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ABSTRACT

Title of Dissertation: MOTION CONTROL AND PLANNING
FOR NONHOLONOMIC KINEMATIC CHAINS

Dimitrios P. Tsakiris, Doctor of Philosophy, 1995

Dissertation directed by: Professor P. S. Krishnaprasad

Department of Electrical Engineering

In this dissertation we examine a class of systems where nonholonomic kinematic
constraints are combined with periodic shape variations, giving rise to a snake-like undu-
lating motion of the system. Within this class, we distinguish two subclasses, one where
the system possesses enough kinematic constraints to allow the control of its motion
to be based entirely on kinematics and another which does not; in the latter case, the
dynamics plays a crucial role in complementing the kinematics and in making motion
control possible. An instance of these systems are the Nonholonomic Variable Geometry
Truss (NVGT) assemblies, where shape changes are implemented by parallel manipula-
tor modules, while the nonholonomic constraints are imposed by idler wheels attached
to the assembly. We assume that the wheels roll without slipping on the ground, thus
constraining the instantaneous motion of the assembly. These assemblies can be consid-
ered as land locomotion alternatives to systems based on legs or actuated wheels. Their
propulsion combines features of both biological systems like skating humans and snakes,
and of man-made systems like orbiting satellites with manipulator arms. The NVGT
assemblies can be modeled in terms of the Special Euclidean group of rigid motions on
the plane. Generalization to nonholonomic kinematic chains on other Lie groups (G)
gives rise to the notion of G—Snakes.

Moreover, we examine systems with parallel manipulator subsystems which can be
used as sensor—carrying platforms, with potential applications in exploratory and active
visual or haptic robotic tasks. We concentrate on specifying a class of configuration space

path segments that are optimal in the sense of a curvature—squared cost functional, which



can be specified analytically in terms of elliptic functions and can be used to synthesize
a trajectory of the system.

In both cases, a setup of the problem which involves tools from differential geometry
and the theory of Lie groups appears to be natural. In the case of G—Snakes, when the
number of nonholonomic constraints equals the dimension of the group G, the constraints
determine a principal fiber bundle connection. The geometric phase associated to this
connection allows us to derive (kinematic) motion control strategies based on periodic
shape variations of the system. When the G—Snake assembly has one constraint less
than the dimension of the group G, we are still able to synthesize a principal fiber bundle
connection by taking into account the Lagrangian dynamics of the system through the so—
called nonholonomic momentum. The symmetries of the system are captured by actions
of non-abelian Lie groups that leave invariant both the constraints and the Lagrangian
and play a significant role in the definition of the momentum and the specification of its
evolution. The (dynamic) motion control is now based on periodic shape variations that
build up momentum and allow propulsion and steering, as described by the geometric

and dynamic phases of the system.
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CHAPTER ONE

PROLEGOMENA

One of the main topics of this dissertation is the study of a novel class of robotic de-
vices that combine features of such biological systems as snakes and skating humans and
of such man—made systems as orbiting satellites equipped with manipulator arms. Those
multimodule devices, which we call Nonholonomic Variable Geometry Truss (NVGT) as-
semblies and which can be used for locomotion as an alternative to cars or bicycles, are
equipped with wheels, which we assume that they roll without slipping on the plane
that supports the device. Like the front wheel of a bicycle, those wheels are not directly
actuated; they merely constrain the instantaneous motion of the assembly so that it
does not slip “sideways”. This type of constraints belong to the class of so—called non-
holonomic constraints, instances of which also appear in the systems mentioned earlier.
Their features are pr‘esented in more detail later. Each module of the assembly can alter
its shape in a periodic way by a suitable mechanism of the Variable Geometry Truss

(VGT) variety, implemented as a planar parallel manipulator.

Usual land locomotion systems employ either legs (humans, insects) or an endless
rotating element, like actuated wheels or tracks, for propulsion. An alternative, that is
currently emerging in robotic studies, employs articulated bodies and suitable motion
constraints in a paradigm inspired by snake and worm locomotion. The locomotion
of the NVGT is achieved by the interaction of the nonholonomic constraints from the
wheels, with the periodic shape variations of the modules. This gives rise to a snake-like
undulating motion of the assembly. The kinematic and dynamic analysis of such systems
unveils an interesting geometric structure and makes explicit their fundamental property
of specifying the global motion of the system as a function of just its shape and of the
shape variations. This property is related to the phenomenon of geometric phases that
appear in several physical systems and it can be exploited for planning and controlling

their motion; however it’s not obvious how to solve those problems, since the NVGT



systems are very redundant and the proper selection of the shape actuation strategy
that will achieve a desired motion of the system is made even more complicated by the

presence of the nonholonomic constraints.

This dissertation also examines robotic systems with parallel manipulator subsys-
tems which are used as sensor—carrying platforms to perform exploratory visual or haptic
tasks. Exploratory and active tasks occur when a robotic system relocates its mechanical
and/or sensory subsystems or alters their characteristics in order to collect information
about its environment, about the tasks it is required to perform and, possibly, about the
robotic system itself. Actions of this type can also facilitate the subsequent processing
and understanding by the system of the sensory information that was obtained, since
both spatially and temporally novel information is added in a controlled way. This is a
relatively novel paradigm in robotics that is having a profound impact in several related
research areas (Negahdaripour & Jain [1991]). Vision is one of the sensory modalities
where the active approach has been well documented. This was inspired by the obser-
vation that humans tend to move their eyes and heads in a variety of ways, in order to
obtain a better view of a scene or in order to focus on a moving object of interest, all of
those activities demonstrating that human perception of a dynamically evolving scene is
an equally dynamical act, whether conscious or unconscious (Bajcsy [1988]). This has
found robotic applications, as in the case where a camera is being moved around the
workspace of the robot for obtaining multiple views of it (Zheng, Chen & Tsuji [1991]),
for monocular stereo-vision (Sandini & Tistarelli [1990]) or for facilitating dynamic seg-
mentation (Aloimonos [1990]). Furthermore, the implementation of saccadic, smooth
pursuit or vergence camera motions, as well as the repositioning of cameras are well
known methods for moving target stabilization (Papanikolopoulos, Khosla & Kanade
[1991]), for camera fixation and gaze control (Brown [1990]; Raviv [1991]), for easy
egomotion parameter computation, for conversion of ill-posed early vision problems into
well-posed ones (Aloimonos, Weiss & Bandopadhay [1988]) and for changing the focus of
attention of a robotic system (Abbott [1992]; Clark & Ferrier [1989]). In previous work,
we examined visual target tracking based on the use of sequences of images that specify
the camera reorientation needed so that a target moving in a cluttered 3—-dimensional

visual environment is kept foveated (Aloimonos & Tsakiris [1991]). In order to bypass



the image segmentation and feature correspondence problems inherent in other tracking
methods, as well as the restriction to 2-dimensional domains, we employed the optical
flow formalism. This however necessitates the use of a dense image sequence as an input
to the tracking algorithm, which in turn implies that small and accurate motions of the
camera are necessary. Haptic exploratory tasks are another example of the active ap-
proach. They can use tactile sensors mounted on fingertips of dextrous hands with the
goal to derive information on the shape, the surface texture and the mechanical prop-
erties of objects of interest. This may involve suitable accurate motion of the sensors,
while contact with those objects is maintained (Bajcsy, Lederman & Klatzky [1989];
Dario [1989]; Ellis [1990]; Loncaric et al. [1989]).

Robotic systems therefore, may include a mechanism that carries the sensors, has
the ability to translate or reorient them and is able to perform fine, accurate and, at
the same time, fast motions. Previous designs use either conventional robots or pan-
and-tilt platforms as a mechanism for carrying the sensors (Ballard & Ozcandarli [1988];
Clark & Ferrier [1988]; Krotkov [1989]). But conventional serial manipulators generally
lack the dynamic response characteristics to satisfy the above requirements on the speed
and accuracy of motion, while pan-and-tilt platforms have limited degrees—of-freedom.
An alternative is to implement this sensor—carrying platform as a parallel manipulator
(Tsakiris & Aloimonos [1989]; Tsakiris & Krishnaprasad [1993]). An example of such a
system is the so—called “Stewart platform”, where six legs with linear motors support a
platform carrying the sensors. By varying the length of the legs, the platform translates
and/or reorients itself. This platform can be attached at the end—effector of a serial
robot and provides a light—-weight, yet strong and accurate system with full 6 degrees—of-
freedom motion. There exists a vast literature on the mechanical design, the kinematics,
the dynamics and the control of parallel manipulators (Cleary & Arai [1991]; Do & Yang
[1988]; Fichter [1986]; Gosselin & Angeles [1988]; Hudgens & Tesar [1988]; Hunt [1983);
Merlet [1987]; Nanua, Waldron & Murthy [1990]; Pfreundschuh, Kumar & Sugar [1991];
Stewart [1966]; Sugimoto [1989]; Tsai & Tahmasebi [1991]).

In Chapter 2, we collect some tools from Differential Geometry, Geometric Mechan-
ics and the theory of Elliptic functions, which will be needed in the sequel. We also

review the kinematics of parallel manipulators.



In Chapter 3 we focus on the motion planning problem for parallel manipulators,
which is a problem that has not received as much attention as the problems mentioned
earlier. We will attempt to describe the geometry of the manifold of singular configura-
tions on the configuration space for a particular design of parallel manipulator, which is
generic enough to exhibit interesting kinematic properties, but simple enough to allow
our results not to be overshadowed by complex calculations and use the results of motion

planning for avoidance of those singular configurations.

Planning sequences of actions is one of the earliest areas of research in Artificial
Intelligence, but most of this early work has only considered idealized domains, where a
robot can be exactly controlled and where task—level commands are sufficient to describe
the behavior of the system (Lozano-Perez [1987]; Nilsson [1980]). In robotic applications
there is a need of planning the motions of robots in practical domains, where obstacles,
uncertainties, errors and various constraints are present (Brady [1989]). In this spirit, the
problem of planning collision—free motions in the workspace of a robot has been consid-
ered more recently. Furthermore, the problem of planning motions in cases where certain
holonomic or non-holonomic constraints apply, or of motions where certain performance
criteria based on kinematic or dynamic characteristics of the motion are optimized, are

of significant interest (Latombe [1991}).

In the case of serial manipulators, planning in “joint space” is considered computa-
tionally more efficient compared to “Cartesian space” planning, because of the need, in
the later case, to solve the inverse kinematics problem at run time (Craig [1986]). This
makes a desired Cartesian space trajectory achievable only approximately (Brady et al.
[1983]). However, for parallel manipulators this need not be the case, since the inverse
kinematics is easily and uniquely solvable, thus planning in Cartesian space becomes
feasible. Since the orientation of the platform is also of significant interest, especially
when the platform carries vision or tactile sensors, we consider planning in the config-
uration space of the parallel manipulator. Moreover, sensory information interpretation
subsystems typically use configuration space—based reasoning and this has to be taken

into account in planning the motions of a robotic system.

Our main problem is the specification of a trajectory for the parallel manipulator sys-

tem that has optimal shape characteristics and meets prespecified boundary conditions.



Such a trajectory is a curve in the configuration space, which is usually a subgroup of the
Special Euclidean group SE(2). We examine curves on those spaces, which are optimal
in the sense of a curvature-square cost functional. Differential Geometric tools are used
to transform this problem into a nonlinear optimal control problem on a left—invariant
dynamical system and this is solved using a suitable generalization of the Maximum
Principle. In the case of motions of planar parallel manipulators where the configuration
space is a 2—dimensional manifold, we characterize the curvature of an optimal curve as
the solution of a differential equation of the Bryant-Griffiths type, which, in the generic
case, is given by elliptic functions. Parallel manipulators demonstrate an indeterminacy
in the specification of their future behavior while they are at singular configurations,
as well as an inability to resist forces and torques in specific directions, since, contrary
to serial manipulators, they gain degrees—of-freedom in those configurations. Those are
undesirable characteristics for our robotic system and we try, either to avoid kinematic
singularities as much as possible by proper mechanical design and careful planning of
the system trajectories, or to design our crossing of the singular surfaces in a specific
way that will allow the dynamics of our system to resolve those indeterminacies. To this
end, we map explicitly the singular surfaces of the parallel manipulators that we use and
we employ the family of optimal curves derived from motion planning to optimize the
singular surface crossing characteristics of the system trajectories. Extensions of this
motion planning technique to the general planar case, where the configuration space is

a 3—-dimensional manifold are also discussed.

The problems in chapter 3 focused on systems with holonomic constraints, i.e. al-
gebraic constraints involving the configuration variables of the system. The class of
nonholonomic constraints, where the constraints involve the velocities of the system,
but cannot be integrated to produce holonomic constraints, is currently receiving atten-
tion because of its importance in manipulation, mobile robots and locomotion problems
(Latombe [1991]; Murray, Li & Sastry [1994]). A typical example is a car with wheels
that roll without slipping on the ground. The motion of the car is restricted instanta-
neously, since it cannot slip sideways, however this does not restrict its position, since
by the well-known parallel parking maneuver, the car can effectively move sideways over

a finite time period. The main tool for checking whether a set of constraints (usually



expressed as one—forms) is integrable, is Frobenius’ Theorem, which states that for this
to happen, the distribution which annihilates the constraints should be involutive, i.e.
closed under Lie bracketing. In the remainder of this work we will consider systems

where this is not true.

In Chapters 4, 5 and 6, we focus on mechanical systems subject to nonholonomic
constraints, where variations of shape induce, under the influence of the constraints, a
global motion of the system. A well-known example of such systems is a free—floating
multibody system in space (e.g. robotic manipulators mounted on orbiting satellites),
where periodic movements of the joints induce a reorientation of the system, under the
nonholonomic constraint of conservation of angular momentum (Krishnaprasad [1990};

Marsden, Montgomery & Ratiu [1990]).

In Chapter 5, we describe in some detail a novel system, introduced in (Krish-
naprasad & Tsakiris [1993]; Krishnaprasad & Tsakiris [1994b]), which uses the above
principle for land locomotion. This was inspired by the experimental work of Joel Bur-
dick and his students at Caltech (Chirikjian & Burdick [1991]; Chirikjian & Burdick
[1993]). This system, called the Nonholonomic Variable Geometry Truss (NVGT) as-
sembly, consists of longitudinal repetition of truss modules, each one of which is equipped
with idler wheels and linear actuators in a planar parallel manipulator configuration, and
uses periodic changes of the shape of each module to propel itself. The locomotion princi-
ple is not based on direct actuation of wheels, but rather on the nonholonomic constraints
imposed on the motion of the system by the rolling without slipping of the idler wheels of
each module on the supporting plane. This results in a snake-like motion of the NVGT
assembly, which is not too far, at least in principle, from certain modes of actual snake
locomotion (Hirose [1993]). Both the shape and the configuration of the NVGT assembly
can be described by elements of the Special Euclidean group SE(2), the group of rigid
motions on the plane. A system like the NVGT assembly constitutes a kinematic chain
evolving on this matrix Lie group G, with the corresponding velocities given by elements
of the Lie algebra G of G. Of these velocities, the shape variations can be considered as
the controls of the system and they are referred to as shape controls. The nonholonomic
constraints allow us to express the global motion of the NVGT assembly as a function

of the shape and of the shape controls and to formulate motion control strategies under



periodic shape controls.

In Chapter 4, we describe G-Snakes, the generalization of NVGT assemblies to
nonholonomic kinematics chains (or other kinematic topologies) on arbitrary Lie groups
(c.f. (Krishnaprasad & Tsakiris [1994a]; Krishnaprasad & Tsakiris [1994c])). G-Snakes
are {-node kinematic chains, where each node evolves on a Lie group G, but its evolution
is subject to nonholonomic constraints. The configuration space of such a system is

Q =G*=Gx--xG. A pair of nodes constitutes a module of the G-Snake, whose

£ times
shape (i.e. the relative configuration of the two nodes) also evolves on the same Lie group
G. We consider the variations of these shapes as the controls of the system, assuming
that a suitable mechanism is available for this purpose. The shape space S is G¢~1 and

is such that @ =S x G.

Systems of this type have some interesting geometric properties. First, the manifolds
@ and S, the group G and the projection 7 :  — S form a principal fiber bundle
(Bleecker [1981]; Nomizu [1956]). Second, in the case that the number of nonholonomic
constraints is equal to the dimension of G, the constraints specify a connection on the
above principal fiber bundle. In particular, the intersection of the constraint distribution
D, at a point ¢ € Q and of the tangent space T,0rb(q) to the orbits of the action of G
on @ at g is trivial, while the direct sum of the two spaces is the tangent space T,Q.
Physically, this provides a splitting of the velocities of the G-Snake in two groups: one is
related to shape variations and the other is related to the global motion of the system, as
it is characterized by a group trajectory. The connection that the kinematic constraints
specify, expresses the second group of velocities as a function of the first and of the shape
itself. Notice that this result and the motion control schemes to which it gives rise, are

entirely based on kinematics.

In Chapter 6, finally, we consider the dynamics of G-Snakes. A particular instance
of the case when the number of constraints is one less than the dimension of the group,
is presented, namely a 2-node system evolving on the 3-dimensional group SE(2) with
the shape space being S. The previous kinematic motion control is not feasible here,
since there are not enough constraints to specify the principal fiber bundle connection.

Even though the sum of the spaces D, and T;Orb(q) is the tangent space T,Q, the



intersection of the two spaces is now non—trivial. It is possible however to use the system’s
Lagrangian dynamics to complement the kinematics. The notion of the nonholonomic
momentum, introduced in (Bloch, Krishnaprasad, Marsden & Murray [1994]), can be
used, together with the kinematic nonholonomic constraints, to synthesize a principal
fiber bundle connection. The evolution of this momentum depends only on the shape
variables of the system, therefore the connection again provides a way of specifying the
global motion of the system (as it is characterized by a group trajectory) using only the
shape and its variation. Successful dynamic motion control strategies depend now on
properly varying the shape, so that the system builds up momentum (Krishnaprasad &
Tsakiris [1995]).

Numerical simulation results are shown for both the kinematic and the dynamic

motion control cases.



CHAPTER TWO

PRELIMINARIES

2.1 Introduction

In this chapter we collect some definitions and facts from the theory of Elliptic
functions, from Differential Geometry, from the theory of Lie groups and Lie algebras and
from Geometric Mechanics. We also summarize the kinematics of parallel manipulators,
which are robotic devices based on closed kinematic chains and we study their kinematic

singularities.

2.2 Elliptic Functions and Integrals

In Complex Analysis, a doubly periodic function, the ratio of whose periods is
complex and which is regular except for poles, is called elliptic. The Jacobi elliptic
functions defined below, have a real period, like the trigonometric functions, and an
imaginary one, like the hyperbolic functions. Those functions are defined as the inverses,
in a sense to be made precise below, of the elliptic integrals. The material in this section
is drawn from (Byrd & Friedman [1954]; Davis [1962]; Lawden [1989]) and (Gradstein &
Ryzhik [1980]).
Definition 2.2.1 (Elliptic Integrals of the First Kind)

The elliptic integral of the first kind is defined as:

sin ¢

]
de dx
F(d,k) = / e / e e
0 0

(2.2.1)

where £ is the modulus of F and k' = V1 — k2 is the complementary modulus of F. The

def

integral K (k) = F(%, dg

1
k) = Of V(1—22)(1-k22?)

is called the complete elliptic integral of



the first kind. Consider also the complementary complete elliptic integral of the first

1
. 1) 98 pem gy dx "L — '
kind K'(k) = F(%,k') of T Observe that K'(k) = K(K') .
If the nomeqzexp(—w%) isrealand 0 < g < 1,then0<k<landO0<k <1.
|
Definition 2.2.2 (Elliptic Integrals of the Second Kind)
The elliptic integral of the second kind is defined as:
¢ sin ¢
V1—k2z2
— — k2 gin2 —
E(¢,k) = 0/ V1= K?sin? 6d6 = 0/ N—rl (2.2.2)

The integral E(k) Lef E(Z,k) is called the complete elliptic integral of the second kind.

Consider also the complementary complete elliptic integral of the second kind E'(k) def

E(%,K'). Observe that E'(k) = E(k') .
The complete and complementary complete elliptic integrals of the first and second

kind are related by Legendre’s relation EK' + E'K — KK' = Z.

[ |
Definition 2.2.3 (Elliptic Integrals of the Third Kind)
The elliptic integral of the third kind is defined as:
7 d e d
z
H(¢,77,k)=/ . o T 2 =/ 2 2 2.,2Y
] (1 — nsin®0)v/1 — k2 sin” @ 4 (1 —n2?)y/(1 — 22)(1 — k222)
(2.2.3)
n

The first form of F,E and II is the Legendre normal form and the second is the
Jacobi normal form.
Definition 2.2.4 (Jacobi Elliptic Functions)

The Jacobi amplitude function am(u, k) is defined as the solution for ¢ of

u = F(¢, k) (2.2.4) .

10




The Jacobi elliptic functions sn, cn and dn are then defined as follows (c.f. fig. 2.2.1):

sn(u, k) = sin ¢ = sin(am(u, k)) ,
cn(u, k) = cos ¢ = cos(am(u, k)) ,

d¢ _ dam(u, k)

= _ = _ k2 ai 2
dn(u, k) T T \/1—k2?sin® ¢ .

Nine more elliptic functions are defined by taking reciprocals and quotients:

1 1 1
nsy=——, ncu=—, ndu=—,
snu cnu dnu
snu cnu dnu
scu=——,cdu=—,dsu=——,
cnu dnu snu
cnu dnu snu
csu=——,dcu=——,sdu=—.
snu cnu dnu

Then

u= F(¢,k) =sn(sinp, k) = cn~(cos ¢, k) = dn~1(1/1 — k2 sin? ¢, k)

=am™ (¢, k) = sc”(tan ¢, k) .

(2.2.5)

(2.2.6)

(2.2.7)

If the nome q is real, the elliptic functions are all real, for all real values of their parameter

u/Klkl

U.
|
The dependence of the Jacobi elliptic functions on the modulus & is frequently
suppressed.
sn{u, k) . .
Jacobi sn(u,k) for various k’'s
¥ Jacobi Elliptic Functions sn,cn,dn ' w2_0.999
1
0.8
y=dn u k2=0.
0.5 o6
yosnu ) %%-0.1
0 u/K[k] 0.4
by 4 :
(k?=0.3)
-0.5 y=cn u 0.2
1 0 0.2 0.4 0.6 0 1
(a) (b)
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cn{u, k) ; , dn{u, k) . .
Jacobi c¢cn(u,k) for various k's Jacobi dn(u,k) for various k’s

> u/K[k]

Fig. 2.2.1: Jacobi Elliptic Functions

Proposition 2.2.5 (Special Values)

If uis real, then —1 <snu <1, -1 <cnu <1 and k¥ < dnu < 1. Moreover,

am(—u) = —am(u) , am(0) =0, am(K) = er_ , am(u + K) = tan~ ' (k' scu) + g ,
sn(—u) = —sn(u) , sn(0) =0, sn(K) =1, sn(u + K) = cd(u) ,
en(—u) =cn(u), cn(0)=1, cn(K) =0, cn(u + K) = —k'sd(u)
dn(—u) = dn(u) , dn(0) =1, dn(K) = k', dn(u + K) = k' nd(u) .
(2.2.8)
Some special values of the modulus are as follows:
sn(u,0) = sinu , cn(u,0) = cosu, dn(u,0) =1,
: (2.2.9)
sn(u,1) = tanhu , cn(u,1) = dn(u, 1) = sechu .
|
Proposition 2.2.6
sn?u+cnfu=1,
dn?u+k?sn?u=1, (2.2.10)

2
dn?u — K2cn?u=k"°.

12



Also
snlz+cdtz = K(K),

cn_lm—i—sd_l(%) = K(k), (2.2.11)

nd™ 'z +dn" (K'z) = K(k) .

[ |
Proposition 2.2.7 (Addition)
on(u & v) = snucnvdnv snvenudnu
- 1—k2sn2usn?v ’
cnucny Fsnusnvdnudnv
cn(u £ v) = o usn?e , (2.2.12)
dnudnv Fk?snusnvcnucnv
d +9) =
n(u +v) 1—k2sn?usnv
[ |

Proposition 2.2.8 (Periodicity)

The elliptic functions have two distinct periods and, if the nome is real, one period
is real and the other is purely imaginary. The periods of snu are 4K and 2:K' , those

of ecnu are 4K and 2K + 2:K' and those of dnu are 2K and 4K’ . Thus:

sn(u + 4K) = sn(u + 2.K’') = snu, sn(u + 2K) = —~snu,
en(u + 4K) = cn(u + 2K + 2iK') = cnu, cn(u+2K) = —cnu, (2.2.13)
!
dn(u + 2K) = dn{u + 4K') = dnu dn(u + K) = d]:lu'
|

Proposition 2.2.9 (Derivatives, Integrals and Differential Equations)

—snu =cnudnu, —dnu = —k?snucnu,
du du
d—cnu=—snudnu, —amu =dnu,

u

13



1
/snuduz %ln(dnu—kcnu), /snzuduz F[u—E(amu,k)] ,

/cnudu = %sin_l(k snu) , /cnzudu = %[E(amu,k) — k’zu] , (2.2.14)
/dnudu = sin™(snu) , /dn2 udu = E(amu, k) ,

1
/snucnudu=—ﬁdnu, /snudnudu= —cnu,

/cnudnudu =snu.

The Jacobi elliptic functions are solutions of the following first—order differential equa-

tions:

disnu = /(1 —sn2u)(1 — k2sn2u) ,
u

d 2
gy C0U = —\/(1 —cn?u)(k'* + k?cn?u) , (2.2.15)

d _ 2 2 2
@dnu——\/(l—dn u)(dn®u — k7Y,

and of the following second—-order differential equations:

2
%snu =—(1+k*snu+2k*sndu,

d2

Joacnu= (2k* — 1) cnu — 2k%* cnd u (2.2.16)

d2
—dnu=(2-k?)dnu —2dn’u,

du?
[ |
Proposition 2.2.10 (Approximations)
For k < 1, we can approximate the Jacobi elliptic functions as follows:
sn(u, k) = sinu — k? cosu(u — sinucosu)/4 ,
cen(u, k) =~ cosu + k% sinu(u — sinucosu)/4 , (2.2.17)

dn(u, k) ~ 1 — (k?sin®u)/2 .

14



For k =~ 1, we can approximate the Jacobi elliptic functions as follows:

sn(u, k) ~ tanhu + k'> sech® u(sinh u coshu — u) /4 ,
cn(u, k) ~ sechu — k'* tanh usech u(sinhucoshu —u)/4 ,

dn(u, k) = sechu + k'° tanh usech u(sinhucoshu + u)/4 .

Proposition 2.2.11 (Elliptic Integrals of the First Kind)

(2.2.18)

Assume u and k are real with 0 < k < 1. Let u = sn~!(z, k), then £ = snu. Observe

that sn~!(z, k) is a multivalued function (since sn(u+4K) = snu and sn(2K —u) = snu).

Restricting to 0 < 2 < 1 and the corresponding range 0 < u < K, from the Legendre

canonical form of the elliptic integral of the first kind, we get:

e ) o [ dt
s (o, k) = _0/\/(1—t2)(1—k2t2)'

The following elliptic integrals, which can be evaluated in terms of the Jacobi

(2.2.19)

elliptic

functions, are also reducible, by a suitable change of variables, to equation (2.2.19):

1 .z
= —8n (5,

/ dt
0/ J@-op - e

) ]

| o

where 0 <z <b<a,

b

/ dt _ 1 cn"l(f b )
\/(a2+t2)(b2—t2) T VaZ 1 b2 b’ VaZ +p2’’

where 0 <z <b,

where0 <z <b<a,

/ dt 1 Sd_l(\/a2+b2x b,
V@2 +2)02 —2)  VaZ+b? ab T \aZ4p?’

where 0 <z <b,

15

(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)



/ dt = %dc_l(z, b, (2.2.24)

whereb<a <z,

/ at =L@ Yy, (2.2.25)
V(2 -a?)(t2 -2 @ a’'a
whereb<a <z,
r 2 _ K2
/ dat N R A Al (2.2.26)
| V2@ a a
whereb<z <a,
7 2 _ K2
/ dt ~lgp@ Y=ty (2.2.27)
J@-o@-1) o ‘@ a

whereb<z <a,

T

dt 1 -1 b
= T 2.2.28
/ V- B+ ViR @ Ve (2:2.28)
wherea < z,
/oo at N b (2.2.29)
V{2 — a®) (12 + B?) Va4 b2 VaZ+02 Vaz+2 ] -
wherea < z,
7 1 2 _ 2
/ dt =Ll va oty (2.2.30)
J VB2 +a2)2+0b2) a b a
where0<b<a,0< 1,
T 2 _p2
/ dt = lcs"l(f, a—b) , (2.2_31)
V2 +a?)(t2 +82) a a a

where0 <b<a,0<z.
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2.3 Differential Geometry and Lie Groups

In this section we define Lie groups and Lie algebras and discuss some of their
properties that make them relevant to the study of mechanical systems with constraints
and with symmetries. The material in this section is drawn from (Abraham & Marsden
[1985]; Boothby [1975]; Curtis [1984]; Jacobson [1979]; Lang [1985]; Marsden & Ratiu
[1994]; Olver [1986]; Spivak [1970]; Varadarajan [1984]; Warner [1971]).
Definition 2.3.1 (Group)

A group (G, -) is a set G, together with an operation - such that for any ¢,h € G,
the product g - h is also an element of G and such that the following properties hold:
i) Associativity: For f,g,h€ G: f-(g-h)=(f-g)-h
ii) Identity: There is an element e € G such that forallge G: g-e=e-g=g
iii) Inverse: For each g € G there is an element of G, denoted ¢! such that g g1 =

gl g=e

Let G and G’ be groups. A map ¢ : G — G’ is a homomorphism if ¢(g - ¢') =
#(g) - #(g’). A homomorphism is surjective (or onto), when ¢(G) = G'. It is injective (or
one-to—one), when, if ¢(g) = #(g'), then g = g’. A necessary and sufficient condition
for this to happen is that ¢~1(e') = e. A homomorphism is bijective, if it is onto and
one-to-one. A map ¢ : G — G’ is an isomorphism if it is a bijective homomorphism.
A map ¢: G — G is an automorphism if it is an isomorphism.

Let X and Y be smooth vector fields on a manifold M. Let X,,,Y,, € T}, M, for
m € M. For a smooth function f : M — IR, the operator f — X,,(Y (f)) does not
define, in general, a tangent vector at m. However, XY — Y X does (Boothby [1975]).
Definition 2.3.2 (Jacobi-Lie bracket of vector fields) i

Let X and Y be smooth vector fields on a differentiable manifold M. We define a
new vector field [X, Y], called the Jacobi-Lie bracket of X and Y by

[X, Y]m(f) = X (Y (£)) — Y (X(f)) - (2.3.1)

for m € M and for all smooth functions f : M — IR.

17



For a smooth vector field & on G, let ¢, : IR — G, t — ¢,(t) be a tangent curve
of X at a fixed point g € G , i.e. a smooth curve on G such that ¢,(0) = g and

& _ 20 = 2(9).

Proposition 2.3.3

Consider two curves ¢; and ¢3 tangent to the smooth vector fields X; and X respec-

[z (#3(2)) — X1 (2(8)) ] (F)(g) -
[ |

tively, at the point g € G . Then: [&1, X2](f)(g) = %L_O

Definition 2.3.4 (Lie Group)

A Lie group is a finite-dimensional smooth manifold G that is also a group and for
which the group operations of multiplication - : G xG — G : (g, h) — g-h and inversion
1:G — G :gr> g7! are smooth. Let e be the group identity. .

The definitions of homomorphisms, isomorphisms and automorphisms of Lie groups
are similar to the ones for general groups, except that the maps ¢ should be smooth.
Then, if ¢ is an isomorphism, it is a diffeomorphism. If G’ = Aut(V), where Aut(V)
is the set of linear nonsingular operators (automorphisms) on a vector space V or if
G’ = Gl(n, IR), then a homomorphism ¢ : G — G’ is called a representation of the Lie
group G.

Definition 2.3.5 (Direct and Semidirect Products of Lie Groups)

The direct product G x H of two Lie groups G and H is a new Lie group with the
product manifold structure and the direct product structure, which is given for g1, ¢, € G
and hy,he € H by

(g1, k1) - (92, h2) = (g1 - 92,h1 - ha) . (23.2)

For Lie groups G and H, suppose G acts on H as a group of transformations via
h+ g-h, for h € H with g- (hy-hs) = (g-h1)-(g- h2). The semidirect product G xg H
of G and H is the Lie group whose manifold structure is the Cartesian product G x H,

but whose group multiplication is

(91,h1) - (92, h2) = (91 " g2, h1 - (g1 hz)) . (2.3.3)
|
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For example, the Special Euclidean group SE(n), i.e. the group of rigid motions in
IR™, is the semidirect product of the Special Orthogonal group SO(n) with the vector
space IR™, where SO(n) acts on IR™ as a group of rotations, with group multiplication
(g1, h1) - (92, h2) = (g1 - g2, h1 + g1 - he), for g1,92 € SO(n) and hy, hy € IR™.
Definition 2.3.6 (Lie Algebra)

A Lie algebra is a real vector space G equipped with a product [.,.] : G xG — G
with the following properties:

i) Bilinearity: For a,b € IR and z,y,z € G : [az + by, 2] = a[z, 2] + bly, 2], [z,az + by] =
alz, z]) + bz, y).

ii) Skew—symmetry: For z,y € G: [z,y] = —[y, z].

iil) Jacobi identity: For z,y,2 € G : [z,[y, 2]] + [y, [2, 2] + [2, [z, y]] = 0.

