-expressing the left hand side of (2.4), (3.9) and U as posynomials

and by adding the following constraints:

(x̃jx̃
−1
i )ν1,l(ỹjỹ

−1
i )ν2,ld̃−1

i,j ≤ 1, l ∈ {1, . . . , m} (3.12)
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Chapter 4

Layering and distributed implementation

In Section 2, we defined Problem 2.0.1 which constitutes the main paradigm in this

paper. In addition, in Section 2.1.1, we proved that such a problem can be cast as a convex

problem and in Section 3 we provided a method for obtaining approximate solutions via

geometric programming.

In this Section, we illustrate how particular instances of Problem 2.0.1 can be solved

via iterative algorithms based on the primal-dual principle. As we illustrate here, the pri-

mal step consists of an optimization problem that can be decomposed into smaller sub-

problems (Layering) which can be solved independently, while the dual step is, typically,

a simple price update rule. Our iterative solution and associated layering decomposi-

tion has the following advantages: (1) The primal step decomposes into two simpler and

independent optimization subproblems, namely, the placement and the power allocation

get decoupled. The dimension of such subproblems is smaller than the original prob-

lem and they can be solved in parallel. In addition, at each iteration, these subproblems

can be solved using the updated prices and variables that are mostly local at each agent.

This means that, in our algorithm, the coupling among agents is implemented via price

exchange plus a reduced number of variables. (2) If the cost function is additive and

constraints are imposed within a neighborhood of each node then it suffices to implement

price and variable exchanges within those same neighborhoods. Such an implementation,
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where prices and a few variables are exchanged within neighborhoods, is what we qualify

as distributed solution.

Hereafter, we analyze the following case-study, which is a particular case of Prob-

lem 2.0.1:

Problem 4.0.2. (total power minimization) Let ∆ and Ω be positive integers representing

the number of fixed and movable nodes of a wireless network, respectively. Given non-

negative real constants ϕ1 through ϕ∆+Ω, define the cost function U to be a weighted sum

of consumed powers in each node:

U(Q) =
∆+Ω∑
i=1

ϕi100.1Ptotal
i (4.1)

where Ptotal
i is given by (1.1) and Q is a shorthand notation for representing the entire col-

lection of optimization variables given by {Pi→j}∆+Ω,∆+Ω
i=1,j=1 , {xi,yi}∆+Ω

i=∆+1. Consider also

that a collection {O(i)}∆+Ω
i=1 of subsets of {1, . . . , ∆+Ω} is given, representing the neigh-

borhoods or destination nodes in the outgoing links from each node i. Let {%i→j}∆+Ω
i=1,j∈O(i)

and {Ψi}∆+Ω
i=1 be two sets of design parameters, representing the minimum required rates

in the links and the maximum power available in the transmitters, respectively. We want

to find the solution of the following optimization paradigm:

Q∗ = arg min
Q
U(Q) (4.2)

Subject to:

R(Si→j) ≥ %i→j, i ∈ {1, . . . , ∆ + Ω}, j ∈ O(i) (4.3)

Ptotal
i ≤ Ψi, i ∈ {1, . . . , ∆ + Ω} (4.4)
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where Si→j is the signal to interference ratio of the transmission from link i to j and R

is any positive and increasing function that satisfies limγ→∞R(γ) = ∞. We use R to

quantify the rate of data transmission from node i to node j. Notice that not only the

approximation in (2.12), i.e., R(Si→j) = 1
Υ

log10 (κSi→j), but also the exact formula

R(Si→j) = 1
Υ

log10 (1 + κSi→j) are valid choices here.

Remark 4.0.3. Since R is an increasing function that is invertible in the positive re-

als, the constraints in (4.3) can be replaced by the following signal to interference ratio

constraints:

Si→j ≥ R−1(%i→j), i ∈ {1, . . . , ∆ + Ω}, j ∈ O(i) (4.5)

where R−1 represents the inverse function of R.

In what follows, we describe how we obtain a distributed algorithm that converges

to the optimal solution of Problem 4.0.2. In particular, in Section 4.1 we show how Prob-

lem 4.0.2 can be decomposed using a primal-dual approach. We also provide a layering

of the primal step, where the optimal placement and the optimal power allocation sub-

problems become decoupled. In Section 4.3, we introduce efficient distributed solutions

for each of these subproblems.

