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ABSTRACT. This paper concerns the dynamics of a rigid body moving under the influence of a
central gravitational field. Explicit account is taken of effects arising because of the finite extent
of the body. The hamiltonian framework of the problem is exploited to elucidate questions
concerning approximation, symmetry, Poisson reduction, relative equilibria, and associated

stability problems.

1. INTRODUCTION.

In the study of the Newtonian (gravitational) many-body problem, it is customary to treat
the bodies as point masses. See (Sternberg [40], Smale [39], and Abraham and Marsden [1]).
However the proper accounting of stable planetary spins for instance, would seem to require the
consideration of rigid (possibly nonhomogeneous) bodies of finite extent as a first approximation.
The works of Duboshin [7], Ermenko [10], Elipe, Ferrer and Cid [8], [9], are concerned with
the existence of special solutions (e.g. central configurations) in the Newtonian many-rigid-body
problem. However, in these papers, the natural geometric and group-theoretic underpinnings of
the problem are not exploited to the extent possible. We are not aware of a systematic program

along these lines.
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In the design of large earth satellites, aerospace engineers have had to account for a “gravity-
gradient torque” and its effect on the stability of earth-pointing satellite attitude. In the literature
related to this problem, there are studies of relative equilibria and quasi-periodic motions based
on various approximate models of the coupling between orbital motion and attitude motion of
earth satellites. We refer the reader to the work of Beletskii [2], Duboshin [6], Roberson [34],
[33], Longman [22], Meirovitch [27], Mohan, Breakwell and Lange [28], Likins [21], Sincarsin
and Hughes [38], Pascal [30], and Sarychev [36]. The basic problem at hand is the dynamics of

a rigid body or gyrostat in a central gravitational field.

In the present paper, we work out the noncanonical hamiltonian structure of the problem
of motion of a rigid body in a central gravitational field. The group SO(3) of three dimensional
rotations appears as a symmetry group. Poisson reduction by the action of SO(3) yields a nine-
dimensional system that corresponds to observing the dynamics from a moving frame. In this
body frame, the dynamics manifests the effect of a fictitious torque known as the gravity- gradient
torque. There are Casimir functions that are conserved independently of the hamiltonian and
hence of any (convenient) approximations to the Newtonian potential. We shall compute relative
equilibria and determine their stability. All motions (whether exact or approximate) remain
confined to the level sets of Casimir functions which are eight or six dimensional symplectic

leaves.

It is noteworthy that the Poisson structure for the finite dimensional problem studied here is
closely related to the one used by Krishnaprasad and Marsden [17] in their study of the dynamics
of a rigid body with a flexible attachment (a physically distinct and infinite-dimensional problem).

A key link is the geometry of Poisson reduction.

2. CONFIGURATION SPACE.

In Figure 1, let C denote a fixed gravitating body of mass M (with spherical symmetry)

that influences the motion of a rigid body B of mass m. The inertial frame of reference (of
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the observer) is attached to C and a body frame is fixed on the rigid body B at its center
of mass. A typical material particle @ in the rigid body is represented by the inertial vector
q = BQ + r, where B isan element of SO(3) (independent of the particle) and r is the
vector from € to the center of mass of body B. At any instant, the configuration of the rigid

body B is determined uniquely from the pair (B,r) e SE(3), the special Euclidean group of

rigid motions in R3 .

In what follows, we will see that this is an example of a simple mechanical system with

symmetry in the sense of Smale [39] (see also Abraham and Marsden [1]). Appendix 1 includes

a short introduction to the abstract framework.

Figure 1. Rigid Body in Central Force Field

3. LAGRANGIAN.
The kinetic ellefgy of the rigid body relative to the observer at C 1,
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where dm (-) denotes the mass measure of the body. Here onwards, |- | denotes the Euclidean

norm in IR?. It is an elementary fact that the above expression simplifies to the formula
1 m ., . oo

where € is the body angular velocity vector of the rigid body , m is the total mass of the

body and I is the moment of inertia tensor of B in the body frame.

Recall that the body angular velocity §) is defined by

B = B{,
where
X 0 -3 Qy
Q = Q3 0 —
—Qs N 0

is the skew-symmetric matrix associated to €.

The spatial angular velocity w is defined by

B = &B,
and we have the relation
w = BQ.
In the notation of Appendix 1, we note that K = 2T defines a riemannian metric on

SE(3) the configuration space.

The gravitational potential energy of the body B is given by,
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(3.2)

where G is the universal gravitational constant.

The Lagrangian for the problem is then a function

L:T (SE(3)) — R,

(B,r,,7) » T — V.

4. SYMMETRY.

The inertial observer at C has the freedom to change his frame of reference to a new

orientation. This corresponds to an SO(3) action on the configuration space C = SE(3):

$: SOB) xC — C

(P,(B,r)) = (PB,Pr).

It is easily checked that this action leaves invariant the kinetic energy T ( riemannian metric

on C ) and the potential V.

The hamiltonian H = (T + V) is given by,

_ 1 -1 |P|2 GM
H = (1o + 2 —/—-————|T+BQ|dm(Q), (4.1)

where II = I Q is the body angular momentum of the rigid body B, and p = mr is the

spatial linear momentum of the body. One has also the formula,
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m = BIQ + r xmr

= BIl + rxp
for the spatial angular momentum of the rigid body.

It can be verified that = = =« (I, B,r,p) is an Ad*-equivariant momentum mapping for
the lifted action ®T on T*S E(3) and hence is a conserved quantity for the dynamics Xpg .
This is further equivalent to Euler’s balance law. To see this, let Fresultant denote the force

resultant on the rigid body. Then,

GM(r + BQ)

resultant — d ’
Fresultant v + BO P m(Q)
and by linear momentum balance,
25 = fresulta.nt. (42)
On the other hand, the torque resultant,
B x(r + BQ)GM
zesultant = - (r + Q) (r Q) dm(Q)

|7 + BQP

Thus angular momentum (or Euler’s) balance law yields:

i = 0. (4.3)




Collecting together the balance laws one can write the spatial form of the dynamics as

i = 0,
. GM (r + BQ)
P |r + BQ |3 am(Q),
(4.4)
B =& B,
T = p/m
Equivalently, in mixed body and space variables (II, B,r,p) we get:
. _ GM(BTr x Q)
=1 x I"'II + / dm(Q),
i+ Bgp "9
. GM (r + BQ)
= — d
i= - [ (@),
B = BI-I,
= p/m. (4.5)

Now, since H is SO(3)-invariant, one can induce a hamiltonian H on the quotient
T*(SE(3))/SO(3) and express the dynamics Xy in terms of appropriate reduced variables
(see Appendix 2 for the general framework). In the present context it is easy to determine the

reduced variables. Note that
37" . SO(3) x T*SE(3) — T*SE(3)

(R,(II, B,r,p)) — (I, RB, Rr, Rp)

is the lifted action on T*SE(3). A representative for each equivalence class in T*SE(3)/SE(3)

is given by

(1L, 1, BTr, BTp).



Thus the reduced variables (or convected variables) are:

II, the body angular momentum, A = B7Tr, the convected radius vector from C, and

¢ = BTp, the convected linear momentum.