If G and G’ are Lie algebras, a map v : G — G’ is a (Lie algebra) homomorphism, if
it is linear and it preserves the bracket, i.e. Y([X,Y]) = [¢(X),¥(Y))], for every X,Y € G.
If, in addition, 1 is a bijection, then it is an isomorphism. An isomorphism of G with itself
is an automorphism. If ¢’ = End(V), the set of all linear operators (endomorphisms)
on a vector space V or if ¢’ = gl(n, IR), then a homomorphism 9 : G — G’ is called a
representation of the Lie algebra G.

A subspace B of a Lie algebra G is a subalgebra if [z,y] € B for all z,y € B. It is an
ideal if [z,y] € B for all z € G and y € B. Let By and B; be subspaces of a Lie algebra
G and denote by [By, Bs] the span of all elements [b1, b2} such that by € By and by € Bs.
Define the derived series of G by

g2¢ = [G,G] D Gg" = [g',g'] DD g(k) = [g(k—l),g(k—l)] D
Its terms are ideals. So are the terms of the lower central series of G defined by
G626*=[6,6]26*=[G%G]2--26"=[gF",G]2--

Definition 2.3.7 (Solvable Lie Algebras)

A Lie algebra G is solvable if G(") = 0, for some positive integer n.
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Abelian algebras are solvable. All Lie algebras ¢ with dimG < 3 and dimG’ < 3 are
solvable (e.g. se(2)). Also, the algebra of triangular matrices is solvable.
Definition 2.3.8 (Nilpotent Lie Algebras)

A Lie algebra G is nilpotent if G™ = 0, for some positive integer n.

The algebra h(n) of nil triangular n X n matrices (triangular matrices where also the
diagonal is zero) is nilpotent. If G is nilpotent, then it is also solvable (since G*) C G2*).
The converse does not hold.

Definition 2.3.9 (Abelian and Non-Abelian Lie Algebras)

A Lie algebra G is abelian if G’ = 0. Otherwise, it is called non-abelian.

|
Definition 2.3.10 (Simple Lie Algebras)
A Lie algebra G is simple if it is non-abelian and its only ideals are 0 and G.
|
Definition 2.3.11 (Semi-Simple Lie Algebras)
A Lie algebra G is semi—simple if its only abelian ideal is 0.
[ |

Simplicity implies semi-simplicity. All 3—dimensional Lie algebras such that dimG’ = 3
(i.e. G’ = G) are simple (e.g. so(3), sl(2)).
Definition 2.3.12

i) The left and right translation by g € G are the maps L, : G — G : h + gh and
R, : G — G : h = hg. Both are diffeomorphisms.

ii) A vector field X on G is called left-invariant if for every g € G, (L) X = X,
where (L), is the differential of L,. Equivalently, T, L, X (k) = X (gh), for every h € G,

where Ty L, is the linearization of the map L, at h.

The set of smooth vector fields on a manifold M, with the [.,.] bracket defined in

equation (2.3.1), is a Lie algebra (possibly infinite-dimensional). When M is a Lie group,
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then this Lie algebra has an important finite-dimensional subalgebra, which is called the

Lie algebra of M and is defined below.
Consider a Lie group G. For ¢ € T,G, define on G the left-invariant vector field
Xe(g) = TeLy¢E, for g € G. Then, TG, together with the Lie bracket [.,.] defined by

[€,n] = [Xe, Xnl(e) (2.3.4)

for {,n € T.G, becomes a Lie algebra. Moreover, [X¢, X;)| = X[¢ .
Definition 2.3.13 (Lie Algebra of Lie Group)

The vector space T,G with the Lie bracket [.,.] defined in equation (2.3.4) is called
the Lie algebra of G and denoted G (or L(G)).

For £ € G, let ¢¢ : IR — G : ¢t — exptf denote the one-parameter subgroup of G,
i.e. the integral curve of the left-invariant vector field X, passing through the identity
att =0.

For matrix Lie groups G we have for g€ G and £ € G :
TeLg - & = Lg& = g€ . (2.3.5)
Moreover, for h € G and for X;, € T),G we have:

Tth : ThG — TghG
. (2.3.6)
Xh — Tth - Xp = Lth = th
Consider a left-invariant dynamical system on a matrix Lie group G with n—
dimensional Lie algebra G. Consider a curve g(.) C G. Then, there exists a curve £(.) € §
such that:
g= TeLg 6 = Lgf = g§ . (237)

Let {A,, i =1,...,n} be a basis of G and let [.,.] be the usual Lie bracket on G
defined by: [A;, A;] = A;A; — AjA;. Then, there exist constants T') ., called structure

37

constants, such that:

[Au 4] =D TE A, i,j=1,...,n. (2.3.8)
k=1
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Let G* be the dual space of G, i.e. the space of linear functions from G to IR. Let
{A%, i=1,...,n} be the basis of G* such that

A(A) =8, i,j=1,...,n, (2.3.9)

where (53 is the Kronecker symbol. Then the curve £(.) C G can be represented as:

E=Y A=) AOA, (2.3.10)
=1 =1

def

for § = A ER, i=1,...,n.

To obtain a solution of the dynamical system (2.3.7) we use the following product—

of-exponentials representation.

Proposition 2.3.14 (Wei & Norman [1964))
Let g(0) = I, the identity of G and let g(¢) be the solution of (2.3.7). Then, locally

around t = 0, g is of the form:

g(t) = enOAn®A B An (2.3.11)

where the coefficients v; are determined by differentiating (2.3.11) and using (2.3.7). For
the coordinates Ei of ¢ € G defined in (2.3.10), we get:

T &
=M, | 0] (2.3.12)
Yn £
n
The matrix M is analytic in v and depends only on the Lie algebra G and its structure

constants in the given basis. If G is solvable, then there exists a basis of G and an ordering

of this basis, for which (2.3.11)is global. Then the 7;’s can be found by quadratures.

Definition 2.3.15 (Action of Lie Group on Manifold)
Let @@ be a smooth manifold. A (left) action of a Lie group G on @ is a smooth
mapping & : G x Q — @ such that:
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i) For all g € Q, ®(e,z) = z.
ii) For every g,h € G, ®(g,®(h,q)) = ®(gh,q), for all ¢ € Q.
[ |

For every g € G, define &, : @ — @ : ¢ — ®(g,¢). Then from (i), ®. = idg and

from (i1), ®gp = By 0 ®j,. Moreover, (®4)~! = &,-1. Thus, B, is a diffeomorphism (i.e.

one-to—-one, onto and both @, and (®,)~! are smooth).

Definitions 2.3.16

Let ® be an action of G on Q.

i) For g € Q, the orbit (or ®-orbit) of ¢ is Orb(q) = {®,(q)|g € G}.

i) An action is transitive if there is only one orbit.

iii) An action ® is effective (or faithful) if g — ®, is one-to—one.

iv) An action @ is free if, for each ¢ € @}, g — ®4(q) is one-to-one, i.e. the identity e is

the only element of G with a fixed point.

v) An action ® is proper if and only if the map ® : G x Q — @ x Q : (g,9)

(¢,®(g,9)) = ®(g,9) is proper, i.e. if K C Q x Q is compact, then $-1(K) is compact.
|

Definition 2.3.17 (Infinitesimal Generator)
Let & : G x Q — Q be a smooth action. If ¢ € G, then ®¢ : Rx Q — Q : (t,q) —
®(exptf,q) is an IR-action on @, i.e. is a flow on Q. The corresponding vector field on

Q is called the infinitesimal generator of ® corresponding to ¢ and is given by

$ole) = c—;‘%<I>(exp1t£,q) o (2.3.13)

Then, the tangent space to the orbit Orb(q) of ¢ is

T,0rb(q) = {€(a)l¢ € G} . (2.3.14)

Examples 2.3.18
i) Let @ be the left translation of a matrix Lie group G, considered as an action of

GonG,ie ®:GxG— G:(g,h) = gh = Lyh. Then the infinitesimal generator fG

corresponding to £ € G is £ _(q) = TeR, - € = £g, which is a right invariant vector field.
fe; g
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ii) Consider the adjoint action of G on its Lie algebra G, defined as & : G x § —
G:(g,n) = Adgn = T.(Ry-1Lg)n. If G is a matrix group, then

Adgn = gng™" (2.3.15)

forne G. f £ € G, then

¢ n = adgn = [€,1]. (2.3.16)

Further define adlgn & ade (adlg_ln) =[¢, ad'g—ln].

The following properties of the adjoint action of a matrix Lie group are easily checked:
i) Adg(aim + a2n2) = a1 Adgm + agAdgng, for ai,az € IR and 11,712 € G.

il) Adg, 4, (n) = Adg, (Adg,n), for g1,92 € G.

ili) Adg(nin2) = AdgniAdgny, for n1,m2 € G.

Definition 2.3.19 (Equivariance)

Let M and N be manifolds and G a Lie group. Let ® and ¥ be actions of G on
M and N respectively and f : M — N be a smooth map. Then f is eguivariant with
respect to those actions, if forallge G: fo®, =T 0 f.

Proposition 2.3.20
Let f : M — N be equivariant with respect to actions ® and ¥ as above. Then,
for any £ € G, we have T'f - {3y = €n - f, where €)r and €y are infinitesimal generators

of ® and U respectively on M and N corresponding to €.

[
From (2.3.10) we have:
n n
Ady¢ = ZgiAdgAi =Y AL(E)AdgA; . (2.3.17)
i=1 i=1
From (2.3.11) we have:
AdgA; = gA; g7l = emh cglnAn figmTnAn o= mA (2.3.18)
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and

Ady-1 A; = g7  Ajg = e A L em AL fremAL L gTndn (2.3.19)

Equation (2.3.18) can be made more explicit by the Baker—Campbell-Hausdorff formula
(Wei & Norman [1964]), which for £, € G states that:

_ . 1
Adexpen = efne™ = (e*6)n = n+ &, 0] + & (&l +--- . (2:3.20)
Thus
AdgA; = e2dnAy) . gadlmAn) 4, (2.3.21)
and
Adg—lAi = 6ad(_7""4") cee ead(—'h'Al)Ai ) (2.3.22)
fori=1,...,n.

The following material on principal fiber bundles and connections is based on
(Bleecker [1981]; Nomizu [1956]). These references consider principal fiber bundles where
the group action is a right action. Here we consider left actions and modify appropriately
the definition of a principal fiber bundle following (Yang [1992]).

Definition 2.3.21 (Principal Fiber Bundle)

Let S be a differentiable manifold and G a Lie group. A differentiable manifold @

is called a (differentiable) principal fiber bundle if the following conditions are satisfied:

1) G acts on @ to the left, freely and differentiably:

:GxQQ: (9.9) g ¢E 8 q.

2) S is the quotient space of @ by the equivalence relation induced by G, ie. S = Q/G
and the canonical projection 7 : () — S is differentiable.

3) Q is locally trivial, i.e. every point s € S has a neighborhood U such that 7~} (U) C Q
is isomorphic with U x G, in the sense that ¢ € 7~ 1(U) — (n(q),¢(q)) € U x G is a
diffeomorphism such that ¢ : #=1(U) — G satisfies ¢(g - q) = gé(q),Vg € G.

For s € S, the fiber over s is a closed submanifold of @) which is differentiably isomorphic
with G. For any q € Q, the fiber through q is the fiber over s = w(q). When Q@ = § x G,
then Q is said to be a trivial principal fiber bundle (fig. 2.3.1).
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Fig. 2.3.1: Connection on a Principal Fiber Bundle

Definition 2.3.22 (Connection on a Principal Fiber Bundle)

Let (@,S,m,G) be a principal fiber bundle. A connection on the principal fiber
bundle is a choice of a tangent subspace H, C T,Q at each point ¢ € @ (horizontal
subspace) such that, if V; Lef {v € T,Q|n. (v) = 0} is the subspace of ToQ tangent to
the fiber through ¢ (vertical subspace), we have:

NT,Q=H,0V,.
2) For every g€ Gand g€ Q, T,®,- H, = Hy.,.
3) H, depends differentiably on g.

2.4 Geometric Mechanics

The material in this section is drawn from (Abraham & Marsden [1985]; Marsden,
Montgomery & Ratiu [1990]; Marsden & Ratiu [1994]; Marsden [1991]) and (Arnold
[1978]).
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Definition 2.4.1 (Poisson manifold)

Let P be a manifold and let C*°(P) be the set of smooth real-valued functions on

P. Consider a bracket operation
{.,.}: C®(P) x C®(P) — C*(P) .

The pair (P, {,}) is called a Poisson manifold, if, for f,g,h € C*®°(P), the bracket {,}
satisfies:

1) Anticommutativity {f,g} = —{g,f} .

2) Bilinearity {f,Ag + ph} = M{f,9} + p{f,h} , N u € R.

3) Jacobi’s identity {{f,g},h} + {{9,h}, f} + {{h, f}, 9} =0.

4) Leibnitz’s rule {fg,h} = f{g,h} + g¢{f, h} .

Properties (1), (2) and (3) above make C*°(P) a Lie algebra under the Poisson bracket.

A Poisson bracket is uniquely associated to a contravariant, skew-symmetric two—

tensor A on P such that:
{f,g} = A(df,dg) .

If P is a finite dimensional manifold of dimension n, then A is given by an n x n skew-

symmetric matrix and the Poisson bracket can be expressed in local coordinates as

{f,9}=ViTAVy.

Definition 2.4.2 (Hamiltonian Vector Field)
Let (P, {, }) be a Poisson manifold and let f € C°°(P). The Hamiltonian vector field
X is the unique vector field on P such that

Xi(9) =1{9,f}, Vg€ C™(P). (2.4.1)
]

The set of Hamiltonian vector fields on P is a Lie subalgebra of the set of vector fields

on P and, in fact, for f,g € C>®°(P):

(X5, Xg] = X5,y - (24.2)
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An integral curve p(.) C P of Xy for f € C*(P) satisfies in local coordinates:

fi(t) = {pms(t), F(1)} ST (2.4.3)

A function ¢ € C*°(P) is called a Casimir function if

{¢,9} =0, VY € C(P) . (2.4.4)

Such a function is constant along the flow of all Hamiltonian vector fields.

Every symplectic manifold is Poisson. However, not every Poisson manifold is sym-
plectic. An important class of non-symplectic Poisson manifolds is the class of Lie—
Poisson manifolds, an example of which is the dual space G* of a Lie algebra G.

Let <, > be the natural pairing between elements of the Lie algebra G and those
of its dual space G*. Let {A;, Az, ..., A} be a basis of G and let {A4%,.45,...,A%} be
the dual basis of G*, which is such that < A%, A4; >= 6{ , where 63' is the Kronecker
symbol. Any pu € G* can be expressed as pu = Y o, A’ The space G* becomes a

Poisson manifold under either one of the following Lie-Poisson brackets:

(6,912 = (s [52,51) (0.45)

where ¢, € C(G*) and p € G*. This Poisson manifold will be denoted Gi. The

variational derivative %E € G is defined via the Frechet derivative by

n

oo d 0¢ .
<1/,E>=D¢(M).y:Et=0¢(u+tu)=;8—;u¢,forl/EQ .
Let I‘ﬁ j be the structure constants of G in the given basis. Then, the Lie-Poisson bracket

is expressed in the local coordinates for G and G* as:

d¢ O 04 oY
G =23 D B Bty ZZ A o = VO AV

i=1 j=1k=1 1=1 j=1
(2.4.6)

where A:t def 4 Sh_ Tk bk are the elements of the skew—symmetric matrix A corre-

sponding to the bracket {, }+.
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2.5 Parallel Manipulators

In section 2.5.1 we examine 3—dimensional (spatial) parallel manipulators. We de-
velop the inverse kinematics and the velocity kinematics with respect both to the spatial
and to the body velocities. We define the notions of forward and inverse velocity maps
and singular configurations and show that both formulations of the Jacobian (both with
respect to the spatial and to body velocities) specify the same set of singular configura-
tions.

In section 2.5.2 we examine 2—-dimensional (planar) parallel manipulators. In addi-
tion to the above, we define the notion of singular surfaces on the configuration space

and we discuss the effect of singularities on an active robotic system.

2.5.1 Spatial Parallel Manipulators
Consider a parallel manipulator of the Stewart platform type (Fichter [1986]) moving
in 3-dimensional space (fig. 2.5.1).

P A
P o f‘:‘ﬁ.e»’i' St Sheyie
6{,«"? 5 : g
X ) 5 B
Vepre "%%
s il ] N A5E8Y £
R sk :
&4 £
‘48 %v‘&

1

Fig. 2.5.1: Stewart Platform

Let Op and Op be, respectively, the basis and platform coordinate systems. Also

let g = (? 1;) € G = SE(3), with R € SO(3), be the configuration matrix of the
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platform with respect to Op, B; be the position of the i — th basis joint with respect to
OB, PP; be the position of the 7 — th platform joint with respect to Op, P, =T + R PP,
be the position of the 7 — th platform joint with respect to Opg, S; = P; — B; the vector
of the 7 — th leg with respect to Op, o; = ||S;||3 be the length of the i — th leg, o € IR®
be the vector (0q,...,0¢)" and M; = B; x P, = P; x §; = B; x S; be the moment of S;
with respect to Op, where ||z|l, = /< Z,Z >, is the usual Euclidean norm for z € IR"
(for the proper n) and <, >, is the inner product for IR™.

Given a configuration g € SE(3) of the platform, the inverse kinematics problem
is to specify the corresponding platform leg lengths o;, i = 1,...,6 and define the inverse

kinematic map F~': SE(3) - IR®: g 0.
The homogeneous coordinate representation of the vector S, is (%) (c.f. (Murray,

Li & Sastry [1994])). From fig. 2.5.1 we have:

X pp. .
S,IP,L"—Bi=T+Rp.P@'—B,,; - (‘%> -—-g( fz)_(?z) . (251)

Then, by definition, the platform leg length o; is given by:

def PP; B;

ag; é “51”3 =19 - . (252)

1 1 4

Thus the inverse kinematic map F~1! is:
o1(g) 15113
- def . .

Flo o= : |=] : (2.5.3)

o6(g) [1S61l3
Given a set of platform leg lengths o;, ¢ = 1,...,6, the forward kinematics

problem is to specify the corresponding platform configuration g € SE(3) and define the
forward kinematic map F : IR — SE(3) : o ~ g. This is usually much harder than
inverse kinematics for parallel manipulators. Issues related to the forward kinematics
problem are addressed in (Fichter [1986]; Merlet [1992]; Nanua & Waldron [1989]; Nanua,
Waldron & Murthy [1990]; Tahmasebi & Tsai [1991]).
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w1
Let & be the skew—-symmetric matrix corresponding to the vector w = | wy | € IR3,

w3

0 —Ww3 (30}
ie. w= ( ws 0  —w: | . The mapping @ — w identifies the Lie algebra T,50(3)
—Wwsa w1 0

with IR3. Under this identification, the Lie bracket corresponds to the cross product in
IR?® (Abraham & Marsden [1985]) .
Definition 2.5.1 (Spatial and Body Velocities)

The spatial angular velocity & is defined as the vector corresponding to the skew—
symmetric matrix & = RRT; the spatial translational velocity ¢ as ¢ = T — RR™T ;
the body angular velocity ) as the vector corresponding to the skew-symmetric matrix

) = RTR and the body translational velocity Z as 2 = RTT.

Lemma 2.5.2 (Left and Right Translation in SE(3))

For g € SE(3) :
. (o &\ _ (O =
g-(o O)g_g(o 0). (2.5.4)
Also, w=RQ, &= AdrQ=RORT , ¢ =RE—- ROR'T.

Proof

By differentiating g = (? T) , we have:

. (R T\ _(RRT T-RR'"T\(R T\ (R T\(R'R R'T
9=\0 0o/7\ o 0 0 1) V0 1 0 0o )

The result follows from Definition 2.5.1.

Let [a;]; denote the matrix whose i-th row is a;, let & denote the diagonal matrix with

elements {o;, i = 1,...,6} and let & denote the vector of leg velocities {5;, i = 1,...,6}.
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Theorem 2.5.3 (Velocity Kinematics)

The spatial velocities (¢,w) of the platform and the leg velocities &; of its legs are

related as follows:

S(0)6 = [STIM L(g) ( ¢ ) , (2.5.5)

w

The body velocities (£,2) of the platform and the leg velocities &; of its legs are

related as follows:

—_—

B(o)s = (ST RISTRR, o) (5 ) - (250

Let Jsp(g) = [S]|M.]; and Jp(g) = [SJRlSJR;ET]i. Also, let J,,, = 7S | M,
and J, = S-1[STR|ST R7P, |..

Proof
From (2.5.1) by differentiating:

<%>=g<pf)=<‘6) f,)g(pfl%):<£+w(TO+RpP¢)):(§+OwPi)
_ (& E) (™R _ (RE+RQ%PR
_g<0 0)(1)_< 0 )

S;=¢64+o0P,=R(E+0"P). (2.5.7)

Then

From (2.5.3) we have that 02 =< S, S; >3 . By differentiating this we get:
Y6 = [o:63) = [< 85, 8 >3)i = [S] S, (2.5.8)

Then from (2.5.7) and (2.5.8) we get:
6 = (878 = [ST (€ + 0P = [ST ¢ + S P w)s

15T (5)

For the second part of the theorem, again from (2.5.7) and (2.5.8) we get:

%6 =[S Sili = [STR(E+ Q*P)]; = [S] RE+ S] RQPP); = [S] RE - S] R?P,Q);

[

— [STRISTR7P. 1.
= (sTmSTRR L () .
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Corollary 2.5.4 (Forward Velocity Kinematics)

At a platform configuration g with corresponding leg lengths o, the spatial forward

o7 o () o v (€)oot
velocity kinematic map (W)s 10 (w) is given by: (w) =Jp 0
P

The body forward velocity kinematic map (‘g—f) el (S) is given by: ( = ) =
B

o)

-1
‘75 o.

Corollary 2.5.5 (Inverse Velocity Kinematics)

At a platform configuration g with corresponding leg lengths o, the spatial inverse

velocity kinematic map <676:—:> : <f}) +— 0 is given by: ¢ = J,, (é > .
SP

w

—

The body inverse velocity kinematic map (6§;1) : (3) — & is given by: & =
B

Definition 2.5.6 (Kinematic Singularities)
Platform configurations g, where Jgp is singular, are called forward kinematic sin-
gularities. Platform configurations g, where ¥ is singular, are called inverse kinematic

singularities .

Issues related to singular configurations of parallel manipulators are explored in
(Gosselin & Angeles {1990]; Hunt [1983]; Ma & Angeles [1991]; Merlet [1988]; Merlet
[1989]; Merlet [1988]; Sugimoto, Duffy & Hunt [1982]).

The forward kinematic singularities were defined using the spatial velocity formula-
tion. It can be shown that it would be equivalent to define them using the body velocity

formulation.

Proposition 2.5.7
The following conditions are equivalent for a configuration g € SE(3) to be a forward

kinematic singularity
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(1) detJsp(g) = 0.
(2) there exists (¢,w) # 0 such that < S;,£ +@P; >3=0, for alli=1,...,6.
'(3) detJp(g) = 0.
(4) there exists (E,0) # 0 such that < S;, R(E + QPP;) >3= 0, for all
i=1,...,6.

Proof

(1) <= (2) : Observe that (using < a X b,c >3=< b,c X a >3):

gor (&) = 15T (§) = 157+ (Pux 50Tl

w

=[STE+ ST (wx Pl = [S] (€ + WP))i = [< S, & + WP >3);

Thus if there exists (¢,w) # 0 such that Jsp (f}) =0, then < §,,{ + 0P, >3=

0,Vvi=1,...,6 and vice—versa.
(2) <= (4) : Easy to see from Lemma 2.5.2 :
< 8;, 6+ 0P, >3 =8 (£ +&P) = ST (RE - ROR'T + ROR P))
= STR[E+QRT(P, —T)] = STRE+QRTR?P)] .
= ST R(E+ O PP) =< 5;, R(E + (PP,) >3
(3) < (4) : Observe that:
Jp (5) = [STRE + (RP,)TRQ; = [S] RE + 57 (RQ) x (R "P));

= [STRE + STRQRPP); = [S] R(E + 0 PPR,)];

Corollary 2.5.8

If we start at a singular configuration g, € SE(3), the input & € IR® determines
the platform motion only up to an element of the null space Ny, (Jsp) of Jsp(g.).
This element corresponds to such motions that make the velocity of all joints P; either

perpendicular to the corresponding leg vector S; or zero.
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Proof

If we lock the legs of the platform (6 = 0) and apply Corollary 2.5.5 and Proposition

2.5.7, we get Jsp(g) (f)) = 0. If g is a singular configuration, then there exists a non-
zero vector (f}o ) such that Jsp(g) <f}0 > = 0. Therefore, even though the legs of the
0 0

platform are locked, it can still move with velocity (S)) in directions specified by
0

the eigenvectors corresponding to the null eigenvalue of Jsp(g). From condition (2) of
Proposition 2.5.7, we see that, geometrically, those directions can be specified by the
property that the velocity of the joint P; is either perpendicular to the i-th leg vector S;

or is zero, for alli =1,...6.

Now, for some ¢ # 0 , suppose (f}) is such that Jsp(g) (f}) = ¥6. But if g is a
singular configuration and (f}o ) € Ny(Jsp), we also have Jsp(g) [<5>+ (f}o )] = X6.
0 0

Therefore, ¢ determines the platform motion only up to an element of Ny (Jsp).

Definition 2.5.9 (Singular Surfaces)

The loci of singular configurations in configuration space are called singular surfaces.

From Corollary 2.5.8, there exists an indeterminacy in the motion of our system,
whenever it is in a singular configuration. This indeterminacy is undesirable when we use
the platform for e.g. repositioning vision sensors and perform exploratory visual tasks.
An example of this is shown in section 2.5.2. Moreover, by the duality of kinematics
and dynamics, there exist wrenches that the platform cannot resist while at singular
configurations. This may be equally undesirable if the system is used with tactile sensors
to perform haptic exploration. On the other hand, limiting the motion of the platform
only to areas of the configuration space which are free of singularities, as is frequently
done in practice, is not possible without excessively restricting the workspace of the

manipulator. Therefore, we should either try to avoid singular configurations as much
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as possible or just drive through them, in such a way that the dynamics of the system

resolves the indeterminacy in the platform motion.

2.5.2 Planar Parallel Manipulators

In order to present concrete examples of our ideas about planning for parallel ma-
nipulators, we chose a particular planar platform architecture (fig. 2.5.2), which is simple
enough to allow analytic derivation of the forward kinematic map and easy visualization
of the singular surfaces, but also generic enough to demonstrate the applicability of our

results.

o o]

Fig. 2.5.2: Planar Parallel Manipulator

We maintain the notational conventions of section 2.5.1, with the necessary adap-

R T

0 1) sinf cosf y | €G=

0 0 1

SE(2) is the configuration matrix of the platform with respect to the basis coordi-

cosf@ —sinf =z
tation to the planar case. In particular g = ( )

nate system centered at Op, where 6 is the angle of the platform with the horizon-

tal and T = (z,y)" is the position of the center Op of the platform coordinate sys-

tem. Again P, = T + R PP;, where S; % (S" ) =P -B;=T+RPP,—B; or

S;
(5)-e(7)-(2) oo

In the case of fig. 2.5.2, PP, = PP, = (-0, O)T, PPy = (B, O)T, B, =
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(—a, 0)7,By=(-2, 0)7, Bs=(a, 0)".Then,

[T}~

s, ¥f (S11, S12)' = (a+z —Bcosh,y— PBsind) T,

a

Szdg(szl, 522)T=(2

+x — Bcosh,y — Bsinf) ", (2.5.9)

S3 & (851, S33)" = (—0a+z + Beosh,y + Bsind)T .
Moreover,

M1 = —a8’12 , M2 = —%Szz y M3 = 01532 . (2510)

The inverse kinematic map is derived directly from (2.5.3):

o1(g) VSh + 5%
o(g)=| 02(9) | =F*9) = | VS5 +5% | (9) (2.5.11)
a3(9) VS5 + 5%

The forward kinematic map, i.e. the platform configuration g € SF(2) as a function
of the link lengths 01,02, 03 is obtained analytically if we observe that (z,y,8) can be
easily determined provided the position of the end-points of the platform P; and P; is
known. But point Pj lies on the intersection of cycles (By,01) and (Bs,02) and point P3
lies on the intersection of cycles (P;,20) and (Bs,o3) (fig. 2.5.3). Thus, this problem has
in the generic case four solutions, while in special cases (which correspond to singular

configurations of the platform) it may have one, two or infinite solutions.

Let & def (€1,62)T and E def (21,Z2) 7. From Definition 2.5.1, adapted to the case of

SE(2), we get the spatial and body velocities:

O &Y aet 0 —0 &40y
(0 O):gg—1= 6 0 ¢-—0x
0 0 0

. (2.5.12)
A =\ g 0 —6 fcosf+ysind
(0 5) =g 'g=(6 0 —zsind+ygcosh
0 0 0
Conversely,
f=w=0Q

T =§; —wy = cosfZ; —sin 0=,

g =& +wz = sinf=; + cos =, .
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Fig. 2.5.3: Forward Kinematics Solutions

From Theorem 2.5.3 we have:

o1 & g1
Eo){ o2 | =Jsp(g)| & | =JBl9) | B2 |, (2.5.13)
0.'3 w Q
[ o1 0 0 det Sui S12 —aSi
where %(0) £ [ 0 o2 0 |, Jsp(9) € [ Sa1 S22 —%5 | and
0 0 o3 S31 Sz aSs
def (Sn 512 ) R ﬂ(SinBSu — COS 0512)
J(9) = | (Sz1 S2)R  B(sinfSy — €08 0S7)
)

(Ss1 Ss2)R PB(—sinfSs3; + cos0S32)

From Definition 2.5.6, forward kinematics singularities are platform configurations
g € SE(2) where Jgp is singular, i.e. where detJsp(g) = 0 . From (2.5.13) we have
detJsp(9) = af(y — Bsind)[ycos§ — (z — a)sinf)] . This leads to two kinds of singular
configurations:
1) Those where X, = {(z,y,6)|y = Bsin6} shown in the generic case in fig. 2.5.4a. This
condition corresponds to configurations where the leg axes intersect at point Bs. The
locus of those configurations in (z,y, 8)-space is a ruled surface shown in fig. 2.5.5.
2) Those where X, = {(z,y,8)|ycosf = (z — ) sinf} shown in the generic case in fig.
2.5.4.b. This condition corresponds to configurations where the leg axes intersect at

point P;. The locus of those configurations in (z,y,8)-space is a helicoid shown in fig.
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(b)

Fig. 2.5.4: Kinematic Singularities

2.5.5.

Thus, the singular surfaces for the manipulator of fig. 2.5.2 are two 2-dimensional
manifolds. Their intersection is composed of the lines {y = 0,0 = kr} and a circular
helix with radius 8 and axis the line {z = a,y = 0} (see fig. 2.5.5). The singular
surfaces divide the configurations space SE(2) of the planar parallel manipulator in four
disjoint parts corresponding to y > Bsinf, y < Bsinf, ycosf > (z — «)sinfh and
ycosf < (z — o) siné.

Inverse kinematic singularities occur when ¥ is singular, i.e. when det(X) = 0. Then
at least one of the platform legs has zero length. Observe that they also correspond to

forward kinematic singularities, therefore they will not be considered separately.

As observed in Corollary 2.4.8, at singular configurations the input ¢ determines the
platform motion only up to an element of the null space of Jsp or of Jg. In the case of sin-
gular configurations of the first kind, where X, = {(z,y,0)|y = Bsin6,sin6 # 0}, we can

find that the null space Ny, (J) is a one-parameter family of rotations around point Bj.

3! &1 0
In particular, Ny, (Jsp) = { & ‘ Ll =| —«a w} . In the case of singular con-

w w 1
figurations of the second kind, where X, = {(z,y,6)|ycos8 = (z—a)sinb,y # Bsinb,z #
a,sind # 0,cos6 # 0} we can find that the null space Ny, (J) is a one-parameter

&1 &1
family of rotations around point P;. In particular, Ny, (Jsp) = { & ’ & =
w w
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Fig. 2.5.5: Singular Surfaces and Singularity Avoidance

(z —a—Bcosf)tanb
—(z — Bcosh)
1

Physically, this means that those rotations cannot be controlled by our system input

o. If we start at configuration I of fig. 2.5.6 and apply input {5, =

final configuration cannot be determined. We may end up in configuration II or in

configuration III. This is the source of the problems discussed at the end of the previous

section.

or NX‘ (JB) =

(1 1]

5 0
2| =8
Q 1

40

Fig. 2.5.6: Effect of Singularities

d2 = 0,é3 # 0},
the platform is expected to rotate around point P;. From the input alone though, the



However, by properly planning the system’s trajectory, it is often possible to avoid
singular configurations. An example is shown in fig. 2.5.5.b. This will be further

discussed in the next chapter.
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CHAPTER THREE

MOTION PLANNING BASED ON PATH CURVATURE

3.1 Introduction

In this chapter we consider solving analytically some instances of the motion planning
problem for robotic systems with holonomic constraints. The motion planning problem
that we consider is to specify a trajectory of the system that has certain desired kinematic
and dynamic properties and that connects a given initial and final configuration. Because
of the holonomic constraints, the configuration space of the robotic systems can be
considered as an n—-dimensional Lie group G, thus its trajectory is a curve g(.) C G, with
given end-points g(0) and g(T). The curve g(.) specifies a corresponding curve £(.) on
the Lie algebra G of G, which, through identifying G with IR™ by a choice of coordinates,
corresponds to a curve o(.) on IR™. There, we can employ differential geometric tools
such as its curvature and the associated Frenet—Serret moving frame to describe o. We
will consider the problem of finding the curve that optimizes a curvature-squared cost
functional among all the curves on G that connect the given end—points. This can
naturally be viewed as an optimal control problem involving a left—invariant dynamical
system that evolves on SE(n), the group of rigid motions on IR". The nonholonomic
nature of this system allows us to achieve controllability with fewer controls than the
dimension of SE(n) ((n — 1) controls, while the dimension of SE(n) is $n(n + 1)).