4.1 Primal-dual decomposition and layering of the primal subproblem

Utilizing a dual decomposition approach, we break down Problem 4.0.2 into smaller

subproblems which can be solved efficiently in a distributed fashion. One of these sub-

problems, which we denote as node placement subproblem, only involves the location of

the mobile nodes, i.e., (x∆+1,y∆+1) through (x∆+Ω,y∆+Ω). The second subproblem op-

27



timizes with respect to the received powers Pi→k, and we label it as power allocation sub-

problem. The correct coupling between these two subproblems, via message exchange,

leads to an algorithm that converges to the optimal solution of Problem 4.0.2.

The main idea for breaking down our overall optimization problem is applying

Lagrange relaxation to power constraints in (4.4). These power constraints involve both

sets of variables {x∆+i,y∆+i}Ω
i=1 and {Pi→j} in a coupled fashion. In order to start

the decoupling process, we need to replace these power constraints for each transmitter

i ∈ {1, 2, ..., ∆ + Ω}, with the following set of inequalities:

φ100.1Pi→j+αei,j ≤ 100.1vi→j , j ∈ O(i) (4.6)

∑

j∈O(i)

100.1vi→j ≤ 100.1Ψi (4.7)

Where vi→j represents an auxiliary variable that can be interpreted as the maximum

power that is allocated to the link from the transmitter i to the receiver j, at the trans-

mitter side (in dBmW ). We can also re-write the utility function (4.1) in terms of these

supplemental variables. As such, Problem 4.0.2 can be re-formulated as:

Problem 4.1.1. Let all parameters needed in the definition of Problem 4.0.2 be given.

Adopting the same parameters, consider the following augmented optimization paradigm:

Q∗ = arg min
Q

[
min
V
Ũ (V)

]
(4.8)

Ũ (V)
def
=

∆+Ω∑
i=1

∑

j∈O(i)

ϕi100.1vi→j (4.9)

V
def
= {vi→j}∆+Ω

i=1,j∈O(i) (4.10)

subject to constraints (4.5)-(4.7).
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Proposition 4.1.1. Let all parameters needed in the definition of Problem 4.0.2 be given.

The following Lagrangian based min-max optimization paradigm is equivalent to Prob-

lems 4.0.2 and 4.1.1:

(Q?,V?,H?) = arg


max

H
min
(Q,V)

L (Q,V,H)

︸ ︷︷ ︸
primal problem


 (4.11)

H
def
= {hi,j}∆+Ω

i=1,j∈O(i) (4.12)

hi,j ≥ 0, (i, j) ∈
∆+Ω⋃
i=1

{i} ×O(i) (4.13)

subject to constraints (4.5) and (4.7). Here we use Lagrange multipliers H to impose

constraint (4.6), while L is the following Lagragean:

L (Q,V,H)
def
= L1

(
{Pi→j}∆+Ω

i=1,j∈O(i),V,H
)

︸ ︷︷ ︸
power allocation

+L2

({xi+∆,yi+∆}Ω
i=1,H

)
︸ ︷︷ ︸

node placement

(4.14)

where

L1

(
{Pi→j}i=∆+Ω

i=1,j∈O(i),V,H
)

def
= Ũ(V) +

∆+Ω∑
i=1

∑

j∈O(i)

hi,j [Pi→j − vi→j + 10 log ϕ]

(4.15)

L2

({xi+∆,yi+∆}Ω
i=1,H

) def
=

∆+Ω∑
i=1

∑

j∈O(i)

hi,j10αei,j (4.16)

By inspection, we find that the primal component in (4.11) can be decomposed into

two independent subproblems, as indicated in the following Remark:

Remark 4.1.1. (Layering) The Lagrangian (4.14) comprises the two additive terms given

by L1 and L2. As such, given any choice of H, the primal problem in (4.11) can be recast

29



as follows:

min(Q,V) L (Q,V,H)

Subject to: (4.5) and (4.7)
=

min{Pi→j}i=∆+Ω
i=1,j∈O(i)

,V L1

(
{Pi→j}i=∆+Ω

i=1,j∈O(i),V,H
)

Subject to (4.5) and (4.7)
︸ ︷︷ ︸

Power allocation subproblem

+

min
{xi+∆,yi+∆}Ωi=1

L2

({xi+∆,yi+∆}Ω
i=1,H

)

︸ ︷︷ ︸
Node placement subproblem

(4.17)

Notice that the first term in the right hand side of (4.17) involves only the power alloca-

tion and the supplemental variables, while the second term addresses node placement.

We denote these independent subproblems as power allocation and node placement, re-

spectively.

