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ABSTRACT
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The study of robust nonlinear control has attracted increasing interest over the last few years.
Progress has been aided by the recent extension of the linear quadratic results which links the
theories of L, gain control (nonlinear Heo control), differential games, and stochastic risk sensitive
control. In fact, significant advances in both linear and nonlinear H, theory have drawn upon

results from the theories of differential games and stochastic risk sensitive control.

Despite these advances in Hoo control theory, practical controllers for complex nonlinear systems
which operate on basic Heo principles have not been realized to date. Issues of importance to the
design of a practical controller include (i) computational complexity, (ii) operation solely with
observable quantities, and (iii) implementability in finite time. In this dissertation we offer a
design procedure which yields practical and implementable Ho, controllers and meets the mandate
of the above issues for general nonlinear systems. In particular, we develop a well defined and
realistically implementable procedure for designing robust output feedback controllers for a large
class of nonlinear systems. We analyze this problem in both continuous time and discrete time

settings.

The robust output feedback control problem is formulated as a dynamic game problem. The
solution to the game is obtained by transforming the problem into an equivalent full state feedback
problem where the new state is called the information state. The information state method pro-
vides a separted control policy which involves the solution of a forward and a backward dynamic
programming equation. Obtained from the forward equation is the information state, and from

the backward equation is the value function of the game and the optimal information state control.



The computer implementation of the information state controller is addressed and several approx-

imations are introduced. The approximations are designed to decrease the online computational

complexity of controller.
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Chapter 1

Introduction

The study of robust nonlinear control has attracted increasing interest over the last few years. Progress
has been aided by the recent extension [FM91, Jam92] of the linear quadratic results [Jac73, Whi81] which
links the theories of Lo gain control (nonlinear H,, control), differential games, and stochastic risk sensitive
control. In fact, significant advances in both linear and nonlinear He theory have drawn upon results from

the theories of differential games and stochastic risk sensitive control.

Despite these advances in H., control theory, practical controllers for complex nonlinear systems which
operate on basic Heo principles have not been realized to date. Issues of importance to the design of a
practical controller include (i) computational complexity, (ii) operation solely with observable quantities,
and (iii) implementability in finite time. In this dissertation we offer a design procedure which yields
practical and implementable Hoo controllers and meets the mandate of the above issues for general nonlinear
systems. In particular, we develop a well defined and realistically implementable procedure for designing
robust output feedback controllers for a large class of nonlinear systems. We analyze this problem in both

continuous time and discrete time settings.

This dissertation is organized as follows. In Chapter 1, a precise statement of the robust Heo output feed-
back problem and an historical perspective of the developments in Heo control theory which have motivated
this research are presented. The solution to the robust He output feedback problem on which the imple-
mentations in this dissertation have their roots is that of James, Baras and Elliott [JBE94, JBE93a, JB94b].
Chapter 2 discusses the formal extension of their discrete time results [JB94b] to the continuous time set-
ting. Turning to implementation issues, Section 2.4 presents the conditions under which the information

state is finite dimensional. It is only under these conditions that direct implementation of the information



state controller is feasible. In cases where the information state is not finite dimensional an appropriate
approximation must be made before implementation is possible. In Section 2.5 one such approximation is
discussed. Chapter 3 presents the Certainty Equivalence Controller (CEC) which is shown to be equiva-
lent to the information state controller under the assumpfions of the Certainty Equivalence Principle. The
CEC, though better suited for implementation than the information state controller, also suffers from the
burden of requiring complex on line computations. Approximations of this controller which lend themselves
to faster implementations are also discussed. In Chapter 4 numerical procedures for solving the Hamilton
Jacobi inequalities and dynamic programming equations which arise in the solution to the robust Hoo output
feedback problem are discussed. In Chapter 5 examples are given which illustrate the effectiveness of the
controllers discussed in Chapters 2 and 3. In Chapter 6 focus is turned to the discrete time robust Hu, output
feedback problem. Here the discrete version of the CEC is presented along with a numerical analysis of the
discrete implementation. In addition several examples of systems with CEC control are presented. Finally
in Chapter 7 a summary of this dissertation is given which highlights the most significant contributions of

the work. In addition future directions for the research are discussed.

1.1 Mathematical Preliminaries

This section introduces the basic notation, concepts, and tools which we shall employ throughout this
dissertation. In particular, we introduce the pertinent basic spaces and norms with which we shall deal. The
notation used is fairly standard [Roy68], however, for completeness and clarity we explicitly describe our

notation here.

1.1.1 Basic Symbols and Functional Spaces

R denotes the real numbers.
RY = {tc R : t> 0} denotes the positive real numbers.
R’ = R|J{£oo} denotes the extended real numbers.

A function f : R" —» R™ is called locally Lipschitz continuous if there exists a finite constant K (o)

with the property that
I1£(z) = I € K(=zo)llz - yll

for all z,y € B where B is a ball in R" of the form {z € R" : ||z — zoll < r}. fiscalled Lipschitz continuous



if B=R".

It m] is them x n matrix which has ones on the diagonal and zeros elsewhere, ie.,

100 -0 ---0
010 --0 -0
Iinm) =
000 1 0

The sup pairing (-,-) is defined by

(pq) £ sup {p(z) +q(@)}-
zeR™

£ is the function space of cost functionals

E={p:R*"—~R"}.

C denotes the complex numbers.
A function f : € — C is analytic if its complex derivative f’ exists.

C™ is the standard space of n element complex vectors. It is a Hilbert space with norm and inner product

given as follows. If z = {zi}}, € C™ the norm |{z]| of z is

n
Izl =3 |l
i=1

The inner product of {z,w) of z,w € € is then

n

(z,w) = Z 2iW;

i=1

where ; is the complex conjugate of w;.

La[a, b) is the Hilbert space of complex valued finite energy signals defined on the interval [a,b]. The

norm of an element f € Lz(a,b] is

1

b 2
17l = (/ |f(t)|2dt) <o,

and the inner product of f,g € La[a,b] is

b
(f9) = / F(a(t)de

where G is the complex conjugate of g.



L2a, b] is the Hilbert space of complex n-vector valued finite energy signals defined on the interval [a, b].
A member f € L3{a,b] is composed of an n-vector of functions where each function of the vector comes from

Lo[a,b], ie., f= (fifa--- fn) where fi € Lofa,b), i =1,2,...,n. The norm of an element f € L}{a,b] is

b 3
Ilfll=(/ Ilf(t)ll"’dt) < .

and the inner product of f,g € L3{a,b] is

b
(f,0) = / (F(2), 9(2)) .

The reader should be aware that for notational convenience in contexts where the valueof n is understood

we drop the superscript n in L2[a, b] and write simply Lo[a,b).

1.1.2 H, Spaces

H,, control is fundamentally concerned with the Hardy space Hoo. It is a space which consists of all functions
that are analytic and bounded in the open right half complex plane. The Ho norm of an analytic function

is the least such bound. Definition 1.1.1 gives a formal definition of the space and its norm.

Definition 1.1.1 (Ho norm)
a. Hs = {F:C—C|Fis analytic, SUPRe(,}>0 |F(s)] < o0},
b. F€Hw |Fleo Z supRersysolFO):

For the ca.;e of a linear system, we are interested in the Hoo norm associated with the transfer function
of the system. Transfer functions for finite dimensional linear systems are real and rational, thus we may
restrict ourselves to the subset RHy of the Hardy space Hoo. RHoo C H is the set of the real rational
functions in Heo. A transfer function F (s) is a member of RH,, if and only if it is proper and stable, i.e.,
lims—oo |F(8)| < 00 and F has no poles in the closed right half plane. In terms of the Nyquist plot associated
with a transfer function F € RH the H,, norm is the largest distance between a point on the Nyquist

locus and the origin.

Fact 1.1.2 If F is a real rational function in Ho then its Ho morm is the supremum of the function

evaluated along the imaginary axis, i.e.,

F e RH., then [Fllo = sup [F(jw)l
wER

4



1.2 Problem Statement

In this dissertation we shall concern ourselves with the robust control of the broad class of nonlinear systems
5 described in state space by the following set of equations:
i) = fle®),ud)+w®), ()= o,
T { pt) = hiz®)+v) (1.2.1)
z(t) £(z(t), u(t))-

Here z is the state, y is the observable output, and z is a performance measure which is at our discretion.

I

More specifically, the state z(t) € R™ where the initial condition zo is unknown, the output or observation
path y(t) € R?, and the performance measure z(t) € RY. The control signal u(t) € R™ is subject to design
under the constraint that u is a non-anticipating function of the observation path y. In symbols, u € o
where

o= {u € L2[0,00] : u(t) = u({y(‘r)}:____o)}.

Additionally, w € R™ and v € RP are respectively the state and output disturbances which account for
sensitivity to unmodeled dynamics associated with the real system and/or environment. These disturbances
are assumed to be arbitrary but finite energy signals to which the system is inherently subject. The mapping
f:R" x R™ — R" describes the evolution of the unperturbed system state (w = 0), h: R = R? is the
state to output mapping which describes the observable quantities on the system, and £: R* x R™ — R?
the performan;‘,e measure mapping which is chosen to provide an indication of controller performance. These
mappings all evaluate to zero at the origin, i.e., f(0,0) =0, h(0) = 0, and £(0, 0) = 0. Each of the state
evolution mapping f, the system output mapping h, and the performance measure ¢ are constrained to be
continuously differentiable, i.e., f € C'(R" x R™ R"), he€ C*(R",R?),l € C'Y(R™ x R™,R?). We shall

denote this situation as & € C'.

The constraint that u € O is a practical one and reflects the notion that realistic control laws are restricted
to operate based on knowledge of observable quantities. Thus, we are restricted to consider feedback control
laws which are functions solely of the past outputs, i.e., output feedback control. In Figure 1 we depict
the closed loop output feedback system s agsociated with the nonlinear system X. Note that the major
difference between the open loop system X and the output feedback system I* is that fact that in the latter

system u € O while in the former u is arbitrary.



System z l Performance
Measure
Z

Disturbances

w, ¥ .
X =fi{x,u) + W a

y =h(x) + v
Control u OQutput y
z = l(x, u)

u=uly) e

— e i s wmm e = ww wm fe s =

Output Feedback Zu

Figure 1: Closed loop nonlinear system with output feedback

The main problem which we address in this dissertation is the Robust He Output Feedback Control
Problem. Simply stated the Robust H., Output Feedback Control Problem is to determine an admissible

control u € O such that the closed loop system Py

(i) is asymptotically stable when no disturbances are present, and

(ii) has finite Ly gain from the disturbance inputs w and v to the performance output 2.

The precise problem statement is given below in Problem 1.2.1.

Problem 1.2.1 Robust He, Output Feedback Control Problem

Given v > 0, find a control u € O such that for all initial conditions z¢ € R",

(i) the closed loop system I is asymptotically stable when w,v =0, and

(ii) there exists a constant B*(zo) where 0 < f*(zo) < and B%(0) = 0 such that
t ¢
[ lzteneds < v [ + (6N + 8z

for all w,v € Lz([0,1]), for all t > 0.

Note that 8%(xo) also depends on 7.



1.3 Perspective

Although our main concern lies with the robust output feedback control of nonlinear systems, it is both
interesting and important to trace the philosophy and developments in Ho, control theory which have lead
to the present study. In fact, the underlying roots of He theory can be traced to linear systems with
very special performance measures. In its original formulation, the Heo control problem dealt with the
design of controllers for linear systems which were to meet frequency-domain performance specifications

[Zam81, Fra87).

1.3.1 Linear H, Problem

For greater exposition of our ideas in later chapters and because it mirrors the development of the theory
itself, we shall in this section introduce the fundamental concepts associated with Heo control in the context

of linear systems. Consider the following linear system model:

(t) = Az(t)+ Bu(t) + w(t), z(to) = To.,
y(t) = Cz(t) +o(t),

XL
o) = VQz(t)

V()
Note that Ty, is a special case of X as described in Section 1.2 where f(z(t), u(t)) = Az(t)+ Bu(t), h(z(?)) =
Cz(t), and £(z(t),u(?)) = (:z:(t)’\/C',u(t)’)’. In terms of the linear system X, the fundamental goal of
H,, control is to minimize the Ho, norm of the closed-loop transfer function from exogenous inputs w to
controlled outputs z under a constraint of internal stability. Because internal stability means that bounded
inputs to the closed loop system produce bounded internal signals, internal stability can not be determined

solely by consideration of the input-output transfer functions.

Despite the fact that iterative algorithms for the solution to the Hoo-optimal problem for linear systems
have been developed, the computational complexity of these algorithms precludes practical implementation
[DGKF89]. Because of this, researchers have focused on the standard sub-optimal Hoo control problem!:
for a specified scalar v > 0, find a control u such that the Hy norm of the closed-loop transfer function is
bounded by + and the system is internally stable. Clearly v must be chosen greater than the H-optimal

level for a suboptimal solution to exist. The standard Ho, design leads to controllers of the worst case

Henceforth we shall refer to the sub-optimal Heo, control problem as the Hoo control problem since this standard

problem addressed in the literature.



type in the sense that emphasis is focused on minimizing the effect of the disturbances which produce the
largest effect on the system output. Because of the worst case design strategy, Hoo controllers tend to be

conservative yet robust to disturbances.

The above formulation of the standard Heo problem does not generalize directly to the nonlinear setting
since nonlinear systems are not described by transfer functions. However, there does exist an equivalent
time domain formulation which does generalize to the nonlinear setting. In the time domain formulation one
enforces a bound > 0 on the Ly induced norm from exogenous inputs w to controlled outputs z (finite gain)
again with an internal stability constraint [Fra87, vdS91]. Much of the later results in linear Hy theory are

due to the use of such time domain methods.

Problem 1.3.1 Linear Ho Output Feedback Control Problem
Given v > 0, and assuming [4, /@] observable and (A, Iin,m)) controllable, find a control u € O such that

for initial condition zo = 0, the closed loop system It is asymptotically stable when w,v = 0, and

[ tstonpas < [ QP + sy
4] 0

for all w,v € La([0, 00])-

For linear systems observability and controllability are easily verified and the addition of these assumptions?

removes the need for concern about initial conditions.

By the late 80’s the linear H., problem had been completely solved [DGKF89, GD88), viz. Theorem
1.3.2, and several intersting connections had been made. The min-max nature of the Ho, problem led easily
to connections with deterministic game theory [DGKF89, LAKG92, BB91, RS89]. For linear systems with
perfect state observation, Jacobson {Jac73] showed that the controllers for the stochastic risk-sensitive control
problem and the dynamic game problem were identical. This result was the first to establish a link between
deterministic and stochastic optimal control problems. It was later shown that for linear systems with
imperfect state observation the controller for the infinite horizon stochastic risk-sensitive control problem
enforces a bound on the He norm of the closed loop transfer function. Moreover, the controller minimizes
the entropy integral over the set of all controllers meeting the Ho, norm bound [GD88, BH89b, Whi8l, RS89,
BvS85).

Theorem 1.3.2 gives the solution to the Linear H., Output Feedback Problem 1.3.1 which involves the

solution to a pair of Riccati equations and a coupling condition.

2The assumption of observability and controllability can be relaxed to stabilizability and detectability.

8



Theorem 1.3.2 ([BB91}) Given v > 0, consider the Linear Ho Output Feedback Problem 1.3.1. If the
algebraic Riccati equations

ZA+ A'Z-Z(BB' -¥*1)Z+Q =0
AK + KA' - K(C'C-vQ)K+1=0

both have minimal positive definite solutions Z + and K, and if they further satisfy the coupling condition
Zt - K+ <0
then a controller which solves the linear He output feedback problem is given by
u'=-BZt(I-+KtZ") 'z

where

i) = (A+7 2 KTQ)z + Bu" + K*C'(y - Cz).

If any one of the above conditions fails then the given ~ is less than the Ho-optimal level and thus the

problem has no solution.

1.3.2 Large Deviation Limits

It turns out that the connections between Hoo control/dynamic game theory and risk sensitive control theory
are a consequence of the linear-quadratic context in which they are formulated. Only when the optimization
problem involves a linear system with quadratic (or exponential of quadratic) cost are the solutions coincident.
The nature of the connection for general nonlinear systems was only recently made clear with the aid of
asymptotic analysis. Figure 2 illustrates the asymptotic connections between the risk sensitive stochastic
control problem, the dynamic game problem, the risk neutral stochastic control problem, and the familiar
deterministic optimal control problem. The value function for the risk sensitive stochastic control problem is
denoted S¥¢(z,t) where z{ is a controlled diffusion process, u is the risk sensitivity parameter, and ¢ is the
noise variance. Applying a logarithmic transform, we define W#(z,t) = ﬁlog(S“'e(z, t)). Then taking the
large deviation limit of W< (z,t) as € — 0 yields the value function W# of the dynamic game®. Similarly,
taking the large deviation limit of WHe(z,t) as p — 0 yields the value function W€ of the risk neutral
stochastic control problem. And finally, taking either the limit as e = 0 of W oras u — 0 of W# yields

the value function W of the deterministic optimal control problem. For more details on these relations for

34 is related to ¥ by p = 472,



systems with complete state information see [Jam92, CJ92, Whi91, FM91] and for the partially observed
case see [JBE94, JBE93b].

Risk Sensitive ’ Risk Neutral
Stochastic > Stochastic
p — 0 £
uo € i w € w
w € log &
g—>0 £—>0
Dynamic Game Deterministic
p —> 0 Optimal Control
w! —> W

Figure 2: Large Deviations Limit Relations

1.3.3 Nonlinear Full State Feedback

In this next section we take a thorough look at the Robust Ho, State Feedback Problem 1.3.3. In the state
feedback problem it is assumed that the controller has direct access to the state variables. This assumption
simplifies the problem considerably. Although our main interest lies with the Robust Ho Output Feedback

Problem, the solution to the full state feedback problem offers much insight into its solution.