The motion planning problem is related to the specification of a path in configuration
space, so that certain objectives related to a specific task are optimally met. Planning
in the configuration space of the manipulator allows us to solve the problem without
worrying about the specifics of the manipulator architecture. The specification of the
corresponding joint trajectories is done through the inverse kinematics, which, in the

case of parallel manipulators, is easily solvable.

Suppose we are interested in driving our system from an initial configuration to a
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final one is such a way that the path is as little “curly” as possible. We do not want to
specify further the shape of the path a-priori (e.g. by choosing a straight line or circular
arc), in order to maintain some necessary flexibility. Such a situation occurs when we
try to move from one side of a singular surface of a parallel manipulator to the other
(see section 3.4 ). A “curly” path will force us to move close to this surface for a long
time, or, worse, cross it multiple times. On the other hand, a straight path between
an initial and a final configuration may not allow us the necessary flexibility to cross at
some “favorable” point.

This situation of a desired path which is as little “curly” as possible is very similar to
the classical elastica problem, where a flexible thin rod is allowed to deform while its ends
are fixed (Jurdjevic [a]; Jurdjevic [b]; Jurdjevic [1990]; Jurdjevic [1992]). Its equilibrium
configuration is known to correspond to the extremals of a variational problem with
constraints, where a cost functional involving the square of the geodesic curvature of the
rod is minimized.

We consider the optimal control problem of minimizing a curvature-squared cost
functional. This is similar to the classical problem of the elastica. We obtain analytical
solutions of the optimal trajectories and apply them to the solution of the singularity
avoidance problem for the planar parallel manipulators that we considered in chapter 2.
The solutions to the problem of the elastica provide us with trajectory segments which
are (locally) optimal. Those can be patched together to form a trajectory that links the
desired end-points. Because we have a family of optimal segments which is richer than
the usual straight-line and circular—arc segments most motion planners consider, we can
choose those segments so that the path curvature is continuous, even at the joints of
the segments. This is important in various applications (e.g. autonomous vehicles on a
manufacturing floor (Fleury et al. [1993]; Kanayama & Hartman [989 ]; Nelson [1989a];
Nelson [1989b])). In the case of a general motion of the manipulator, the configuration
space is SE(2), while, if the motion is restricted to a 2-dimensional manifold, it can be
IR? or IRx S*. This last case is considered in section 3.2, while the case of a 3-dimensional

manifold is considered in section 3.3.

3.2 Curvature—based Planning for 2—dimensional Manifolds

First we consider the case of a translating planar parallel manipulator. The configu-
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ration space of the system is then IR? with coordinates o = (z,y). A path in configuration
space is a regular curve o(t) = (z(t),y(t)) in IR2. Alternatively, consider the case where
the planar platform translates along a specific line and also rotates. Then the configura-
tion space is IR x S . If we consider motion on a chart of this group, the problem setup
is exactly the same as in the translational case.

Intuitively, given a fixed length L and end—points o(0) and (L) in IR?, the result of a
planning scheme based on minimizing the curvature-squared cost functional 3 [x?(s) ds,
will be a curve o(s) similar to curve (I) in fig. 3.2.1, rather than similar to the “curlier”
curves (II) and (IIT). The flexibility of this approach stems from our ability to choose
the length L at will, thus manipulating the shape of the path.

Fig. 3.2.1: Configuration-Space Paths

Such a solution to the planning problem only affects the geometric invariants of
the path, i.e. it specifies its shape, but not the velocity with which this is traversed.
This extra degree of freedom can be used to optimize dynamical properties of the system
trajectory, such as minimizing acceleration or optimizing the power requirements of the
system actuators. Of course, in the case when the magnitude of the velocity is constant
(a non-trivial case since the direction of the velocity may vary, which is often of great
interest, as in the case of autonomously guided vehicles), we know that the curvature
is proportional to the magnitude of the acceleration, therefore a minimal-curvature—

squared path minimizes acceleration and, thus, the current to the motors driving the

44




platform (Kuo [1987]). The curvature of the optimal paths is bounded and its bounds
can be selected by the designer. In addition, the curvature varies continuously, thus the
acceleration does not have sudden jumps. Moreover, the jerk, which is defined as the
derivative of the acceleration, is proportional to the derivative of the curvature, which can
be shown to be bounded on minimal curvature-squared paths. Therefore, the proposed
planning scheme can optimize the system trajectory with respect to both kinematic and

dynamic criteria.

3.2.1 Curvature-based Planning Criteria

Let o(s) = (z(s),y(s)) be an arc-length parametrization of a curve ¢ in IR?, where

¢ ¢
the arclength is s(t) = [||%2|lodr = [ /%2(7) + §3(7) dr, for 0 < t < T . Then o(s)
0 0

is a unit speed curve with total length L = s(T). After properly defining its tangent
vector v1(s) and its normal vector vz (s) (Millman & Parker [1977]), we define the (plane)
curvature of the curve as k(s) =< ©2(s),v5(s) > , where <, >, is the inner product

in IR™. We are interested in minimizing

k%(s)ds .

3
Il
[N
o\h

If 6 is the angle that the tangent v; makes with the horizontal (fig. 3.2.2), we have

that v,(s) = (:?zg((j))) and vq(s) = (7;2;1:9%;)) . Then x(s) = 6(s) and from the

Frenet-Serret equations we get:

do du

_ d’02
E(S) - Ul(s) I dS

() = K(s)va(s) , —=(s) = —K(s)vils) - (3.2.1)

V1T vV O

Defining g(s) = ( 0 0 1 sinf cosf y | (s) € G=SE(2),thesystem

cos@ —sinf =z
)@=
0 0 1

(3.2.1) can be viewed as a left-invariant system on the Lie group G = SE(2) of the form:
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Fig. 3.2.2: Curve in the Plane

(3.2.2)

= 9(5) (Aa + ls) A1) = Xa(9(5)) + n(s) %1 (9(5))

where the left—invariant vector fields X; are defined as X;(g(s)) ! g(s).A, and where the
matrices A; belong to the following basis of the Lie algebra G of G :

0 -1 0 0
SURRR (S NCEE NEET: R
0 0 0

For &; a left-invariant vector field of the form X;(g) = gA; ,i = 1,2,3,

0 01 00
0 0O 00
0 00 00

i R T A a ;
with g = (0 1) and 4; = (01 Oz) , we have ¢i(t) = geth =
(Reo T + RA; (le I)az) . Then from (2.3.4): [&,, ;] = g(Ad, — A;A) =

glAi, Aj] , where [A;, Aj] = AiAj — A;jA; is the commutator of the matrices A; and A;.

It is easy to verify the following results:

[A17 A2] = AS ’ [Al') AS] = _AZ .
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Then, for the Jacobi-Lie brackets of the vector fields X, we get corresponding results.

Consider now the following variational problem:

Problem P :
Minimize n = 3 jj k2(s)ds
on the dynamical system %% = g(A2 + kA1), with g € G = SE(2),
with & € U = IR and with given boundary conditions ¢(0) and o(L).

"This problem falls in the framework of problems studied by (Bryant & Griffiths [1986])
and (Jurdjevic [1990]), where it was shown that the curvature of the optimal paths
satisfies an equation of the form: (4£)% + (C, — 1x2)2 = C2. Subsequently we will derive

this (Bryant-Griffiths) equation for our system using the Maximum Principle formalism.

3.2.2 Controllability

Since we are dealing with an optimal control problem with boundary conditions, we
should examine the controllability of our dynamical system.

The group G = SE(2) is non—compact (therefore the controllability results of e.g.
(Jurdjevic & Sussmann [1972]) do not apply directly), but can be viewed as the semi-
direct product of the vector space V = IR? and of the compact connected Lie group
K = 50(2), denoted G =V xg K , with Lie algebra G = IR? x so(2) .

Consider a subset I" of G and the associated family AT of left—invariant vector fields
on G. Then X € At if and only if X, € I' , where X, is the value of X at the identity e
of G. Moreover, consider the semi-group S(I') generated by AUF{exp At 1 t >0} .

€

Definition 3.2.1 The family A1 of left-invariant vector fields is transitive on G if
ST)y=aG.

|

Notice that if I" is the set of elements of G associated with a left—invariant control

system (I',U), where U is a class of admissible controls, then we know that for every

g0 € G, there exists a unique solution g of (I',U) corresponding to » € U and defined

for 0 < t < oo such that g(0) = go . Denote this solution by g(go,u,t) . If for some
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T>0, g(go,u,T) = g1 , we say that the control u steers gy to g; in T units of time. If
there exists u € U which steers go to g; in T units of time, we say that g; is reachable
from gy at time T. We denote the set of all elements g; € G which are reachable from
go at time T by R(go,T’) and the set of all elements of G reachable from gy by R(go) .
Then R(go) = U R(g0,7T) -

0<T<x

Definition 3.2.2 The system (T',U) is controllable from gy, if R(ge) = G .

From the left-invariance of (I',U), it follows that R(go) = goR(e) . Therefore, in
order to study controllability of (I',U), it suffices to study its controllability from the
identity.

Definition 3.2.3 A vector v € V is a fized point under K, denoted Kv = v, if

Kv® {kv|k € K} = {v} .

Proposition 3.2.4 (Bonnard et al. [1982])

Consider a group G =V xg K , which is the semi-direct product of a vector space
V and of a compact connected Lie group K. Suppose that V and K are such that V
admits no fixed non-zero points with respect to K. Consider a subset " of G and the
associated family At of left—invariant vector fields on G. Then At is transitive on G if

and only if the Lie algebra £(T") generated by the elements of I is equal to G.

Lemma 3.2.5
The system of equations (3.2.2) is controllable.
Proof

For the system (3.2.2) we have G = SE(2) , V = IR? and K = SO(2) . The
only fixed point of V' under K is {0} , since it is the only point (z,y) in IR? for which

c9s0 —sind T\ _ (= Vo .
sinf cos# Y Y
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The system (3.2.2) can be written in the form %-‘81 = g(As + kA1) , for ks € R .
Consider I' = {Ay + kKA1 |k € IR} . It is easy to see that L(T') = sp{A;, Az, A3} .
Therefore, L(I') = G and from Proposition 3.2.4, we conclude that the family of vector
fields AT is transitive on G.

Observe that the set S(I') defined above is (by definition) the set of all elements of
G reachable from the identity under the action of the vector fields in A} . Therefore,
the notion of transitivity of At on G is exactly that of controllability of (T',U) from
the identity. In view of the left-invariance of AT, controllability from the identity is
equivalent to controllability from any go € G . Thus, the system (3.2.2) is controllable
from any go € G .

3.2.3 Hamiltonian functions, Maximum Principle and Poisson Reduction
Consider a left-invariant control system, on an n—dimensional matrix Lie group G

with Lie algebra G, of the form

§=T.Ly- =g(6o+ D w()i) (3.2.4)

i=1
where ¢ € G, & € G and u;(t) € IR, such that {£o,&1,...,&m} span an (m + 1)-
dimensional subspace h of G, where dimh < dimG. Let U = IR™ be the set of admissible

controls.

Consider the optimal control problem of minimizing

T 1 T m
n= / L(u(t))dt = 5 / 3 Luldt
0 0 =1

on the system (3.2.4), subject to the boundary conditions g(0) = gy and g(T) = ¢;.
Assume I; > 0 for ¢ = 1,...,m. Notice that L does not depend on g € G.
Let <, > be the natural pairing between elements of a vector space V and those

of its dual space V*. Let {A4;,As,...,A,} be a basis of the Lie algebra G and let
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{A}, A, ..., AL} be the basis of its dual space G*, which is such that < A°, 4; >= &7,
where 4] is the Kronecker symbol. Any p € G* can be expressed as p =Y ., o AL
The tangent and cotangent bundle TG and T*G of a Lie group G are trivial vector
bundles, therefore can be represented as G x G and G x G* respectively, where G* is the
dual space of G.
A generic element of G = se(2) is represented in the basis {4, 42, A3} as A =

A a 0 -a a Al a
={a 0 a3 ]| ,a; € IR. Consider two elements A; = 1 ™1 and
0 0 0 0 0 0 0

Az = (%2 062) of G = se(2) and consider the following inner product <., .>gon G :

1
< Az, Ag >g=< ai,az >, +§tT(A1rA2) ,

where <, >, is the inner product in JR™ and #r is the trace operator in IR"*" . A
generic element 4 of G* can be identified, using the Riesz Representation Theorem, with

Ay ay
0 O

any A € G, defined as:

an element ! ef ( ) of G via the pairing u(.A) (also denoted as < u,.A >), with

p(A) =< p, A> E< pb, A >

(A, a, A a _ 1 T
=< ( 0 0 ) ) (0 0) >g=<au,a >, +§tr(AuA) .
Consider an element « qef (g,p) of T*G =~ G x G* with g € G and u € G* and

define the pre-Hamiltonian:

i=1

m m
Hy(ag,u) = =AL(u)+ < o, TeLg-&, >= —)\% ZIiu?+<a9,TeLg- (§O+Z ul(t)§i)> ,
=1

(3.2.5)
where A = 0 or A = 1 and where <, > is the natural pairing between the elements of
TG and those of T*G.

Proposition 3.2.6 (Maximum Principle)
Suppose g*(.) is a trajectory of (3.2.4) that corresponds to the control w*(.) that

minimizes 7). This trajectory is a projection of an integral curve aj(.) = (g*(.), u*(.))
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of the Hamiltonian vector field Xy, (a3,u*) defined on the entire interval [0, L], which
satisfies:

i) If A =0, then p*(s) # 0, for some s € [0, L] (e} is not the zero section of T*G).

ii) Ha(ag(s),u*(s)) = Ha(ay(s),u(s)), for any u(.) € U and for almost all s € [0, L].

iii) When L is fixed, Hx (o} (s),u*(s)) is constant for almost all s € [0, L]. When L is free
to vary, Hy(aj(s),u*(s)) = 0 for almost all s € [0, L].

For A = 0, the integral curve oj(.) is called an ezceptional extremal and is in-
dependent of the cost functional. For A = 1, o3(.) is a regular extremal. In either
case, since the set of admissible controls U is unbounded, condition (ii) above implies
%(a;(s),u*(s)) =0 and %A(a;(s),u*(s)) <0, for almost all s € [0, L].
Proposition 3.2.7 (Krishnaprasad [1993])

Consider the left-invariant control system of (3.2.4) and the optimal control problem
of minimizing 7 subject to the boundary conditions ¢g(0) = go and g(T') = ¢;.

Consider the hamiltonian

1 - < u'agi >2
h= = _ 2.
<H,§0>+2; 7 3 (3 6)

K2

where p C G* is an integral curve of the Hamiltonian vector field X}, on the Lie-Poisson
manifold G* = (G, {, }-), given in local coordinates by (2.4.3) with the bracket {, }_
given by (2.4.5) and (2.4.6). Then, the regular eztremals of the problem are given by

— <)u"§i>

Usg
I;

(3.2.7)

In order to apply this result to problem (P,), let u; 4f « and consider the pre-

hamiltonian for A =1

1
H = —uf + {0, TLy - (A2 +urdr)) (3.2.8)
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where oy € TG = G x G*. However,

<ag,TeLg . (.Az + u1A1)> = ((TeLg)* g, Az + u1A1>

(3.2.9)
= <N>A2 + U1A1> )
where pp = (T Lg)* - oy € G*. Then,
1o
H= —guit < py Az > +uy < py Ay >

From the Maximum Principle, we have:

O0H

8_’11,1 =—u+ < p, A >=0 = u; =< sy Ay >= g, (3.2.10)

then we can specify the problem’s hamiltonian, which is a function H € C*(T*G) :

1 1
H=<p,A>+5 <A >%= o + 5;@ : (3.2.11)

Thus, the trajectory g € G corresponding to the optimal control u is a projection of an
integral curve oy = (g, ) of the hamiltonian vector field Xy on T*G, that corresponds
to the function H € C*°(T*G). However, from (3.2.11) we observe that H is G-invariant,
thus the hamiltonian vector field Xz can be reduced to a hamiltonian vector field X},

on G*, that corresponds to the function h € C°(G*) :
1 2 1o
h=<up,A; > +5 < p, AL >%= o+ E/J,l . (3.2.12)

For the given basis of G = se(2) we have from (2.4.6):

0  —ps pe
Am=| pus 0 0. (3.2.13)
—p2 0 0

Corollary 3.2.8

The regular extrema of problem (P,) are given by

k=<, A >= g, (3.2.14)
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where 4 C G* is an integral curve of the Hamiltonian vector field X;, on G* corresponding

to the hamiltonian

1 1
h=<pu,As > +§ < p, A >2= Mo + 5#% .

This integral curve is given in local coordinates of G* by

H1 = —l3,
P2 = p1ps
B3 = —pip2 .

(3.2.15)

(3.2.16)

The integral curves ;1 C G* of X}, are the intersections of the level sets of the hamiltonian

h with the symplectic leaves of G* . The level sets of the hamiltonian h are the parabolic

cylinders {yx : % §2 + pg = h}. The Casimir functions of the Lie-Poisson manifold G* are

of the form ® = ®(u2 + p2). Their level sets (symplectic leaves of G*) are the circular

cylinders {p : p2+ u% = C?} (fig. 3.2.3).

Fig. 3.2.3: Integral Curves of the Hamiltonian v.f. X} on the Lie-Poisson Manifold G*

Proof

The result follows from Proposition 3.2.7, using (2.4.3) and (3.2.7).
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By differentiation, it is easy to verify that 243 + up and u2 + p2 are constant on the

integral curves (3.2.16):

d 1l 2 . . (3.2.16)
@(5#1 +po) = papa 4 frg = —paps + papuz =0

3

d ) ) 2.16)
P (13 + 13) = 2(pafiz + paps) = 2(p1paps — pipaps) =0.

3.2.4 The Bryant—Griffiths Optimality Constraint

Theorem 3.2.9 (Bryant—Griffiths Optimality Constraint)
The curvature k(.) that corresponds to regular extremals of the variational problem

(P,) satisfies the following optimality constraint when L is fixed:

((jl—';(S))2 + (H - 56%(s)* =2, (3.2.17)

where €2 % (45(0))® + (H — 1x2(0)) with C > 0.
ds 2

When L is free, the curvature satisfies:

dk 2
(E(s)) + Zfg‘*(s) =C?, (3.2.18)
where €2 & (‘fi—’:(O))2 + 1£4(0) withC > 0.
Proof
From (3.2.16), by differentiating

. . 1
fir = —fig = papg = p1(H — 5#%) - (3.2.19)
Observe that
drl. ... (3.2.19) 1 ,..
pr [ilﬁ] =pfln = pa(H - §M§)M1 -

By integrating we get

. 1
(i) + (H = S = €2,
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where ¢ & \/uf(O) + (H — $4%(0))2. Then (3.2.17) follows from (3.2.14).
When L is free, then H = 0 and (3.2.18) follows from (3.2.17).

3.2.5 Solutions of the Bryant—Griffiths Optimality Constraint

The solutions of the Bryant—Griffiths optimality constraint for free L (equation
(3.2.18)) are the special case for H = 0 of the solutions of the corresponding constraint
for fixed L (equation (3.2.17)) (see case 3 below). Thus we examine only the solutions

of (3.2.17) in detail.

Theorem 3.2.10
The generic solution of the Bryant-Griffiths optimality constraint (equation (3.2.17))
involves Jacobi elliptic functions. Some special cases involve only elementary functions.

The solutions of equation (3.2.17) can be classified as follows, when C # 0 :

1. H > C : The curvature & is given by k = +x; dn(£ts+46, k), where k = Vi’ —rs?

Pram—
K1 = m and K3 = m The constant § depends on the initial condition
£(0). The solutions and the corresponding (k, %)—plot are shown in fig. 3.2.4.

2. H = C : The curvature  is given by x = £x; sech(%s + ), where x; = 2v/C and
the constant § depends on the initial condition £(0). The solutions and the corresponding

(k, k)-plot are shown in fig. 3.2.5.
3. —C < H < C : The curvature x is given by k = & cn(@s + 6,k), where
k= %, k1 = /2(H +C) and k3 = \/2(C — H). The constant § depends on the
k12+kK3

initial condition £(0). There are three subcases, namely H < 0, H =0 and H > 0. The
solutions and the corresponding (k, 5#)—plots are shown in fig. 3.2.6.

4. H = —C : The curvature « is given by « = 0.

5. H < —C : There are no real solutions.

When C = 0, equation (3.2.17) admits only the constant real solutions x = ++v/2H.

The (k, £)-plots in figs. 3.2.4.b-3.2.6.b are the projections on the (ui, u3)-plane of
the integral curves of the Hamiltonian vector field X,. As mentioned already, those are

the intersections of the level sets of the hamiltonian h (the parabolic cylinder in fig. 3.2.3)
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with the symplectic leaves of G* (the circular cylinder in fig. 3.2.3). The projection of
their intersection, for various relative positions of the two ruled surfaces, produces those

(k, k)-plots and gives rise to the above classification of the solutions.

k_a (s) , kl=1 , k3=0.5

1 5
g 0.5
0.6
-2 - 2
0.4
~0.5
0.2
10 -5 0 5 10 ° it
(a) (b)
Fig. 3.2.4: Solutions of the Bryant—Griffiths Optimality Constraint when H > C
k_hyp (s) , H=1 , &=0
s
710 5 10
(a) (b)

Fig. 3.2.5: Solutions of the Bryant—Griffiths Optimality Constraint when H = C
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Fig. 3.2.6: Solutions of the Bryant—Griffiths Optimality Constraint when —C < H < C

Proof
Let C # 0. From (3.2.17) we have:

dk

1
(%

)2=0C%—(H--k?)?%= -7 [* — 2(H +C)] [x* — 2(H - C)] . (3.2.20)
Define g¢; (x) ef [% — 2(H + C)] [s? — 2(H — C)]. To specify its roots, let def 2 and

define g5(K) < [K — 2(H + CO)][K — 2(H - C)], whose roots are K; = 2(H + C) and

K3 = 2(H — C) . Observe that K1,K3 € IR and K3 < K;. In order to solve (3.2.20),
it remains to specify the roots of g;(x). The real roots of g1(k) specify the constant
solutions of (3.2.17). Consider the following cases:

1. H>C

In this case 0 < K3 < K;. Define x; def VK1 and k3 def v K3 and observe that
0 < k3 < 1. Then, the roots of g;(x) are {x1,—k1, %3, —r3} and from (3.2.20)

dk 1 1

(5)2 = *Z(N2 - K1) (% - K3) = Z(n% — k?2)(k? — K2) . (3.2.21)

From this we see that for ‘cil—'; to be real, we should have (—x; < k < —r3) or (k3 < K <

K,l).
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Let 3 < £ < & and assume £(0) = k3. Then 4 > 0 and from (3.2.21) and (2.2.26) we

have:
de, 1 o o2 2
Ts) = 31/ (62 = w2 = K3)
K(8) 8
N / dk 1 /dt
2 2\(2 _ 2 2
2 Vs R —5) 2 (3.2.22)
/ ———1
= _]‘_nd—l(’{’('s) , K’l K’3 ) — f
K1 K3 K1 2
= k(s) = k1 k' nd(%s,k) = K1 dn(%s + K(k), k) ,
where nd and dn are the Jacobi elliptic functions with modulus k = VrZ=rs® and

K1

def

complementary modulus k' = #2. Also, let m = k2. The solution x(.) has period T' =

%ZK (k) = %ﬁﬂ, where K (k) is the complete elliptic integral of the first kind. This

solution is shown in fig. 3.2.4 (for k; =1 and k3 = 0.5).

Now assume £(0) = «; . Then %8 < 0 and from (3.2.21) and (2.2.27) we have:

ds 1
() = =5/ (2 =) (2 = 3)
K1 d 1 8
= / r = —/dt
) ) 2
K{(s) 0 (3.2.23)
N 1 dn_l(n(s) , VK12 —/<c32) _s
K1 K1 K1 2
= k(s) = k1 dn(%,k) .
Let —k1 < K < —k3 and assume £(0) = —x;. Then ‘fi—'s‘ > 0 and from (3.2.21) and

58



(2.2.27) we have:

de , 1 5 5 5
Ts) = 51/ (2 = ) (x2 — })
n(s) S
N ds _ l/dt
2 _ L 2\(x2 _ 2 2
o, VKT = w2)(62 — ) 0 (3.2.24)
- N/ ]
= idn—l( H(S) , K1 K3 ) — f
K1 K1 K1 2
= k(s) = —Ky dn(%,k) :

Now assume £(0) = —k3. Then 25 < 0 and from (3.2.21) and (2.2.26) we have:

T ) =5/ - )2~ )

k(s) s
N / dk 1 /dt
2 _ 2\(e2 _ 22 2
I, Vit —r2) (K2 — ) 0 (3.2.25)
= ind~1(_ﬁ(s) ) =73 ) =3
K1 K3 K1 2

= K(s) = —k k' nd(%s, k) = —k: dn(%s + K (k) k) .

22H=C
In this case 0 = K3 < K;. Define x; def VvK; and K3 def VK3 = 0 and observe that
0 = k3 < k1. Then, the roots of g;(x) are {1, —#1,0 (double root)} and from (3.2.20)

we get

dr 1
(d—s)2 = er(mz —K?). (3.2.26)

Observe that ‘fi—': is real only when —k; < K < k1. From (3.2.26) we get:

de 1 2 o
e i—Z—m/HI - k2. (3.2.27)

. . . def
= K .
By integrating and after defining § ln(~——1’——n1+ s ), weget for 0 <k < kKyp:

k(s) = K1 sech(%s +9) (3.2.28)
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and for —x; <k <0:

K(s) = —k1 sech(%s +6). (3.2.29)

The positive solution is shown in fig. 3.2.5 (for § =0 and H = 1).

3. - C<H<C

In this case K3 < 0 < Ky . Define def vKi and k3 def v/ —Ks3. Observe that when
H < 0 we have 0 < K1 < k3, when H = 0 we have 0 < k1 = k3, and when H > 0 we

have 0 < k3 < k1. The roots of g, (k) are {k1,—~1,1k3, —ik3} and from (3.2.20):

(B = 2k~ ?) (62 4+ K) =

s (87 — %) (K% + K3) - (3.2.30)

N

From this we see that for ‘fi—': to be real, we should have —k; < k¥ < k1. We distinguish

the cases 0 < k < k1 and —k; <k <0.

Let 0 < & < 1 and assume x(0) = 0. Then %&£ >0 and from (3.2.30) and (2.2.23)

we have:

de 1
==V =R + )

r(s)

8
ds 1/

= == [ dt
NCETSICET MY

0

(3.2.31)
1 1, VK + RS s
= d ’ k)=
K,% + H% ° K1Kk3 w(s) ) 2
/2 4 2 25 .2
= k(s) = k1K' sd(—ﬁl;_ 5 , k) =Ky cn(————nl;_ B+ 3K(k), k),
s k = —u is k' = — ks
where the modulus is £ = e and the complementary modulus is k¥’ = T
. . _ 2 _. _8K(k)
The solution  has period T' = \/W‘lK(k) VT
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Now assume that k(0) = ;. Then % < 0 and from (3.2.30) and (2.2.21) we have:

2 (5) = 35— R2) (2 1 R3)

K(s) s
#—/ dr —l/ﬁ
V(53 — k2)(K2 + K3) )
oV ¥ (3.2.32)

where the modulus is the same as before.

Let —k1 < £ < 0 and assume £(0) = 0. Then %& <0 and from (3.2.30) and (2.2.23) we

¥

have:
dk 1
() = =5/ (82 — K2) (82 + K3)
"7 d 1 [
K
N - —/dt
) V(-2 + k3 2
2 2
1 Sd_l(\/ml—%/cs_ﬂ( s

= s), k)= -
VK2 + K3 K1K3 )» k) 2
/12 2 /2 2

= K(s) = "‘K;lk’ Sd(Ms k MS

5 , k) = k1 en( 5

+K(k), k),

(3.2.33)

where the modulus and complementary modulus are the same as before.
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Now assume that (0) = —k;. Then % > 0 and from (3.2.30) and (2.2.21) we have:

) = (= W)+ R

/21 2 7 2
= k(s) = —Ky cn(—’%—ﬁs, k) = Ky cn( K12+ K3s+2K(k), k),
(3.2.34)

where the modulus is the same as before.
4. H = -C

In this case K3 < Ky = 0. Define &1 def /=K1 and k3 def v/—K3 and observe that
0 = k1 < k3 . Then, the roots of g; (k) are {0 (double root), ik, —ix3} and from (3.2.20)

1
(3—52 = —inz(nz ~ Ka) = —#2(s + 83) <0. (3:2.35)

From this we see that the only real solution in this case is x(s) = 0.
5 H< —-C
In this case K3 < Ky < 0. Define &, def v—K1 and k3 def v/—K3 and observe that

0 < k1 < K3 . Then, the roots of g; () are {ik1, —iK1,iK3, —ik3} and from (3.2.20)
dk ., 1 1

()= —Z(Hz — K1)(k® — Ks) = —Z(nz + k(K2 +K2) <0. (3.2.36)

From this we see that there are no real solutions in this case.

6. (Constant solutions)

Consider the case 4£(s) = 0. The real roots of g; (k) ©f ot — 4AHK? + 4(H? - C?)

are then:

+,/2(H £ C), for C < H;

0 (double root) , +2v/C, for H = C;

K(s) = +v/2(H +C), for ~C < H < C;
0 (double root) , for H = —C;
No real solution, for H < —C;
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From the real roots of g;(x) we get the constant solutions of (3.2.17), which correspond
to linear segments (k(s) = 0) or circular arcs (k(s) = ko # 0) .

Observe that the solutions for H = C and H = —C are limiting cases of the elliptic
solutions. In the first case, the modulus & tends to 1 as H — C and in the second k
tends to 0 as H — —C (c.f. equations (2.2.9)).

Let C = 0. From (3.2.17) we have:

(%)2 =—(H - %52)2 <0. (3.2.37)

This leads to imaginary ‘;—’:, except when k(s) = £v2H .

3.2.6 Integral Curves

Assume that the optimal curvature x(s) has been specified from the Bryant-Griffiths
optimality constraint of the previous section for the system (3.2.1) parametrized by
arclength for 0 < s < L and with known boundary conditions ¢(0) and o(L), i.e.
2(0) = 2o, y(0) = yo, (L) = =1 and y(L) = y1.

By rearranging (3.2.1) we get:

(fj;) () = (_ o NE)S)> (32) .
()= (L% ) ()

Both systems are of the form z(s) = A(s)z(s), where z(.) € IR?, with A(s) and [A(7)drT

(3.2.38)

commuting. Then, defining A(s) = [ &(7)dr , their solution is:
0

() = [ (%) )] (229)

= (come A ()

(3.2.39)
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() =om [ (%) ") ar] (22)

0
= (IO o) (e
do

Moreover, since £k = 2, we have:

8

M@=OW+MQ=GV+/NHMW

If 6(0) = 6 and O(L) = 6, are known, then
A(L)=0,—06, .

By integrating (3.2.1) we get:

8

ug:am+/mwmw
0

= z(0) + cos gy /cos A(r)dr — sinOO/sinA(T) dr ,
0 0

8 8

=y(0) + sin00/cos A(T)dr + cos 00/sinA(r) dr .
0 0

(3.2.40)

(3.2.41)

(3.2.42)

(3.2.43)

(3.2.44)

Define A(s) def J cos A(t) dr and B(s) e [ sinA(7) dr . Then from (3.2.43) and (3.2.44)
0 0

and after taking the boundary conditions z(0) = z¢, y(0) = yo,2(L) = z; and y(L) = y;

into account, we get:

A(L)cos @y — B(L)sinby = 1 — 2o ,
A(L)sin€y + B(L) cos by = y1 — yo
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and from these:

A%(L) + B(L) = [z1 — 2] + [y — y0]? . (3.2.46)

Observe that for a periodic solution with z; = ¢ and y; = yo, we have A%(L)+ B?(L) =
0. Provided A%(L) + B?(L) > 0, we can solve (3.2.45) and (3.2.46) for cos 8 and sin 6 :

cos Oy = M—}—B—z(L)[A(L)(mI — x0) + B(L)(y1 — v0)] »

. (3.2.47)

S BT+ D

[A(L)(y1 — o) — B(L)(z1 — x0)] -

If L is given, together with (zo,y) and (z1,y1) (elastica problem), then, after
we specify x from the Bryant-Griffiths equation (3.2.17), we can use (3.2.47) to find the
necessary o and (3.2.41), (3.2.43) and (3.2.44) to specify the corresponding trajectory

g of our system.

If L is free, but 8(0) = 6y and 6(L) = 6, are given, in addition to (z¢,yo) and (z1,y1)
(free elastica problem), then, after we specify s from the Bryant-Griffiths equation
(3.2.18), we can use (3.2.45) or (3.2.42) and (3.2.46) to specify L and the constant C
of k. Then, from (3.2.43) and (3.2.44) we specify the corresponding trajectory g of our

system.

We now apply the above integration procedure to the various solutions of the

Bryant—Griffiths equation.

