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An incompressible Navier-Stokes computational fluid dynamics (CFD) solver is 

developed for simulating flapping wings at Reynolds numbers (  ) of approximately 10
2
 

– 10
3
 in which the governing equations are solved in an immersed boundary framework 

on fixed Cartesian meshes. The dissertation work is divided into two portions: (1) 

Implementation of the immersed boundary method for incompressible low-Re flowfields. 

The applicability and robustness of various solution schemes are studied, with specific 

applicability to low    biological flows (staggered variable formulations versus 

collocated implementations, upwind schemes as applied to incompressible flows, ray-

tracing and geometric optimization of immersed boundary determination, Large Eddy 

Simulation (LES) model implementations). (2) The extension and application of the flow 

solver (IBINS) to model flapping-wing kinematics, and the analysis of the influence of 

kinematics and flow parameters on the force production for idealized flapping strokes. A 

representative Drosophila wing is simulated undergoing an idealized periodic flapping 



 

 

stroke. A detailed characterization of the vortical structures that develop in the near and 

far wake, along with their correlation with the force and power time histories, is given for 

simulations of various stroke kinematics at        and        . 
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Chapter 1 – 

Introduction   

Large-scale, human-sized flapping-wing ornithopters (flapping vehicles modeled after 

bird flight) have a long history in aviation research and development; perhaps longer than 

the fixed and rotating-wing vehicles that have become the staples of manned flight. 

However, while some successful full-scale flapping vehicles have been designed, 

flapping wing research has lagged behind its counterparts. This is primarily because 

when designing a flight vehicle to carry a large payload, or achieve a long endurance, or 

fly a great distance – all practical design requirements that fixed and rotary winged 

aircraft can excel at – flapping wings have traditionally been far less efficient. Yet nature 

provides a variety of examples of highly “efficient” flapping wing platforms.  

In recent years, as modern security, surveillance, search & rescue, and warfare 

activities begin to frequently require remote operation in confined, urban or otherwise 

obstacle-rich environments, an increasing number of applications for small, highly 

maneuverable, hover-capable air platforms has arisen. The ability of the natural flappers 

to meet these demands, combined with the miniaturization of mechanical and electrical 

components and advances in light-weight materials to help meet the mechanical demands 

of constructing these “Micro-Air Vehicles” (MAVs), has thrust smaller scale flapping-

wing research forward on its path towards maturity.  
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1.1 Flapping-Wing Micro-Air Vehicles 

The US Defense Advanced Research Projects Agency (DARPA) initially defined a 

standard for MAVs including the requirements that the flight vehicle have no dimension 

larger than 15cm, an endurance of about an hour, and a GTOW of less than 100 grams. 

DARPA has since defined a second, lighter class of vehicles called “Nano-Air Vehicles” 

(NAV) which should have no dimension greater than 15cm and a GTOW of less than 20 

grams. 

1.1.1 Representative Current MAVs 

These DARPA sizing criteria have proven challenging to meet, because, as will be 

discussed, the physical understanding of aerodynamic mechanisms, mathematical 

models, design tools, and assumptions that have been developed for full-scale flight 

vehicles do not efficiently translate to these smaller scales. Nevertheless, a number of 

vehicles have been successfully developed with the DARPA sizing criteria in mind, and 

many of these have been flapping-wing designs. Figure 1.1 shows a few representative 

examples of these. Flapping-wing MAVs are generally separated into two categories. 

“Avian flappers” or ornithopters, such as the Lilienthal ornithopter studied at the 

University of Maryland [1] and the novel clap-and-fling biplane from the Naval 

Postgraduate School (Figure 1.1a) have a flapping stroke similar to a bird’s in which the 

wing-stroke is perpendicular to the direction of travel and the change in angle of 

incidence is relatively small. “Insect flappers”, such as the AeroVironment Hummingbird 

(Figure 1.1) have a stroke that is not necessarily perpendicular to the travel direction, 

during which the wings undergo large changes in pitch angle. Examples include 
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Michelson’s “Entomopter” [2], a term which the literature has begun to use as the generic 

term for any flapping MAV using an insect-like kinematic stroke. As in nature, the larger 

flapping MAVs tend to be of the avian flapping design (although the Delfly Mirco, at 10 

cm, is a notably small avian flapper), while smaller scale flappers tend to use the insect-

flapping stroke. Because the lift for an Entomopter is generated primarily by the 

kinematics of the wing, and does not require a relative wind to stay aloft as the typical 

avian flapper would, insect flapping is of particular interest for MAV development where 

indoor operation or hover capability is a key requirement.  

  

 

Figure 1.1: Examples of current flapping wing MAVs (a) Naval Postgraduate school 

flapper, (b) Delfly Micro, (c) AeroVironment’s Hummingbird, (d) Microbat. 

Even with the successful implementation of these and other flapping wing MAVs, 

rotating-wing MAVs still represent the bulk of the vehicles being developed at this scale. 

(a) 

(c) (d) 

(b) 



4 

 

A sample of representative types of rotating-wing designs is shown in Figure 1.2. A 

primary reason for this is the maturity of the full-scale rotorcraft technology, compared 

with that of large-scale flappers. A variety of examples exist, from coaxial configurations 

like the University of Maryland’s MICOR, shrouded rotors such as the TiShrov, quad-

rotors (Pereira et al. [3]), and non-traditional rotary concepts such as the Cyclocopter [4]. 

 

Figure 1.2: Examples of rotating-wing MAVs (a) UMD Cyclocopter, (b) Stanford’s 

Mesicopter, (c) UMD MICOR (d) UMD TiShrov 

These, and the myriad of similar commercial and research vehicles, have clearly 

demonstrated the viability of the rotary concept at the MAV scale, and have shown that 

the difficulties in generating and extending physical understanding about their efficient 

operation at lower Reynolds numbers (    than their full-scale counterparts can be 

overcome. Many of these rotary-wing MAV operate at Reynolds numbers on the order of 

(a) 

(c) (d) 

(b) 
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          , however, as the design scales continue to get smaller, it is not clear 

whether the rotary wing understanding and models generated for              , can 

be made to efficiently scale to           and below [5]. It is in this limit of low    that 

flapping wings may offer not only higher efficiency than rotating designs, but better 

maneuverability and control. Of the trend in micro and nano-air vehicle design, Petricca 

et. al [6] in their review article comment: “Considering the short-term future (1–3 years 

from mid-2010), rotary-wing NAV will be the most important commercial type, since it 

has the best performing technology at present…However, in the future, flapping-wing 

solutions are viable and will improve maneuverability and efficiency relative to rotary 

NAVs.” 

Therefore, there is still a great need to build our understanding of extremely low 

Reynolds number flight aerodynamics (as well as dynamics and control) if we are to 

eventually build vehicles as efficient and maneuverable as the fliers seen in nature. 

However, the characterization of the aerodynamic environment of low Reynolds number 

flapping wings (this work will consider the range           as “low   ”) is 

complicated by a number of factors. 

 

Figure 1.3: Sectional maximum L/D versus Reynolds number. Taken from [7] 
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1.1.2 Problems Facing Flapping-Wing Analysis 

The most significant factor can be thought of as the Low Reynolds number itself. A 

low    implies that the influence of the working fluid’s viscous forces are not 

insignificant in comparison to the fluid’s inertial forces. Physically, this results in larger 

boundary layers, larger vortices formed in the flowfield, larger laminar separation 

bubbles, and increased shear drag (profile losses). Each of these presents challenges to 

the practical construction of efficient low    flight vehicles, and practical mathematical 

modeling of the aerodynamics. The increase in shear drag is particularly challenging, 

since the maximum sectional lift-to-drag ratio has been shown to drop rapidly with 

Reynolds number (Figure 1.3). Lower     equates to lower efficiency in terms of 

endurance and power consumption, thus maximizing this ratio becomes a critical design 

goal, and a great deal of research has gone into finding more optimum airfoil shapes than 

those traditionally used for high Reynolds number applications.  It has been found that 

thin wings or flat plates, such as those studied by Mueller [7], perform better than the 

cambered or thick airfoils at moderate Reynolds numbers, and for low Reynolds 

numbers, thin but complex shapes have been shown to excel (e.g. [8]).  

The wings of flapping insects and those used in flapping MAVs can have aspect 

ratios as low as 1 [9]. The tip vortices (which tend to be larger and more diffuse at lower 

  ) therefore affect a larger portion of the span than is typically seen at higher    or for 

larger aspect ratio lifting surfaces, such as those found on rotating-wing MAVs. The 

induced flow created by these vortices varies in time and can have significant impacts on 

the lift and drag generated, even on simply translating wings [10]. 
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Mathematically, the reduced Reynolds number increases the significance of the 2
nd

 

order viscous terms in the governing partial differential equations (PDEs). Therefore, a 

number of the simplifications that lead to practical solutions or approximations of the 

Navier-Stokes equations are either difficult to justify or formally invalid. These 

simplifications include computational methods such as the vortex panel method, solutions 

of the inviscid Euler equations, thin airfoil theory, and the thin boundary layer 

approximation. One benefit from a modeling perspective is that low    flows can in 

many cases be considered laminar; which means that turbulent effects, which can be 

difficult to quantify and simulate, need not be included in certain analyses.  

Another significant problem associated with flapping-wing flight analysis is the 

increased unsteadiness inherent in both the kinematics and the aerodynamic field. 

Dragonflies flap at a frequency of 40 – 50 Hz. Smaller insects, such as the Chalcid wasp, 

flap at frequencies of 400 Hz [11] with wing flips at the end of each half-stroke. These 

high flapping frequencies not only produce highly unsteady vorticity fields, but they also 

produce large unsteady inertial forces [12] causing deformation of the often thin 

membranes of insect and flapping MAV wings. This time dependency requires more 

complex unsteady experimental techniques (for example [13]), and more computationally 

expensive simulation methodologies to properly resolve. Furthermore, particularly in 

insect as opposed to avian flapping kinematics, the vorticity that was generated and shed 

into the wake during the first half of one stroke is reencountered during the second half of 

the stroke.  Therefore, the upstream conditions that the wing sees along its stroke path are 

unsteady as well. Quasisteady analysis of the aerodynamics would then seem to be an 

inadequate methodology to predict the unsteady forces. However, when combined with 
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unsteady modifications to the baseline quasisteady models, quasisteady aerodynamics has 

found an important place as part of many modeling techniques (e,g, [9], [14]). 

1.1.3 Force Production Studies on Insect Wings 

Because of the complexities associated with low Reynolds number flapping wing 

analysis and the fascinating potential applications of an efficient mechanical 

implementation, these flapping conditions have received a considerable amount of 

attention in the literature. This includes a variety of experimental work on biological 

flappers ( [15] – [16]), and mechanical flapping devices with specific applicability to 

MAV design ( [5], [17], [13]). However, the following section will give a brief overview 

of primarily the analytical and numerical studies related to flapping-wing force 

production.  

1.1.3.1 Analysis 

Weis-Fogh [18] performed pioneering research on the force production in a variety of 

flapping-wing birds and insects using high speed video to dissect wing motions. His 

research led to two important conclusions. First, he considered the contribution of 

unsteady effects to the force production to be minimal, i.e. the force production could be 

explained almost exclusively by quasisteady analysis. Secondly, was the idea that the 

contact and peeling away of insect wings at the stroke endpoints, termed the “clap-and-

fling”, was a primary contributor to lift production. Furthermore, this clap-and-fling 

mechanism is an inviscid phenomenon [19], meaning viscosity was not the critical 

mechanism that allowed flapping insects to achieve the effectively larger lift production 

than steady analysis would have allowed for [20]. Lighthill [19] went on to create an 
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inviscid model based on this mechanism, concluding that forces should peak near stroke 

reversal. These predicted force peaks were experimentally observed by Spedding and 

Maxworthy [21] and Bennett [22]. However the Lighthill model is only applicable where 

a clap-and-fling exists, and not all flapping insects have strokes that include this 

kinematic feature. Sane [23] suggested that the clap-and-fling may not occur as a 

necessity in insect flight, but as a consequence of the animal simply attempting to 

maximize its stroke amplitude, which would maximize lift even without a clap and fling.  

Ellington ( [9], [11]), in his 1984 seminal series of works on the aerodynamics of 

hovering insect flight, concluded that the Weis-Fogh mechanism and quasisteady 

aerodynamics were insufficient to broadly explain the experimentally observed force time 

histories of many insect species. Expanding on his earlier work using a momentum theory 

analysis [24], Ellington proposed an expanded quasisteady vortex theory that included a 

blade-element analysis for the prediction of the time histories of the unsteady forces. The 

addition of circulatory effects (the Kramer effect) to the quasisteady analysis formed the 

basis for a number of subsequent models ( [25] – [27]).  

Dickinson, Lehmann and Sane’s 1999 seminal work [14] expanded further on 

Ellington’s modified quasisteady analysis using a dynamically scaled mechanical 

flapping wing pair, “Robofly”. The experiments, intended to simulate a simplified 

Drosophila (fruitfly) flapping stroke, provided a broad enough parameter space to be able 

to identify three general mechanisms which are now widely used as a basis when 

discussing force production of flapping hovering wings. Delayed stall refers to a 

tendency of the leading edge vortex to remain fixed above the wing during translation, 

where it would otherwise be expected to peel off and cause a lift stall. Rotational 



10 

 

circulation (also noted by Ellington [9]) refers to forces generated by the wing’s rapid 

rotation about the pitch axis at stroke reversal.  Finally, wake capture refers to the forces 

generated as the wing re-encounters its shed wake from the previous half-stroke.   

1.1.3.2 Computational Fluid Dynamics (CFD) 

Computational studies offer a way to survey the 2D or 3D time-accurate velocity field 

of a flapping wing with a spatial and a temporal resolution far superior to current 

experimental techniques. However, because of the difficulties with mathematically 

solving the unsteady governing equations at low   , only in the last 10 – 15 years have 

computational power and numerical methods been sufficient to efficiently model the full 

3D governing equations. 2D simulations and inviscid approximations to the Navier-

Stokes equations have still played an important role in building understanding and 

modeling experimental results. Tuncer and Platzer [8] simulated a high    flapping 

airfoil (         ) and concluded that the amplitude of the effectively inviscid forces 

generated at the high Reynolds number becomes significantly smaller as viscous forces 

become more significant (as discussed earlier). Smith et al. [28] used a 3D panel method 

to study the experimental flapping of a Hawkmoth. Similarly, a number of studies ( [29], 

[30]), used vortex panel methods to study the inviscid lift generation mechanisms (e.g. 

the Wagner effect) on a pitching airfoil. These include a series of works conducted at the 

Naval Post-Graduate School specifically geared towards (e.g. Jones and Platzer [31]) 

developing flapping MAVs. 

Liu and Kawachi [32] published the first 3D Navier-Stokes simulation of insect 

flapping in 1998. Their simulation modeled the vortex structure over a scaled mechanical 

flapping Hawkmoth [33] and showed good qualitative agreement with smoke flow 
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visualization.  The Robofly mechanical flapping apparatus has provided a wealth of data 

to base 3D CFD studies around. Notable examples include studies by Sun and Tang [34] 

and Ramamurti and Sandberg [35]. In spite of geometric differences from the experiment, 

both studies found good agreement between the computed forces and published 

experimental data for Robofly conditions approximating Drosophila in hovering flight at 

        . The Ramamurti and Sandberg study employed a body fitted finite element 

solution to the incompressible governing equations, and the Sun and Tang study cast the 

Navier-Stokes equations in an inertial frame, also using a body-fitted approach.  

While many CFD studies in the late 1990s and early 2000s employed body-fitted 

approaches, a new class of non-body-fitted methodologies have been gaining popularity 

for complex low    flow analysis: the Immersed Boundary (IB) techniques. Since its 

formal introduction in 1972 by Peskin [36], the immersed boundary technique’s promise 

has been explored in a variety of research areas. As will be discussed in subsequent 

sections, IB techniques can be efficient methodologies for low Reynolds number flows.  

Correspondingly, extremely low Reynolds number biological problems such as heart 

valve operation and arterial blood flow studies [37] have benefited from immersed 

boundary representations of complex and deformable body tissue shapes. In the 

engineering arena, detailed representations of internal combustion engine piston 

operation [38], flow over vehicle chassis [39], and mechanical heart valves [37] have 

been examined that demonstrate the potential capabilities of this still developing class of 

techniques. The flow simulation group lead by Mittal has published a number of studies 

of fish/underwater vehicle hydrodynamics [40] and human swimming [41] using this 

methodology. Flapping-wing flight has been studied by Vanella et al. [42], Dong et al. 
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[43], and Emblemsvag and Candler [44]. The next chapter will discuss the reasons that 

this methodology is gaining popularity in recent years, and will detail its history, 

implementation, and relevance to the present work. 

1.2 Immersed Boundary Methods 

Traditional non-immersed-boundary approaches discretize the flow domain using 

body-fitted structured or unstructured meshes that conform to the surface and allow 

precise positioning of computational nodes. In this way, physical boundaries coincide 

with computational boundaries allowing surface boundary conditions to be specified and 

extracted in a relatively straightforward manner. Combined with mesh deformation 

algorithms and overset methodologies, body-fitted formulations have been successfully 

applied to a wide spectrum of problems requiring complex bodies, deformable surfaces 

and unsteady motion.  However, factors such as the requirement of casting the governing 

equations in general curvilinear coordinates, relatively large storage requirements for the 

mesh and the solution, mesh-to-mesh interpolation requirements in overset 

methodologies, and re-computation of deforming meshes can make these body-fitted 

mesh methods computationally expensive.   

Immersed boundary (IB) techniques are any of a number of methods that spatially 

modify the governing flow equations in an effort to represent the influence of a body 

immersed in the flowfield. With IB methods, because the equations themselves are 

modified based on the shape of the immersed surface, meshes in general need not 

conform to the body. This carries with it a number of benefits, including the ability to 

forego the use of complex curvilinear meshes in favor of simple Cartesian meshes, even 
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for the simulation of flow over complex geometries. Although specialized applications 

have applied immersed boundary techniques to curvilinear meshes [45], a vast majority 

of implementations choose Cartesian meshes (or other orthogonal mesh types e.g. 

spherical or cylindrical) because of their comparative ease of generation, low storage 

requirements, accuracy of interpolations performed on them, and the highly efficient 

solution algorithms that are either optimal for or exclusive to Cartesian grid arrangements 

(e.g. multigrid acceleration techniques or cyclic reduction for uniform meshes). Another 

notable benefit is the ability to model moving or deforming bodies with a single fixed 

mesh. The promise of the immersed boundary technique is then the ability to model 

complex, deformable or moving surfaces while maintaining the advantages of simple 

orthogonal meshes. 

 

Figure 1.4: Representative meshes for NACA 0012 airfoil. left: unstructured body-fitted 

[45], middle: structured curvilinear body-fitted, right: Cartesian immersed boundary. 

Cartesian meshes however are not optimal for all problems. For the NACA 0012 

airfoil mesh in Figure 1.4 for example, it may be difficult to maintain an adequate 

resolution of the boundary layer for higher Reynolds number flows without significantly 

increasing the number of grid points.  Mittal and Iaccarino [46] show that the ratio of grid 

size for Cartesian versus body-fitted formulations scales with Re
1.0

 for 2D simulations 
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and Re
1.5

 for 3D simulations. Furthermore, many of the additional grid points will fall 

either on the interior of the body or far from regions of interest where the solution is 

irrelevant but still must be computed. In this respect, at higher Reynolds numbers, the 

ability to precisely position points at the physical boundary gives body-fitted structured 

or unstructured meshes a significant advantage over Cartesian meshes of similar 

resolution.  An improvement for Cartesian meshes may be to use multiple non-conformal 

meshes in a block or overset structure, possibly incorporating body-fitted meshes as well.  

However, little work is found in the literature (e.g. [47]) partially because of the 

computational overheads associated with intermesh communication and interpolation 

procedures.  Similarly, Cartesian adaptive mesh refinement techniques that have the 

promise to blend the advantages of Cartesian meshes and body fitted techniques have 

seen slow progress (e.g. Durbin and Iaccarino [48]).  Regardless, for many applications 

of low to moderate Re, the aforementioned benefits of a single Cartesian mesh in the 

immersed boundary framework overcome these deficiencies to make this technique a 

potentially attractive option.  

1.2.1 Survey of Immersed Boundary Methods 

With any immersed boundary technique, the ability to represent arbitrary surfaces on 

simple Cartesian meshes comes from a modification of the governing Navier-Stokes 

equations to include a forcing term,   , which represents the influence of the immersed 

body on the surrounding fluid. Applied to the standard incompressible momentum 

equation: 

     

  
                        (1.1)  
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In a broad sense, all immersed boundary techniques can be grouped into two 

categories based on the method of defining   , continuous and direct forcing. 

1.2.1.1 Continuous Forcing 

In continuous forcing methods, the forcing function is given as a continuous function 

of space and time, and may be defined at all computational nodes. In the earliest 

examples of immersed boundary techniques, Peskin [36] simulated the 2D fluid/structural 

interaction of blood flow in the heart valve system. The elastic character of the tissue 

walls was approximated using springs and Hooke’s relation, which also allowed a direct 

calculation of the forcing terms necessary to impose the surface boundary conditions. A 

similar methodology was used by Peskin and McQueen [37] in the extension to 3D heart 

flow with muscular constriction. While this technique may work well for situations where 

surface forces are determined by Hooke’s law or some similar relation, the general case 

(which includes stationary boundaries) requires some explicit expression for the forcing 

term. Goldstein et al. [49] developed a feedback relationship for quantities at the 

immersed surface of the form:  

 

                      

 

 

                     (1.2)  

Where        is the computed surface velocity,        is the known physical surface 

velocity and   and   are constants that determine the elastic response of the body. The 

expression can be thought of as a classical damped oscillator that responds to the 

difference between the computed velocity and the desired velocity at a given node [50].  

Then, given any desired surface velocity       , this expression provides a method of 

analytically specifying the corresponding forcing function required to enforce that 
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velocity.  Equation (1.2) has been used with some success by Saiki and Biringen [51].  

The primary drawback to this method lies with the problem-dependant frequency 

response and damping parameters,   and  .  In addition to the numerical experimentation 

required to minimize stability restrictions, stationary bodies require limiting values of 

these parameters (typically large values) which leads to a stiff numerical system.  

Depending on the temporal discretization of the feedback function and the specific 

problem under consideration, Fadlun and colleagues [50] were able to obtain a stable 

solution at CFL values between O(10
-3 

– 10
-1

); values that are impractically small for 

flows that are highly unsteady or have a higher Reynolds number. Angot and colleagues 

[52] present a variation on the feedback idea called the permeability or penalty method, 

which may be obtained by setting     and      .  Iaccarino and Verizicco [53] 

show that the forcing function may then be written as:  

 

   
                

  
 (1.3)  

Where   is a reference constant based on a length scale and a reference permeability, and 

K is the local permeability. Within solid boundaries    , which results in large values 

of the forcing function and greater influence of the body on the flow.  In the freestream, 

the forcing function vanishes to zero as    .  Again, these limiting values of K 

present numerical stability problems when an impermeable, stationary surface is 

simulated.  Additionally, a smooth transition of K between the fluid and solid must be 

made which results in a blurring of the solid boundary. In fact, since the surface does not 

generally coincide with computational nodes, the simulated boundary is not sharply 

defined for any of the continuous forcing methods. Peskin [36] used a linear spreading of 
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the forcing at the boundary that extended over four computational nodes. Goldstein et al., 

using Equation (1.2) coupled with a spectral method, required the forcing to be spread 

over three to four nodes to prevent spurious oscillations.  Partly in response to this, Saiki 

and Biringen added in a central fourth-order finite difference dissipation term to eliminate 

the flow oscillations allowed by the baseline spectral method. Nevertheless, their study 

still employed a linear blurring of the forcing function similar to that used by Peskin. 

In the literature, continuous forcing methods have been shown to work well with 

moving boundaries where elastic deformation provides some information about the value 

of the forcing term.  Also, the simulation of low Reynolds numbers flows approaching 

Stokes flow (e.g. some biological flows) allows a method of alleviating problems 

associated with blurred boundaries. With a relatively small number of total computational 

nodes in these low Reynolds number cases, the blurring is mitigated by providing finer 

discretization near surfaces resulting in a more exact boundary representation and a 

tolerable increase in computational expense. Nevertheless, it can be generally concluded 

that solid or rigidly deforming surfaces prove troublesome for continuous forcing 

approaches due to the stability restraints encountered for limiting cases of the forcing 

functions.    

1.2.1.2 Direct Forcing 

Direct forcing can be understood as a direct imposition of the solution of the 

discretized Navier-Stokes equations for the unknown forcing terms. At time-step n+1, we 

require that the velocity field at the surface satisfy               .  Substituting this into 

Equation (1.4) and solving for the forcing: 
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                       (1.4)  

Substituting this back into Equation (1.1) we see that the governing equations at the 

surface reduce to        .  Direct forcing applies this constraint at nodes that lie on the 

surface and applies the Navier-Stokes equations with      at all points in the flow. This 

apparently simple method has gained much popularity in part because it addresses the 

problems of ad-hoc user-defined parameters and the stability issues of continuous forcing 

methods.  Nevertheless, as in continuous forcing, the surface generally does not coincide 

with computational nodes. Imposition of the condition         is then carried out by an 

interpolation which can be made as formally accurate as the spatial discretization. 