The theory for nonlinear Hoo /L2 gain control problem is not nearly as developed as it is for linear
systems. A general framework for dealing with L2 gains in both the linear and nonlinear settings may be
found in Willems’ theory of dissipative systems [Wil72a, Wil72b]. The major motivation for the study of
dissipative systems in the context of control is their connection with stability [HM76, HM77, HM80, MAT3].
The application of this theory leads to a nonlinear version of the Bounded Real Lemma (Theorem 1.3.8) which
equates the properties of finite gain and finite gain dissipativity. The property of finite gain dissipativity can
be expressed in terms of a dynamic programming inequality or a partial differential inequality (PDI), known

as the dissipation inequality [HM76, HMB80, Jam93c].

In terms of a controlled version of the dissipation inequality a theoretical solution to the state feedback

nonlinear Hoo problem can be derived [JB94b]. To see how to arrive at that solution consider the system

. { 0
z(t)

fla(®),u®) +w(t),  =z(t) =20,
£(z(t), u(t))

10



where =g is a special case of T given in equation (1.2.1) with y = z, i.e., full state information is available.
Let S denote the set of state feedback controllers, s 2 {u € La[0,00) : u(t) = u(z(t))}. We formally state
the Robust Ho State Feedback below.

Problem 1.3.3 Robust Hy State Feedback Control Problem

Given v > 0, find a control u € S such that for all initial conditions zo € R",

(i) the closed loop system X is asymptotically stable when w =0, and
(ii) there exists a constant B*(zo) where 0 < 8%(zo) < and B*(0) = 0 such that
¢ t
[ tetolas <97 [ to)Pds + 8%(zo)

for all w € Ly([0,1]), for all ¢ > 0.

Definition 1.3.4 (Supply Rate) A locally Lipschitz continuous function r : R" x R? — R satisfying the

growth condition |r(w, 2)| < C(1 + |w|? +|2}?) is called 2 supply rate.

Here we are interested in the particular supply rate associated with finite gain dissipativity, r(w,z) =

72 ||w||2 - ||z||2. Henceforth, we continue the development considering only this supply rate.

Definition 1.3.5 (Finite Gain Dissipative)

a. A function V : R" — IRT is said to be a storage function for the closed loop system T¥ if it satisfies

the integral dissipation inequality

t
V(z) > sup sup {V<z(t))— /0 (wznw(s)u“’—uz(s)u"’)dszx(mm}. (1.3.1)

t>0 wELg[O,t]

b. The closed loop system % is called finite gain dissipative if a storage function exists which satisfies

v(0) = 0.

A storage function for a particular closed loop system is not necessarily unique. The minimal and

maximal storage functions are called the available storage V, and the required supply V; [Wil72a]. The

11



required supply is finite if the system is reachable from the origin [Wil72a]. Although storage functions are
not necessarily differentiable or even continuous, James has shown [Jam93c] that every dissipative system

must possess a lower semicontinuous storage function.

Definition 1.3.6 (Available Storage) For all initial conditions z(0) = z € R" the available storage
V, :R" = R |J {00} is defined by

t
Va(z) =sup sup /0 (=) I* = 7)) ds.

t>0 weL2(0,t]

When V, is finite for all z € R" and V,.(0) = 0 we have automatically that the system is finite gain, i.e,, s
has finite Lo gain from disturbance input w to the performance output 2. In fact V,(z) is the minimal value

of B%(z).

The following theorem [Jam93c] characterizes dissipativity in terms of a partial differential inequality
(PDI) called the dissipation inequality. The dissipation inequality is meaningful even when the storage
function is not differentiable so long as the inequality is regarded in the viscosity sense [CL83, CEL84, FS93,
Jam93c].

Theorem 1.3.7

a. If the closed loop system X% is finite gain dissipative with storage function V, then V satisfies
< V.V, f(z,u) >+ sup {< v.V,w > +l=l? - ,Yz“w"2} <0. (1.3.2)
weR"
The PDI of Equation (1.3.2) is called the dissipation inequality.

b. If a non-negative function V satisfies the Dissipation Inequality (1.3.2) and V(0) = 0 then T}% is finite

gain dissipative and V' is a storage function.

Although the Robust Hoo State Feedback Problem has previously been solved [BH89a, vdS91] the fol-
lowing results are presented in a format which mirrors the development of the Robust Hoo Output Feedback
Problem. It is hoped that an understanding of these simpler proofs will provide insight into the proofs of
the output feedback results described in Chapter 2. The discrete time equivalents of Theorems 1.3.8-1.3.12
can be found in {JB94b].
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Theorem 1.3.8 (Bounded Real Lemma) The closed loop system X is finite gain if and only if its finite

gain dissipative.

Proof: Assume X% is finite gain dissipative. Then there exists a storage function V satisfying the integral

dissipation inequality (1.3.1). That is, there exists a non-negative function V such that

t 4
V(zo) + / P llw(s)lds > V(z(®) + / l2(s)|2ds
N 0 0
for all t > 0, and for all w € L2[0,t]. Thus £ is finite gain with 8%(zo) = V(%o)-

Conversely, assume L% is finite gain. Then

t t
sup sup { [ tsteas - / ’72llw(8)|lzds}3ﬁ"(zo)

t>0 wGLn[O,t]

Thus the available storage V, exists and is finite. Thus £¥% is finite gain dissipative. ‘ | |

Thus if we can find a control u such that the Dissipation Inequality (1.3.2) is satisfied for some non-
negative function V with V(0) = 0 then the closed loop system T% is finite gain. Under the additional

assumption of zero state detectability stability results can be obtained.

Definition 1.3.9 (Zero State Detectability) The closed loop system g is zero state detectable if w =0

and z € Lq[0,00] implies lim¢ 00 z(t) =0.

Theorem 1.3.10 If closed loop system X is zero state detectable and finite gain dissipative, then Y% is

asymptotically stable.

Proof: Setting w = 0 in the integral dissipation inequality (1.3.1) and using the non-negativity of V we

have
t
V(z0) > sup / l2(s)|%ds
t>0JoO

for any initial condition zo. Thus z € L»[0, ], so by zero state detectability lim¢_c0 z(t) = 0. |

Zero state detectability is a key property required for proving asymptotic stability but in general this

property is difficult to check. Zero state detectability is also dependent on the particular controller u € S.
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Theorem 1.3.11 (Necessity) If a controller u* € S solves the Robust He State Feedback Problem 1.3.3
then there exists a non-negative function V(z) where V(0) = 0 and

inf sup {< VaV, f(@,u) +w > —7lwl’ + &z, 'u)||2} <o0. (1.3.3)
u€U weRn

Proof: Since T is finite gain, the Bounded Real Lemma 1.3.8 implies the existence of a storage function

V satisfying the dissipation inequality 1.3.2. Therefore, V satisfies inequality (1.3.3). |

Equation (1.3.3) is a Hamilton Jacobi Inequality.

Theorem 1.3.12 (Sufficiency) Assume that V e C! is a non-negative solution of inequality (1.3.3) satisfying
V(0) = 0. Let @*(z) be a control value which achieves the minimum in (1.3.3). Then the controller u* €S

defined by @*(z) solves the Robust H., State Feedback Problem if the closed loop system T¥ is detectable.

Proof: The closed loop system Eg' is finite gain dissipative since inequality (1.3.3) implies the dissipation
inequality (1.3.2) is satisfied for for the controller u*. Then the Bounded Real Lemma 1.3.8 implies Ty
is finite gain. Theorem 1.3.10 implies T¥ is asymptotically stable. Hence u* solves the Robust He State

Feedback Problem. n

1.3.4 Existence of Solutions to Hamilton Jacobi Inequalities

In the previous section, Section 1.3.3, we have given necessary and sufficient conditions for a solution to exist
to the state feedback robust control problem which depend on a solution to the Hamilton Jacobi Inequality
(1.3.3). Thus the problem remains to establish the existence of a solution to the Hamilton Jacobi Inequality.
This problem is still an open problem though some insight as to the solvability of Hamilton Jacobi equations
can be gained by using nonlinear geometric techniques {vdS91, vdS92]. Clearly if a solution exists to the

equality then this solution is also a solution to the inequality.

Introduced by Lukes in [Luk69], the relation between Hamilton-Jacobi equations and invariant manifolds

of Hamiltonian vector fields provides information about the global solvability of Hamilton Jacobi equations.
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In fact, this relation has found extended use in the literature recently [Byr92, vdS91, vdS92]. Van der Schaft
gives an overview of the results related to invariant manifolds of Hamiltonian vector fields in [vdS91] and the
appendix of [vdS92] where an assumption is made that the linearized system is asymptotically stabilizable.

This leads to the study of hyperbolic Hamiltonian vector fields.

A hyperbolic* Hamiltonian vector field of dimension 2N has an N dimensional stable and an N dimen-
sional unstable manifold. In natural coordinates the Hamiltonian vector field is described by the familiar
Hamiltonian equations for the state, z, and costate, p which arise in optimal control when applying Pontria-

gin's Maximum Principle (PMP).

& = %f-_, i=1,--n
) OH
P = 3. (1.3.4)

If the stable manifold is the graph of a function, i.e. if, on the stable manifold, the costate can be written as
a function of the state, then the feedback controller is well defined. If, on the other hand, the stable manifold

is not the graph of a function, the the control will be multivalued.

If the assumption of asymptotic stability of the linearization is relaxed to allow uncontrollable imaginary
axis eigenvalues of the linearization, the results on invariant manifolds will not hold as given in [vdS91, vdS92].
The presence of imaginary axis eigenvalues forces the Hamiltonian vector field to have a center manifold, in
addition to stable and unstable manifolds. Since center manifolds are only local objects, unlike the stable
and unstable manifolds, the relaxation of the assumption eliminates the possibility of clean global results

using these techniques.

1.3.5 Nonlinear Output Feedback

Most of the previous research conducted in the area of robust nonlinear control to date has focused on
the case where full state information is available. Thus, previously little attention has been given to the
problem of robust nonlinear control via output feedback. As a generalization of the results from linear
theory, the solution to the output feedback problem has been postulated to involve a nonlinear observer
combined with a controlled dissipation inequality for an augmented system. By postulating such a structure
and solving an augmented game problem, several researchers [IA92, vdS93, DBB93] have established results

yielding sufficient conditions for the existence of a solution to the output feedback robust control problem.

“Hyperbolic refers to the fact that the linearization of the vector field about the origin has no purely imaginary

eigenvalues.
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In [JBE94] a theoretical solution is obtained for the finite-horizon partially observed dynamic game problem
for discrete-time nonlinear systems. T he approach taken there is motivated by ideas from stochastic control;
in fact, the controller is obtained as an asymptotic limit of the controller for the risk sensitive stochastic
control problem, c.f. Section 1.3.2. In [JB94b] this work is extended to the infinite horizon case and stability
issues are addressed. In the latter paper a purely deterministic viewpoint is maintained. Both papers present
results which are necessary and sufficient. The continuous time problem can be solved, in principle, using a
similar approach [JBE93b, JBE93a]; however, these results have not yet been proved rigorously for general

systems. Work is currently in progress in this direction and preliminary results have been obtained [JB94a].

The novelty of the approach of [JBE93b, JBEY4] is the reformulation of the partially observed dynamic
game problem as a fully observed problem in terms of an information state. The information state is derived
using only past outputs and is determined as the solution of a dynamic programming equation. Thus using
this approach, the original problem is restated in terms of an equivalent problem in which there is full
knowledge of a new state. This new state is called the information state. Although common in stochastic
control, this type of separation approach had not been previously applied to deterministic game problems.
For linear systems, the information state can be related to the “past stress” used by Whittle [Whi81] in
solving the risk sensitive problem for linear systems (see also [Whig1}). Bagar and Bernhard [BB91] have
also employed the “past stress” in their solution to the game problem. Their use of the past stress is very
different from James, Baras and Elliott’s use of the information state. Bagar and Bernhard use the past

stress to determine a state estimate, while James, Baras and Elliott control the information state directly.

Building on the results of James, Baras and Elliott we shall in this dissertation address the practical

implementational and theoretical issues associated with the Robust He Output Feedback Problem.

16



Chapter 2

Information State Feedback Control

For the case of discrete-time nonlinear systems, James et. al [JBE94] have solved the finite-horizon partially
observed dynamic game problem. Their solution involves in a fundamental way the notion of the so called
information state. Through the specification of the information state the partially observed dynamic game

problem may be restated as an equivalent fully observed problem.

In this chapter we formally derive continuous time robustness results which are analogous to the discrete
time results of [JB94b]. In order to provide rigorous proofs of the results discussed below it is necessary to
extend the theory of viscosity solutions of partial differential equations and inequalities to allow solutions
which may be functions of infinite dimensional arguments. Currently work is being done by James and
Baras to obtain rigorous results [J B94a]. In cases where the information state can be identified with a finite
dimensional quantity which evolves according to ordinary differential equations the formal results presented
here hold rigorously, viz. Section 9. 4. The consideration of formal arguments is important since the formal
results give an heuristic confirmation of the form of the theoretical solution. Considering special cases, such

as when the information state is finite dimensional, serves to further support the formal results.

2.1 Problem Statement

For the readers’ convenience we briefly restate the Robust Ha Output Feedback Problem, viz. 1.2. Recall

that we are interested in the robust control of the broad class of nonlinear systems ¥ described in state space
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by the following set of equations:

&) = flz®),u®) +w), z(to) = To,
X y(t) = h(z() +v(t), (2.1.1)
2(t) = £(z(t),u(?)).

Recall also that z is the state, y is the observable output, and z is a performance measure which is at our
discretion. The initial condition zo is unknown. The control signal u is subject to design under the constraint

that u is a non-anticipating function of the observation path y, i.e., u € O where

0 £ {ueLalo,o0] ¢ ut) =ul{y);-0)} -

Additionally, w and v are respectively the state and output disturbances which account for sensitivity to
unmodeled dynamics associated with the real system and/or environment. These disturbances are assumed
to be arbitrary but finite energy signals to which the system is inherently subject. Recall that each of the
state evolution mapping f, the system output mapping h, and the performance measure £ are constrained
to be continuously differentiable and evaluate to zero at the origin. The problem we wish to solve is the

Robust He, Output Feedback Problem stated below in Problem 2.1.1

Problem 2.1.1 Robust Ho, Output Feedback Control Problem

Given v > 0, find a control u € O such that for all initial conditions z¢ € R",

(i) the closed loop system XL* is asymptotically stable when w,v = 0, and

(i) there exists a constant B*(zo) where 0 < f%(z0) < and 8*(0) = 0 such that
t t
[ iztoias < [ e + o@IP)ds + (@)

for all w,v € L2([0,1]), for all £ > 0.

As discussed in Section 1.3.2, the solution to the Robust He Output Feedback Problem is equivalent
to the solution of a related zero sum game problem [FM91, Jam92]. We shall in this chapter employ this
equivalence to solve the Robust He, Output Feedback Problem 2.1.1. We begin in Section 2.2 with a sim-
plified version of the Robust Heo Output Feedback Problem for which the asymptotic stability requirement
is not an issue, i.e. the finite time horizon problem. The finite time horizon results are then extended to the
infinite horizon case in Section 2.3. Turning to implementation issues Section 2.4 presents the conditions

under which the information state is finite dimensional. Under these conditions the results of Section 2.2

18



and Section 2.3 hold rigorously and the information state controller may be implemented directly. In cases
where the information state is not finite dimensional an appropriate approximation must be made before

implementation is possible. In Section 2.5 one such approximation is discussed.

2.2 Finite Time Horizon

In the finite time horizon problem asymptotic stability is not an issue. Thus the Finite Time Robust Heo
Output Feedback Problem entails finding an R™-valued control u(t) which may be any non-anticipating
function of the observation path y that renders the closed loop system finite gain. Let O, denote the set
of non-anticipating output feedback controllers defined on the time interval [t, t]. The Finite Time Robust

Ho, Output Feedback Problem is stated formally as Problem 2.2.1 below.

Problem 2.2.1 Finite Time Robust Heo Output Feedback Control Problem
Given v > 0, find a control u € O, such that for all initial conditions zg € R", there exists a constant

By, (zo) where 0 < Bt (zo) < o0 and B¢, (0) = 0 such that

t t
/ ll2(s)I1%ds < 7 / (lw()I? + [v(s)][2)ds + B, (zo)
1] 0

for all w,v € L2([0,t]), for all t € [0,2/].

2.2.1 Equivalent Game Problem

In this section we establish the equivalence between the Finite Time Robust Heo Output Feedback Problem
and a finite time horizon game problem. First we state clearly the game problem. The equivalence of the

two problems is then made clear in Lemma 2.2.2 below.
Recall the function space £ of cost functionals
E={p:R"~ R},

where R* denotes the extended reals. The finite time horizon game associated with the Finite Time Robust

H., Output Feedback Problem has cost -
Toot (G0, 0) = poleo) + 3 [ (H(a(0) WD =7 Qo) + @I 221

where the initial cost po € £ is chosen in such a way as to reflect any a priori knowledge of the initial state

o of the closed loop system L*.

19



In the context of a game there are two players: (i) the control system designer, and (ii) nature. The
control system designer’s objective is to minimize the given cost (2.2.1), while nature, acting in direct
opposition to that objective, strives to disturb the system so as to maximize that cost. The game is played

as follows:

(i) Player 1 (designer) selects an R™-valued control u(t) which may be any non-anticipating function of

the observation path y, i.e. u € Op,. This selection is designed to minimize the cost.

(ii) Player 2 (nature) selects the initial condition z¢ and a disturbance (w,v), which is a square integrable

open loop sequence. Nature’s selection is assumed to be made to maximize the cost.