1.H>C

Consider x(s) = x1dn(%2,k) , with k = —VM::'%? Then from (2.2.14) A(s) =

2sin™ (sn(&42, k), for s € [-Z,Z] . Moreover, from (2.2.21), (2.2.8), (2.2.10) and
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(2.2.14) we have:

A(s) = /cos A(r)dr = :1 - 2sin2(A(T)): dr

o,

o

8 ~ -
=/ 1~ 2sn%(=—,k)|dr
- |

8 38

B(s) = /sinA(T)dT = /2sin(A(27))\/1 - sinz(A(zT))dT

0

(=]

= /2sn(m—7,k) cn(m,k)dT
2 2
0

4 anre
_mkz[l dn( 5 k)],

for s € [-Z,Z] . From this and (3.2.41), (3.2.43), (3.2.44) and (3.2.47), we get the system
trajectory and 6. In fig. 3.2.7, the curve (z(s),y(s)) is shown (for k; = 1 and k3 = 0.5).
2.H=C

Consider £(s) = k1 sech(%+s + 6). Then A(s) = 4[tan~" (e 7 +%) — tan~'(e’)] and

8 K
£ 8 Dezs+E& D+E
A(s) —/COSA(T)dT— (1+72)25+ o+ 22 [1+72e”13 - 1+72] )
0
L "
, D 8 Ev?e?s —D E42-D
B = AlT)dT = — -
(5) /Sm (r)dr 7(1+72)2s+n17(1+72)2[ 1+12ems 1442 |

where y =l , D=4y?(1 -y and E=1—-642+~+*. When § =0 :

— st 2 fann(™ = A1~ sech(™
A(s) = S+/<;1 tanh(zs) and B(s)—m1 [1 sech(2s)].
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Trajectory for k_al(s) , Y1=1 , k3=0.5 , -20<s<20

2. Trajectory for k_hyp¥s) , H=1l, d=0 , -6<s<6
2
2
1.
1\5
1 1
5 0.5
ar -2 2 r .
-2 -1 1 2
Fig. 3.2.7: Integral Curves for H > C Fig. 3.2.8: Integral Curves for H =C

From those and equations (3.2.41), (3.2.43), (3.2.44) and (3.2.47), we get the system
trajectory and 6y . The curve (z(s),y(s)) is shown in fig. 3.2.8 (for h =1 and 6 = 0).

3. -C<H<C
Consider k(s) = &1 cn( N%;Ngs, k), with k = —%ﬁ . Then from (2.2.14) we have:
K/l K43

A(s) =2sin ' (k sn(@s, k)), for s € [-Z, Z] . Moreover, from (2.2.10) and (2.2.14)

we have:

A(s) = [ cosA(T)dT =

o,
o\m
—

!

()
wn
@,
=]

[+
~~
=
M
N’
~—
—_
=¥
\]
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B(s) = /ssinA(T)dT = /32sin(A(T))\/1 - sinZ(A(T))dT
0 0

2 2 2 2
:/2ksn("”1+“3 k) dn(MEERS L g
2 2
0
2 2
_ 4k [1—cn( K{ + K3 ,k‘)],
Tl 2

for s € [-Z,Z] . From those and equations (3.2.41), (3.2.43), (3.2.44) and (3.2.47),

we get the system trajectory and 6. In fig. 3.2.9, the curve (z(s),y(s)) is shown for

various values of k; and k3 (notice that the symbol m in those figures is defined as
def

KitKS

Trajectory for k_b(s) ,¥3=0.57,m=0.75,-20<s<20

Trajectory for k_b(s),k¥=0.457,m=0.827,-20<s<20

6. (Constant solutions)
Let x(s) = 0. Then A(s) = 0. From (3.2.41), (3.2.43) and (3.2.44):

9(8) = 90 )
z(s) = zo + cos fys ,

y(s) = yo +sinfbys ,
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Trajectory for k_b (s)¥k3=0.35,m=0.9,-20<s<20

()
Fig. 3.2.9: Integral Curves for -C < H < C

for all s € [0, L]. Moreover, from (3.2.47) for A(s) = s and B(s) = 0, we get:

cosfy = I ;xo , sinfy = yLE—ﬂ .

This is a straight line in IR2.
Let k(s) = so # 0. Then A(s) = Kos. From (3.2.41), (3.2.43) and (3.2.44):

0(s) = 0y + Kgs ,

1 1
z(s) = xo + — cos Oy sin(kps) — — sinGp[Ll — cos(kps)] ,
Ko Ko

1 1
y(s) = yo + — sin g sin(kos) + —cos o1 — cos(kos)],
0 0

for all s € [0,L]. Moreover, from (3.2.47) for A(s) = L sin(kgs) and B(s) = ;15[1 —

Ko

cos(kgs)], we get::

080 = 5 C‘Z‘;(KO Zyy (1 = 20) sin(soL) + (41 = 30} (1 = cos(roL))]
sinfy = 201 = c’:)(;(moL)) [(z1 — 2o)(cos(koL) — 1) + (y1 — yo) sin(koL)] .
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This is a circular arc in IR? with center (zo — % sinfy, yo + % cos fy) and radius % that

starts at the point (zg,yo) and ends at the point (z1,y1).
3.3 Curvature—based Planning for 3—dimensional Manifolds

3.3.1 Curvature—based Planning

Consider now the case when the planar platform translates and rotates or when
the spatial platform translates in IR?. The configuration space is then a 3-dimensional
manifold, in particular SE(2) in the first case and IR® in the second. If we consider

motion on a chart of SE(2), the problem reduces to IR® in both cases.

Let o(s) = (z(s),y(s),2(s)) be a curve in IR® parametrized by arc-length and
with total length L. The tangent vector field to o is defined as v1(s) = ‘é—‘;(s). The
curvature of o is defined as k(s) = ”vl(s)“ 4> where ||.||;, is the Euclidean norm in IR".

dv

The principal normal vector field to o is defined as vy(s) = "—d_gl—*T = % The binormal
ds |13

vector field to o is defined as v3(s) = v1(s) X v2(s). The torsion of o is defined as
7(s) = — < v3(s),v2(s) >3, where <, >, is the inner product in IR". The Frenet-Serret
apparatus for the unit speed curve o is {k(s), 7(s),v1(s),v2(s),v3(s)}. From the above

definitions and the Frenet-Serret equations we get:

%;1(3) = 1)1(8) )

%(3) = 5(3)122(3) )

d (3.3.1)
%(S) = -K,(.S)’Ul(s) + 7'(3)7)3(3) 3

%(s) = —71(s)va(s) .

Defining g = (10% 111) = <1E)1 162 163 T) € G = SE(3), the system (3.3.1) can
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be viewed as a left-invariant system on the Lie group G = SE(3) of the form:

0 —x(s) 0 1
dg , , k(s) 0 —-7(s) O
E(s) = 9(s) 0 7(s) 0 0
0 0

0 0 (3.3.2)

= g(s)(.A4 + k(s)Asz + T(S).A1)

= Xy4(g(s)) + () X3(g(s)) + 7(s) X1(g(s)) ,

where the left-invariant vector field X;(g(s)) def g(s)A; and where the matrix A4; belongs

to the set
{A1, Az, A3, A, As, As} =

0 0 0 O 0 010 0 -1 0 0

00 -10 0 00O 1 0 0O

01 0 O0f’{-100O0}°{0 0 0 O0y"

00 0 O 0 00O 0 0 00O
0 0 0O 0 0 0O 0 0 01
0 0 0O 0 0 01 0 00O
000 1)’{00O0O0OC)’10 0 O0 O]~
0 00O 0 0 00O 0 000

As we see from the following Lie bracket relationships, this set forms a basis for t@é:‘[ﬁg
Algebra G = se(3).
[A1, Ag] = As, [A1, As] = —=Ag, [A1, Ad =0, [Ar, As] = A, [A1, Ag] = —As,
[A2, A3] = A1, [Az, As] = —As, [A2, As] =0, [A2, Ag] = Ay,
[As, A4] = As, [As, As] = —As, [A3,A6] =0,
[Asg, As] = [A4, Ag] = [As, As] = 0.
Similar results hold for the left-invariant vector fields X; under the Jacobi-Lie bracket

operation.

Consider now the following variational problem:

Problem P;:

Minimize

L
n= %/nz(s)ds . (3.3.4)
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on the dynamical system %% = g(s)(As + K(s) A3 + 7(s)A;) with g € G = SE(3),

and with (k, 7) € U = IR, X IR and with given boundary conditions ¢(0) and o(L).
This problem falls in the framework of problems studied by (Griffiths [1983]; Langer &
Singer [1984]) and (Jurdjevic [1990]), where it was shown that the curvature and torsion

of the optimal paths satisfy: x?r = C; and 2%’} + k3 — 20k — 272k = 0, where C; and

C, are constants.
3.3.2 The Optimality Constraint

Theorem 3.3.1 (Griffiths [1983]; Jurdjevic [1990])
The curvature s and torsion 7 corresponding to the regular extremals of the vari-
ational problem of minimizing 3 jf k2(s)ds on the system (3.3.1) satisfy the optimality

conditions:

d2
k?7 =C; and 2d_sl; + k% =20k — 2% =0, (3.3.5)

where C; and Cy are constants.

|
3.3.3 Solutions of the Optimality Constraint
Combining equations (3.3.5), we get:
s 4 c?
2;1?4’&7 —202/‘6—2;; =0.
Multiplying by %’si and integrating, we get:
dx 1 c?
() + 36 —Con* + 5 =, (3.3.6)
where C3 & k% + 1Kot — Cako® + %i
0
Let u & 2. Then:
d
<d—3>2 +ud — 4Cou? — 4C5u +4C2 =0, (3.3.7)

which is solvable by elliptic functions.
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Let Py(u) def 3 4Cou? — 4C3u + 4C2. This cubic will have in general three roots,

which will be denoted u1, us, us.

By the substitution y ef - £C,, we bring P;(u) to the reduced form

def
Py) S y* +py+gq,

where p def —%(303 +4C2) and q qef 24—7[—32(,’3 — 36CyCs + 27C2] . Let yy,v2,ys be the

roots of Py(y).
Consider the discriminant D % ( £)3 + ()2 of Py(y). If D > 0, then P5(y) has one
real root y; and two complex conjugate ones y, and ys, while if D < 0, Py(y) has three

real roots y1,y, and y3 (may not be distinct).

Let w & (-%+ VD)% and v ef (-3 - vD)3. The roots of Py(y) are then :
Nn=w+v

1 V3
Y2 = -§(w+v) +Z—2'(’w —v)

1 V3
Ys = —§(w+v) —1—2‘(70—”)

and the roots of P;(u) are
4 .
uj=yj+§C'2 , forj=1,2,3.

Observe that u; is always real.
The generic solution of (3.3.7) involves elliptic functions. Consider the case D < 0 :

In this case all roots of P;(u) are real. Observe that if C; < 0, then C3 > 0. Then,
by Descartes’ rule of signs, P;(u) should have two positive and one negative root. Let
—u1 < 0 < up < uz be those roots (this is a permutation, with possible sign change of
the roots we defined earlier). Then: P;(u) = (u + u;)(u — u2)(u — u3) and from (3.3.7):
(‘é—;‘)z = —Pi(u) = (u+u1)(u — uz)(us — u) . In order for 2 to be real, we should
have Pi(u) < 0 whenever u is not constant. Thus, we either have u < —u; < 0 or
0 < uz < u < ugz. In the first case, since k? = u, we will not get real x. We only consider

then the case us < u < us , when:
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du__

o= 4/ (u + 1) (u — ug)(us — u) , (3.3.8)

Let u(0) = uz and %% < 0. From (3.3.8) we have:

= V) = u2) s — W)
u(s) d s
— Y = [ ds
N / ViF e —wa)s - /

Gradstein & Ryzhik [1980 2 _ Uz —u
( _Ryshik [1980)) — k) = s
VU3 + uy Uz — Uz

_—‘ms k)

= u(s) = us — (us — up) sn?(

2 ?
(3.3.9)
SV P Bk P TR AL Rl A
Uusz 2
= w1 — 2 an(rs, )
= ug|l — —5sn’(rs, ,
— Uz —u 2 U _ Vus4u
where k = (/222 | _m_au_landr_@_

- _ _
The solutions of (3.3.5) are then k(s) = £4/u(s) and 7(s) = Ok

3.4 Singular Configuration Avoidance for Parallel Manipulators

Consider the planar parallel manipulator examined in section 2.5. The kinematic
singularities of the system divide the configuration space into four areas (fig. 2.5.5). We
saw that for several grasping and sensor reorientation tasks it is beneficial to optimize
the crossing of the singular surfaces. From fig. 2.5.5 it can be seen that we may have
to cross them at most twice for every choice of initial and final configuration. In case
the crossing of the singular surfaces cannot be avoided, the most favorable point for that
has to be specified, since, if we only drive through the singular surfaces, the dynamics of
the system will determine the platform configuration after crossing the singular surface.
Therefore, we should either try to avoid singular configurations as much as possible

or just drive through them, in such a way that the dynamics of the system resolves
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the indeterminacy in the platform motion. A planning scheme not restricted to the
traditional linear configuration—space trajectories can be very important in this respect.
If we consider only linear configuration—space trajectories, our system may have to cross
unnecessarily the singular surfaces or follow paths that are longer than needed.
Example 3.4.1

An example of this is the case when the platform translates and rotates, keeping the
x—coordinate constant (say £ = z9). The corresponding singular surfaces are: x =
{(z,y,0)|ly = Bsind, z = zo} and x3 = {(z,y,0)|ycos@ = (zg — &) sinby, T = x4} .
Those singular surfaces are shown in fig. 3.4.1 for the case zo — a > . If we consider
moving from a configuration go to g; along the linear trajectories I or II, we’ll have to
cross unnecessarily the singular surface X,SI) twice (fig. 3.4.3 and 3.4.4). Trajectory III is
better in this respect, but is also undesirable, since it is not smooth and it is much longer
than necessary (fig. 3.4.2). It is then beneficial to have a family of configuration-space
paths, which on one hand is richer than the set of straight line segments, but on the

other retains some of the fundamental properties of the straight lines.

Path 1 (no singularities)

12

10

-2 -1 0 1 2
y -3 2 -1 0 1 2
Fig. 3.4.1: Singular Surfaces Fig. 3.4.2: Trajectory III

We can use the results of section 3.2, in order to specify analytically a system
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Path 3 (linear, singularities encountered) Path 2 (singularities encountered)
14 14

12 12

10 10

Fig. 3.4.3: Trajectory I Fig. 3.4.4: Trajectory II

trajectory g(.) that avoids singular configurations. Assume that we are given go € SE(2)
and g; € SE(2), i.e. the positions and tangent vectors at the end-points of the path. In
this case, the length L of the path is free, thus H = 0, k1 = k3 = V2C and k(s,C) =

K242 . & _ .
K1 cn(@s,k), with k& = _n§1+7§ = 32Q Then A(s,C) = 2sin~! (—\}—5 sn(vVCs, k)).

Moreover, A(s,C) = —s + %E(am(\/c-s),k) and B(s,C) = \2/—%[1 —en(VCs, k)] .

We need to specify C and L from the end—point data. From the boundary conditions
(3.2.42) and (3.2.46), i.e. from A(L,C) = 6, — 6y and from A%(L) + B%(L) = (z; —
20)? + (y1 — 40)?, we get:

a?(A0) + B2(A6)

C =
(1 —30)% + (y1 — Yo)?

and

_ 1 -1 1 . 01—00 _ 1 -1 1 . 91_00
L=-=sn (ksm( 5 ),k>_\/(_?F(sm (ksm( 5 ).k,

where o and 3 are known functions of A = 6; — 6y. The last expression is valid for
0 < %sin(e—lg—o‘l) <1,ie for 0 < Af < 7 or 37” < A < 2. Outside those segments,

we need to split the path in several segments and repeat this process for each segment.
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The curvature at the joints of those segments should be continuous. If we define

v(6) dof n-1 (% sin(%),k) = F(sin_1 (% sin(é’1 ;90)),k> ,
we have:
a(8) = —(0) + 2E(am(y(0)),k) and B(6) =1 — cn(y(8),k) .

Then we know A(s), A(s) and B(s), thus the system trajectory g(s) can be specified by
(3.2.41), (3.2.43) and (3.2.44) (fig. 3.4.5).

Platform path, no singularities

theta
=

-3
-z2-1,5-1-0.50 0.5 1 1,5 2 &
» -3-2-10 1 2 3

(a) (b)

Fig. 3.4.5: Curvature-Minimizing Trajectory
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CHAPTER FOUR

G-SNAKES:

NONHOLONOMIC KINEMATIC CHAINS
ON LIE GROUPS

4.1 Introduction

In this chapter we are interested in groups with a real finite-dimensional non-abelian
Lie algebra G (of dimension n) and #-node kinematic chains evolving on them under a
certain class of nonholonomic constraints, where the constraints force the velocities of
the system to lie in a subspace of G, which is not a subalgebra of G but which generates
the whole algebra G under Lie bracketing. We refer to systems of this type as G-Snakes
and observe that they possess an interesting geometric structure: When £ = n and the
codimension of the constraints is one, the configuration and shape spaces of the system
specify a principal fiber bundle and the nonholonomic constraints determine a (partial)
connection on it, at least away from certain configurations which we call nonholonomic
singularities (higher codimension cases will be treated briefly in section 5.4).

In section 4.2, we consider the kinematics of an ¢-node kinematic chain evolving
on an n-dimensional Lie group. The Wei-Norman representation of G, which expresses
an element of the group as a product of the one—parameter subgroups of G, and the
adjoint action of G on G allow us to express in a compact form how the motion of each
node of the kinematic chain relates to that of the other nodes and to the global motion
of the system and how this latter becomes a function of just the shape and the shape
controls because of the nonholonomic constraints. We show that the configuration and
shape spaces of the G—snake specify a principal fiber bundle and that the nonholonomic
constraints determine a connection on it.

In section 4.3, we focus on 3—node G-Snakes evolving on 3—dimensional Lie groups

(£ = n = 3). In particular, we examine, apart from SF(2), the Heisenberg group H(3),
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the Special Orthogonal group SO(3) and the Special Linear group SL(2). We derive the
corresponding Wei-Norman representation, the system kinematics, the connection and
the nonholonomic singularities in each case.

For reasons having to do with ease of exposition, we limit ourselves to matrix Lie

groups. Extensions to arbitrary Lie groups are easy.

4.2 Nonholonomic Kinematic Chains on Lie Groups
In section 4.2.1 we derive the kinematics of the ¢~node kinematic chain. In section
4.2.2 we examine the geometric structure of the chain kinematics when nonholonomic

constraints are present, using the theory of connections on principal fiber bundles.

4.2.1 The /—node Kinematic Chain
We consider an ¢-node dynamical system that evolves on the Cartesian product

Q=G x---x@G.Its trajectory is a curve g(.) = (91(')’ e ,ge(.)) C Q. On each copy of

£ times

G, the system traces a curve g (.) C G, which represents the trajectory of the i~th node
1

in time and is such that
9 =T.L, -§.=g,§i, i1=1,...,¢, (4.2.1)
i 3 % i

where fi(.) €¢G,i=1,...,£ We think of the gi’s as the nodes of a kinematic chain, in
which case @ is its configuration space.

Let the instantaneous shape of the kinematic chain be given by the (£ — 1)-tuple
JES =G x -+ x G, where

(£—1) times

(91,2’92,3""’92-1,8

901 = g;lgi_'_l, i=1,...,0—1. (4.2.2)
We call S the shape space of the kinematic chain. A pair of adjacent nodes of the chain
constitutes a module. The gm__i_l’s can be regarded as the shapes of the modules of an
(£—1)-module kinematic chain. We refer to the corresponding curves §i’i+1 C G specified
by (2.3.7) as the shape variations:

g

L A T R R LS A B (4.2.3)
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We can generalize the notion of a module to include pairs of nodes which may not be
adjacent. Consider the module that consists of nodes 7 and j The corresponding shape

g. and £ are
1,3 i,

g =g97'g. =g g i<j (4.2.4)

and

g =TL, & =g & ,i<j. (4.2.5)

i,J h,j  hd 4,3 74,3
We can think of the £ ’s as characterizing the global motion of the G-snake system with
1

respect to some global coordinate system, while the {i j’s capture the relative motion (or

shape variation) of nodes i and j.

From (4.2.1), (4.2.2) and (4.2.3) we get:

€=¢ , tAdgn € L i=2. L (4.2.6)

i i—1,4 41

Applying (4.2.6) iteratively we can express any fz as a function of fl and of the shape

controls § ,...,{ _  as follows:
1,2 1—1,

61’ — 5‘_1’2‘ + Adg—x ¢ 4ot Adgz_,;fl,2 + Adgl—’;fl . (4.2.7)

T i—l,’i i—2,i—1

The variations in @ can then be parametrized either by ({1,52,...,52) or by
R

1 e)' In the latter case, the first element (51) captures the global mo-

tion of the system, while the remaining ones (51 g N3 describe its shape.

z—1l)
Using (2.3.10) we get:

&=, Ag-({i_l,i)Aj +3 A;({i_z’i_l)Adg_l Aj
j=1

= =1y

(4.2.8)
4+ ZA;(gl,Z)Adgz_l'Aj + Z‘Ag'(gl)Adgl'l.‘Aj .
i=1 g *

j=1
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4.2.2 Nonholonomic Constraints and Connections on Principal Fiber Bundles
In this section we consider nonholonomic constraints acting on the G—Snake and we

show that they determine a connection on the principal fiber bundle associated to our

problem.

Codimension 1 Constraint Hypothesis: Assume that the evolution of system (4.2.1)

on each copy of G is constrained to lie on an (n — 1)-dimensional subspace h of the Lie

algebra G, where h is not a subalgebra of G, i.e.

g €hi=1,.. L. (4.2.9)

Then, for some A%, € G* (not necessarily an element of the basis {A?, i =1,...,n}) we
have:

h = Ker(A%). (4.2.10)

The constraints (4.2.9) can be expressed as:

AE)=0i=1,...,L (4.2.11)

i
The constraints (4.2.11) are linear in the components of §1 and those of the shape
controls £ . This can be made explicit by defining the composite nf—dimensional velocity
i,J

vector ¢ of the kinematic chain:
def

CE(E e g g7

1
= (AL(E) - M(E) Ai(E, ) - A, )T

Theorem 4.2.1

The £ nonholonomic constraints (4.2.11) can be written in matrix form as:
A(gl,z,...,ge_l’e)g“ =0, (4.2.12)

where A is a function of only the shape of the system and is a block lower triangular

¢ x nf matrix of maximal rank of the form

(*1,1 0 0 0 0 0 0
*12 *22 0 0 0 0 0
Do 0 0 0
4= X145 kg4 e ki1 ¥ 0 0 ’ (4.2.13)
0
*1’e *2’£ - *’i—l,e *i,é - *l—l,e *Z,Z
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with the 1 x n block *, 4, defined for p < q as:

*pg = <~AE¢(Adg;;A1) Ai(Adg—l Ay) ) .

p,q

Proof
From (4.2.8) and (4.2.11):

A(e) =3 Mg ) A4 =0,
j=1

Ale) = DA, DA + DA, A Adg )
P prt i=1,i (4.2.14)

o 3D AE AL Adg1 ) + DT A€ ) AL (Adys Ay),
i=1 g "

i=2,... 0

The diagonal blocks *,, of A have the form ( A (A) - A(A) ), therefore they

contain at least one non-zero constant term. Thus A has always maximal rank.

Corollary 4.2.2

Assume £ > n. After possibly reordering its elements, we partition ¢ as (g;), with
C2 an {—dimensional vector containing the components of ¢ . (and possibly some compo-
nents of shape variations), while ¢y is an (n — 1)/-dimensional vector containing only
components of shape variations. Let the corresponding partition of A be (A; A,), with

A; a £ x (n —1)¢ matrix and A a locally invertible £ x £ matrix. Then from (4.2.12):

C=—-A5y g

l—l,l)Al(gl,2,.“,gl—l,l)<1 . (4215)

1977770

The elements of {; will be referred to as shape controls.
Proof

Follows from the smooth dependence of A on the shape variables and the maximal

rank property of Theorem 4.2.1.
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The physical significance of this result is that, if the global motion of the £-node
system is characterized by the global motion of its first module (i.e. by 51), then vari-
ations of the shape (at least those which are elements of {;) induce a global motion of
the system.

Definition 4.2.3 (Nonholonomic Singularities)

G-Snake configurations ¢ € () where the matrix A; becomes singular for all possible
partitions ({1, {2) of the composite velocity vector ¢, which are such that {, contains
all the components of §; (and possibly some of the shape variations), will be called

nonholonomic singularities.

There may be configurations where the matrix A, that corresponds to a particular
partition of ¢ is singular, but by considering a different partition of ¢, the corresponding
Ag ceases to be singular. These configurations are not nonholonomic singularities.

Consider now the manifolds ¢ and S defined in section 4.2.1 and the canonical

projection 7 : @ — S defined by equation (4.2.2), i.e.

def

mg,--»9,) =

1 (91—192,...,9—1 ge) = (91’2,...,%_1’5) . (4.2.16)

-1

Lemma 4.2.4
The quadruple (Q, S, 7, G), together with the (left) action ® of G on @ defined by

o: GxQ2Q: (9,9=1(9,(9,,---,9)) > 9-a=(99,,---,99,) , (4.2.17)

is a (trivial) principal fiber bundle.

Proof

The canonical projection 7 defined in (4.2.16) is differentiable and its differential is

Tagt TeQ = Tu)S+ (9.6,--,9,8) (9,6, 5039, &, 1)) (4.2.18)
where the 61'—1 , are given by (4.2.6):
=6 Ay £ L i=20 (4.2.19)
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Thus, (Q, S, 7, G) meets the requirements of Definition 2.3.21.

Theorem 4.2.5 (Connection for case £ = n)
Away from nonholonomic singularities and when £ = n, the nonholonomic con-
straints (4.2.11) determine a connection on the principal fiber bundle (@, S, 7, G), with

the horizontal subspace defined as follows:

Hy={veT,Q|lv= (glﬁl,...,gefl) and §i € h}
(4.2.20)
={veT,Qlv=(g, ..,9,) and (2 = —A; ' (n(a) Ar(n()C1 } ,

where ¢ = (€12 -+ ¢12¢23 .. 81O T and G = (¢} -+ ¢}) T

Proof
Due to the left-invariance of our system, T,Q = {(g1§1,...,ge§£) | {i € G}. The
vertical subspace is (from (4.2.7), (4.2.17)-(4.2.19))

Vo={veT,Q|m., (v) =0}
={(9,6,--9,£) (g, ¢

1,2°1,2" 7T 7? gl—l,lgl—l,l) =0}

4.2.21
:{(9151""’94614)151,2='”=§g_1,g=0} ( )

= {(9161""’%68) |£1, = Adgi';él, 1=2,... ae} .

Physically, the vertical subspace contains all infinitesimal motions of the kinematic chain
that do not alter its shape (those are not necessarily motions that satisfy the nonholo-
nomic constraints).

To show property (1) of Definition 2.3.22, we first prove that Hy NV, = {0} and then
that dim(T,Q) = dim(H,) + dim(V,).

To show H, NV, = {0}, assume that there exists a non-trivial v € H, N V,. By the
definition of V, the corresponding shape controls are zero. Thus {; = 0 and, by the
definition of Hy, also {2 = 0. But then §1 =0 and from (4.2.21) also 51, =0,7=2,...,°
Thus ¢ = 0. Thus H, NV, = {0}.
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Now observe that, away from the nonholonomic singularities dim(H,) = nf{—£ . Further,
dim(Vy) = n . So, when £ = n, dim(H,®V,) = (nd—£€)+n=(n2—n)+n=n?=
dim(T4Q). It follows that H, ® V, = T,Q.

To show property (2) of Definition 2.3.22, consider T,®, - H, = ¢g- H, = g -

{(9.6,..,9) 1€ €hy ¥ {(g9.¢,...,996) ¢ €h}and Hyq={v€Tp,Q|v=
1°1 L3¢ [ 1°1 £ 3

(9:9) (€,-»&) and & € h} = {(99,&,--,99,£,) | € € h} . Then, obviously,
Tq®,-Hy=Hgy.,.
Property (3) of Definition 2.3.22 is immediate from the smooth dependence of A on the

shape and from the left-invariance of our system.

4.3 Three—node G—Snakes on Three—dimensional Lie Groups

Here we specialize the results of the previous section to kinematic chains on Lie
groups with 3-dimensional real non-abelian Lie algebras (n = 3). In section 4.3.1 we
consider the Special Euclidean group SE(2), in section 4.3.2 the Heisenberg group H(3),
in section 4.3.3 the Special Orthogonal group SO(3) and in section 4.3.4 the Special
Linear group SL(2).

We study 3-node, 2-module kinematic chains on each of these groups (£ =n = 3)
by deriving their Wei—-Norman representation and by defining the partial connection on
the corresponding principal fiber bundle.

Let G be one of the above four matrix Lie groups and G be the corresponding Lie

algebra. Consider the system (2.3.7) on G :

g= TeLg £=g¢, (431)

with g(.) C G and £(.) C G. The curve £(.) C G can be represented as in (2.3.10):
3 3
E=) EA=) AOA, (4.3.2)
i=1 =1

with §i = A’(¢) € IR. From Proposition 2.3.14, any g(.) C G with g(0) = I, has a local

Wei-Norman representation of the form (2.3.11):

g(t) = em ()AL g72(8) Az g13(t)As (4.3.3)
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The coefficients «y; € IR are related to the components of ¢ by (2.3.12):

Yo | =My, v21) | €, ] - (4.3.4)
Y3 ¢

3

By differentiating (4.3.3) and using (2.3.20) to get:

@ - ")’1671"41 Ale"/zAz Y343 + ,'),2671-/41 e12A2 A26’Ys-43 + ")'3671‘41 12 A2 73 A3 As

dt

= N1 7242 013 As [,'Yle—’YaAse—’YzAzAle’YzAze’YsAs + ,'),26—73A3A2673A3 + 43.A3]
=g [;ylead(—vaAs)ead(—’YzAz)Al + ;y2ead(*73-43)_A2 + 43.As] .

Thus
6 — ,-Ylead(—’YsAs)ead(—’YzAz)Al +,-),26ad(—’yaA3)A2 +’3’3.A3 ) (435)

From (2.3.21) and (2.3.22), we have for 1 = 1,2,3:
AdyA, = et gad(r24z) gad(ysds) 4, (4.3.6)

and

Adg-1 A; = etdmmAs) gad(=m2dz) gad(-mAu) g, (4.3.7)

Consider now the 2-module kinematic chain on G. From the system kinematics (equa-

tions (4.2.1)—(4.2.8)) we have:

92 = 9191,2 )
9, = 9292’3 = 9191,292’3 ’ (4.3.8)
91,3 - g1,292,3 )

From (4.2.6) we get for the corresponding velocities:
62 = 61’2 + .Adg]:lzgl I
63 - é2,3 + Ad92_f3€2 - 52,3 + Ad9§’§€1,2 + Adgi;é ’ (4.3.9)

éh1,3 - £2,3 + Adg2_,13§1’2 ’
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where € ,€,,€,€ .6, € €G.
Assume that the evolution of system (4.3.1) on each copy of G is constrained to lie on a

2-dimensional subspace h of the Lie algebra G, where h is not a subalgebra of G. Define
— (£1,2 ¢1,2 £1,2 ¢2,3 ¢2,3 ¢2,3) T — (¢l 1 ¢\ T
\ Q= (g2 22 2T and = (€¢2¢)"

Theorem 4.2.1 holds with { = (gf) From Corollary 4.2.2 we conclude that the global
velocity of the 2-module kinematic chain, as it is characterized by 61’ can be expressed

as a function of only the shape variables 9,594 and shape controls 51 ¥ 5 of the

’ E]

assembly:

G =-47'(9, 9, ,)A1(g )i - (4.3.10)

1,2’92,3

From Theorem 4.2.5, equation (4.3.10) defines (away from the singularities of A,) a
connection on the trivial principal bundle (S x G, S,7,G) with S = G x G and with

horizontal subspace:

Hy={veTQ|v=_(9,£,9,,9,,) and & € h}

={veT,Qlv=1(9,,9,¢9,8)ad =479, ,,9,,) A(9, ,,9,,)C1 } -
(4.3.11)

Subsequently, we will derive explicitly the Wei-Norman representation for each of
the Lie groups mentioned earlier and we will define the connection (4.3.11) for specific
2—dimensional subspaces h of G.

Proposition 4.3.1 (Vershik & Gershkovich [1994])

For each of H(3),S50(3) and SE(2), all 2-dimensional subspaces h of G, which are
not subalgebras, are equivalent under Aut(G), the group of automorphisms of G, and can
be represented by h = sp{A;, .42} in the basis of G (specified in the following sections).
For SL(2), there are 2 classes of such equivalent subspaces that can be represented,
respectively, by h = sp{A1, 42} and by h = sp{As, 4; + A3}.

|

Due to this result, only nonholonomic constraints corresponding to these subspaces

of G need to be considered here.
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Our main purpose in this section is to set the stage for a deeper understanding of
this novel class of kinematic chains, by cataloguing the low—dimensional possibilities.
One case, corresponding to SE(2) has already found a concrete mechanical realization
(c.f. chapter 5). Others might follow, for instance, there are possible connections be-

tween SO(3)-Snakes and the kinematics of long chain molecules (Karplus & McCammon

[1986]).