Therefore, the boundaries can be enforced “exactly” within the accuracy of the scheme 

and thus the surfaces can be sharply defined as opposed to the diffuse boundaries 

encountered in continuous forcing methods. 

The choice of interpolation scheme differentiates the various direct forcing methods. 

If no interpolation is used then the desired boundary condition is simply applied to the 

nearest computational node. On arbitrary bodies, this stair-step method produces artificial 

edges and a blurring of the surface (especially for staggered variable arrangements) that 

can potentially result in large errors near the surface, even with fine discretization.  Cut-

cell approaches remove the stair-step approximation by using a finite-volume 

methodology to take into account the intersected area of each cell and the boundary. In 

2D, the cut area of cells in general forms a quadrilateral, around which mass and 

momentum conservation can be applied to yield interface velocities and pressure.  While 

this is the only method considered that directly enforces the conservation laws, the 

arbitrary shape of cut cells can produce many special cases that require individual 
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treatment. Additionally, thin slices of cells or cells with a small volume can cause 

numerical stability issues and can have an adverse impact on the conservation properties 

of the scheme (Yang [54]).  Mittal and Iaccarino [46] also noted that the extension of this 

methodology to 3D is a nontrivial task because of the complex polyhedral cells that arise 

from the surface intersected areas. Still, in 2D this cut-cell methodology has been used by 

Mittal et al. [55] and Quirk [56] with good results. A third interpolation scheme enforces 

the velocity at the surface by reconstructing the flow field at computational nodes 

surrounding the surface, based on the known surface velocity.  This reconstruction can be 

of arbitrary accuracy and various interpolation stencils have been proposed for a variety 

of problems. Verzicco et al. [38] and Fadlun et al. [50] used a 1D linear interpolation to 

simulate vortex ring formation from a 2D piston/cylinder configuration. With the 

smoothly varying geometry of the cylinder wall, this simple interpolation proved 

adequate to obtain good comparison with experiment.  However, for more complex 

bodies, higher Reynolds numbers, or situations where adequate resolution of the 

boundary layer may not be possible, a number of researchers have adopted higher order 

interpolations. Mittal et al. [55], Balaras [57], and Iaccarino and Verzicco [53] used 

multidimensional linear interpolation schemes to study vortex formation by Olympic 

swimmers, large-eddy simulation (LES) of wavy channel flow at          and the 

airflow over a sports car, respectively.   

1.3 Motivation 

While there has been much research and development work towards understanding 

the aerodynamics that govern the force production of low Reynolds number flapping 
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wing flight, a detailed understanding of specifically how the flowfield affects force 

production mechanisms has still proven elusive, especially in the context of specific 

applicability to the design of biologically-inspired flapping Micro-Air Vehicles. 

Understanding the details of these flowfield effects can lead to improvements in 

efficiency in the form of lift-to-drag or lift-to-power. Therefore instead of primarily 

considering the stroke-averaged or quasisteady contributions to aerodynamic forces, the 

present work seeks to present a detailed analysis of the time-dependent forces of insect-

like hovering flapping flight.  

Computationally, an immersed boundary scheme presents a potentially robust 

framework within which to study these flapping wings. However, the relative dearth of 

validated immersed boundary codebases available, requires that a tailored immersed 

boundary solver be developed for the proposed applications. It is therefore the goal of 

this work to develop a baseline immersed boundary solver for the incompressible Navier-

Stokes equations, capable of studying vortex dynamics at Reynolds numbers on the order 

of              . The rigid-body prescribed kinematics to be simulated for this 

work seek to provide results of broad appeal to flapping-wing aerodynamic 

understanding, with clearly defined parameters and in a fashion repeatable 

experimentally as well as computationally. 

1.4 Scope and Organization of Thesis 

This work is divided into two sections: The development of the Immersed Boundary 

Incompressible Navier-Stokes Solver (IBINS), and the application of the solver to a 

flapping-wing in hover.  
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Chapter 2 discusses the incompressible governing equations and their numerical 

discretization in time and space within the IBINS solver. In order to create a robust 

solver, IBINS offers multiple user-selectable spatial and temporal discretization schemes, 

and the details of their implementation as relevant to the flapping-wing proposed 

applications are shown. Next, the modification of the governing equations to account for 

the addition of a sub-grid scale turbulence model for LES computations is shown. 

Finally, verification and validation of the code is performed using two canonical 

problems to demonstrate asymptotic accuracy and spatial resolution capability. 

Chapter 3 builds on the baseline solver by modifying the boundary conditions to 

include immersed boundaries. The boundary surface’s data format and its immersion into 

computational space are discussed with specific regard to efficiency and accuracy. 

Construction of the modified spatial discretization matrix is then shown, along with the 

method used to extract forces from the flowfield. Finally, the immersed boundaries are 

combined with the baseline equations, and the solver, IBINS, is validated using simple 

3D flows as baseline cases.  

Chapter 4 begins the second section by focusing on the application of IBINS to a 

model Drosophila (fruit fly) wing rotation at a constant angular velocity across a range of 

pitch angles and for two Reynolds numbers        and        . After the validity 

of the incompressible assumption is established, the computed lift and drag are compared 

with experiment from the literature, and good agreement is found. It should be noted that 

this serves as a validation case for the flow solver. Flow structures at the wing and in the 

near wake are detailed. Finally power is calculated and discussed in terms of the lift-to-
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power ratio. Chapter 4 serves as a baseline quasisteady case for the unsteady results of 

Chapter 5.  

Chapter 5 discusses the application of IBINS to an idealized unsteady flapping stroke 

for Drosophila at       . Specific attention is given to comparing the unsteady results 

with the applicable quasisteady cases from Chapter 4. Over a full flapping stroke, a 

detailed description and visualization of the near-wake flow topology and kinematic 

events are given relating to the force and surface pressures observed. The force 

predictions are then compared against experiment, and similarities and potential causes 

for discrepancies are discussed. The far wake inflow distributions are visualized, again 

with respect to their impact on the computed lift and drag time histories.  Finally for the 

baseline flapping case, power is computed and related to efficiency and force production.  

The second portion of Chapter 5 takes the baseline flapping kinematics and modifies 

them by separately changing the mid-stroke pitch angle, and increasing the Reynolds 

number by one order of magnitude. Comparisons are made with the baseline flapping 

results, and with the quasisteady results. Specific attention is given to the similarities and 

differences in the modified kinematics from the analogous quasisteady cases from 

Chapter 4.   

The final chapter summarizes the important conclusions and contributions of the 

development of IBINS and the applications of it to flapping wings in hover detailed in 

this work. 
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Chapter 2 – 

Baseline Navier-Stokes Solver 

As stated in the introductory chapter, one of the primary advantages of the immersed 

boundary technique is that practical implementation involves starting with a baseline 

flow solver and modifying the boundary condition routines to include the immersed 

boundaries. In this way, the baseline solver and its verification and implementation are 

essentially decoupled from the immersed boundaries, and one can use any number of well 

established solvers or numerical methods with the IB method. This chapter describes the 

implementation of the incompressible baseline solver and its verification.  

For this work, the choice of baseline solver type and numerical methodologies is 

based on the desire to maintain simplicity, accuracy and expandability. Finite differences 

are used for spatial discretization since the aforementioned direct immersed boundary 

forcing that is applied in the next chapter is most readily applied in this form. In terms of 

temporal discretization, the pressure correction-type schemes (SIMPLE, PISO, etc.) have 

been popular choices for steady or quasisteady problems where time accuracy is not 

required. When time accuracy is desired with these schemes, dual time-stepping 

procedures may be employed, however this is computationally expensive and thus 

undesirable for complex unsteady processes. The pseudo-compressibility method, while 

allowing many of the high accuracy schemes developed for the compressible NS 

equations to be used for incompressible problems,  also requires dual time-stepping to 

maintain time accuracy. The fractional step method decouples the solution of the mass 
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and momentum equations, and in doing so allows time-accurate solutions without sub-

iterations, and thus a potentially reduced computational expense. While there are some 

drawbacks to the method, such as the need to solve an expensive Poisson relation, the 

time accuracy and flexibility to handle explicit or implicit schemes equally as well makes 

the fractional-step method the method of choice for the proposed applications. 

Furthermore, because time-accuracy is a primary requirement and turbulence production 

is handled using either a DNS or LES approach, it is sufficient to use only explicit 

schemes or semi-implicit schemes which treat the viscous terms implicitly only to 

remove viscous stability restrictions – potentially problematic with viscous dominated 

flows – thus no fully implicit schemes are considered.   

Although the incompressible NS equations do not allow shocks to develop, under 

certain circumstances we can still expect solution gradients that are strong enough to 

cause oscillations and stability problems when using second order or higher differencing 

schemes. Experience from insect flapping simulations carried out in this work found that 

these oscillations begin to adversely affect stability near        . Of course, the 

highly viscous nature of the low    flows proposed for this solver introduces a level of 

physical dissipation that can help to control these oscillations. However, depending on 

the specific numerical implementation (e.g. collocated versus staggered variables, upwind 

versus central), these oscillations can still be problematic. The primary spatial 

discretization is handled using a staggered variable second order centered energy 

conserving approach; however Section 2.2 will briefly cover all of the spatial 

discretization schemes that have been implemented in the baseline solver in an attempt to 

minimize oscillations, maintain accuracy, and generally make the solver more robust.  
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Finally, the solution to the Poisson equation that arises in the fractional-step approach 

becomes the performance bottleneck. 60% or more of the wall-time taken for a single 

time step may be attributed to this portion of the solution. Therefore, a great deal of work 

has gone into developing and optimizing the Poisson solver to minimize the expense 

while keeping storage requirements reasonable (Section 2.3). 

2.1 Time Integration 

The governing incompressible Navier-Stokes equations for a constant viscosity,   are 

as follows:  

    

  
  

       

   
 

  

   
 

 

   
  

   

   
  (2.1)  

         (2.2)  

where i,j = 1,2,3 and x1, x2, x3 are coordinate directions. These are integrated in time by a 

semi-implicit fractional step method similar to that proposed by Kim and Moin [58].  The 

molecular viscosity,  , may be taken out of the derivative sign for a spatially constant 

viscosity (the majority of cases in this work). Convection terms in the momentum 

equation are treated explicitly by either the second-order Adams-Bashforth scheme 

(AB2), or a low-storage 3
rd

 order Runge-Kutta scheme (RK3). To remove the viscous 

stability limit, viscous terms are treated implicitly using the second-order Crank-Nicolson 

scheme (CN). For LES cases and cases where the viscous stability limit is not in danger 

of being violated, the equations are solved in a fully explicit manner with all terms either 

AB2 or RK3. The fractional step integration procedure begins by calculating a predicted 

velocity field, ui*, which is evaluated without consideration of the pressure gradient term.  
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For the semi-implicit AB2-CN scheme, this discretization in time results in the following 

form of the momentum equations:  
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where,       
    

   

For the semi-implicit RK3 formulation, this discretization results in the following 

form of the momentum equations: 
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Superscripts refer to discrete time levels, n is the current time step, and predicted field 

values are indicated by stars. Solving either Equation (2.3) or Equations (2.4), as 

discussed below, gives the non-divergence-free predicted velocity field, ui*, at some 

intermediate time step between n and n+1. In order to enforce the divergence-free 

condition at n+1, as required by Equation (2.2), a pressure-like variable   is introduced 

that obeys the following relation: 
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   (2.5)  

Note that if   in Equation (2.5) is replaced by the actual pressure, P, then this relation 

is simply a rearrangement of the momentum equations in terms of the predicted velocity 

fields and the pressure gradient. It should be stressed however that   is only a numerical 

quantity created to enforce continuity and does not fully correspond to any physical 

property of the flow [59].  Nevertheless, as has become convention in the literature, this 

work may often refer to    as “pressure” instead of using a term such as “pseudo-

pressure” as strict adherence to terminology would require. Taking the divergence of this 

velocity correction equation, Equation (2.5), we obtain: 

 
    

        
     

   

      
 (2.6)  

The first term on the left-hand side is zero as a result of the desired divergence-free 

condition at n+1. The remaining terms constitute a Poisson equation for the field variable 

 : 

    

      
 

 

  
    

  (2.7)  

The solution of the Poisson Equation (2.7) gives a scalar field   that is finally used to 

determine the true velocity field at n+1 by substitution into Equation (2.5). 

2.2 Spatial Discretization 

Spatial discretization on the Cartesian mesh is handled by a staggered variable finite-

difference approach where scalar values are stored at a different physical location than 

the velocity variables (Figure 2.1). Although the standard staggered variable arrangement 
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requires more storage and computational time than a comparable collocated variable 

arrangement, it is energy conservative and tightly couples the pressure and velocity fields 

to prevent odd-even oscillations. Initial versions of the baseline code used the collocated 

variable arrangement, however for the highly unsteady flapping cases considered here, 

pressure-velocity decoupling and the associated oscillations resulted in high levels of 

inaccuracy and in many cases instability. It should be noted that attempts to mitigate 

these issues with artificial dissipation and specialized interpolation procedures (Rhie and 

Chow [60]), or multi-dimensional discretization [61] to couple the pressure and velocity 

fields, resulted in execution times similar to the staggered approach but without the 

accuracy or mathematical rigor of the staggered approach. All results presented in this 

work use the staggered variable versions of the code.  

      

Figure 2.1: Collocated (left) versus staggered (right) variable arrangements. 

2.2.1 Viscous Terms 

Viscous and pressure derivatives in Equations (2.3), (2.4) and (2.7) are handled using 

second-order central derivatives of the form:  

P,u,v, P, u

v
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In order to facilitate the solution of Equations (2.3), (2.4) and (2.7) as described in the 

following section, this discretization scheme can be written in terms of coefficients of the 

solution variables. If we let i,j,k indicate computational nodes in the x, y, and z directions, 

then for the momentum equations: 
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where LHSijk is the left-hand side of Equation (2.3) or (2.4).  The seven diagonals of the 

coefficient matrix are then: 
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A similar expression may be obtained for the pressure Equation (2.7) following the 

discretization in Equation (2.8): 
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where LHSijk is the left-hand side of Equation (2.7).  The seven diagonals of the pressure 

equation coefficient matrix are: 
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2.2.2 Convective Terms 

Convective terms are solved in conservative form and are discretized according to:   
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 Velocity values at the midpoints are interpolated using one of three schemes. The 

simplest case used for a majority of the simulations is the central scheme where midpoint 

values are taken as the average of the surrounding nodes:                      . This 

works well for cases without strong spatial gradients, or when sufficient physical 
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viscosity is present to dampen numerical oscillations (e.g. in extremely low    cases). 

For higher    cases or when strong gradients are expected, a second-order limited 

upwind scheme is used. The form for the convective terms at the 1/2 locations is: 

               
                

           
    

   (2.12)  

Where     
  

 

 

 represent approximations at the i+1/2 locations, low and high refer to low 

and high order versions of these approximations,   is the ratio of divided differences at 

the i
th

 node                      , and      is the limiter function.   varies 

between 0 and 1 such that when     in Equation (2.12) the low order approximation is 

used, and when     the high order approximation is used. We arrive at a second order 

limited upwinding scheme by choosing the following approximations at the 1/2 locations:   

        
       (2.13)  

 
       

    
 

 

 
          (2.14)  

For a positive convective velocity, Equation (2.13) is the first order upwind 

approximation and Equation (2.14) is a second order approximation. Substituting these 

approximations into Equation (2.12), we have a second order limited upwind 

approximation: 

 
          

 

 
              (2.15)  

Note that the term           is the second order approximation to the slope at i+1/2. It 

is therefore a straightforward extension to write that for negative convective velocities the 

analogous second order upwind approximation is: 

 
            

 

 
                (2.16)  
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Of the limiting schemes tested with the baseline code, Van Leer’s monotanized 

central flux limiter and Roe’s “Superbee” limiter (see [62] for detailed descriptions) were 

able to stably convect a Kelvin-Helmholtz vortex with the least oscillations and therefore 

were implemented in the present versions of the code: 

Van Leer:                   
 

 
          (2.17)  

Superbee:                                (2.18)  

For higher accuracy and potentially less numerical dissipation, the QUICK scheme 

implemented with variable coefficients for non-uniform meshes is also used in some 

simulations. QUICK is a formally third-order accurate interpolation procedure that uses a 

parabolic fit to three upwind nodes to approximate interface values. Referring to Figure 

2.2, the coefficients of the interpolating polynomial I(x) are given by the solution to the 

3×3 system:  
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Solving for the coefficients and evaluating I(x) at x = xi+1/2 we arrive at the x-

direction interpolation for a cell velocity oriented from right-to-left: 
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where x1 = xi+1 - xi and x2 = xi+2 - xi-1.  Similar expressions may be derived for other 

coordinate directions and cell velocity orientations.  
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Figure 2.2: Evaluation of midpoint values using upwind QUICK scheme. 

Despite its formal accuracy, the QUICK scheme typically converges in a second-

order manner and differences in the solution between QUICK and second-order central 

convective discretization are typically small [63]. However, QUICK interpolations can 

help damp gradient-induced oscillations. As an example, in Figure 2.3 we see a velocity 

profile taken across the center of a developing Kelvin-Helmholtz vortex forming in a free 

shear layer. Although the location of the peak velocity is captured by the central scheme, 

the oscillations in the solution are non-physical and may eventually grow without bounds. 

The second-order upwind scheme coupled with a Van Leer limiter, Equation (2.17), is 

non-oscillatory but highly dissipative. The upwind QUICK scheme in this case is able to 

capture the peak velocities while also preventing oscillations.  
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Figure 2.3: Velocity profiles through center of developing Kelvin-Helmholtz vortex.  

Comparison of convective discretization schemes. 

2.3 Poisson and Momentum Equation Solution 

Typically, the solution of the Poisson equation for   is the most computationally 

expensive portion of the fractional step algorithm.  In 2D, Equation (2.7) is solved using 

the incomplete LU decomposition of Stone [64], termed the Strongly Implicit Procedure 

(SIP).  The extension of SIP to 3D developed by Zedan and Schneider [65] is used to 

solve the 3D Poisson equation.  Although the popularity of SIP as applied to the solution 

of the pressure equation has waned in light of efficient multigrid and conjugate-gradient 

procedures, it offers reasonably uniform and rapid convergence for a wide variety of 

boundary conditions, and most importantly, is readily implemented in a parallel multi-

block solver, unlike multigrid approaches. SIP requires that the Poisson equation be 

represented by second-order central finite differences and that the solution is elliptic in 
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nature (i.e. relatively smooth).  The discrete Poisson equation for     may then be written 

as 

   bA


  (2.21)  

where b


 is the right-hand-side of Equation (2.7) and [A] is a 7-diagonal banded matrix in 

3D given by the equation’s coefficients. The standard LU decomposition would exactly 

split [A] into the product of a dense lower and dense upper triangular matrix.  It is well 

known that O(N
3
) operations are required to construct the triangular matrices by Gaussian 

elimination and O(N
2
) operations are required each time the system is solved. This cost is 

greatly reduced if [A] is approximately decomposed into the product of banded lower and 

upper triangular matrices, Ml and Mu.  

 bMM lu


][  (2.22)  

In the Zedan and Schneider 3D SIP scheme, the product of the approximations Mu 

and Ml is a 19-diagonal banded N×N matrix as opposed to a 7-diagonal matrix for the 

exact decomposition. Stone’s 2D SIP decomposition results in a 7-diagonal banded 

matrix as opposed to a 5-diagonal matrix for the exact computation. The SIP procedure is 

a specification of the elements of Mu and Ml with an additional parameter used to modify 

the assumption of an elliptic solution and affect the convergence rate. For the results 

presented in this work, the parameter is fixed between 0.89 – 0.92. The Zedan and 

Schneider scheme is modified slightly in the present implementation to account for non-

uniform meshes. 

 Because the approximately decomposed matrices Mu and Ml are triangular and 

banded, inverting them to obtain the pseudo-pressure field is a trivial matter of forward 

and then backward substitution. Provided that the number of iterations is small, a factor 
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determined by the smoothness of the final solution, the efficiency of this iterative scheme 

is often quite good compared with SOR or ADI schemes. The values of the diagonals of 

Mu and Ml in terms of the coefficients in Equation (2.7) and further details of the method 

may be found in Ferziger and Perić [63].   

As a result of the implicit Crank-Nicolson scheme, the computation of the predicted 

velocity field from Equations (2.3), (2.4) and (2.7) requires a matrix inversion for each 

coordinate direction. Although these equations are hyperbolic in nature, they still may be 

expressed as in Equation (2.21) and thus SIP is still used to perform the required 

inversion.  In this case, 


 is replaced by each velocity component and the vector b


 is 

the right-hand side of Equation (2.9). The strongly diagonally dominant discretization 

matrices allow convergence to be reached in 4 – 5 iterations, whereas the solution to the 

Poisson equation may require 20 or more iterations for a 3 order-of-magnitude reduction 

in the residual. Typically, the problems examined in this work require approximately 50 

Poisson iterations to converge 5 orders of magnitude.  

2.4 Boundary Conditions (for non-IB boundaries) 

Unless otherwise noted, Neumann, Dirchlet and periodic boundary conditions are 

implemented using standard first-order approximations.  In the external flow problems, 

velocities at the inflow are set to the free stream values and their time derivatives are set 

to zero: 
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 (2.23)  

The pressure variable is set to a zero gradient normal to all computational boundaries.  
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As an exception, in external problems the outflow velocities and pressure are 

predicted using the one-dimensional linear advection equation normal to the boundary: 

   

  
   

  

  
 (2.25)  

Although this hyperbolic equation is not strictly applicable for viscous elliptic 

problems, this relation provides a reasonable estimate of flowfield behavior provided that 

the advection velocity C is chosen appropriately.  Using a second-order DuFort-Frankel 

discretization of the above equation, Orlanski [66] derived an expression for C that has 

become popular enough that the use of any choice of advection speed and discretization 

is often referred to as an Orlanski boundary condition.  Alternate forms of C and the 

spatial/temporal discretization may however be required for stable solutions in various 

problems. The present code applies first-order forward differencing in time, second-order 

backwards differencing in space and the local velocity normal to the boundary at the first 

interior node as the advection velocity.  For a uniform mesh the result is: 

    
      

  

  
           

 

 
  

       
  

 

 
    

 

  
   (2.26)  

where   is a flow property, b is the boundary index, and s is the uniform mesh spacing 

normal to the boundary.   at the boundary at the new time step n+1 can then be explicitly 

calculated from Equation (2.26).  
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2.5 Turbulent SubGrid-Scale (SGS) Modeling 

For most of the low Reynolds number problems that the code developed in this work 

is designed to simulate,        , the flow may either be considered to be laminar, or 

the smallest length scales of turbulence,   (the Komolgorov scale), are large enough that 

they can be directly computed without incurring a significant computational cost in terms 

of storage or time. However, as we increase   , the mesh count required to adequately 

resolve the Komolgorov scale grows proportionate to       and the number of time steps 

required grows as      .  As an example, the meshes used to compute the           

unsteady problems in the first part of Chapter 5 required          nodes to resolve 

the flow and required 20000 time steps to reach a periodic solution. An order of 

magnitude increase in Reynolds number would require               nodes, and 

                    time steps for a converged solution.  

In order to avoid these large computational expenses for the present simulations, the 

preceding Navier Stokes solution can be extended to become a Large Eddy Simulation 

(LES) solver. Here, the effect of the smallest scales of turbulence are modeled explicitly 

based on the assumption that the smallest energy carrying turbulent eddies behave in a 

statistically determinant fashion that is decoupled from the large scale turbulence. The 

LES technique chosen for this work is a simple Dynamic Smagorinsky SubGrid Scale 

(SGS) model. 

In order to apply the model, the spatially filtered form of Equation (2) may be 

expressed: 

     

  
  

         

   
 

   

   
 

 

   
  

    

   
  

    

   
 (2.27)  



39 

 

Where the overbar denotes a spatially filtered variable, and     is the subgrid scale stress 

tensor:  

 
     

 
 
                     

 
 

 
      

   
 

      

   
   (2.28)  

where    is the turbulent eddy viscosity. Substituting Equation (2.28) into (2.27) we 

arrive at: 

 
    

  
  

         

   
 

     
 

 
    

   
 

 

   
  

    

   
  

    

   
  

 
                

         

   
 

          

   
 

 

   
  

    

   
  

 

   
   

    

   
 

 
 

   
   

    

   
  

 

     

  
  

         

   
 

          

   
 

 

   
       

    

   
  

 

   
   

    

   
  (2.29)  

where            
 

 
   , which is a scalar term that can be solved for in the same 

manner as was   , and             behaves similarly to   in the unfiltered governing 

equation. The turbulent eddy viscosity can be computed in a number of ways, but for the 

Dynamic Smagorinsky Model (DSM) a second more coarse filtering of the governing 

equations is performed, called the test filter, of width   . The original filter is referred to 

as the grid filter, and has a filter length  . Then the DSM value for    is: 

                  (2.30)  

Where the Smagorinsky parameter   is chosen based on a scale similarity assumption 

and           
 for each grid cell. A detailed derivation of a simple model for       is 

given in Bernard and Wallace [67], the final result of which is given here: 
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  (2.31)  

   where                      
               

   and                           

Angled brackets indicate test filtered quantities. In order to ensure numerical stability, 

       is forced to always remain positive by artificially increasing the value of       

where it is found to be negative. This procedure is reported to work well when the flow is 

only weakly turbulent, and thus not prone to large areas where C may be negative [68].  