Proof of Proposition 4.1.1 Since Problems 4.0.2 and 4.1.1 are equivalent, we

only need to prove that Problem 4.1.1 can be re-cast as in the statement of the Propo-

sition. We start by noticing that the inequalities in (4.6) can be written in linear form as

10 log ϕ + Pi→k + 10αei,k − vi→k ≤ 0. Relaxing these linear constraints by introducing

the multipliers H, leads to the following Lagrangian for Problem 4.1.1, which is identical

to the Lagrangian in (4.14):

L(Q,V,H) = Ũ(Q) +
∆+Ω∑
i=1

∑

j∈O(i)

hi,j [Pi→j − vi→j + 10 log ϕ + 10αei,j] (4.18)

Notice that the sole role of the Lagrange multipliers H is to impose (4.6) and that con-

straints (4.5) and (4.7) still need to be observed. Given these facts, the statement in the

Proposition follows from standard use of Lagrange multiplier theory [16]. ¤

30



4.2 A primal-dual iterative solution to Problem 4.1.1

To complete the primal-dual solution framework in this part, we can apply a simple

subgradient method to solve the above Lagrange dual problem. The outcome is an iter-

ative algorithm that solves optimization problem 4.0.2, globally. It is important to note

that the key requirement that allows to solve our optimization problem efficiently via its

dual is the fact that strong duality holds that is a consequence of underlying convexity

of problem. More specifically, we now propose the following primal-dual algorithm that

solves 4.0.2 iteratively.

Primal-Dual iteration : Consider the following coupled iterative equations, where

k is a non negative integer counter:

(Primal step)

(Qk+1,Vk+1
)

=





arg min(Q,V) L (Q,V,H(k))

subject to (4.5) and (4.7)
(4.19)

Where Qk+1 = { {P k+1
i→j }∆+Ω

i=1,j∈O(i)} , {ek+1
i→j}∆+Ω

i=1,j∈O(i) },

Vk+1 = {vk+1
i→j}∆+Ω

i=1,j∈O(i)

(Price update)

Update the elements of H(k + 1) = {hk+1
ij }∆+Ω

i=1,j∈O(i) by:

hk+1
ij = [hk

ij + εk(10 log ϕ + P k
i→j + 10αei,j

k − vk
i→j)]

+ (4.20)

Where [.]+ denotes max(., 0).

Proposition 4.2.1. The above primal-dual algorithm converges to the global optimum of

problem 4.0.2, provided that the feasible set has a non-empty interior (i.e., there exists a

strictly feasible solution in the constraint set).
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Proof. We outline the proof here, which is inspired from [19]. The convexity of the over-

all optimization problem 4.0.2 was shown in section 2.1.1 for a more general case. More,

we know that the Slater’s condition holds when there exists a strictly feasible point in the

constraint set. Since the strong duality holds for the class of convex optimization prob-

lems under the Slater’s condition, finding the optimal solution of 4.0.2 is equivalent to

solving the dual maximization. The proposed iterative algorithm simply solves this dual

maximization problem with a simple subgradient method. Note that (4.20) simply de-

scribes the update of the dual variables in the gradient direction. The convergence of this

subgradient method is guaranteed, if the step sizes ετ are chosen following a diminishing

step size rule[21](e.g., any square summable but not summable sequence). Hence, the

above algorithm converges to the global dual optimum that coincides with the optimum

solution in the primal domain.

In decoupling of the joint placement and power allocation problem, the dual vari-

ables(shadow prices) hij play a key role in coordinating the optimal placement of the

nodes demand for satisfying rate constraints in one hand and the physical layer power

supply on the other hand. In particular, hij can be interpreted as the rate cost in the link

between transmitter i and receiver j, i.e. the higher value of the hij signals to the power

allocation subproblem that more power should be allocated to this link. At the same time,

it signals to the node placement subproblem that increasing the distance in this link is

expensive.

This primal-dual optimization framework provides a layered approach to the total

power minimization problem 4.0.2. This kind of layering breaks the overall optimiza-
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tion problem into independent modules by utilizing a dual decomposition approach. This

modularity is one of the main features of the primal-dual algorithm that will be used later

in this section for proposing a decentralized solution for problem 4.0.2. On the other hand,

these independent subproblems give a nice interpretation of the solution of the original

problem. In particular, the node placement part in (4.17), is nothing but a minimization

of a weighted sum of the distances between the nodes that communicate with each other.

These weights are lagrangian multipliers that are controlled by the minimum rate con-

straints that we need on the links. This implies that our optimization problem 4.0.2 in

this section, which is an instance of problem 2.0.1 with the objective of minimizing the

total power consumption, is somehow equivalent to minimizing a weighted sum of the

distances between the nodes.