In terms of these convected variables, the dynamics X takes the form

: _ GM (A x Q)
I = OxI'I — =y
B
A= axItm o+ £ (4.6)
m
. - GM (A + Q)
— 1 _
and the hamiltonian H is given by,
S D Y / GM
H = 2<II,I H> + o T+ 0 ‘dm(Q) (4.7)
B

Equations (4.6) with hamiltonian (4.7) are the Poisson reduced equations on T*SE(3)/S0(3)
~ 50*(3) x R® x IR?. In terms of the Poisson tensor A on so*(3) x R® x R? derived in Appendix

2, these equations take the compact form,

i i A A\ (Vad A
Al =X o0 I VAH | = AVH. (4.8)
[t g —-I 0 V,.H

The Poisson structure is rank-degenerate, and there are nontrivial Casimir functions of II, A, p.
( Casimir functions are kinematic conserved quantities for equations of the form (4.8). See

Appendix 2 for the precise definition. ) In fact, any function Cy of the form
Co = ¢(IIL + A x ul,

is a Casimir function. Here ¢ : IR — IR 1is any smooth scalar function. Moreover, these are

the only Casimir functions defined on the open set of generic points of A .
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From the general properties of Casimir functions (see Appendix 2) we know that Cy is
an integral invariant for any hamiltonian vector field and in particular for X . It is further
important to note that replacing H by a suitable approximation (such as derived from series
expansions of the Newtonian potential term) does not affect the integral invariance of Cy. This

is of some use in developing an analytic perturbation theory.

5. RELATIVE EQUILIBRIA.

The concept of relative equilibrium goes back to Poincaré. For simple mechanical systems
with symmetry, there is an elegant characterization of relative equilibria due to Smale [39]. We
discuss this below and use it in computing relative equilibria for a rigid body in a central force
field.

Let (M, K, V, G) be asimple mechanical system with symmetry as defined in Appendix 1.
Assume that the lifted action of G actson T*M freely and properly. Then the quotient space
T*M/G is a smooth manifold with an induced Poisson structure. Let {-,-}o be the canonical
Poisson bracket on T*M. Given f, g € C* (T*M/G), the induced Poisson bracket of f
and ¢ is defined by

{fa g} o7 = {fo%a go’f.}O

where # : T*M — T*M/G is the canonical projection. For any G-invariant hamiltonian

function H on T*M, we have the induced function H . T*M/G — R defined by,

~

H o #(z) = H(z).

In terms of the induced Poisson structure, and H , the projected hamiltonian vector field Xp

on T*M/G is defined by the condition, for any f e C°(T*M/G),
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Xglfl = {f, H}.

DEFINITION.

ze € T*M is relative equilibrium for H if
Xﬁ (?(Ze)) = 0.

For the dynamics Xy of a rigid body in a central gravitational field, the relative equilibria
are determined by setting the time derivatives in equation (4.6) (or (4.8)) to zero. On the
other hand, in general position, i.e. II # 0, VC4 spans the kernel of A. Thus we have the
energy-Casimir characterization of relative equilibria in general position: (II, A, p) is a relative
equilibrium iff

VH = VC4,  for suitable 4, (EC)

iff ( Lagrange multiplier characterization )

11 T+ Axp
VaV ] = c¢ | pxI+Axu)|. (LM)
£ (IT+ XX p) x A

where ¢ # 0 is a constant and

N GM
V) = - /B mdm(Q)-

Before we proceed to solve (EC), we note an alternate characterization of relative equilibria.

REMARK 5.1.

It can be shown [1] that z. is a relative equilibrium ¢ff there exists a £ € ¥ such that the

flow of Xy,
Fy, (ze) = eap(t€) (zc),
(i.e. the dynamical orbit is simply a group orbit). Thus if the observer were to be set in uniform

motion according to the one-parameter group exp(t£), then for such a moving observer, a relative

equilibrium will appear to be stationary.
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In the work of Smale [39], there appears a characterization of relative equilibria for simple
mechanical systems with symmetry (see Appendix 1 for the relevant notation). We present this

as an algorithm to determine relative equilibria.

Algorithm for relative equilibria

Step 0. Pick ¢ e &, the Lie algebra of G . Let £3; denote the corresponding vector field

on M determined by the action ® of G.

Step 1. Search for the critical points ¢, € M of the function ( the augmented potential )

Ve : M - R
V@)= V(@) — 5 K (éula), n1(a)) (5.

Step 2. Find the corresponding conjugate momentum p, by the formula
Pe = K ({Z.M(Qe))' (5'2)

Then z. = (ge, pe) is a relative equilibrium for the hamiltonian function
1 e D\ — D\ —
H(ag) = V(o) + 5K (K" ag, (K*)ay).

This principle was used in [41] to determine relative equilibria for the dynamics of two rigid bodies
connected by a ball-in-socket joint. In what follows we apply this principle to find the relative
equilibria for the problem of rigid body motion in a central force field. Here, the elements of a

simple mechanical system with symmetry consist of
M = SE(3),
K (Ui, Up), (Wi, W) = tr(Us I' W) + m < U, Wa >p,

GM
VB, r) = — /B mdm(@,

and
G = SO(3),
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where < -, - >p denotes the Euclidean inner product on R,
(Ul, U2)7 (Wla W2) € T(B, T)SE(3),

and I' is the coefficient of inertia of the rigid body. The superscript T in W; denotes matrix

transpose.

For ¢ ¢ 50(3), the corresponding infinitesimal generator of the group action on M can be

found as

§M(B7 T') = (éBa é?‘)

We then have

K(ém(B, r), ém(B, 1)) = <BTE IBTE>p +m | € x v |,

and

1 1
Ve(B, r) = — 3 < BT¢, 1 BT¢ > —§m|§ x r|?

GM
- /3 g Q) (5.3)

We then get the first order conditions for (B, r) to be a critical point:

() méEx(Exr) + /B (’"lj fg)cﬁfl dm(Q) = 0
(i) € x (BIBT¢) — /B ([’” rx fQ; ;‘I]ﬁf dm(Q) = 0.

Next, we calculate p. in Step 2. The map K’ can be found as follows. For (w1 B,ws),

(ﬁlB, ’LL2) € T(B,r)SE(?’) ’
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K" (1B, wy) (41 B, uy)
= tr(w B I'BTaT) + m < wy, uy >g

= < ui, BIBTw1 >E + <ug, mwy >g .
Thus

K*(91B, wy) = ((BIBTwy) B, mws) € T(y,, SE(3).

We then have

pe = K(Eu(e) = ((BIBTS) B, mér)
= (B(Iﬁf), mé r) .

Note that in the formula for p., the two components correspond to the angular momentum
and linear momentum respectively. If we let u denote the body representation of the linear

momentum, we get

(3dz) p = mBTér.

Substituting Q@ = BT ¢, XA = BTr, conditions (7), (i), (4ii) read

(@) mQx(Qx\) +/B %dm(@) _
@) QxIQ - /B (—E\E—g)—gf\g/‘rdm(Q) =0, (5.4)

and

(') p = m (Qx ).

These conditions are identical to the conditions obtained from the reduced dynamics (4.6) and

the definition of relative equilibrium.
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Now, if we take the cross product with A on both sides of ('), we get

(Ae X Q) GM
[ Ae + QP

mle X (Qe X (Qe X Ae)) + dm(Q) = 0.

(Here again the subscripts e refer to equilibrium.) Comparing it with (iz'), we obtain

mAe X (e X (e X X)) + Qe x IQ, = 0.

By standard identities in vector analysis, we get

Q. x (I — mi A Q. = 0. (5.5)

We conclude that §2, must be an eigenvector of the matrix I — m)\e)\:‘f.

Let k. denote the corresponding eigenvalue. Then one can obtain the relative equilibrium

characterization (LM) from (5.4) by setting,

1
c = Y (5.6)
Conversely, using the identity,
A X (( xA) x Q) ==x (A x (2 x X))
= (>‘ ) Q):u’

and a few further algebraic manipulations, one can derive (5.4) from the relative equilibrium
characterization (LM). We leave the verification to the reader. Thus the two characterizations

are equivalent. Of course, for simple mechanical systems with symmetry, the equivalence of the

energy-Casimir characterization (EC) or (LM) and the variational characterization based on the

augmented potential V¢ holds in general.
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Note that we fix { while searching for critical points of V¢. Thus @ = B¢ is of fixed

norm as B varies over SO(3).