4.3.1 G-Snakes on the Special Euclidean Group SE(2)

Let G = SE(2) be the Special Euclidean group of rigid motions on the plane and
G = se(2) be the corresponding algebra with the following basis:

0 -1 0 0 01 0 0O
Ai=1 0 0],A4=10 0 0)],A43=[0 0 1 (4.3.12)
0 0 O 0 00 0 0 0
Then:
[A1, As] = As, [A1, As] = —Az, [As, As] =0. (4.3.13)

Proposition 4.3.2

Let g(0) = I, the identity of G. There exists a global representation of the curve
g(.) C G of the form (4.3.3) with

= oo

f1
62) : (4.3.14)
£

N
‘5.\5.:‘2.
~—
I

TN
|

S
oo e
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Equation (4.3.14) is solvable by quadratures:

t
n®) =m0 + [ € @dr
0

7 ms(jg_ )+vﬂmmn(j54®m0
+ O/t ¢ (1) cos < / l(a)do)d'r—l- O/t £.(7) sin( j §l(a)da>d7,

T T

v3(t) = —¥2(0) sin (/til ) + 73(0) cos (/tfl(a)da
0 0
0/t§2 sm(/ )d’r+0/t§3 cos(/t € (o )dO’)dT.

T

N——’

(4.3.15)
For the initial condition ¢(0) = I, we have v;(0) =0, i = 1,2, 3.

Proof

Since G = se(2) is solvable, the existence of a global representation is immediate by
(Wei & Norman [1964]). To see that it has the form (4.3.3) with coefficients given by
(4.3.14) and (4.3.15), we compute the RHS of (4.3.5), using (4.3.13) and (2.3.20):

(=73 A3) gad(=7242) A, — ead(—73As)(A1 + v A3) = Ay — 13 hs + 12 As

(4.3.16)
ead(—’YsAs)Az =A,.

From (4.3.1), (4.3.2), (4.3.5) and (4.3.16), we have:

§=8A1+ & A+ €3 A3

= Y1(A1 — 1342 + 72A3) + Yo A2 + Y3 Az = Y141 + (Y2 — 13¥1) A2 + (43 + v291) As -

Since {Aj, A2, A3} is a basis, we have:

S&1=71, 2=~ 1311, & =Y+ 7T -
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Solving for the 4;’s we get (4.3.14), which can be rewritten as:

n=%&,
(’Yz>=< 0 51><’72)+(§2>
Y3 =& 0 V3 €& )

This system can be solved by quadratures, giving (4.3.15).

Lemma 4.3.3
Consider the Wei-Norman representation (4.3.3) of ¢ € SE(2) determined by
(4.3.14) and (4.3.15). Then:

Adg Ay = Ay + (y2siny + 3 cos 1) Az + (—vy2 cosyr + vz siny; ) Az,
AdjA; = cos 11 Ap +siny1 Az, (4.3.17)

Adg.A3 = — Sin’)’lAz + cos8 ’)’1A3 .

Moreover,
Adg-1 Ay = A; — 13 A2 + 12 A3,
Adg-1A; = cosy1 Az — siny As (4.3.18)
Adg—lA3 = Sin’)’lAz ~+ cos 71.»43 .

Proof

We need to compute (4.3.6). For A; we have:

ead(’)‘3A3)A1 = Al + '73-/4.3
ead(’72A2)ead(73A3)A1 = A; — y3A2 + 72 A3
eod(m A1) gad(12.42) gad(15.43) 4 = A, 4 (v2siny1 +y3 cosy1) Az

+ (—y2cosy; + v3siny)As .

For A, :
ead(’ys‘AS).Az = Az

ead('yzAz)ead('ya«‘ls)_A2 = A,

ead('hAl)ead(’72A2)ead(’YsA3)_A2 = cos 1Az + siny; As .
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For A3 .

eﬂd('YaAa)AS =As
gad(1242) gad(vads) 4, — A,
ead('hAl)ead(72A2)ead(’Y3A3)A3 — — SianlAz + cOoS fylAs .

From the above, (4.3.17) is immediate.

We also need to compute (4.3.7). For A; we have:
ead(—’ylAl)Al = A
gaid(—1242) gad(-m A1) 4 — gad(=1242) 4| = Ay + vy s
etd(—13ds) gad(—r2da) gad(=mAL) g = ad(=1349) (4 + 5 43) = Ay — y3 Az + 123 -
For A :
e®d(=m11A41) A = cosy; A — siny1As
etd(-12Az) god(=mA2) g, — ad(=7242) (¢o5yy Ay — siny;A3) = cosyy Ay — siny1As
ed(=134s) gad(=71242) gad(=11 A1) f, = ad(=1343) (cos 4y Ay — sinyyAs)
= cos 1Az —siny1 A; .
For Aj :
e®d(—mA) A, = gin v1 Az + cosy1 A3
e@d(=71242) gad(—mAs) g, — e“d("yzAZ)(sin v1Az2 + cosy1.43) = siny; Az + cosy1.43
ed(=734s) gad(—1242) gad(=m1 A1) g, = ¢@4(=7543) (gin y; Ay + cosy1 As)
= siny1 Az + cosy1 Az .

From the above, (4.3.18) is immediate.

[
Using the definition of the basis {4;} from (4.3.12), we have:
cosy; —siny; 0 1 0 1 0 0
¢4 = | siny; cosyy O, et =[01 0], et =[01 v3]).
0 0 1 0 0 1 0 0 1
(4.3.19)
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Then, from (4.3.3):

cos7yp —siny; yaco8y; — y3sinyy
g = enArgmniegrds — | g 71 C€Osyp  7yzsiny; +yzcosy; | . (4.3.20)
0 0 1

Define:
def
(b = "

def .
T = Y2€087 — 38117

t t

2o+ / £2(r) cos B(r) dr — / 3(r) sin §(r) dr ,

J v (4.3.21)

def .
Y = Y28In7y1 +y3C08™M

t t

=1y + /52(7) sin¢(7) dr + /{3(7’) cos ¢(7) dt ,

0 0

where zg def v2(0) cos 1 (0) — ~y3(0) sin~y; (0) and yq def v2(0) sin 7y, (0) + 3(0) cos 1 (0).
Then we take from (4.3.20) the usual form of elements of SF(2)

cos¢ —sing x
g=|sing cos¢p y | . (4.3.22)
0 0 1

Differentiating and using (4.3.14), we have:

z = §acosy; — €3s8iny ,

Yy =&2siny; +¢{3co871 (4.3.23)
p=1¢.
Observe that
M= ¢ H
Y2 =z cos¢+ysing, (4.3.24)

Y3 = —zsing + ycos ¢
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and
GL=¢,
o =12cos¢d+ ysing, (4.3.25)
{3 =—Zsing+ycosg.
Consider now the 3—node kinematic chain on SE(2). A concrete mechanical real-
ization of such a system is the Variable Geometry Truss assembly detailed in the next
chapter. The system kinematics of equations (4.3.8),(4.3.9) apply.

From (4.3.13) we can see that there are at least two possible 2-dimensional subspaces h

of G that can generate the whole algebra under Lie bracketing:
hs = sp{ A1, A2} = Ker(A4) and hy = sp{A;, A3} = Ker(A}) . (4.3.26)

From Proposition 4.3.1 we know that those subspaces are equivalent under automor-
phisms of G (e.g. for ¢ € se(2) with coordinates (51,62,53) with respect to the basis
defined in (4.3.12), consider the automorphism v : se(2) — se(2) : (51,52,53) -y
(fl, —53,52), noting that 1(hs) = hy ). Thus, subsequently, we will consider only the
subspace hs. The nonholonomic constraints §i € hy can, then, be expressed as:

A(E)=0, i=1,2,3. (4.3.27)

i

The exact form of A, A2,(; and (3, as well as a description of the system’s non-
holonomic singularities, is presented in section 5.3, as well as possible motion control

schemes based on periodic shape variations.

4.3.2 G—Snakes on the Heisenberg Group H(3)
Let G = H(3) be the Heisenberg group of real 3 x 3 upper triangular matrices of

1 o B
the form | 0 1 + | and let G = h(3) be the algebra of 3 x 3 nil-triangular matrices

001
),Az=< ),A3=< ) : (4.3.28)

with the following basis:

ol

(== e i ]
OO =
o oo
[er B el )
o oo
[ =)
o OO
O OO
oo
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Then:
(A1, A2] = Az, [A1, A3)=0, [A;, A3]=0. (4.3.29)

Proposition 4.3.4
The algebra G = h(3) is nilpotent (thus solvable) and, from Proposition 2.3.14, any
g € G = H(3) has a global Wei-Norman representation of the form (4.3.3) with

o 1 0 0\ /¢
l=| 0 1 0]]¢& ). (4.3.30)
Y3 -7z 0 1 3

Equation (4.3.30) is solvable by quadratures:

§ (r)dr,

N =m0+ /¢

o .

72(t) =1200) + [ ¢,

o .

(4.3.31)

Y3(t) = 73(0) — 5

t
nlr)e, (r)ar + [ ¢, (ar
0

o .

T t

= 73(0) — 72(0) j ¢ (0)do - j fl('r)< / 52(0)d0> dr + / ¢, (r)dr .
0

0 0 0

Proof

Since G = h(3) is nilpotent, the existence of a global representation is immediate by
(Wei & Norman [1964]). To see that it has the form (4.3.3) with coefficients given by
(4.3.30) and (4.3.31), we compute the RHS of (4.3.5), using (4.3.29) and (2.3.20):

=14 Ay = Ay + 123,
o1 A)gad(=142) 4 = A 4 vols (4.3.32)
e“d(_”Aa)Az =A,.
From (4.3.1), (4.3.2), (4.3.5) and (4.3.32), we have:
E=86A + & A+ A3

=1 (A1 + 7243) + Y2 A2 + Y3 Az .
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Since {A;, Az, A3} is a basis, we have:

=7, =%, G=1271+7s .

Solving for the 4;’s we get (4.3.30). This system can be solved by quadratures, giving
(4.3.31).

Lemma 4.3.5

Consider the Wei-Norman representation (4.3.3) of g € H(3) determined by (4.3.30)
and (4.3.31). Then:

Adg-1 A1 = A1 + 72 A3,
Ady-1 Ay = Ay — 11 A3, (4.3.33)
Adyg-1 A3 = Az .
Proof
We need to compute (4.3.7). For A; we have:
e?d-mA) 4, = A,

etdl=nA)gad(-mA1) g, = A, + Yo A3

ad(=1343) gad(=mAz) gad(=m A1) ) = A; 4+ 45 A5 .

For A, :
esdmAD 4y = Ay — 71 As
(=M Az) god(-mA2) g, — A, — v, A4
ead(=7sAs) gad(—1242) gad (=11 4) Ay = Ay — 1 Ag .
For Aj :

ead(_’hAl)A:; = Az
ead(_72A2)ead(_71A3)A3 = As

ead(—'y;;A3)ead(—'ygAg)ead(—71Al)As — .A3 )

From the above, (4.3.33) is immediate.
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Using the definition of the basis {A;} from (4.3.28), we have:

I mm O 1
entr =10 1 o0 , erAz — | o , ev3As —
0 0 1 0

Then, from (4.3.3):

OO =
O = O

Y3
0 .
1

O - o
.—A;go

I m myve+7s
g=entendiends — [ g Yo (4.3.34)
0 0 1

Consider now the 3-node kinematic chain on G = H(3). The system kinematics of
equations (4.3.8),(4.3.9) apply.
From (4.3.29) we can see that there is at least one possible 2-dimensional subspace h of

G that can generate the whole algebra under Lie bracketing:

h = sp{A;, A2} = Ker(A}) . (4.3.35)
The nonholonomic constraints can, then, be expressed as:

AL(€)=0, i=1,2,3. (4.3.36)

)

Equation (4.3.10) holds with {; and ¢, defined as above and with:

0 0 0 000
Ay = 0 0 1 -0 00
Ay (Adg—1 A1) A3 (Adg-1 Ay) A4 (Ady-1A3) 0 0 1
2,3 2,3 2,3
[0 0 0000
=| 0 0 1000
%? =% 10 0 1

and

0 0 1
A?,(Adg_lel) A (Adgl—12A2) A% (Ady-1 As3)

As = 1, 1,2

b
3
A% (Ady-1 Ay) .A(Adgl-gAz) A (Ady-1 As3)

1,3 1,3
( (1)2 01 2 1 )
— ’Y%’ —’Y}-’ 1 .
'72'3 _71’3 1
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The nonholonomic singularities of the system are the configurations where:

det(Az) = A} (Adg1—12 A1) A5 (Adg-1 Ag) — A% (Ady—1 Ay) A, (Aczgl_l2 As)
y 1,3 1,3 )

1,2 1,3 1,2 1,3 1,2 2,3 1,2 2,3
=Nt R =N AT =0.

4.3.3 G-Snakes on the Special Orthogonal Group SO(3)
Let G = SO(3) be the Special Orthogonal group of real orthogonal 3 x 3 matrices
with determinant equal to one and let G = so(3) be the algebra of 3 x 3 real skew—

symmetric matrices. Consider the following basis for G :

0 0 0 0 01 0 -1 0
Ar=[00 -1), 4=[0 00],4=[1 0 of. (4.3.37)
01 0 -1 0 0 0 0 0
Then:
[Al ) AZ] = A3 ) [Al ) A3] = _Az ) [AZ ) A3] = Al . (4338)

Proposition 4.3.6
Let g(0) = I, the identity of G = SO(3). The algebra G = s0(3) is simple, thus,
the Wei-Norman representation (4.3.3) is only local (defined when cosvys # 0) with

coeflicients:
041 seCypcosys —secyzsinys O 3 1
Yo | = sin+ys CoS 73 0 & - (4.3.39)
Y3 —tanyzcosys tanyssinyy 1 §3

Proof

To see that the Wei-Norman representation has the form (4.3.3) with coefficients

given by (4.3.39), we compute the RHS of (4.3.5), using (4.3.38) and (2.3.20):

e (=1242) A\ = cosyp Ay + sinya s
(=13 A43) gad(=m2A2) A, = cog 2 €08 y3 A1 — €OS Yo sinyz Az + sinys Az , (4.3.40)

ead(_’ysAs)Az = sin~y3A; + cosy3As .
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From (4.3.1), (4.3.2), (4.3.5) and (4.3.40), we have:
£ =6A1 + A + &5 A;
= 41 (cos 7y, cos y3. A1 — cos 2 sinyz Az + sinya.A3)
+ Fa2(siny3 Ay + cosy3)Az) + Y3 As .
Since {A;, A2, A3} is a basis, we have:
§1 =1 €082 0873 + Y2 8iny3 , €a = —Y1co8ya8inys + Y co8ys, €3 =F1sinys +vs .

Solving for the 4;’s we get (4.3.39).

Lemma 4.3.7
Consider the Wei-Norman representation (4.3.3) of ¢ € SO(3) determined by
(4.3.39). Then:

Adg-1 Ay = cosy; cosy3 Ay — cosysinyz Az + sinyaAs
Adg-1 Az = (siny; sinyz cos-yz + cos v sinys)A;

+ (—siny; sinyz sin-yz + cos-y; cosy3) Az — siny; cosysAz ,
Adg-1 A3 = (— cosy; sin-yz cosys + sin+y; sinys)A;

+ (cosy; sinyy sinyz + siny; cosy3)As + cosy; cos yaAs .
(4.3.41)

Proof
We need to compute (4.3.7). For A; we have:

ead(—71A1)A1 — Al
e®d(=7242) gad(=m A1) A, = cog Y2 A1 + sinya A3
e@d(=71343) gad(—m2Az) gad(=71141) 4, = ¢og 2 cos y3. A1 — €08 Y2 siny3 Az + sinys A3 .
For A; :
e*d =14 A, = cosvy; Ag — sin Y1 As
ed(=r2A2) gad(—mA2) f, — gip 1 sinya Ay + cosy1. Az — sin-y; cos 243
e24(—734s) gad(=71242) gad(=m1 A1) g, — (sin+y; sinys cos s + cos~y; sinyz).A;

+ (—sin~y; sinvy, sin-ys + cos y; cos y3) Az — siny; cos y2. 43 ,
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For .As .

ead(=m AI)A3 = siny; Az + cosy1. 43
e@d(=7242) gad(-m A“)A;; = —cosy; sinya.A4; + siny; Az + cosy; cos y2.A3

(=73 43) gad(—m2Az) gad(—m A1) g, — (— cos 7y1 siny; cos 3 + siny; sin~yz)A;
+ (cos 7y; siny, sin-yz + siny; cosy3).As + cosy; cos 2. A3 .

From the above, (4.3.41) is immediate.

Using the definition of the basis {4;} from (4.3.38), we have:

1 0 0 cosyes 0 sinvyy
et =0 cosy, —siny |, €7 = 0 1 0 ,
0 siny; cosm —sinys 0 cosvys
cosvys —sinys 0
e?4s = | gin vs cosyz O
0 0 1

Then, from (4.3.3):

g=e" Ar 12 A2 513 A3

COS Y2 COS Y3 — COS Yz sinys sin vy
=|cosy; sin-ys + sin-y; sin-y2 cosys €oS“y; COSy3 — Sin<y; sinyz sin-y3 —sin~y; cosys |.
sin-y; sinvys — cos<y; Sin-y2 cos-ys sin<y; cosysz + cos~y; sinys sinvys oS 7y; COS Yo

(4.3.42)
Consider now the 3-node kinematic chain on G = SO(3). The system kinematics of
equations (4.3.8),(4.3.9) apply.
From (4.3.38) we can see that there are at least three possible 2-dimensional subspaces
h of G that can generate the whole algebra under Lie bracketing:
hs = sp{A1, A2} = Ker(A4}), ho =sp{A1, 43} = Ker(A}),

(4.3.43)
and hy = sp{ Az, A3} = Ker(A4").

From Proposition 4.3.1 we know that those are equivalent, so we consider only hs C G.

The nonholonomic constraints £, € hs can, then, be expressed as:
1

A3(€) =0, i=1,2,3. (4.3.44)
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Equation (4.3.10) holds with ¢; and (s defined as above and with:

0 0 0 000
Ay = 0 0 1 000
Ay(Adg-1 Ay) A3 (Adg-1 Ap) A4(Adg-1A3) 0 0 1
2,3 2,3

2,3

0 0 0 00 0
={. 0 0 1 00 0

and
0 0 1
4y = AZ(Adgl-lel) Al (Ad, ) As) Ag(Adgl_leg)
Ag(Adgl-g A1) A% (Ad, ot As) .A%(Adgl—; As)

0 O 1
= | sin 'y% —sin fy]l 2 cos 'y% cos 'y1 % cos 'y%

siny,”” —sinvy;™ cosy,™”  cosy,’” cosyy’

The nonholonomic singularities of the system are the configurations where:

det(Az) = ,ct{;(,cxazgl_l2 A1) A4S (Ady-1 Ag) — A% (Ad, - Al)Ab (Ady-1 As)

1,3 1,2

s 2 1 1,3 oo 1,3 . 1,2 1,2
= —sinvy,’ sm'yl’scos'h’ + sy, siny;" " cos vy, =0,

4.3.4 G-Snakes on the Special Linear Group SL(2)
Let G = SL(2) be the Special Linear group of real 2 x 2 matrices with determinant
one and let G = sl(2) be the algebra of real 2 X 2 matrices of trace zero. Consider the

following basis for G :

1 1
A1=<8 0>,A2:<(1) 8>,A3=§((1) _°1> (4.3.45)

Then:
[.A1 s .Az] =2A;, [.A1 s .A3] =-A,, [.Az y As] =A;. (4.3.46)
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Proposition 4.3.8

Let g(0) = I, the identity of G = SL(2). The Wei-Norman representation (4.3.3) is
only local (defined when e7* # 0) with coefficients:

o e 0 0 3
Yo | = ~2e e 0 &1 - (4.3.47)
Y3 —272e™M 0 1 {3

(See however comments in (Wei & Norman [1964]) and their Theorem 3. A global
representation of SL(2) can be obtained using {A4;, A1 — A3, A3} as a basis).

Proof
To see that the Wei-Norman representation has the form (4.3.3) with coefficients

given by (4.3.47), we compute the RHS of (4.3.5), using (4.3.46) and (2.3.20):
e* oA Ay = Ay — 3 A; + 27043,
(-1 As)gad(=7242) 4, = = A) — y2e™5 Ay + 27,43, (4.3.48)
e 4=7343) g, = ™ A, .
From (4.3.1), (4.3.2), (4.3.5) and (4.3.48), we have:
§=&6A1 +6A2 + &3 A;s
= H1(e7 Ay — 73" Az + 272 43) + F2€" Az + 3 s .
Since {A;, A2, A3} is a basis, we have:
L=ne™”, &= —Nrse™ + 92", =272+ 75 -

Solving for the 4;’s we get (4.3.47).

Lemma 4.3.9

Consider the Wei-Norman representation (4.3.3) of ¢ = SL(2) determined by
(4.3.47). Then:

Adg—l Ay =e ™A — ’)’3673.'42 + 2y2 A3,
Ady-1 Az = =73 P Ar + (7172 + 1)2€ Ao — 271 (1172 + 1) A3, (4.3.49)

Adg-1 Az = y1€" A — ya(11y2 + 1)eP Az + (27172 + 1) A3 .
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Proof
We need to compute (4.3.7). For A; we have:
ead(_’hAl)Al = Al
ed(=m2A2)gad(-m A1) g, — A, V2 Ay + 272 As
(=13 43) gad(=m A2} gad(=m1 A1) g, = =% 4, — Y2e™ Ay + 272 As .
For Az .
e AD Ay = —2 Ay + Ax — 21 As
ead(_72A2)ead(—71A2)A2 = —7%«41 +(1+ ’)’1’)’2)2A2 = 2v1(1 + 1172) A3
td(=713As) gud(~m2A2) gad(-m A1) 4, — —72e™ B Ay + (14 v172)2€" A,
=271 (1 +m172)As -
For ./43 :
e mAD Ay = 4 Ay + A
ed(m12 AR ad=NA) Ay = oy Ay — ya(1 + m172) A2 + (1 + 27172)As

ead(—’)’sAs)ead(—’72A2)ead(-’YlA1)_As = 716" A — v (1 + 7172)e" Az + (1 + 27172) A4s .

From the above, (4.3.49) is immediate.

|
Using the definition of the basis {A;} from (4.3.45), we have:
TAL L m T2 A2 _ 10
o= (o 1) o= (n )
s As coshys; + %sinh'yg 0
- 0 coshys — 3 sinhy;
Then, from (4.3.3):
g = enAgndrgnds _ (1+ 7172)(coshys + 3 sinhys) y1(coshys — L sinhy3)
~v2{cosh vz + % sinh~y3) coshys — 1 sinh; ‘

(4.3.50)
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Consider now the 3—node kinematic chain on G = SL(2). The system kinematics of

equations (4.3.8),(4.3.9) apply.
From (4.3.49) we can see that there are at least two possible 2-dimensional subspaces h

of G that can generate the whole algebra under Lie bracketing:
hs = sp{A1, A2} = Ker(A3) and h; o = sp{As, A1 + Az} = Ker(A} — A%) . (4.3.51)

From Proposition 4.3.1 we know that those are not equivalent. We first consider h; C G.

The nonholonomic constraints §i € hz can, then, be expressed as:
Ag(gi) =0, 1=1,2,3. (4.3.52)

Equation (4.3.10) holds with {; and ¢, defined as above and with:

0 0 0 000
Ay = 0 0 1 000
A3 (Adg-1 A1) A3 (Adg-1 A3)  A4(Adg-2A43) 0 0 1
2,3 2,3 2,3
0 0 0 000
=| 0 0 1 000
75 P01+ w01 0 0 1

and

(.A"(Ado-lAl) A (Ado—lAz) A (Adz—1A3))

b b

3 3
\A" (Ad _IAI) A% (Ad, _1A2) A?,(Adgl—;Ag)
1,3 ,

0 0 1
1,2 1,2 1,2 1,2 1,2
= 2 2 1
27. 271 (vi vg +1) 2y 37%3+

29° =29 (Pt 1) 2yt 41

The nonholonomic singularities of the system are the configurations where:
det(4;) = A, (Ady—lz Ar) AL (Adg-1 As) — A (Aalgl_l3 Az ) A (Adgl_l2 Ay)
1, 1,3 , ,
__4712 13(7%3 13+1)+4713 12(7%2 12_|_1) 0.

Now we consider the subspace hy 2 C G in (4.3.51). The nonholonomic constraints can,

then, be expressed as:

(A - Ag)(gi) =0, i=1,2,3. (4.3.53)
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Equation (4.3.10) holds with {; and {, defined as above and with:

0 0
1 -1

0
0

( (42— ) (Adyos As) (5 — A8) (A o)

0
0

0 0
0 0
(A'i—AZ)(Adgz_;Ag) 1 -1 0)

0
= _ 2.3 123 33 232_ 2,3
e+ (B0 — (e

0

2,3 0
y2le= s

and

1
Az =

0

- (3 + 1)2en”
0 0 0
0 0 0

(A1 = A3) (Adgs A1) (AL —A%)_(lAd -1 As)

FoR 4 et

(4 - 45) (4d - Ax) (A - 45) (4, - Az)

(A4
(A

1

= [ e+ ()2 (g %)Pe”
e+ (12 —(r} )2

et gty
1,3,—
" 7% +’Yz

0
— Ab)(Ad, o A3)

- A3) (Ad " A3)

—(71

-
20 2 1,2

1,
RN
(y12yp

+
+

+1)e%s’
+ 1)6731’

1 -1 0

1
1

jens”
ren”

1,2
3

The nonholonomic singularities of the system are the configurations where:

det(As) = (A} — A5) (Ady-1 (A1 + o)) (4] — A3) (Ady-: As)

1,3

— (A5 = ) (Adys (A + A2)) (4] - A3) (4d, 2 o)
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_ 12 1,2 1,2 1,2 L2 1,2 1,2 1,2
B (e BT ()2 = (1) 2eT T = (P 4 1)2es )
1,3
.(7%,36—73 b (y b33 g )6 )
- (6_731’3 + (1) — ()2 — (P + 1) e”;’s)

. (,y%,ze—’)’;xz +72 (’)’i ,2 1 ,2 + 1)673 ) — 0 ]
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CHAPTER FIVE

NONHOLONOMIC VARIABLE GEOMETRY TRUSS
ASSEMBLIES

5.1 Introduction

In this chapter we consider an instance of SFE(2)-Snakes, based on a particular
type of Variable Geometry Truss (VGT) assemblies (Miura, Furuya & Suzuki [1985];
Wada [1990]). These are structures consisting of longitudinal repetition of similar truss
modules. In the present instance, each module is implemented as a planar parallel
manipulator consisting of two platforms connected by legs whose lengths can vary under
the control of linear actuators. Each platform is equipped with a pair of wheels, so that
it can move on the plane that supports the structure (fig. 5.1.1). The wheels of each
platform are free and not actuated and their motion is independent of each other, while we
assume that the wheels roll without slipping on the plane. This imposes a nonholonomic
constraint on the motion of each platform, namely the requirement that its velocity is
perpendicular to the axis connecting the wheels. When the legs of the individual modules
are expanded or contracted, the shape of the whole structure changes. As a consequence
of the nonholonomic constraints imposed by the rolling—without-slipping assumption
on the wheels, this shape change induces a global motion of the structure, as we shall
show. These structures will be called Nonholonomic Variable Geometry Truss (NVGT)
assemblies.

The motion planning problem for such an assembly is of the nonholonomic variety.
There is a significant body of research related to such problems (see e.g. (Latombe [1991];
Li & Canny [1993]; Murray, Li & Sastry [1994])), which in general assumes cart—type
mobile robots moving under direct actuation of a set of wheels. The main difference in our
case is the prominence of shape changes as the means which, together with the action of

the nonholonomic constraints, induces global motion of the system. This is analogous to

106



Fig. 5.1.1: One module of the NVGT assembly

the idea of reorientation in free-floating multibody systems, induced by closed joint space
trajectories under the nonholonomic constraint of conservation of angular momentum
(Krishnaprasad [1990]; Krishnaprasad & Yang [1991]; Marsden, Montgomery & Ratiu
[1990]).

VGT assemblies have been examined in the past (see (Chirikjian & Burdick [1991];
Wada [1990]) and references there), but the emphasis was on its capabilities as a re-
dundant manipulator and on locomotion using snake-like motions, not on the special
problems introduced by nonholonomic constraints. A system similar to the one de-
scribed here was built by (Chirikjian & Burdick [1993]) using castors instead of wheels
in the platforms of the modules and therefore the nonholonomic constraints that we
consider here were not present.

In section 5.2, we examine the kinematics of an NVGT assembly with £ platforms
and £—1 modules. Each platform can be considered as a node of a kinematic chain. The
configuration of the —node NVGT assembly can be described by its shape and by the
position and orientation of the assembly with respect to some fixed (world) coordinate
system, thus by a total of £ elements of SE(2). Consider the i-th module that includes
the i-th and (¢ + 1)-th platforms (fig. 5.1.1). Its shape can be described by the relative
position and orientation of the coordinate frame centered at the point O;,; with respect
to the coordinate frame centered at the point O;. Then, the shape of each module corre-

sponds to an element of the Special Euclidean group SE(2) that describes rigid motions
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on the plane and, as a result, the shape of the (£ — 1)-module NVGT can be described
by (£ — 1) elements of SE(2). In (Brockett, Stokes & Park [1993]) a systematic way of
" deriving the kinematics of serial linkages is presented based on the “product of exponen-
tials” formula, where the configuration of the system is described by an element of the
appropriate SE(n) group and is expressed as a product of its one-parameter subgroups,
with one element of the product corresponding to each of the one-degree—of-freedom
joints of the linkage. The NVGT assembly that we consider here is a structure similar
to the ones described there, but the joints are more complicated parallel manipulator
modules with more than one degree—of-freedom each. Moreover, the whole assembly
is not anchored to a base, but is free to move on a plane and, finally, nonholonomic
constraints are present, in addition to the holonomic ones. However, an extension of the
above method, allows us to systematically derive the kinematics of the NVGT assembly
as follows: Using the Wei-Norman representation of SE(2), we express the shape of each
module as a product of the one—parameter subgroups of SE(2). Then, the configuration
of the whole assembly can be expressed as a product of such one-parameter subgroups.
Using the notion of the adjoint action of SE(2) on its Lie algebra, we determine, in
section 5.2.2, how the motion of a module relates to the motion of the other modules
of the assembly. We also express the nonholonomic constraints in a compact form that
can be used to make explicit the dependence of the assembly configuration on the shape
of its modules. This allows us to characterize the dependence of the global motion of
the assembly on the shape controls, namely the changes in the shape of each module,
which are expressed as elements of the Lie algebra of SE(2). In section 5.2.3, we consider
the implementation of each module as a planar parallel manipulator. The shape of each
module is determined by the lengths of the legs of the parallel manipulator. From the ve-
locity kinematics of the parallel manipulator we conclude that motion planning schemes
for the NVGT assembly can disregard the particular details of the implementation of the
modules and only consider the shape of each module. Thus, instead of considering the
changes in leg lengths as controls for the NVGT assembly, we can use the corresponding

shape controls of each module.

In section 5.3, we specialize the previous discussion to the 3-node, 2-module NVGT.

Unlike the generic {-node case, here we have exactly the number of nonholonomic con-
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straints that we need in order to determine the position and orientation of the NVGT
assembly with respect to the world coordinate frame based on a sequence of shape changes
from a reference shape. As a result, we can demonstrate how shape changes of the NVGT
assembly induce a global snake-like motion due to the nonholonomic constraints. We
consider the motion planning problem under a specific shape actuation scheme, where
one of the two modules is responsible for the motion of the assembly through periodic
changes of its shape and the other module is responsible for steering. We demonstrate
how to generate primitive “straight line motion” and “turning” behaviors and we show
by computer simulations how to synthesize these into more complex ones, like avoidance
of obstacles.

In section 5.4, we consider non-sequential arrangements of NVGT modules, namely
tree-like arrangements which we refer to as SE(2)-Spiders and ring-like arrangements
which we refer to as SE(2)-Rings. We show how motion control for such systems can
be reduced to the corresponding problem for the 2-module NVGT. In section 5.4.3, we
consider SE(2)-Snake assemblies with more than one constraint per node. Thus, we

relax the Codimension 1 Constraint Hypothesis of the previous chapter.

5.2 Kinematics of the Nonholonomic Variable Geometry Truss (NVGT) As-
sembly

In section 5.2.1 we discuss the nonholonomic constraint of rolling-without-slipping
and in section 5.2.2 we apply the Wei-Norman representation of curves in SE(2) to
the derivation of the kinematics of the /-node NVGT. In section 5.2.3 we consider the

implementation of a module of the NVGT assembly as a planar parallel manipulator.

5.2.1 The Nonholonomic Constraint of Rolling—without—Slipping

Consider the wheel pair assembly of fig. 5.2.1 consisting of two idler wheels mounted
on an axis, so that they can rotate freely and independently of each other.

Let ¢, (resp. ¢;) be the angle of the right (left) wheel of the pair with respect to the
vertical. Let r be the diameter of each wheel and 2 L the distance between the wheels.
Consider a coordinate system centered midway between the wheels at point O,,, with
the x-axis along the axis joining them and pointing towards the right one and with the

z—axis vertical to the plane supporting the wheel assembly. Let the wheel assembly move
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Fig. 5.2.1: Wheel pair rolling—without-slipping

with respect to an inertial coordinate system centered at Oq. Let g € G = SE(2) be the

0 —w 51
current configuration of the assemblyandé = | w 0 =3 | € G be the body velocity
0 0 0

of the assembly. Then g = g€. It is a simple exercise (c.f. (Goldstein [1980])) to derive
the nonholonomic constraints imposed by this assembly and relate the motion of each

wheel to the body velocity &.
Proposition 5.2.1

The angular velocity of each wheel is related to the body velocity of the wheel
assembly by:

(Ez + Lw) y
(5.2.1)

¢ = =(Ep — Lw) .