More precisely, if Jpo.t, (1) denotes the effect of nature’s selection so that

Jpot, (W)= sup  sup Jpo.t, (o, v, W), (2.2.2)
w,vEL2[0,t7] ToER™

then the partially observed dynamic game problem is to find an admissible u* € Oo,¢, such that

JPOJ/ (u‘) = ueicr)lft Jpo,t, (u).
kb 4

Now we define a function d; € £ for which choosing the initial cost po(zo) = 8z (zo) corresponds to
having full knowledge of the initial condition, i.e., To = Z. Define for each z € R™ a function §; € £ by
a 0 ifé¢=x,

-0 fE#uw.

8:(£)

The finite gain property can be expressed in terms of the cost Jpgt ,(u), Equation (2.2.2), as described in

Lemma 2.2.2.

Lemma 2.2.2 For any output feedback controller u € Oo.t,, the closed loop system Tt is finite gain if and
only if
J&zo,tl (u) < ﬂ:‘, (Io),

for some finite S, (zo) with ¢, (0) = 0.

From Lemma 2.2.2 it is clear that if we find a control policy u € Op ¢, Which minimizes each functional
Jbagty then this control will solve the Finite Time Robust He, Output Feedback Problem. Also note that

when T is finite gain for each initial condition zo, the cost Jp, (u) satisfies
(p,O) < Jp.l;(u) < (pvﬁ:‘,)v
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where recall the “sup pairing” (-, ) is defined by

(p,q) £ sup {p(z) +q(z)}-
zeR™

Thus we define
dom Jp‘g, (U) é {p €g: (pa O)’ (P, ﬂ:‘,) < Oo}

2.2.2 Information State Formulation

Following [JBE94, JBE93a], we shall solve the game problem by introducing a new state variable, the

information state, and then replacing the original game problem with an equivalent problem expressed in

terms of the information state. The information state can be thought of as a deterministic sufficient statistic

in that it contains all the information needed to control the system with respect to the given performance

measure. It is important to emphasize that the information state is not a state estimator. The information

state p is given by
t
pi(z) = sup  sup {po(zo) + % / (le(z(s), w(E)? = Pl + [1h(a(9) — y(s)|*))ds : 2(t) = =}

wEL2[0,t] ZeER 0

(2.2.3)

where past observations and controls {u(s),y(s) : s € [0,t]} are known. From the definition it is seen that

the information state is the cost accumulated up to the time t, consistent with the available information at

time ¢ under the assumption that state at time ¢ is . Thus the information state is the value of the accrued

cost for each possible state x at time ¢.

Using dynamic programming it can be shown that the information state is the solution to the Hamilton-

Jacobi Equation (c.f., [JBE93a])

5 = F(pg,u(t),ylt
o (pe, u(t), y(t)) (2.2.4)
Po = Do
where
2
F(p,u,y) = supyer-{— < Vap, flz,u) +w> ~Z(flwli? + |A(z) — ylI?) + 3z, w)I*}
2
= =< V.p flz,u) > +5kVepll® + 3114z w)l* - X||h(=z) =yl
The maximizing disturbance in this case is @ = —2rVap.
The cost (Equation (2.2.2)) can be rewritten in terms of the information state as
Jp,t/ ('ll.) = sup {(pz,,O) ‘P = p}' (2'25)

y€L2(0.ty]
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Thus the original output feedback game is equivalent to a new game where the information state dynamics
(2.2.4) are new infinite dimensional state dynamics = with control u and disturbance y. The state p,
and disturbance y; are available to the controller, so the original output feedback game is equivalent to a
new one with full information. Let I denote the class of iﬁformation state feedback controllers u such that
u(t) = i(p;) for some function @ : £ s U. Note that since the information state p depends only on observable
information, the class of information state feedback controllers T is contained in the class of output feedback

controllers O.

2.9.3 Solution to the Finite Time Robust He Output Feedback Problem

In this section we present necessary and sufficient conditions for obtaining a solution to the Finite Time
Robust He Output Feedback Problem. The reformulation, described in Sections 2.2.1 and 2.2.2, of the
Finite Time Robust He Output Feedback Problem as an output feedback game with full, albeit infinite
dimensional, information, allows us to formally apply the same arguments as those used in solving the
nonlinear state feedback problem, viz. Section 1.3.3. The information state solution we present below
constitutes a separation principle since the problem has been split into two simpler problems: (i) computing

the information state, and (ii) computing the optimal control as a function of the information state.

The value of the full information game is given by

W, (p,t)= inf sup {(p,,0) :p = p}. (2.2.6)
u€O0ut; ye€Ls
We shall henceforth drop the subscript ¢s for notational convenience. Applying dynamic programming, we
can determine an optimal control u(t) which is a function of the past observations {y(s) : s € [to,t]} through
the information state p. Formally the value function W satisfies the dynamic programming equation (c.f.,
[JBE93a))
B 4 infuey supyers{< VoWs F(p,w,9) >}=0
W(p,ts) = (p,0)

The optimal control is given by the minimizing value of u in this equation. Note that this control is an

2.2.7)

information state feedback control.
We define the domain dom W;, of a value function W, : Ex[0,tf]» R

dom W,, 2 {pe£:W(p,t) <ooforallte 0t} (2.2.8)

Theorem 2.2.3 (Necessity) Assume that there exists a controller u° € O which solves the Finite Time

Robust He Output Feedback Problem. Then there exists a function W which is finite on dom Jp,¢, (u®),

22



satisfies W (p,t) > (p,0) and W (do,¢) =0forallt € [0, /], and the Dynamic Programming Equation (2.2.7).

Proof: Define

tr
Wip) = inf  sup  sup {p(z) +p / (18(z(s), w(oI? = (w1 + llv(s)[1%)ds}

uEO:,tl w,wEL2[0,ty] ¢ €R™
From this definition it is clear that W(p,0) > W(p,t) > (p,0). Also note that W (p,0) = infueo,, Tp; (4)-

Since * is finite gain we have

W(p,t) < W(p,0) < Jpe, (u) < (0, 5),

thus W is finite on dom J,(u°), and W(p,t) 2 (p,0) and W (dp,t) =0 for all ¢ € [0,t). It remains to show

that W satisfies the dynamic programming equation (2.2.7).

From the representation result Equation (2.2.5) we know that W is also defined by

W(p,t) = inf sup {(p¢,,0):po= P}
u€O: e, yEL2[0.t4]

It is then a common result of dynamic programming that W solves the dynamic programming equation

(2.2.7). We include a formal argument here for completeness. For more details refer to [Tit87, E1193].

Consider the problem

ty

inf sup { folt, pe, y(), u(t))dt + 2(p(ts)) : o =P}
u€0L; yeLa{0.ty] JO

Let V(p,t) be the optimal value of the objective function starting from state p at time t.

{ V(p,t) = infucon., SuPyersoun it olripr y(r),u(r))dr + VIt +6,pess))
Vip,t;) = 2@(t)-

Suppose that V(p,t) is differentiable in both its arguments. Taking a first order expansion in J gives
. ov(p,t)
V(o) = inf sup Lo, p(a),U(O) )6 + V(pot) + g0+ < VoV (2u8) Flp ) > 9+ o(0)]
yERP
where 5‘(3‘% — 0 as § — 0. Then dividing by & and letting 6 — 0, we get

{ VD 4 inf ey sup,ers{folt, Pe(e),y (1), ult)+ < VoV (P t), F(p,u,y) >} =0
Vip,tr) = &(p(ts))-

In our case we take fo = 0 and the result follows. | |
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Theorem 2.2.4 (Sufficiency) Assume that W € C! is a solution of the Dynamic Programming Equation
(2.2.7) satisfying §; € dom Wy, for all z € R", and W (p,t) > (p,0), W(Jo,t) = 0 for allt € [0,tf]. Let @*(p)
be a control value which achieves the minimum in (2.2.7). Then the controller u* € T defined by u* = @*(p)

solves the finite time output feedback robust control problem.

Proof: By assumption 6, € dom W, for all z € R™ so W(é,,t) is finite for all t € [0,tf]. Define
B, (z) = W(8z,0). Then by assumption B, (0) =0.

B, () = infueo,,, SupyeLg{(LDt,,O) 1py =06z}
= supyeLz{(pt,,O) ip =0, u=u"}
= Jé..tj (’U.')
Thus B¢, (z) 2 Js,.t, (u*), so by Lemma 2.2.2 $u" is finite gain for all z € R™ and thus u® solves the finite

time output feedback robust control problem. |

Corollary 2.2.5 If the finite time Output Feedback Robust Control Problem is solvable by an output

feedback controller u° € O, then it is also solvable by an information state feedback controller u* € Z.

Thus we have presented necessary and sufficient conditions for obtaining an information state feedback
solution to the Finite Time Robust Heo Output Feedback Problem. The information state solution is

obtained by means of a separation principle.

2.3 Infinite Time Horizon

In order to solve the Robust He Output Feedback Problem on the infinite time horizon we would like to
find a stationary version of the Dynamic Programming Equation (2.2.7). To do this we will minimize over
u € O the functional
Jy(u) 2 sup Jp.e(u). (2.3.1)
20
This makes sense in view of Lemma 2.3.1 below which expresses the finite gain property in terms of this new

cost (and equivalently in terms of the information state).
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Lemma 2.3.1 For any output feedback controller u € O, the closed loop system X* is finite gain if and
only if

Js.,(w) =sup sup {(p,0) :po= 820} < B*(z0),
t>0 yeL2[0,t] :

for some finite B%(zo) with 4*(0) = 0.

From this Lemma 2.3.1 and the definition of Jp(u), Equation (2.3.1), it is clear that when X" is finite

gain for each initial condition Zo, the cost Jp(u) satisfies
(p,0) < Jp(u) < (p,8%)-
Thus we define the domain dom J,(u) of the cost functional Jp(u) to be
dom J,(u) £ {p€&:(p,0),(p,B*) < oo}

Also define for a value function W : £ — R”* its domain dom W as

dom W £ {pe€:W(p)< oo},

c.f. Equation 2.2.8.

Definition 2.3.2 (Finite Gain Dissipative) Let u € Z. The information state system =¥ i finite gain
dissipative if there exists a storage function W (p) such that dom W contains & for allz € R™, W(p) > (p,0),
W (o) = 0, and which satisfies the dissipation inequality
sup {< V,W,F(p,u,y) >} <0 (2.3.2)
yeRP

where u = u(p).

Theorem 2.3.3 (Bounded Real Lemma) Let u € 7. Then the information state system Z* is finite gain

dissipative if and only if it is finite gain.

Proof: Assume =* is finite gain dissipative then the dissipation inequality (2.3.2) implies that formally W

is nonincreasing along trajectories of =%, ie.,
W(p:) £ W(m)
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for all y € L1[0,t], for all ¢ > 0. Setting po = 8z, and using the inequality W (p) > (p,0) we get
(PtvO) .<— W(Pt) S W(ézo)
for all y € L2[0,¢], for all t > 0. Thus by Lemma 2.3.1 ¥ is finite gain with 8*(zo) 2 W(dz,)-

Conversely, assume that Z* is finite gain. Then for all p € dom Jp(u), and for all ¢ 20

(p,0) < Jpe(u) = sup ]{(P:,O) :po = p} < (p, B%)-

yEL2[0,t

By definition (Equation (2.2.2)) we know that Jp¢(u) is nondecreasing, i.e.,

Jp.tx (u) 2 Jp.to (u)

when t; > tp. Define
& .
Walp) £ lim Jpe(w)
which exists and is finite on dom W,. Note that dom W, contains dom J,(u) since Jpt(u) is monotone

nondecreasing and bounded above on dom Jp(u). From the finite gain property we have dom W, contains

5, for all z € R™ and W, (d) = 0 since B%(0) = 0. Also we have W,(p) = (p,0).

Now we must show that W, satisfies the dissipation inequality (2.3.2). Picku=8 €1 and y = § then
define

m@= s sup fpo(zo) +3 [ (16el) T = Ul + () = S ds 0) =)

wEL2[0,t1] zZoER™
Thus p; is the information state at time t; starting from information state po at time 0 and with inputs @

and §.

Jpot (@) = ‘SuPyeLg[o,z]{(PtaO) :Po = po}

SUD, weLa(o.] SUPzocrn (P0(%0) + 3 JEle((s), asHIE = Y (llw(s)? + [1A(() = y(s)|*))ds}
SUD, e Lafts ] SUPzoeR~ {P1(Z0) + 3 i (1eGz(s), a(NI? = Y ([lw(oI + lR(z(s)) — y(s)I[*))ds}
Jp;,t—t‘ (ﬁ)

Taking the limit as ¢ — o0

v i

Wa(po) 2 Wal(p1)-

Since this is true for any arbitrary § we have that W, is nonincreasing along trajectories of =*. Thus formally

W, satisfies the dissipation inequality. |

For the remainder of this section we assume that the output function h defined in Equation (2.1.1)
satisfies the linear growth condition:

(@)l < Cll=l- ' (2.3.3)
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Definition 2.3.4 (Zero State Detectability)
The closed loop system X* is zero state detectable if w,v = 0 and z € L2[0, oo] implies lim;c0 z(t) = 0.

The closed loop system X* is Lo-zero state detectable if w,v = 0 and z € L;[0, 0] implies z € L[0, oc].

The definition of uniformly reachable, Definition 2.3.5 below, is a technical condition which is needed
for stability of the information state system. The idea represented by the definition is that the closed loop
system, regardless of the output, can be driven by finite energy disturbances to any state given enough time.
The assumption of uniform reachability is used in Theorem 2.3.7 below to obtain stability of the information

state.

Definition 2.3.5 (Uniformly Reachable) For u € O and y € L»{0, 0], the closed loop system XU is
uniformly reachable if for all z € R™ and for all ¢ > 0 sufficiently large there exists zo € R™, w,v € L0, 00},

and 0 < a(z) < +oo such that z(0) = o, z(t) = 2,y = h(z) + v and

t
llzoll® +/0 (lw(HI + lv()*)ds < a(a)-

Next we give a definition of the stability of an information state system. The idea is that for stability

we require eventual boundedness of the information state.
Definition 2.3.6 (Stability) Givenu € Z and y € L2[0,00], the information state system =¥ is stable if
for each z € R there exists Ty, C; > 0 such that
Ipe(z)|| < C. forall ¢t 2Tz,
provided the initial value po satisfies the growth condition
—a}||z|l? - dj < po(x) < —arlz]® + 02

where a;,a},a2,a3 > 0.

Theorem 2.3.7 Let u € Z. If =* is finite gain dissipative and % is zero state detectable, then X* is
asymptotically stable. If =* is finite gain dissipative and X* is Lo-zero state detectable and uniformly

reachable, then Z* is stable.
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Proof: The dissipation inequality implies that formally W (pe) < W(po), thus

sup sup {po(eo) +7 [ (1€(a(e) w72l + IA(a() ~ y(o)ds} < W)

y.weLg[O.t] zoER"

for all t > 0. So if we select po = 8z, w =0,y = h(z), and recalling z = {(z,u) we have

3 [ bl < W) <o

for all t > 0. Thus z € L[0,00] so by zero state detectability lim;eo z(t) = 0, thus I* is asymptotically

stable.

By Lo-zero state detectability z € L[0,0c]. Then by assumption of linear growth of the output function

(2.3.3), we have also that y € L3[0,00]. The assumption of finite gain dissipativity implies that

pe(z) < (pe,0) < Wi(po) <0

for all py € dom W, for all t > 0. Uniformly reachable implies for all z € R" and for all t > 0 sufficiently

large there exists zo € R", w,v € L1[0, 00}, and 0 < a(z) < +oo such that z(0) = zo, z(t) =z and

lizoll® +/0 (lw()I? + lv()I*)ds < ().

Thus
plz) 2 o) =7 folw()® + lv(s)I*)ds
> —7%a(z) + (v* = a))lzmoll® — a2
for all ¢ sufficiently large. Thus p¢(z) is eventually bounded and therefore =* is stable. | |

Note that the stability conditions are difficult to check in practice. Also that it is feasible that X* is

stable, with =¥ unstable. This corresponds to an unstable stabilizing controller.

The Robust He Information State Feedback Problem is stated next. This problem will be shown to be

equivalent to the Robust Heo Output Feedback Problem 2.1.1.

Problem 2.3.8 Robust Ho, Information State Feedback Control Problem

Given v > 0, find a control u € Z such that for all initial conditions zo € R",

(i) the closed loop system =u ig stable when w,v =0, and

(i) there exists a constant 3%(zo) where 0 < B*(zo) < co and §*(0) = 0 such that

sup sup {(p:,0):po =08z} < B%(z0),
t>0 yeL2[0.t]
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Theorem 2.3.9 (Necessity) Assume that there exists a controller u® € O which solves the Robust Heo
Output Feedback Problem. Then there exists a function W (p) which is finite on dom Jp(u®), satisfies
W(p) > (p,0), W(Jo) = 0, and the dissipation inequality

inf sup {< V,W,F(p,u,¥) >} <0. (2.3.4)
uel yERP

Proof: Define
W(p) = inf lim Jpt(u)

where Jp ¢ (u) = sup,¢ Loy 1(P:0) 1o = p}. Since £¥’ is finite gain we have

(p! 0) S W(p) S zl—i-{go Jﬂvt(uo) S (p’ﬂu")’

thus W is finite on dom Jp(u°), W(p) > (p, 0), and W (8o) = 0. It remains to show that W satisfies inequality
(2.3.4). This proof is almost identical to the second half of the proof of the Bounded Real Lemma 2.3.3. The
difference is that here we allow any output feedback controller i@ € O, we are not restricted to information

state feedback controllers @ € T.