Let

Q= 1€ = 8

Define V3 (€, \) to be Ve(B, ) expressed in the convected variables €, A. Then,

~ 1
Vs (@0 = = 5 <9 I0>p —-’;lm x A2
+ V (). (5.7)
Clearly, the critical points of Vﬂ on the sphere | Q|2 = B satisfy the unconstrained variational
principle,
~ 1 2
A5 + - 1aP) =0, (5.)

where 1/2¢ is a Lagrange multiplier. The first order conditions associated to (5.8) are,

1
IQ 4+ mAx (2 x A) ==Q (5.9a)
c
m(Q x A x Q=V,V. (5.9%)
These are exactly the equations we get by eliminating ¢ = m(Q x A) in the relative equilibrium

characterization (LM). The unconstrained variational principle (5.8), parametrized by ¢, and the
associated first order conditions (5.9) appear to be most suited to the explicit computation of
relative equilibria. Before we proceed with such specific computations we make some general

geometric observations concerning relative equilibria.
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Observe that, by taking the inner product of both sides of (i7i') with )., we get
<Ae, e > =0 (5.10)

at a relative equilibrium ( A, e, ¢ ). If (7e, Be ) is a relative equilibrium configuration, then

the dynamical motion is such that
r(t) = et r,
B(t) = e B.. (5.11)

This follows from Remark (5.1) that at a relative equilibrium the dynamical orbit is just a group

orbit.

PROPOSITION 5.1.

In relative equilibrium, the radius vector r(t) generates a right circular cone.

Proof
From (5.11),
< r(t), r(t) >e=< eté Te, e r, >p=< Te, Te S>E .
Also
< r- S S
=< rr > — <r,§>%

¢[?
< et Te, eté £ >%
€12

< re, £>%

€12

= < Tey Te >E —

= < Tey Te >E —

= constant.

N

2 .
Thus r(t) is a circle of radius (< TeyTe >E — <rf€’f2>E) centered at C' = %gﬁ—f See Figure 2.
K
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Figure 2. Cone generated by r(t).

NON-GREAT CIRCLE MOTIONS.

For a rigid body of finite extent, if the center of (relative equilibrium) rotation C’ does not
coincide with the center C of the force field, then the stationary motion will be called a non-great
circle motion. The existence of such motions is in question. See, e.g. the model problem below

and also the gyrostat example in Rumyantsev [35].

From equation (4.5),

_/GM(r + BQ)

-+ Bgp 9

p=mr¥

d? : ;o
= (et5 re) = m e® £ r.

e
Substituting r = et r, and B = e% B, on the left hand side, we get,

_/GM(TC +B6Q)
| re + B.Q[?

dm(Q) = m &% r,.

Taking the inner product of both sides with £, we get,

< 57 re > + < 67 B, Q >E £2
- / d == 1 < “ ‘e > = 0-
b[ GM . T BT m(Q) m < £, £
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Hence

dm(Q <& B, Q>
<&, re >E/ . +m(Be)Q 5= —/ & Be © dm(Q).
B B

Equivalently,

<& Be Q>
<tiresp= - [ ShELE, (Q)// W
B

The quantity < £, re >g is proportional to the cos(8) (refer to Figure 2), and C and C' coincide

iff <&, re >g = 0. If the body B were a point mass, () = 0 and hence < ¢, r. >g = 0. If for

a rigid body of finite extent, the integral

/ <€aBeQ>E
Ire + B.Q |3

dm(Q) # 0,

then C', C' are not coincident.
Since
_ BT BT
<£’TC>E_< e§) e Te ”E

= Qe')‘ea

we conclude that a relative equilibrium (Ae, e, pe) determines a non-great circle motion iff

Qe Ae # 0. (5.12)

One can test the non-vanishing condition (5.12) in various settings. We now demonstrate that
there are examples which do not admit great circle relative equilibria. We first assume that the

relative equilibrium is a great circle. Then the equilibrium can be found by solving ( from (5.9)

and -A=0),

QxIN = 0,

GMO\ + Q) _ g
/BW dm(Q) = m[QPA. (5.13)
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Figure 3. The “molecule”

We note that given the norm of 2, the two equations above are decoupled and are equivalent to
1. © is an eigenvector of 1.

2. ) is a critical point of the function

~ GM

_ [ CM o)+ TlaPp.

Moreover, the second condition is equivalent to finding the critical points of

GM
B A+ Q|

vi = dm(Q),

subject to

1
§|/\|2 = constant.

with m|Q2|? being the Lagrange multiplier.
Now we consider a model problem. The body is an asymmetric “molecule” consisting of six

point masses, two on each principal axis. See Figure 3.
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In this example, we know that I is diagonal and thus for a great circle solution, €0 must be

along one axis. For a given set of data, for example,
Mgy = 101, Mgp = 1, My = 100, My = 1, My = 99, Myy = 1,

T = 001, Y1 = 001, ] = 001,

the corresponding 3, y2, 22 can then be determined such that (0,0,0) is the center of mass. The
corresponding function V1 on the sphere |A| = 400 is shown in Figure 4. The coordinate system
is the following. The sphere is parametrized by the usual spherical coordinates 0, 0<6<7,and

¢, 0 £ ¢ < 2r. In Figure 4, the function viis plotted above the disc of radius 7, with (6, )

interpreted as planar polar coordinates.
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Figure 4. The function vi

The extremal critical points are determined numerically to be as follows.
maxima : A = (-398.5,-33.7,-7.2), (399.3,-22.1,-10.6),
minima : A = (13.7,32.4,398.5), (—4.0,8.5,—399.9).
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These extremals are found by using an optimization package CONSOLE [11] with the assistance
of the 3-D graphical representation in Figure 4. From Figure 4, we note that there are also two
saddles near the axis ey. We therefore search for the maxima along that axis and check if they
are also minima in the transverse direction. By this process, we can verify that no critical value

of A is perpendicular to a principal axis. Accordingly, we conclude that for this example, there

are no great circle relative equilibria.

6. APPROXIMATIONS.

For typical applications in the modeling of planets or artificial earth satellites, the nominal
radius of the orbital motion is very large compared to the dimensions of the orbiting body.
Accordingly, it seems appropriate to consider various approximations of the gravitational potential
based on Taylor series in a neighborhood of | A | = oo or equivalently | r | = co. Whilst such
approximations are common in the literature cited in the Introduction, it is unclear whether the
symmetries and conservation laws inherent in the problem are respected by the approximation

process.

In the present paper, we take the Poisson reduced model (4.8) as the logical starting point
for approximations. The hamiltonian H is approximated to various orders of € = (nominal
dimension of body) / (orbital radius), by the Taylor series expansion of the 14 (A) potential term

appearing in H:

W»:—/—ﬁﬁwmw>

8 |A+ Q]
_ GM <@ A> 1]QP | 3<@ A>? _4}
=G fom@ {1 - S5 - a e s S et
GMm GM 3 GM s
:I:—m“]+[—2|_>\—|?tr(1)+§l/\l5 <N IA>|+o(l A7) (6.1)

In (6.1) the first term in brackets is of the order €* and the next term is of the order €?. The €'
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term is absent due to the vanishing of [, @ dm(Q).