It should be noted that only the results of Section 5.3 use the above LES formulation. All 

other simulations in this work solve Equation (2) directly.  

2.6 Solver Parallelization 

The solver is parallelized by block decomposition of the global Cartesian mesh. 

Given the number of desired divisions of the global mesh in the x, y and z directions, the 

code attempts to split the domain such that the number of nodes in each block is nearly 

uniform. This load balancing minimizes the time that processors have to wait to continue 

if their next computations are dependent on another processor which has a larger number 

of nodes and thus take longer. It should be notes that for the immersed boundary 

computations, this simple node count load balancing does not necessarily minimize wait 

time, since the number of immersed boundary nodes in each block can have a significant 

impact on the number of computations that need to be performed per block. Nevertheless, 

since splitting can be performed in any of the 3 coordinate directions, one should attempt 

to choose a direction that minimizes the number of nodes along a boundary. For example, 
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a 10×10×100 mesh should be split in the z direction (100 nodes at an interface plane), not 

along x or y planes (1000 nodes at an interface plane). 

Communication between blocks is handled explicitly using a 2 row overlap region. 

This overlap is large enough to accommodate the computational stencils described 

previously without requiring reduced order across boundaries. Information is passed 

across blocks after each after each time step, after each iteration of the pressure Poisson 

iterative solver, and for semi-implicit formulations after each iteration of the calculation 

of the velocity prediction equation. This information includes all scalars (P,  ), velocity, 

and immersed boundary parameters.   

 Machine level inter-processor communication is implemented using the MPI 

standard, and MPICH2 libraries.  

2.7 Verification and Validation 

In the final portion of this chapter, the baseline solver described above is verified by 

computing the solution to simple canonical problems. The accuracy of the viscous terms 

is verified by comparison with an exact solution for decay of a stationary vortex lattice. 

The convective terms are validated by computing a 2D flow in a square cavity.  Finally, 

the LES implementation is validated by computing the decay spectrum of an isotropic 

turbulence field.  

2.7.1 Taylor-Green Vortex Lattice 

The Taylor-Green vortices are a divergence-free infinite array of quasi-2D counter-

rotating vortices whose strength decays exponentially according to the following exact 

solution for the velocity and pressure fields (for       ): 
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                         (2.32)  

 
      

 

 
                        

The vortices are stationary, meaning that convective terms should sum to zero in this 

model problem, thus the results primarily verify the accuracy of the viscous and pressure 

terms.  The square 2D computational domain is 2 in length and is uniformly discretized 

into N×N nodes.  Periodicity is enforced using the boundary condition specification of a 

row of ghost-cells outside of the domain in each direction. The exact solution to 

Equations (2.32)  at t = 0 is given as an initial condition and the flow is allowed to evolve 

until t = 5.0 at a fixed time step of t = 0.005. The velocity residual is reduced by 10 

orders of magnitude while the number of SIP iterations for pressure is fixed at 25. This 

results in a pressure residual drop of at least 3 orders of magnitude (for this model 

problem). Note that although this problem is 2D, the solution is obviously valid in any 

coordinate plane (not just the X-Y plane). Therefore, as was done but not shown here, 

one can readily verify the 3D solver with this 2D problem.  

As seen in Figure 2.4, the computed velocity and pressure magnitude decay are in 

excellent agreement with the analytical solutions at all simulated times.  The L2-norm of 

the velocity magnitude error (Figure 2.5a) and pressure magnitude error (Figure 2.5b) are 

plotted at t = 2.5.  The velocity error decay confirms that the spatial accuracy of the 

velocity discretization scheme is approximately second-order accurate.  The L2-norm of 

the pressure error similarly shows an asymptotically second-order accurate reduction with 

mesh refinement.   
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Figure 2.4: Computed and exact maximum velocity and pressure magnitude decay for 

Taylor-Green vortices. 

 

 (a) (b) 

Figure 2.5: Reduction in L2 error norm with grid refinement demonstrating second-order 

spatial accuracy for (a) velocity (b) pressure.    
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2.7.2 Lid-Driven Square Cavity 

Convective terms are verified by simulating the steady vortex formation in a square 

lid-driven cavity at Re = 100, 1000 and 3200, based on cavity dimension and lid velocity.  

For the Reynolds numbers tested, this flow is characterized by a steady primary vortex 

and up to three secondary vortices that develop in the cavity corners (Figure 2.6).  

Although experimental results for this configuration are difficult to obtain, numerous 

high resolution computational studies are available for this standard test problem (e.g. 

[69], [70]).  Dirchlet velocity boundary conditions and a zero   gradient are enforced on 

all boundaries (Figure 2.6).  In this case, in order to minimize numerical diffusion of the 

secondary vortices near the walls, the   gradient is enforced using a second-order one-

sided difference approximation.  The field is initialized with a circular vortex centered at 

the geometric center of the cavity, after which the flow is allowed to evolve with CFL = 

0.25 until the separation and attachment points of the secondary vortices along the walls 

remain fixed.  This is noted to occur by a nondimensional time of t = 15 for Re = 100 –  

1000, and t = 20 for Re = 3200.   

Erturk et al. [69] report that a uniform mesh of 129×129 for their second-order 

streamfunction-vorticity solver was sufficient to obtain a mesh resolved steady solution 

for Re = 1000 – 5000.  Similar results are found with the present algorithm, as 

demonstrated by the velocity profiles taken at the geometric center of the cavity which 

are compared to the computations of Ghia et al. [70].   In general, for the 129×129 mesh, 

the agreement is excellent at all simulated Reynolds numbers (Figure 2.7).  At Re = 3200, 

the 129×129 mesh results appear to more closely follow the Ghia et al. data than the finer 

257×257 mesh. This, however, is most likely because the comparison data were obtained 
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on a 129×129 mesh (with a scheme of similar accuracy) thus the finer mesh used in the 

present study probably gives a more accurate representation of the grid-converged 

solution.  Although not presented in full here, the size and locations of the separation and 

attachment points associated with the secondary vortices for all Reynolds numbers tested 

are in good agreement with both Erturk et al. and Ghia et al. predictions.  As a sample, 

these results for Re = 1000 are presented in Figure 2.8 where the two secondary vortices 

have been magnified for comparison. 

 

Figure 2.6: Lid-driven cavity problem schematic. 
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 (a) Re = 100 

 

 (b) Re = 1000 

 

 (c) Re = 3200 

Figure 2.7: Computed velocity profiles at geometric center of cavity for 65×65, 129×129 

and 257×257 mesh resolutions.  Comparisons with computations of Ghia et al. [70].  

x

y
-v

e
lo

c
it
y

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

y

x
-v

e
lo

c
it
y

0 0.5 1

0

0.2

0.4

0.6

0.8

1

x

y
-v

e
lo

c
it
y

0 0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y

x
-v

e
lo

c
it
y

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

y
-v

e
lo

c
it
y

0 0.2 0.4 0.6 0.8 1

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y

x
-v

e
lo

c
it
y

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Ghia et al.

Present - 65x65

Present - 129x129

Present - 257x257



47 

 

 

 (a) 

 

 (b) 

Figure 2.8:  Streamlines for cavity flow at Re = 1000 from (a) Erturk et al. [69] (b) 

present results.  Secondary vortices are magnified for comparison  
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2.7.3 Isotropic Turbulence 

To validate the Dynamic Smagorinsky LES model implementation, an initial periodic 

field of isotropic turbulence is generated, and the rate of energy decay is computed and 

compared against high resolution spectral results in the literature.  

In order to observe realistic energy decay in the turbulent field, it is ideally necessary 

to specify all of its single point statistics such as   and  , as well the autocorrelations and 

infinitely many higher order moments at the initial time [67]. As this is not possible, the 

present validation study adopts the method employed by Rogallo [71] and Mansour and 

Wray [72] which specifies random velocities having a prescribed initial energy spectrum 

of the form (in wave space):   

 
     

  

  

 

  
     

      
 

 
  

 

  
 

 

  (2.33)  

Where   is the wave number,      ,    ,                  and      . While 

not statistically realistic, this permits the clustering of energy around a desired wave 

number (kp) such that after some simulation time, a statistically valid isotropic turbulent 

condition should arise.  The Taylor microscale,  , characterizes the size of eddies in 

transition between the inertial subrange and the dissipation range. Based on the turbulent 

kinetic energy   and the dissipation   we can define  3/20 2ER   as the Reynolds 

number based on  . This Reynolds number should monotonically decrease with 

simulation time. As shown in Figure 2.9, for         , this occurs sear a non-

dimensional time of      . The validation simulations are run to       , which is 

well within the monotonic decrease regime, and therefore represent valid turbulent 

conditions. 
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Figure 2.9: Turbulent Reynolds number decay in isotropic turbulence field for          

Using these initial conditions, the simulation is performed using the baseline non-LES 

solver in a cube of length    using a uniform mesh with        points in each 

direction. In Figure 2.10 the 1D energy spectrum, turbulent dissipation rate, and turbulent 

kinetic energy of the present solver, IBINS, are compared against the spectral results of 

Rogallo [71]. The energy spectrum results are in good agreement even in the higher wave 

numbers, and the magnitudes and decay rates of both kinetic energy and dissipation also 

compare well. These DNS results indicates that for these conditions, the      mesh is 

sufficient to resolve the Taylor microscale without any explicit turbulence modeling. 

However, as stated in section 2.5, as the Reynolds number increases, a finer mesh is 

required to adequately capture the turbulent energy scales in the flowfield.  

Another way to view the problem is for a fixed Reynolds number, the mesh cannot 

become coarser than a certain value and still adequately resolve the turbulent scales. In 

Figure 2.11a, the above simulation is repeated on a coarser mesh        The baseline 

solver shows excess energy buildup in the higher wave numbers. The energy cascade 

from larger to smaller scales is not being properly predicted because the smallest scales 
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are not being resolved. However, when the dynamic Smagorinsky model is enabled, the 

energy again is in good agreement with literature. Similarly, in Figure 2.11b, the mesh is 

coarsened again to      . The baseline solver shows a large buildup of turbulent 

energy, and very little dissipation with increases in wave number. In a simulation, this 

type of energy buildup not only leads to inaccurate results, but potential instabilities as 

well. With the dynamic Smagorinsky model enabled in the present solver, Figure 2.11b 

shows that the energy cascade is in much better agreement with the high order spectral 

DNS results, even on this coarse mesh.  

 

Figure 2.10: 1D Energy Spectrum (left), turbulent kinetic energy   (right) and turbulent 

dissipation rate,   (right) compared with Rogallo [71] at     ,        . Uniform 

mesh size       . 
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(a) (b) 

Figure 2.11: 1D energy spectrum for baseline solver and solver with the dynamic 

Smagorinsky model enabled, compared against the Rogallo results for (a)       and 

(b)      . 

2.8 Summary 

This chapter described the implementation of the baseline Navier-Stokes solver. In 

choosing the numerical schemes, care was taken to optimize for relevance to 

incompressible, low Reynolds number, unsteady aerodynamic applications. Time 

integration is performed using a second order fractional step method. Spatial 

discretization uses either a 2
nd

 order central scheme or, for cases with sharp gradients that 

may affect solution stability and accuracy, 2
nd

 or 3
rd

 order upwinded convective schemes 

with viscous terms always handled with 2
nd

 order central discretizations. The Poisson 

solution is carried out using an efficient approximate LU decomposition method. For 

cases where turbulent scales require more spatial or temporal resolution than can 
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practically be handled by the baseline DNS solver, a simple dynamic Smagorinsky 

method is added. The entire baseline code is block parallelized using MPICH2 libraries. 

Finally, the baseline code is verified using the exact solution to a 2D vortex field, and 

validated with the solution to the canonical lid-driven cavity problem. The dynamic 

Smagorinsky model is validated by demonstrating that the proper energy cascade is 

recovered on meshes too coarse to recover the energy spectrum without modeling the 

sub-grid-scale eddies.  
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Chapter 3 – 

Immersed Boundary Methodology 

The proposed applications of the code developed in this work primarily focus on 

external flow at low Reynolds numbers (          ) with unsteady free stream and 

surface boundary conditions. Additionally, although not currently implemented, the 

surfaces may be required to deform as a result of inertial or aerodynamic forces. As 

recent work has demonstrated (Mittal et al. [55], Balaras [57], Iaccarino and Verzicco 

[53]), a flexible immersed boundary approach that meets these requirements is a direct 

forcing scheme with the boundary properties imposed using a surface reconstruction 

method.  For unsteady conditions, continuous forcing schemes, as discussed in Chapter 1, 

may exhibit stability restrictions that would require a prohibitively small CFL number. 

Large scale flow physics may be captured reasonably well by either continuous or direct 

forcing, however the sharp interface allowed by direct forcing methods also may allow a 

better description of small scale near-body phenomena.  Direct forcing schemes can more 

readily handle moving surfaces than continuous forcing schemes handle stationary 

surfaces. For the proposed application to flapping-wing flight, where sharply defined 

moving boundaries form the bulk of the applications, the choice of a direct forcing 

method is therefore clear. In the context of direct forcing schemes, Fadlun et al. [50] 

provide a comparison of results obtained from simple cases of the stair-step, cut-cell and 

reconstruction interpolation schemes. Although only 1D linear interpolations are used for 

their 2D test cases, they find that only the field reconstruction method properly maintains 
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the asymptotic accuracy of the discretization scheme at the surface. This conclusion, 

while not rigorous, provides additional incentive to move towards implementing a direct 

forcing reconstruction scheme.   

A primary advantage of the direct forcing schemes is that in practice, the governing 

equations are not modified at all; the enforcement of     (required velocity at the 

boundary equals velocity at the boundary surface) comes in only as a boundary condition. 

Then, since no additional time dependant terms are added to the momentum equations, 

deformable or moving surfaces are more readily handled. An upshot of this is that direct 

forcing methods are relatively easy to integrate into any given baseline solver. A majority 

of the integration into existing codes comes in modifications to boundary condition 

subroutines, leaving the core code intact.  

Finally, since the present code is extended to include an eddy viscosity turbulence 

model, as in certain RANS or the SGS LES method from the previous chapter, direct 

forcing coupled with a reconstruction method provides the infrastructure necessary to 

treat the near-body turbulence quantities such as eddy viscosity (e.g. [53], [57]).  

Majumdar et al. [73] noted that for application to RANS or LES, modifications to the 

turbulence model for continuous forcing would be cumbersome, and using direct forcing 

with a cut-cell method would require a less efficient unstructured solver. 
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Figure 3.1: Surface representation using (left) marker points in 2D and (right) STL 

surface tessellation in 3D. 

3.1 Boundary Identification 

Because the mesh does not exactly follow the shape and orientation of the body’s 

surface, as in body-fitted methods, immersed boundary methods require a separate data 

structure to track the surface.  In 2D, it is a simple task to define a set of “marker points” 

(Figure 3.1) that are attached to the body to serve as the surface representation.  For 

smooth surfaces, Balaras [57] connected these markers using a quadratic interpolation 

polynomial (similar to the QUICK scheme described in Chapter 2) which allows a 

straightforward approximation of midpoint locations and normal vectors.  For geometries 

with sharp corners, such as boxes or airfoils, the present author has found good results 

using a simple linear connection of the markers.  

The extension to 3D boundary representation is not as straightforward, since surface 

interpolations, rather than 1D polynomial interpolations, are required.  A primary concern 

in 3D is choosing a representation by which a unique normal can be defined at each 

computational node.  The data structure chosen by Iaccarino and Verzicco [53] and 

solid 

fluid 
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adopted in this work for 2D and 3D representation is the Stereo-Lithography (STL) 

geometry format (Figure 3.1).  With STL geometries, the 3D closed surface is tessellated 

into triangles without regard to connectivity.  Standardized for use with rapid prototyping 

machines and available in many commercial CAD packages as an export option, the STL 

file format in its full specification stores the coordinates of the triangle nodes as well as 

the outward facing normal for each face.  Its lack of connectivity information, which 

differentiates it from other formats commonly associated with finite-element meshes, 

keeps file sizes small and makes file manipulation more straightforward.  Therefore the 

format provides a low-storage, highly portable and information-rich data structure for use 

with immersed boundary techniques.   

A drawback to STL representation is that CAD STL generation packages typically 

make no attempt to control the skew and aspect ratio of surface triangles, resulting in 

highly skewed, high aspect ratio triangles that would be a poor quality surface mesh.  

Thus, an unmodified STL geometry is often not suitable for interpolating surface forces 

onto for analysis, and can lead to problems when attempting to identify immersed 

boundary nodes. To address this in the present code, the STL triangles are preprocessed 

by further subdividing them using a node-fixed centroid location method that reduces the 

aspect ratio of the most skewed cells.  

 With the geometry immersed in the Cartesian mesh, the fundamental connection 

between mesh and geometry comes by specifying which mesh nodes are positioned 

inside of the surface.  Again, in 2D there are a number of methods of efficiently 

accomplishing this (e.g. O’Rourke [74]).  However in 3D, identifying interior points can 

be computationally expensive and prone to error.  One method that has found widespread 
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use in computer graphics applications is ray-tracing.  For each computational node, a ray 

is extended in an arbitrary direction and the number of surface intersections are counted 

(Figure 3.2). For a single body, if the number of intersections is odd, the point is 

determined to be inside of the closed surface.  For the STL representation of the surface, 

there are many exceptions that may negate this rule (Figure 3.2), including rays that 

intersect nodes of the surface triangles or computational nodes that lie exactly on the 

surface.  To overcome these difficulties, the present implementation extends three rays 

along coordinate directions and determines the point’s position by the majority result.   

 

Figure 3.2: Ray-tracing will properly indicate points b and c as outside and inside of the 

body, respectively.  However, it may fail at point a by determining it to be inside. 

Each ray intersection with a surface STL triangle is computed by determining 

whether or not the intersection of the ray and the infinite plane defined by the triangle lies 

within the boundaries of that triangle.  This classic 2D point-in-polygon problem can be 

solved by using a second 2D ray-tracing algorithm, the winding number method (Chinn 

and Steenrod [75]), which involves too many trignonometric computations to be efficient 

for low order polygons, or by computation of the cross product between vectors 

connecting the 4 points involved.  Originally the present code used a vector cross product 

calculation, and approximately 90% of the boundary node identification time was spent 

in this cross product calculation.  A more efficient technique that takes advantage of the 

a 

b 

c 
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fact that the polygon is a triangle involves barycentric coordinates.  Given the vertices of 

a triangle,           ,            and           , any point         in the plane defined 

by the triangle can be represented by a weighted sum of the vertex coordinates:  

                   

                  (3.1)  

                   

where   ,   , and    are constants subject to the constraint: 

  

            (3.2)  

 

After substituting this constraint in to Equation (3.1), one solution of the resulting 

system of equations for the unknown constants is:  

 
   

                           

                             
 (3.3)  

 
   

                           

                             
 

(3.4)  

            (3.5)  

Because the system of Equations (3.1) – (3.2)  is over-constrained (four equations in 

three unknowns), this solution is non-unique. The particular solution in Equations (3.3) –  

(3.5) is singular if the plane is perpendicular to the z-axis. Analogous cases arise for other 

solutions with respect to the other coordinate axes. In these cases, the present code selects 

a non-singular alternate solution. Because Equation (3.1) represents a linear combination 

of the vertex coordinates and the coefficients sum to 1, it can be shown [73] that if the 

coefficients   ,   , and    are all positive, then Equation (3.1) also represents a convex 
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combination of the vertex coordinates and the point (     ) must lie within the convex 

hull of the vertices, i.e. within the triangle in question. Determining the intersection of 

rays and triangular faces by simply testing the signs of   ,   , and    provides a dramatic 

speed advantage over the other techniques suggested.  

3.2 Interpolation Methods 

Having flagged all interior nodes using a 3D-ray tracing algorithm and a 2D 

barycentric point-in-polygon solver, those nodes closest to the boundary are flagged as 

“boundary nodes” at which the direct forcing will be applied.  In some formulations, 

boundary nodes are defined as interior nodes that have at least one neighbor that is 

outside of the body. Conversely, boundary nodes can also be defined as exterior nodes 

that have at least one neighboring interior node. The literature is divided on this choice; 

for example Balaras [57] and Fadlun et al. [50] preferred the latter approach, whereas 

Mittal et al. [76]  and Kim et al. [77] preferred the first definition. Still, there is a 

consensus that the choice makes little computational difference [53]; however, it is 

recognized that only the first definition prevents assignment of boundary conditions 

within the flow.  However, if boundary nodes are taken to be inside of the surface, as in 

the first method, problems may arise at sharp corners where a unique surface normal may 

not exist. Nevertheless, the present work adopts the first method of defining boundary 

nodes primarily because of its apparent reduced interference with the external flowfield. 
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 (a) (b) (c)  

Figure 3.3: Boundary reconstruction interpolation stencils. (a) linear (b) compact multi-

dimensional  (c) bilinear used in present work. 

The goal then is to directly apply a velocity, pressure, or other scalar (such as eddy 

viscosity) at each internal boundary node such that an interpolation involving the external 

surrounding nodes will result in the desired value of the flow parameter at the physical 

boundary.  The use of second-order spatial discretization schemes has led to a number of 

second-order interpolation stencils for this immersed boundary reconstruction. A 1D 

reconstruction, similar to that adopted by Fadlun et al. [50], chooses a coordinate 

direction (preferably the direction with the largest surface normal component) and 

computes the value at the boundary node by linear extrapolation based on the physical 

boundary value Vs and the first exterior node u1 (Figure 3.3a). In the context of a 

multidimensional simulation, this reconstruction is only formally second-order accurate if 

the immersed surface is aligned with a coordinate axis. Along highly curved portions of 

the immersed body this is not possible, which reduces the accuracy near the surface in 

these areas. Furthermore, as in Figure 3.3a, a unique choice for the interpolation 

coordinate direction does not always exist; note that the extrapolation could also take 

place along the horizontal grid line. The result is an increased user input necessary to 
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ensure that reasonable coordinate directions are chosen.  Nevertheless, with adequate 

resolution near the immersed surface, these problems can be mitigated and good results 

can be obtained.  Table 3.1 presents results from a study of a 2D cylinder wake at Re = 40 

and Re = 100 using 1D-linear reconstruction, a staggered variable arrangement and 

second-order central spatial discretization on all terms. Reasonable agreement is found 

with the experimental results of Taneda [78] as well as with the numerical results of 

Russell and Wang [79] and the high-order computations of Ponta [80]. 

 

Table 3.1: Separation point, laminar bubble length and Strouhal number computation 

using 1D linear interpolation for immersed boundaries.  

Recent work by Yang and Balaras [81] and Iaccarino and Verzicco [53] has favored 

the compact multidimensional linear reconstruction in Figure 3.3b. This stencil 

interpolates the boundary node value using two external nodes (in 2D) and the physical 

boundary value, resulting in a second-order approximation even for surfaces that are not 

aligned with coordinate axes.  The choice of triangular stencils depends on the orientation 

of the unique surface normal at each marker or surface point.  Yang and Balaras reported 

that the compact stencil reduces the need for overlapping meshes when block 

parallelization is used. Additionally, interpolation coefficients are directly related to 

Re = 100

L q St
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o
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354x322 2.32 53.87
o
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514x514 2.33 54.09
o
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o
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values of the strain rate tensor which is helpful when considering fluid/structural coupling 

problems.  If a higher order interpolation is desired, Iaccarino and Verzicco show that the 

extension to a quadratic interpolation stencil is relatively straightforward. 

The method employed in this work is also a multidimensional linear reconstruction, 

however it uses a tri-linear interpolation taking information from eight external nodes and 

the physical boundary value. Figure 3.3c illustrates the 2D version of this (bi-linear 

interpolation and four external nodes), but the 3D extension is straightforward.  This 

scheme is slightly more expensive and difficult to implement because of the increased 

number of interpolation coefficients, however the resulting stencil is larger, providing 

more support from external nodes.  To determine the boundary node value, a line normal 

to the surface nearest the boundary node is extended into the flow. This probe extends 

until its tip is surrounded by eight external nodes which then become the interpolation 

nodes. The value of the flow variable at the probe tip can be expressed as a weighted sum 

of the values of the interpolation nodes. For the 2D case: 

                          (3.6)  

It should be noted that in some circumstances (e.g. in Figure 3.3c) the probe could be 

allowed to extend only far enough to be surrounded by three external nodes. While this is 

easily handled mathematically, as interpolation nodes get closer to the body, excessively 

large boundary node values may be required to satisfy the boundary condition.  This can 

result in stability issues at the boundaries, thus in order to minimize this possibility, the 

probe is always extended to be surrounded by four nodes. The coefficients           and 

   are given by a standard bilinear interpolation for a Cartesian distribution of points:  
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where   and   are the coordinates of the probe tip and      ,      ,       and 

     . The extension to 3D requires eight coefficients obtained from a standard 

trilinear interpolation at the probe tip location. Once      is determined, the boundary 

node value is calculated by a linear extrapolation along the surface normal line using      

and the known physical surface value. For stationary bodies, these coefficients and those 

required for the final linear extrapolation need only be calculated once as a preprocessing 

step. 