Pick u = @ € O and y = § then define

31
pi(z) = sup  sup {po(Zo) + : / (1e(z(s), aI? = Y (lw(II? + l1alz(s) = F(s)I*))ds : z(t1) = =}
wELz[O.h] zoER™ 2 0

Thus p; is the information state at time t; starting from information state po at time 0 and with inputs @

and §.

Jpot(@) = supyer,p.q{(P0): po =po}
SUD, weLa(o4] SUPsockn {P0(T0) + 3 SE1eG(e), a)IE = PN + [1A(z(s) - y(s)|1*))ds}
> SUP,weLafts] SWPzockn {P1(%0) + 3 IM(EEORION Y (w(s)? + |h(z(s)) — y(s)II*))ds}

= Jpl.t-tx (1-_‘)

Taking the limit as ¢ = oo and the infyeco

W (po) 2 W(p1)-

Since this is true for any arbitrary § we have that W is nonincreasing along trajectories of the closed loop

system. Thus formally W satisfies the inequality (2.3.4). u

The Bounded Real Lemma 2.3.3 gives us immediately that if the Output Feedback Robust Control

Problem is solvable by an information state feedback controller u* € Z, then there exists a solution to the
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inequality (2.3.4). However this result is not adequate for a necessity theorem since it is expressed a priori

in terms of an information state feedback controller.

Theorem 2.3.10 (Sufficiency) Assume that W € C! is a solution of the dissipation inequality (2.3.4)
satisfying §; € dom W for all z € R", W(p) > (p,0), W(d) = 0. Let @*(p) be a control value which
achieves the minimum in (2.3.4). Then the controller u* € T defined by u* = @*(p) solves the information
state feedback robust control problem if the closed loop system %" is Lo-zero state detectable and uniformly

reachable.

Proof: The information state system =" is finite gain dissipative since (2.3.4) implies (2.3.2) for the
controller u*. Hence by the Bounded Real Lemma 2.3.3, =*" is finite gain. Theorem 2.3.7 then shows that

u* is stable. Hence u* solves the information state feedback robust control problem. [ ]

Corollary 2.3.11 If the Output Feedback Robust Control Problem is solvable by an output feedback con-

troller u® € @, then it is also solvable by an information state feedback controller u* € T.

2.4 Finite Dimensional Information State

In this section we discuss conditions under which the infinite dimensional information state p evolving accord-
ing to the Dynamic Programming Equation (2.2.4) can be identified with a finite dimensional quantity which
evolves according to ordinary differential equations. It is important to characterize the finite dimensional
nature of the information state because under these circumstances

L the results of Sections 2.2 and 2.3 hold rigorously,

IL the controller is directly implementable.
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2.4.1 General Systems

Consider the class of systems described by the following set of state space equations

B = fa(®) + Au®)) + Bu®) +ul),  alt) = o,
S5 y(t) Cz(t) + v(t),
" ( V() ) |
R(u(t))
where X is a special case of £ given in Equation (2.1.1) with fz(t),u(t)) = f(z(t) + Alu(t)z(t) +
B(u), h(z(t)) = Cz(t), and (z(t),u(?)) = (z(t)'\/é(u(ﬁ, \/ﬁ(u(t))’)'. We make the following additional

assumptions:

il

(2.4.1)

I

(A1) fis Lipschitz continuous and satisfies

f(m) = VzF(z)
for some F : R" — R and

' E(u)z + Alu)z + %I‘(u).

N =

1
§l|f($)l|2+ < f(z), A(w)z + B(u) >=
(A2) The matrix functions A(u), B(u), £(u), A(u), and Q(u) are Lipschitz continuous, and I'(u), and R(u)
are locally Lipschitz continuous with at most quadratic growth. In addition Q(u) > 0 and R(u) > 0.
(A3) The initial cost is

p(z) = —122(9: -7/ P Yz —z)+ 6+ F(z)

For this class of systems the information state p is given by

po(z) = SUPweL, SUPsoern | P(E0) + 3 Jp(< 2(9), Qu(3)a(s) > +R(u(3))
—2(|[w(s)][2 + |Cz(s) — y(s)|[*))ds : 2(t) = z}
where past observations and controls {u(s), y(s) : s € [0,¢]} are known. Using dynamic programming it can

be shown that the information state is the solution to the Hamilton-Jacobi equation

{ 8 = - < V.p f(@)+ AWz +B(w) > +gallVarll* - L||Cz - ylf? + (< 7,Q(w)z > +R(u))
po = D

(2.4.2)

In general the information state is infinite dimensional, i.e., py = pi(z) evolves in a general class of
functions which cannot be parameterized by finite dimensional quantities. In [Jam93a] James shows that for

the special class of nonlinear systems X under the assumptions (A1)-(A3), the special form of the dynamics
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and cost function allow the information state to be described in terms of finite dimensional quantities. The
exact formula for the information state are given in Theorem 2.4.1 [Jam93a]. The fact that the information

state satisfies Equation (2.4.2) can be shown by direct differentiation and substitution.

Theorem 2.4.1 For Zp, Equation (2.4.1), under the assumptions (A1)-(A3) the information state is given
by

) = 9(0) — L < 2ft) 30, P ()alt) -~ 20) > +7°F @)
where P = P' > 0 and Z(t), P(t) and §(t) satisfy the ODE’s

3t) = (A()+HPOQ() - POT(u(®))Z() + Blul®) - P(t)A(u(?))
+P()C' (y(t) - CZ(1)),

z(0) = 1z,
Pt) = POAM®) + A®)P(t) - PO(C'C — 7Qu))P) + (u)P®) + 1,
P(0) = P,
dt) = L<E®),QMut)E(t) > +R(u(®) - lly) - cz(t)li?)
~Z(< B(2), S(u()E(t) > +2A(u(t)E(E) + D(u(t),
$(0) = ¢

Theorem 2.4.1 implies that for any system of the form Tp under the assumptions listed above the
information state can be identified with the finite dimensional quantity p £ (%, P, ¢). We denote the finite
dimensional information state by p,, i.e., pp = ¢ — 7,; < z—%,P Yz —%) > +y*F(x). Using this expression
of the information state, the representation (2.2.5) becomes

Tpts (W) = SUPyeLy0.4,1{3 fy7 (< 2(s), Q(u(3))Z(s) > +R(u(s)) - 73(lly(s) — CZ(3)IIP)

-7} (< Z(s), E (U(S))w(S) > +2A(U(8))2‘(8) + [(u(s)))ds + $(0) : p(0) = p}-
Thus the output feedback robust control problem is equivalent to a new finite dimensional state feedback

(2.4.3)

game with state p. We now regard the value function W as a function of p:
W (p,t) = W(p,,1)-

Remark 2.4.2 From the representation (2.4.3) we can see that W is only dependent on ¢ at the initial
time, thus we can immediately write W(Z, P, ¢, t) = W (Z, P,t) + ¢(t). This also implies that VW =1.
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Before we give the dynamic programming equation for W (p,t), however, we must first define some

pertinent operators. Let A, B € R™*™ where A = [a;;] and B = [b;;].

Definition 2.4.3 The matrix dot product << -,- >>: R™™ x R**™ — R is defined by

<< A, B>> = iiaijbij.

i=1 j=1

Definition 2.4.4 The derivative of a function W(:) : R™"*™ — R with respect to its matrix argument is

defined by

A

vaw 2 [2).

60,,']'

Thus VAW is the matrix of first partial derivatives with respect to the elements of A. The dynamic

programming equation is now

( 8% (p,t) + sup,eps infuer{< VW, (A(u(t)) + HP(H)Qu(t) - PO)Z(u())Z(®)
+B(u(t)) - P()A(u(t)) + P(HC' (y(t) - CZ(2)) >

+ << VpW,P(t)A(u() + A(u(t)P(t)

- ey _ L
T P(t)(C'C — 2 Qu(t))P(t) + S(u)P@) +1>> (2.4.4)
+ L(< 31, Qu®)EE) > +R() — Plly(t) - CEOII)

-—3,;(< 2(t), S(u(t)Z(t) + 2A(u(t)Z(t) + T(u(t))) >} =0

| Wiety) = (P,:0)
where y plays the role of a competing disturbance. Note that since Isaacs condition is satisfied the order in

which the inf and sup are applied is inconsequential.

An interesting and novel feature of this problem is that the value function need not be finite for all values
of p,t. In the linear case, this is closely related to the coupling condition described in Theorem 1.3.2 between
the minimal solutions Z+ and K+ of the control and estimation Riccati equations, i.e., Z* — v*K +1<0

[YJ93]. Let us write

D = {EPst) eR*xS"xRx[0,T] : W(Z P,¢,t) <o} (2.4.5)
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In general, D is a nontrivial subset of R" x S™ x R x [0,T).

The partially observed game problem can now be solved using the Dynamic Programming Equation

(2.4.4) [Fri71, BB91, FS93], as stated in the following theorem.

Theorem 2.4.5 (Verification) Assume there exists a smooth solution W € C*(D) of the Hamilton-Jacobi
Equation (2.4.4). Then the control u* (p,t) which attains the infimum in (2.4.4) defines an optimal controller
u* € O, ¢, which minimizes the cost functional (6.1.2) for the partially observed game. The optimal control

at time t is ul = u*(ps, t)-

In general, the value function need not be C*, and Equation (2.4.4) must be interpreted in a generalized
sense. This is typically the case in optimal control and game theory. However, it can happen that W is

smooth in certain regions, as in the next theorem.

Corollary 2.4.6 For each final condition (ps,ts) € D there exists an open neighborhood V of this point

such that u* is optimal on V.

Proof: Using the method of characteristics [Eva92, Joh82], a solution may be obtained to the Hamilton
Jacobi Equation (HJE) (2.4.4) by solving 2 related system of ordinary differential equations (ODE’s) called
the characteristic equations. The initial conditions for the characteristic ODE’s are determined by the initial
conditions for the HJE in such a way that they remain compatible with the original problem. The solution
to the original HJE is then the union of the solutions to the characteristic equations starting from the various

initial conditions.

Before giving the characteristic equations we first define

A(t) £ Wipt),t), and
oty = V,W(e()t),
so that Equation (2.4.4) can be rewritten as
ow
-a-(p,t) + H(q,p) =0.

The characteristic equations [Eva92] are

p(t) VH(q(t), p(t))
§(t) = -V,H(q(t),p(t))
(t) < V H(q(t), p(t)), q(t) > —H(q(t), p(2))

34



Note that in Equation (2.4.4) the maximizing y is y* = ;%DPV;W +C7% and the minimizing u, u* is defined
in Theorem 2.4.5. Thus H(g, p) is a polynomial function of g, p and we are thus guaranteed smooth solutions
of the characteristic ODE’s (Kha92] at least for small time. In order to guarantee a smooth solution to the
HJE (2.4.4), we must, however, also guarantee that the éolutions to the characteristic equations starting
from different initial conditions do not intersect. Because of this we only have a locally smooth solution to
the HJE (2.4.4), i.e., starting from the final condition (ps,ts) € D there exits an open neighborhood V' of
(ps.ts) such that a smooth solution exists for all (p,t) € V [Eva92]. Invoking the Verification Theorem, we

conclude u* is optimal on V.

2.4.2 Bilinear Systems

An important class of systems which satisfy the assumptions for having a finite dimensional information
state is that of bilinear systems. Consider the class of bilinear systems described by the following set of state

space equations

i(t) = [do+ i Agui(®)]z(t) + Bu(t) + w(t), z(to) = Zo,
s y(t) = Cz(t) +v(t),
? (v@dﬂ)
z(t) = .
VRu(t)

Note that £, is a special case of £ as described in Section 1.2 where f(z(t), u(t)) = [Ao+3 ) Aui(t))z(t) +
Bu(t), h(z(t)) = Cx(t), and £(z(t), u(t)) = @ty VT u(t)y VE )

This class of systems is noteworthy because, although the class is only mildly nonlinear, there are well
know strategies for controlling nonlinear systems which may not apply to this class of systems. For example,
when B = 0, any method which relies on the ability to stabilize the linearization will not apply if the drift

term Ag is not already an asymptotically stable matrix.

Below are stated the finite dimensional information state results specialized to bilinear systems. In
Section 5.1 examples of information state control for bilinear systems are given which demonstrate that
information state controllers can be robust and stabilizing even in cases when linearization techniques fail.

For further discussion and examples see [TYJB94].

Theorem 2.4.7 For Tp, the information state is given by

2
pu(@) = 8(8) - 2 < =() - (t), P (O)(=() — F(E) >
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where P = P' > 0 and Z(t), P(t) and ¢(t) satisfy the ODE’s

51) = (Ault) +7 IPOQ)E(E) + Bu(t) + P()C' (y(t) — CE(t)),
(0) = %,

Pt) = P(t)Aut) + Aut)P(t) - P)(C'C —y7*Q)P(®) + 1,
P(0) = P,

M) = L(<EE),QE) > + <u(t), Ru(®) > —7lly(®) - CEBIP),
$0) = ¢

Again the output feedback robust control problem is equivalent to a new finite dimensional state feedback

game with the state p = (%, P,$), and the value W is a function of this state. Precisely
W(pa t) = W(pp’t)~

The dynamic programming equation for W{p,t) is

(B (p1) + sup,epe infuer{< VoW (Au(t) + +-2P(£)Q)E(t) + Bu(t) + P)C'(y(t) — CE(®) >
b << VpW, P(£)Au(t) + Au(t)P(t) - P()(C'C =72 Q)P(1) + 1 >>

+ L(<E(),QF() > + < u(t), Ru(t) > —?|ly(t) — CE@)|1*)} =0

LW(patf) = (pm,ao)
2.5 Approximation of the Information State

In this section we describe an approximation to the solution of the Robust He Output Feedback Problem
which is accomplished by approximating the information state by a concave quadratic function with its

maximum at a nonconstant point Zi,
¥? TA-1
p(z,t) = P — 5 (z = %) Qr (z = 1), (2:5.1)

where Q = QT > 0. The ordinary differential equations (ODEs) by which the unknown parameters ¢, Qt,

and P, evolve are derived below.
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Approximations such as this are important since the theoretical solution of the Robust He Output
Feedback Problem, given in Section 2.3, is not implementable for general nonlinear systems. The barrier
to the implementation is the solution of the Dissipation Inequality (2.3.4). Theoretically a solution to this
inequality requires the determination of a function W (p) and a control u® (p) for each feasible information
state pe(z), where p(z) evolves in a general class of functions. Such a computation is not practically
possible except under the special circumstances in which the information state can be identified with a finite
dimensional quantity which evolves according to ODE:s as in Section 2.4. As described in Section 2.4 these
circumstances are quite restrictive. Thus it is of interest to approximate the information state by a function

whose finite dimensional parameters, p, evolve according to ODEs.

Such approximations are well suited to implementation. The determination of the control which is now a
function of the finite dimensional approzimated information state, u*(p), is still a computationally intensive
process but it can be performed off line. Only the solutions to the ODEs must be performed in real time
and various numerical methods exist for this. In Section 5.1.2 examples are given which demonstrate that
control systems which control the finite dimensional approximated information state can be stabilizing and

robust to noise.

Now we derive ODEs which approximate the evolution of the unknown parameters Z;, Q:, and P,. We'll
start with ¥,. We have assumed that Z; = argmaxy p(z,t), thus we know V.p(Z¢,t) = 0. Differentiating

with respect to t yields
8p)
ot”’

where, from our approximation, Vip ~ —+2Q;!. Next substitutin for 22 from Equation (2.2.4) and
1Y z t g ot

- 1
Iy = _ertv.!:(
8

evaluating at Z; yields the evolution equation for 7,

3, = f(Eou) + #Qtvz 16, w12 — QeVh(h(F,) — y(b)). (2.5.2)

In order to find the equation for the evolution of Q; we make use of the identity QtQ;'l = ——QtQ[ ! along
with the approximation Q;"l ~ -—-;‘,-Vi(%’f) yielding
. 1 p
~ —QVi(=)Q.
Qf. 72 Q J:( 6t )Q
Thus we differentiate Equation (2.2.4) twice with respect to = and evaluate at Z,. We also drop all terms
which involve third order and higher derivatives of the information state p, and all terms which involve second

order and higher derivatives of the measurement function h. By this procedure we arrive at an approximate

evolution equation for Q,

O~ 2V, fEwQu+ 1+ Qt<§%v§ue<&1,u>n” — VRGP (2.5.3)
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The equation for P; can be found by substituting our approximation of the information state, Equation

(2.5.1), into Equation (2.2.4) and equating terms without Z; in them. Then evaluation at Z, yields

2

. - 0} -

B % |16E w2 - TIAE) - v
Theorem 2.5.1 below summarizes the approximation just derived.

Theorem 2.5.1 For a general nonlinear system ¥, the information state has the quadratic approximation

2
ple,t) m Po= B <z =F,Q¢ (2 —F) >,

where Q = Q' > 0 and Z;, Q¢ and P, satisfy the ODE’s

50) = f(@Eow)+ 22QuValllE Wi - QuV-h(h(E) —y(t),

F0) = %,

Q, = 2V.f(@,wQe+I+ Q:(z—bvillf(it,u)lP ~ |V h(E)IHQ:,
Q = @

B = G| - TIhE) - Ol

Py = P

Theorem 2.5.1 implies that for any system X the information state can be approximated by the finite

dimensional quantity p 2 (Z,Q, P). We denote the finite dimensional information state by p,, i.e., pp =

P - 3‘;— < z—7% Q Yz — %) >. Using this expression of the information state, the representation (2.2.5)
becomes
~ 2
Jopt; (@) = sUPyeLoen{Z I (G, w? = F1RE) - y(t)[|*)ds + P(0) : p(0) = p}-
Thus the dynamic programming equation is
%‘K(p’ t) + SuUPyeRr inquU{< V';Wv f(it’ 'U.) + '2_-1;5Qtv2"e(5h ’U.)"2 - ngzh(h(ig) - y(t)) >
+ << VpW, 2V, f(@u)Qe + I + Qu(z VEILE, w)ll* - IV=AEN?Qe >>

~

+ G w)lE - FIRE) -y} =0

| Wpnt) = (a0
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where y plays the role of a competing disturbance.