We will therefore consider two approximate model hamiltonians,

A 1 - |2 GMm
Ho= = ! - :
0 5 <I, I7'II > + om | ) | , (6 2)
and
- 1 _ ul2 GMm GM 3 GM
Hy= - <ILIT™! - - e : :
2= 5 <II, o> + S B E tr(I) + > TP <A IA> (6.3)

Upon substituting Hy and H, respectively for H in the Poisson reduced dynamics (4.8), one

obtains the order zero reduced dynamics;

I =1 x I

GMm
— -1 _
g = p x IT'II BYE
and the order two reduced dynamics;
. M .
=1 x I 4+ 29 51
| AP
}\:)\XI_1H+;L/m
GMm 3GM (6.5)
= I - A — tr (I)A
3GM 15 GM
— I\ — A I > A
EYEC N DY

As already noted at the end of section 4, all such approximations admit a common set of conserved

quantities (Casimir Functions) of the form Cy = ¢ (| II + A x p [2). Since the order 0 dynamics
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is essentially decoupled, it has additional conserved quantities of the form (| II |?), and the spin
energy 1/2 < II, I7II >. If the body is spherically symmetric, i.e., I = k1, then the order two
approximation collapses to the order zero approximation. In general, the order two approximation

displays nontrivial spin-orbit coupling.

6.1 ORDER ZERO RELATIVE EQUILIBRIA.

With the order zero approximation of H | the relative equilibria (e, Ae) satisfy

IQ, = kQ (6.6a)
M
%ﬂ? Xe = m(Qe X Ae) X Qe (6.6b)

By taking the inner product of both sides of (6.6b) with 2., we conclude that A.-Q. = 0,1i.e.
all relative equilibria in the order zero approximation give rise to great-circle orbits. From 6.6(b)

and the condition .-\, = 0, we get the Kepler frequency formula,
GM\?
Ql = | —— ) 6.7
1= () -1

Summarizing, the only relative equilibria for the order zero approximation are

(a) . is a principal axis of I;

(b) X, is a vector perpendicular to €. satisfying the Kepler formula (6.7); (6.8)

(¢) e = m (e X A¢) completes a triad.

With the same assumptions as (6.8a) and (6.8b) above, it is possible verify the existence of

“uniformly spinning solutions” to the order zero reduced dynamics:

() = I0(t) = IQ,

At) = exp <t| S‘; | Q) e (6.9)

w w oA A
- Qe )] Qe A,
ut) = m (1 + |9e|)“”(tme| )
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with the modified Kepler frequency formula,

(+ 1920 = (fjﬂl)/ (6.10)

The quantity w measures the body spin relative to a moving Frenet- Serret frame at the center

of mass of the body.

6.2 ORDER TWO RELATIVE EQUILIBRIA.

The first order conditions for the variational principle (5.8) take the form

1
(I — mAH = (-c- - m| AP Q (6.11)
GMm 3GM
2y _ ) _ iMm oG
m| QA m(Q2 - A)Q |)\|3)‘+ 2[)\l5tr(1))\
3GM 15 GM |

The equations (6.11) admit a family of solutions (relative equilibria) corresponding to great circle

motions:

(a) €. is a principal axis (eigen-vector) of I with corresponding principal moment of inertia

L,i =12 3

(b) A is a principal axis (eigen-vector) of I perpendicular to 2., with associated principal

moment of inertia I;;
(c) pe = m (Qe X Ac);

and, the following modified Kepler frequency formula holds:
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GM \'/* 3 (L — 2L + I)"/?
[ Qe | = (__Mg) {1+ 2m|)\1|2 } . (6.12)

In the above relation ¢, j, k are distinct and takes values in {1, 2, 3}. Hence the correction
term in (6.12) may be of either sign. It follows that for the order two approximation there are
twenty-four 1 parameter families of relative equilibria (accounting for  being in each of the six
directions parallel to the principal axes (with sign) and four directions for A corresponding to

each choice of ), the scalar parameter being § = | Q|2 = | £ |? as in Section 5.

This conclusion appears to be a classical result exhibited in different form. See for instance
the book of Beletskii [2]. However, the hamiltonian point of view together with the approach of
reduction has entirely eliminated the formidable mess of Euler angles and such.

In the following, we show that for practical parameter ranges, all the relative equilibria in

the order two approximate model are great circle motions. Let

I -mAHQ = o,

or

IO — a = mA\TQ.

With the notation 7 = AT, we have

mrA = IQ — afd. (6.13)

We note that 7 # 0 corresponds to solutions that are not great circles, while 7 = 0 implies a

standard eigenvalue problem. The dot product of (6.13) with ) then yields

1

= I—g—z—iZ‘(QTIQ — mTz),

(8%
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and substitution in (6.13) gives

(QF - Q0TI + —— 120 (6.14)

A =
! o

IQI2

Taking the dot product with € of the second equation in (6.11), we get the following equation

3 15 7 3 5
. 1 = .
(m + gt = g T+ EQTIA = 0. (6.15)

Assuming 7 # 0, and multiplying (6.15) by 7, we have

1
3 trl — 5

T e Y4 —
(m—|—2|)\|2 2|)\|4/\ IN)7r? + Q' IrA = 0.

IAI2

With the expression for 7A in (6.14), we obtain the equality,

1
3 trl — 5ATIA+ 3

3
(mt ot~ 3 NEoE

T T mPAPQP

—— —QTIO)r? {19?19)* - |271IQ*}. (6.16)

But we know that

QI - |2710* > o,

thus (6.16) can have a solution with 7 # 0 only if

S trl — 5)\TI>\

_— QTIQ
e T I wzmv

which can be true only if



15

T
— <
m 2|/\|4)\ I <0,
or
15 «pax
— >
2m)\ IN > 1, (6.17)
where
Y . 2 T
A= Bk I= _I|i\21l2 dm(@) 1 — ?)32 dm(Q).

It is easy to see that for large A, (6.17) is not satisfied. In particular, the ratio %%l:- must be greater

than % But for typical artificial satellites, this ratio is approximately 107!%. For the motion of

moon around the earth, it is approximately 1.6 x 10™°. Thus we have shown that for the practical
case of large orbit radii, the 24 relative equilibria (for the second order approzimate model) are
the only relative equilibria. This conclusion is of special interest since we have constructed a
numerical example ( the “molecule” in Section 5 ) in which the ezact model has no great circle

relative equilibria.

7. STABILITY OF RELATIVE EQUILIBRIA IN THE APPROXIMATE MODELS.
In this section, we study the stability properties of the relative equilibria for the approximate
models discussed in Section 6. For both cases, the triple (II, A, i) is a relative equilibrium if the

three vectors are along the three principal axes. Without loss of generality we let

He = |H| €1 = Il|Q|61, (71)
Ae = |A| 627

IIj| A
e = T—'—I—“——' es = m|QA| es,

1
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where |Q| and || are related through the appropriate form of the Kepler frequency formula, and

I €1 = Ilela
I €y = .[262,
I €3 = I363.

We shall examine the stability of this relative equilibrium in various cases determined by the

relative magnitudes of the principal moments of inertia I;.

7.1 Order Zero Approximate Model. ( Instability Proof )
For the order zero reduced dynamics (6.4), the energy-Casimir method of Appendix 3 is
inconclusive since the second variation of the energy-Casimir function is only positive semi-definite

(has a zero eigenvalue). We linearize the system around the relative equilibrium (7.1). Let

sz = (8I1;, 8Ila, 6113, 8A1, 8A2, 6As, Spa, Spa, Sus)t.