4.3 Distributed implementation

After breaking the problem into smaller independent subproblems with exchanging

prices, it is the time to solve each of these subproblems with an efficient distributed al-

gorithm. After addressing a distributed solution for each of the subproblem modules, we

return to complete the overall decentralized algorithm by applying them into the primal-

dual algorithm.

4.3.1 Distributed power allocation

Substituting the cost function from (4.1) in the Lagrangian (4.15), we can see that

the power allocation subproblem can be broken further into disjoint smaller parts that
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can be solved locally at the transmitters or the receivers. One part is the set of disjoint

optimization problems of the form:

minimize :
∑

j∈O(i) ϕi100.1vi→j − hijvi→j

s.t. :
∑

j∈O(i)

100.1vi→j ≤ 100.1Ψi (4.21)

That can be solved independently at each transmitter node i ∈ {1, ..., ∆ + Ω}. Note that

the prices used in these subproblems are locally available in each transmitter. These op-

timization problems actually shows that how the power supply at each transmitter should

be distributed between the outgoing links according to the prices of the links at each iter-

ation. The analytic solution of these simple constrained convex optimization problems is

derived in appendix A and the results can be readily used in this part.

The other part of the power allocation subproblem is the following set of disjoint

problems that can be solved at each receiver, independently:

min
∑

i∈I(j) hijPi→j

s.t. : Si→j ≥ R−1(%i→j) ∀i ∈ I(j) (4.22)

Where I(j) denotes the set of transmitter nodes that have incoming links to destination

node j. The fact that we can solve these problems in each receiver j independently, is

a direct consequence of our wireless medium sharing assumptions in section 1.3. Recall

that in our model, we assumed that each receiver node has a distinct reception assigned

channel, that can be used for sharing between different incoming links that want to send
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information to it. More, we specified that we do not consider inter-channel interference

in our problem formulation. This assumption means that we only consider interference

for the links that send information to a common destination node by sharing the chan-

nel in time or frequency domain, imperfectly. This simplifying assumption, leads to the

fact that the power allocation can be done in each receiver node for all incoming links,

independently.

For the above reasons, the power allocation subproblem in our case-study can be de-

composed into a set of disjoint local optimization problems (4.21) and (4.22) that contain

only local variables and prices. Therefore, it can have an efficient distributed implemen-

tation without extra message passing inside the network.

4.3.2 Distributed placement

Solving the node placement subproblem in (4.17) which is just a minimization of

the weighted sum of the distances in the network is a simple unconstraint convex opti-

mization problem. This convexity is an immediate consequence of the fact that in each

iteration the prices hij are merely positive constant coefficients and the distances ei,j

are Euclidean norms that are convex functions of the location of the mobile nodes, i.e

{xi,yi}∆+Ω
i=∆+1. The only problem that we encounter is that the Euclidean norms that are

the summands of our objective function (4.16) are not differentiable at origin. In other

words, this problem is in the class of non-smooth convex optimization problems. There-

fore, instead of using a simple gradient method we apply a subgradient descent method

[20, section 3.2.3] to find the optimum positions in an iterative way with the following
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updates for the position of the mobile nodes in each step :

(xi,yi)
t+1 = (xi,yi)

t + εt
∑

j∈{O(i)
S I(i)}

hij

−→
θij (4.23)

Where {εt} is an appropriate1 step size sequence and
−→
θij is defined to be:

−→
θij =





1/ei,j(xj − xi,yj − yi) if ei,j 6= 0

(0, 0) Otherwise

(4.24)

Which is actually a unit size vector with direction from node i to j unless ei,j = 0.2

Notice that {O(i)
⋃
I(i)} describes the union of the all wireless nodes that receive data

from node i or send something to it.

The key idea that makes it possible to implement this subgradient method in a dis-

tributed fashion is that the updated positions of the mobile nodes in (4.23) can be com-

puted locally in each step, without extra message-passing inside the network. In other

word, the updates in (4.23) implies that each mobile node just needs the prices and the

direction of its own outgoing links and these pieces of information is available locally.