Instead of the linear interpolation represented by Equation (3.6), we could derive a 

quadratic relation using the four points in 2D. The quadratic interpolation is significantly 

more expensive and its increased accuracy is negated by the use of linear interpolations to 

the boundary node value, and the planar representation of the STL facets. However, a 

convenient benefit of the quadratic formulation is that derivatives at the probe tip in an 

arbitrary direction            can be calculated directly from the quadratic coefficients 

in an efficient manner. In 2D: 

      

  
                        (3.11)  

where 
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  (3.12)  

These efficiently calculated derivatives are used in the imposition of the surface pressure 

boundary condition, and the calculation of surface forces.  

The most significant cost associated with the interpolation procedure is the 

determination of appropriate normal vectors for all computational nodes that have been 

identified as IB nodes. Because the surface is represented in STL format, the surface 

normals for each triangular face are computed and stored during the creation of the 

geometry. The task is to determine which pre-computed surface normal to use for each 

boundary node. We require that the normal line for a given triangle, drawn through the 

boundary node, intersects the plane defined by the triangle within the boundaries of that 

surface triangle. Then, the desired normal is taken as the normal of the nearest surface 

triangle that meets these requirements. Thus two searches are needed: one to determine 

which triangles meet this criteria and a second to determine the closest of those triangle 

to the boundary node. The first search reduces to the point-in-polygon problem over a 

search of all surface triangles for each boundary node. This process is performed using 

the barycentric coordinates technique described in the previous section. The second 

search is typically not expensive, involving only the sorting of a small list of floating 

point numbers.   

3.3 Imposing Immersed Boundary Conditions 

Immersed boundary conditions are applied each time that conventional boundaries are 

updated. To enforce the linear interpolation from the probe tip to the boundary node we  
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 (3.13)  

apply Equation (3.13) at each boundary node, where    is the surface velocity,       is 

the normal distance from the boundary node to the surface, and       is the normal 

distance from the probe tip to the surface. The pressure boundary condition 

approximation for stationary bodies,         , is enforced at the surface by applying 

            at each boundary node. Care must be taken however since this modifies 

the Poisson equation at the boundary nodes.  To reflect this in the discrete equations, the 

5-diagonal (7-diagonal in 3D) spatial discretization matrix, A, and source term, b, in the 

discretized governing flow equations must be modified accordingly. Since this matrix 

equation represents a linear system of equations, each row of the A matrix specifies the 

dependence of every node (i,j) with its four neighbors in 2D (i,j-1), (i-1,j), (i+1,j) and 

(i,j+1).  At boundary nodes, since Equation (3.13) already includes the influence of 

neighboring points on the pressure at       , the coefficients of the four neighbors are 

set to zero and the coefficient of the boundary node is set to 1. In matrix form this 

appears as:   
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The technique for achieving this in an algorithm is commonly referred to as 

“blanking” or “iblanking.”  In an array, often called iblank, each mesh node is flagged 

with a 0 if it is a boundary node, and is flagged with a 1 otherwise.  In this way, when the 

vectors S,W,E,N (coefficients of Equation (2.10)) are formed, multiplying them by the 

node’s iblank value will create the necessary modification of the A matrix.  Note that we 

cannot simply multiply the vector   by iblank because this would result in a row of all 

zeros and a singular matrix. The vector   may be modified by:              

         .  Note also that at boundary nodes, the right-hand-side of Equation (2.10) 

must be set to utip to complete the discrete pressure equations. With the present semi-

implicit schemes, similar matrices must be inverted for the momentum equations 

(Equation (2.9)) and iblanking in a similar form is used to ensure that the matrix 

equations represent the correct boundary conditions.   

3.4 Handling Interior Nodes 

If the interior nodes that are not boundary nodes are left untreated, a flow will 

develop inside the body that may be affected by the external flow through a dependence 

on the boundary nodes.  In a fully elliptic system, each node value depends on the value 

at every other node. The blanking and immersed boundary imposition processes seek to 

limit this by separating the computational domain into exterior and interior regions whose 

nodes only depend on other nodes in that region. Mathematically this is possible, 

however in practice, the interpolation and blanking near irregular or sharp geometries 

may permit some level of contamination of the external flow by the internal flow. 

Nevertheless, in the literature, studies that discuss internal nodes have found that the 
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internal treatment of the body has little effect on the external flowfield ( [50], [53]).  In 

the present work, to ensure that no erroneous information is passed from the interior to 

the exterior of the immersed body, the internal values of velocity, pressure, iblank and all 

relevant source terms are set to zero. For fixed bodies this is a reasonable solution that 

should not adversely affect convergence or accuracy. For non-stationary bodies however, 

the imposition of zero quantities slows the convergence of the iterative pressure solver. 

3.5 Force and Power Calculation 

Calculation of the viscous and pressure forces is performed using the standard 

incompressible stress relation: 

 
             

   

   
 

   

   
  (3.15)  

However, for immersed boundary methods this is complicated by having to evaluate the 

stress tensor at the body’s surface, which does not necessarily coincide with the 

computational nodes. Therefore, the interpolations of pressure and velocity gradients are 

needed again, similar to the imposition of the immersed boundary conditions themselves.  

As mentioned in Chapter 2, the pseudo-pressure   used to enforce the divergence-

free condition in the fractional-step methods is actually not the physical pressure needed 

to compute the normal force on the element. They are related by the Laplacian:   

 

 
      . With physical pressure calculated, P is interpolated to the centroid of each 

triangle of the STL body using the same tri-linear interpolation method in Section 3.2. It 

is critical to note that since we are assuming that the pressure and (shear) are constant 

across each STL facet, if the STL mesh has high aspect ratio triangles, or triangles that 
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are too large to represent the gradients of forces across the surface, then the accuracy of 

the computed forces suffers. This is a key reason why the surface mesh refinement in the 

preprocessing of the STL immersed body as discussed in Section 3.1 is important.  

Calculating the velocity gradient tensor at the centroid of each facet can be 

accomplished by computing the velocity gradients using the quadratic interpolation 

coefficients discussed in Section 3.2. This results in a computationally efficient 

calculation with a compact stencil. Finally, stresses at each facet are multiplied by the 

facet area to give local force vectors at each surface element. The resultant body force is 

then just the summation of these local forces over the body, and similarly, power is 

computed by summing the dot product of the local force and local body velocity, 

           , for all surface mesh elements. 

3.6 Verification and Validation 

Validation of the immersed boundary implementation combined with the baseline 

solver in Chapter 2 is performed for two representative cases: Low    flow over a sphere 

(         ) and moderate Reynolds number over a flat plate (          

Additional verification and validation cases may be found in [82] .   

3.6.1 3D Sphere 

In three-dimensions, a canonical analogue to the two-dimensional cylinder problem is 

found in computing the flow over a sphere. This problem encompasses multiple flow 

regimes for the low Reynolds numbers under consideration, however the present 

validation focuses on verifying the immersed boundary solver in the steady axisymetric 
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wake regime at         , and qualitatively comparing the flowfield with expected 

results in the unsteady asymmetric flow regime at         .  Steady axisymmetric flow 

is computed in a domain of 26D0×16D0×16D0 with 215×130×130 points in the 

streamwise and two cross-stream directions, respectively.  This 3.6×10
6
 point mesh is 

generated such that a uniform spacing of 0.02D0 is present at the sphere surface.  The 

computed forces and surface pressure distributions did not significantly differ with a 

uniform surface spacing twice as small, however the finer mesh was required to 

accurately capture the flow separation point. With this steady computational mesh, 

approximately         boundary nodes are generated. The mesh used for the unsteady 

asymmetric flow at          covers a 44D0×18D0×18D0 domain with 260×150×150 

points in the streamiwse and two-cross stream directions, respectively. The surface mesh 

for the sphere for all cases is tessellated into 1,368 triangles. 

The steady flow regime for the sphere is characterized by a laminar separation vortex 

in the wake of length L0 whose center is fixed at some position       in a plane passing 

through the center of the sphere.  Figure 3.4 plots the nondimensional vortex length and 

nondimensional vortex position as compared with the experimental findings of Taneda 

[78] and the body-fitted computations of Johnson and Patel [83]. Although the trend is 

captured well, there is a slight underprediction of the experimentally measured vortex 

length for each Reynolds number. It should be noted however that the present results are 

in good agreement with the published body-fitted computational results, indicating that 

the immersed boundaries are most likely not the cause of this consistent underprediction 

across methodologies. The computed vortex locations shown in Figure 3.4b are in 

excellent agreement with the experimental and body-fitted results.  
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At          the dominant vortical structures in the unsteady flow include a 

standing horseshoe vortex that envelops the sphere, and hairpin vortices formed in the 

wake whose tails and head are oriented along a single streamwise plane (in this case the 

x-z plane). Flow remains symmetric about the x-y plane (Figure 3.5). Isosurfaces of the 

second invariant of the velocity gradient tensor, Q-criterion, are plotted in Figure 3.5 and 

are compared with the computed wake structures of Johnson and Patel [83].  

The general topology of the two computations is similar. Shown at the beginning of 

the shedding cycle, hairpin vortex legs are seen emanating from the sides of the sphere in 

the x-z plane. These roll-up to form the first vortex head at approximately 4.5 diameters 

downstream for the present computations. However, the present vortices appear stretched 

in the streamwise direction as compared with the Johnson and Patel results, which appear 

to stretch radially away from the wake centerline. These phenomena are most likely 

attributed to differences in the non-uniform computational meshes. In the wake region, 

the Cartesian mesh used for the present results is stretched in the streamwise direction but 

unavoidably remains uniform in cross-stream directions. This results in high aspect ratio 

cells which may account for an artificial streamwise diffusion of vorticity.  Similarly, the 

spherical body-fitted mesh of Johnson and Patel stretches radially away from the sphere 

which may account for some artificial diffusion in that direction. 
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 (a) 

 

 (b) 

Figure 3.4: Computed 3D cylinder flowfield parameters at various   ; (a) steady 

seperation vortex length, (b) steady separation vortex position.  
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3.6.2 3D Flatplate 

The PIV data of Kaplan et al. [84] are used in validating the flow solver at higher 

Reynolds numbers.  In the experiment, tip vortex measurements were made using a 

rectangular flat plate of aspect ratio 2, a thickness-to-chord ratio of 0.015, an angle of 

attack      , and at a moderate Reynolds number of 8028. The         point, 16-

block computational mesh is shown in Figure 3.6. The mesh is refined for accurate vortex 

capture through 3 chords downstream of the trailing edge.   

Figure 3.7 shows the swirl velocity profile through the center of the tip vortex at three 

downstream locations, where       indicates the trailing edge of the plate. At the 

x         station, the velocity peak magnitudes are captured well.  In both experiment 

and computations the depression in swirl velocity at the outboard peak is most likely the 

result of continued influence from the nearfield attached vortex sheet.  This depression is 

much stronger in the computations, however by          , this depression is not present 

and the computed velocity profiles are qualitatively similar to the experiment. The 

computed vortex decays more rapidly than the experiments resulting in a 6% lower swirl 

velocity magnitude at the           station. Considering the second-order viscous 

Figure 3.5: Unsteady vortical structures in the x-z and x-y planes of a sphere at     

     as computed by (a) Johnson and Patel [83] and (b) present immersed boundary. 

solver. 

(a) 

(b) 
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discretization and the upwinded convective terms, this may be a result of numerical 

diffusion; a problem which might be mitigated with appropriate grid refinement.  

Nevertheless, the vortex core radius is consistently in agreement with experiment at each 

station. In spite of the apparent peak-locking in the PIV data, the comparisons of 

streamwise vorticity in Figure 3.7 further illustrate the agreement of the computations 

with experiment. Both the vortex size and position at each downstream station are 

qualitatively quite similar. 

  

(a)  (b) 

Figure 3.6: (a) 1.1×10
7
 point computational mesh for          ,  = 10

o
, (b) Sample 

flow solution visualized by isosurfaces of the second invariant of the velocity gradient 

tensor. Contours highlight streamwise vorticity.  
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Figure 3.7: Nondimensional tip vortex swirl velocity comparison with Kaplan et al. [84],  

(left). Contours of experimental nondimensional streamwise vorticity in the tip vortex 

(center). Computational streamwise vorticity (right). 
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3.7 Summary: The IBINS Solver 

The immersed boundary implementation described above is applied to the baseline 

incompressible Navier-Stokes solver described in the previous chapter to form the 

Immersed Boundary Incompressible Navier-stokes Solver (IBINS). The following is a 

summary of the features of the developed code: 

 Cartesian Incompressible variable viscosity pressure-velocity formulation of 

the Navier-Stokes equations 

 Kim and Moin fractional-step pressure-velocity coupling 

 Time discretization options:  

o 2
nd

 order Adams Bashforth (all terms) 

o 3
rd

 order Runge-Kutta (all terms) 

o Option to treat viscous terms implicitly with 2
nd

 order Crank-Nicolson 

 Spatial discretization options: 

o 2
nd

 order central (all terms) 

o 3
rd

 order modified non-uniform QUICK (convective terms) 

o 2
nd

 order limited upwinding with VanLeer’s monotanized central 

limiter or Roe’s Superbee limiter (convective terms) 

 Pressure Poisson solution computed with an approximate incomplete LU 

decomposition, the strongly implicit procedure (SIP) 

 External flow boundaries handled with the Orlanski outflow condition 

 Option for Dynamic Smagorinsky Subgrid Scale LES model for high 

Reynolds number flows 

 Discrete Immersed boundaries 
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o Efficient barycentric interior node identification methodology 

o 2
nd

 order tri-linear interpolation coefficients for boundary variable 

enforcement.  

 Block parallelization with explicit block boundary communication using the 

MPICH standard 
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Chapter 4 –  

Quasisteady Rotation Simulations 

The following two chapters describe the application of the immersed boundary solver 

to two types of flapping-wing low-Reynolds number model problems. The goal is to use 

these simplified cases to draw conclusions about the fundamental parameters affecting 

the force production during full flapping flight. The first model problem consists of an 

impulsively started wing rotating at a fixed pitch angle and rotational velocity. This 

problem does not take into account unsteady or returning-wake (“wake-capture”) effects 

and thus allows the forces on the wings to develop based only on kinematics and 

geometry. To build these unsteady effects into the simulations, the second set of model 

problems involves adding time varying pitch and rotational velocities in such a way as to 

simulate the idealized kinematics of flapping insects such as Drosophila.  

There are a number of simplifications made to the kinematics, geometry and flow 

conditions for all results in this work. Wings are modeled as rigid bodies with relatively 

large thickness-to-chord ratios. While most insects and current MAVs use thin wings 

flexible enough to undergo significant deformation during their typical strokes [11], the 

finite thickness of the present simulated wings is a computational requirement imposed 

by the immersed boundary formulation to keep simulation costs practical. The effects of 

this artificially larger thickness-to-chord primarily manifest in the unsteady flapping 

cases during stroke reversal, as will be discussed. Nevertheless, the rigid wings give 

insight into the more fundamental parameters affecting force generation for these 
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simplified motions, such as wing-wake interaction, and leading-edge vortex (LEV) 

generation and retention. 

4.1 Geometry and Flow Parameters 

The wing geometry is similar for all of the following cases: 

 

 

A significant portion of flapping-wing literature has adopted a definition of Reynolds 

number based on the mean wingtip velocity over a single stroke,      , and mean 

geometric chord,       : 

 
   

       

 
 (4.1)  

Writing in terms of kinematic stroke parameters, Reynolds number can be expressed:  

 
   

       

 
 

       

    
  

        

    
 

    

  
 (4.2)  

where    is the aspect ratio for a single wing. When cast in these forms, it is seen that    

is only geometrically based on the surface area of the wing and its aspect ratio. However,  

Figure 4.1: Schematic of modeled wing geometry. Wing surface area ( ), chord as a 

function of radial position ( ), root offset (  ), wing length ( ). 
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clearly the force production of the flapping wing is dependent on the specific planform of 

the wing as well. Furthermore, because the characteristic velocity that the Reynolds 

number is based on is a rotational velocity, it makes sense that we would want to include 

the effects of each spanwise section of the wing operating at a different rotational 

velocity, and thus a different effective   . In order to do this, we can construct a 

velocity-weighted mean chord as follows. 

The geometric area,  , of the wing in Figure 4.1 is given by the integral: 

         
 

 

 

The standard definition for weighting of forces uses the dynamic pressure       
 , where 

the freestream velocity is      . A velocity-weighted surface area then can be written:  

 
    

         

         
      

 

 

   
 

 
 
 

      
 

 

              
 

 

 (4.3)  

where       . An equivalent mean-chord would then be the chord which would arise 

from assuming that this weighted chord was uniform in    [84]: 

             
 

 

            
 

 

 

Therefore, solving for the weighted mean chord: 

 
                 

 

 

 (4.4)  

Equation (4.4) accounts for the variation in planform shape, and weights the portions of 

the chord more heavily towards the tip where local incident velocities are highest. This 

relation is similar to that derived in [84] for the thrust weighted equivalent chord for a 

rotorcraft.  
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This weighted mean chord gives a proper basis for comparison across multiple 

flapping-wing planform shapes. However, as stated, most relevant literature, including all 

experiments and computations referenced in this work, parameterize their studies using 

the geometric mean chord. Therefore, in order to facilitate direct comparison, this work 

will also use the geometric definition of mean chord and the Reynolds number as given in 

Equation (4.2). Consequently, care must be taken when comparing results and when 

scaling between computational and experimental space, to maintain the wing planform 

shape. Therefore for the results presented in this work, in addition to the traditional 

characteristic dimensions of geometric mean chord and aspect ratio, geometric scaling is 

also based on the second moment of area about the rotational axis of the wing. 

4.2 Incompressibility and Reduced Frequency  

A major assumption in this work is that of incompressibility. While intuitively the 

low velocities associated with insect flight as compared with the speed of sound would 

indicate that incompressibility should be a reasonable approximation, the high flapping 

frequencies of Drosophila and similar insects means that problems can be highly 

unsteady. This section will demonstrate that the kinematics that create this unsteadiness 

for the class of problems under consideration, do not generate significant compressibility 

effects which would require a more complex compressible analysis. Furthermore, in 

order to justify both the comparison of computational results to experimental results, and 

the scaled experimental results to the physical insect flapping, we need to consider the 

incompressibility relating to both experiment and actual insect scale flapping. 
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The experimental flapping studies used as a basis of comparison for the simulations 

in this work were conducted by moving the scaled model wing through mineral oil with 

Reynolds number matched to typical Drosophila values. Properties of the experimental 

setup will be discussed in greater detail in the following sections, but a summary of the 

relevant parameters for determining incompressibility and reduced frequency is as 

follows:  

Mineral oil (at standard conditions):  

 Density,   = 880 kg/m
3
  

 Bulk Modulus, K = 1.83 GPa 

 Sound propagation speed,          = 1440m/s  

For the impulsively started rotational cases in this chapter, the wing is rotated at a 

constant rotational velocity               . The wingtip is at         . Velocity 

at the 75% span location is then                   . Mach at 75% span is   

                  . Since this rotation is steady and there are no other sources of 

forced oscillations, this Mach number, which is much less than 0.3, indicates that the 

incompressible assumption should work well.  

For the flapping cases, the wing undergoes time-varying rotational and pitch rates.  

Each must be considered separately to ensure that their resulting velocities don’t violate 

the incompressible assumption. For the unsteady cases in the next chapter the peak 

rotational rate is               , which is a constant value that occurs during 64% of 

the full up/down stroke. The wingtip is at         . Velocity at the 75% span location 

is then                   . Mach at 75% span is                     . 

This again is well within reasonable incompressible assumption limits.  
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The pitch oscillations for the unsteady flapping cases introduce a second source of 

unsteadiness. The maximum pitching rate, which occurs just before stroke reversal, for 

the experimental and computational cases considered is              . Using the 

mean chord             as the rotational arm (a conservatively large value since the 

wing pitches about the 45% mean chord line), the peak pitching velocity is      

         . Mach number for this condition is                      . 

The dimensionless reduced frequency parameter compares a forced frequency of a 

body’s oscillation to a freestream velocity in order to characterize the unsteadiness of a 

problem. This is analogous to the Strouhal number in which (often) a vortex generation 

frequency associated with an unsteady fluid flow is compared with the flow’s bulk 

velocity. For the unsteady cases, the kinematics simulate the hover condition, therefore 

the bulk velocity is zero and so the reduced frequency is zero by definition (or 

undefined). However, if we take the bulk velocity to be the rotational velocity, and the 

oscillating component to be the pitch oscillations, we can define a reduced frequency as:  

 
     

       

             
 (4.5)  

Where       is the pitching rate at time  ,       is the rotational rate at time  ,    is 

the mean chord, and this reduced frequency is calculated at the 75% span location. 

Reduced frequency for the baseline case of Chapter 5 is plotted in Figure 4.2 for a full 

up/down stroke. Stroke reversal occurs at integer multiples of       . 
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Figure 4.2: Reduced frequency time history at 75% span for representative flapping case. 

Reduced frequencies above 0.05 are usually considered unsteady [85], therefore as 

Figure 4.2 shows, significant portions of the stroke surrounding the stroke reversal will 

likely not follow steady or quasisteady models without those models specifically 

accounting for this unsteadiness [11], [14]. The unsteadiness of the problem is accounted 

for implicitly in the solution of the incompressible Navier-Stokes equations, so no 

specific modifications need be made based on the unsteadiness of the problem. However, 

is it still important to compute the reduced frequency because the quantity          

should also remain small relative to unity in order to justify incompressibility for 

unsteady cases [84]. Figure 4.3 shows that this constraint is not violated, as the product of 

Mach number and reduced frequency remains well below 1 throughout the entire stroke.  
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Figure 4.3: Product of Mach number and reduced frequency at 75% span time history for 

representative flapping case 

Computations and experiments both simulated dynamically scaled kinematics, based 

on Reynolds number, not Mach number. Therefore, we should also ensure that the 

incompressibility of the problem is not dissimilar between the physical Drosophila and 

the experiments/computations. Speed of sound in air at sea level standard conditions is 

approximately       . Mean Drosophila wingtip velocity is approximately        

[86]. Thus, the rotational velocity at 75% span is       , and the Mach number is 

                .  

Assuming similarly scaled pitching/rotational rates between experiment and the 

actual Drosophila, the maximum pitch velocity is                               

         . Therefore,                     , which is again well within the 

incompressible assumption limits. 
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4.3 Impulsively Started Rotation 

Although a highly simplified motion compared to the actual kinematics of hovering 

insects and flapping MAVs, an impulsively started constant pitch-angle rotating wing is a 

rough approximation to the initial downstroke seen in the more complex motions [87].  

This motion is also well suited to visualizing and characterizing the formation and 

structure of the LEV without interference from the shed vorticity from previous strokes.  

An understanding of this simplified case can greatly improve the understanding of the 

more complicated interactions that occur as a result of a full flapping motion, and 

Chapter 5 will explore the connection between this chapter’s quasisteady motion and 

more complicated kinematics.  

4.3.1 Computational Setup 

The simulation parameters correspond to the experimental conditions of Birch et al. 

[88] who used the Robofly apparatus to rotate a single wing at a constant angular velocity 

and pitch at two Reynolds numbers,       , and        , based on chord and 

wingtip velocity. The wing is assumed to be rigid and the planform geometry is taken 

from a computational study of Drosophila flight mechanics by Emblemsvag and Candler 

[44]. The computational wing fills in this inboard geometry with the approximate shape 

of a typical Drosophila wing. The computational wing area is          with a span of 

     . The planform of the experimental setup was truncated from      to the 

rotational center to allow for the presence of a mounting arm and load cells. Their study 

employed a wing thickness of 3.7 times that of the experiment that they were simulating.  

The authors were able to show that modifying the modeled wing thickness was able to 
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affect the computed forces in an unsteady flapping case by as much as 15% at stroke 

reversal. Therefore, in an effort to minimize this effect and generally more faithfully 

represent the experimental conditions, the thickness of the present computational wing is 

taken to be      , 1.8 times the experimental value. As mentioned, while a wing model 

with the same thickness as the experiment would be ideal, the increased thickness is 

taken in an effort to minimize the number of computational nodes necessary to resolve 

both the flow features and the geometry. The Cartesian mesh used in each low    case 

contained 17.8×10
6
 nodes with a uniform resolution over the wing path of      . 

Computations at         were carried out using an approximately 30×10
6
 node mesh 

with a minimum resolution of       in directions parallel to the stroke plane, and 

      in the third normal direction. 

At each pitch angle the wing is rotated a total of        at a constant angular 

velocity of            . From rest, the angular velocity is exponentially increased to this 

constant value according to the function                 , where the characteristic 

time is taken to be        . This time constant is reported by Poelma et al [87] to 

reasonably approximate the acceleration of the Robofly experimental mechanism. 