We have the linearized system

sz = A bz,
where

[ 0 0 0 0 0 o 0 0 0
0 0 (- £)im 0 0 0 0o 0 0

0 (- )l 0 0 0 0 0 0
0 0 - 0 0 L 9 ¢

i 1
4 = 0 0 0 0 0 B0 & o
0 0 0 0 0 o o o L

1

0 e 0 -mey 0 0o 0 0 0
S 0 0 0o meM o o o U
\ 0 0 0 0 0 —mam o _M g
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By the frequency formula (6.7), we can write A in the form

[0 0 0 0 0 0 0 0 0
0 0 L0 0 0 0 0 0 0
0 —L=LQ| 0 0 0 0 0 0 0
0 0 Al 0 0 o L 0o o0
A= 0 0 0 0 0 12| 0o = 0

0 0 0 0 ~19 0 o o L
0 — I 0 —m|Q2 0 0 0 0 0

migli 0 0 0 2mlQ? 0 0o 0 |
0 0 0 0 0  —mlQ? 0 -9 o

Denote the upper left 3 x 3 matrix by B and the lower right 6 X 6 matrix by C'. It can be shown

that

Is—-L I, - T
p1(s) 2 det(sI — B) = s+ 2220 ),
I I,

p2(s) £ det(sI - C) = $* (s + |Q|2)2.

The characteristic polynomial of A is p(s) = pi(s)p2(s). It can be further verified that the

minimal polynomial of A is

Iy —L I, -T
m(s) = s* |2+ 212 _Ligp (2 +12%) .
I3 I

The occurrence of a repeated root of the minimal polynomial at s = 0 implies linear instability
of the relative equilibrium (7.1) for the order zero approximate model (See Gantmacher [12],
Theorem 3, pp. 129). Alternatively, the one parameter family of “uniformly spinning solutions”
given by (6.9) represents a perturbation of the relative equilibrium (7.1) that departs any small
neighborhood of the relative equilibrium in finite time, and hence we have instability. We note

that this conclusion is independent of the relative magnitudes of the I;’s.
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REMARK.

The projection of (II, A, 1) to the space of II projects the order zero dynamics to the usual
rigid body dynamics. For this projected dynamics, the equilibria in which the vector II is along

the maximum or minimum principal axes are stable.

7.2 Order Two Approximate Model. ( Energy-Casimir Method )
We now study the stability of relative equilibria of the order two reduced dynamics (6.5).

For the relative equilibrium (7.1), we have the following identity, ( from (6.11) or (6.12) )

GM 3 9

Now we discuss sufficient conditions for the stability of these 24 relative equilibria.
In general, for a hamiltonian system with hamiltonian H and Casimir C, we have the
energy-Casimir type sufficient condition for stability (see Appendix 3). The general form of the

energy-Casimir function for our case is

mGM GM 3GM
tr(I) + e

r 1 o 1 |pf?
Hy = g4 550 = = = o

1
ATIN + ¢ (5111 + A x #|2) .

The first variation of ﬁ¢ can be found as 6ﬁ¢(H, A ) = Vﬁqg - 6z, where

I7' + ¢'n
~ T .
VH(ILAp) = | G (m+ 35k - 552) A+ 3GHI + ¢'in
£ é'An
and éz is as in Section 7.1, and,
n = II+Xxpu.

The matrix representation of the second variation of H 6 1s
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VEH(IL A, ) 2

(I_l + ¢Il + qS"nnT —¢,ﬂ N ¢"1111Tﬂ ¢l:\ + qS"nnTj\ \
#'f+ ¢ pnn” M (m+ 255 - 1)1 —¢a+ ¢k + ¢ mnTA
3GM 5trl ATI
— B (Mt e e ) ANT
. 1|5§1|‘M INTT — 15§r|‘MI)\)\T + 3|€\;|]‘\5/II
—¢'ip — ¢" pmnT i
\ —¢'A — ¢"AnnT ¢'h+ ¢' i+ ¢" AnnTj Ly ¢'AX — ¢"SnnT ]

In the above formulae, ¢' represents its value at |n|?/2, and the same convention is applied to

¢". Now we find the variations at (I, Ae, pte). By using (7.2), we have

2] eq
VHy(Ile, Ae,pie) = (14 ¢'K) | m|A[|Q2% |,
A|2es

where

K = I + m|\P.

Thus in order for the first variation to vanish, we require 1+ ¢' K = 0, or

¢ = ~% (7.3)

Substituting these values in the second variation formula, we get F' = V2H o (Ile, Ae, pte) as
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IR
K-1T.
0 IzK2
0 0
QA
0 lell |
m|Q||A
—_ |R|| | 0
0 0
0 0
0 0
\ A 0
where

With the lower triangular matrix L defined by

1
0
0

0

m QAL
R-T,

0

0

0
Lgy

0 0 —mialiAl 0 0
[2]1A]

0o =i 0 0 0
K1 A
=L 0 0 o Wl

0 Fy 0 0 0

m 2

0 0 —m;Q]22(4;M%) 0 0

+55F

0 0 0 Feg O

P} I
1Al 0 0 0 A

0 0 0 ] 0

0 0 Q1+ =25y 0 o

1 1 " -2 2
= = — —¢"K*Q
7z = 79K,
I, 3GM
— 211
Fuy = mlQ E+W(Il — D),
3GM
Fse = lelz + ——*(Ig - .[2)
Al°
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0

I, m|Q}|\]

B 1 0 0
0 0 0 1 0
0 0 0 0 1

Is|h
0 - S 0 0
0 0 0 o -
0 0 0 Les O

)

o

.

2\
R
0
0
0
—[9)(1 + =BL)
0
0
0
R—m|A}?
mR
(7.4a)
(7.4b)
(7.4c)
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 1



with

LA
Lyy = R_1, (m|2Los + 1), (7.5a)
Usg
Loz = —
95 Des’ (7.5b)
K-1I
Usg = —|Q|[1

(7.5d)

K—1
Dss = m|Q)? (4+ ' 1) _2mGM

R-1, RE

we can transform F' into a diagonal matrix

D =LFILT,
where
D= dz'ag{RIl“RIl, KI;{Iz, Ii;{f"', (I; — I)Dyy, —Dss, Fes,
T—n%;;?__fsj_?)), (I; — I,) Dy, 1U)5:Z + mfR__'_I;) }
with
Pu = }nl-g—zlf * 3&1];4
Dgg = “ﬂ%

(Since congruence transformations preserve the matriz inertia, we can read off the number of
negative eigenvalues of F' from D.)

We shall now consider the case in which,

L > I3 > L.
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To have stability from the energy-Casimir method, we require that all the eigenvalues of F

( equivalently of D ) be positive. This holds if

el ]; Lo, (7.60)
Dss < 0, (7.6b)
and
2 _ K
ZZZ m‘FR_I;l) > 0. (7.6¢)
For (7.4a), we have
E-b b mbP sreegap,

R R K

Thus (7.6a) holds if ¢ > 0. We next consider (7.6b). By the definition (7.5d) of Dss and the

frequency formula (7.2), we get

K-1L 2
Dss = m|Q)?* | 4 - :
s = oot (e i )

Let

A 3
= W(I1+I3—2I2)

For the case under consideration € > 0 and for |)\| large compared to the typical dimensions of
the body, € is small. The other term,

K-IL _ m\?(1/K - ¢"K*QP)
R-Ii  m|A?/K 4 ¢"[LK2|Q)2

For || large and ¢" large enough,

K-1I m|\|2 (—¢" K?|Q?)  mAP
R-I1, ~— "I K2|Q)? - I

>

2 _y (7.7)

Thus
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2
D55 ~ m[Q|2 (4— m—e) 5

for [A| large and ¢" large enough. Since 6 >> 4, we have Ds5 < 0. This is (7.6b). Now we look

at (7.6¢c). It is easy to see that if we show

R~ K

2 —— e
Vso b mm= 1)

Dss < 0, (7.8)

then together with (7.6b), we have (7.6¢). From (7.7), for || large and ¢" large enough,

U59 >~ ~—|Q|(1—9)

From the definition (7.4a) of R, we have

_I%'_ — ¢"I(3|Q|2.