Now after proposing distributed solutions for placement subproblem and power

allocation part, we are ready to introduce our decentralized solution that solves problem

4.0.2 efficiently, which is the main algorithm of this section. The idea is to plug these

subproblem modules into our previous primal-dual algorithm as follows:

1e.g. any square summable but not summable sequence
2See appendix B for a detailed proof of the convergence of the proposed method
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Initialize H

(Primal step)

• Solve the node placement subproblem in a distributed manner as discussed in 4.3.2

and let {eτ+1
i→j}∆+Ω

i=1,j∈O(i) be the optimal distances

• Solve the power allocation subproblem in a distributed manner as discussed in 4.3.1

and let {P τ+1
i→j }∆+Ω

i=1,j∈O(i) and {vτ+1
i→j}∆+Ω

i=1,j∈O(i) be the optimal solution

(Price update)

• Update the dual variables locally at each link:

hτ+1
ij = [hτ

ij + ετ (10logϕ + P τ
i→j + 10αeτ

i,j − vτ
i→j)]

+ (4.25)

Notice that in each iteration of this algorithm corresponding to counter τ , we have

to run the distributed placement module in primal step, which is an iterative algorithm

itself that may need infinitely many steps to converge to it’s optimum solution. What

we will do later in our simulations is to replace the node placement module with a finite

time iterative algorithm that leads to a sub-optimal solution to the whole optimization

problem. This sub-optimality of the final solution is the penalty for coming up with

a decentralized solution. Nonetheless, we can get closer to the optimum solution by

increasing the iterations in the node placement module.
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What we have done so far in this section, was a distributed solution for the total

power minimization problem 4.0.2 as an instance of our general jointly optimal placement

and power allocation problem 2.0.1. The main concern of this case study was minimizing

the total power at the physical layer while we assumed fixed rate constraints on the links.

As another example, we can generalize this framework to a cross-layer optimization prob-

lem with the objective of maximizing the throughput of the wireless networks(see [17] for

details). Chapter 6 also provides other possible extensions to this framework, but the main

goal here was to illustrate how the primal-dual algorithm might be implemented in a de-

centralized fashion for the class of network optimization problems that contain placement

optimization.
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Chapter 5

Simulations

We simulate two examples in this section to illustrate our decentralized optimization

framework, proposed in chapter 4. The first example would be a simple case where we

only have one mobile node to picture some basic results. Then we increase the number of

the mobile nodes to exemplify its performance in more demanding situations.

Example 5.0.1. Consider a simple scenario when we have four fixed nodes (∆ = 4)

that want to send information to a single mobile node (Ω = 1). Each of these four links

will try to satisfy it’s minimum bit rate constraint which is equal for all and the objective

would be to minimize the total power consumption of the network. We also consider two

different cases for channel interference: a low interference case where the the average

ratio of the desired channel gain to the sum of interference coefficients is 15dB and a high

interference case where the the average ratio of the desired channel gain to the sum of

interference coefficients is 5dB. In both cases the channel gain and interference coefficient

are generated according to log-normal fading. We use our proposed distributed algorithm

in section 4 to find the optimal power of the transmitters and the position of the mobile

nodes.

Fig. 5.1 illustrates the optimal position of the mobile node in the case of high

interference. It also shows the trajectory of the mobile node during the algorithm until it

converges to the optimum position. Fig. 5.2 depicts the power allocated in the transmitter
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Figure 5.1: Optimal position of the mobile node (nodeA) in the case of high-interference,

Example 5.0.1

side of each link during the iterations.

In order to compare the speed of convergence in high-interference and low-interference

scenarios, we have plotted the dual variables(shadow prices) in both cases in Fig. 5.3 As

we can see, with the same step sizes, convergence is faster in low-interference case(i.e.

30 iterations) than in high-interference case(i.e. 80 iterations).

As we discussed we have a maximum power constraint, Ψi, in the transmitters. We

have reduced this quantity so that the signal to interference constraints cannot be sat-

isfied. Fig. 5.4 illustrates the dual variables in this case where the total optimization

problem is infeasible. As we can see, the prices do not converge. Refereing to the inter-

pretation of the prices, in this case and in each iteration each link increases its price in
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Figure 5.3: Shadow Prices (High-Interference v.s Low-Interference), Example 5.0.1
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Figure 5.4: Dual variables in the case that the whole optimization problem is infeasible,

Example 5.0.1

order to get more power, but since there is no more power available in the transmitter

side there is noway for convergence of the algorithm. The feasibility of the whole opti-

mization problem can be checked in our distributed algorithm by the convergence of the

dual variables.

Example 5.0.2. In this part, we increase the number of mobile nodes in our simulation to

illustrate the performance of our decentralized algorithm in a more challenging setting.