For examples of information state control systems which employ this approximation see Section 5.1.2.
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Chapter 3

Certainty Equivalence

In this Chapter we examine a suboptimal controller, the Certainty Equivalence Controller (CEC) [BB9Y1,
JBE94], which has received much attention in the literature [BHW91, IA92, vd$93, DBB93]. This particular
controller is appealing because it is a generalization of the linear case in the sense that it involves the solution
of two uncoupled dynamic programming equations, one for control and one for estimation. This controller,
however, is not optimal in general [Jam93b]. For the case of linear systems it has been shown that the
Certainty Equivalence Controller (CEC) is optimal [BB91]. For nonlinear systems, some general conditions
have been found under which a Certainty Equivalence Principle (CEP) [Whi81, BB91, JBE93b] holds, i.e.,
the CEC is optimal. Here we give an alternative proof of the nonlinear result by application of a verification

theorem.

If the assumptions of the Certainty Equivalence Principle (CEP) are valid, the CEC is identical to the
optimal information state control policy. This is beneficial from the perspective of implementations since the
CEC is computed using a computationally simpler algorithm. It is hoped that the CEQ controller, although
in many cases suboptimal, will be stabilizing and robust to noise for many nonlinear systems. It is interesting
to note that all other research in the area of nonlinear robust Ho output feedback control appears to be

limited exclusively to certainty equivalence control [BHW91, IA92, vdS93, DBB93].
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3.1 Certainty Equivalence Controller

The CEC is defined in terms of a minimum stress estimate Z; and the optimal state feedback controller
Uz, t):
ucge(t) = W&, t)- (3.1.1)

The value function of the full state feedback game is the solution to the Hamilton-Jacobi equation

{ B = _infysupy{< VsV, @ w) +w > +31a Wl - Flwll’} 312)
“ = 0,

and #(z,t) is the value of u achieving the minimum in (3.1.2), assuming V' is sufficiently smooth. The
minimum stress estimate [Whi81] of the state is given by

z £ argmf.x{p(:r) +V(z)} (3.1.3)

where p is the information state defined in Equation (2.2.4) Note that in general, T is set valued. If the CEP

holds then the optimal value function is given by

Wee(p,t) = (Po, V2)- (3.14)

3.2 Optimality of the CEC

For systems with finite dimensional information state, it is shown in this section via the verification principle
that the CEC is optimal provided the minimum stress estimate is unique and the information state and
value function are sufficiently smooth. This has since been show by James {JB94a] for more general systems

and constitutes an alternative proof to the ones given in [BB91, DBB93].

Lemma 3.2.1 Suppose A,B € R"*" and A is symmetric, then

() Va< g, A"z >= —A-lzz’ A7, and

(ii) << Va<z, Az > B>>=-< A-lz, BA 'z >.

Proof: Part (i) is a direct consequence of a well know result from linear systems theory [GL93]: given a
linear system with transfer function Hap.c(s) = c'(s] - A)~1b, where A € R"*", b,c € R", and s is a

complex valued scalar, then

VaH = (s — A)~eb'(sI — A7
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Part (ii)! can be shown as follows:

<< Va<z,Alz>B>> = << —A"lzz'A7Y, B >>
= YL, AT e AT by
= trace(—A"'zz’ A" B)
= —A"1zBz'A7L.

Theorem 3.2.2 If the system has a finite dimensional information state, i.e., the system is given by Equation
(2.4.1) and assumptions (A1)-(A3) are satisfied, and

(i) the minimum stress estimate Z(p,t) is unique for all (p, t) € D, and

(ii) the full state information value function V satisfying (3.1.2) is continuously differentiable,
then the function

Wee(p,t) = (pp, Vi)

is a solution to the Dynamic Programming Equation (2.4.4) and the Certainty Equivalence Controller (3.1.1)

is optimal.

Proof:

Recall that the finite dimensional information state is given by p,(z) = ¢ — -'{; <z-%PYz-7)>
+F(z) where p = (Z, P, ¢) satisfy the ODE’s given in Theorem 2.4.1. Thus & 2 z(p,t) = argmax. {p,(z) +
Vi(z)} and Z¢ = Z(pe, t)-

Consider (p,t) € D, then by assumption (i) the minimum stress estimate T is unique. This together with
assumption (ii), that the full state information value function V is continuously differentiable, allow us to

equate Weg = p,(Z) + Vi(Z) and to differentiate naturally with Z as a parameter.
By first order optimality condition and assumption (Al)
V.V () = —Vap(z) = v*P7}(z - &) = 7" f(2).

The CEC is obtained by determining the minimizing control 1 in Equation (3.1.2) with f(z,u) = f(z) +

A(u)z + B(u) and £(z,u) = i<z, Q(u)z > +R(u) and evaluating at the minimum stress estimate Z. Thus

\Thanks to S. Yuliar for suggesting this more elegant proof!
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the CEC satisfies:

0 = <V,V,240, 9800 5 41(cz, 2z > 28y
= < ’72P_1(i‘ —E), BA(u! 7+ Ogu!u! >
+1(< 7,298z > +—5131) (< 7,250 > 422400 4 )

The optimal control u* in the case that W = WcE is obtained by determining the minimizing control in

Equation (2.4.4) when W = WcE. Similarly the optimal output y* is the maximizing output.

y* = Cz+ %CPV;WCE =CzI
0 = <V-W, (_ﬂl‘_l + L 1 paQ(ﬂ paz(uj) ) + GBU(u‘Q _ PaAagu‘) >
T u u

+ << VpW, P—’ig-“—L+_A_(llP+ 1p qu 2P+52§“'2p>>
+32 (<x’_o,j_lz>+_}2(u_l) 1—(<z,—2—(——“—lx>+2_ﬂllz+_f‘(1_l)

= < ,YZP—I(a—: _E)’(M + 1 POQ(“‘)_ _PGE(uJ){E(t) + aB!u'! _ PBA!u'! >
+L < P~z - 3), (P-ﬁ‘i"—)-+—éi’-‘-lp+ poal) P+—i—l”" P)P'(z - %) >
+i(< 5, Be > + ) - % ¥ (<, &z > +20Mu) 7 | OT(w])

= <~P-l(z - %), 2400 4 280D
+i(< z, 2900 >  2B00)) (< 2500z > 12080 5 4 ST0))

Thus the certainty equivalence control uce = #(z) and the optimal control u*(p, t) satisfy the same equation

when W = Weg. Thus when W = Weg, the optimal controller and the CEC are equivalent, i.e.,

u'(pa t) = UCE-

By direct differentiation and substitution it can be shown that Wee = Vi(Z) + p,(Z) satisfies Equation

(2.4.4). Now
A aw
LHS £ 2=
= 5@

= —4?<PYz-%),(A+Bu(@)z+ P-1(z - %) > —1(< £,Q% > + < &(&), Ru(z) >)

+L < (z-8),P2@z-5)>
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and also

RHS £ - < ViWck, (A(w) + 32 PQ(u) — PE(u))Z + B(u) — PA(u) + PC'(y - C%) >

— << VpWep, PA() + A()P = P(C'C — 3:Q))P + E(u)P + 1 >>
+1(< 2, Q(w)Z > +R(u) ~’lly - Cz||2) - (< £, S(w)Z > +2A(w)Z + [(w))

= —42<PYz-%),(Aw)+ :};PQ(u) — PS(u))Z + B(u) — PA(u) + PC'(y - Cz) >
-2 < P7}(z - 7),(PA(u) + A(w)P - P(C'C - ZQ(u)P +Z(w)P + NP~z -%) >
+1(< 7, Qu)E > +R(u) - 7lly - CZII*) - 2(< £, T(w)E > +2A(u)E + ['(w))

= —42<PYz-%),(A+Bu’)z +PY(z-%)>-3(<ZQZ >+ <u’ Ru’ >)
+T < (z-8),P@-8) >

Thus since u* = #(Z) when W = WcEg we are done. |

As previously mentioned the assumption that the information state is finite dimensional can be relaxed.
The remaining assumptions given in Theorem 3.2.2 are essentially those of [BB91], and are difficult to verify

in general.

3.3 Filter Equation for Minimum Stress Estimate

The minimum stress estimate as defined in Equation (3.1.3) is not given in a form which is familiar in
controls. It would be more typical to have an estimate defined in terms of a nonlinear filtering equation, e.g.,
the Extended Kalman Filter [Kha92]. It is interesting that under a few assumptions the minimum stress
estimate can be expressed in the form of a filtering equation. In fact this filter turns out to be the nonlinear
central controller of van der Schaft [vdS93]. In this section we derive a filtering equation which describes the

evolution of the minimum stress estimate.

The minimum stress estimate is not a typical state estimate and this is reflected in the filtering Equation
(3.3.6) derived below. The minimum stress estimate is an estimate of the state under the assumption that
the disturbance is the worst possible from the point of view of control. The filtering Equation (3.3.6) for the
Aminimum stress estimate thus has an extra term corresponding to the worst case disturbance. By allowing
~ — 00, however, the extra term drops out and the estimate takes the form of a more typical state estimate.

This is related to the large deviations limit results discussed in Section 1.3.3. Recall that by allowing
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~ — oo the solution of dynamic game problem approaches that of the deterministic optimal control problem

[Jam92, CJ92, JBES4, JBE93b].

Assuming that there exists a unique minimum stress estimate Z; for each time ¢ and for all observation
histories yjo,¢,) and that the information state (2.2.4) and the value function (3.1.2) are twice continuously
differentiable, we can derive a filter type equation for the evolution of the minimum stress estimate. The

uniqueness assumption implies that the CEP holds. Consider the input affine nonlinear system Y14 below:

i(t) = fl@)+gE®)u+w), z(to)=7o,
y(t) h(z(t)) +v(t),

o=(®) |
u(t)

Note that £y is a special case of T as described in Section 1.2 with f(z(t),u(t)) = f(z(t)) + g(z(t))u and
£(z(t), u()) = (V8(=(t)) ,u®)')-

Era (3.3.1)

z(t)

1

For the system ¥4 the information state satisfies the dynamic programming equation

{ B = Fpnu(t)u(®) .32
Po = D

where F is given by

supyern{— < Vap, f(z) + g(@Ju+w> ~Z (Jlwll® +||h(=) — yII®) + 3(¢(z) + llull®)}
= - < Vap fl@) + gla)u > + 5l Vepll? + 3(6(@) + [lul) - 2 ||a(=) - il

o>

F(p,u,y)

and the past control inputs u and observations y are known. The maximizing disturbance in this case is

o~ 1
w= -—;;;Vzp. '

The value function, V, of the full state feedback game is the solution to the Hamilton-Jacobi equation

o = vV
o GV, u) (3.3.3)
V'tf = 0)

where G is given by

Gu,u) = —infysup,{< VoV, f@) +g(z)u+tw> +3(8(2) + lull®) - 2 lwl®)}
= - < VLV f(z) > +ElI< VaVig(@) I — VLI - 36(z)-

The minimizing control u* and the maximizing disturbance w* are respectively u*(z,t) = — < g(z),VzV(z,t) >

and w*(z,t) = ;I:Vzv(z, t)
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Thus assuming the CEP holds?, the optimal output feedback controller (CEQ controller) is given by
ucpg = — < 9(Ze), V2 V(Z¢e,t) >,
where %, is the minimum stress estimate (3.1.3).
Now we will derive a filter type equation for the minimum stress estimate, Z. First, we define
S(z,t) & plz,t) + V(z,1).

Since the minimum stress estimate maximizes S, viz. Equation (3.1.3), we know by the first order optimality

condition that

V.S(z,t) = V.p(Z,t) + V.V (Z,t) = 0.

Notice that this implies that the maximizing disturbance for both the information state and the value
function are the same, i.e., W(Z) = w*(&). This result will be needed shortly. Differentiating with respect to

t yields
85(z,t) _
5

Thus we see that in order to obtain a useful differential equation for £ we must find an equation for Vz%%

ViS(z,t)i + V. 0. (3.3.4)

To do this we add together Equations (3.3.2) and (3.3.3) where @, w*, and u* denote the optimal values of

these parameters as defined above.

p OV T ~ T . I 2 2 2
(@ O 4 Ipli(a) + e+ D) + VIV (@) + gla +07) + k(e —olf (08— =0
By differentiating this equation with respect to z and evaluating at Z we obtain the needed equation.

88(z,t)

5t V2S(f(2) + 9(@)u" +w") +7° < Vzh(2),M(2) —y >= 0 (3.3.5)

Ve
Assuming ViS is invertable, Equations (3.3.4) and (3.3.5) combine to give
3 = £(z) + g(&)u" + %vv,(:z,t) + K(z,8)(h(Z) — ) (3.3.6)
where u*(z,t) = — < g(%), V-V (Z,t) > and K(%,t) = v2[V2S(Z,8)] VT h(2).

As mentioned above, the minimum stress estimate is an estimate of the state under the assumption that
the disturbance is the worst possible from the point of view of control. This is reflected in the filtering
Equation (3.3.6) for the minimum stress estimate by the term ;%;VV,(:T:, t), corresponding to the worst case
disturbance input. By allowing v — oo the disturbance term drops out and the estimate takes the form of

a more typical state estimate.

2Although the conditions under which a Certainty Equivalence Principle holds may be quite restrictive we contend

that in many practical cases the CEC is a good approximation to the optimal control.

46



3.4 Approximations

The computation of the CEC, although employing a computationally simpler algorithm than that of the
information state controller, is still very computationally expensive. The Dynamic Programming Equation
(3.1.2) which gives the full state feedback control can be computed off line. However, the computation of
the CEC still involves the online solution of the Dynamic Programming Equation (2.2.4) for the information
state. Thus the hope of direct implementation of the CEC for use in a real-time control system is not well
founded. However, knowledge of the optimal solution can be exploited to guide the choice of a suboptimal

controller which would be better suited for implementation.

Again, as in Section 2.5, we can approximate the information state by a quadratic which evolves according
to ODE’s. Examples are given in Section 5.2.1 which demonstrate that the approximate CEQ, i.e., the CEC

with an approximated information state, can be stabilizing and robust to noise.

A further approximation for input affine systems ¥4, motivated by the CEC filtering Equation (3.3.6),
is given below. This controller, though well suited for real-time implementation, is essentially a modified
extended Kalman Filter. As with the other approximations to the optimal control some performance is most
likely lost by neglecting the higher order nonlinearities. This case in particular is a very rough approximation
and is likely to give local results only for mildly nonlinear systems. Examples which demonstrate the

performance of this controller are given in Section 5.2.1.

Again we approximate the information state by a concave quadratic function with its maximum at a

nonconstant point ¢, as in Section 2.5,

2
v ~ _ ~
p(z,t) = P, — —2'(1 -5)TQr (z — To)-
The value function is approximated by a convex quadratic with its minimum at the origin,

V= -;-a:T Iz, (3.4.1)

where TI = IIT > 0. Substituting these estimates into Equation (3.1.3) for the minimum stress estimate
gives

7, ~ argmax{z Iz - v*(z = £)TQ (@ — Z0)}-
Solving for Z; gives the approximation
Ty =~ (1 - —thH) T¢-
Y
Note that uceg =~ —g7 (Z¢)I1Z¢.
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The next step is to approximate the evolution of the unknown parameters %, Q:, and the value of II.
Equations for 7; and Q. have already been derived in Section 2.5 and are given by Equations (2.5.2) and

(2.5.3) respectively. Here we give the equations for %, and @, for the specific case of input affine systems

Lra,
, = f(@)+g(@)u+ ﬁthvxd’(Ea) — Q:Vh(h(Z:) — y(t)),
Qr = 2Vof(E)+Veg(@)wW)Q + 1+ Qi(532 V2o(Te) - IVh(Z I Qr-

The determination of the value of Il is accomplished by iterating an approximation of Equation (3.3.3)
describing the evolution equation for II; until a steady state value is reached. For convenience we rewrite

Equation (3.3.3) to evolve forward in time

v _ 1 s 1 !
-7 =< VaVi f(2) > —3li< VaVig(@) >I* + g5 IVaVIT + 5#(2)- (3.4.2)

From here the procedure for finding the evolution equation for II; follows a similar procedure to that of Q.
From our approximation of the full state value function, Equation (3.4.1), we know V(0,t) =0, V:V(0, t) =0,
V2V(0,t) = I, and so finally I, = Vf,-a—vé%ﬂ. Thus differentiating Equation (3.4.2) with respect to z twice
and evaluating at zero yields the evolution equation for II;

. 1
I, = 211, - Vo £(0) — (T, - g(0))* + -7—2|Ht|2 + Vio.
All terms which involve second order and higher derivatives have been dropped. This equation is now
integrated forward in time until a steady state value II is obtained.

Theorem 3.4.1 below summarizes these results.