Thus

R-K ¢" K3 |Q)? K
m(R—1I;) m—ﬁéﬁ+¢"11[(2|9|2 R £}

= 1486,

for |A| large and ¢" large enough. Now we verify (7.8). Under the same condition,

R-—K 1 2 \
U2+ —————Dss ~ Q1 -2+ —(1+0m|Q2[4-—"——_¢
59+m(R_Il) 55 121%( )+m(+)m|| T+e 7
2 2

= QP75 -— 1——)6

i (5 1+6+ 1+6)>

~ —|Q)%8

< 0.

Thus (7.4) hold for |\| large and ¢" large enough. We have the following theorem.

STABILITY THEOREM.

For the order two approximate model, the relative equilibrium
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Il = LIT

IX = LA

is stable if |A| is sufficiently large and,

L > I3 > I,

This shows that the relative equilibrium in which the body center of mass traverses a circular
orbit, the angular velocity lies along the principal axis of the body with the largest associated
moment of inertia ( minor axis of the ellipsoid of inertia ), and the radius vector is aligned to the
principal axis with the least associated moment of inertia ( major axis of the ellipsoid of inertia ),

is a stable relative equilibrium.

HISTORICAL REMARK.

A similar theorem appears in Beletskii’s book [2], pp. 94-102. Beletskii uses a spatial/inertial
model of the coupling between translational and rotational motion and presents arguments based
on a Lyapunov-Chetayev approach [5], and uses in effect the variational equations about the
stationary motion. In contrast, here we make consistent use of modern hamiltonian methods and
reduced variables. The methods of this paper yield a nonlinear stability theorem and generalize

to nonrigid and other complex configurations. See for instance the examples considered in [17],

(23], [16], [18], [x9], [32]-

7.3 Order Two Approximate Model. ( A Lagrange Multiplier Approach )
The previous section demonstrated that it is sometimes not straightforward to explicitly find

an appropriate function ¢ in the energy-Casimir method. In Appendix 3, we describe a more
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classical characterization of relative equilibria as critical points of the constrained variational

principle,

min Hy(IL, A, ) (7.9)

subject to  C(II, A\, ) = constant

where H, is the hamiltonian (6.3) and C is the Casimir ST+ A x p|?. The associated first-
order conditions coincide with the characterization (LM) of relative equilibria, with the unknown
constant ¢ being interpreted as a Lagrange multiplier.

The Lagrangian ( in the sense of optimization theory ) associated with the above constrained
variational principle is recovered if in Section 7.2 we take ¢(z) = —c z. Consequently the second
variation can be recovered as a special case of that calculated in Section 7.2. When ¢ is linear,

¢" = 0, and consequently, R = K. Therefore the second variation of H — ¢ C reduces to

Fe =
[ E=b 0 0 0 —miglAl 0 0 0 1l
_ A
0 0 Kk g 0 o B0 0
0 m@lAl g Fi 0 0 0 0 0
I LIEV 0 0 -—moP@+™ 0 0 0 -+ =R
2mGM
+ I}\IS
0 0 0 0 0 Fee 0 |Q 0
A Iy
0 0 0 0 0 Qo0 0
L 0 0 0 e 000 A

A comparatively simple Gaussian elimination then reveals that F¢ is congruent to
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K-, K-, K-1
LK ’ LK ’ Igff

De— diag{ (I — I,)Dass, D5y, Fus,

I, —1I 4|9
— (I3 — LL)D —_
m(K—Ig)’(3 12)Dss, Dg, [’
where
2mGM
_ 2

and the other coefficients are as defined previously. From the identity (7.2), we have further that

. 2
D55 = m|Q|2 (5 -— m) .

For |)A| sufficiently large, the expressions for the various coeflicients reveal that K is large
and positive, and Dy4, D5, Fse and Dgg are all positive. Consequently the signs of the entries

of D¢ are determined by the signs of the entries

{+»+7+a(I1_I2)7'“7'*')(-[1_[3)’([3_[2)7'{'}'

We shall restrict attention to satellites in which the inertias are distinct so that F° is
nonsingular. Otherwise additional symmetries arise, and the analysis is slightly more complicated.
There are six cases of distinct inertias. See the following table, in which the number of negative

eigenvalues of F° is shown in each case, and each case is assigned a reference number in

parentheses.
I> min I, middle I; max
I > I (1) 1 (2) 2 (3) 3
L <13 (4) 2 (5) 3 (6) 4
Table 1.

According to Theorem A3.2 (in Appendix 3), it suffices to analyze whether the condition
(h, F°h) >0, Vh#0and (VC(I, A, pe), B) =0 (7.10)
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is satisfied. Because the subspace of admissible variations h has codimension 1, condition (7.10)
cannot hold whenever F° has two or more negative eigenvalues. Accordingly the only case in
which (7.10) might hold is case (1), I1 > I3 > I, in which F* is nonsingular and has precisely
one negative eigenvalue.

To analyze (7.10) in case (1), we shall apply a general result bearing upon families of
extremals to variational principles. Notice that (7.1) actually defines a one-parameter family of
relative equilibria which can be regarded as being parametrized by the magnitude of the radius
of the orbit, i.e. |A|. But the multiplier ¢ is related to |A| through ¢ = m—%nW (cf. (7.3)), so
the family can also be parametrized by the multiplier ¢. Along this family the Casimir can be

written, using (7.1) and (7.2), as

1 1
SI+HAxuf® = SIQP(L +mAP)?

M )\22
_ GM(I, +m|)]?) (m|)\|2+g(11_2]2+[3)), (7.11)

m|AP®

Consequently, for |A\| large the Casimir is an increasing function of || along the family of relative
equilibria, and consequently a decreasing function of ¢. We may now apply the aforementioned

result.

LEMMA. (Maddocks [23], Lemma 5.2, pp. 316)

Suppose a family of variational principles of the type (7.9) have a family of critical points
ze(c) parametrized by the multiplier ¢. Moreover, suppose that the second variation at a
particular extremal is nonsingular with one negative eigenvalue. Then the second-order sufficient
conditions (7.10) at that extremal are satisfied if and only if the constraint C is a decreasing

function of the multiplier ¢ at that parameter value.

COROLLARY.

Solutions (7.1) in case (1), Iy > I3 > I, are Lyapunov stable for all || sufficiently large.
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Proof
It has been shown that the hypotheses of the previous Lemma hold, and that C(c) is
decreasing for relative equilibria with |A| sufficiently large. Thus condition (7.10) holds and

Theorem A3.2 in Appendix 3 then applies to provide the desired result.
i

Accordingly we have rederived the Stability Theorem proved in Section 7.2. As a final
remark, we observe that we have not proven instability in the order two model. Actually the
results of Maddocks [24](Section 5) can be applied to show that for large |A| the relative equilibria
in any of the cases (2),(4),(6) in Table 1, are dynamically unstable. An outline of the analysis
is that when F'° has an even number of negative eigenvalues and C(c¢) is a decreasing function,

then the linearized dynamics must possess an unstable real eigenvalue.