Computational transients from the initial conditions and physical transients from the 

imposed acceleration are negligible after approximately     of rotation. After this point, 

mean forces are averaged over an additional     
of rotation (see Figure 4.4). 
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Figure 4.4: Stroke schematic and averaging region for the quasisteady cases 

4.3.2 Force and Flow Visualization 

The computed forces for        and         for the given range of pitch 

angles are plotted in Figure 4.6. These forces are represented by a force component 

normal to the wing’s surface computed directly from the pressure forces, and a tangential 

force component computed directly from shear forces. This standard decomposition of 

the resultant force will prove useful in isolating viscous and inviscid mechanisms of force 

production, especially for the flapping cases of the next chapter. Here, for example, note 

that above a pitch angle of approximately   , the pressure forces for both high and low 

Reynolds numbers dominate the shear tangential forces—i.e the viscous contribution to 

force production is negligible over most to the pitch angle range, even for these “low” 

values of   .   

The more common representation of the resultant forces in flapping-wing literature is 

to resolve the normal and tangential forces into a force normal to the stroke-plane, and a 

force parallel to the stroke plane that acts opposite the flapping direction (Figure 4.5). 

The normal component is often termed “Lift”, although the true definition of lift is the 
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resolution of the force perpendicular to the relative wind, not the stroke plane. The 

tangential in-plane force is termed “Drag”, although again, the true aerodynamic 

definition of drag is the force resolved parallel to the relative wind. To facilitate 

comparison with literature, throughout the rest of this work, the terms “Lift” and “Drag” 

will refer to forces normal and tangent to the stroke plane, respectively. Furthermore, it 

should be noted that the “Pressure” force and “Shear” forces refer to the forces normal 

and tangential to the wing, respectively (see Figure 4.5). 

Figure 4.7 resolves the pressure and shear forces into lift and drag, and plots the 

computed values against experimental [88] lift-to-drag ratio (L/D) for pitch angles 

ranging between         (note: independent measurements of lift and drag were not 

available for the experimental data). Taking into account differences in wing geometry, 

the L/D characteristics of the computations are reasonably consistent with the 

experiment. At both values of Reynolds number, the computational wing appears to reach 

its peak L/D at a slightly higher angle of attack than in the experiment, however both sets 

of results show the characteristic collapse of L/D values at higher pitch angles, as 

pressure drag dominates force production. A note on the grid-independence of these 

results: Refining the mesh by 66% along the stroke path for both Reynolds numbers 

improved (reduced) the predicted L/D values for       by 5% – 7%, indicating some 

small but acceptable level of grid dependence. It is to be noted that for pitch angles 

greater than    , the finer meshes yielded L/D results within 1% of those found on the 

coarse meshes.  

Flow separates at a small angle of attack (       for these flat-plate wings, 

therefore all of the data points collected are in the post-stall regime. The lift curve rises 
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and falls symmetrically about the     pitch angle in a parabolic arc qualitatively similar 

to post-stall lift recovery regions observed for high    airfoils (both cambered and non-

cambered) under certain conditions (see, for example, Ostowari and Naik, 1985 [89]). 

Drag for these low    cases also shows the characteristic ‘S’ curve that is symmetric 

about the     pitch angle for the post-stall regime.  

The peaks in computed lift occur at just below       for both Reynolds numbers, 

making this a point of interest for the flow visualizations to follow. L/D at   = 50
o
 

however is approximately equal for        and        , therefore we will also 

look at the   =30
o
 case where the difference in L/D is more significant but lift is still 

relatively high. Each visualization is made at         , well after the force time 

histories indicate that the nearfield flow has reached a quasisteady state.  In addition to 

the force time-histories, flow visualizations of vorticity and Q-criterion were studied to 

confirm that the nearfield flow features were not significantly different at translational 

positions 45
o
 earlier or later. 

 

Figure 4.5: Force terminology used throughout this work. 

 



Lift

Drag

Fpressure

Fshear flapping rotation 

direction



90 

 

For Figures 4.8 – 4.13, all streamlines are computed using the body-fixed reference 

frame velocity field.  This prevents the apparent fluid motion resulting from the motion 

of the wing from obscuring the nearfield vortical structures.  In regions where the flow 

can be considered to be steady, this also means that body-fixed streamlines are equivalent 

to streaklines. In contrast, all spanwise flow contours in the following plots are computed 

in the inertial frame to avoid contamination from off-axis components of spanwise flow 

that would appear in the body-fixed frame. Velocities are all normalized by tip velocity. 

 

Figure 4.6: Computed pressure (normal) and shear (tangential) force variation with pitch 

angle for quasi-steady cases. 

  

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

-10 0 10 20 30 40 50 60 70 80 90 100 

F
o
rc

e 
(N

) 

Pitch Angle (deg) 

Pressure (Re=120) 

Pressure (Re=1400) 

Shear (Re=120) 

Shear (Re=1400) 



91 

 

 

 

 

Figure 4.7: (top) Comparison of computed lift-to-drag ratio for impulsively started wing 

rotation at         and        with the experimental results of Birch et al. [88].  

(bottom) Computed lift and drag variation with pitch angle.   
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Figure 4.8 plots 2D streamlines for        constrained to a plane parallel to and 

approximately 0.5 wing thicknesses above the upper surface of the wing. Similar in 

nature to oil-flow visualization experimental techniques, these surface plane 

visualizations are useful in identifying many phenomena such as separation and 

reattachment regions, the location and extent of tip vortex influence, and the strength of 

the surface spanwise flow. The low    cases exhibit relatively simple flow patterns. As 

seen in Figure 4.8a, at       a small LEV is formed that remains attached and close to 

the leading edge through         . Downstream of the LEV, the separated flow 

reattaches at approximately the 40% chord location. This attached flow is indicated in 

Figure 4.8a by streamlines with streamwise velocity components in the downstream 

direction. The attached region exists primarily over the aft portions of the wing. Closer to 

the leading edge, the streamlines show either a small or negative streamwise flow 

component which, for these simple cases, is indicative of a separated flow. For this low 

Reynolds number case, the spanwise flow reaches a peak in the trailing edge region and 

is thus not directly associated with the LEV. This tendency for insect-scale low Re 

flapping to generate peaks in spanwise flow that are not coincident with the LEV is 

similar to that noted previously by Birch [89]. Nevertheless, the outboard components of 

the streamlines in Figure 4.8a shows that the spanwise flow is still strong in comparison 

to the streamwise flow at the surface, even in regions where flow may be considered to 

be attached. Just downstream of the trailing edge, spanwise flow reaches a peak 

normalized value of      at          and      at         . Increasing the angle of 

attack to 50
o
 results in a larger LEV with separated flow over the entire length of the 

chord. Although visible in Figure 4.10b, this separation is again shown in the surface 
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plane of Figure 4.8b by noting that the streamwise component of the streamlines is in the 

upstream direction over a majority of the wing. In Figure 4.9b note that the primary 

rotational motion constituting the LEV persists from       through         , 

although as a prelude to it separating and turning to form the tip vortex, the rotational 

center has moved aft to approximately mid-chord. Outboard of this spanwise station, 

although not shown here, at          no distinct rotational center was observed.  

Spanwise flow velocity is slightly greater for this       case, with a peak value of 

     at          and      at         . 

Whereas the surface plane streamlines in Figure 4.8 at        are essentially 

uniformly spaced and predominantly oriented in the same direction, the streamlines in 

Figure 4.11 at         indicate the more complex nature of the higher    flow. 

Comparing the LEV as seen in Figure 4.9 to the respective LEV at each angle of attack in 

Figure 4.12, we see that the higher Reynolds number produces a more compact vortex 

with the characteristic highly centralized spanwise flow through its core. The most 

predominant difference in LEV structure at the two Reynolds numbers however are the 

secondary and tertiary vortices formed upstream of the primary LEV at        . 

These are clearly visible in Figure 4.12a at         , in Figure 4.12b at         , 

as well as in Fig. 4.13. The development of these structures is well mapped by the 

topology of the streamlines in Figure 4.11, which for this higher    shows surface 

patterns of streamlines that coalesce to form ridges and disperse to form valleys. At 

     , three primary ridges (     ) and four valleys (     ) indicate the size and 

position of the three LEV structures (shown in Figure 4.11a). Beginning at the wing root, 

only ridge    is present. Because this inboard portion of the wing is effectively acting at 
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a lower Reynolds number than outboard portions, a singular LEV is formed that separates 

at the leading edge and reattaches at   . Indeed for a majority of the span,    serves as 

the demarcation between separated flow (above   ) and attached flow (valley   , below 

  ). Near         ,    branches to form ridge    which marks the initial formation 

of a smaller vortex with the same rotational sense as the primary LEV. By         , a 

secondary vortex is formed with the opposite rotational sense, as indicated by the 

branching of    to form   . The three primary vortices that exist near mid-span inhabit 

valleys      . The vortices with the same rotational direction in    and    both show a 

strong positive spanwise flow at the surface. It is interesting to note however that the 

tertiary vortex that occupies    is associated with a zero or a slightly negative spanwise 

flow. This region extends towards the tip and expands to become a large region of low 

spanwise flow indicative of the separated region of the tip vortex. The primary LEV 

inhabiting valley    is bounded from above by this region of low spanwise flow and is 

turned towards the trailing edge beginning at approximately         . Another 

indicator of the separation of the LEV is the dispersion of    at this same spanwise 

position. Even still, as seen in Figure 4.12a, the rotational center remains intact through 

        . 

At      , the flow topology in Figure 4.11b is similar to the lower pitch angle 

case. In this case however, the bifurcation of the ridges occurs at earlier spanwise 

locations. At         , the tertiary LEV as well as the    valley (which is larger and 

contains lower spanwise velocities than its lower angle of attack counterpart) are already 

well formed.  For this case, the high positive spanwise flow in the    and    valleys 

extends over a greater portion of the surface and begins its turn towards the trailing edge 
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at approximately         , occurring sooner than in the       case. This earlier 

separation is also highlighted by both the relatively rapid dispersion of the    ridge just 

before mid-span and the disappearance of the strong spanwise flow through the LEV at 

         (Figure 4.12b). After separation, there is an additional ridge,   , which 

forms at the termination points of    and   . This chordwise oriented ridge separates a 

region of low spanwise flow at the tip from the inboard sections. The rotating streamlines 

in this region,   , are most likely associated with flow traveling out of the plane to join 

the tip vortex.   

For      , spanwise velocity reaches a peak of      at         . At      , 

spanwise velocity peaks at      at the more inboard          station, before a sharp 

decline in axial velocity that leaves the axial velocity at          at only     . The 

location of peak velocity for the       case is also disassociated from the vortex center 

(Figure 4.12b), which indicates that the LEV begins to lose its coherent structure 

beginning near         . Birch et al. [87] report that at       the peak axial 

velocity is approximately      at         , indicating that the LEV remained coherent 

and attached at least up to that station for this slightly reduced pitch angle. In order to 

resolve this potential discrepancy and ensure that the loss of LEV structure at 50
o
 

represents the simulation capturing a physical phenomenon instead of a numerically 

induced weakening of the vortex, the simulation was also performed at      . For 

     , spanwise velocity reaches a peak of      at         , with the LEV 

remaining well-defined through         . Therefore, the loss of coherent LEV flow 

outboard of          for       
is likely a physical phenomenon, and this vortex 

breakdown in the quasisteady case begins between pitch angles of     and    . Drag for 
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both values of    is relatively insensitive with changes in pitch angle between     and 

   . Conversely, lift is most sensitive to changes in pitch angle across the same range. 

Correspondingly, in the next section describing the unsteady flapping simulations, it will 

be seen that the lift is more difficult to predict than drag during the pronation and 

supination points of the stroke, when the angle of attack of the wing changes rapidly 

across that range of pitch angles.  

4.3.3 Power  

Figure 4.14 plots the mean aerodynamic power required for a number of pitch angles 

for both values of Reynolds Number. It should be emphasized that these results are for 

aerodynamic power only and thus do not account for the inertial forces required to 

accelerate the wing. Therefore, for example, when plotting the power loading (Figure 

4.15), the values will be higher than would be expected for physical systems. For these 

quasisteady cases, each set of data displays the expected increase in power with pitch 

angle. However, note that for   below approximately 15 , the higher    case requires 

less power as a result of the lower shear drag in the less viscous and attached flow. Above 

     , as the flow detaches at both values of Re and begins to form a small LEV, the 

lower pressure leading edge vortex of the higher Re case begins to dominate the power 

contribution, and the power required for the         case is consistently higher than 

the        case. A similar result is seen in the lift and drag (Figure 4.7) where 

although the stronger LEV of the         case contributes to a greater lift across all 

angles of attack, the lower Re case benefits from lower quasisteady drag for angles of 

attack above    . These opposing effects result in similar power loading values between 

the higher and lower Reynolds number cases (Figure 4.15) for pitch angles between     
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and     degrees. This range where power loading is less sensitive to Re is of prime 

interest to flapping wing drosophila hover, as the mid-stroke pitch angles are typically 

bounded within it. For pitch angles lower than 2  , the        case’s power loading 

decreases, where the power loading for the         case continues to increase until a 

peak at      . Again, this is the result of the power falling more rapidly with decreases 

in   for lower angles of attack with the reduced viscous power losses. 

Figure 4.14 and Figure 4.15 also plot a mean lift and power data point for the baseline 

flapping case to be discussed in the following chapter. It is interesting to note that the 

quasisteady predictions in this case are quite close to the mean unsteady predictions, in 

spite of the more complex kinematics and the resulting dynamic loading. This 

relationship will be explored further in the following chapter.  

To better visualize the force and power generation by the wing, Figure 4.16 and 

Figure 4.17 plot the distribution of lift, drag and power per unit area on the upper surface 

of the wing for three pitch angles of the        and         cases. In this context, 

power per unit area is the product of drag per unit area and the local rotational velocity. 

Note that in order to emphasize the qualitative relative location of zones of force 

generation, the contours in these plots are each normalized to their own local peak values. 

As a result, comparing the apparent magnitude of the contours across plots will be 

misleading. 
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 (a)  (b) 

 

Figure 4.8: Upper surface flow topology visualized by 2D streamlines constrained to a 

plane parallel to and approximately 0.5 wing thicknesses above the upper surface.  

Contours are of spanwise flow in the fixed inertial frame whereas streamlines are 

computed using the body-fixed frame velocity field. Re = 120, (a)  = 30
o
, (b)  = 50

o
. 

  

 

 (a)  (b) 

Figure 4.9: 2D streamlines constrained to spanwise planes at r/R = 0.35, 0.45, 0.55, 0.65 

and 0.75.  For clarity, streamlines are not shown at all stations.  Re = 120, (a)  = 30
 o

, (b) 

 = 50
 o
. 
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 (a)  (b) 

Figure 4.10: Detail of r/R = 0.65 station from previous figure. Re = 120, (a)      , (b) 

     . 

  

 

 (a)  (b) 

 

Figure 4.11: Upper surface flow topology visualized by 2D streamlines constrained to a 

plane parallel to and approximately 0.5 wing thicknesses above the upper surface. 

Contours are of spanwise flow in the fixed inertial frame whereas streamlines are 

computed using the body-fixed frame velocity field. Re = 1400, (a)  = 30
o
, (b)  = 50

o
. 
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 (a)  (b) 

Figure 4.12: 2D streamlines constrained to spanwise planes at r/R = 0.35, 0.45, 0.55, 0.65 

and 0.75.  For clarity, streamlines are not shown at all stations. Re(a)  = 30
 o

, 

(b)  = 50
 o
. 

  

 (a)  (b) 

Figure 4.13: Detail of r/R = 0.65 station from Figure 4.12.  Re = 1400, (a)  = 30
 o

, (b)  

= 50
 o
.  
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Figure 4.14: Mean power for impulsively started steady rotations at        and 

       . Mean power for the unsteady flapping simulation with a mid-stroke pitch of 

    is plotted as well for comparison. 

 

Figure 4.15: Lift to power ratio (power loading) for impulsively started wings rotation for 

       and        . Mean power loading for the unsteady flapping simulation 

with a mid-stroke pitch of     is plotted as well for comparison.  
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Pressure forces dominate shear forces, even for the low Reynolds number cases (this 

will be quantitatively shown in Chapter 5). Therefore, the regions of peak force 

generation correspond closely with the locations of the low pressure regions. In Figure 

4.16 for the lower    case, this manifests a large lift and drag generation region along the 

forward outboard portion of the wing, where the separation bubble seen in Figure 4.9 

exists. For the higher    case in Figure 4.17, the increase in magnitude of the low 

pressure region and the relative decrease in shear force influence makes the relationship 

between pressure and force even more apparent. Lift and drag begin being generated 

toward the inboard leading edge as the LEV forms, and the regions of peak force 

generation follow the path of the LEV from that edge to the aft outboard edge. This 

pattern is particularly pronounced at      , and is indicative of the LEV path seen in 

Figure 4.12. 

With increasing pitch angle on both the high and low Reynolds number cases, the 

effective spanwise location of forces tends to move inboard as an increasing amount of 

separation occurs on the inner portions of the wing. This effect seems to be more 

pronounced for the higher    case, as compared with the lower    case. That is, the 

spanwise location of the higher    case is more inboard than the corresponding low    

case. This conclusion does not seem to agree with the predicted power. Note in Figure 4.7 

that for pitch angles less than    , drag is lower for        than for           

However this is reversed for the power predictions seen in Figure 4.14. Since for this 

quasisteady rotation power is directly proportional the product of drag and local 

tangential velocity, and rotational velocity is fixed between the two Reynolds number 

cases (fluid viscosity is changed), then the increase in power for the         case 



103 

 

would indicate that the effective spanwise location of drag has moved outboard where its 

product with the higher tangential velocities would be larger. Similarly, comparing 

Figure 4.15 of mean lift/power to the lift/drag plot in Figure 4.7, it is seen that the power 

ratio is similar for the two Reynolds numbers for pitch angles greater than    . However, 

the lift/drag ratio is predicted to be much higher in the         case than at        

below pitch angles of    . Again, this conclusions seems counterintuitive when 

compared with the apparent spanwise locations of the peak force and power locations in 

Figure 4.16 and Figure 4.17. 

 

 

Figure 4.16: Distributions of lift, drag, and power per unit area on the upper surface of 

the wing for the   ,     and     cases.           Note: each image contour values 

individually scaled to better highlight peak force locations. 
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Figure 4.17: Distributions of lift, drag, and power per unit area on the upper surface of 

the wing for the   ,     and     cases.            Note: each image contour values 

individually scaled to better highlight peak force locations. 

4.4 Summary  

The computed lift-to-drag agreed well with experimental results found in literature. In 

general, the largest discrepancies appeared in the lift computations, which is potentially 

the result of the artificially thicker computational wing. 

A steady LEV was observed for all cases at pitch angles above    , the size, strength 

and shape of which varied significantly with Reynolds number and pitch angle.  

 At       , the change in  from     to     produced a marked effect on 

the size of the separated flow region and a 60% increase in peak spanwise 

velocity. The LEV spanwise separation point was however not significantly 

affected by the change in angle of attack.   
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 At        , the structure of the LEV was found to strongly depend on the 

spanwise station. Inboard sections exhibited the typical singular separation 

vortex, however near          for       , a smaller vortex formed 

which bifurcated by          to form a secondary vortex to the primary 

LEV. This vortex system remained relatively intact through r/R = 0.75 

although the chordwise position of the LEV rapidly shifted towards the 

trailing edge after         .  At      , a similar LEV structure was 

found, however, the strong centralized spanwise flow that remained present 

through          in the lower angle of attack case dispersed before 

         at      .  The tertiary vortices, as well as a weak rotational 

LEV region were still present at the          station. 

 A concentration of spanwise flow was observed for all cases with a LEV. For 

the        cases, the peak spanwise flow was found just aft of the wing’s 

trailing edge, and it was not coincident with the center of the LEV. In the 

      case, the peak spanwise velocity was 50% of the tip velocity. For the 

      case, the peak spanwise velocity reached 79% of the tip velocity. At 

the higher        , the peak in spanwise velocity centered in the LEV. For 

the       case, the peak spanwise velocity was 125% of the tip velocity. 

For the       case, the peak spanwise velocity was found to be 161% of the 

tip velocity, although this occurred farther inboard, at the 45% span location, 

than other cases. However this result seems consistent with similar 

experimental results [87].  
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Power requirements increase with increasing pitch angle at a similar rate at both 

Reynolds numbers above      . Below this, the predicted power curves cross and the 

mean power for the lower Re case, becomes larger than for the higher Re case. Peak L/P 

is higher for the         case, and does not taper off with decreasing pitch angle until 

   , where for the        case, the peak occurs at the higher     pitch angle. 

Comparisons of drag and power predictions between the two Reynolds number cases 

seem to indicate that for pitch angles below     the spanwise location of the drag peak 

must move outboard with increased   . However, flow visualization at the wing’s upper 

surface appear to indicate that the peak spanwise location moves inboard with increases 

in   .  

4.5 Conclusions 

These quasisteady results serve as a validation of the methodology’s ability to predict 

unsteady forces in low Re unsteady flows, however the key understanding to be gained 

from this chapter’s computational results are the sensitivities of the forces and flowfield 

to changes in pitch angle and Reynolds number in a quasisteady sense for these low 

values of Re.  

Between pitch angles of    to    , Reynolds number has a strong effect on the 

magnitude of L/D, with the larger         cases showing more than twice the L/D 

ratio of the L/D of the        cases at their peaks. These peaks were also shifted to 

lower values of pitch angle for the higher Reynolds number. This would indicate that the 

higher Re case begins the post stall lift recovery more rapidly than the lower Re case. 

Above    , as the wings move deeper into the post-stall regime, the L/D curves collapse 
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as both approach bluff body flow. For the baseline flapping motions examined in the next 

chapter, the wings remain at constant pitch angles of     or less throughout a majority of 

the stroke, with departures to higher pitch angles only when flipping to reverse the stroke 

direction. In a quasisteady sense, it would follow then that L/D over a majority of the 

stroke should be higher for the higher Re cases, but near stroke reversal the forces should 

be similar. Similarly, in a quasisteady sense, we could conclude that and optimal steady 

stroke angle for the flapping cases should be between     to     to maximize L/D and 

minimize power per unit of lift. In the next chapter we will see how the unsteady 

flowfield affects these quasisteady predictions.  
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Chapter 5 – 

Flapping Simulations  

With the conclusions drawn about the quasisteady forces and flowfield, we can begin 

to generate a more realistic flapping simulation by adding unsteady pitching and 

rotational kinematics. The unsteady flapping simulation results are organized in three 

major parts.  

(1) Flapping kinematics based on an experimental study by the Dickinson Lab at 

Caltech conducted on the Robofly flapping apparatus serve as a baseline low 

Reynolds number simulation case. The wake structure and unsteady forces 

generated in this baseline case are detailed.  

(2) To build on these conclusions and to facilitate comparison with the quasi 

steady results from the previous section, the     mid-stroke angle of the 

baseline case is modified to     and    . 

(3) Finally, the baseline simulation kinematics are repeated with the higher 

Reynolds number LES solver at          again to facilitate comparison 

with the quasisteady results, but also to study the difference in the flowfield at 

Reynolds numbers closer to what hovering MAVs experience.  
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Figure 5.1: Stroke schematic depicting the kinematics of the baseline flapping case. The 

dots indicate the position of the pitch axis. 

5.1 Baseline Flapping Cases  

As compared to the quasisteady cases, the actual wing motion for typical insects in 

hover is generally complex, including passively deformable thin wings, asymmetric 

strokes, and a tip path that deviates from the stroke plane in an irregular manner [11]. 

Because of the difficulty involved with measuring and reproducing these kinematics, 

capturing the salient flow features of the actual stroke becomes more practically tenable 

if an idealized motion is adopted [14]. The present baseline idealized insect wing motion 

consists of a model Drosophila wing translating in rotation through a        arc at a 

nearly constant angular velocity and geometric angle of attack,      , except near the 

stroke reversal points at the ends of the arc in which the wing flips (pitches) about an axis 

at 45% chord (Figures 5.1 and 5.2). The pitching axis remains in the stroke plane 

throughout the motion and the up and downstroke arcs are kinematically symmetric. The 

idealized stroke motion uses an ‘advanced’ flip, in which the midpoint of the flip, 

     , occurs before the wing reaches the end of the upstroke (pronation) or the end of 

the downstroke (supination). This class of idealized flip timings, as opposed to a 

‘symmetric’ flip or a ‘delayed’ flip, in which the mid-point of the flip occurs at or after 

upstroke 

t/T=0% t/T=50%midstroke

pitch angle 45o
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stroke reversal, has been experimentally [14] and computationally [90], [34] found to 

give the largest mean force values for this idealized motion. The cause of this will be 

explored in the subsequent sections, but we have already seen with the quasisteady results 

from Chapter 4 that peak lift occurs near a pitch of    . Furthermore, with regard to the 

unsteady forces, at stroke reversal, a mid-stroke pitch angle of     positions the wing at 

an angle of attack well-suited to take advantage of vorticity generated from the previous 

stroke; this is the so-called ‘wake capture’ effect. 