We consider three mobile nodes (Ω = 3) that are labeled A, B and C. The connectivity

graph of the nodes is illustrated in Fig. 5.5. The double arrow between mobile nodes

A and B means that both A and B want to communicate with each other. We have the

same bit rate constraints in all of the links and the objective is still minimizing the total

power consumption in the network. Fig. 5.6 illustrates the optimal position of the mobile

nodes, the power allocations in the links and the dual variables all in the case of high-

interference.
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Figure 5.5: The Network Topology for Example 5.0.2

As we discussed in section (5) we have to solve the placement optimization subprob-

lem in each iteration via a gradient descent method. In order to reduce the complexity,

we can find the suboptimal solution of each these placement optimization problems. This

is possible by reducing the number of steps in the gradient method that is discussed in

4.3.2. We have reduced the number of these steps in each iteration to one and illustrated

the converging solution in Fig. 5.7. It can be seen that the optimum solution is still the

same. This figure also shows the trajectory of the mobile nodes during the algorithm until

it converges to the optimum positions.
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Chapter 6

Extensions

In this chapter, we will point out two possible extensions of our framework.

6.1 Generalized Propagation Loss Model

The complexity of signal propagation makes it difficult to obtain a single model

for characterizing propagation loss across a range of different environments. Therefore,

there are several models that have been developed over the years to predict path-loss in

different wireless environments. What we discussed here in this thesis was the case where
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the pass-loss function1 can be expressed as an exponentially decreasing function of the

distance between source and receiver, i.e PL = ϕ10α d. In chapter (1.4.1) we mentioned

some motivations for such path-loss function, specially in urban and sub sea environment.

Though, in this extension, we want to emphasize on general path-loss function PL(d) that

is modeling the variation of received signal power over distance.

According to what we showed in section 2.1.1, under the assumption of exponential

path-loss function, the general placement optimization problem is a convex optimization

problem. The main difficulty of general path-loss functions is that the convexity of the

problem doesn’t hold anymore for arbitrary models, necessarily. In other words, the main

watershed between convexity and non-convexity in placement optimization of the wire-

less nodes is the model that we use for propagation loss. Our main goal in this subsection

is to mitigate the disadvantages of non-convexity by introducing an iterative method that

is a convex approximation of the original problem in each step.

Based on what we have done earlier in this thesis, we know that our placement opti-

mization problem is in a nice convex form if we adopt the exponential path-loss function.

This underlying convexity, leaded us to cast the problem as standard GP in chapter 3 and

later was the substructure of our decentralized algorithm in chapter4. The method that

we want to propose in this subsection for solving the placement optimization problem

1What we mean by path-loss function(PL) for the communication channel is the ratio of the transmitted

power to received power(Note that in this ratio the powers are expressed in W). Generally, path-loss is a

function of transmitter-receiver distance, transmission frequency, transmitter and receiver antenna gain and

also the environment (all are assumed to be fixed, except the distance that includes in our optimization

variables.)
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with general path-loss function, starts by solving a problem in which we approximate the

path-loss functions for each link with an exponential function. After that, in each iter-

ation, we try to find the constants ϕ and α, for each link, in a way that the exponential

function ϕ10α d, becomes the first order approximation of the actual path-loss function

around the optimal distances that we have found in the previous iteration. Note that, since

we are using exponential path-loss function in each iteration, we have to solve a convex

optimization problem in each step which is possible with fast algorithms such as interior

point methods or primal dual algorithms[18]. It is not hard to see that the converging op-

timum solution that we would find by this iterative method is also a local optimum for the

original problem with arbitrary path-loss function. Meanwhile, there is no guarantee for

the convergence of the algorithm or finding the global optimum, since the overall problem

is not convex anymore.

The idea of solving the problem for generalized path-loss models iteratively, can be

generalized to our distributed algorithm that is proposed in chapter 4. More specifically,

each link can update it’s path loss model parameters, ϕ and α, during the iterations. This

update can be done by measuring the separation between the transmitter and the receiver

and trying to fit the exponential path-loss model, ϕ10α d, to the first order approximation

of the actual path-loss function around the measured distance.

In order to check the efficiency of the proposed method, we repeat our simulation

in the second example of chapter 5 with a new path-loss function of the following form

[12]:

PL(d) = K(d/d0)
γ (6.1)
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where d0 is a reference distance for the antenna far-field, γ is the path loss fall off exponent

which is typically a number between 2 and 6 and K is a constant that encompass the

transmission frequency and the gain of the antennas. We use d0 = 0.5, γ = 4 and

K = 1 for our simulation. Also, we assume the same bit rate constraints in all of the

links and the objective is still minimizing the total power consumption in the network

with a decentralized method. Fig. 6.1 illustrates the optimal position of the mobile nodes,

and parameters ϕ and α for different links during the iterations. This figure also shows

the trajectory of the mobile nodes during the algorithm until it converges to the optimum

position. Note that in this case the convergence happens after approximately two hundred

iterations which is roughly two times slower in comparison with the previous case where

we assumed pure exponential path-loss model( see Fig. 5.6 ).