8. CONCLUSIONS

This paper represents a first step in our program to understand the geometry and dynamics
of motion in a central gravitational field. Treating the rigid body as a model problem, we adopt
a modern approach to hamiltonian mechanics to address questions concerning approximation,
symmetry and reduction, Poisson structure, relative equilibria, and associated nonlinear stability
problems. Our methods should extend naturally to problems of current interest such as the
dynamics of tether-connected ( and other ) multibody systems in orbit, the dynamics of elastic
shells, etc. A common thread in the program would be the use of geometrically exact models
(i.e. models that respect natural groups of symmetries ).

Among the new results of this paper we note the reduced model(s), examination of non-
great circle solutions, the instability proof for the order zero approximation, and the rigorous
proof of a nonlinear stability theorem in the order two approximation.

The geometric framework adopted here should be helpful in understanding and further

exploring some of the deep and exciting questions that have emerged in recent years such as:
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spin-orbit coupling and the problem of Hyperion [43] [13] [14] [31] [35]; the stable resonances of
Markeev and Sokolskii [25]; the work of Beletskii [g].

Further questions concerning bifurcations and instability are of some interest and appear
to be worthy of careful study. In addition to the methods used in the present paper, such
investigations may be facilitated by some of the new techniques based on the energy-momentum

method [37]. We hope to report on these problems at a later date.
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APPENDIX 1. (Simple Mechanical Systems with Symmetry)

Let (M,K) be a riemannian manifold and let G be a Lie group with associated action,

d: G x M-M

(9,9) = @4(q)

where @, in an isometry for each ¢ ¢ G. The riemannian metric induces a vector bundle

isomorphism,
K : TM — T*M
defined by
K® (vg) - wy = K (vg,w,),
for all vy, wg € TM,- The canonical symplectic structure w = —dfy on T*M can be pulled
back to

Q = (K)* (w),
which is also an exact symplectic structure on TM. One can verify that the action @ lifts to
symplectic actions ®7 and ®7 on TM and T*M respectively.

Let V: M — IR bea G-—invariant (potential) function on M. The hamiltonian
H: T*M — 1R, is defined by,

1
H(ay) = 5 K((Kb)”l ag, (K71 aq) + Vo i (ag)
where 73 @ T*M — M is the canonical projection.
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The hamiltonian vector field Xy on T*M determined by H, is given by the condition,

AH(Y) = w(Xn,Y),

for all vector fields ¥ on T*M. The hamiltonian system (7*M,w,Xpg) or equivalently the
quadruple (M, K,V,G) is a simple mechanical system with symmetry. It admits a momentum
mapping in a natural way. To see this, let & denote the Lie algebra of G and $* the dual
space of G. The symplectic action &7 on T*M, defines a Lie algebra homomorphism of &
into hamiltonian vector fields on T*M; we denote this correspondence as £ +— Ep«pr. Then

the map,

J:T"M — $*

defined by,

J(QQ)"&. = (iET*MQO) (aQ)a £eS

is an Ad*-equivariant momentum mapping. Hence J is a conserved quantity of the system

(T*M,w,Xp). (See Abraham and Marsden [1] for proofs.)
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APPENDIX 2. (Poisson Structure and Reduction)

In this appendix we outline the essentials of Poisson reduction and derive the Poisson bracket
applicable to the problem of rigid body motion in a central force field. A good source for Poisson
structures is the book by Libermann and Marle [20]. See also Olver [2g], the papers of Weinstein
[42], Marsden and Ratiu [26], and Krishnaprasad and Marsden [17].

A Poisson manifold P is a smooth manifold equipped with an R-bilinear map (Poisson

structure) on the space of smooth functions,
{-}p + CF(P) x C%(P)— C™(P)
satisfying the axioms, for f,g € C*°(P),
@) {f.gtp = — {9, f}p

(11) {fgah}P = g{fah}P + f{g’h}P
(iii) {f, {g;h}r }p + {9, {h, f}P}r + {h,{f,9}P}r =0.

Associated to a Poisson structure, there is a unique twice contravariant skew-symmetric,

smooth tensor field A on P such that

{f,9}p = A (df,dyg),

where df , dg are differentials of f, g, respectively. The tensor field A defines a vector-bundle
morphism,
A*.T*P — TP
ay = A*(a,) € T,P

satisfying,

B (A#(ax)) = A (2) (ag,Bg) forall B, € T;P.

Let G bealiegroupandlet V:G x P— P, (g,z)— ¥, (z), bea group action such

that ¥,(-) is a Poisson morphism for every g € (. Suppose that the action is proper and
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free. Then there exists a good quotient P/G that carries a Poisson structure {-,-} p/c induced

from the one on P satisfying, for f,g € C*(P/G),

{fig}pjgom = {fomgon}p.

Here m: P — P/G is the canonical projection. By construction, it is a Poisson morphism.
G-equivariant dynamics on P induce dynamics on P/G. Suppose h: P — R is a

G -invariant hamiltonian function on P | i.e.,

h(¥, (z)) = h(z) VgeG.

Define a vector field X3 by

Xplf] = {f,h}p V feC(P).

The hamiltonian h descends to 5 : P/G — R and determines a reduced dynamics X ; on

P/G by

X, f] = {£,hYpje Vf e C™ (P/G).

Here h ([z]) = h(z) for an equivalence class [z] in P/G.
In what follows, we work out the Poisson reduction of T*SE(3) by SO(3). The resulting
bracket captures the geometry of the central force field problem studied in this paper.
Let < -,- > denote the pairing between T*S0O(3) and T'SO(3) defined by
T*S0(3) x TSO(3) - R

1
<aA,WA>E§tr(a£WA).

P = T*SE(3) carries a canonical symplectic structure and hence a Poisson structure {-,-} p given

by

_ n B ag B 7 = _ _
§1p(B,BI,r,p) = < Dgf,—2x > — < Dpg, —x > + o+ o2 — —2 . ==
{f,9}p( r,p) sf 3BT B9 5o



where gr . —g—% denotes the natural pairing, i.e. the Euclidean inner product on R?.

[~

The group G = SO(3) acts on SE(3) by left multiplication. This action lifts to a symplectic
action on T*SE(3) given by

(R,(B,BI,r,p)) — (RB, RBII, Rr, Rp).

Thus a representative for an equivalence class in P/S0O(3) is given by

(1L, BTr, BTp).
Let A = BTr, p= BTp. We will compute the reduced Poisson structure on T*SE(3)/S0(3) ~
50*(3) x R® x R®. Since s0*(3) ~ R?, the question is equivalent to finding a Poisson structurc
on R?® x R® x R,

Let f,g € C®(R?®x R® x R?), and define f,§ € C®°(T*SE(3)) as

f(B,B1L,r,p) = f(II, BTr, BTp).
By the definition of reduced Poisson structure, we have
{f,9}pjc(I,\, 1) = {f,3}p(B, BII, BX, Bp).
(The right hand side is the canonical bracket in T*SE(3).) Then, by the canonical bracket on

T*SE(3),

- 07 _of of 05 03 Of
? H))\7 :<D 7—A>_<D ,—A>—+—— ------- .
{f,9}p/cl 1) Bf SBH BJ BT o 3p o op

Instead of computing each element in the above formula individually, we compute the differential

of f. Let W = (Boy, B(6:I1 + 92),vs,v4) € T g Bi1rpy I " SE(3). It generates the curve

(Bewx,Betﬂl (I + tdy), 7 + tvs, p + tv4) CT"SE(3)

Thus the differential is given by,
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df(B,Bﬁ,T‘,p) W= — f(Betﬁl,Betﬁl(fI + tl’}z),r + tvg,p + t’l)4)

t=0

d

== f (H + tug, etot BT (r 4 tvs), el BT (p + tv4))

t=0

of of . of .
:—a—ﬁ-vz—l—a—)\- vlTBTr—%BTvg)—}——ép-(vlTBTp—i-BTm)

B of  _of of of of
—( )\Xa)\ MXaﬂ)'Ul-}—aH'UQ-*-BE\"’Ug—{-B@'U/;.