[I= S|

Proof

Let P, (P;) be the position of the center of the right (left) wheel with respect to the
coordinate system centered at O; and p, (p;) be the position of the right (left) wheel

with respect to the inertial coordinate system at Op. Then P, = (L 0 1 )T7 P =

(=L 0 1)7, while p, = gP, = (z+Lcos§ y+ Lsinf 1)" and p, = gP, =
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(z—Lcos§ y+ Lsinf 1 )T . By differentiating,

pr =GP, = géP, = | wLcosf+ (Eysinf + E;cosb)

—wLsinf + (Z; cos§ — Ezsin6)
0

and

wLsin® + (1 cos § — Esin )
py = gP, = g¢P, = | —wLcos® + (Eysinf + Ez cos )
0

Assuming that both wheels roll without slipping, we must have:

[ —sin@
pr=1¢, | cosf
0
[ —sinf
pr=r¢ | cosb .
0

and

From (5.2.2) and (5.2.4):

and from (5.2.3) and (5.2.5):
g1 =0,
Hy = rél + Lw .
Thus:
Z1 =4cosf+ysinfd =0,
b+ =255,

) .92 9 .
by~ =-Lw==-L0.
T T

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

Observe that (5.2.8) is a holonomic constraint, while (5.2.6) and (5.2.7) are nonholonomic

ones. The proof of this appears in (Latombe [1991]). Since w = 48 " from

dt?

0(t) = 6(0) — 5= (#+(0) = $1(0)) + 57 (#:(2) — u(2))
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Equations (5.2.1) follow from (5.2.7) and (5.2.8).

5.2.2 The /-node, (£ — 1)-module Nonholonomic Variable Geometry Truss
(NVGT) Assembly

We consider a chain of (¢ — 1) modules of the type shown in fig. 5.1.1 and 5.2.2.
Each module consists of two platforms in a planar parallel manipulator configuration
with one pair of wheels per platform and with each wheel rotating independently from
the other around its axis, both forward and backwards. Neither wheel pair is ac-
tuated and we assume that the wheels roll without slipping. This system is com-
posed by £ planar platforms, thus has 3¢ degrees-of-freedom, its configuration space

is @ = SE(2) x --- x SE(2) and it is subject to 3(£ — 1) holonomic constraints from the

v

£ times

parallel manipulator legs and to £ nonholonomic constraints from the rolling-without—
slipping wheel motion. The configuration of the assembly can be determined by its shape

(which is an element of the shape space S = SE(2) x --- x SE(2) ) and by the position

T p—

(£-1) times
and orientation of the assembly with respect to the world coordinate system (which is

an element of G = SE(2) ). Then Q =G x S.

Fig. 5.2.2: The (z,7 + 1)-th module of the NVGT assembly
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Consider a world coordinate system centered at Og and platform coordinate systems
centered at O;, 1 =1,...,4. Let g, € G = SE(2) be the configuration matrix of the i-th

platform with respect to the world coordinate system. Define £ € G = se(2) by:
1
gizgigi, i=1,...,L. (5.2.10)

From (4.3.2) we have (with a slight abuse of notation we denote by ¢* € IR the j-th
J

component of £ , i.e. .A;(§ )):

3 3
=2 A =D AE)A; . (5.2.11)
J=1 J=1

Also define the vector & of the components of { € G as ¢ = ({i §; f;)T =

(A(E) A(e) A4(€))T € B

Let g . 41 € G be the configuration matrix of the (i + 1)-th platform with respect to the
J,2

coordinate system of the j—th platform. Define £ 1 € g by:
i

] = i =1,...,¢— <ji<i . 2.
9, im1 gj,i+1€j,i+1’ fori=1,...,—1 and 1<j<i+1 (5.2.12)

From (4.3.2) we have:

3 3
_ G+l g b
€= ng Ay = ZAk(fj,m)Ak : (5.2.13)
k=1 k=1
Also define the vector &7+l of the components of fj i1 € G as it =
2L £4iHl ghitI\T ¢ gb b b T )
(e grrien )" = (A, ) A€, ) AS(E, ) )" Observe that theg s

and the € ,+1’s are the shape variables of the chain.
dsi
The shape of the NVGT assembly is determined by {gi i i=1,...,£—1}. The

velocities {V;;4+1, ¢ =1,...,£ — 1} are called shape variations. A subset of them are the
shape controls.

By (4.3.3), (4.3.21) and (4.3.23) we have (note the definitions of R; and T}):

cos¢; —sing; z;
g (t) = 1A 7042 15 (1)As — (1(%)’ 711’ ) = (sin ¢; cosd, y; ) (5.2.14)
' 0 0 1
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and

g (&)= 1T AL DT (#) Az v (D) As
g+l
Riiv1 Tjin C0593,1+1 —Sinej’H_l Tji+1 (5'2'15)
’1' ,14 — 1
=< s g )— sinfjiy1  cosbjity Y41 | s
0 0 1

where the ¥’s and the corresponding &’s are related by (4.3.14) and (4.3.15). By the

system kinematics we have:

9101799017 9.95,779

yi=1,...,0-1 (5.2.16)
1,441

and

91 =990 =95 501 Yiia fori=1,...,4—1and 1<j<i+1. (52.17)

Define g = I, where [ is the identity in G.
3,3

Equations (5.2.16) with (5.2.14) and (5.2.15) can be seen as a generalization of the
“product-of-exponentials” formula of (Brockett, Stokes & Park [1993]) for kinematic
chains with more than one degree-of-freedom per joint.

Lemma 5.2.2

The velocities of the (i + 1)—th node depend on the velocities of the previous nodes

as follows:

éhz+1 - Adg;;Héi + gi,i+1

- Adgi_,il+1 N 'Adgf,lzgl + Ad‘qi—,;ﬂ . “Adgz_,laélﬂ

+ot Adgi_’;_}_l&i—l,i + éi,H—l .

The velocities of the (j, 7+ 1)-th module depend on those of modules (7,7 +1),(j +1,5+

2),...,(,1+ 1) as follows:

€ = qug—1 R X
2,0+1 i1 dit 1,i4+1

= Adg—l "‘Adg—l f +Adg—1 "’Adg—l

1,0+1 j+1,j+2 Hi+l 4+l )+2,j43 d+1i+2 (5218)

4+t Adg;,:_}_lé.i—l,i + §i,i+1 .
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Proof
From (5.2.10) and (5.2.16):

gi+1 - gigz,z+1 + gigi,i+1 = gigigi,i+1 + gigi,i+1§i,i+1

- -1
o gigi,i+1[gi,i+1€igi,i+1 + 6i,i+1] (5.2.19)

= gi+1[Ad9_1 £ +§ ] )

i+l t 1,041

90179912 9% 10 T 9191279041 Tt 91912 Y01
= gm[Adgi_;+1 o Adyr €+ Adys e Adgit (5.2.20)

4.4 Ad9;1§+1§i—1,z + 5i,i+1] .

Then (5.2.18) follows from those and (5.2.10). The equation for & - is derived similarly.
2y
|

Corollary 5.2.3
Equations (5.2.18) induce the following relationships between the positions and ve-

locities of the (i + 1)-th node and those of the previous nodes:
i+l _ g giitl
g+ =g 4 gt
€4t =~ 4 € cos ™+ € singyt T €0 (5.2.21)
] ). 1 b o .7' 1 1 'a' 1 ')'
& =4t = € sing " 4+ € cos T £

Also:

Ji+l _ edsi 1,i+1
i+t = g gt

. i1 i i1 g a+1 i i
{;,z+1 — _q,z,yé i+ + 6; i cos ’Y; 1+ + 5; ) sm'yi v+ + £; i+1 , (5.2.22)
f;’H-l — €i,i,y;‘,i+1 _ 5;’1' Sin7i’i+1 + €;,z cos ,yi,i+1 + 6;,i+1 .

Moreover, for the corresponding Wei-Norman parameters we have:

i+l _ b+l

Mo =Entm )

' i i+l i . il i1

»y;“ :'yécos'yiﬂ' +fy§sm'yi’+ +fy§1+ , (5.2.23)
il e il ; Gitl | i+l

Y30 = —vssinyy T +y5c0877 T + 73

115



and

’y{,z+1 — 71 + 7'{ ,i+1 ,
B =43 cosyy ™ + 4 sinyp T 4 4yt (5.2.24)
7§ 1,+1 72 sm’yi ,i+1 +73 COS’yl 41 +7;z+1

Proof
From (4.3.2), (5.2.18), (2.3.10) and (4.3.18), observing that the {4;} form a basis,

we get equations (5.2.21) and (5.2.22). From the Wei-Norman representation of elements
of SE(2) (equation (4.3.20)) and from equation (5.2.16), we get equations (5.2.23) and
(5.2.24).

The nonholonomic constraint of rolling-without-slipping on the wheels of each plat-

form can be expressed, using (4.3.23), as
g; = A3(€) = dicosdi +gisingi =0, i=1,....¢. (5.2.25)

Define the composite velocity vector ¢ of the NVGT assembly as the components of the
velocity ¢ ) of the first platform and those of the shape variations of all the modules of

the assembly:

¢ (e EM2] et yT
= (g 1e? | gibieilemL)T

17273

= (ML) ) ASE) L ALE, ) - | A, JAE,_ A, )T

Theorem 5.2.4

The £ nonholonomic constraints (5.2.25) can be written in matrix form as:

Alg, 09, ) =0, (5.2.26)
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where A is a function of only the shape of the NVGT assembly {g. '+1’i =1,---,0-1}

and is an £ x 3¢ block lower triangular matrix of maximal rank of the form:

[#11 0 0 0 0 0 0
*1,2 *¥22 0 0 0 0 0
0 0 0
A(gl,z’m’gll—l,e)~ *libl  *¥2541 "0 ¥iidl  Figlatl 0 0
0
*1,¢ *2.¢ T *i,0 *i41,¢ cer kg1 Ry
(5.2.27)

with the k—th block of the (i 4+ 1)-th line, for 1 =1,...,£ — 1 defined as:

*k,i+1=<A;(Adg_l A1) A (Adg-1  Ax) Ah(Ad, Ag))

i+l i+l kyi+1

=(AZ(Adg_1 v Adgr A AN(Adyr - Ady Ag)
1,4+1 k,k+1 1,941 k,k+1

Ay (Ady-1 -+ Ady-s A3)>

i+l k,k+1

. . ' (5.2.28)
= ( — et cog it sin'yf”ﬂ) , for1<k<i+1,
pk = (A;(Adg_1 A1) Ab(Ady-1 Ag) Ab(Ady- Ag))
k,k k.k k.k
=(010), fork=i+1,
*ki+1=(000), fori+1<k<{.
Proof
This result follows from Theorem 4.2.1.
| |

Since A has always maximal rank £, its null space N/ (A) has dimension m L VR

24.
Corollary 5.2.5
Assume that the velocities { can be reordered, so that the matrix A is partitioned

as A =(A; Ay), with A; an £ x m matrix and A, a locally invertible £ x ¢ matrix.
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¢

Let the corresponding partition of the velocity vector be ( = ( Cl
2

) , with ¢; € IR™ and

(3 € IRt. Then, there exists an 3¢ x m matrix B such that:

(= (Cl) =B (. (5.2.29)
2

Proof

Follows from Corollary 4.2.2. The matrix B = ( ﬁ"_xlﬁ ) works.
—A;A;

The physical meaning of this result is that the global motion of the NVGT assembly
depends only on the current shape of the assembly and on the variations of this shape.
Direct actuation of the wheels (as in a car) is not necessary for propulsion of this system.

Notice that, since A depends only on the shape, so does A,. In addition, the choice
of the locally invertible matrix A is dictated by the choice of the splitting of ¢ into
¢1 and (. For a particular choice, as the shape is altered, A will become singular
at certain shapes. However, a different splitting of { may provide a nonsingular A,.
If this is not the case, the corresponding configurations of the NVGT assembly shall
be referred to as nonholonomic singularities. Those singularities are not removable
by merely choosing alternative splittings of ( or alternative parametrizations of the
configuration space (e.g. how we assign orderings to the kinematic chain at hand).
In these configurations, the system kinematics, together with the shape control, may
not provide sufficient information to determine the motion of NVGT assembly and the
dynamics of the system may have to be used in the form of a ballistic motion through
the nonholonomic singularity.

Remarks 5.2.6

1) Unlike previous work on nonholonomic motion planning, in our case the (;’s of
equation (5.2.29) do not correspond directly to the controls of the system and, thus,
are not at our disposal to alter at will. Our real controls are the leg velocities & of the
parallel manipulator modules (see next section). However, as we will see in the next
section, off the kinematic singularities of the parallel manipulators, the shape controls

can easily determine the corresponding leg velocities. Therefore, in order to simplify the
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discussion of motion planning, once the partitioning of the velocity vector { as (Cl > is

C2

done in such a way that all the (;’s are controllable from the ¢’s, we will disregard the
particulars of the implementation of the modules and only consider the shape controls.
Note that when we have only one module, i.e. £ = 2, such a partitioning of the velocity

vector cannot be done.

2) The 3(£ — 1) holonomic constraints imposed by the legs of the modules of the

(£—1)-module NVGT assembly determine the shape 9,509,591, of the assembly.

-1,
In order to determine completely its configuration, we also need to specify the position
and orientation of the assembly with respect to the world coordinate frame, given by an
element (g1 in this case) of G = SE(2). Thus, we need 3 more constraints. These come
from the £ nonholonomic constraints provided by the platform wheels. Consider now
some special cases: i) If we have a one-module NVGT, i.e. if £ = 2, we have 3 holonomic
and 2 nonholonomic constraints, but we need to determine 6 degrees—of-freedom, thus
we do not have enough kinematic constraints to determine the motion of the assembly.
We either have to consider its dynamics or we need to impose additional constraints (e.g.
unidirectional wheel motion). The first alternative is particularly interesting and gives
rise to the “Roller Racer’system that we consider in chapter 6. i) If we have a two—
module NVGT, i.e. if £ = 3, we have 6 holonomic and 3 nonholonomic constraints and
we need to determine 9 degrees—of-freedom, thus we have exactly the required number
of constraints. #44) If we have an NVGT assembly with more than two-modules, i.e.
if £ > 3, we have 3(£ — 1) holonomic and ¢ nonholonomic constraints and we need to
determine 3¢ degrees-of-freedom, thus we have 3(£ —1) +£— 3¢ = £— 3 extra constraints
that have to be satisfied. Therefore, from the 3(£ — 1) shape velocity components in (,
only 3(£ — 1) — (£ — 3) = 2£ can be determined independently and will be elements of
the vector ¢; in equation (5.2.29). The remaining £ — 3 shape velocity components will
be determined by the £ — 3 extra constraints, i.e. they will be elements of the vector (s,
together with the velocities that characterize the global motion of the assembly (here they
are the £1's). Observe that if there exists non—negative integer k such that £ — 3 = 3k,
we can choose £ — k of the £ modules and alter their shape at will, while the shape of the

remaining k modules will be determined by the extra constraints. In brief, for £ > 3, the
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problem is over—constrained.

3) The 2-module NVGT is “canonical” in the following sense: Suppose that we
change the (¢ — 1)-module NVGT architecture (for £ > 3) so that we have wheels on
only 3 platforms and castors on the remaining ¢ — 3 platforms. Then we have only
3 nonholonomic constraints (instead of £). Such a system has exactly the number of
constraints needed to determine its motion, which, in our original NVGT assembly is
the case only for £ = 2. The motion planning strategies that will be determined for
the 2-module NVGT will work also for this (¢ — 1)-module assembly. Moreover, this
(¢ — 1)-module assembly possesses 3¢ — 3 degrees—of—freedom more than the 2-module
NVGT and those can be exploited for other purposes (e.g. for motion in a constrained

environment, or for generating a richer repertoire of motions of the type described in

(Chirikjian & Burdick [1991])).

5.2.3 Implementation of an NVGT module as a Parallel Manipulator

Consider the (4,7 + 1)-th module of the NVGT assembly, implemented as a planar
parallel manipulator (c.f. section 2.5). This consists of the i—th and (z +1)-th platforms,
which are connected by three legs of variable length. One possible architecture is shown
in fig. 5.1.1.

In previous sections we saw that the shape of the (4,7 + 1)-th module is determined
by i1 € SE(2). Let pr, for k=14,i+1, j =1,2,3 be the position of the j-th joint
of the k-th platform with respect to the coordinate system of this platform. Consider the
following quantities, defined with respect to the coordinate system of the i—th platform:
the position P;H of the (i + 1)-th platform, the vector S;'. and the length a§ of the j—th
leg of the module. Let o® be the vector of the leg lengths of the (i, -+ 1)-th module, i.e.
ot & (ot 0% a%)7T.

The inverse kinematic map F~' : SE(2) — IR% specifies the leg lengths of the

module as functions of its shape 9, i1 We can easily see that for the j—th leg:

S pprtl ppi
() =0, () - () (5.2:30)
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where 9 v = (R”g“ T"{“ ) Then the leg lengths of the module are given by

1
ob = ||Si|ls = /< 84,8t >3, forj=1,2,3, (5.2.31)

where <, >, is the inner product in IR" and || .||, is the corresponding norm. Then the

inverse kinematic map is:

F g =o' (5.2.32)

i,2+1

Applying Theorem 2.5.3 in this case, we get the following results.
Proposition 5.2.7 (Velocity Kinematics)

The body velocities of the i-th module ¢*+! and the changes of length of its legs

Lidef .. . .
&t E (6% 6% 64)T are related by:

N(oH)e' = J(g,  )EWHL (5.2.33)

iyit+1

— T .
where (%) = diag{o} , 0}, 03} and J(g. . )= S;'TRi,i+lpP;+1 | SJZ'TRz‘,iH :

1,141 j
Proof
From (5.2.31): (0%)> =< S%,5% >; . Differentiating both sides and defining Q %
) 4,41
f;”‘“ and £ & (Z%“‘) , we get:
3

03‘53' =< 85;,5; >3=< S;aRi,i+1(E + QPP;'H) >q

— T
Tgi = i+1 i+1 T Toi =
=< Ri,i+1 S;,:. +pP;+ Q >3=< pPJH- Ri,1;+1 S;,Q >3+ < Ri,i+1 S;,:‘.. >3,

where R; ;41 was defined in (5.2.15). Then (5.2.33) follows.
|

Configurations where J(g) or X(o(g)) is singular are called kinematic singularities.
Those have nothing to do with the nonholonomic singularities of the NVGT assembly

defined in the previous section.
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Corollary 5.2.8

Suppose the configuration 9,41 € SE(2) of the (i,7 + 1)-th module is not a kine-

matic singularity and that the corresponding leg lengths are o*. Then:
el = g7 )5(0?)s? (5.2.34)

and

yeitt (5.2.35)

Observe that after we specify the shape variations ¢%**1 the corresponding leg
length changes can be easily determined from (5.2.35). Therefore, our discussion of
the motion planning problem can disregard, without loss of generality, the particular
implementation details of the modules and consider only the shape variations of the

modules.

5.3 The 3—node, 2-module NVGT Assembly

In section 5.3.1 we consider the kinematics of the 3—node, 2-module NVGT (fig.
5.3.1) as a special case of the kinematics of the £-node NVGT. We show that the velocity
vector ¢ can be partitioned in two parts, one of which ({;) constitutes the independent
shape controls and the other ((3) being velocities dependent on the shape variables, which
characterize the motion of the assembly with respect to the world coordinate system. In
section 5.3.2 we examine the motion planning problem for the 2-module NVGT assembly.
We show that shape actuation strategies, where the shape of one module is kept fixed
and the shape of other is varied periodically, induce a rotation of the NVGT assembly
around the instantaneous center of rotation of the first module. If the platforms of the
fized shape module are parallel, the induced motion is a translation along a direction
perpendicular to the platforms. We allow the shape of the second module to describe
a closed path in shape space and show that a net displacement of the NVGT assembly

with respect to the world coordinate system is induced after each traversal of the shape

space path.
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Fig. 5.3.1: Two—-module NVGT assembly

5.3.1 Kinematics of the 2-module NVGT

In the assembly of fig. 5.3.1, we consider a chain of two NVGT modules. This system
has 3¢ = 9 degrees—of-freedom, its configuration space is @ = G x S, where G = SE(2)
and the shape space is S = SE(2) x SE(2) and it is subject to 3(£ — 1) = 6 holonomic
constraints from the parallel manipulator legs and to £ = 3 nonholonomic constraints
from the rolling-without—slipping assumption on the wheels. From the system kinematics

we have (specializing the results of section 5.2):

g2 - glgl,2 ]
9, = 9292’3 = 9191,292’3 ’ (5.3.1)
913 = 91,292,3 )
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From (5.2.18) we get for the corresponding velocities:
o = Adg]:12£1 + 61,2 9
£, = Adgz-’gﬁz + §2,3 = Adgg,gAdgffzél + Adg2—,13£1’2 + 52’3 ) (5.3.2)

51,3 - Adgz‘j,él,z + 52,3 '

The nonholonomic constraint of rolling-without-slipping on the wheels of each platform

can be expressed using (5.2.25) as:

& = A(€) = dicosg; +ising; =0, i=1,23. (5.3.3)

i
The 3 nonholonomic constraints can be put in the matrix form of (5.2.26):

A9, 1,9, )¢ =0, (5.3.4)

51
where ¢ = (§ 1,2 1 | The matrix A is a function of only the shape variables 9, 9,,0f
62,3 ) )

the chain and is a block lower triangular matrix of the form:

*1’1 0 0
A = [ x * 0
(91’2,92,3) 1,2 2,2
*¥1,3 *2,3 %33

0 1 0
— Ag (Adyl*lel) A;(Adgl‘;/b) .Abg (Adg1_12A3)
A, (Adg1-13 A1) Ag(Adgl_l3 Ay) A (Adgl-g As)

0 0 0

000

0 1 0 000

Ay (Adg-1 Ay)  Ab(Ady-1 As) Ay(Ad,-1A3) 0 1 0
2,3 2,3 2,3

0

0

0

(

0 1 0 0 0 0 0 0
= —7%’2 cos'yi’2 sin'yi’2 0 1 0 0 0
73’3 COS')’1’3 sin'yl’3 —’yg’a cos'yf’3 sinfyf’3 01

5.3.5)

Equation (5.3.4) can be put in the form (5.2.29) by partitioning ¢ as ¢ = (gl) with
2
£h? 1
(1= (52,3> and (;=¢ (5.3.6)
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and by partitioning A as (A; Ay) with

0 0 0 0 00
Ai(g. )= 0 1 0 0 0 0
2,3 AZ(Adg-lAl) Ag(Adg—l.Az) Ag(Adgq.Ag) 010
2,3 2,3 2,3 (5.3.7)
[ 0O 0 0 0 00
= 0 1 0 0 0O
—'y§’3 cos'yf’3 sinfyf’3 010
and
0 1 0
AL (Ady-1 A))  AY(Ad,—1 Ag)  Ab(Ad,-1 A
Az(9, ,9,,) = 2 1,2 1) A 91,2 2) A 91,2 ?)
T Ay (Adg-1 Ar)  Ab(Adg-1 Az)  Ab(Ad,-1 As)
\ 1,3 1,3 1,3 (5.3.8)
012 1 012
— —_ ’ 1)2 3 ’
= 7:1,3 cos 71’3 sin 'yi 5

—7Y3"  cosyy” sinyy’

Then the velocity of the 2-module NVGT assembly with respect to the world coordinate

system, as it is characterized by £, can be expressed as a function of only the shape

variables of the assembly:

§1=—A_1( A 51’2
2 91’2,92’3) 1(92’3) €23 ) - (5.3.9)

Proposition 5.3.1

The nonholonomic singularities of the 2-module NVGT assembly are configurations
where all 3 azes of the platforms of the assembly either intersect at one point or are
parallel.
Proof

The nonholonomic singularities of the system are specified by considering the determi-

nant of the matrix Aq :
det(Az) = A} (Adg-1 Ay) A (Ady-1 Az) — A5 (Ady-1 A1) Ay (Ady—1 As)
1,3 1,2 1,2 1,3

= —’y;’s sin ’yi’z + '7%’2 sin 711’3 (5.3.10)

.23 2,3 . 1,2
=y1,28M7y;" — 3 siny;C .
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Observe that when sin 'yll’2 # 0 and sin ,),11 320

1,3 1,2
det(Ay) = siny?siny}® | [ -2 1,3) -2
Sy, Sy (5.3.11)

. 1,2.. 1,3
= sinvy;>“ siny; [Amol,a—Awol,Z] ,

def b3

where Azp, ; = — 5, J = 2,3, is the distance of the intersection O, ; of the axis

sin
of platform 1 with the axis of platform j from the point O;, as shown in fig. 5.3.2. It
will be shown in the next section that the point O, ; coincides with the Instantaneous
Center of Rotation (ICR) of the module composed of the platforms 1 and j. Then, the
matrix A is singular whenever the points O; 2 and Oy 3 coincide (the point O; 3 3 may

be at infinity as in fig. 5.3.3.a).

Fig. 5.3.2: Instantaneous Center of Rotation of the (i, 7)-th Module

It can be shown that nonholonomic singularities are not removable by reparametriz-
ing T,Q, i.e. if the global motion of the 2-module NVGT is characterized by {2 or §3,
as opposed to £ , the equations corresponding to (5.3.4) and (5.3.9) will provide us with
the same set of nonholonomic singularities that appear in the above Proposition.

Even in the case the system is at a nonholonomic singularity, the 3 nonholonomic

constraints remain independent (c.f. equation (5.3.5), where rank(A) = 3), but, since
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Oq

(a)
Fig. 5.3.3: Nonholonomic Singularities for 2-module NVGT assembly

the platforms have a common instantaneous center of rotation, equation (5.3.4) cannot
be recast in the form of (5.3.9). Therefore, motion with respect to point O; 2 3 cannot be
controlled by the system shape variables alone and the dynamics of the system ought to

be considered. This is analogous to what practicing engineers refer to as loss of control

authority.

nonholonomic singularities

-3 -2 -1 [ 1 2 3

Fig. 5.3.4: Nonholonomic Singularity Surfaces

In the motion control strategies that we will consider in the next section, the (1,2)-
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module will be used for steering, therefore its shape will remain constant for relatively
large periods of time. We are interested in finding out what the locus of nonholonomic
singularities (as a function of the shape of the (2,3)-module) is under this condition.

From (5.3.10), the condition detA; = 0 becomes 72° = a(v}?) siny?® , with a(yl?) &

Y1,2
sinvy;’

when sin fyll 2 =£ 0 or sin 'yf 3 = 0, when sin 'yll 2 = (0. The first relationship is shown
in fig. 5.3.4, where the usual geometric picture of SE(2) as a “thick” cylinder is used
to visualize the loci of nonholonomic singularities for various values of a. Assuming that
the y,—axis runs around the cylinder, the y;—axis runs along its length and the y3—axis
runs along its radial direction, we consider a cut of this cylinder vertical to the fyg 2 _axis.
Observe that in either one of the above cases, the locus splits SE(2) in two disconnected
parts. If we want to go from one part to the other we have to go through this manifold of
nonholonomic singularities. Crossing this locus in the most appropriate way may require
path planning of the type presented in chapter 3, in order to move transversally to this

manifold and allow the dynamics of the system to carry the system from one part of
SE(2) to the other.

From (5.3.8):
1 sin 75’3 —sin 711’3 sin 7%’2
~1 1,2 .0 13 1,3 . 1.2
2 = ——— | 73 siny;"” — 3 sinyy’ 0 0 - (5.3.12)
det(A2) \ —yb? cosy® +qb%cosyt?  —qd® 437
Then, from (5.3.9) we get:
. -1 —sin’yll’z'yg’3 —siny;”® +siny;? cosy2?  sinnyy? siny3?
¢ = 0 0 0
det(A 1,2 2,3 1,3 1,2 2,3 1,2 . 23
) | 222 —13" + 75" cos Y 3 siny
0 siny? 0 £12
0 0 0 ( 23) .
0 5?® 0 ‘
(5.3.13)

Observe that the partitioning of ¢ in equation (5.3.6) is the only one that assigns to
¢1 shape controls which can be affected by leg length changes in the parallel manipulator
modules. Moreover, it assigns to ¢z the velocities that characterize the global motion of

the NVGT assembly with respect to the world coordinate system.
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Proposition 5.3.2 (Controllability)

The 2-module NVGT assembly is controllable from any initial position g; € G =
SE(2) to any final one g; € G.
Proof

The left-invariant system g'1 = glfl with {1 given by (5.3.13) as {1 =u1 Ay + usAs
is such that [A;, A3] = —Aj, thus sp{A;,A4s,[A1,As]} = G. Thus, it is controllable

from any initial position g; € G = SE(2) to any final one g§; € G, whenever u; and us

1,2
62’3

whenever the 1st and 3rd rows of the matrix A5 A; in (5.3.13) are linearly independent.

are independent controls. For a generic set of shape controls ( ) this will happen

By checking all the 2 x 2 determinants generated by those rows, we easily see that this

is always true away from the nonholonomic singularities.

5.3.2 Motion Control and Planning for the 2-module NVGT
There are several possible actuation strategies for the 2-module NVGT. We will
consider a simple one where the first module “steers” the system, while the second

provides the translation mechanism through periodic variations of its shape parameters.

Fig. 5.3.5: The 2-module NVGT Model for Motion Control

The Motion Control scheme that we consider here is open—loop and is based on

periodic oscillations of the shape of the assembly. The model for the 2-module NVGT
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assembly is summarized in fig. 5.3.5. When we specify the shape controls fl ) and §2 .
the corresponding shape trajectories 9, 2(t) and g, 3(t) are given by the Wei-Norman

procedure (the “W-N"block in the above figure, which refers to equations (4.3.3), (4.3.14)
and (4.3.15)). The nonholonomic constraints are then used to calculate the instantaneous
motion of the whole assembly with respect to the world coordinate system, as it is
described by ¢! (equation (5.3.13)). Finally the Wei-Norman procedure allows us to

determine the corresponding system trajectory 9, This whole process is detailed below.

From (5.3.13) we observe that the motion of the system is determined completely,
at least away from the nonholonomic singularities, by the shape controls vectors €2 and
£%3. Here we will consider the special case of motions that are generated by keeping the
shape of the first module fixed, i.e. £2 = 0, and vary the shape controls ¢2% of the
second module periodically. Then from (4.3.14):

1,2
i, 00\ (47
b2 = 7%’2 = 73’12 1 0 52’ =0. (5.3.14)
"YB’ ’Yz, O 1 6;)2
Thus from (4.3.15):
7?2 =71%0), =770, %?°=170). (5.3.15)
Also :
2,3
32 1 0 0\ [
428 — ﬁ%,z - 73,233 1 0 52’3 . (5.3.16)
Y3’ " 0 1 55’3
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Then from (4.3.15):

70 () =10 + /t g3 (ryar
0
75°(t) = 75*(0) cos ( O/t €f’3(0)dcr> +75°(0) sin ( 0/ gf%)da)
+b/t§§’3(7') cos (jff’%a)da) d7'+0/t§:’3('r) sin (T/tff’3(a)da> dr

t t

1220 = =3 )sin / €25(0)do ) +43(0) os / 25(0)do )

_/tfzﬁ(T) sin (/téf’a(a)da> dT+/t§§’3(T) cos (/tgf’?’(g)da) dr

(5.3.17)
From (5.2.24), (5.3.10) and (5.3.14):
det(A2) = —73" siny(0) + 737 (0) sinyy
= =[98 - 5 O sin}® + 75 (0) cos 11| siny}2(0)
(5.3.18)
+ 752 (0) sin(y7°%(0) +72°)
= y1,2(0) sin ’yf’s — ’yg’s sin 711’2(0) .
From (5.3.13):
1 2,3
3 [0 siny?2(0) 0\ (& _g23  (sinyl?(0)
g=|éa e 0 0 0 23 | 2 0
gz det(Ag) 0 71,2(0) 0 £§13 det(Az) 7;.,2(0)
(5.3.19)

Observe that 63 = 0, as is expected from the nonholonomic constraints. Then from

)
0 (5.3.20)
>

(4.3.14) we have

-~ O

=2

"

Il
TN
CO = N i b
~—

f
TN

|
S
o = O
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and from (4.3.15):

(5.3.21)

Theorem 5.3.3

i) If €2 = 0 and 4> = 0, the 2-module NVGT instantaneously translates along

an axis perpendicular to platforms 1 and 2.

i) If €2 = 0 and 7;°2 # 0, the 2-module NVGT instantaneously rotates around

the intersection of the axes of platforms 1 and 2.