 

 

  

Figure 5.2: Illustration of conventions used throughout this work. The upper 

surface is defined as the surface opposite the direction of travel. The geometric 

angle of attack,  , is defined with respect to the direction of travel, thus it’s time 

history is discontinuous at supination and pronation 
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5.1.1 Computational Setup  

The present simulation flow conditions for the baseline flapping case correspond to 

the experimental conditions of Birch and Dickinson [17] on the Robofly apparatus with 

the exception that the present computational flapping motion and the experimental data 

obtained directly from the Dickinson Lab used for comparison traverse a full 180
o
 

flapping arc (as opposed to the 160
o
 of the experiment documented in [17]). The wing 

planform is similar to the quasisteady cases, having a single-wing dimensional surface 

area of            with a total wing radius of        . The inboard 24% of the 

experimental wing was taken up by the presence of the mounting apparatus and force 

measurement devices. Since these are not required by the computations, the inboard 

portion of the wing profile, which is not present in the experiment, is approximated based 

on the rough shape of a typical Drosophila wing. The resulting computational wing has a 

spanwise length of           , compared with the            of the 

experiment, which means that approximately the outboard 76% of the wingspan profile is 

matched to the actual wing geometry. The experiments are conducted in oil with a 

kinematic viscosity of 1.2×10
–4

 m
2
/s and a density of 880kg/m

3
.  Based on the mean tip 

velocity, these conditions lead to a Reynolds number of approximately Re = 147.  No 

image/symmetry plane or second wing is used in either the experiment or the CFD.   

The wing is assumed to be rigid and the thickness of the present computational model 

is taken to be 4.5mm, approximately 2 times the experimental value. The primary 

computational mesh contains 33.5×10
6
 nodes with a uniform resolution over the wing 

path of 1.25mm. The mesh used for flow visualization of the wake used the same near 



112 

 

body resolution, however the more finely resolved wake region below the stroke plane 

required a 37.1×10
6
 node mesh.  

The experimental full stroke period was approximately T = 5.89s (f = 0.170Hz), 

which given the specific kinematics described below, resulted in a peak rotational angular 

velocity of 1.182 rad/s during the stroke. At mid-stroke (               the wing 

translates at a constant angular velocity and geometric pitch angle,      . At some 

time     , the wing begins to flip about its pitching axis, reversing its pitch angle for the 

next half stroke (Figure 5.3). The mid-point of this flip, where the geometric angle of 

attack is      , occurs at   , and the total flip time is    . Note that the plotted pitch 

angle function in Figure 5.3 is not continuous at the mid-stroke due to the definition of   

with respect to the direction of rotation. The rotational translation is defined by the time 

that deceleration begins,      . To ensure smooth transitions between the steady rotational 

portions of the stroke and the accelerating portions near stroke reversal, the angular 

acceleration functions themselves are defined such that they are smooth and continuous 

over the entire stroke. Analytically integrating the trigonometric acceleration functions 

gives the angular pitch and rotation velocities. As an example, the equations for the 

stroke reversal occurring at     are given by Equation (5.1),  
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where      ,      , and   
    are constant functions of the total pitch angle change per 

stroke,         the total rotational angle change),  , and the period per stroke,  : 
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(5.5)  

In the context of the simulations, these angular velocity functions are then 

numerically integrated using either a 3
rd

 order Runge-Kutta scheme or a second order 

Adams-Bashforth scheme (remaining consistent with the time integration of the 

convective terms) to obtain the angular position and angle of attack at a given time. The 

resulting position functions are C
3
 continuous, however the kinematic patterns used in the 

experiment are formed using low pass filters on triangular and trapezoidal waveforms 

[14], thus the present functions will not exactly match those of the experiments. 

However, by choosing appropriate values of the flip and translation parameters, the total 

L2 norm of the difference per full stroke between the present position functions and the 

experimental kinematics has been reduced to less than 0.81
o
 for pitching, and less than 

0.60
o
 for the rotational position (azimuth). It should be noted that the maximum 

instantaneous errors in prescribed position, and consequently velocity and acceleration, 

occur near stroke reversal where the effects of these errors may be most significant. 

Emblemsvåg and Candler [44] showed that even minor variations in the pitching 
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description can change the force peaks, lift more so than drag, quite significantly 

(approximately 25% change in lift peaks near stroke reversal in some cases). 

For all cases in Sections 5.1and 5.2, simulations are run with a maximum CFL of 0.3 

for the AB2 scheme, and a max CFL of 0.75 for the RK3 scheme. The residuals on the 

pressure Poisson equation are converged a minimum of 3 orders of magnitude for each 

time step. 

 

 

Figure 5.3: Kinematics description of pitching and rotational position and velocity.  
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5.1.2 Results and Discussion 

The force time histories (Figure 5.4) and the flow visualizations to be presented will 

be those obtained during the fourth full stroke for all computations and the experiment, 

unless otherwise noted. For most cases, simulations were actually computed through 

eight full strokes, however comparison of later cycles with the third and fourth strokes 

revealed no significant differences in forces or nearfield flow structures (Figure 5.5). This 

rapid stabilization of the flowfield is due in part to the rapid convection of the initial 

starting vortices away from the stroke plane, as will be discussed later. It should be noted 

that while the up and downstrokes in the computations were symmetric by even the 

second full cycle as one would expect, the force time histories from the experiment never 

appeared to reach a fully symmetric up/down stroke cycle. From computational 

experimentation, the asymmetries are consistent with slightly differing mid-stroke pitch 

angles on the up and down strokes, however this could also indicate some recirculation or 

boundary effects from the experimental oil tank, some inaccuracies in the mechanical 

device’s kinematics or force measurement errors.  

5.1.2.1 Stroke Description 

Figure 5.6 presents pressure contours, body-frame streamlines, and spanwise vorticity 

contours at the 60% span location at specific times within the stroke. At each of these 

times, Figure 5.6 also shows the corresponding spanwise vorticity isosurfaces. Figure 5.7 

gives the surface distribution of nondimensional pressure relative to freestream at the 

60% span.   
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Figure 5.4: Computed forces for the baseline flapping case decomposed into pressure 

(normal) and shear (tangential) components.  
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At 9% of the upstroke, the wing finishes the rotational acceleration started after 

supination (stroke reversal after downstroke), and begins a constant angular velocity 

rotational translation. Similar to a fixed wing linear translation, the rotating wing 

develops and sheds a starting vortex at the trailing edge, as can be seen in the spanwise 

vorticity contours of Figure 5.6a. The corresponding spanwise vorticity isosurfaces in 

Figure 5.6a show the expected leading edge and starting vortices, however the starting 

vortex is clearly distorted near mid-chord. As will be shown in Section 5.1.2.3, this 

twisting is a result of an interaction with the root vortex and other shed vortices of the 

previous half stroke. 

 

Figure 5.5: Computed force time histories for strokes 4 and 7 of the baseline case 

demonstrating periodicity is achieved after 4 strokes  
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The wing finishes its supination flip from the previous downstroke at t/T = 10%, after 

which it remains at a constant 45
o
 geometric angle of attack until t/T = 26%. During this 

steady rotation (Figure 5.6b – c) which covers 64.5
o
 of azimuth, the low pressure zone 

associated with the LEV grows with the vortex such that by t/T = 24.5% the zone spans 

from the leading edge to approximately mid-chord (at the 60% span location in Figure 

5.6c). The flowfield is notably similar to that of the       ,       quasisteady case 

shown in Figure 4.9 with an attached LEV through about 75% span. The lift and relative 

surface pressure is reasonably stable during this steady rotation portion of the stroke, with 

a linear increase of pressure along the wing upper surface aft of the suction peak, and the 

corresponding linear decrease of surface pressure aft of the stagnation point on the lower 

surface (Figure 5.7a). The peak suction pressure drops 10% between t/T=16% and 24.5%, 

accompanying the gradual decay of the pressure-lift (Figure 5.7), however shear-lift 

increases, as the recirculation region grows to cover a progressively larger portion of the 

upper surface of the wing. Total lift remains relatively constant, since this gradual 

increase in shear-lift roughly balances the falling pressure-lift. Because the wing is at a 

constant      , the pressure-drag decreases in a manner similar to the pressure-lift. 

However, since the recirculation region provides some amount of negative viscous-drag, 

and the size of the attached region is roughly inversely proportional to the size of the 

recirculation region at each spanwise station, the shear-drag also decreases, which results 

in a gradual but steady decrease of total drag over this portion of the stroke.  
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(a) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

9%  

 

 (b) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

16% 

Figure 5.6: Left: Pressure contours (    ) at various times covering the steady rotation 

and flipping portions of the stroke (blue, negative). Streamlines are computed in the 

body-fixed frame, and as shown are constrained to the plane (60% span). Streamlines are 

not shown at all times for clarity. Center: Corresponding spanwise vorticity contours (red, 

counter-clockwise) at the 60% span location. Right: Corresponding spanwise vorticity 

isosurfaces (red, counter-clockwise). 
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(c) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

24.5% 

 

 (d) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

34.5% 

Figure 5.6 (continued): Left: Pressure contours (    ) at various times covering the 

steady rotation and flipping portions of the stroke (blue, negative). Streamlines are 

computed in the body-fixed frame, and as shown are constrained to the plane (60% span). 

Streamlines are not shown at all times for clarity. Center: Corresponding spanwise 

vorticity contours (red, counter-clockwise) at the 60% span location. Right: 

Corresponding spanwise vorticity isosurfaces (red, counter-clockwise).  
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 (e) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

40% 

 

 (f) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

45% 

Figure 5.6 (continued): Left: Pressure contours (    ) at various times covering the 

steady rotation and flipping portions of the stroke (blue, negative). Streamlines are 

computed in the body-fixed frame, and as shown are constrained to the plane (60% span). 

Streamlines are not shown at all times for clarity. Center: Corresponding spanwise 

vorticity contours (red, counter-clockwise) at the 60% span location. Right: 

Corresponding spanwise vorticity isosurfaces (red, counter-clockwise). 
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(g) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

50% 

 

(h) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

53% 

Figure 5.6 (continued): Left: Pressure contours (    ) at various times covering the 

steady rotation and flipping portions of the stroke (blue, negative). Streamlines are 

computed in the body-fixed frame, and as shown are constrained to the plane (60% span). 

Streamlines are not shown at all times for clarity. Center: Corresponding spanwise 

vorticity contours (red, counter-clockwise) at the 60% span location. Right: 

Corresponding spanwise vorticity isosurfaces (red, counter-clockwise). 
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(i) Pressure contours, spanwise vorticity contours, spanwise vorticity isosurfaces at t/T = 

55.5% 

Figure 5.6 (continued): Left: Pressure contours (    ) at various times covering the 

steady rotation and flipping portions of the stroke (blue, negative). Streamlines are 

computed in the body-fixed frame, and as shown are constrained to the plane (60% span). 

Streamlines are not shown at all times for clarity. Center: Corresponding spanwise 

vorticity contours (red, counter-clockwise) at the 60% span location. Right: 

Corresponding spanwise vorticity isosurfaces (red, counter-clockwise).  
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Recall in Chapter 4, it was shown that for the impulsively started constant pitch angle 

rotation, the leading edge separation bubble grows to reach a quasisteady size that varies 

along the span of the wing. This LEV size (at the 65% span location) was shown to 

become stable after approximately 70
o
 of travel from an impulsively started rotation. As 

seen by the streamlines in Figures 5.6a – c, the LEV in the present unsteady flapping case 

continues to grow throughout the constant angular velocity portion of its stroke, even 

though between t/T = 0% – 24.5% (corresponding to Figure 5.6c), the wing has traveled a 

total of 87.9
o 

past stroke reversal.  Notably however, the present case is dissimilar from 

the impulsively started case in that the first 29
o
 of the upstroke includes a significantly 

more gradual acceleration from zero rotational velocity combined with a downward 

pitching from         to      .   

At t/T = 26%, just after the middle of the upstroke, the wing begins to pitch up for its 

flip at stroke reversal. This is accompanied by an increase in lift and drag in a dynamic 

stall-like process that results in a peak lift of 0.6N at t/T = 35.0% and        . Note 

that this dynamic pitching allows a lift greater than what one would expect from the 

quasisteady result. Figure 5.6d highlights pressure and vorticity in the flowfield at t/T = 

34.5%, where        , just before the lift peak. The pitching motion causes a reduction 

in the absolute rotational velocity of the leading edge, and an increase in the absolute 

rotational velocity of the trailing edge. This results in an expansion of the leading edge 

vorticity region further into the wake as it begins to shed, and the formation of a region of 

vorticity at the trailing edge which arises from the strengthening shear layer created by 

the flow around the lower portions of the wing. Comparing Figures 5.7a and 5.7b, the 

leading edge peak suction pressure remains relatively stable between t/T=9% and 
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t/T=34.5%, although the chordwise pressure distribution along the downstream portions 

of the span become more linear (Figure 5.7b). On the lower surface, the stagnation point 

begins to move from the leading edge towards the trailing edge and at this particular 

point in the stroke, the lower surface pressure is nearly constant across the chord. As 

indicated by the spike in pressure lift and drag (Figure 5.4), it is this combination of 

upper and lower surface pressure changes that contributes heavily to the peaks in total lift 

and drag. With the LEV still attached and growing, and no new recirculation regions 

formed at the wing surface, the shear-related lift and drag continue the trends established 

during the steady portion of the stroke. 

However, the shear-lift increases rapidly after the lift-stall begins to occur near t/T = 

35%. This can be explained as the result of a combination of factors. The continued 

presence and growth in intensity of leading-edge recirculation region on the upper surface 

increases the near-wall velocities. This coupled with the redirection of the total shear 

vector due to the flip gives a greater lift contribution from the viscous effects associated 

with the LEV. Finally, the lower surface begins to play a larger role in the viscous lift 

generation, as the near wall velocity in the positive lift direction increases along the wing 

as it pitches towards       (Figure 5.6e). The drag peak occurs just before the       

point at        . Considering the kinematics, it is reasonable to expect that this peak 

occurs before mid-flip, since at this point the wing has already begun its azimuthal 

velocity deceleration, which acts to decrease drag. Figures 5.6e and 5.6f capture the wing 

just before and just after this mid-flip point. The corresponding sectional relative pressure 

distributions in Figure 5.7b show that between t/T = 34.5% and t/T = 40% the magnitude 

of the upper surface suction peak rapidly increases from what had been a relatively 
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constant value around -0.8 up to to -0.93. By t/T = 45% though, this peak dramatically 

falls to -0.48 just after the mid-flip       point. Simultaneously, the relative pressure 

towards the leading edge on the upper surface changes signs and decreases to negative 

values (i.e. contributes to positive lift). This loss of the strong suction peak on the upper 

surface is an indication of the weakening and detachment of the LEV (at the 60% span 

location). The detachment is also apparent in that the initial formation of the LEV for the 

coming downstroke can be seen as regions of spanwise vorticity of opposite sign to the 

upstroke LEV forming near the leading edge in Figures 5.6e and 5.6f. Near the trailing 

edge, a region of spanwise vorticity of the same sign as the upstroke LEV forms and is 

associated with a small recirculation region that began to develop with the shear vorticity 

region just after the initiation of the upstroke flip.    

Although the wing is still moving in the upstroke direction between t/T = 45% – 50% 

(moving towards the right between Figures 5.6f – 5.6g), the wing’s deceleration, coupled 

with the induced in-plane flow from previous portions of the upstroke, creates an induced 

flow that is effectively also oriented in the upstroke direction. This puts the wing at an 

effective aerodynamic angle of attack of less than 90
o
 with respect to the oncoming flow. 

A result of this is the development of the low pressure regions to the right of the wing 

seen in Figures 5.6f – 5.6g. More significantly, combined with a peak in shear-lift at t/T = 

44.0%, these low pressure regions appear to contribute to a rapid rebound of the total lift 

after a brief, low magnitude interval of negative lift values between t/T = 43.9% – 45.0%.  

Accompanying the increase in lift is a sizable decrease in drag, leading to a strong drag 

peak at t/T = 50% of -0.72N. The drag peak for the entire stroke which occurred near 
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t/T=41.2% is 1.24N, meaning that within a 9% stroke duration, the drag fluctuates 

approximately 1.96N.  

At pronation (t/T = 50%), although the wing continues its counterclockwise flip (as 

viewed in Figure 5.6g), the instantaneous azimuthal rotational velocity is zero (     

 ). Note that for the surface pressure distributions at times greater than or equal to t/T = 

50%, because the stroke direction has reversed, what was formerly called the “upper 

surface” for the upstroke becomes the “lower surface” for the downstroke. The spanwise 

vorticity contours and isosurfaces at this point show a variety of structures in various 

states of growth and decay. The spanwise vorticity isosurfaces in Figure 5.6g clearly 

illustrate that the upstroke LEV is definitively separated from the wing. We also see that 

without the motion of the wing to maintain its size and strength, the detached LEV 

weakens (Figure 5.6g, vorticity), and in its place a small LEV of the opposite sign grows 

to form the downstroke LEV. At the trailing edge, the large shear vorticity region has 

separated from the wing and starts to convect below the stroke plane into the wake. In its 

place at the trailing edge are two structures, with the predominant one being the 

translational starting vortex for the coming downstroke. Note that the induced flow from 

the upstroke has promoted the formation of both the starting vortex and the LEV before 

the wing has begun to translate for the downstroke. The second structure is the vortical 

region associated with the small recirculation region formed during the upstroke flip. It 

does not appear to be enveloped into the starting vortex, but instead remains slightly 

below it and dissipates accordingly without its shear-layer energy source. At this 

spanwise station, the shear layer vorticity region formed near the trailing edge on the 

upstroke remains intact, weakening only slightly as it is pushed under the wing as the 
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wing moves back above it. The separated upstroke LEV along the inboard portions of the 

wing dissipates rapidly as the wing directly reencounters it on the downstroke, however 

the outboard portions remain intact as they are pushed up and over the wing and out 

towards the wingtip (Figure 5.6g – i). A more detailed description of the evolution and 

dissipation of the separated LEV will be given in the wake structure section.   

As the wing begins the translation at the beginning of the downstroke (Figure 5.6h – 

i), the lift and drag both reach local maxima at t/T = 54.0%. A major part of these peaks 

are again attributed to corresponding pressure force peaks (Figure 5.4), and a portion of 

those forces may be attributed to the low pressure regions formed by the starting vortex 

and the developing LEV (Figure 5.6i, shown just before force peaks). The negative peak 

of the viscous lift and the relatively high values of positive viscous drag indicate that no 

significant recirculation region has developed on the wing surface by t/T = 55.5% to 

counteract the attached flow shear forces. As the low pressure region associated with the 

trailing edge starting vortex moves downstream, the pressure-related and total lift and 

drag forces begin to decrease. This can be seen in the sectional relative pressure 

distributions as an increase in the upper surface pressure along the aft portion of the wing. 

Note that the suction peaks approach their steady rotation values fairly quickly, with the 

upper surface suction peak at -0.7 by 5.5% of stroke after pronation. As the total lift and 

drag approach their steady rotation mean values, the remainder of the downstroke 

becomes qualitatively similar to the upstroke. Minor variations in the computed values 

will be discussed in the next section.  
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(a) 

 

(b) 

Figure 5.7: Sectional relative pressure distributions at 60% span at various stroke times, 

nondimensionalized by freestream dynamic pressure based on mean wingtip velocity. 
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(c) 

Figure 5.7 (continued): Sectional relative pressure distributions at 60% span at various 

stroke times, nondimensionalized by freestream dynamic pressure based on mean wingtip 

velocity. 
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5.1.2.2 Comparison with Experiment 

The primary discrepancies between the simulation parameters of the experiment and 

the baseline computations are the thicker wing used for the computational model, the 

modified wing geometry at the root, and small discrepancies in the prescribed kinematics 

that are largest near stroke reversal. Nevertheless, although the general trends are 

captured well, the computed instantaneous force time histories at the fourth stroke 

(Figure 5.8) show some differences with the experiment, particularly during stroke 

reversal. Mean values for experimental and computational lift are 0.41N and 0.47N, 

respectively, which represents a 15% computational overprediction. This discrepancy is 

mostly fed by the underprediction of the lift peak magnitudes, which are, in some cases, 

19% lower than the experiment. Because the stroke reversal drag peaks are captured more 

accurately, the mean drag is much closer to experiment, with the computational value of 

0.63N being only 3% greater than the experimental mean of 0.61N. It is also of note that 

the experiment seems to exhibit an asymmetry in the both the lift and drag results for the 

up and downstroke, even during the fourth stroke when the CFD shows essentially 

periodic half stroke force time histories.  

As noted, during the steady rotation phases of the upstroke and downstroke (t/T = 

10% – 26% and t/T = 60% – 76%), a qualitative comparison may be made with the 

previous quasisteady rotating wing results at       . Recall Figure 4.9 which shows 

the wing in an impulsively started steady rotation at       and       with contours 

of outboard spanwise flow. For both angles of attack, note the concentration of radial 

flow towards the trailing edge that peaks at 50% of mean tip velocity. It is seen that for 

the similar conditions of the present flapping case, a comparable concentration of 
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spanwise flow with a peak value approaching 49% of the tip velocity exists near the 

trailing edge during the steady rotation phase.  

For this steady portion of the stroke, the CFD overpredicts both the mean lift and drag 

values, where the experimental mean lift and drag are 0.45N and 0.48N, respectively. The 

computational mean lift and drag during this same period are 0.52N and 0.59N, 

respectively. Therefore the discrepancy appears to be related, at least in part, to some 

steady effect (Figure 5.8). Noting that the wing is operating at a geometric       

during these phases of the stroke, we might expect that the lift and drag should be fairly 

close in value. Although this is essentially the case for both the computations and the 

experiment, relative to the experiment, the difference between the drag and the lift is 

greater in the computations. This supports the idea that during the steady rotational 

portion of the stroke, the computations are operating at a different effective angle of 

attack than the experiments, the most likely cause of which is a difference in the strength 

of the induced flow through the stroke plane. From Figure 5.6a – c, the inclination of the 

streamlines upstream of the wing highlights that the result of this induced flow is an 

effective reduction in the aerodynamic angle of attack. In general, the result of this is a 

reduction in both lift and drag [91], thus if this mechanism is to be held accountable for 

the differences in forces, the induced inflow resulting from previous strokes must be less 

significant in the CFD than in experiment. While Birch and Dickinson [17] report and 

attempt to quantify this effective change in angle of attack, it is difficult to make direct 

comparisons with the present computational results. We can however note that a potential 

cause of any variation of inflow may be directly linked to the modified wing root 

geometry in the computations.   
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Figure 5.8: Experimental and computational force time histories. Shaded regions indicate 

the phases of travel during which the rotational angular velocity is constant and the 

pitching velocity is zero.  
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Figure 5.9 shows contours of vorticity normal to the plane y = 0 (see Figure 5.10 for 

orientation of coordinate system). The pitching axis is contained within this vertical plane 

at mid-stroke. The axes values have been normalized to the stroke radius and the wingtip 

is facing towards the right. The streamlines are computed in the fixed inertial frame 

(including corrections for the pitching velocity where appropriate). Just after the wing 

passes through this plane (Fig 5.9a, t/T = 32%), the counter-rotating root and tip vortices 

begin to convect downwards away from the stroke plane. While the tip vortex maintains a 

relatively vertical convection path, the root vortex moves steadily outboard such that at 

increasing wake ages, the interaction of the two vortices produces a fluid jet that is 

oriented downwards, away from the stroke plane. The increasing strength of this jet with 

time is indicated by the contraction of the 2D streamlines between the vortex pair in Figs 

5.9b – d. Thus, in addition to any inflow that may result from a momentum analysis of 

the stroke plane based on the integrated lift, this low aspect-ratio wing effect provides a 

mechanism for additional inflow near mid-stroke. This additional inflow is dependent on 

the size, strength and development of the root vortex, and therefore in order to accurately 

predict the experimental inflow, and ultimately the associated forces during mid-stroke, it 

is apparent that a better representation of the experimental inboard geometry and possibly 

of obstructions due to mounting apparatuses may be required. Induced inflow through the 

rotor plane will be looked at in more detail in Section 5.1.2.3. 

The peak in lift accompanying the upwards pitching of the wing near the end of each 

stroke is overpredicted for the upstroke by 11%, however the overprediction at the 

corresponding event in the downstroke is only 2.8%. Since the peak in computed lift 

changes by only 0.5% between the up and downstrokes, this difference is again due to an 
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asymmetry in the experimentally measured lift values. The computational drag during the 

upwards pitching phase increases at a rate similar to the experiment, reaching a peak of 

1.24N which is in good agreement with experiment during the upstroke, however a slight 

increase in the computed drag peak combined with a slight decrease in the experimental 

drag peak during the downstroke results in a more sizable 5.6% overshoot in predicted 

peak downstroke drag. All significant peaks in both lift and drag occur slightly earlier 

than in the experiment. Early lift and drag peaks were also observed by Ramamurti and 

Sandberg [90] in a CFD study of similar kinematics. While a cause for this discrepancy is 

difficult to pinpoint, a likely contributing factor is the precise definition of the pitching 

acceleration, whose peak roughly coincides with the pre-stroke reversal lift peak. While 

this is not a true dynamic stall event, we still should expect that the penetration depth of 

the increase in lift for the present case is sensitive to pitching acceleration and reduced 

frequency [85], and as seen in Figure 4.2 the magnitude and gradients of the reduced 

frequency are largest near the stroke reversals. The peak phase differences may also be 

related to the aforementioned inflow discrepancy, since a change in aerodynamic angle of 

attack modifies the dynamic force generation process. We will see in the next section 

how pitch rate affects these force peaks.  