Let the elements in T*

(B,Bﬂ,r,p)T*SO(g) be denoted as

(B(Bf{ +a),Bb,c, d) .

We have

Thus we obtain

o1



a ;)
Bf

st "BBIJ;’

of _ o

Or 8)\

of  _of

o ~Pou

The reduced bracket can then be derived as

15,9} p/a(IL A, 1)

_ of i f af of dg
_<B<(9H —(A )—( a_)> Bow > +B-8—A-B5—N—

oI ) oI o Cou

IS A
1 T@f Jg 1 ~p 09 Of af 0g 0Og Of
fusensd t [ _— —_— — f e — —— . ———
5 ’“(H ol an) 5! (H am am ) Tox oy ax oy

af Oy dg dg of 0f
o (A Xon THX aﬂ> o (A o trXo.)

<B<ag O 2y (uxg—%)> 5 . g% U

_ 9g, Of 99 99 Of
_H( o' Y ax oy T o B

of dg dg dg of of
ton (A <o) o (<ot a)

o & 2\ /o

oot ot (N 1) (B
ax |-

51_[ o\ 0,& [L~IO g_g_

"

In terms of the notation introduced before, the matrix form for the Poisson tensor A is

52



TN
™ > )
L o >
S N
\—/

REMARK A2.1.

The reduced Poisson structure derived here is very closely related to the one derived by
Krishnaprasad and Marsden for the dynamics of a rigid body with a flexible attachment [17].
The key link is the geometry. In [17] the unreduced phase space is infinite dimensional and is

given by

P, =T*SO(3) x T*C

where C = {f : [0,L] —» R3 | f is smooth} is the configuration space for the shear beam

attachment. In the present paper the unreduced phase space is

P =T*SE(3) = T*SO(3) x T*IR®.

In both settings, the reduction is by SO(3). In [17], the Poisson bracket takes the form

L
.2 0 [(0F B4 0y 0f
{f,g}Poo/G—_H (8HX8H)+/<8)\ o O (9,u> ds
0
L

L

f g g of
+ o (earunge) @ - [ (e g recg)
0

0

where the convected variables A, u are R® valued functions on [0,L]. As we let the flexible

attachment become vanishingly small (L — 0) with infinitely large density, {-, -} p. /g “collapses”
to {-,-}p/a-
REMARK A2.2. (Casimir functions)
A function f on a Poisson manifold (P, {-,-}p) is said to be a Casimir funciion if
{fidlp =0 Vyel=(P).
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Note that a Casimir finction is automatically a conserved quantity for eny hamiltonian vector
field X, on P. If {-,-}p is induced from a symplectic structure and P is connected, then the
only Casimir functions are the constant functions. In the present context, on (P/G, {-,-}p/q)
there are nontrivial Casimir functions. If (II, A, p ) is a generic point on P/G (i.e. a point
where the matrix A has maximal rank (= 8)), then on a neighborhood of this point any Casimir

function is of the form,

Co = (| + X x pl*)

where ¢ : R — R is an arbitrary real-valued function.

This follows from the observation that V Cy is in the null space of A.
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APPENDIX 3. (Stability Characterization)

We recall the Energy-Casimir theorem ( see Holm, Marsden, Ratiu, and Weinstein [16] ).

Consider a finite dimensional Poisson system with a hamiltonian H

i = {z, H}z) 2 Alz) VH(2). (43.1)

Assume the null space of A is not empty and is spanned by VC, where C is some ( fixed )

Casimir function. Then . is an equilibrium of (A3.1) iff 3 A such that,
VH(z,) = A VC(z,). (43.2)
Notice that if € is a Casimir, so is any smooth function C of €, and VC also spans the null
space of A. So (A3.2) can be rewritten as
V(H 4+ C)(z.) = 0,

for a whole class of Casimirs. Note that H + C' is a conserved quantity along trajectories of

(A3.1). We have the following theorem.

THEOREM A3.1. (Energy-Casimir)

If there exists a Casimir function C such that

V(H + C)(z.) =0, (A3.3a)

(second variation) V?*(H +C)(z.) >0, (or <0) (A3.3b)

then z. is a Lyapunov stable equilibrium of (A3.1).

Proof

Define

V(z) = (H+C)(z)—(H+C)(z).
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By assumption V2(H + C)(z.) is positive definite, so we know that z. is a strict local minimum.

Thus there exists a neighborhood U of z. such that
Viz.) =0,

V(iz) >0, VzeU-—{z.}.
Since H 4 C is a conserved quantity along trajectories of the given system, we have also

V(z) = 0, VeeU-—{z}.

We may therefore conclude that z. is Lyapunov stable by a standard lemma (see e.g. Hirsch
& Smale [15], pp. 193). A similar argument can be applied in the case that V*(H + C)(z.) is

negative definite.
K
Next we describe alternate approach to obtain a stability theorem. Consider the constrained

variational problem

min H(z),
3 (A3.4)
subject to  C(z) = b,

where b is a constant representing prescribed data. The Lagrangian corresponding to this

optimization problem can be written as

L(z,)\) = H(z) - \C(z), (A3.5)

with A € IR. The first order necessary conditions for (A3.4) then coincide with (A3.2). We now

recall the following lemma.

LEMMA. ( See e.g. Bertsekas [4], p. 68 )
Let P be a symmetric matrix and ¢ a positive semidefinite symmetric matrix, both of

dimension n X n. Assume that
(z, Pz) >0, Vz#0, with (z, Qz) =0,
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then there exists a (large, positive) scalar o such that

P+ a@ > 0,

i.e. P+ aQ is positive definite.

We can now state the stability criterion as follows.

THEOREM A3.2.

Suppose that . and A, € R are such that

VeLl(ze,Ae) = 0,

and, moreover,

(h, VEL(ze,Ae) B) > 0, V h# 0 with (VC(z.), k) =0.

Then . is a Lyapunov stable equilibrium of (A3.1).
Proof
Let
P =V;L(ze, Ae),

Q =VC(z.) VC(z.)T,

(A3.6a)

(A3.6D)

so that by hypothesis P and @ satisfy the conditions of the previous lemma. Thus we can find

a € R such that P+ aQ is a positive definite matrix. Now, with the notation b = C(z,), define

the augmented Lagrangian by,

Lo(z,)) = H(z) - AC(2) + %a (é(:z:) — 5)2 :

Then
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VoLa(e,Ae) = VH(z.) + V(o) + o (c”'(xe) - b) Ve(z.) = 0,
V2La(zesAe) = V2H(ze) + (Ae + @ (é(me) - b))Vzé(me) +a VC(2)VC(z)T

=P + a@Q >0.

Thus the augmented Lagrangian satisfies the requirement of a Lyapunov function and Theo-

rem A3.1 can be applied to conclude that z. is a Lyapunov stable equilibrium of system (A3.1).

i
REMARKS.
(a) Conditions (A3.6) form a set of sufficient conditions for z. to be a constrained local
minimizer of (A3.4).
(b) In application of Theorem A3.1, we would search for a suitable Casimir C to fulfill the
condition (A3.3). However, in application of Theorem A3.2 we can fix a particular Casimir
C and a scalar A satisfying (A3.6a), and then attempt to verify (A3.6b). The analysis in
Sections 7.2 and 7.3 illustrate the differences between the two schemes.
(c) With appropriate hypotheses, both Theorem A3.1 and A3.2 can be generalized to cases in

which there are n independent Casimirs, and the underlying space is infinite dimensional.
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