Proof

i) Let v;°? = 0. From (5.3.18) and (5.3.19):

1 _
€1 - 0 ’
51 =0 3
2 (5.3.22)
§2,3
1 __ 2
£3 Sin*yf’3
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From (5.3.16):

=0 %= (5.3.23)

t
#=6)  dO=BO+ [
0
From (4.3.23):
&1 — sin~ (0) ‘
g1 | =€ | cosyi(@ | - (5.3.24)
) 3 0

Thus, platform 1 translates along the axis that passes through the point O; and is
parallel to the vector (—sin+yi(0), cos~;(0)), i.e. perpendicular to the platform. This is
a constant vector, thus the point O; traces a straight line. Moreover, since ¢ is constant,
the whole platform translates along this line.

i) Let 41°2(t) = 71°(0) # 0. The instantaneous center of rotation (ICR) of the
velocity distribution of equation (5.3.19) (Bottema & Roth [1979]) can be proven to
be the point O, 2, where the axes of platform 1 and 2 intersect. To see this, assume
that the ICR has coordinates (z},y%) with respect to the fixed world coordinate system
and (:c},’z,yllf) with respect to the moving coordinate system of platform 1. Define

zp = (zb yb 1)7 and Xp = (zp° yp° 1)7. By its definition, Xp = 0. Then:

zp=9 Xp = dp=gXp+ ngp =g& Xp. (5.3.25)

The ICR is defined as the point where £p = 0. From this and (5.3.25) we get:

¢ Xp=0 = zp°= __w0) yp? =0 (5.3.26)
1 P sinp?0) T

From fig. 5.3.2, it is easy to see that this is point O; 2, the intersection of the axes of

platform 1 and 2.
Furthermore, it is possible to show that the ICR is constant, not only with respect to
the coordinate system of platform 1, as is immediately evident from the expressions for

(:z:},’z,yllg’z) in (5.3.26), but also with respect to the world coordinate system. Therefore,
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the motion of the system, is indeed a rotation around this point. To see this, consider
the vector zp as a function of time ¢ and expand in Taylor series around a fixed time
instant £,. Then, defining At =t — ¢, we get:

d.'L‘p(to) At + i dziL‘p(to)

2
o TRTE At + ...

zp(t) = zp(to) +
By definition: d—;”tﬂ = ngp +ngp = glngp = 0. Moreover, from (5.3.19) and (5.3.26):

d’zp . .9 L 5 N . :
a2 =9 XPp+9 Xptg Xp+g Xp=§Xp=(§¢ +9¢)Xp=0.
Similarly, all the higher derivatives of zp are zero under the given velocity distribution.

Thus the ICR is a constant point.
|

We attempt to specify the global motion of the NVGT assembly induced by the
shape controls, as characterized by the position and orientation ¥ of platform 1. We
saw that instantaneously this motion is a translation whenever 71’ = 0 or a rotation

whenever fy} 2 # 0. We want to find out if, after a period T of the shape controls, there

is a net motion Ay! Lef YHT) — 41 (0) of the NVGT assembly. This is equivalent to the

idea of using geometric phases (Krishnaprasad [1990]; Marsden, Montgomery & Ratiu

[1990)).

Proposition 5.3.4 (Geometric Phase for Piecewise Constant Shape Controls)
Consider the 2-module NVGT actuation scheme where the shape of the (1,2)-

module is kept constant (§1 , = 0) and the shape of the (2, 3)-module traces the rectan-

»

gular path of fig. 5.3.6.a in (z2 3, ¢2 3)-space.
In the case of “straight—line” motion (fyil’2 = 0), if the shape-space path is traced
clockwise, after a period of the shape controls, the assembly translates forward by

1 1
A (T) = (22 —:v{l})< B ) ,
3 ( 23 23 tanqﬁg’l?,} tanqﬁg,za}

where 93513} ,:17523} and ¢§13} , ¢§23} are the extreme values of z2 3 and ¢33 (we assume here

that mé’ls} < mg’23} ) and ¢§’13} < ¢£’23} . If the shape—space path is traced counterclockwise,

the assembly translates backwards by the same amount.
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In the case of “turning” motion (711’2 # 0), after a period of the shape controls, the

assembly rotates by

cosgfid AL+ BT cosgl Ay — BT
= — {1} ln' ’— {é} In =1
sin ¢; 3 A sin¢;'5 Az — Bog

where A, By, Ay, By are defined in the proof below.

28 =11,

{2
¢2,3
/ t
5 : -
T 4 T/2 3T/4 T
t=0—" o

23

(1} {2}
2,3 23

(a) (b)

Fig. 5.3.6: Piecewise Constant Controls and Geometric Phase for Translating 2-module NVGT

Proof

Consider the following piecewise constant periodic shape variations for the second

module (let T be the corresponding period):

0, for t € [0, -1:]; a, forte|0, %];

; B, forte (L, L] : 0 fort € [£,1];
— b b ¥ t — b) 41 2D
$23(%) 0, fortel[L, L], £23(%) —a, forte[L,3L);
-8, forte [%,T]; 0, fort € [%,T];

This makes the shape trace (counterclockwise) a rectangular path in (z2 3, 2 3)-space.
Let :vél?,}, .'Léza} and ¢£,13}, ;23} be the extreme values of z2 3 and ¢2 3. Then a = %(xf{zzg,} -

xéls} }Yand 8 = %( 523} - ¢§13} ). Those shape variations correspond to the following shape
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controls:

E23(t) = ¢os
acos qf)g,l?,}, forte[0, L
. 0, forte [T, ]
§2,3(t) — -'172,3 CcOSs ¢2,3 — 472 )
2 —acos ¢, forte[g’?’f
0, for t € [3L, T;

—asmq523, for t € [O, 4]

0 for t € [L, L];
2,3 _ . . _ ) 4, 2
“(t) = —x ,3 Sln¢2,3 =
63 (®) 2 asinqbgi,,}, fort € [%, 3—4T—],
0, for t € %,T];

The corresponding Wei-Norman parameters for the (2, 3)-module are given by (5.3.17)

as follows:
t 723(0) = ¢4, for t € [0, Z];
2,3 T T T
2,3 2,3 2,3 v0(0) +B(t - %), forte[Z, 5]
7’(t)=7’(0)+/£’(r)d7= 2
! ! J 1 ’yf’s(O)+ﬁ% = 523}, for t € [;’2—1,%];
2 0)+B(T —~t), forte [, TY;

Let Avy>3(t) = o f§2 3(7)dr. Then from (5.3.17) we get:

752(8) = =73 (0) sin (A7 (1) + 57 (0) cos (Ar7°(2))

= [ @3(ysin (8923(0) - MaP*(r)ar

0

t

+ [ €23(r)cos (802 = AP () dr

0

(2%(0) - asingfJt,
for t € [0, L};
—73*(0)sin (B(t — T)) +13°(0) cos (B(t — ) — asingf T,
_) fort e [, 1]
2 ()sin(8F) + 47 (0) cos(8F) — asingf3 T + asingfF (¢ - ),

fortE[%,%,

—75"*(0) sin(B(T = 1)) +73"°(0) cos(B(T ~ 1)) + a(sin ¢y —sing) T,
L for t € (3L, T);
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In the case that the system translates ( i.e. v;'> = 0), we get from (5.3.22) and (5.3.23):

1 1 1 / 1 / 52,3(7—)
A3 =24 =30) = [Enar = [ —2rrar
0 0

sin ()

cosqbé,ls} Ty,
amt, fort € [0, 4],
¢!
—a&fﬁ"—%, for t € [T, Z);
-y squ2
= {1} {2}
_ °°s¢23 T @88 T T 37
sm ¢2 ) sm ¢21,235 (t 2 ), fort € 2074
{2} {1}
cos ¢, COS ¢; 4 T 3T
<__{Tsm¢ —{Tsmd) ) for t € [5,T);

Then, after a period of the shape controls, the assembly has translated (backwards, if

the relationship between the extreme values of 2, 3 and ¢, 3 is as shown in fig. 5.3.6.b)

by

{2} {1}
L _ [coseys _cos a3\ T {2} _ {1} 1 _ 1
A'Ys (T) = a( - {2} ¢{1} 1 (x2,3 T3 ) tom ¢§23} -

sin ¢2’3 sin tan c/)é’lg}

If we trace the shape-space loop in reverse (clockwise), we get the following global

motion:
(0, for t € [0, L];
cos¢{2} T
—o—u5(t - ), forte[L, T}
smd)z,3
AvL(t = cosd){z}
73() —a= 223 %, fort € ’.;",SZ“
smq&2
cos ¢{2} T cos ¢{1} a7 3T .
| o Eren =), forte (3,1

Then, after a period of the shape controls, the assembly has translated by

{2} {1}
cos ¢ cos ¢ T 1 1
Ay(T) = —a( OF ™ S gll) ) 7= - wé}s})( - ) ,

sin ¢§23} sin ¢y tan ¢§,23} tan ¢§,13}

which is the opposite from before. Thus, if we trace the shape-space loop in the re-

verse direction (clockwise), the system translates in the opposite direction from before

(forward).
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Consider now the case gi’z # 0, when the 2-module NVGT assembly will rotate around

the intersection of the axes of the two platforms of the (1,2)-module.

/ ()
A1t=71t—10=/17'd7'=—sin 20) | —2——dr
71( ) 1( ) 71( ) 61( ) Y1 ( ) det(Az(T))
0 0
( _coS¢§13} In A]+B1t‘
sin ¢33 Ar |
for t € [0, ,{_ ;
_cosq&é’ls} In A1+Bl%
sinqbé’ls} Ay ’
iy fort € [, L];
- {1} T {2}
cos ¢p 3 Ai+B 7 cos gy 3 Ay—Bt
— 1} n —_ ) n
sin g}y A1 singl}}  |A:-B2T |’
for t € [£, 2L);
27 4 Db
_cos¢§v13} o A1+B1 T | cos ¢§’23} Az—B, &L
sin ¢§? A1 sin ¢§23} As-B>1 | i
3 .
L for t € [, TY;

(5.3.27)
where A; = y12(0)siny}°(0) — siny;*(0)72%(0), By = asinvyl(0)sin (;5;}3}, Ay =
y1.2(0)sin (1°(0) + BT) = sin () = 5°(0) sin(8F)73°(0) cos(6F) — arsin b0 § ~
asin ¢§?3} ] and B; = asiny;%(0) sin ¢§,23}. Then, after a period of the shape controls,

the assembly has rotated by

_cos gl e +B,T - cos ¢33 | | Az~ By

Avi(T) = n .
' sin ¢§13} Ay sin ¢§23} A — Bz%

Proposition 5.3.5 (Geometric Phase for Sinusoidal Shape Controls)
Consider the 2-module NVGT actuation scheme where the shape of the (1,2)-
module is kept constant (£ Lo = 0) and the shape of the (2, 3)-module traces an elliptical

path in (z3 3, ¢2,3)—space, given by the following sinusoidal controls:
(;.52’3(t) = 1w COos wt y .’iz,3 = QW sin wt s jl]z,3 =0. (5328)

In the case of “straight-line” motion (y;"* = 0), after a period T of the shape
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controls, the assembly translates forward by

t
wsinwT

Avyi(T) = - d
75(T) az/tan(ag-i-al sinwT) T
0

where w = 2% (c.f. fig. 5.3.7). If the shape-space path is traced in reverse, the assembly

translates backwards by the same amount.
In the case of “turning” motion (711 2 # 0), after a period T of the shape controls,

the assembly rotages by

£3(r

/ )
A’yll(T) = —Sin’)’]]_"z(()) / md’r
0

(cf. fig. 5.3.8). If the shape-space path is traced in reverse, the assembly rotates
backwards by the same amount.

Proof

Consider the following sinusoidal periodic shape controls 52’3 that correspond to those
of equation (5.3.28):

53’3(:‘,) = ajwcoswt ,

fz’s(t) = apw sinwt cos'yf’3 ) (5'3'29)

From (5.3.17):

23(t) = ¥23(0) + o sinwt ,
723(t) = v2*(0) cos(ay sinwt) + v2*(0) sin(a; sinwt) + ay(1 — cos wt) cos A3
73?’3(15) = —72"%(0) sin(oy sinwt) + 433(0) cos(ay sinwt) — a1 — cos wt) siny??
(5.3.30)
From (4.3.21) and (5.3.30) we see that those shape controls correspond to a closed ellip-
tical path in (z2 3, ¢2,3)-space.

Let ;% = 1%(0) = 0 so that the 2-module NVGT assembly translates.
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From (5.3.22) and (5.3.23):

(5.3.31)

¢
Y dr = —a / wsinwT d
é~3 (7) ? | tan(os + a; sinwr) T
0

>
2
W=
~—~
o~
N’
I
~2
W=
o~~~
[
SN
|
S
~~
[ew)
o
I
o\ﬁ

where a3 23(0).

Geometric Phase: Translation

Gamma"1_3 by numerical integration

40

20

.5 50 75 100 lé 150 175

-20

(a) (b)
Fig. 5.3.7: Geometric Phase for Translating 2-module NVGT (Sinusoidal Controls)

From (4.3.21) and (5.3.31) we have:

$1=71(0),

21 = 73(0) cos 71 (0) — 73

siny1(0) , (5.3.32)
y1 = 712(0) sin 7y (0) + 3 cos 71 (0) .

From this we get:

__ kO 1
siny; (0)  tanv{(0)

1 . (5.3.33)
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Thus the locus of the point O; is the straight line given by equation (5.3.33), which is
perpendicular to the axis of platform 1. Using Mathematica, we can integrate (5.3.31)
numerically and verify that after a period of the shape controls, the 2-module NVGT
assembly has moved forward by a distance specified by Ay3(2Z) = () —~3(0) (fig.
5.3.7). If we trace the closed shape-space path of (5.3.29) in the reverse direction, the
assembly will move backwards by the same distance.

Let v1% = 41%(0) # 0, so that the 2—fnodule NVGT assembly rotates instantaneously
around the point O; 3. The position of the assembly with respect to this point can be
characterized by the angle 1.

From (5.2.24) and (5.3.30):

13 (E) =11 + 472 = 41%(0) +423(0) + ap sinwt
, , 2 2 , 1,2 3
'Yé () = 'r§ S ’)’% 2Sln’)’f 8 + 73 cosyf
= —75*(0) sin(a; sinwt) + 733(0) cos(ay sin wt)

- [7;’2(0) + ag(1l — cos wt)] sin (7%’3(0) + o sinwt)

+ 73%(0) cos (7%’3(0) + a; sin wt) .

(5.3.34)
Then, from (5.3.18):
det(Az(t)) = =75 () sinyy* (0) + 73°2(0) sin % () - (5.3.35)
From(5.3.19):
£1(8) = — sin2(0) &0 (5.3.36)
T T e (A5 ()
and from (5.3.21):
Avi(t) = vi(t) — 1(0)—/t Y(7)dr = —siny;(0) tﬂ—df (5.3.37)
M1 =M ) 841 - J 51 T)aT = 1N Yy J det(Az(T)) . *9.

Using Mathematica, we can integrate (5.3.37) numerically and verify that for e.g. 7% 2 =

— %, after a period of the shape controls, the 2-module NVGT assembly rotates clockwise
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around the point Oy, by an angle specified by Av{ (%) = v{(22) — 4{(0) (fig. 5.3.8). If
we trace the closed shape-space path of (26) in the reverse direction, the assembly will

rotate counter—clockwise by the same angle.

Gamma”~1l_1 by numerical integration
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Fig. 5.3.8: Geometric Phase for Rotating 2-module NVGT (Sinusoidal Controls)

The kinematics of the 2-module NVGT assembly were simulated on Silicon Graphics
IRIS 4D/120 and Indigo 2 graphics workstations. The primitive “straight-line” and
“urning” motions described above are shown in fig. 5.3.10. They describe only the
average motion of the system, however, they can be very useful in motion planning,
since these primitive motions can be synthesized to display more complex behaviors of
the system, like obstacle avoidance (fig. 5.3.11).

Standard motion planning strategies (Voronoi diagrams, cell decomposition, poten-
tial fields) can be used for this task (Latombe [1991]), but they will result in paths that
may require sharp changes of direction for our system. Those paths could be made
smoother, as was done in fig. 5.3.11, however this is not necessary. Notice that the
2-module NVGT can execute very sharp turns, even rotate (on the average) in place.
Thus no constraints on the curvature of the average path of the system need to be placed.

Moreover, by properly adjusting the size of the shape—space loop, the “stride length”, as
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it is quantified by the geometric phase, can be varied. If greater accuracy of motion is
needed, then smaller “steps” can be taken (c.f. related results in (Leonard [1994])).
Suppose then that we want to move from g1 = g1(z1,y1,¢1) € SE(2) to g1 =
91(Z1, 71, $1) € SE(2), corresponding to points O; and O; respectively. This can be done
by synthesizing the primitive “straight-line” and “turning” motions described above in
three steps, as follows:
i) First, “turn” in place (i.e. move with 7%’2 = %) from the initial orientation ¢; to an
orientation along the line 0;0; (fig. 5.3.9).
ii) Then, “move straight” (i.e. with 7%’2 = 0) along the line O;0; from point O; to the
desired point O;.
iii) Finally, “turn” in place until the final orientation ¢, is reached.
Since controllability has been established for SE(2), we know that any such motions
are possible, as long as we stay away from nonholonomic singularities. Thus, the shape
variations used to implement the above primitive motions, should be designed so that

this happens.

Fig. 5.3.9: Motion Planning for 2-module NVGT moving on the plane

143



(a) “Straight-line” (b) “Turning”
Fig. 5.3.10: Primitive motions of the 2-module NVGT

Fig. 5.3.11: Obstacle Avoidance with the 2-module NVGT
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5.4 SE(2)-Spiders, SE(2)-Rings and other SE(2)-Snake Kinematic Topolo-
gies
The framework presented in section 4.2 is not restricted to nodes in serial (chain)

arrangement. It can be applied to non—serial tree-like and ring-like arrangements of
nodes.

In section 5.4.1 we analyze the case of a tree-structured assembly in SE(2). We
refer to those assemblies as SE(2)-Spiders. In section 5.4.2 we analyze the case of a
ring-structured assembly in SE(2). We refer to those assemblies as SF(2)-Rings. After
developing their kinematics, we show how motion control for such assemblies can be re-
duced to the corresponding problem for the SE(2)-Snake (NVGT) that was discussed in
section 5.3.2. In section 5.4.3 we consider the case of a 1-module SE(2)-Snake assembly,
where the Codimension 1 Constraint Hypothesis introduced in section 4.2.2 is relaxed so
that one of the nodes is constrained by one nonholonomic constraint as usual, but the
other one is constrained by two such constraints. This provides us enough constraints to
allow the expression of the global velocity of the assembly as a function of the shape and

the shape variations, which was not possible previously, as discussed in section 5.2.2.

5.4.1 The 3—module SE(2)-Spider

Consider the 4-node assembly of fig. 5.4.1 consisting of one central node connected
by linear actuators in a planar parallel manipulator configuration with each of the 3
other nodes. These nodes are subject to one nonholonomic constraint per node, due to
idler wheels.

The trajectory of each node is a curve g, C G = SE(2), while its velocity is a curve

éi C G = se(2), such that:
gz=TeLg §z=gz§z 3 Z:1774 (541)

A pair of nodes 7 and j of the chain constitutes the (4, 7)-th module and its shape 9, cCd

and shape variation §i ; C G are defined by:

9,, =99, (5.4.2)

and

(5.4.3)
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%

Fig. 5.4.1: The 3—-module SE(2)-Spider
From this, we can easily see that
9.=9.49 (5.4.4)
and

fi = 61,1 + Adgf,lzél , fori=2,3,4. (5.4.5)

The system is subject to the following 3 nonholonomic constraints:

A3(€) =0,
AE) =0, (5.4.6)
Ap(€,) =0.

Consider the composite velocity vector of the system ¢ = (& 1T 12T e1,37 g4t )T and
let the global velocity of the assembly be characterized by 51, while the shape variations

{1 2,51 3,{1 . of the 3 modules are the system’s controls.

The constraints (5.4.6) can be put in matrix form as:

Alg, 09, 39, ,)¢ =0, (5.4.7)
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where A = (4, , Ay) with

01 00O0O0TCO0CTO0OTO
Ai=10 0 001 0000
0 000 0O0O0OT1TO
and
—'71’2 cos'yl’2 sinfy]i’2
As = —'y;izz cos%lzz s%nfy{:i
—‘73 COS’)’l Sln")’l
Then, the composite velocity vector can be partitioned as ¢ = (g;), with {; =

(127 ¢13T ¢14TYT and ¢, = £1. Then, when A, is nonsingular, the constraints (5.4.6)

take the form:

61 61,2
i is
=& | =-47"AG=-4"8" | . (5.4.8)
61 €1,4
3 2

It is easy to see that A, is singular whenever the axes of platforms 2,3 and 4 intersect at

one point or are parallel. Motion control for this system will use periodic {;’2,5;’3 and
f;"‘ in generating appropriate motions of the system.

However, a simpler strategy would be to reduce the motion control for the 3—module
SE(2)-spider, to that of motion control for the 2-module NVGT that was examined in
detail in the previous section. To do this, we will characterize the global motion of the
system by {2, not 51, while regarding {2,3 and {3’4 as the shape controls. The real shape

controls {32[’2, 6;’3 will be used to implement the desired variation of { , and ¢ .

From the system’s kinematics we have

9, = 9292’3 y
9,= 9393,4 - 9292,393,4 ’
-1l —1_ -1
92’3 92 glgl 9, 91,291’3 ) (5.4.9)

— 1 -1 _ 1
950=95 99,9, =99, 4>

Yo4 ™ 92,393,4 )
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Then:
(A1, A2l =As, [A1, A5] =0, [A2, A3] =0. (4.3.29)
Proposition 4.3.4

The algebra G = h(3) is nilpotent (thus solvable) and, from Proposition 2.3.14, any
g € G = H(3) has a global Wei-Norman representation of the form (4.3.3) with

(F)-(5 2
)= 0 1 0] ]- (4.3.30)
Y3 =72 0 1/ \¢,

Equation (4.3.30) is solvable by quadratures:

(4.3.31)

= v3(0) —’)’2(0)/t§1(0)d0— /t§1(7)<]£2(0)d0> d’r—l—/t§3(7)d7'.
0 0 0

0
Proof

Since G = h(3) is nilpotent, the existence of a global representation is immediate by
(Wei & Norman [1964]). To see that it has the form (4.3.3) with coefficients given by
(4.3.30) and (4.3.31), we compute the RHS of (4.3.5), using (4.3.29) and (2.3.20):

e A A = Ay +mads,
(ad(—sAs) ad(—1242) 41— A1 4 vy Ag (4.3.32)
(=12 43) gy = A, .

From (4.3.1), (4.3.2), (4.3.5) and (4.3.32), we have:

£=6A1+&A + €3 A5

= Y1 (A1 + 12 A3) + Y2 A2 + F3As .
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The corresponding shape variations are

85 = &y T AdgL L, (5.4.10)
Mt P Aclgs—;1 & =584t Adg:;L &at Adg;; ¢, (5.4.11)
G =83~ Adgl-,lzgl,s-lfl,z ; (5.4.12)
63,4 - f1,4 - Adgl-,l?’fLB : (5.4.13)

The nonholonomic constraints (5.4.6) can be expressed, using (5.4.10) and (5.4.11) as
Alg, 59, )¢ =0, (5.4.14)

where the composite velocity vector is now ¢ = (§2T €237 34T and A = (Ay, Aj)

with
0 0 0 0 00
A = 0 1 0 0 00
—7:33’4 cos'y:f’4 sinq'f"1 010
and
0 1 0
Ay = —7§’3 cos*yi’3 sinfyi’3
Y3 * cos vy 4 gin Y o
Then, the composite velocity vector can be partitioned as ( = (g), with (4 =

(€237 €347)T and ¢, = £2. Then, when A, is nonsingular, the constraints (5.4.14)

take the form:
(o =—A7"A1(1 . (5.4.15)

The motion control strategies that were devised for the 2-module NVGT can be applied

to this system in terms of periodic controls for 52 s and §3 . They can be implemented

by solving (5.4.12) and (5.4.13) for §1 2,§1 s and §1 R This can be done by e.g. setting

5173 =0, when

£ .= _Adg £

1,2 2,3°2,3 "

51,4 = éh3,4 ’
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2,0

oF

9,

Fig. 5.4.2: The 3-module SE(2)-Ring

5.4.2 The 3—module SE(2)-Ring

Consider the 3-node ring assembly of fig. 5.4.2. Each node is connected with
both of the others in a planar parallel manipulator configuration and is subject to a
nonholonomic constraint coming from idler wheels rolling-without—slipping on the plane
supporting the assembly.

From the system kinematics we get:

2 171,2
(5.4.16)
937 9953
From the loop equation we have:
9,5=9; 595" (5.4.17)
The corresponding velocities are
L8, Adgl—,lzgl ’
(5.4.18)

§ = éh2,3 + Ad%—,ggz - f2,3 + Adgg_:o,ﬂ,z + Ad(91,292,3)—1€1 ’
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Furthermore, the shape variations should satisfy the holonomic constraint coming from

the loop equations:

51’3 = {2,3 + Adg2_,13§1,2 . (5.4.19)
The nonholonomic constraints of rolling-without-slipping can be expressed as:
A5(€) =0, fori=12,3. (5.4.20)
The nonholonomic constraints (5.4.20) can be expressed, using (5.4.18) as

Alg, ,9,,)¢ =0, (5.4.21)

where the composite velocity vector is now ( = (§1T g12T g237 )T and A = (A4;, A;)

with
0 0 0 0 00
A = 0 1 0 0 00
—'yg’?’ cos'yf’3 sin'yf’?’ 010
and
0 1 0
Ay = -—'y%’z cosyi’z sin'yi’2
—15° cosy® sinyy?
Then, the composite velocity vector can be partitioned as ( = (E;), with ¢; =

(51’2T 52’3T )T and ¢; = ¢. Then, when A, is nonsingular, the constraints (5.4.21)

take the form:

(r=—A7 Ar(y (5.4.22)

It is easy to see that A, is singular whenever the axes of all 3 platforms are parallel or
intersect at one point. Motion control strategies for the 2-module NVGT in terms of

periodic controls for 51 ) and 52 , can be applied to this system. However, now fl s will

have to be adjusted using (5.4.19) to account for the loop constraint.

5.4.3 The 1-module SE(2)—Snake with more than one constraint per node
In section 4.2.2 we introduced the Codimension 1 Constraint Hypothesis, according

to which, every node of a G-Snake was constrained to evolve on an (n — 1)-dimensional
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subspace h of the Lie algebra G, which, in addition, was not a subalgebra of G. The
constraints £ € h could then be expressed as A5 (¢) = 0, for some A% € G*, such that
h = Ker(A}).

In this section we examine how this hypothesis can be relaxed, by allowing some
nodes of the assembly to evolve on a subspace h of G of dimension n — r, for r > 1.
Suppose h = Ker(sp{Al,’c Lreee ,A*,’CT}). Then the requirement that £ € h can be expressed

as a set of constraints

All’cl(é) =0, ... ’Abr(f) =0,

for a set of r linearly independent elements of G*. However, in this case, the system may
have to evolve, not on the whole of G, but on a subspace of G.

As an example of this case, we consider a 1-module NVGT assembly where two
platforms with idler wheels are connected with 3 legs in a planar parallel manipulator
configuration (fig. 5.1.1). One platform (say platform 2) has two wheels that move
independently of each other, so they provide a nonholonomic constraint from rolling—
without—slipping exactly similar to the previous assemblies of this chapter. The other
platform (platform 1) has two wheels which are joined by a shaft, which forces them to
rotate simultaneously. Thus they are not independent of each other any more, but they
are otherwise free to rotate. Such an arrangement prevents both sideways motion and
rotation of the platform, which is only able to translate along the perpendicular to the
axis of the wheels.

The system kinematics are now

9,=949,, (5.4.23)

and

6, =6, T Adpm b, (5.4.24)

The two nonholonomic constraints imposed by the motion of the wheels of platform 1

can be expressed as
Aj€) =0,

(5.4.25)
Ap(E) =0,
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while the constraint imposed by platform 2 can be expressed as

A5(E,) =0. (5.4.26)

Consider the composite velocity vector of the system ¢ = (¢! €527 )T and let the global
velocity of the assembly be characterized by {1, while the shape variations §1 ) of the
module are the system’s controls.

The constraints (5.4.25) and (5.4.26) can be put in matrix form as:

Alg, )¢ =0, (5.4.27)
where A = (A3, A;) with
0 00
A;=1(0 0 0
010
and
1 0 0
Ay = 0 1 0

1,2 1,2 .

Then, the composite velocity vector can be partitioned as ( = (8)’ with (; = €12

and (3 = ¢!. The matrix A, is singular whenever detA; = sinfy:%’2 = 0. When A, is

nonsingular, the constraints (5.4.27) take the form:

1
=& | =-47 " 40G=-2 | 0 (5.4.28)
fl sin-yy’ 1
3

Only 5;,2 is nonzero, as expected by the constraints, thus the assembly moves perpendic-
ular to the axis of the first platform. Configurations outside this line cannot be reached.

Assume that the shape of the 1-module NVGT assembly traces a rectangular path

in shape-space similar to the one described in Proposition 5.3.4, i.e.

0, fortel0,); o cos qbilz}, for t € [0, T};

B for t € [L, L]: 0 for t € [T, T];
51,2 — ] or [4, 2 1y 61’2 — P or rRECH )
1 0, fortel[F,%f); * ~2 —acosqf){,zz}, for t € [£, L)

-8, forte [, T} 0, for t € {3, T;
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This makes the shape trace (counterclockwise) a rectangular path in (z; 2, $1,2)-space.
Let milz},x{z} and ¢i12},¢{2} be the extreme values of z; 5 and ¢; 2. Then a = T(mg} -
o1d) and B = (1% - ¢{).

The corresponding Wel—Norman parameters for the (1,2)-module are given by (5.3.17)

as follows:
1,2 {1} -
71°°(0) = 1,25 for ¢t € [0, Z];
12 = /51 2ryar = | z(o) 1BE-T), forte(Z, T
T — ¢l T 3T
()+,B 1,29 fOft€[2,4],
(0)+ﬁ( ), for t € [%,T];

Then we get from (5.4.28):

t t 61’2(7')
AV =70 7 (0) = [ Emdr = - | —25—d
Y3(t) = v3(t) —v3(0) = [ & (T)dT = —2 -
3 sm-y;’ (7')
0 0
( cosqS{l} T
- Sm‘1’1 irh for t € [0’ —4—];
cosqb{l} T
_a_{sinqsl% ) fort € [4 ik
= {’1} {2}
cosdy s T cosqS T T 371,
sin¢%j:} T Toy ¢{:"} (t—3%), forte[L, 3]
cos ¢§,22} _ cos ¢§,12} T aT .
a(sinqsﬁg singly | O for t € [, T7;

Then, after a period of the shape controls, the assembly has translated by

{2} {1}

cosdyy  cosdia \T (2} {1 1 1

Av;(T) = a( 2 ) =(z19 —%14) - .
s sin ¢£22 sin ¢>{1} b2 "2\ tan ¢i22} an qﬁi’lz}

If we trace the shape-space loop in reverse, the assembly moves in the opposite direction.
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CHAPTER SIX

DYNAMICS OF AN SE(2)-SNAKE ASSEMBLY

6.1 Introduction

Fig. 6.1.1: The Roller Racer

The effect of dynamics on systems of the G—snake type that we examined kinemat-
ically in chapter 5, can be seen by considering the 1-module SE(2)-snake system of fig.
6.1.1. This system is sold commercially under the name “Roller Racer”and its design is
based on a U.S. patent held by W. E. Hendricks [Patent # 3663038 of May 16, 1972].
The system consists of a seat, with a pair of idler wheels mounted in its rear and with
an elongated steering arm pivoted to the front of the seat, with a pair of idler wheels
also mounted on it, on the rear of the pivot axis. A rider provides the propulsion and
steering mechanism of this vehicle, by swinging, with his arms and feet, the steering arm

around the pivot axis and by leaning his body to the left and to the right, following the
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Fig. 6.1.2: The Roller Racer Model

swinging of the arm.

The model of fig. 6.1.2 will be used in our analysis. Two planar platforms with
centers of mass (c.0.m.) located at points O; and O, are connected with a rotary joint
at O1,2. A pair of idler wheels is attached on each of the platforms, with the axis of the
wheels perpendicular to the line connecting the c.o.m. with the joint. A coordinate frame
centered at the c.o.m. and with its z—axis along the line O;0; 3 for i = 1,2 connecting
the c.o.m. with the joint, will be used to describe the configuration of each platform
with respect to a global coordinate system at some reference point O. For simplicity, it
will be assumed that the axis of the wheels passes through the c.o.m. of each platform.

The effects of the rider’s body motion will be ignored at first approximation. Exper-
iments with the Roller Racer show that, even though those body motions may amplify
the resulting motion of the system, the fundamental means of its propulsion is the pivot-
ing of the steering arm around the joint axis and the nonholonomic constraints coming
from the wheels’ rolling-without-slipping on the plane supporting the vehicle. In this
respect, this system is very different from the Snakeboard, a variation of the skateboard,

where the motion of the rider is essential for the propulsion of the system (Lewis et al.

155



[1994]). Riderless prototypes of the Roller Racer built at the Intelligent Servosystems
Laboratory verified this. The propulsion and steering mechanism in these vehicles comes
from a rotary (stepper) motor at the joint O; 2, whose torque can be considered as the
control of our system. As discussed in section 5.2, the purely kinematic analysis of such
a system does not allow us to determine the global motion of the system by just the
shape variations (the joint velocity in this case), since (unlike the 2-module case) it does
not possess a sufficient number of nonholonomic constraints for this to happen (c.f. Re-
marks 5.2.6). Our goal here is to complement this kinematic analysis with the dynamics
of the system, which will provide the necessary information. Thus, certain fundamental
behaviors of the system (“straight-line” motion, “turning” motion) can be achieved by
proper oscillatory relative motions of the two platforms. In both numerical simulations

and experiments with prototypes, we observed such behaviors.