As the wing continues to pitch up, the drag increases until the rotational deceleration 

begins at t/T = 41% and        . This deceleration acts to reduce drag and this effect 

quickly overpowers the effects of the continued pitching. The result is a sharp decrease in 

drag beginning at t/T = 41.5%. Continuing to pitch upwards beyond this point, the lift 

decreases such that at a geometric angle of attack of 90
o
 at t/T = 43%, the computed and 

experimental lift values are 0.04N and 0.06N, respectively. These near zero values are 
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expected considering that only viscous shear forces or differential pressures on the thin 

leading and trailing edges could cause any lift generation at this instantaneous stroke 

position. After this point, as mentioned in the previous section, the computed lift almost 

immediately begins to increase and the drag continues its rapid fall to a peak near -0.72N 

(58% of its maximum value for the entire stroke). In contrast, the experimental drag 

continues to decrease to only -30% of its maximum value for the entire stroke. This 

represents a 40% overprediction of the negative experimental drag peak. The increased 

lift and reduced drag in the computations both indicate a stronger influence of the in-

plane component of induced flow that the low pressure regions above the wing in Figure 

5.6f – g were attributed to. Similarly, the overprediction of the rise in lift over the last 5% 

of the up and downstrokes is consistent with the idea that the computations are seeing 

less induced inflow normal to the stroke plane than the experiment, and thus are 

operating at a higher aerodynamic angle of attack, leading to larger lift and drag forces. 

This idea however is not necessarily supported by the 16% underprediction in the peak 

lift at the start of the downstroke. Although this lift peak coincides with a negative peak 

in shear-lift (indicative of an induced inflow through the plane), if the computational 

inflow is speculated to be weaker than the experiment, one might expect an 

overprediction of this peak as opposed to the underprediction seen. Nevertheless, without 

a more comprehensive picture of the highly three-dimensional flowfield of the 

experiment near stroke reversal, we cannot say definitively whether or not other 

discrepancies in the vortical structures (such as those that may be produced by 

differences in wing root geometry) contribute to any of the computation’s inaccurate 

predictions during stroke reversal. 
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(a) t/T = 32% (b) t/T = 41% 

 

(c) t/T = 56.5% (d) t/T = 67% 

Figure 5.9: Spanwise mid-stroke plane with contours of vorticity normal to the plane at 

various stroke times. 2D streamlines are computed in the fixed inertial frame. The 

position of the wing’s pitch axis at mid-stroke is indicated by the black bar. Distances 

have been nondimensionalized by wing radius,  , and the wingtip is towards the right of 

each panel. Note the vortex jet that forms between the root and the tip vortices.  
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5.1.2.3 Wake Structure 

5.1.2.3.1 Mid-stroke root and tip vortex evolution 

Figure 5.9 demonstrates that the trailed root and tip vortices, because of their size, 

strength and close proximity to the stroke plane over the course of a full stroke, can have 

significant effects on the nearfield flow and thus on the force time histories. To study the 

wake system, a case using similar parameters as the previous results, but with a more 

finely resolved mesh below the stroke plane, was run through the sixth full stroke. The 

difference in mean forces and force peak values between the two cases is less than 1%, 

with the finer wake mesh case showing slightly larger forces, presumably due to less 

numerical dissipation of the trailed wake system. These results are used for the 

visualizations in the rest of this section on wake structure.  

Figure 5.10 shows isosurfaces of the second invariant of the velocity gradient tensor, 

Q, at mid-upstroke, t/T = 25%. Coherent vortex identification using isosurfaces of Q 

attempts to isolate the vorticity caused by flowfield rotation (the desired vortices) from 

vorticity caused by shear. Figure 5.11 shows the root and tip vortices every 1/8
th

 of a 

stroke over the course of the fourth/fifth strokes in the same spanwise plane as Figure 5.9, 

y = 0, using contours of vorticity normal to the plane. The figure progression begins at 

mid-upstroke (t/T = 25%) when the viewing plane is parallel to the pitching axis of the 

wing. At this position, the vortex sheet that rolls up to form the root and tip vortices is 

visible at the stroke plane, still attached to the wing. Finally, Figure 5.12 plots the mid-

stroke wake trajectory of the root and tip vortices, calculated by finding the peak Q 

values in the vortex regions.  
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Noting that the wake has achieved reasonable periodicity by the sixth stroke, we can 

use Figure 5.12 to see that at mid-upstroke, the root and tip vortices from the previous 

downstroke, visible in the center of Figure 5.11a have convected approximately 0.73R 

and 0.62R below the stroke plane, respectively. As discussed in the previous section, the 

fluid jet created by this vortex pair induces some additional downwash on the wing. As 

the wing passes into the page past the viewing plane (Figure 5.11b, t/T = 37.5%) the 

trailing edge vortex sheet begins to roll up to form the root vortex. As seen in the 

quasisteady cases, at this low Reynolds number in constant rotation, a concentration of 

positive (outboard) spanwise velocity is developed just downstream of the trailing edge 

(e.g. Figure 4.9). The strong radial flow, (at its peak, approximately 49% of the tip 

velocity) provides a mechanism for the rapid convection of the root vortex towards the tip 

in the time period just after the wing passes through the plane. 

 

Figure 5.10: Top and stroke-plane views of Q-criterion isosurfaces at mid-upstroke.  
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Ultimately, a result is the root vortex situated at       at only       below the 

stroke plane at           (Figure 5.12). Although at this point in the stroke the wing 

has translated 50
o
 past the mid-stroke plane, the positioning of this vortex, which is most 

likely also governed in part by the wing root geometry, plays a key role in the amount of 

downwash created by the vortex jet, as well as the amount of any upwash created in the 

wing root region of the field due to the inboard portion of the root vortex. The tip vortex, 

stronger in magnitude than the root vortex, begins a slight inboard contraction 

immediately after its formation, but maintains a relatively vertical trajectory for a 

majority of its evolution. By         (Figure 5.12c), the inboard vortex sheet still has 

not completed its roll up, as noted by the root vortex’s vertical elongation. However, by 

         , as the wing is approaching the shed vortex pair on the downstroke, both 

vortices have assumed a coherent and fairly circular shape. At mid-downstroke (Figure 

5.11e), the vortex positions are essentially the same as their mid-upstroke counterparts in 

Figure 5.11a, and the remainder of the stroke (Figure 5.11e – h) exhibits this symmetry as 

well. 
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 (a) t/T =25% (b) t/T = 37.5% (c) t/T = 50% (d) t/T = 62.5% 

 

 

 (e) t/T = 75% (f) t/T = 87.5% (g) t/T = 100% (h) t/T = 112.5% 

Figure 5.11: Spanwise mid-stroke plane with contours of vorticity normal to the plane at 

various stroke times. The position of the wing’s pitch axis at mid-stroke is indicated by 

the black bar. The z-coordinate has been nondimensionalized by wing radius, R, and the 

wingtip is towards the right of each panel. 
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5.1.2.3.2 Vortical structures at stroke reversal 

Figure 5.13 shows isosurfaces of Q for the supination stroke reversal between the 

fourth and fifth strokes. As seen in previous sections, the dominant structures during the 

mid-stroke constant velocity rotation are the root, tip and leading edge vortices. These 

structures are visible in Figure 5.13a, with the addition of a second weaker tip vortex 

structure originating closer to the trailing edge than the primary tip vortex. Poelma, 

Dickson, and Dickinson [87] experimentally observed a similar vortex for steady rotation 

at Re = 256, however the strength of their second vortex was on the same order of 

magnitude as the primary tip vortex. The cause for this difference may be related to the 

Reynolds number or differences in wingtip geometry.  It is interesting to note that 

Poelma, Dickson and Dickinson reported that the result of the counter-rotating tip vortex 

pair was a strong spanwise flow of 50 – 75% of the tip velocity. In the present case, at the 

60% span location the spanwise flow is 49% of the tip velocity, however this flow does 

not seem to be associated with a vortex jet between tip vortex structures. 

As the wing flip that started at         continues, by         the trailing 

edge vortex generated by the flip begins to form. The rapid acceleration of the trailing 

edge, with a prescribed peak pitching velocity at        , also causes a growth of the 

secondary tip vortex and a contraction of the still attached root vortex towards the 

wingtip (Figure 5.13b – c). The difference in the origination point of the root vortex as it 

begins to detach is especially clear when comparing the top views of Figures 5.1a and 

5.1c. Between         and         , promoted by the growth of the new 

upstroke LEV, the downstroke LEV separates by peeling off of the leading edge from tip 

to root (Figure 5.13d, top view). 
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Figure 5.12: Mid-stroke root and tip vortex positions over a single stroke. 
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(a) t/T = 80% (downstroke) 

 

(b) t/T = 87% (downstroke) 

 

(c) t/T = 95% (downstroke) 

Figure 5.13: Oblique (left) and top (right) views of vortical structures present during the 

stroke reversal at the end of the stroke 4 downstroke. Isosurfaces of Q.  
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(d) t/T = 100% (supination) 

 

(e) t/T = 105% (upstroke) 

 

(f) t/T = 110% (upstroke) 

  

Figure 5.13 (continued) 
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The strongest structures remaining in the wake at supination are the separated root 

and tip vortices, and a u-shaped open vortex ring consisting of portions of the secondary 

tip vortex, the separated LEV, and the separated trailing edge vortex formed during the 

flip (Figure 5.13d). As the wing begins the upstroke, the leading edge collides with this 

shed vortex ring causing a slight dissipation and outboard convection of the portions of 

the shed vortex ring associated with the wingtip (Figure 5.13e). Some weaker inboard 

portions of the shed vortex ring rapidly dissipate, most likely as a result of their 

interaction with the new attached vortex ring of opposite rotational sense. Interestingly 

however, the inboard section of the shed downstroke LEV gets pushed down along the 

lower surface of the wing and merges with the trailed root vortex, which itself is being 

impacted by the trailing edge and pulled upwards along the lower surface of the wing. 

The resulting formation is a vertically oriented vortex that sits at the lower surface of the 

wing, just inboard of mid-span, whose rotation is roughly in the positive z-direction 

(Figure 5.13e – f, oblique views). There is also a corresponding, but stronger, counter-

rotating vertical vortex that sits just outboard of mid-span, although its origin does not 

seem to be rooted in the collision with the vortex ring.  Instead, this outboard vortex 

appears to form as the returning trailing edge of the wing grazes the upper portion of the 

shed tip vortex. Because there is certainly a correlation between the size and position of 

the tip vortex and the wingtip shape, we would expect that the characteristics or even the 

existence of this outboard vertical vortex is determined in large part by the outboard 

planform of the wing.   

Although the influence of these vertical vortices on the forces will require further 

study, a number of factors support the idea that their presence is not insignificant. 
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Between t/T = 105% and t/T = 110%, the vortex pair strengthens, presumably pulling 

energy from the shed root and tip vortices of the downstroke. By t/T = 110%, their 

strength is comparable to the attached developing LEV, and over their duration, the 

counter-rotation induces a fluid jet oriented in the direction of travel. This vortex pair 

persists well into the upstroke, and it is not until t/T = 124% (nearly mid-upstroke) that 

both vortices appear to fully recede into the wake, as the shed tip and root vortices from 

the previous half stroke become more distanced from the stroke plane (e.g. Figure 5.10).  

Remaining at the point of supination are a variety of vortex rings, fairly similar to 

those observed by Dong et al. [43]  in their computational study of a pitching and 

plunging elliptical wing at Re = 200. The upper section of the u-shaped shed vortex ring, 

visible in Figure 5.13e, wraps downward to join with the starting vortex formed when the 

wing accelerated after supination. The resulting closed vortex ring is visible in the upper 

portion of Figure 5.13f (oblique view). Inboard, a smaller vortex ring forms as the shed 

downstroke root vortex becomes entrained into the upstroke starting vortex. The resulting 

vortex ring is visible towards the left side of the top view of Figure 5.13f. The combined 

influence of these rings on the starting vortex was visible in the spanwise vorticity 

isosurfaces of Figure 5.6a. 

5.1.2.3.3 Induced inflow through the stroke plane 

Another way to quantify the influence of the wake on the force production is to look 

at the velocity that it induces normal to the stroke plane. This induced velocity,   , is a 

parameter frequently used in rotorcraft analysis where it is normalized by rotor tip speed 

to give the induced inflow ratio          . For a rotorcraft, actuator disk momentum 

theory, combined with small pitch angle assumptions and high L/D values, allows some 
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useful relations to be derived relating   to efficiency and airloads, particularly at the 

hover condition. However, because the unsteady flapping cases involve unsteady wing 

motion, high angles of attack, predominately separated flow, irregular wing planforms 

and a large influence of viscosity on the forces, it is not as convenient to derive these 

relations. Nevertheless, a map of the time-averaged inflow distribution normal to the 

stroke plane, as given in Figure 5.14, gives some insight into which portions of the stroke 

are most affected by the induced flow from previous strokes. Inflow velocity is 

normalized by average tip velocity. Figure 5.14 also plots the inflow at mid-stroke as a 

function of radial position. Because of the immersed boundary method, it should be noted 

that in the stroke plane itself (   ), points inside of the immersed wing are included in 

the averaging, and thus the net effect is to artificially attenuate the averaged inflow. This 

effect should be minimal, however.  

At mid-stroke in the stroke plane itself, Figure 5.14b shows a roughly linear increase 

in inflow magnitude up to a peak of 0.26 at r/R=69% . Effective angle of attack can be 

approximated as 

 
                 

  

     
  (5.6)  

Therefore, at the         station at mid-stroke          , the wing is 

effectively operating at approximately           . While the induced inflow reduces 

linearly towards zero at the root, the local velocity       also reduces linearly with  , 

thus the significant induced angle of attack change is nearly constant for the inboard 69% 

of the wing, before sharply decreasing outboard. Furthermore, this induced angle of 

attack change persists for the entirety of the ‘steady’ rotation phase of the stroke.  
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Below the stroke plane, as the counter-rotating root and tip vortices shed into the 

wake, they form a concentrated velocity jet between them that peaks at        only 

0.42 radii below the stroke plane. This is the same vortex pair seen in Figure 5.11, and 

the radially outward convection discussed previously is seen in Figure 5.14 as the mid-

stroke peak in axial flow moving to         by 1.67 radii (or    ) below the stroke 

plane.  

The highest inflow velocities are initially at mid-stroke, however moving axially 

below the stroke plane, the highest inflow velocities shift towards the stroke endpoints. 

The cause for this can be most clearly seen in the stroke plane view of Figure 5.10.  Note 

that the primary root and tip vortex pair convect more rapidly downwards than the 

vortices closer to stroke reversal points. This is the result of the reduction in wing 

rotational velocity surrounding the endpoints, and since the primary driver of the inflow 

is this rotational motion, the stroke reversal vortical structures convect away from the 

stroke plane more slowly.  
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 (a) z =0.20R (b) z = 0.0R, stroke plane 

  

 (c) z = -0.25R (d) z = -0.42R 

Figure 5.14: Contours of time-averaged inflow ratio over a combined up/downstroke at 

planes parallel to the stroke plane. Circles on contour plots indicate root and tip path 

radii. Below each contour plot is the spanwise inflow profile at mid-stroke (   ).  
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(e) z = -0.83R (f) z = -1.25R 

 

(g) z = -1.67R 

Figure 5.14 (continued) 
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5.1.2.4 Power 

Figure 5.15 plots the aerodynamic power required for the baseline flapping case 

during the fourth stroke, decomposed into viscous and pressure components. The mean 

power for a full stroke is 0.11W. With the mean lift for this case at 0.47N, the effective 

mean power loading for this case is             or             . It should be 

stressed that this is based purely on aerodynamic loads, and a physical system moving a 

finite mass, mechanical or biological, would incur inertial power costs, in addition to the 

aerodynamic ones. Experimental literature suggests a range of ratios between the inertial 

and aerodynamic forces for insect wings and MAVs [5], [12]. Inertial forces have been 

reported as being nearly an order of magnitude greater than aerodynamic forces for 

          insects, to being nearly the same magnitude for           flapping 

mechanisms. Therefore we can assume that the inertial force contribution would likely be 

of some significance, and would reduce this effective power loading.  

The power time history shows that the viscous profile power required remains 

relatively small in comparison with the pressure losses throughout the entire stroke. Even 

the viscous power peaks surrounding stroke reversal do not grow beyond their mid-stroke 

“quasisteady” values. Total power required itself closely resembles the drag curve, as 

expected, and the mean power for the full stroke is 0.11 W.  

As the wing pitches down and accelerates in the rotational direction at the start of the 

upstroke at t/T=0%, there is a minor peak in power required. The induced velocities in 

the stroke plane from the shed wake vortices discussed previously are also a contributing 

factor. So while the “wake-capture” effect provides a means to generate lift, it comes at 

the cost of an increase in aerodynamic power required at stroke reversal. This local peak 
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is followed by the steady rotation constant pitch angle portion of the stroke where power 

remains essentially constant and near its mean value. As the wing begins to pitch up 

towards a pitch angle of    , the power required sharply increases to a peak of 0.26W, 

which is 2.5x the mean value. Power then immediately reduces as the wing rotationally 

decelerates and begins to pitch past     for the start of the downstroke at t/T=50%. 

Briefly just before stroke reversal, power is extracted from the flow as the wing’s rotation 

has nearly stopped and the induced in-plane flow creates the upstream low pressure 

region discussed earlier and seen in Figure 5.6g. As the wing begins the downstroke, the 

power increases as the starting vortex is formed, and the power requirement proceeds as 

with the upstroke.  

 

Figure 5.15: Power time history of the baseline flapping case decomposed into pressure 

(normal) and viscous (tangential) components. 
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5.2 Modified Pitch Angle Cases 

At this point we have built a detailed description of the baseline flapping stroke, its 

wake, and the resulting forces. However, it is difficult to draw conclusions about the 

mechanisms underlying the baseline flowfield and its resulting forces without comparison 

to other kinematics. It has already been shown how well the quasisteady simulation 

predicts the mid-stroke lift, drag and power, as well as how reasonably close the 

quasisteady value is for the stroke averaged force and power quantities. Therefore, in 

order to further explore this relationship and determine what departures there are (if any) 

from the other kinematics, the mid-stroke flapping angle is chosen as the free parameter 

of interest. 

 

Figure 5.16: Stroke diagrams for the baseline and modified advanced-flip flapping 

cases.  

The geometric, kinematic, and computational parameters of the modified flapping 

stroke remain the same as described by Equations (5.1) – (5.5) and in Figure 5.3, with the 

exception that the mid-stroke angle is modified to be                  (Figure 5.16). 

The flip at stroke reversal still takes place in advance of the supination and pronation 
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points, in the same amount of time as for the baseline case, and the mean tip velocity and 

Reynolds number remain the same.  

5.2.1 Forces 

Figure 5.17 plots the lift and drag force time histories over one stroke for the    , 

   , and baseline     flapping cases. As a general expected trend, the lift and drag tend 

to decrease with mid-stroke pitch angle. However, if the forces are parameterized by their 

peak value, the mean value over a single stroke, and the mean value over the constant 

velocity rotational portion of an up/down stroke, as in Figures 5.18 and 5.19, it is seen 

that the force peaks actually increase with decreasing mid-stroke pitch angle. This is 

primarily attributed to the increased pitching acceleration required to pitch the wing 

through the greater total pitching angle with decreasing mid-stroke angle. While peak 

rotational velocity is the same for all cases, peak pitching rate for the     and     cases 

are           and          , respectively (maximum reduced frequency metrics, as 

described in Section 4.2 remain well within incompressible limits), which represents a 

56% and a 33% increase over the baseline case.  
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Figure 5.17: Lift and drag time histories for    ,    , and     mid-stroke flapping cases.  
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Compared with the quasisteady results, the mean lift of the flapping cases is 

consistently about 10% lower (Figure 5.18). While the mean lift for the steady rotation 

portion of the stroke is close in value with the quasisteady result at    , for the     and 

    cases, the mean lift gets progressively lower than the quasisteady predictions. 

Differences in forces may be attributed primarily to differences in the downwash for the 

unsteady cases. More specifically, the progressively increasing departure from 

quasisteady results with lower mid-stroke pitch angles suggests an increased influence of 

downwash with reducing pitch angle (see section 5.2.2).  This is in contrast to the drag, 

where the steady rotation portion of the drag is predicted quite well by the quasisteady 

simulations for all simulated mid-stroke pitch angles; drag is not as affected by the 

differences in the downwash for the flapping cases. The mean drag over the entire stroke 

is consistently higher than the quasisteady value (Figure 5.19), and the reduction in slope 

of the mean drag curve compared with the quasisteady curve shows a slightly reduced 

sensitivity to mid-stroke pitch angle. This is what we would expect, noting that in the 

quasisteady case, drag was most sensitive to pitch angle near    , and less so as we 

moved towards       For both the lift and drag plots, the large effect of wake capture is 

readily apparent by noting the gaps between the peak and the mean computed forces in 

Figure 5.18 and Figure 5.19.  

It is interesting to note that while the drag time histories for all cases appear to have 

qualitatively similar trends in peaks and steady values, the lift time histories for both the 

    and     cases are different from each other, and also different from the     degree 

case surrounding stroke reversal. For the     case, at         lift drops to essentially 

zero as the wing pitches through          . The similar lift minima for the     and 
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    cases drops below zero to -0.09N and -0.08N, respectively, before beginning the lift 

recovery associated with wake capture. For the     degree case, the lift then 

monotonically increases to a peak of 0.61N. However for the lower pitch angle cases, just 

before the stroke reversal, this wake capture increase in lift stalls out, and both the     

and     cases begin to lose lift. At supination, the     case’s lift falls to -0.03N before it 

slowly recovers to towards the mid-stroke mean value. The     case builds small local 

lift peaks but does not climb significantly above the mid-stroke mean value. 

This collapse of the lift-peak post-stroke reversal highlights a difference in interaction 

with the shed wake for the lower angle of attack cases. In Figures 5.20 and 5.21, two key 

points of departure in lift behavior are shown along with the instantaneous Q-criterion 

isosurfaces for each case. Figure 5.20 plots these isosurfaces at the pre-supination 

inflection point of the lift curve, just before     and     cases begin to lose lift. Figure 

5.21 shows these isosurfaces just after supination, where lift is near its peak value for the 

      case, but is at a local minima for the     and     cases.  

Immediately apparent at both points in the stroke is the reduction in strength of the 

root and tip vortices with the reduction in mid-stroke pitch angle. As previously noted, 

the root vortex on the     case is the same order of magnitude in terms of strength as the 

tip vortex, and it persists generating a velocity jet between them. As the root vortex 

weakens in relative strength, this velocity jet also decreases in magnitude, thus some of 

the additional inflow is reduced for the lower pitch angle cases.  
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Figure 5.18: Stroke-averaged lift for the unsteady cases compared with quasisteady lift, 

average lift over the steady portions of the stroke, and instantaneous positive peak values.  

 

Figure 5.19: Stroke-averaged drag for the unsteady cases compared with quasisteady 

drag, average drag over the steady portions of the stroke, and instantaneous positive peak 

values. 
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The root vortex for the     case dissipates quickly in the wake, and the root vortex for 

the     case is not strong enough to remain distinct from the rotational vortex formed by 

the trailing edge, thus the two structures coalesce to form a closed vortex ring that 

remains in close proximity to the wing (Figure 5.20). The reduction in inflow from the 

reduction in tip/root vortex strength is combined with a reduction in the amount of fluid 

that is ‘pulled’ along with the wing in the previous stroke generating an in-plane induced 

flow. The result, from the perspective of the lift, is an attenuation of the peak magnitude. 

The isosurfaces of Q-criterion in Figure 5.21 shows that post separation, there is more 

interaction with the (stronger) wake for the     case than the     and     cases. Note 

that the vortices generated near the tip during the wing flip are increasingly separated 

from the wing with decreasing pitch angle. More significantly though, note the relative 

pitch angles of the three cases at this point in the stroke. Rotational velocity is near its 

lowest values, therefore the flow over the wing is primarily attributed to the combination 

of in-plane induced flow and the induced flow normal to the stroke plane. As the wing’s 

pitch angle is reduced at this point in the flow, the component of the resultant induced 

flow vector creates a reduced induced angle of attack. This balance between stroke 

reversal pitch angle and induced flow vector dictates the magnitude of the life peak, post-

supination.   
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Figure 5.20: Detail of lift time history surrounding supination. Isosurfaces of Q-criterion 

for each case are plotted at t/T=47.5% to highlight factors affecting the loss in lift for the 

    and     cases.  
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Figure 5.21: Detail of lift time history surrounding supination. Isosurfaces of Q-criterion 

for each case are plotted at t/T=53% to highlight factors affecting the differential 

behavior of the post-supination lift curve for the    ,    ,  and     cases.  
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5.2.2 Induced Inflow 

The time-averaged inflow in the stroke plane for the     and     cases is mapped in 

Figure 5.22. Both distributions over the stroke plane are similar in shape, with the     

case having a slightly lower inflow magnitude. This is in line with the previous 

observations that the average forces over the stroke qualitatively follow the trend of the 

quasisteady simulations, where the instantaneous peaks show significant variation with 

changes in mid-stroke pitch angle. The inflow distribution for the baseline case in Figure 

5.14b is also qualitatively similar, with a slightly greater inflow magnitude than the     

case. The reduction in magnitude between the two modified pitch angle cases is further 

highlighted by the spanwise inflow distributions, plotted in below the contour plots in 

Figure 5.22. From the root through mid-span the inflow for the lower pitch angle case is 

lower, with a peak of        for the     case, and        for the     case. Outboard 

of the peak values, inflow distributions collapse to exhibit a common linear decrease 

towards the wingtip. 