Theorem 3.4.1 A quadratic approximation of the Certainty Equivalence Controller for input affine systems
¥4 is given by

UCEQ = —gT(:J":g)Hi'g.
The minimum stress estimate Z is approximated by
. 1 1=
Fe (I — -—2QLI'I) Zy
8
and the variables Z and Q evolve according to the ordinary differential equations as follows

% o= f(Z)+9@E)u+ 53QiVe9(T) - Qe Vh(h(Z) - y(1),
Q: AV F(F) + Ve9(@)wQe + T + Qt('g'}ﬁVz(ﬁ(Et) —IVhE?) Q-
The value of II is the steady state value of the following ODE

1
I, = 211, - V.. £(0) — (T - 9(0))* + ;‘2‘|Ht|2 + Vi
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Chapter 4

Implementation

In this chapter we describe the numerical methods used to compute a solution to dissipation inequalities of
the type which arise in the information state feedback solution, viz. Chapter 2, and the Certainty Equiva-
lence solution, viz. Chapter 3, of the Robust Ho Output Feedback Problem. We employ a finite difference
approximation technique developed by Kushner and Dupuis [KD92]. The finite difference approximation is
termed a Markov chain approximation because of its interpretation as that of a controlled Markov chain in
which movement of the state through the discretized state space is described by Markov transition proba-
bilities. The approximating chain is parameterized by the finite difference interval A such that as A — 0
the local properties of the chain approach those of the original process. It is shown that the optimal cost
functions for the sequence of approximating chains converges to that for the underlying original process as
A — 0. The Markov chain approximation technique was introduced to the author by James and Yuliar

(7Y93).

The Markov chain approximation technique is applicable for computing the solution of any dissipation
inequality with finite dimensional state/information state domain. In the case that the information state is
not finite dimensional a preliminary approximation must be made before the Markov chain approximation
technique can be applied. In this dissertation we consider two possible types of preliminary approximations
of the information state controller: (i) the approximation of the information state by a finite dimensional

quantity, viz Section 2.5, or (ii) the use of the Certainty Equivalence Control!, viz. Chapter 3.

11n the case that the CEP holds this is not an approximation, it is equivalent to implementing the information

state feedback controller
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4.1 The Dissipation Inequality

In Chapter 2 we give necessary and sufficient conditions for solving both the finite time horizon and the
infinite time horizon Robust Ho Output Feedback Problem. In both cases the value function and optimal
control may be computed off line. Off line computation has obvious advantages in terms of control system
run time. However, in the finite time case, since the value function and the optimal control are functions
of time, it is required that their values be stored for each instant of run time. As a result, the memory
requirements to implement the finite time solution may be excessive especially for large systems. For this

reason we have chosen to implement only the infinite horizon solution.

The goal of the infinite time horizon Robust Heo Output Feedback Problem is to minimize over the
admissible controls u € O the cost functional
sup sup Jp,t(l'O; U, v, ’LU)
t>0 zo€R, w,vEL2(0,t]

where

Tp.1(%0, u, v, w) = P(zo) + %/0 (le(z(s), @) = V(w1 + llo(s)H))ds. (4.1.1)

In Section 2.3 it is shown under detectability and reachability assumptions, that if a solution can be found

to the dissipation inequality

inf sup {< V,W,F(p,u,y) >} <0, (4.1.2)
u€l yeRr

where p = F(p,u,y) describes the dynamics of the information state, such that 6, € dom W for all z € R",
W (p) > (p,0), W(do) = 0 then the control @* (p) which achieves the minimum in (4.1.2) solves the information
state feedback robust control problem. So in order to find the control u*(p) we are faced with the problem

of numerically solving the Dissipation Inequality (4.1.2).

4.2 Value Space Iterations

Using the method of value space iterations the solution to Dissipation Inequality (4.1.2) is approximated by
considering an associated finite horizon dynamic programming equation for t large enough. We consider the
finite horizon solution W (p,t), which is a solution in the viscosity sense of the partial differential equation
(PDE)
-2% +infuev supyere {< VoW, F(p,u, y)>}=0,
W(p,0) = 0.

4.2.1)
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Note that this is exactly the PDE which arises in solving the Finite Time Robust Heo Output Feedback

Problem with the exception that for convenience we allow it to evolve forward in time.
Define W,(p) 2 sup,»o W (p,t). Then W solves the equality

inf sup {< V,W,, F(p,u,y) >} =0. (4.2.2)
uelU yER?

Clearly a solution to this equality is also a solution to the Dissipation Inequality (4.1.2).

Theorem 4.2.1 Suppose there exists a finite solution Wa(p) to the Dissipation Equality (4.2.2) then
tl_lfgo W(p,t) =W, (p)

where W (p, t) is a solution of the Dynamic Programming Equation (4.2.1).

Proof: The key to the proof is the demonstration that W (p,t) is non-decreasing in ¢. By definition W, (p) =
sup,»o W (p, t) we know W(p,t) < Ws(p) for all t > 0. Thus since we have assumed the existence of a finite
solution W, (p) to the Dissipation Equality (4.2.2), lim;—00 W(p, 1) exists and is finite. Then by definition of
W,(p) and the non-decreasing property of W(p,t) we will get that lim;e0 W (p,t) = Wa(p). So all we have

left to show is that W (p,t) is non-decreasing in 2.

W(pa t) = inf sup Jﬁ.t (IOa u,v, ’lU)
u€0 zo€R, w.vELg[O,t]
where J is defined in Equation (4.1.1). Define W., V; to be the set of disturbances w,v € L[0, 0] such

that w(r),v(r) =0 for all 7 > t. Let t2 > ¢3 then Wi, , Vi, C L2[0,t2]-

SUD4y R, w.vELs[0,ta] Jota(T0 U Vs W) 2 SUPzoeR, weW,,, veVs Tp.t2 (%o, u, v, w)
= SUPayer, wveLalo.] Tt (T, 1,0, w) + 5 17 (1€(=(s), @ls))|Pds
> SUPL.eR. wweLso,t] Jota (T0) U VW)
This inequality holds for all controls u as long as both sides use the same control over the interval [0,%1]. By
applying the principle of optimality we know that when we take the infimum on both sides over the admissible
controls the optimal choice u* is the same on both sides over the interval [0,t1]. Thus W(p,t2) 2 W(p,t1).

Theorem 4.2.1 implies that for large ¢ the finite horizon solution eventually reaches a steady state solution
which is a solution to the infinite horizon problem. Thus when computed for ¢ large enough the finite horizon
solution to the Dynamic Programming Equation (4.2.1) serves as a good approximation to the solution of

the Dissipation Inequality (4.1.2).
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4.3 Markov Chain Approximation Method

The computer implementation of a dynamic programming equation such as Equation (4.2.1) requires the
discretization of both the time and the information state space. We use a finite difference scheme which is

similar to that presented in [KD92, JY93).

To emphasize its finite dimensional nature, we denote of the information state by p where p = (Z,P, )
is the finite dimensional vector with which the information state p, = o— 1,; < z—%,P Y (z—-%) > +7*F(x)
can be identified under the assumptions given in Section 2.4. Referring to Remark 2.4.2 it is clear that by
setting the initial value ¢ = 0, we can rewrite the Dynamic Programming Equation (2.4.4) for W such that

W is no longer a function of ¢:
‘%(5a t) =+ inquU supyeRP{< V;'Wv F(ﬁv u, y) > +C(ﬁv u, y) = 07
WE0 = (P,,0)-

(4.3.1)

Here we define p 2 (z, P), ] &F (7, u,y), and C(p,u,y) is the cost integrand from Equation (2.4.3). Note

we have allowed W to evolve forward in time.

Before we describe the Markov transition probability we must make a few definitions. We consider
a uniformly discretized grid of the information state space of size A. Denote this grid by (R;")A where

n= ﬂ"—;& is the dimension of p, and n is the dimension of the state space of the original system S r. Define

the neighborhood Na(p) of a point p € (RX)A by the 27 + 1 A-adjacent points on the discretized grid, i.e.,
Na(p) = {q € (R".")A :g=porgq=p+tAe; forsome:€ {1,---,5}}
where e; € ]R; denotes the ith unit vector i =1,-- -,71. Define a normalization constant A by

A= - sup "F(ﬁvuvy)Hl
PE(R™)S y€(R?)® uE(R™)S
where the 1-norm of a vector v € R” is the sum of the absolute value of the components, i.e., [Jvlly = Sy vl

The transition probability from state p € (R;")A to q € (R;")A is given by

1- ‘F(ﬁvuvy)ll/Av if q= ﬁy

PA g, Biy,w) =4 FE(B,u,9)/A ifq=ptAe i=1,--,m, (4.3.2)
0, if ¢ ¢ Na(p),
where
~ F'(ﬁauvy)v if F'(ﬁ)uay) 20,
Fr(uy) = ' '
0, elsewhere,

~-F; ~,U,, ’ if F; ~,'U., Soa
FGuy) = { i(P,u, ) AN

0, elsewhere.
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This discretization is depicted for a 2_dimensional information state in Figure 1.

p(t)
€o ) F=
€1 o F2

e

R

Figure 1: Markov Chain Transition Probabilities

The time discretization is defined by tx = kA/X, k=0,1,---. The discretization of Dynamic Program-

ming Equation (4.3.1) is then given by

wa (k) = lnfuE(R"‘)A SUpye(Rrr)2 {Z(IENA(P) LVA(Q) - 1)P(q, pu, y) +C(o, u,y)%}
w4500 = 0.

By iterating Equation (4.3.3) we get the representation

(4.3.3)

WA(;’" k) = _inf sup [Z C(pi, unyz)i]

u€00,k-1 yelo[0,k—1] i—0
where E-denotes the expectation with respect to the Markov chain of information states with initial condition
7, and the admissible controls u € Og k-1 are any R™-valued sequence which is a non-anticipating function

of the observation path.

Now we will show that if we iterate Equation (4.3.3) we approach a steady state solution,

k-1 A
WA =38 Bl e LZC Guwd3 A] -
It turns out that the steady state solution of the discretized Dynamic Programing Equation (4.3.3) is exactly
the finite difference analog of the steady state solution of the Dynamic Programming Equation (4.3.1) which
is given by
wA(p) = sup { Y WA(q)P(g,5uy) + O, u,y)%} : (4.3.4)
4€Na(p)

“G(R’“V’ ve(RP)S

Theorem 4.3.1 Assume that WA exists and is finite. Then

lim W25, k) = W2(p).

k—ro0
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Proof: The crux of proof of this theorem is showing that ‘WA(I)', k) is nondecreasing in k. For the purpose

of this proof we will assume that Lp is such that f(z) = 0. Define

k-1 A
JA(Z)" k; uay) = E; \:Z C(ﬁivuiy yt)_A{l

=0

In this case C(5,u,y) = 3(< &(s), Q(u(s))Z(s) > +R(u(s)) — 2 (lly(s) = CE&)IP-

Define Y; to be the set of outputs y € £2[0, 0] such that y; = Cz; for all i > k. Let ko 2 ki then
Yk1 C 32[0, kz].

v

supyEY,,l JA(ﬁv k'Z; u, y)
SUDy e5[0,k1} {725, kiu,y) + 3 (< Tils), Q(ui(s))Zi(s) > +R(ui(s)))}

> subyepyo.kr) I (B kriu,y)

SUPyeaf0.k5] I (P> K23 th Y)

The last inequality follows from the assumption that Q(u) > 0, and R(u) > 0, viz. Section 2.4. This
inequality holds for all control sequences as long as both sides use the same control {u}o,k,—1. By applying
the principle of optimality we know that when we take the infimum on both sides over the admissible controls

the optimal choice {u*}o,k,~1 is the same on both sides. Thus WA (5, k2) > W2(5, k1)-

By definition we know WA, k) < WA(p) for all k > 0. Thus since we have assumed that WA (p) exists
and is finite, limk—oo W2 (P, k) exists and is finite. Then by definition of WA(p) and the non-decreasing

property of W2 (p, k) we get that limg oo W25, k) = W2 (D). n

Thus we have shown that by iterating Equation 4.3.3 until a steady state solution is achieved, we arrive
at a good approximation to the discretization of the original Dissipation Inequality (4.3.4). Theorem 4.3.2
below further implies that when A is chosen small enough the discretized control u%, found by iterating

Equation 4.3.3 until a steady state solution is achieved, renders the system finite gain.

Theorem 4.3.2 Let v > 0. If there exists Ag > 0 such that for all 0 < A < Ap the Dissipation Inequality

. - - A
wAG) > inf  swp { Y. WA@P@AuY) +CELYT
u€(R™)2 yg(RP)2 -
qENA(p)
has a solution W2 satisfying W2 (5) > (py,0), lima—o W2(0) =0, and

sup sup |WA(ﬁ)‘ <o RedomW
0<A<Ag pe(R™)2, [pil<Ri i=l,n
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then for 0 < A < Ag, T¥a is finite gain.

Proof: Define

W(p) =  _liminf W2 (5a)-
ANG.pa—+p.pa E(R™)A

Then W is lower semi-continuous on dom W and by assumption W satisfies W2(p) > (p,,0) and W(0) =0.

Next we show that W satisfies Dissipation Equality (4.2.2) in the viscosity sense.

Let ¥ € C! and assume that W — ¢ attains a strict local minimum at po. There is a subsequence 7
again indexed by A, such that
lim _ W2(ga) = W(Po),

A—=0,pa—p0

and W2 — ¢ has a local minimum at pa € (R™)2. Then Equation (4.3.4) and

WAF) — WA(Ba) > v(p) —¥(Ba), P € Nalpa)

for A small imply

n ~ ~
inf sup P(pa £ Ae;) — Y(pa) Fid: (Pa, u,y) p <0.
u€(R™)% ye(RP)A | 121 A

Letting A N\, 0 we obtain

inf s V- F(pg, u, <0.
ue(gm)”e&g)A{ SWF (po,u y)} <

Thus W satisfies Equation (4.2.2) in the viscosity sense, and hence by Theorem 2.2.4 $va js formally finite

gain. |

4.4 Summary of Approximation Method for Information State

and Certainty Equivalence Control

Given in this section is a description of the Markov Chain approximation method for both the information

state controller and the CEC. Let T be a general nonlinear system, viz. Section 1.2,
(t) Flz(t),u®) +w(®),  =(to) = %o,
T < yt) = h(z(®)+v(d)
z(t) £(z(t), u(t))-
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Finite Difference Approximation of the Information State Controller:

For a general nonlinear system %, the information state has the quadratic approximation

2
p(z,t) = P — 12— <z—Ep,Qt'l(x—5:'t) >,

where Q = Q' > 0 and Z;, Q¢ and P, satisfy the ODE’s

) = fGow)+ 7 QuVelllE I - QVh(R(E:) —y(B),

£0) = 7,

O = 2V.f(Enw)Q + T+ Qs VEIEGE: wI? ~ IV-hE)IPQe
Q = @

B = lGEwI? - FIhE) - vl

P() = P

We identify the information state with the finite dimensional vector 5 = (Z, Q) and define
5 & F(puy) and CFu,y) 2 €GP - 2||A(&) - y(®)|I2. The Markov transition probability P
which is the probability that information state 7 will move to a value of ¢ given the current information

state p, control u, and output y is defined by

1-|F@Ewh/A =5
PA(q, Py, u) = F}i(ﬁ,u,y)/)\, ifg=pxAe i=1,---,1m,
0, if ¢ ¢ Na(p),
where the normalization parameter X is defined by A= SUP~ pT)a e(RP) me(R™) | F(p,u,y)ll1- The time
discretization is defined by tx = kA/A, k= 0,1,---. The discretization of the Dynamic Programming
Equation is then obtained by iterating Equation (4.4.1) until a steady state value is obtained. The information

state control u®(p) is the steady state value of u achieving the minimum in

{ WA(ﬁ, k) = infue(Rm)A SUPye(Re)a {ZQGNA(;) WA(‘L k- I)P(Q1 P u, y) +C(p,u, y)_A):} (4.4 1)

WA(5,0) 0.

Finite Difference Approximation of the Certainty Equivalence Controller:
The CEC is

uce(k) = u%(Z)

where

Tk = arg mf.x{pA(:z:, k) + VA(z)}
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and the discretized information state p® and the discretized infinite horizon full state information value
function V2 along with the discretized full state feedback control 4® are defined below. First define the
Markov transition probability P which is the probability that the state will move to state z given the current

state z, control u, and output y.

1-|f(z,u,9)l1/A, ifz=2,
PA(z,z;y,u) = fft(z,u,y)/z\, fz=z+Ae i=1,---,n,
0, if z ¢ Na(z),
where the normalization parameter X is defined by A = SUP_ _ p7ya ye(RP)A we(Rm)A Il f (z, u,)ll2- The time
discretization is defined by tx = kAN, k=01, The discretization of the information state is then

given by
p*(z,k)

SUPye(R™)A {ZZENA(,) p(z,k = 1)P(z,7;u,9)
(2l +IIA() - vl + Hlez wIDE }
p2(z,0) = 0.
The discretization of the infinite horizon full state information value function V2 is obtained by iterating
Equation (4.4.2) below until a steady state value is obtained. The quantity @2 (z) is the value of u achieving

the minimum in Equation (4.4.2) at steady state where

VA(z,k)
VA(z,0)

2
inqu(R"‘)A Supye(RP)A {ZzENA(:) VA(Z, k- 1)7’(2,37;",!/) + (%HE(:Z,U)‘P - 3,i_“'w”2)é,\-}

0.

(4.4.2)
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Chapter 5

Examples

In this chapter we present numerical examples to illustrate the digital controllers described in Chapters 2

and 3. We employ a finite difference scheme as described in Chapter 4.

In addition to the finite difference (Markov chain) approximation required to numerically solve the
Hamiltion Jacobi equations and dissipation inequalities involved in the solution to the Robust Ho, Output
Feedback Control Problem, digital implementation requires preliminary approximations which are designed

to accomplish the following main goals:

(i) Allow the information state control of general nonlinear systems not necessarily admitting a finite

dimensional information state; and

(ii) Decrease the computational complexity of the process by which the control is computed.

As we shall show both of these goals may be met by considering appropriate approximations to the infor-

mation state.