What we proposed in this extension was a simple approach for solving the place-

ment optimization problems where we have general path-loss model. Although we show

the convergence of the algorithm for a specific path-loss model by simulation, there is

still a lack of proof for convergence and even global optimality of the solution for general

case and needs further studies.

6.2 Generalization of the Distributed Solution for Linear Rate Constraints

As we saw in example 2.2.2, under the assumption of high signal to interference

ratio, we can re-write the linear rate constraints in the communication links, as (2.23)

that contains the product of signal to interference ratios in the associated links. Here we

want to extend our proposed distributed algorithm in section 4 so that we could handle
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Figure 6.1: (a) Optimal positions of the mobile nodes A,B and C; (b) parameter α for

different links ; (c) parameter ϕ for different links
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these linear inequalities on rates. For simplicity, suppose that we only have one linear rate

constraint which is re-formulated in terms of signal to interference ratio as:

∏

(i,j)∈{1,...,∆+Ω}2
(κSi→j)

%i,j
Υ ≥ 2r (6.2)

Where r is a design parameter. The procedure of governing this inequality in our proposed

decentralized algorithm, is exactly the same as what we did for power constraints in (4.4).

Specifically, in order to break this inequality into some local constraints, we replace it by

the following set of equivalent inequalities:

∏

(i,j)∈{1,...,∆+Ω}2
2
eRi→j ≥ 2r (6.3)

(κSi→j)
%i,j
Υ ≥ 2

eRi→j , (i, j) ∈ {1, . . . , ∆ + Ω}2 (6.4)

Where R̃i→j is an auxiliary variable that can be interpreted as the maximum rate con-

straint in the link from transmitter i to the receiver j. Following the same procedure of

section 4 and by introducing some price h̃ into the objective, we can relax (6.3) 2into our

previous Lagrangian L in (4.18). As a result, the new Lagrange optimization problem in

the primal domain would be updated to minimizing :

L̃ = L + h̃


r −

∑

(i,j)∈{1,...,∆+Ω}2
R̃i→j


 (6.5)

Subject to new single rate constraints (6.4), plus our previous rate and power constraints

(4.7) and (4.5). This Lagrange minimization problem can still be decoupled into two

disjoint parts: the node placement subproblem and the power allocation subproblem. Note

that the node placement part remains unchanged while in the power allocation part, the

2Note that this inequality is equivalent to the following linear constraint:
∑

(i,j)∈{1,...,∆+Ω}2 R̃i→j ≥ r
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objective would change a bit and we should also include our new single rate constraints

(6.4). Both of these subproblems can still be solved in a decentralized fashion with a

similar approach of section 4.3. Therefore, we can apply our decentralized solution with

identical steps, by considering the fact that the updates for the new Lagrange multiplier h̃

in dual update step would be:

h̃τ+1 = h̃τ + ετ


r −

∑

(i,j)∈{1,...,∆+Ω}2
R̃τ

i→j


 (6.6)

Where R̃τ
i→j is the optimum rate obtained in the power allocation subproblem in primal

step. The important message which is implied from this price update formula, is that we

need the optimum value of the achieved rate in each iteration. In other words, the com-

munication links that are involved in the linear rate constraint inequality, should be able

to contact with each other during the algorithm in order to update the prices. As it is ex-

pected, this extra message passing may cause some practical problems in the distributed

algorithm, specially if the communication links that are involved in the linear rate con-

straint be far apart from each other. Nonetheless, this a natural problem with distributed

optimization problems that have coupled inequalities or objectives.
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Chapter 7

Conclusions and open problems

In this thesis, we proposed a paradigm for the optimal design of wireless networks,

with respect to power allocation and the placement of nodes in a Cartesian plane. We

consider the optimization of network-centric figures of merit, which are functions of the

transmission power and of the signal to interference ratio. In the high signal to interfer-

ence regime, we can also adopt constraints and cost functions that involve rate-regions or

throughput and under the ”no dominant interferer” assumption we can also include outage

probabilities. Under the assumption of exponential path loss, we show that our paradigm

is convex and that it admits an approximate solution via geometric programming. We

also provide a case study that illustrates how certain instance of our paradigm can be op-

timized, with no approximation, via a primal-dual iterative algorithm. This solution also

leads to a layering in the primal step, where the power allocation and the node placement

can be optimized independently. The following problems require further investigation,

and we believe that this thesis might be a stepping stone towards their solution:

• It is important to handle cost and the constraints that are functions of the transmis-

sion rate, while lifting the high signal to interference assumption. In the paper[?],

this problem was solved with respect to power allocation.