An alternative to the usual approach of solving the full Lagrange-d’ Alembert equa-
tions of motion of the system is considered here. In (Bloch, Krishnaprasad, Marsden &
Murray [1994]), the notion of the momentum map is examined for systems with non-
holonomic constraints and symmetries and its evolution law, the momentum equation,
is derived from the Lagrange-d’ Alembert equations. By applying this method to the
problem at hand, a useful decomposition of the equations of motion is obtained: Given a
shape-space trajectory (which corresponds to the controls of our system), first we com-
pute the nonholonomic momentum from the momentum equation. This only involves
the solution of a linear ordinary differential equation. Subsequently, we use the momen-
tum to reconstruct the group trajectory, which corresponds to the global motion of the
system. The corresponding velocities depend linearly on the momentum. This process is
very useful for the derivation of motion control laws for this system and can be extended

to 1-module SE(2)-snakes with more general shape-changing mechanisms.

6.2 Kinematics of the Roller Racer

CO8s 01 —sin 01 ZT;
Let g = | sin; cosf;, y; | € SE(2), for i =1,2, be the configuration of plat-
’ 0 0 1

form ¢ with respect to the global coordinate frame at O, where z,, y, and ; are indicated
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COos 01,2 —sin 01’2 Zi1,2
in fig. 6.1.2. Let 9,,= sinfy2 cosfip Y12 | € SE(2) be the configuration of
’ 0 0 1

platform 2 with respect to the coordinate frame of platform 1 at O;. Because of the

special structure of the joint, we have

CII1,2 = dl + d2 COS 01,2 y Y12 = d2 sin61,2 ) (6.2.1)

where d; is the distance of O; from the joint O; 2. We consider non-—negative d; and ds.
In fact, we assume d; > 0. However, we allow for the case dy = 0 and we examine it in
detail.

Since the platforms form a kinematic chain, we have
9,= 9,9, ,> (6.2.2)

thus
0y =0,+01,,

Ty =21+ Z1,2 COS 01 — 1,2 sin91 =1z + d]_ COos 01 + dz COSs 02 ) (623)

Y2 = Y1 + T1,28in60; + y; 2cos6y = y; +dysinb; + dpsinby .

The system kinematics are a special case of those of the VGT assembly, i.e. for §i =

0 -4 =}
6; 0 Z% | €G=se(2) we have:
0 O 0
gi = gié‘i ,1=1,2 (6.2.4)
and
912798, (6.2.5)
) 0 -1 0
where £ =61211 0 d; |.Moreover, we can show that
1,2 J
0 0 O
§2 = Adg;’lzgl + {1’2 , (6.2.6)
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where
Adg-1 A1 = Ay — 13 A2 + Y2 A3,
Ady-1A; = cosy1 Az — siny1A; (6.2.7)
Adg-1 A3 = siny; Az + cos 143,

with v; the Wei-Norman parameters of g. Alternatively,

éz = 91 + 91,2 )
Zi;’z = fi)]_ + 2'51,2 COS 01 — 21)1,2 sin 01 — (11,‘1,2 sin91 + Y1,2 COS 01)9.1

= i:l - él[dl sin01 + dz sin(01 + 91,2)] - él’zdz sin(91 + 91,2) y (628)

Qz = yl + i‘l,z sin 01 + ’gl,z COS 01 + (11,‘1,2 COS 01 —Yi,2 sin91)01

=9 + 91 [d1 cos 0, + dy cos(6y + 61 2)] + 91,2d2 cos(61 + 01 2) .

From (6.2.3) we see that the configuration space for the Roller Racer system is Q =
SE(2) x S. Consider the space S = S x S' and consider the projection 7 : Q — S. Let
() be parametrized by (g1 (%1,y1,61),601,2) with 9, (#1,91,01) € G and S be parametrized

by (61,01,2). Then v, € T,Q can be represented as (Z1, 91, 61, 0'1,2). It can be easily seen

that T'r is onto, thus 7 is a submersion. Thus, 7 : @ — § is a bundle with vertical space
Vy = Ker(Tyr) = {v, € T,Q |6, = 0,015 =0} .

The constraints specify an Ehresman connection (Bloch, Krishnaprasad, Marsden
& Murray [1994]), (Marsden, Montgomery & Ratiu [1990]) on this bundle. By also
considering the dynamics (or more precisely the momentum equation), we can synthesize

a principal fiber bundle connection for this system.

Consider the usual bases {41, 4>, A3} for G = se(2) and {A}, A5, A5} for its dual
space G*. The nonholonomic constraints on the wheels of the two platforms can be

expressed as:

£ = A3(€,) = —d15in6y + g1 cos6y =0, (6.2.9)

€2 = A4(¢) = —do8infy + o cosfy = 0, (6.2.10
3 2
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From (6.2.8) and (6.2.10), we get

f: = .A?;(éé) = —Zi‘l sin(91 + 01,2) + :l)l COS(91 + 01,2) + él(dl COS 91’2 + dz) + él,zdg =0.

(6.2.11)
Observe that for d = 0, neither one of the constraints (6.2.9) and (6.2.11) involves 01 5.
From (6.2.9) and (6.2.11), we get:

§§ = Ag(fz) = —-(I.l COs 01 +gl sin91) sin91,2+ (dl COs 01’2+d2)91 +d2é1’2 =0. (6.2.12)

Proposition 6.2.1

The nonholonomic constraints (6.2.9) and (6.2.11) are linearly independent for all
q€Q.
Proof

We can rewrite the constraints in the form:
T
—sinf; cos 6, 0 0 y1 | _ (0
—sin(f; +6012) cos(f1 +612) dicosbiz+de do 6 | \0o/"
01,2

Consider the determinants of all possible 2 x 2 minors:

Ay = —sinb; cos(0y + 61,2) + cos 0y sin(f; + 61 2) = sinb 5,
Ay = —siny(dy cos by 2 + da) ,

Az = —sinby dy ,

Ay = cosby(dycosby o +da),

As =cosby dy ,

Ag=0.

When dy # 0, consider Ay,...,As. If sinf; 2 # 0, then A; # 0 establishes linear
independence. If sinf; o = 0, then Az # 0 or Ay # 0. When dy = 0, consider Ay, A,
and Ay. If sinf; 5 # 0, then A; # 0. If sin6; o = 0, then cos; > # 0 and we have either
Az # 0 or Ay # 0. Thus, the null space of this matrix is always of dimension 2.
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Define the constraint one—forms:

w, = —sinfidz, + cosf1dy, ,
w2 = —sin(f + 61,2)dz1 + cos(61 + 01,2)dy; + (dy cos 01 5 + do)d6r + dadb 5 .

(6.2.13)
The constraint distribution D, is the subspace of T,Q) which is the intersection of the

kernels of the constraint one—forms, i.e.
Dy = Ker w; N Ker w(? . (6.2.14)

Since the constraints are linearly independent, we know that D, is always 2-dimensional.
Next, we will specify a basis for it.
Proposition 6.2.2

The constraint distribution D, C T,Q is

Dy = SP{S;,%} , (6.2.15)

where in the case do #£ 0 :

0 . 0 ) 0
£ = da(cos 018_331 + sin 6, 6—y1) + sinf o T
(6.2.16)
0
5% = dza—el —(dy cosf o + dz)aal’z ,
while in the case dy = 0 :
€4 = dy cos by o(cos 616%1 + sin6; aiyl) + sinHl,zaiel ,
(6.2.17)
& =
%7 060y,

Proof
Let X, = 016—2—1 +v26%1 +v3aié,1 +”4aei1,2' € Dy, with v; € IR, be a vector field in the
constraint distribution. By definition it should annihilate both constraint one—forms.

Consider first the case dy # 0. From the constraints we have:
w;(Xq) = —v;sinfy + vy cosfy =0,

wg(Xq) = —(’1)1 cos 81 + vq sin01) sin91,2 -+ (dl coSs 91’2 + d2)’U3 +dovy =0.
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. . d
Let vy = dp cos 61vs, v3 = dysinfyvs and vy = sin 6y ovs — ngl'”d—zvg. Then:

0 J 0
Xy = [dzcosﬁlgzv— +d231n91@+sm91 20012]
0 0
+ v3 [d28_61 — (dycosbyp + d2)801,2] )

for arbitrary vs, vs, satisfies both constraints. The two vector fields are obviously linearly
independent.

Consider the case dy = 0. The constraints now become:

wy(Xy) = —vysinf; + vy cos6; =0,

wg(Xq) = —(vycos0; + vasinby)sinb 3 + dy cos by v = 0.

Let vy = dy cos 01vs, va = dy sinfyv5 and vs = siné; ov5. Then:

0 0 0 0
Xy=uwsld 00— +d 01— 0
’U5[1COS 1am + 1Sln 181+Sln 12891]+U48912
for arbitrary v, vs, satisfies both constraints. The two vector fields are obviously linearly

independent.

6.3 Symmetry of the Roller Racer
Consider now the effect of symmetries on this system. In particular, consider the

action ® of the group G = SE(2) on the configuration space ) defined by:

P GxQR—->Q
(9, (91,61,2)) — (991,61,2)
((b,¢,a),(z1,y1,01,01,2))— (z1cosa —yysina + b,z sina + y; cosa + ¢,01 + a,61 2),

(6.3.1)
where g = g(b,c,a) € G. The tangent space at g € Q to the orbit of ® is given by

g 0

T,0rb(q) = sp{ B0y 90, }

(6.3.2)
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Notice that
D, + T,0rb(q) = T,Q .

In (Bloch, Krishnaprasad, Marsden & Murray [1994]), this is referred to as the principal
case. Our goal is to show that the nonholonomic constraints, together with a momentum
equation, can specify a connection on the principal fiber bundle @ — Q/G.

The intersection S, of D, and T,Orb(q) is non-trivial. Contrast this with the 3-
node G-snake where T,Q = D, & T,Orb(g), thus the intersection of D, and T,0rb(g) is
trivial. We specify a basis for S, as follows:

Proposition 6.3.1

Consider the intersection
Sy =Dy NT,O0rb(g) .

In the case dy # da, the distribution S, is 1-dimensional and is given by:

5¢=w§gh (6.3.3)
where
€% = (dy cos B 5 + da)(cos 01i +8inf; — 0 —) +sinb; o — 0 (6.3.4)
Q ’ 6.’171 8y1 69
Proof

Consider X, € §; = Dy NT,0rb(g). Because X, € Dy, we have X, = u1§1 + u2§2 ,

for u; € IR. Because X, € T,Orb(q), we have X, = v; 5> 6z1 + vy 2~ ay + Vg =2 ae , for v, € IR.

In order for X, to lie in the intersection of the two spaces, we should have:

0 0
U1§ +’U.2§2 = ’013—1 -I-’l)za—y1 -|-’U3a—91 . (635)
In the case d # 0, we have from (6.2.16):
0 0 0 0 0
[dz(cosﬁla + sin 6y 8y1) +sm01 2391 2]U1 + [dza—el - (d1 cos 6, ,2 +d2)891 2]
v 0 +v i +v i
Yoz, | Cdy | 096,
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This corresponds to a system of four equations:

dy cos 6; 0 -1 0 0 e 0
dy sin 6 0 o -1 0 |[™]| (o

0 ds o o —-1}J]" 1% 1o
sinfy, —(dicosbi2+d2) 0O 0 O Zz 0

When dy # da, the 4 X 5 matrix above is always of maximal rank, thus dimS, =
5—~4 =1, for all ¢ € Q. Pick uy = (dycosby 2 + dp)us and uz = sin6 sus. Then,
vy = dp cos 1 (dy cos 0y 2 + da)us, vo = dp sinby(d; cos by 5 + da)us and vs = dy sin by sus.

Thus

0 ) 0 . 0
X, = [(d1 cosy 2 + dp)(cos 913_1'1 + sin 6, 5?;1—) + s1n91,28—61]d2u5 ,

for arbitrary us. Observe that when d; # da, the vector field X, is nontrivial for all
qeqQ.
In the case dy = 0, we have from (6.2.17):

0 0 0
—+’Uz—+’v3
T

0 . 0 : 0
dy cos 0 2(cos 91—+sm91——)+sm91,26—01 Uy +’U,260—1’2 =g B0 26, -

0z, on
From this, we get:
Ug = 0 ;
v = dl COS 91’2 COS 91’11,1 s
Vg = dl COos 01,2 sin01u1 y
V3 = sin01,2u1 .

Therefore,

0 0 0
Xq = [d]_ COSs 91’2((305 016_.’171 + sin91a—yl) + sinGl,za—el]ul y

for arbitrary u;. Thus, S, is again a 1-dimensional distribution.

The two cases can be unified in the expression (6.3.4).
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Proposition 6.3.2

For the action ®, the infinitesimal generators corresponding to the basis elements

of G = se(2), defined in (4.3.12), at the point q € Q, are:

0 0 0
q —_ -— — —
Ao =g T oGt e
0
q _
Aoty = 5 (6.3.6)
0
g = 9
AaQ oy
The infinitesimal generator corresponding to €9 = &1 4; + €3 As + €343 € G is
0 0 %,
q — (£, _ i
fQ (& y1§1)3x1 + (&2 + "10151)8:[/1 + & 0, (6.3.7)

A given vector field §‘é) = UlaaTl + 02% + v;:,% can be considered as the infinitesimal

generator of an element £ € G = se(2), under the action ®. Then, £9 is:
€7 = v3 Ay + (v1 + y1v3) A2 + (v2 — z1v3) A3 . (6.3.8)

Proof
From (4.3.19) and (6.3.1):
q d tA; d . .
Aig==| 2,9 = 7 (1cost —y; sint,zqsint + y; cost, 8 +t,612)
t=0 t=0

= (—-11,21,1,0) +— — i+ac—6l—+i
- 1,21, 1, ylaml layl 091

The infinitesimal generators for the other elements of the basis are specified similarly.

The vector field fé in (6.3.4) corresponds to the following element ¢ of se(2) :

€7 = sin 6, 241 + [(d1 cos 61 5 + dg) cos 61 + y; sin 61 2] A (6.3.9)
6.3.9
+ [(d1 cos 01,2 + dy) sin B — z1 sin 61 o] A3 .
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By differentiating (6.3.9), we get

dea )
i = cos 01 201 2. A1

dt
+ [—d]_ sin 01,2 Cos 019.1,2 et (d]_ COS 91‘2 + dz) sin 019.1 + yl sin 01’2 + Y1 COS 91’29.1’2]./42

+ [—dl sin91,2 sin0191,2 + (dl COS 91,2 + dz) COS 019.1 - ;i)l sin 01,2 — I1 COS 91’291,2].,43 .

(6.3.10)
The corresponding infinitesimal generator is
dg¢? . : . : . 0
e = [ — dl s1n91 2 COS 0191 2 — (dl Ccos 01 2+ dz) sin 9191 + v sm91 2] _—
dt Q ’ ’ ’ ’ (95!:1
. . : : L 0
+ [ — dy sinf 28in 616 5 + (dy cos by 2 + dp) cos 6161 — 2y smel,z] %
1
-+ cos 91’29.1’26101 .
(6.3.11)
6.4 Dynamics of the Roller Racer
Consider the Lagrangian:
. 1 2, a2y, Ly o2, 1 ) IRY
L(g) = §m1(ac1 +91) + §Iz191 + §Iz2 (61 + 61,2)
my 0 0 0 I
. 1 A 0 my 0 0 y_l
=3 (21 91 61 612) 0 0 I, +1I, I, o, (6.4.1)
0 0 I, I, 01,2
1. .
=54 Iy,

for ¢ = (x1,y1,61,01,2), where m; and I, is respectively the mass and moment of inertia
of platform i. The choice of Lagrangian reflects our assumption that the mass and linear
momentum of platform 2 are much smaller than those of platform 1 and can be ignored.

However, the inertia of platform 2 is not ignored.

165



From (6.4.1):

m1%y
oL . m1Y1 ,
ag ~ T | (I, + L,)01 + L,61
1,01+ 1,0,

(6.4.2)

Proposition 6.4.1

The constraints (6.2.9) and (6.2.11) and the Lagrangian (6.4.1) are invariant under
the action ® given by (6.3.1).
Proof

Fix g(b,c,a) € G = SE(2). Consider ¢ = (z1,y1,01,61,2) € Q. Under the action ®
of G on Q, q = (Elagho—laélﬂ) = q)(g,Q) :

[«
(=)

— € . * . . .
Ty = x1c08a —yi8ina+b=— 2y = £;cosa —y;sina ,

_ def . - .. .
U1 = z1sina+ yicosa +c¢c = Yy; = T18Ina + Y1 cosa ,

éldéf01+a=>§1=6'1,

— def . -
0120 =012=>012="01>.

Consider the effect of ® on the constraints (6.2.9) and (6.2.11):

— Z18in; + ; cos by =
= —sin(f; + a)(%1 cosa — ¥y sina) + cos(6y + a)(&1 sina + ¢, cos a)
= %18in6; + y; cos by
— %1 8in(0; + 01,2) + ¥ cos(f1 + 012) + 01(dy cos By 5 + da) + 01 2dy =
= —sin(fy + 61,2 + a)(&1 cosa — Yy sina)
+ cos(fy + 61,2 + a)(£1 sina + Y1 cosa)
+ él(dl cos by o+ ds) + 0'1,2d2

= —I sin(91 + 01,2) + 7 COS(91 + 91,2) + él (dl CcoSs 01’2 + dg) + él,gdz .
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Consider the effect of ® on the Lagrangian (6.4.1):

L(d_:l’?jl) o_la 91,2) -

1 . . 1 22 1 + -
= 5ml(acf +i) + o lnb + 51, (01 + 01.2)>

1 1 . 1 . .
= 5ml [(xl cosa — 1 sina)? + (21 sina + 9 cos a)2] + EIZIGf + EIZZ (01 + 015)*

= L(i?l,yl,él,él,z) .

Define the nonholonomic momentum as:
p= f . 6.4.3
Z gt Q ( )

Proposition 6.4.2 (Nonholonomic Momentum)

The nonholonomic momentum for the Roller Racer system is
p=m (d1 COSs 91,2 + dz)(djl COS 91 + :l]]_ sin 91) + [(Iz1 + IZ2)0.1 -+ Iz29.1,2] sin 9172 . (644)

Proof
From (6.4.2) and (6.3.4), we get (6.4.4).

Let
A(012) % (I, + ;) sin 01 5 + my (dy cos 61 5 + da)? . (6.4.5)

For dy # dy, we have A > 0 for all ¢ € Q).
Proposition 6.4.3
The angular velocity 0, is a linear function of the nonholonomic momentum
6, =

sin 01’2 p— [Iz2 sin? 01,2 + mldg(dl coSs 91’2 + dz)]él,g . (646)

_1 1
A6 2) A(61,2)

Proof
Multiplying both sides of (6.4.4) by sin# o we get
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sin @ op = my(dy cos 01 2 + d2)(£1 cos 01 + gy sinby) sinb o
+ [(Iyy + 1,)01 + 1,01 5] sin? 0, 5 .
From (6.2.11) we get
sinfy,2p = my(dy cos 0y 2 + d2)[(d1 cos by 2 + dz)él + dzélyz]
+ [(Ly + I,)01 + I, 5] sin 0, 5
= [(Iz1 +1,,)sin? 01 5 + m;(d; cos 8y 5 + dg)z]él

+ [Iz2 sin2 91,2 + m1d2 (d1 COoS 91,2 + dz)]él’z .

Solving for 6, we get (6.4.6).

Note that for dy =0
6, = %(p — I, 8in6; 50, ) . (6.4.7)

The momentum equation presented in the next Theorem is derived from the
Lagrange—d’Alembert principle by considering only variations that satisfy the constraints
and that depend on the symmetry, as it is expressed by a free group action. The equation
does not depend on internal torques and depends only on the shape variables and not
on the group variables.
Theorem 6.4.4 (Bloch, Krishnaprasad, Marsden & Murray [1994])

Consider a Lagrangian L which is invariant under the action ® of a group G on
a configuration space (). Let D, be a constraint distribution on T,Q and consider the

intersection S, of D, with the tangent space to the orbit of ® at q. Let 522 € S, and let

&7 be the corresponding element of the Lie algebra G. The evolution of the nonholonomic

momentum p, defined as in equation (6.4.3), satisfies the equation:

dp < AL [de?]’
- = E 7 [%] . (6.4.8)
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This result generalizes the classical Noether’s Theorem, which specifies conserved
quantities for solutions of the Euler-Lagrange equations.
Proposition 6.4.5 (Momentum Equation)

The momentum equation for the Roller Racer system is

d . )
d_ii’ = A3 (61,2)01,20 + A%(612)63 5, (6.4.9)
where
I, +1,,)cos0;9—mydi(d;cosbyo+ds) . 1 .
A%(0,5) = (I, 2 : : inf; o = 01 5)sinf
1( 1’2) (Iz1 + Izz) Sil’l2 01’2 + ml(dl [0 1] 91,2 + d2)2 1.2 A(el,g) ﬁ( 1’2) ! 1,2
and

dy + dycosth 2)(—[, do + 1I,,dy cos b, 2) mi
A4 0 — ml( 1 ) 1 2 ) — 2O ]
2(012) (I, + I,)sin® 01 2 + mq(di cos b1 2 + d2)2  A(612) (Br.2)7(01.2),

where
,3(01,2) d:ef (Izl + IZ2) COS 91’2 — mldl(dl COS 91,2 + dz) = ICOS 01,2 — m1d17‘ y
¥(612) € ~Lyda + L,dy cosy 2,

7‘(91,2) déf d1 COs 91,2 + dz y

)\(91’2) d:ef dl + dz COS 01,2 y

1¥1, +1,, .

Proof
From (6.4.8), (6.4.2) and (6.3.11) we get

d , .
zl-zt—) = ml.'i:l [ — dl sin 91,2 COSs 0191,2 — (d1 COS 01,2 + dz) sin 0191 + yl sin 91,2]

+may [ — d; sinf 3 sin 010.1,2 + (dy cos 012+ dz) cos Qlél — %y sin 91’2]
+ (I, + I,)6: + Izgél,2] cos 6 201 2
= —m1d1 ((III COS 01 + ?)1 sin 01) sin 01’29-1’2

-+ ml(dl COSs 91,2 + dz)(—il.?]_ sin 01 -+ yl Ccos 01)91

+ [(Iz1 + Izz)él + Iz291,2] COos 91,291,2
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Using the nonholonomic constraints (6.2.9) and (6.2.11) we get

d . . . . )
= = —mud[(dy cos b0 + do)f + dab z] + [(Luy + L)1 + L6 2] cos 61 61

= [(I; + I,) cos 61,2 — mydy(dy cos 0y 2 + d3)] 6101 2 + [, cos by 2 — m1d1d2]0.%,2 .

Using (6.4.6), we substitute §; in the above expression and we get (6.4.9).

|
Proposition 6.4.6
The solution of the momentum equation (6.4.9) is:
¢
p(t) = ®(t, t0)p(ty) + / D(t, 7)A3(01,2(7))0% 5 (7)dr (6.4.10)
to
where
t el,z(t)
) A6y 2(t
@(t, o) :eXP[/A%(el,z(T))el,z(T)dT] =exp[ / A%(el,z)del,z] = M
A(Ol,g(to))
fo 81,2(to)
(6.4.11)

is the state transition matrix of (6.4.9) and where A(6;2) is defined in equation (6.4.5).

Proof

Equation (6.4.9) is a first—order linear time-varying ODE with state transition ma-
trix ®(t,). Thus, (6.4.10) is obvious. To compute the state transition matrix ®(t, o),
observe that we get from (6.4.5):

dA
dby 2

= 2sinf; o [(Iz1 + I,,) cos 01 2 — mydy(dicos by 2 + dz)] =206(012)sinb 2 .

From this and the definition of A} in (6.4.9) we get

1 dA
2A df,

b1,2) .
A3(0,0) = 2012) g, =
1( 1;2) A(91 2) sy 2

’
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Thus

t 01,2(t)
(I)(t,to) = exp[/A%(gl’z(T))él,z(’r)dT] = exp[ / A‘i(gl,z)dgl,zjl
) e (6.4.12)
A(61,2()) o
— exp 1%] =exp[ln( A(812(1)) ] _ [ A(6:2(9)
2 A A(61,2(t0)) A(61,2(t0))
A(01,2(t0))
[ |

Assume a shape-space trajectory 6, 2(.) C S has been specified. The corresponding
nonholonomic momentum can be determined from the solution of the momentum equa-
tion (6.4.10). From the formula for the nonholonomic momentum (equation (6.4.4)) and
from the nonholonomic constraints (equations (6.2.9) and (6.2.11)), we can reconstruct
the group trajectory g1(.) = g1(z1(.),91(.),61(.)) C SE(2). This can be done either by
first specifying (%1, %1,61) and then integrating to find (x1,y1,60;) or by first specifying
¢ , € G and then applying the Wei-Norman procedure to find the corresponding ¢; € G.
Proposition 6.4.7 (Reconstruction of Group Trajectory)

Forg =g (z1,y1,61) € SE(2), the corresponding curve in the Lie algebra fl =
g7t g'1 is given by

51 = §i(01,2,91,2)A1 + 5;(91,2,91,2)A2 , (6.4.13)

where for d; # do, the components of 51 are

. . in 6 I,,sin0; 5 + mydy(dy cos by o + ds) -
10y 5,010) = 6 = 22712, 1z 1,2 T %2 : 0 6.4.14
61( 1,2 1,2) 1 A(91’2)p A(01,2) 1,2 ( )

and

dl COS 01,2 + d2 Izl d2 - Izzdl COS 01,2 sin @ 9
INCOE A(61,2) nEIL2

5;(91,2, 0:,2) = &1 cos0; + gy sinf; =

(6.4.15)

171



and where {A4;, 45, A3} is the usual basis of § = se(2). Moreover,

. 0 .
&1 = cos 1 €} = 2T [(d1 cos B,z + da)p + (L, dy — Iydy cos B 5) sin B 56 )],
2 A(Ol‘z) ’
06 .
7, = sinf; ¢ = SR [(d1 cos 0y 5 + dy)p + (I,,dy — I,,d; cos 61,2) sin 01,201,2] .
2 A(gl,z)

(6.4.16)
Proof
Equation (6.4.14) is immediate from (6.4.6). From (6.2.11) and (6.4.6) we get

(.’I.,‘]_ cos 6, + ¥1 sin 01) sin91,2

= %ﬂ [(d1 COs 01,2 + dz)p + (Iz1 dz - IZle COS 91,2) sin 01’201,2] .

When siné; 5 # 0 we get

1 o
%1 o861+ 8inf; = X [(d1 08 01,2+do)p+(1,,dy—I,,dy cos b 2) sin 01,291,2] . (6.4.17)

From (6.4.4) and (6.4.6) we get

m1(dy cos 61,2 + d2) (%1 cos 0 + 71 sin 0;)

my

A (d1 COSs 91,2 + dz) [(d1 COs 91,2 + dz)p + (Iz1 dz - IZ2d1 COS 91,2) sin 01’20.1,2] .

When d; cos 6 5 + dy # 0 we get from this exactly (6.4.17).

When d; # ds, either sin6; 5 # 0 or d; cos 61,2 + d2 # 0. In either case (6.4.17) holds.
From this we get (6.4.15).

Finally, from (6.2.9) we get 5; = 0. Equations (6.4.16) are immediate from (6.4.15) and

(6.2.9).
|
From (6.4.15), note that for do = 0, the velocity component f; is
1. . dy cos 2 . .
{2 =1Z1co86; + 9 8inf; = T(p —1I,,sin60; 20, 3) . (6.4.18)
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Now observe that from (6.4.14) and (6.4.15) we get

5; _ _1_ sin 91’2 —[Iz2 sin2 01,2 + mldz(dl COS 01,2 + dg)] 'p
f; A \ djcos 91’2 + do Izldz - Iz2d1 cos 9172) sin 91,2 01’2

=500 (47,)
(6.4.19)

and notice that detB(f;2) = %. Thus, in the case do = 0, given a group trajectory
§, C G, we cannot always solve (6.4.19) for p and 6, .

Equation (6.4.10) can be used to derive qualitative information about the momen-
tum, which can be useful in motion control.
Proposition 6.4.8 (Sign of the Nonholonomic Momentum)

Assume d; > ds.
a) Assume the angle 6; 5 remains in an e-neighborhood of 6, » = 7, with € < 5 and that
the initial momentum of the system is non—positive. Then, the momentum p is negative

at all times.

b) Assume I,,dy < I,,d; and that the angle 6,  remains in an é-neighborhood of ; » = 0,
with € < cos‘l(ﬁ—z%). Assume further that the initial momentum of the system is non—
z

negative. Then, the momentum p is positive at all times.

Proof

Since d; > da, we know that A = d; + dycosf; 2 > 0, for all 6 5.
a) By our choice of the e-neighborhood, we have cosf 2 < 0, thus v = —1I,,ds +
I,,dycosf; 2 <0, for all §; 5 in this neighborhood. Thus Al = Ay <0, for all such
61,2 and, thus, the second term of (6.4.10) is negative. If p(¢g) < 0, then p < 0.
b) By our choice of the é-neighborhood, v > 0, for all 6, » in this neighborhood. Then,
A% > 0 and the second term of (6.4.10) is positive. If p(ty) > 0, then p > 0.

A computer—controlled prototype of the Roller Racer system was built at the In-
telligent Servosystems Laboratory by Vikram Manikonda (fig. 6.4.1). The assumption

of our model that the only feature of the body motion of a Roller Racer rider which is
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(a)

Fig. 6.4.1: Roller Racer Prototype

crucial to the propulsion of this mechanism is the swinging of the steering arm around
the pivot axis, was verified using this and other similar prototypes.

The model of the dynamics of the Roller Racer system, which was developed in
this section, was used in numerical simulations of the system on a Silicon Graphics
workstation.

A periodic shape trajectory of period T} 2 of the form

01,2(t) = 01,2(t0) + 1,2 sin(wy 2t + ¢1,2) ,

with wy o = T%"; is used in the simulations. The average value of 8, o is 61 2(to). Setting

this average to m, as in fig. 6.4.2, generates a “straight-line” motion. In fig. 6.4.2 three
successive snapshots of the system’s motion are shown. The trajectory of the system
is shown by needle-like markers, so that the position and orientation of the system at
the end of a period of the shape control becomes evident. As the system moves to the
right, the spacing between those needles becomes larger, since, as momentum is built
up, the system moves faster. Setting 6, 2(f9) to a value other than 7 or zero, as in fig.
6.4.3 (here 0; 5(tp) = 3.31 rad), generates a rotation around the point where the axes
of the platforms intersect, when the system is in the configuration corresponding to this
average value. Once momentum is built up through periodic shape variations, we can

stop varying the shape periodically and, for some time, use 8, » just to steer the system.
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Fig. 6.4.3: “Turning” motion of the Roller Racer
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CHAPTER SEVEN

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation we examined several robotic systems with holonomic and non-
holonomic constraints that include parallel manipulator subsystems.

In Chapter 3, we considered motion planning based on minimizing a curvature-
squared cost functional, we showed how the problem is related to the classical problem
of the elastica and we derived analytical solutions for the optimal path segments in the
case of a 2-dimensional manifold and for the optimal curvature and torsion in the case
of a 3—dimensional manifold.

In Chapter 4, we introduced the concept of G-Snakes, a class of kinematic chains
with nonholonomic constraints evolving on a Lie group G. Shape variations of the system
modules were shown to induce a snake-like global motion of the system. We provided
a framework upon which motion planning strategies based on periodic shape variations
can be developed.

In Chapter 5, a concrete mechanical realization of G-Snakes, associated with the
Special Euclidean group G = SE(2) and related to the concept of Variable Geometry
Truss assembly with nonholonomic constraints was presented. We derived the associated
kinematics and examined motion planning by showing how periodic shape changes induce
global translation or rotation of the assembly under the influence of the nonholonomic
constraints.

In Chapter 6, we considered the dynamics of a particular instance of the 2-node
SE(2)-Snake, namely the Roller Racer, where the shape space is the subgroup S* of
SFE(2). We used a novel approach based on the notion of the nonholonomic momentum to
decouple the Lagrange—d’Alembert equations from the group variables and we considered
motion control schemes based on periodic shape variations.

Immediate extensions to this work include the generalization of the dynamic motion

control scheme to 2-node SE(2) Snakes and to (n — 1)-node G-Snakes and the detailed
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study of motion planning in those cases, as well as the extension of the dynamic model to
allow for joint flexibility and to include the effect of the rider on the Roller Racer system.
Also, we expect expansions to: the systematic study and classification of gaits that both
the kinematic and the dynamic motion control systems can produce, the exploration
of alternative shape change strategies (integrally related sinusoids, curvature-squared
minimizing closed shape-space paths, etc), the study of geometric phase and motion
control for the other 3—-dimensional groups considered in chapter 4.

Of significant interest would be the use of these systems as analytical and computa-
tional tools to explore motion control based on coupled oscillators, since their prominent
role in the physiology of the human and animal walk in the form of Central Pattern Gen-
erators might signal their importance to the motion control of very redundant robotic
systems, like the ones at hand (Bassler [1986]; Krishnaprasad [1995]; Matsuoka [1987]).

Finally, the integration of sensory feedback either to monitor the state of the sys-
tem or that of a dynamically changing environment, brings up certain control theoretic
questions related to stabilization and trajectory tracking and raises several challenging
issues related to navigation and obstacle avoidance in the presence of partial or noisy
information, to the robust interpretation of the sensory information and the inclusion,
in an appropriate way, of this information in a motion control scheme. Recent studies
related to formal languages and hybrid models for motion control, able to incorporate

both symbolic strings and real-valued functions are certainly relevant here (Brockett

[1990]; Brockett [1993]).
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