Although the continuous extension of the discrete time results discussed in Chapter 2 is valid only in
a formal sense, it does hold rigorously for systems which have an associated finite dimensional information
state, viz. Section 2.4. Thus, in the case of such systems the information state control is directly digitally
implementable modulo the finite difference approximation discussed above. For systems in which the infor-
mation state can not be identified with a finite dimensional quantity or that the CEP?! does not hold, the

digital implementation of an information state controller requires that some sort of preliminary numerical

1Recall that in the case that the CEP holds the information state controller and the CEC are equivalent.
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approximation of the information state first be applied.

Here we consider two types of preliminary approximations of the information state controller which meet
our goals: (i) approximation of the information state by a finite dimensional quantity, viz. Section 2.5, or
(ii) use of the Certainty Equivalence Control (CEC), viz. Chapter 3. The first approximation type can also
be applied to the CEC to further reduce its computational complexity. Although both of these preliminary
approximations decrease the computational complexity of the process by which the control is computed,
the computation of the CEC still suffers from the curse of dimensionality. This refers to the fact that the
order of the computational complexity increases exponentially with the dimension of the system. In terms
of real time implementation, the computational complexity of the information state is the critical issue since
its computation must be performed on line, whereas the value function may be computed off line. Thus
the preliminary approximation of the information state by a finite dimensional quantity may be the best
choice when real time computational speed is an issue. In Figure 1 a block diagram of the information state
controller is given which emphasizes the fact that the most computationally intensive calculations can be

performed off line.

Disturbances System X Peg:;:uar:ce
v Tt X =f(x,u) + W 2
y =h(x) + Vv
Yt Output y;
—
z = l(x, )
Controller

Information State

p
t | .
up=ulp) e— p=Flpuy) *

Utf

OFFLINE

Dissipation Inequality
{Wolp), Fipu.y) D 20

Figure 1: Information State Controller
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5.1 Information State Feedback Control

Below in Section 5.1.1 we give examples which demonstrate that the information state controller is stabilizing
and robust to noise for systems with finite dimensional information state. In addition we illustrate the
nontrivial domain D, Equation (2.4.5), of the information state value function and its relation to the Riccati

Equation coupling condition in the case of linear systems, viz. Theorem 1.3.2.

In Section 2.5 we described an approximation of the information state by a convex quadratic. By using
this approximation we can implement the information state controller for general nonlinear systems which do
not satisfy the strict criteria, viz. Theorem 2.4.1, required for a finite dimensional information state to exist.
In Section 5.1.2 examples are given which demonstrate that the approximate information state controller is

stabilizing and robust to noise for nonlinear systems.

—

As indicated in Remark 2.4.2 W(%, P,¢,t) = W(z, P, t) + ¢(t) which implies that VgW = 1, and that
W is only dependent on ¢ at the initial time only. Thus in the examples below we set the initial condition

#(0) = 0 and consider W (£, P,t) = W(Z, P, 6,1).

5.1.1 Finite Dimensional Information State

Example 1 [TYJB94|

Consider a linear system with the state space model

it

z(t) Az(t) + Bu(t) + w(t),
5, y(1) Cz(t) + v(t), (5.1.1)
VQz(t)
u(t)

Using the standard Heo control theory for linear systems we can compute the optimal value v* of the Lo gain

2(t) =

parameter. The information state for &1 can be identified with the finite dimensional vector p = (Z, P, ¢, t)
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x10° value function W(0,P) for iterations n*40, n=1...10

T

0.5F

Figure 2: Domain of Value Function for Example 1

where p evolves according to the ODEs

5t) = (A+7"P)Q)E() + Bu(t) + PA)C (y(t) — CZ(t)),
z0) = %,

P(t) = P@)A +AP®) - PR(C'C-y?QPH)+1,

P(0) = P,

o) = (< E(t), Q) >+ <wult)ult) > —¥?lly(t) - CZ@)II*),
$(0) = o

Notice that the ODE which describes the evolution of P is the finite horizon version of the estimation Riccati
Equation (for K) of Theorem 1.3.2. The domain of D the information state value function W (p) can be
expressed as [YJ93]

D = {(Z,P,¢t) e R" xS" xR x to,ts] = ZB)YP <¥*T }, (5.1.2)
where Z(t) solves the regulator-type Riccati differential equation
—Z(t) = AZ+ZA-Z(BB' -y*Z+Q, Z(t;) =0. (5.1.3)

. Equation (5.1.3) is the finite horizon version of the control Riccati Equation of Theorem 1.3.2. In addition,

the domain of the information state value function D is exactly the region on which the coupling condition is
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satisfied, viz Theorem 1.3.2. Thus the familiar coupling condition required for the solution of the Ho, output
feedback problem for linear systems is exactly a requirement that the information state value function be

finite.

Now consider a particular linear system X, where A=-05 B=1,C =1,and Q =2. For this system
the Ho optimal La gain can be computed to be 4* = 1.789. From Equation (5.1.2), we see that the domain
D is affected only by the component P of the information state p. In Figure 2 the plots of W (0, P) computed
for v = 1.8 are displayed at several different iterations. From these plots it is evident that the domain is a
non-increasing function of the time horizon. If we let Z denote the steady state solution of Equation (5.1.3),

then the lower bound on the size of the domain is given by v/Z.

value function, W

R
\! \:\\\\\‘

!

\

\
i\

P xhat

Figure 3: Value Function W and Optimal Control u* for Example 2
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value function W(0,P) for iterations n*100, n=1...10
0.45 T T T T

0.4r 1
0.35+ E
0.3 b

0.25

0.15}
0.1F

0.05¢

Figure 4: Domain of Value Function for Example 2

Example 2 Consider a bilinear system with the state space model

i) = (=0.5+0.5u(t))z(t) + w(t),
y(t) = =(t) +v(t),

Ysm )
2(8) [ =(t) } .
u(t)

The information state for Ssp can be identified with the finite dimensional vector p = (Z, P, ¢, t) where p

(5.1.4)

evolves according to the ODEs

3t) = (=0.5+05u(t)+ 2y 2P@®)E() + P(t)(y(t) - Z(t)),
zZ(0) = %,

P(t) = 2P()(-05+05ut) - (1-27")P)* +1,

P(0) = P,

d(t) = 1(2E(1)? +u(t)? - ¥¥ly(®) - T,

#(0) = ¢.

Using a value of v = 2.0 the information state value function and control have been computed. Figure 3
(top) shows the value function W (Z, P) and (bottom) shows the optimal control u*(Z, P) at 100 iterations.

Plots of W (0, P) at several different iterations are depicted in Figure 4. For linear systems the value of P
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at which W (0, P) becomes nonzero indicates the size of the domain D. The domain of W(Z, P) decreases as

the time horizon increases.

Bilinear Optimal Output Feedback
0.5 v T T Y T T T
T control
¢ 1L| -
ok 1’ L—IIJ—L .alb.ul-l.‘, _____\St\alﬂ
-1 L
0 2 4 8 8 10 12 14 16 18 20
time
10 T
—_phi
O B i L e T
P
-10<
-20r S .
30 Tt~ . e e e e e mmm e m e — . == ]
_40 " 1 L i i
0 2 4 8 8 10 12 14 16 18 20
time

Figure 5: Stabilization of Unstable Bilinear System from Example 3

Example 3 Consider an open loop (u = 0) unstable bilinear system with the state space model

&(t) = (0.1+0.01u(t)z(t) +u(t) + w(?),
Tus vit) = z(t\);v(t)’ (5.1.5)
o { 2z(t)]_
u(t)

The information state for £ys can be identified with the finite dimensional vector p = (Z, P, ¢,t) where p

evolves according to the ODEs

5t) = (0.1+0.01u(t)+y"2P(t)E() +ult) + P(H)(y(t) - Z)),
z20) = %,

P(t) = 2P()(0.1+001u()—(1-7")PH?+1,

P(0) = P,

o) = LEE?+ut)? -l -zBF),

(0) = o
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We compute the information state value function and optimal control using the L, gain parameter v = 5.0.
Figure 5 demonstrates the performance of the information state control for this system in the presence of
Gaussian state and measurement noise w and v respectively. In Figure 5 (top) are plotted the trajectories
of state z and the control u. In Figure 5 (bottom) are plotted the trajectories of the information state
p = (&, P, ,t). Att =10 seconds, the noise is pulled out from the system at which time the state approaches
zero rapidly and moreover, the information state components Z(t), P(t) and ¢ remain bounded. Thus, the

controller is stabilizing and robust to noise.

5.1.2 Quadratic Approximation of Information State

Optimal Output Feedback
°¢5 L T T T L} L T T T
_ _ control
____state
|
1 1 L 1 L 1
8 10 12 14 16 18 20
time
T T T T T T
....... xhat
I
-0'50 2 4 6 8 10 12 14 16 18 20

time
Figure 6: Stabilization of Nonlinear System for Example 4

Example 4 Consider a general nonlinear system which is open loop (u = 0) unstable and has the state

space model

z(t) = =z3(t) +ult) +w(t),
Sas y(t) = sinf;:_(-t)) + v(t), (5.16)
() = 2z(t)
u(t)

Because this system does not admit a finite dimensional information state, we shall approximate its infor-

mation state by the quadratic

2 .
p(z,t) = P — "? <z—3%,Plz-%)>
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where p = (Z, P, ¢) evolves according to the ODE’s

5 = 2 +u(t)+ ZPE — Picos(E)in(E) - y()),
T,{ P, = A4PRZ, +1+ P}ZE —cos(Z)?), (5.1.7)
. ~ .
¢ = L@ +u®)?) - F(RE) —y@)

viz, Theorem 2.5.1. We implement the information state controller with the L2 gain parameter ¥ = 5.0.
Figure 6 demonstrates the performance of the information state control for this system in the presence of
Gaussian state and measurement noise w and v respectively. In Figure 6 (top) are plotted the trajectories
of state z and the control u. In Figure 6 (bottom) are plotted the trajectories of the information state
p = (Z,P). At t = 10 seconds, the noise is pulled out from the system at which time the state approaches
zero rapidly and moreover, the information state components Z(t) and P(t) remain bounded. Thus, the

controller is observed to be stabilizing and robust to noise.

5.2 Certainty Equivalence Control

In Chapter 3 it was shown that under certain conditions the Certainty Equivalence Controller (CEC), which
is computationally simpler than the information state feedback controller, is optimal. Recall that under such
conditions we say that the Certainty Equivalence Principal (CEP) holds. The conditions under which the
CEP holds, however, are often difficult to verify. Moreover, it is known that such conditions do not hold in
general [Jam93b]. Computational and practical considerations thus lead us to consider the implementation
of suboptimal controllers. In this section we give empirical evidence that the implementation of the CEC,

although suboptimal, can be locally stabilizing and robust to noise for many nonlinear systems.

Example 5 Consider the open loop (u = 0) unstable nonlinear system Ty from Example 4. We
implement the CEC with the L, gain parameter ¥ = 10.0. Figure 7 demonstrates the performance of the
CEC for this system in the presence of Gaussian state and measurement noise w and v respectively. In
Figure 7 are plotted the trajectories of the state z, the output y, the minimum stress estimate &, and the
control u. At ¢t = 10 seconds, the noise is pulled out from the system at which time the state approaches

zero rapidly. Thus, the controller is observed to be stabilizing and robust to noise for this nonlinear system.

5.2.1 Quadratic Approximation of Information State
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Cenrtainty Equivalence Control
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Figure 7: Stabilization of Nonlinear System for Example 5

Example 6 Consider the open loop (u = 0) unstable nonlinear system Yz from Example 4. We
approximate the information state by a quadratic which can be identified with the finite dimensional vector
p = (%, P,¢) where the components of p evolve according to ¥, Equation (5.1.7). We implement the
approximate CEC with the L, gain parameter 7 = 10.0. Figure 8 demonstrates the performance of the CEC
for this system in the presence of Gaussian state and measurement noise w and v respectively. In Figure 8
(top) are plotted the trajectories of the state z, the minimum stress estimate z, and the control u. In Figure
8 (bottom) are plotted the trajectories of the information state p = (%, P). At t = 5 seconds, the noise is
pulled out from the system at which time the state approaches zero rapidly and moreover, the information
state components Z(t) and P(t) remain bounded. Thus, the controller is observed to be stabilizing and

robust to noise.

5.2.2 Modified Extended Kalman Filter

Example 7 Consider again the open loop (u = 0) unstable nonlinear system Yz from Example 4. We
again approximate the information state by a quadratic which can be identified with the finite dimensional
vector p = (%, P,$) where the components of p evolve according to £, Equation (5.1.7). In addition, we
approximate the full state value function by a quadratic with its minimum at the origin. The value function

can then be parameterized by II, viz., Theorem 3.4.1. To compute IT we integrate the following ODE until
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Figure 8: Stabilization of Nonlinear System for Example 6

a steady state value is achieved
I, = (-71—2- —-DI? +1.

The state estimate is then given by Z: ~ Z:/(1— ;Y%PJI) and the control by ucgq ~ —II%:, viz., Theorem
3.4.1. We implement the modified EKF with the L, gain parameter v = 5.0. Figure 9 demonstrates the
performance of the EKF for this system in the presence of Gaussian state and measurement noise w and
v respectively. In Figure 9 (top) are plotted the trajectories of the state z, the output ¥, and the control
u. In Figure 9 (bottom) are plotted the trajectories of the information state p = (Z, P) and value function
parameter II. At ¢ = 2 seconds, the noise is pulled out from the system at which time the state approaches
zero rapidly and moreover, the information state components Z(t), P(t) and value function parameter I

remain bounded. Thus, the controller is stabilizing and robust to noise for this nonlinear system.
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Extended Kalman Filter
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Figure 9: Stabilization of Nonlinear System for Example 7
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Chapter 6

Discrete Time

For the discrete time robust He, output feedback control problem the mathematical difficulties associated
with differentiation do not exist. Although James and Baras [JB94b] have provided a complete theoretical
solution to the discrete time robust output feedback control problem, difficult implementation issues still
remain. As with the continuous time information state control, direct digital implementation is impossible
except under the special circumstances in which the information state is finite dimensional. Finding con-
ditions in which the information state is finite dimensional for discrete time systems is currently an open

problem.

In this chapter we consider the discrete time version of the Certainty Equivalence Controller (CEQ).
In Section 6.1 the discrete time CEC is described and in Section 6.2 the implementation is discussed and
convergence results are given. Finally in Section 6.3 examples are given which demonstrate that this controller -
is locally stabilizing and robust to noise for highly nonlinear systems. In addition an example is given to

emphasize the difficulties associated with choosing the L, gain parameter 7.

6.1 Certainty Equivalence

Consider the discrete-time partially observed dynamic game problem for the system

Tp+l = b(zk, uk) + Wk,

(6.1.1)
Yerr = h{ze) + vk
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on the finite time interval k =0,1,2,... M, with cost

M-1 M-1
J(u) = sup sup 4 Y Llz,w) + ®(zm) = 72 ST (Jwg? + lwl?) - (6.1.2)
(w,v)€L(0,M -1} zo€R™ { 5o 1=0

The terminal cost ®(-) is taken to be zero in our impleméntation since this more closely approximates the
infinite-horizon situation. The running cost, L(-,"), is a positive function of the state and control; for our
implementation we have chosen L{z,u) = |z|* + lu|2. For convergence of the algorithm, v must be chosen
large enough. Clearly 7 must be chosen greater than the Heo optimal level for a suboptimal controller to

exist.

The admissible controls u € Op m-1 are any U-valued sequence which is a non-anticipating function of
the observation path. The partially observed dynamic game problem entails finding an admissible sequence
u € Op,m-1 such that

Jw) = _inf J(u).

u€00,M -1

The certainty equivalence controller [(JBE94, Whi8l1] is given by the following two infinite dimensional
dynamic programming equations. The sequence of information states {pk } is given recursively by the dynamic

programming equation

p(2) supeern { L(E ue—1) =121z - b(&, we1)|2 = V2IR(E) — yel? + Pr-1(O)}

po(z) = O

(6.1.3)

The sequence of upper values { fi} of the fully observed dynamic game is given recursively by the dynamic

programming equation

fr(z) = infueusupyern {Fer1(b(z,u) + w) + L(z,u) = -“’zllwlz},
ful@) = &)

If 4} () achieves the minimum in Equation (6.1.4), then uj = up(zx) is an optimal feedback policy for the

(6.1.4)

completely observed game. The minimum stress estimate Zj is given by

- argmax F A A
Zx € {pe(z) + fi(z)} = Tk
z e R"

where T set valued. The certainty equivalence controller is defined by
uy = Uy (Zx)

and if the CEP holds then this controller is an optimal policy for the partially observed game.
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6.2 Implementation

The sequence of upper values {fx}, and thus the optimal control policy for the fully observed game, is
computable off line. The information state, playing a role similar to an observer, is dependent on the current
output and control of the system. Thus, the information state is part of the controller dynamics which must

be computed on line.

In our examples, given in Section 5.2, we have observed that convergence of the value function and
optimal control to steady state is achieved after a relatively small number of iterations. Thus, in order to
reduce the computational effort as well as the memory required for storage of the value function and optimal

control, our implementation uses the steady state optimal control and value function for all simulations.

6.2.1 Convergence of Discretization

For the implementation of the controller on a digital computer the state space X = R", the control space
U, and the disturbance space W = R™ must be discretized. We consider the uniformly discretized grids
of size A and denote the discretized spaces by X A UA, and W2 respectively. One must then ask the
question: Given a uniform discretization of the various spaces of grid size A, do the solutions px and :f; of

the discretized Hamilton-Jacobi equations

pe(z) = eAES(l‘lll')‘)A (L&, uk-1) — 721z = b un—1)|? = VIR(E) — wkl® + Pe-1(€)},  (6:2.1)
po(z;) = 0,

-~ ~ 2

) = inf_ sup {Fena(eiuy) +w) + Lizous) - Fled®), (622)

u; €U2 y,e(R")2
Fulz) = &)

converge to the solutions pi and fi of the true Hamilton-Jacobi Equations (6.1.3) and (6.1.4) respectively

as A — 0?7 In order to answer this question we will first prove the following lemma.