• It is also important to obtain the solution to our paradigm for the case where the

path loss is polynomial.
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Chapter A

Analytic Solution of (4.21)

Here we want to find the optimal solution of the following convex optimization

problem which is used in our distributed implementation.

minimize :
∑

j∈O(i) ϕi100.1vi→j − hijvi→j

s.t. :
∑

j∈O(i)

100.1vi→j ≤ 100.1Ψi (A.1)

First note that , neglecting the constraint, the global solution that minimize the cost

function is : v∗i→k = 10 log
10 hij

ln(10)ϕi
. It is clear that if these optimal solutions are satisfying

the constraint, we have solved (A.1). Now consider the case that the global solution of

the unconstrained problem is not feasible. In this case the level-set of the cost function at

the optimal point should be tangent to the feasible set at optimal point. It is equivalent to

the following equalities:

ϕi 100.1v∗i→j − hij

100.1v∗i→j
= K , for ∀j ∈ O(i) (A.2)

∑

j∈O(i)

100.1v∗i→k = 100.1Ψi (A.3)

Where K is a constant. Equation (A.2) is from the fact that the gradient of the level-set

of the cost function should have the same direction as the gradient of the boundary of the

feasible set at optimal point and (A.3) is the fact that the optimum is in the boundary of
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the feasible set. 1 Solving (A.2) and (A.3) simultaneously, we can conclude that 100.1v∗i→j ,

which is actually the optimum value of the maximum power that should be allocated in

each iteration, is hijP
j∈O(i) hij

100.1P max
i . This result has also an interesting interpretation in

dual domain that says the maximum power which should be allocated in each iteration to

the links is proportional to the prices hij .

1Note that these equalities can also be derived from the KKT conditions.
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Chapter B

Subgradient Method for Node Placement Module

As we mentioned in section 4.3.2 the node placement sub-problem (4.17) is a non-

smooth convex optimization problem. Here in this appendix we want to take a quick look

at the proposed subgradient method in section 4.3.2 and see how does it work. In partic-

ular, we describe the update formula (4.23) which is nothing but moving in the opposite

direction of the subgradient. To this end we start by the definition of the subgradient for

a nonsmooth convex function and we proceed by utilizing some simple lemmas in order

to compute the subgradient of our main objective (4.16).

Definition B.0.1. Let f be a convex function. A vector g is called a subgradient of function

f at point z0 ∈ domf if for any z ∈ domf we have

f(z) ≥ f(z0)+ < g, z − z0 > . (B.1)

Where < ., . > is a dot product. The set of all subgradients of f at z0, ∂f(z0), is called

subdifferential of function f at point z0.

Recall that the optimization variables in this problem is the position of the mobile

nodes {xi,yi}∆+Ω
i=∆+1, and we need to update them during the iterations according to the

subgradient of the cost function (4.16). Hence we need to calculate the subgradient for

a weighted sum of the Euclidean distances which is not difficult by using the following

lemmas.

56



Lemma B.0.1. Let ei,j be the Euclidean distance function given by (1.1). Suppose i ≥

∆ + 1, j ≤ ∆, hence ei,j is merely a function of (xi,yi). For this case we have:

∂ei,j(xi,yi) =





(xi−χj ,yi−γj)√
(xi−χk)2+(yi−γk)2

(xi,yi) 6= (χj, γj)

B2(0, 1) Otherwise

(B.2)

Where B2(0, 1) = {(x, y) |
√

x2 + y2 ≤ 1}

Proof. see [20, example 3.1.5].

Note that, according to the definition of
−→
θij in (4.24), we have

−→
θij ∈ ∂ei,j(xi,yi),

i.e.
−→
θij is a valid subgradient for Euclidean norm function ei,j . We can derive similar

expressions for the cases when {j ≥ ∆ + 1, i ≤ ∆} or {j ≥ ∆ + 1, i ≥ ∆ + 1}.

Lemma B.0.2. Let f1(z) and f2(z) be convex functions with same domain and h1 ≥

0, h2 ≥ 0. For the function f(z) = h1f1(z) + h2f2(z) we have:

∂f(z) = h1∂f1(z) + h2∂f2(z) (B.3)

Proof. The proof is in [20, page 131]. It is also trivial to generalize this result for a

weighted sum of more than two functions.

Now we can conclude that the proposed iterative method in section 4.3.2 is a sub-

gradient descent method[20, section 3.2.3], and the update formula (4.23) is just moving

in the opposite direction of subgradient of the objective function.
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