Lemma 6.2.1 Given any function g which is bounded and jointly uniformly continuous in z and z, then
SUPg,g(R™)A g(&;,2) converges to Supzern g(z, z) uniformly as A = 0, i.e., for all € > 0 there exists Ao >0
such that for any A £ Ao

sup g(z,2) - sup 9(§,2) <€
z€R" giE(R™)A
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Proof: Assume there exists z* € IR"™ which achieves the supremum of g(z,z). Fix ¢ > 0 arbitrary.
By uniform continuity of g, given any € > 0 there exists a A > 0 such that |lz; — z2|] < A implies
lg(z1,2) — g(z2,2)| < €. Let Ag be associated with €. Now pick the £ € (R™)& closest to z*. Then £*
satisfies .

A

o< =

ot - €l < 5

which implies |g(z*,z) — g(£*, 2)| < e. Since we know

g(ﬁ‘az) < sup g(fj,l) < sup g(:r,z) =g($‘,2)

§E(R™)20 zeR"

we have our result under the assumption that there exists z* € R"™ which achieves the supremum of g(z, 2)-

When this is not the case g asymptotically approaches a finite value g as |jz|| = oo and then both sides

will be less than e from g for all z > Z for some Z, and thus less than € from each other.

Using this lemma, we can prove by induction a theorem which will imply that for systems which are
bounded and uniformly continuous, i.e., L, b and h uniformly continuous, that the discretized information
state (6.2.1) converges to the true information state (6.1.3) uniformly as the sampling interval A approaches

zZero.

Theorem 6.2.2 Assume g bounded and jointly uniformly continuous in z,z € R". Define g; and gk as

follows
ax(z) = supyern{9(z,2) + qe-1(2)}

il

supe, e(rm)a {9(&ir 2) + Ge-1(6:)}
do(z) =0.

Then lima—oGr = gr uniformly, ie., for all € > O there exists a Ag > 0 such that for any A < Ay,

gx(2)

gq0(2)

lge(2) — Ge(2)| < efor all z € R".

Proof: Now we will show by induction that (i) gk < g, and (ii) ima—o @k = ge- These two induction proofs

will be done in parallel although the first result is used to prove the second.

Show true for k = 1:

(i) 1(z) = supg,ermya{9(6i, 2)} < suPern {9(z,2)} = a(2)
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(i) As A — 0 we know by Lemma 6.2.1 that 31(2) = supg, emrrya{9(6i, 2)} — sup.ern{9(z, 2)} =

q1(2) uniformly.
Assume true for k& — 1:

(i) Assume k-1 < Gk—1-

(ii) Assume lim A — 0 k-1 = k-1 uniformly.
Prove true for k:

(¥

ax(2) supg, ermya {96, 2) + @r-1(6)}

IN

supg, e(rmya {9(6i, 2) + qe-1(6)}
< sup,ep-{9(z,2) + gk-1(2)} = qx(2)
where the first inequality follows from the induction assumption.
(ii) We know from induction proof part (i) that gx < g for all k and A. Also, by induction
assumption, we know that for all € > 0 there exists A¢ > 0 such that for all sampling intervals

A < Ao, qr-1(&) — Gr-1(&) < €. Thus

gk (2) = Gx(2) supe, e(rnya {96 2) + Te-1(6)}

v

supg, e(rm)a {96 2) + qk-1(&6) — €}

From Lemma 6.2.1 we know that there exists A; > 0 such that

sup {g(z,2) + qe-1(z)} — sup {g(&2) + gr-1(&)} <e
z€R" LiE(RM)A

for-all z€ R”. Thus for any A < min(A¢, A1)
gk(2) > Q(2) > qu(2) — 2¢

and thus by induction we have shown uniform convergence.

Corollary 6.2.3 Consider the discrete time partially observed dynamic game problem given by Equation
(6.1.1) with cost given by Equation (6.1.2). If the system and cost are bounded and uniformly continuous,
ie., L, b, h bounded and uniformly continuous, the discretized information state (6.2.1) converges to the

true information state (6.1.3) uniformly as the sampling interval A approaches zero.
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A similar result holds for the upper value (6.1.4) and discretized upper value (6.2.2). Theorem 6.2.4
implies that for systems which are bounded and uniformly continuous the discretized upper value converges

to the true upper value uniformly as the sampling interval A approaches zero.

Theorem 6.2.4 Assume & bounded and uniformly continuous, and g and f bounded and jointly uniformly

continuous in z, u and w. Define gx and g as follows

qk (2:) = inquU SUPyeRrn {g(a:, u, w) + Qk+1 (f(zv u, w))}
Eik(z) = infuiEUA supwiE(R")A{g(zvui)wj) +Ek+l(f(x1uiswj))}
gm(z) = qu(z) = 2().

Then lima—odx = g uniformly, i.e., for all € > O there exists a A¢ > 0 such that for any A < Ay,

lgx(2) — Gx(2)| < efor all z € R".

Proof: This result follows by induction.

o Show true for k = M:

o Assume true for k +1:

Assume lim A = 0 §x41 = gr+1 uniformly.

e Prove true for k:
By induction assumption, for all € > 0 there exists Ag > 0 such that for all sampling intervals A < Ao,

€ < Grp1(6) — qesr (&) < e for all z € R™. Thus

infy, cya SUPL,e(rm)a {9(% ui, W) + Q1 (£ (2 ui, wj)) — €} < 3 ()
S infuaEUA Supuué(ﬁ.")A {g(z)uiawj) + Qk+1(f(1'a u‘ivw.’i)) + 6}‘

Lemma 6.2.1 implies there exists &1 < Ao such that for all sampling intervals A < A4

inf,,cus SUPwern 19(Z: ui W) + grr1 (f(z, i, w)) — 2¢} < k()
< infy, cus SUPwern {9(2: ui, w) + Qa1 (£(2 ui, w)) + 2}
A second application of Lemma 6.2.1 implies there exists Az < Ay such that for all sampling intervals
A <A,
infucy SUPyern{9(Z: W) + gra (f(z, 1, w)) — 3¢} < 3k (z)

< inquU SUPyeRrn {g(:c, U, ’UJ) + Qk+1 (f(I, u, w)) + 36}'
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Corollary 6.2.5 Consider the discrete time partially observed dynamic game problem given by Equation
(6.1.1) with cost given by Equation (6.1.2). If the system and cost are bounded and uniformly continuous the
discretized upper value (6.2.2) converges to the true upper value (6.1.4) uniformly as the sampling interval

A approaches zero.

For implementation the state space X, the control space U, and the disturbance space W, are also
truncated to compact sets centered at the origin, i.e., the cube L™ ('](]R")A where n is the dimension of the
original space and L is the length of a side. Excursions from the respective truncated spaces are projected

onto the boundary of the truncated space.

6.3 Examples

In each of the following examples the state space X, the control space U, and the disturbance space W are

discretized uniformly with grid size A ~ 0.01.

0.8

0.8

041

o2r

Figure 1: Performance of the CEC for Example 1 with Gaussian state and measurement noise

Example 1 Consider the following system

Tee1 = o+ zk(Tk — 0-5)uk + Wi,
19 ykr = z?sin(zk) + vk, (6.3.1)
To = 1.1.
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Figure 2: Performance of the CEC for Example 1 with Random jump disturbances

The nonlinear system ¥, of Equation (6.3.1) presents a challenging control problem since the popular tech-
nique of feedback linearization is not applicable even in the case that direct knowledge of the state is available.
The problem with applying feedback linearization technique to this system is that the control required to

linearize the system,

e = _ TET AT
T T - 05

where a € R™ is any positive constant, blows up at zx = 0.5 and is therefore not a practical control to

consider. Figure 1 demonstrates the performance of the certainty equivalence controller for this system

where the state perturbations wg and observation noise v have Gaussian distribution. The system is

initialized so that in the case that there were no control the state trajectory would be unbounded. In the

figure are plotted the state Tk, the output y, and the minimum stress estimate Zx. It clearly illustrates that

the CEC is locally stabilizing in the presence of Gaussian state and observation noise.

Figure 2 depicts the certainty equivalence control of system X1 where the state and observation pertur-
bations wy and vy are Gaussian with the addition of random jump disturbances. From Figure 2 it can be
seen that (i) the CEC is locally stabilizing and (i) the minimum stress estimate is able to closely track quick

movements of the state.

Example 2 In this example we consider the system ¥, Equation (6.3.2) below, which has the same state

equation as X from Example 1. In £, we have increased the difficulty of the control problem by allowing
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Figure 4: Performance of the CEC for Example 2 with Random jump disturbances

the controller access to only a noisy measurement of the sign of the state.

Th41 = T3 + Tk Tk — 0.5)ug + we,

sgn(zx) + Vi, (6.3.2)

I

L24 Yk+1
To = 1.1.

Figures 3 and 4 demonstrate the performance of the certainty equivalence controller for this system. In
Figures 3 the control is performed in the presence of Gaussian state and measurement noises wy and vg
respectively. In Figure 4 the control is complicated by the addition of random jump disturbances. In the
figures are plotted the state T, the output yx, and the minimum stress estimate Zx. Again, the system is
initialized so that in the case that there were no control the state trajectory would be unbounded. With such
little information available to the controller the deterioration of the estimation performance is inevitable,
yet Figures 3 and 4 provide clear evidence that the CEC is locally stabilizing in the presence of Gaussian

state and observation noise and random jump disturbances.
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- output

Figure 6: Performance of the CEC for Example 3 with Gamma too small

Example 3 In this example we demonstrate the importance of properly choosing the Lo gain parameter
~. The parameter value of v must be chosen larger than the Hoo optimal level for a stabilizing controller to
exist. No method currently exists for choosing a value of v for which a stabilizing controller is guaranteed

to exist. The choice is currently made by trial and error.

We consider the system

T+l = z? + up + w,
T34 w1 = sgn(oe) + vk (6.3.3)
o = 1.1.

Certainty equivalence controllers CECy, and CEC,, are implemented for the system T3 which employ two
different values of the L, gain parameter 7. For each controller the system is initialized so that in the case
that there were no control the state trajectory would be unbounded. In the figures are plotted the state zx,

the output yk, and the minimum stress estimate Z.
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Figure 7: Performance of the CEC for Example 3 with Random jump disturbances

The controller CEC,, is implemented with 7, = v/10. For this value of L3 gain parameter a stabilizing
controller exists. Figure 5 illustrates the stabilizing certainty equivalence control of X3 for v = 711 in the

presence of Gaussian state and measurement noises, wy and v respectively.

The controller CEC,, is implemented with 72 = /5. For this value of L, gain parameter a stabilizing
controller does not exist. Figure 6 depicts the certainty equivalence control of X3 for ¥ = 72. In this case
the system is clearly not stabilized, in fact, the controller sets up oscillations of the state in a region which

would be stable without control.

The system T3 is a particularly interesting one from the point of view of output feedback control. The
only information available to the controller is a noisy measurement of the sign of the state and in this
case the sign of the state is not particularly useful information for the controller since assuming no state
disturbance, 1.e., {wy} = 0, the control uj which drives the state to zero would always be negative. Figure
7 depicts the certainty equivalence control of 3 for vy =7 with the addition of random jump disturbances.
The performance of the controler is a little sluggish, however, it is interesting that even with such little

information the controller is able to prevent total instability.
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Chapter 7

Conclusions and Future Directions

We have in this dissertation addressed the problem of determining Hoo optimal output feedback controllers
for a large class of partially observed nonlinear systems. This study has resulted in fundamental contributions
to the field of nonlinear control in three broad areas: (i) theoretical development, (ii) digital implementation,
and (iii) the construction of examples of both continuous and discrete time systems which validate the utility
of our discretization and implementation approach. In the paragraphs below we summarize the major aspects
of each these three areas. These are followed by a clear and concise enumeration of the major achievements

resulting from this research and a list of a few of the ways in which this research may be continued.

Theory For the case of discrete time systems, James and Baras [JB94b] have presented an approach
to the solution of the H,, output feedback robust control problem. We have in this dissertation formally
extended their results to the continuous time case. In particular we have given necessary and sufficient
conditions which establish the equivalence of a solution to the output feedback problem and a solution to
a dissipation inequality which in turn yields an information state controller for continuous time systems.
Further, we have provided a clear and concise proof which demonstrates the optimality of the Certainty
Equivalence Controller (CEC) for systems with finite dimensional information state under the assumptions
of (i) existence of a unique minimum stress estimate, and (ii) existence of a continuously differentiable
information state and state feedback value function. A major advantage of our proof is that it clearly
identifies the relationship which exists between the information state feedback and certainty equivalence

controls.
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Implementation With an eye toward digital implementation, our approach to implementing Ho, output
feedback controllers for continuous time systems has emphasized issues of paramount practical importance
including (i) reasonable computational complexity of control, (ii) knowledge of observable quantities only, and
(iii) implementability in finite time. Qur approach depends fundamentally on the information state which
allows the translation of the partially observed problem to that of an equivalent fully observed problem.
The solution of the new fully observed problem is given in terms of the value function which is a function
of the information state. Both the information state and the value function are in general complicated
functions which are described by partial differential equations/inequalities. Our key contribution in the
area of implementation lies in the discretization of the partial differential inequality which describes the
value function (which in turn describes the optimal He control). In addition, we have provided several
approximation techniques designed to decrease the on line computational burden for the continuous time
information state controller and certainty equivalence controller. For discrete time systems, we have provided
a state space discretization of the recursions which describe the full state information value function and the

information state for the discrete time CEC.

Examples We have provided examples of continuous and discrete time systems in order to investigate
the robustness properties of the He controllers which we have developed. Through direct simulation we
have demonstrated that the information state controller, the certainty equivalence controller, and their
approximations are all stabilizing and robust to noise for a wide variety of nonlinear systems. In addition,
the discrete time CEC has been observed to be locally stabilizing and robust to noise for systems with even

a large degree of nonlinearity.

Stated in the following list are the main contributions of this research:

e A formal extension to continuous of the discrete time results of James and Baras [JB94b] which provide
necessary and sufficient conditions for obtaining a control which solves the robust H, output feedback

problem.

e A proof of the optimality of the Certainty Equivalence Controller (CEC) for systems with finite
dimensional information state under the assumptions of (i) existence of a unique minimum stress
estimate, and (ii) existence of a continuously differentiable information state and state feedback value
function. This proof of the optimality of the CEC also clarifies the relation between the CEC and the
information state feedback control. It shows that under the assumptions of the Certainty Equivalence
Principle the function W¢g, from which the minimum stress estimate is obtained, is a solution of the

dynamic programming equation for the Finite Time Robust Heo Output Feedback Problem.
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o An extension of the numerical methods of {JY93] to apply to the discretization of the partial differential
inequality which describes the value function (and in turn describes the optimal He control) for Robust

H., Output Feedback Problem in continuous time.

e A finite dimensional quadratic approximation of theiinformation state controller. This approximation
permits the implementation of the information state controller for general nonlinear systems and allows
a faster implementation of the CEC due to the reduction of the on line computational complexity. In
addition, by approximating the full state feedback value function by a quadratic, an approximation of

the CEC is obtained which resembles an extended Kalman filter.

e Examples for continuous time systems which demonstrate that the information state controller, the
CEC, and the approximations of these controllers are stabilizing and robust to noise for interesting

nonlinear systems.

e State space discretizations of the recursions which describe the full state information value function
and the information state for the discrete time CEC. Proofs of the convergence of the discretized

recursions to the original recursions as the discretization parameter approaches zero are provided.

¢ Examples for discrete time systems which demonstrate that the discrete time CEC is locally stabilizing

and robust to noise for highly nonlinear systems

There are numerous ways in which the research presented in this dissertation may be continued. We

indicate a partial list of those here:

e Provide a rigorous extensions of the discrete time results of [JB94b] to the case of continuous time

systems.

o Presently the value of 7 is typically chosen in a trial and error fashion. We would like to develop
mathematically well founded methods for choosing the L? gain parameter 7 in the suboptimal case.
In this vain, it is desirable to determine conditions under which the solvability of the fully observed
state feedback problem for a given -y assures the solvability of the partially observed problem for a
related 7. Specifically, given that we know that a solution to the full state feedback problem exists
for a particular ¥ = Vscate feedback is it possible to show that under certain conditions there exists a

Youtput feedback = Tstate feedback such that the Robust Hs Output Feedback Problem is solvable?

o Although we have developed our theory and implementations for the case of the He norm it is
possible to derive similar results for other kinds of norms or even arbitrary costs using exactly the

same framework. This quality gives the research presented here great extensibility since it may prove
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useful in areas of optimal control theory which do not yet even exist. Thus, a rather broad area of
future development lies in the exploration of alternative norms and/or cost functionals for optimal

control in senses other than Heo.

As with the continuous time information state controi, implementation of the discrete time information
state controller would require preliminary approximations in the case that the information state is not
finite dimensional before the discretization of the recursions can be applied. For continuous time
systems we described two possible preliminary approximations: (i) approximation of the information
state by a finite dimensional quantity, or (ii) application of the CEC. For discrete time systems,
finding conditions in which the information state is finite dimensional remains an open problem. In
addition, for general nonlinear systems for which the finite dimensional information state conditions
are not satisfied, finding an approximation of the information state by a finite dimensional quantity
is also an open problem. Providing an approximation of the discrete time information state by a
finite dimensional quantity would permit the implementation of the discrete time information state
controller for more general nonlinear systems and allow a faster implementation for the discrete time

CEC.

Test the digital controllers on more complex and/or realistic systems, e.g., high dimensional and

systems modeling real chemical processes.
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