In spite of the increased inflow ratio across the span for the     case compared with 

that of the     case, as discussed previously, the mean lift plots of Figure 5.18 imply an 

increased effect of the downwash as mid-stroke pitch angle is reduced. This implication 

is borne out by noting that the wake trajectory in Figure 5.23 shows the reduced axial 

convection speed of the root and tip vortices as mid-stroke pitch angle is decreased. The 

plots are terminated as the vortex cores became to diffuse to reliably identify. This wake 

age became smaller with reduced pitch angle because those vortices that remained closer 

to the stroke plane were broken up as the wing passed over them for successive strokes. 

This is especially apparent in the     case where the vortex core that was shed at 
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        was critically disrupted almost exactly as the wing passed back over it at 

        when the vortex was only about 0.5 radii (or 1.2   chords) below the stroke 

plane.  

It is also interesting to note that as mid-stroke pitch angle is reduced, the wake tends 

to convect further inboard. This is likely attributed to the decreasing relative strength of 

the tip vortex compared with that of the root vortex, as the stronger vortex would tend to 

pull the weaker vortex towards it.  

 

(a)     (b)     

Figure 5.22: Contours of time-averaged inflow ratio over a combined up/downstroke at 

planes parallel to the stroke plane for the (a)  2   and (b)     cases. Circles on contour 

plots indicate root and tip path radii. Plotted below each contour plot is the spanwise 

inflow profile at mid-stroke (   ). 
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Figure 5.23: Mid-stroke root and tip vortex trajectories for modified pitch angle cases. 

Distances nondimensionalized by span length. 
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power expenditures at stroke reversal for the unsteady cases. If we consider the peak 
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result of the increased pitching velocity required for the pitching flip with reducing mid-

stroke pitch angle. If we however consider separately the mean power required for only 

the steady portions of the flapping stroke, in Figure 5.25 we see that it actually decreases 

with reducing mid-stroke pitch angle at a very similar rate as the quasisteady case, and in 

fact, the actual magnitudes of the power requirements are quite similar to the quasisteady 

values. It should be noted, however, that there is a significant increased mean 

aerodynamic power requirement over the quasisteady cases, and this effect is greater with 

decreasing mid-stroke pitch angle. Again, this is primarily attributed to the large peak 

power required at stroke reversal, as evidenced by the similar values to the quasisteady 

power requirements when the stroke reversal portion is taken out of the average. 

 

 

Figure 5.24: Power time histories for    ,    , and     mid-stroke flapping cases. 
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increased mean power requirement, as well as a slightly reduced mean lift compared to 

the quasisteady cases. Therefore, although the mean power for the     case is the highest 

of all of the unsteady cases, the effective aerodynamic power loading is maximized for 

this case. Furthermore, the magnitude of the power being extracted from the flow during 

the last 5% of the up or down strokes is maximized for the     case. 

 

Figure 5.25: Stroke-averaged power for the unsteady cases compared with quasisteady 

power, average power over the steady portions of the stroke, and instantaneous positive 

peak values. 
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Figure 5.26: Mean lift-to-power ratio for the flapping and quasisteady cases. 

5.3 High Reynolds Number Flapping  

The final case uses the baseline kinematics (Figure 5.3, mid-stroke pitch angle of 

     , but increases the Reynolds number one order of magnitude from        to 

       . Figure 5.27 provides an illustrative example of some of the computational 

difficulties that are faced at higher Reynolds numbers. Large laminar root and tip vortices 

dominated the flow for most of the stroke at       . However for        , the 

root and tip vortices are more compact, and stronger in vorticity magnitude meaning that 

a finer mesh is required to adequately resolve them. Furthermore, the primary LEV, root 

and tip vortices are accompanied by smaller coherent vortex structures that arise as a 

result of shear layer instabilities that were previously damped by the increased viscosity. 

Finally, care must also be taken to damp non-physical oscillations arising from the 

sharper velocity gradients (recall Figure 2.3, for example). 
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Figure 5.27: Isosurfaces of Q-criterion for the         flapping case at     

                (left), and                  (right), colored by vorticity 

magnitude. 

Although the         quasisteady cases were able to be run successfully with 

reasonable mesh sizes without the additional turbulence modeling, the kinematics of the 

flapping case dictate that the mesh be refined over a significantly larger area. Therefore, 

the LES solver is employed to properly account for the turbulence that develops, without 

needing to drive up the mesh count by refining to an impractically small mesh spacing 

over the entire stroke area. The present mesh contains        nodes, with a uniform 

spacing of 0.75mm in the stroke region. This spacing is roughly based on the observed 

largest eddies in the        ,       quasisteady case. The simulations are run in a 

fully explicit mode (AB2 on all terms) at a constant CFL of 0.3 with 2
nd

 order Van Leer 

limited upwinding. Forces and flow visualizations are taken at the sixth full stroke, as 

periodicity took slightly longer to achieve than for the        cases.   
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Figure 5.28: Computed lift and drag for the         flapping case decomposed into 

viscous and pressure components.   
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5.3.1 Forces 

The lift and drag time histories plotted in Figure 5.28 show some level of stroke-to-

stroke variation, particularly just after the stroke reversal peak. Nevertheless, they are 

qualitatively similar to the lift and drag of the baseline case. The same peaks occurring at 

a frequency of 1/per stroke exist in both cases, however the higher    case also contains 

forces at higher frequencies, notably around stroke reversal. Much of this can be 

attributed to interaction with the increased unsteadiness in the shed wake. However, it 

must be noted that the “kink” in the lift and drag curves exactly at stroke reversal 

(           ) are purely computational artifacts of the immersed boundary 

implementation. At the time step when the wing reverses direction, the IB nodes 

imposing the velocity boundary condition flip sign, causing a brief perturbation of the 

flowfield. The finer mesh combined with the reduced physical viscosity produces a 

stronger perturbation with less damping than was observed in the lower    cases, where 

it was negligible. However, the higher frequency force peaks just after stroke reversal, as 

the wing enters the wake capture phase and interacts with the mid-scale vortices shed 

during the flip wake capture, are fairly mesh independent and appear to be physical in 

origin. 

As expected, the shear forces for both lift and drag are essentially negligible at this 

Reynolds number, and therefore the mean values of lift and drag for the full stroke of 

0.47N and 0.68N, respectively, are attributed almost entirely to inviscid forces. The mean 

values are nearly identical to the baseline mean values of 0.47N and 0.63N for lift and 

drag. Recalling Figure 4.7 for the quasisteady comparisons at similar Reynolds numbers, 

we see that the forces at      , especially the drag, are relatively insensitive to 
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changes in    in this range. However, it is still somewhat surprising that the mean lift is 

not slightly higher for the         case. This reduction in expected magnitude is 

likely due to the more complex wake capture phase where we see lift vacillating near the 

peak value, where for the lower    case the lift increased smoothly to the peak.  

The mean lift and drag during the steady rotational portion of the stroke are 0.52N 

and 0.53N, respectively. These values are again similar to the        case where the  

mean lift and drag values were 0.52N and 0.59N, respectively. Both cases compare 

favorably with the quasisteady values, with lift again unexpectedly showing no 

significant increase in mean value at the higher Reynolds number.  

 

Figure 5.29: Contours of time-averaged inflow ratio over two combined up/downstrokes 

at planes parallel to the stroke plane for the         case. Circles on contour plot 

indicates root and tip path radius. Plotted below the contour plot is the spanwise inflow 

profile at mid-stroke (   ). 
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5.3.2 Induced Inflow 

The stroke plane inflow shown in Figure 5.29 is computed by averaging over 2 full 

strokes, as opposed to the single stroke average of Figure 5.14 and Figure 5.22. 

Nevertheless, the asymmetry that was somewhat apparent in the lift and drag time 

histories is more apparent here. Strong vortices exist just outside of the stroke radius at 

pronation (top of Figure 5.29) that create an upwash. While these features are present at 

supination as well (bottom of Figure 5.29), they are significantly weaker. The spanwise 

inflow at mid-stroke peaks at       , the same as the baseline case. However, 

compared to the baseline case, the spanwise inflow distribution is less linear inboard of 

the peak. This difference is due, in part, to the additional averaging performed on the 

        case, however the relative decrease in size and increase in strength for the 

higher Reynolds number also has a significant effect on the shape of the distribution. 

Figure 5.30 compares the root and tip vortex trajectories for the         and 

       cases. As with the force time histories, the average path is roughly the same 

for the two cases, however the higher    vortices tend to have a less monotonically linear 

trajectory, as their paths are affects by interactions by smaller vortices. Also note that 

even with the increased motion of the vortices along the wake trajectory, the axial 

convection speeds are quite similar even with the order of magnitude increase in the 

Reynolds number. 
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Figure 5.30: Mid-stroke root and tip vortex trajectories for         and baseline 

       cases. Distances nondimensionalized by span length. 

5.3.3 Mid-stroke Flow Visualization 

One of the dominant characteristics of the flowfield for the quasisteady case at 

        and       (Figure 4.12) was a strong spanwise flow that peaked at 1.61 

times the mean tip velocity at         span. This spanwise velocity was also 

coincident with the center of the compact LEV. Figure 5.31 plots isosurfaces of spanwise 

velocity at values of 0.25 and 0.50. Notice that while there is a large region of axial flow 

moving radially outwards, most of it is fairly low in magnitude. The extent of the region 

of higher spanwise flow is fairly limited, and only a small portion towards the outboard 

tip of the wing appears strongly associated with the LEV. The peak spanwise velocity is 
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0.68 and it occurs at 66% span – significantly different than the quasisteady results, even 

considering the    difference in pitch angles. This is partially the result of the flapping 

wing not having sufficient time to build the axial flow as in the quasisteady case. While 

the value at mid-stroke, t/T=25%, is low, the peak spanwise flow velocity increases to 

1.10 times the mean tip velocity at the r/R=58% station by t/T=41% when the rotational 

deceleration begins. 

 

Figure 5.31: Isosurfaces of spanwise velocity normalized by mean tip velocity at values 

0.25 (blue) and 0.5 (red).         

A second factor affecting the axial flow magnitude is the increased magnitude of the 

inflow for the flapping case, resulting from the influence of the shed wake. Figure 5.32 

shows the vorticity magnitude contours at a number of spanwise stations at mid-stroke, 

and Figure 5.33 plots the spanwise vorticity contours along with streamlines computed in 

a fixed inertial frame at the r/R=65% span location. Note that the streamlines are 

significantly more deflected for this case than for the comparable quasisteady case. From 

a simple momentum perspective, since the mean power is nearly identical for the flapping 
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and quasisteady cases, it appears that the additional momentum cost of accelerating the 

flow through the stroke plane is traded for that which would have been required to 

accelerate the axial flow. Also note that the LEV structure at the r/R=65% station in 

Figure 5.33 does not exhibit the complex secondary and tertiary vortex patterns that were 

observed in the quasisteady case. 

 

Figure 5.32: Mid-stroke vorticity magnitude contours (red counter-clockwise) at     

          in increments of          
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Figure 5.33: Contours of spanwise vorticity with streamlines computed in the inertial 

frame at        .        . 

5.3.4 Power 

The aerodynamic power required over a full stroke for the         flapping case 

is plotted in Figure 5.34. Based on the quasisteady power comparison across    (Figure 

4.14) which showed a small (approximately 10%) increase in aerodynamic power 

required for the high    case, the aerodynamic power for the         flapping case is 

quite similar to the power for the baseline        flapping case. As with the lift and 

drag, the primary difference is the increased high frequency content, particularly after 

stroke reversal. The asymmetry seen in the lift and drag results is also seen here. 

Nevertheless, the mean for the entire stroke is 0.11 W, which is the same as was seen for 

the        case, and is similar to the quasisteady results of approximately 0.12 W. 

Since we saw that mean lift was also nearly identical to the lower    case, this means 

that the effective power loading for the strokes are the same (4.12 N/W). This similarity 

is, again, consistent with the quasisteady results.  
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Figure 5.34: Power time history of the         flapping case compared against the 

       baseline case (4
th

 stroke). 

5.4 Summary  

The flow visualizations of the idealized stroke of a Drosophila wing presented in this 

chapter allowed for a detailed description of some of the salient features of the flowfield, 

by studying both 2D cross- sectional pressure, velocity and vorticity fields, as well as the 

3D vortex field. These visualizations were discussed in terms of their relevance to various 

events in the force and power time histories, as well their correlation to the quasisteady 

results of the previous chapter.  

 During the steady rotation portion of the stroke the LEV continues to grow for 

at least half of the upstroke. Although the low pressure region increases in size 

with this growth, the pressure lift decreases. This loss in lift is apparently 
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balanced by a steady increase in shear lift, resulting in a nearly constant total 

lift during steady rotation.  

 Peak lift for this baseline case (0.61N) occurs as the wing pitches up 

approaching stroke reversal. The peak drag (1.24N) is nearly coincident with 

the onset of rotational deceleration, at a stroke-time just before the flip 

midpoint. 

 Over the last 5% of each half stroke, although the wing is at a geometric angle 

of attack greater than 90
o
, the induced flow from the stroke causes an induced 

flow that puts the wing at an effective lift producing angle of attack. The 

result is a rapid increased in lift coupled with a negative drag over this period. 

 After stroke reversal, the viscous force contribution reaches a peak, apparently 

because of a lack of recirculatory flow at the wing surface. Computationally 

this adds to the potential for increased error magnitude in computed forces. 

During stroke reversal, the imposed body acceleration, which enters into the 

surface boundary condition on pressure, is near its maximum value. 

The comparison of the baseline case with experiment showed reasonable mean force 

values, especially for drag, however both forces were overpredicted. A number of 

potential causes for the larger discrepancies in peak force values were presented: 

 It is speculated that the steady rotation differences in lift are the result of the 

wing operating at a different effective angle of attack than the experiment, due 

to a smaller induced stroke plane inflow. 

 A source of induced flow is identified in the close proximity of the shed root 

and tip vortices. Because the influence of the vortex jet that forms between 
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them may be significant, the position of these vortices, determined in part by 

the wing geometry, is critical to accurate predictions. Thus it is speculated that 

the different wing root geometry of the computations may have played a part 

in the inaccurate predictions. This also helps to explain the underprediction of 

the pre-stroke-reversal lift peaks as well and the relative speed of the lift 

recovery after stall. 

 All computational lift and drag peaks occurred in advance of the experimental 

peaks. Because the peaks occur near points of maximum body acceleration 

(either pitching or rotational) this discrepancy may simply have to do with the 

imprecise matching of kinematics.     

For the baseline case the wake structure was examined to quantify its development 

and potential influences on the force: 

 At the mid-stroke plane, the developing root vortex is pushed rapidly outboard 

early in its formation. The result is a root vortex that is located near mid 

chord, close to the tip vortex, but still near the stroke plane, giving the vortex 

pair increased influence over subsequent strokes.    

 Just after stroke reversal, a pair of counter-rotating vortices become positioned 

just upstream of the wing on the lower surface. The factors affecting their 

development as well as the vortex pair’s influence on the present case’s forces 

is an interesting topic for future study. 

 The shed wake at the stroke reversal point resembles that left by the pitching 

and plunging elliptical wing studied by Dong and colleagues. The primary 

qualitative differences in the shed vortices at supination appears to be the 
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asymmetry of the vortex ring pair resulting from the disparity in strengths of 

the root and tip vortex. 

 In spite of the increased inflow compared to the quasisteady cases, the forces 

remain nearly the same between the two cases 

In order to study the sensitivity of the baseline results to changes in kinematics, as 

well as to compare them to the quasisteady results of the previous chapter, the baseline 

kinematics were modified by changing the mid-stroke pitch angle to     and     

 As Expected, mean lift and drag for the stroke decrease with mid-stroke pitch 

angle, however peak lift and drag values increase. 

 Mean lift for the ‘steady’ portion of the stroke was found to decrease at the 

same rate as the quasisteady case for decreases in mid-stroke pitch angle, 

however there was an offset in magnitude. Mean drag for the steady portion of 

the flapping stroke and the quasisteady cases agreed quite well with each 

other.  

 It was found that the primary factor dictating the lift-peak post-stroke reversal 

is the balance between stroke reversal pitch angle and induced flow vector 

resulting from the combination of in-plane induced flow and inflow through 

the stroke plane. 

 The effect of the differences in inflow between the flapping cases and 

quasisteady cases was shown to be greater as the mid-stroke pitch angle was 

reduced. This manifested as a reduction in lift as compared to the quasisteady 

results as mid-stroke pitch angle decreased.   
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 While the distribution of the mean inflow through the stroke plane did not 

vary greatly with reduced mid-stroke pitch angle, the wake trajectory showed 

significant differences. Reductions in pitch angle produced a shed wake that 

descended more slowly away from the stroke plane, dissipated at earlier wake 

ages, and tended to move further inboard   

 The     mid-stroke pitch angle case required the highest mean aerodynamic 

power of the three cases. Therefore, in cases where it is advantageous to 

minimize mean power expenditures (such as hover), the     case is the leaset 

efficient. However, in other measures it compared more favorably against the 

    and     cases:  

- Effective aerodynamic power loading is maximized for the     case. 

This is in contrast to the quasisteady cases which showed the peak lift-

to-power at     

- Instantaneous peak power requirements are minimized 

- Instantaneous power extraction is maximized 

Finally, the baseline kinematics were re-run at a Reynolds number of         

with the LES solver.  

 The lift, drag and power curves for the         case were similar in trend 

and magnitude to the        flapping case. The primary difference was the 

increased higher frequency content, particularly surrounding stroke reversal, 

and a slight asymmetry in inflow and forces between strokes.   

 Unlike the lower    case, the flow topology of the         case appeared 

somewhat different than its quasisteady counterpart. There was a marked 
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reduction in peak axial flow, and a weaker singular LEV was seen in place of 

the stronger multi-part LEV of the quasisteady case. These differences were 

attributed, in part, to the significant difference in induced flow between the 

two cases.  

 The inflow distribution at the stroke plane showed some asymmetries in the 

strength and location of upwash near stroke reversal. These differences are 

tied to the asymmetries in forces at stroke reversal.  

 The wake evolution showed a similar axial convection speed as the lower    

baseline case, with roughly the same path aside from additional motion caused 

by interactions with smaller regions of vorticity.  
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Chapter 6 – 

Closure 

Developing a deeper understanding of the flowfield and the aerodynamic forces 

associated with flapping-wing flight is critical to furthering our ability to build efficient 

flapping MAVs. This final chapter presents a summary of the work performed during the 

development of the immersed boundary solver, and the application of that solver to help 

further that understanding.  

6.1 Summary 

The primary objectives of this work have been to develop a robust computational 

platform well-suited to studying low Reynolds number incompressible flapping-wing 

flight, and to apply the tool to an idealized flapping-wing stroke in order to build a more 

detailed understanding of the aerodynamic mechanisms responsible for the production of 

unsteady forces during the stroke.  

The Cartesian structured immersed boundary incompressible Navier-Stokes solver 

computational platform that was developed, IBINS, was verified and validated as a 

baseline NS solver using an exact solution to the incompressible governing equations, 

and a comparison with published computational data. Immersed boundaries were then 

implemented, and the solver was validated using simple flows representative of the 

Reynolds number range of interest for the flow applications,              . IBINS 
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was shown to exhibit the expected second order convergence away from boundaries, and 

with the application of the immersed boundaries, the vortex development at the low and 

high ends of the applicable Reynolds number range was shown to match experimental 

data. The code was extended to include a dynamic Smagorinsky model for LES 

calculations of moderate Reynolds number. The SGS model was validated by 

demonstrating the expected turbulent energy decay in an isotropic flowfield for meshes 

with spatial resolutions lower than that which would be required for a direct Navier-

Stokes solution. 

The solver was then applied to simulate a rigid model Drosophila wing in steady 

rotation at a fixed pitch angle. The pitch angle was incrementally varied from        

across two Reynolds numbers,        and        . These simulations were 

compared against published experimental data of a similar kinematically scaled wing and 

showed good agreement. Because experimental data was available with which to 

compare, these rotating quasisteady cases provided further validation of the code for 

moving boundaries and the force computation methodologies. Visualizations of the near-

body flowfield were made specifically addressing the spanwise flow, the leading edge 

vortex topology, and the velocity distribution at the wing’s suction-side surface.  

Next, kinematics from the Robofly mechanical flapping apparatus were simulated at a 

Reynolds number of 147. These kinematics represented an idealized Drosophila hovering 

wingstroke, consisting of a periodic rotational flapping with flips about an axis parallel to 

the span at the end of each half stroke. At the mid-point of each half-stroke, the wing was 

at a pitch angle of    , and for a middle portion of this stroke, the wing was moving with 
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a constant rotational velocity and a constant pitch. Each half stroke was symmetric, and 

only one wing was simulated with no mirror or symmetry plane to simulate the effects of 

a second wing (similar to the experiment). The computed forces were compared with 

experimentally measured values, and discrepancies were discussed. A detailed 

description of the stroke in terms of force, power, wake and kinematic events was 

provided, with support from detailed flow visualizations of the near and far wake 

generated during the stroke. 

The baseline Robofly kinematics were then modified by reducing the mid-stroke 

pitch angle to     and    . The corresponding changes in forces and power were noted, 

and a detailed description of the key differences in the unsteady forces was provided, 

again supported with flowfield visualization. Additionally, comparison of the expected 

trends with changes in pitch angle based on the quasisteady cases were made.  

Finally, the Reynolds number of the baseline kinematics was changed from    

    to        . This served as a test case for the LES solver portion of IBINS. Flow 

visualization was provided, and a discussion of the sensitivity of the force and power 

time histories to the Reynolds number change was made.  

6.2 Observations and Insights  

A number of relevant observations, conclusions and contributions resulting from the 

development of IBINS and its applications to flapping wings were arrived at in this work. 



187 

 

 

6.2.1 IBINS Development 

IBINS went through a variety of incarnations and implementations before arriving at 

the form discussed in this work. While immersed boundaries are, in principle, well-suited 

to the present flapping-wing applications, it was found that without certain modifications 

to the baseline methodologies, and efficient implementations of algorithms, the IB 

technique could yield computationally expensive, unstable, oscillatory, or overly 

dissipative results. Key insights gained from the development of IBINS relating to 

immersed boundaries and flapping wing research are as follows: 

1. For a steady case with non-moving boundaries, the boundary identification 

process is a pre-processing step and its efficiency is not an issue. However, for 

the moving boundary cases where this identification needs to be performed at 

each time step, the choice of identification methodology is key to an efficient 

code. Depending on the mesh density and the immersed boundary surface 

definition, the simple vector cross product identification technique first 

employed could take 10% of the iteration time. The barycentric coordinate 

methodologies described in Chapter 3 reduced the per-iteration time to less 

than 1% for all cases in this work. It required a triangulated surface however, 

therefore if the surface mesh is defined using other regular polygons, it would 

be recommended to re-tessellate the polygons into triangles, even per 

iteration, in order to maintain efficiency. 

2. By decoupling the pressure and the velocity fields, the collocated variable 

arrangement allows isolated pressure or velocity oscillations to propagate 
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throughout the flowfield. This potential can be mitigated without immersed 

boundaries or with a strongly coupled pressure-velocity formulation by adding 

in a higher order dissipation term. However, for the fractional step method, in 

which the pressure and velocity fields are loosely coupled by a Poisson 

equation, this dissipation becomes slightly less effective. When immersed 

boundaries are added in addition to the fractional step methodology, the 

inherent oscillations for a moving boundary caused by mesh nodes moving in 

and out of the solution domain, forces the required dissipation to be so large 

as to damp the physical vortices of interest. Therefore, with immersed 

boundaries and a fractional step method, the staggered mesh arrangement 

should be employed to incorporate coupling of the pressure and velocity 

fields.  

3. The velocity gradient field is very sensitive to the Reynolds number. As    is 

increased, velocity gradients rapidly rise with it. This results in increased 

gradients at the immersed surface and therefore increased potential for 

problems with oscillatory flowfields. It was found that implementing some 

form of upwinding helped reduce non-physical mesh-scale oscillations and 

speed convergence of the velocity equations. QUICK upwinding provided the 

most effective elimination of these oscillations, but at the greatest 

computational cost. The less complex second order slope-limited upwind 

schemes provided a reasonable balance of computational efficiency and 

solution accuracy. For the lower Reynolds number quasisteady and steady 
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cases, the simple second order central discretization proved sufficient and 

non-oscillatory.  

6.2.2 Force Production on Flapping Wings 

6.2.2.1 Quasisteady Impulsively Started Rotation 

1. Forces reached a steady value for all pitch angles and both Reynolds numbers. 

This indicates that no unsteady shedding of the LEV was observed through the 

full course of rotation. Thus the range of “Low” Reynolds numbers at which the 

steady LEV phenomenon exists included        . 

2. Forces did not reach steady values until     of rotation after the impulsive start. 

This means that for the idealized flapping stroke, where there is     of steady, 

fixed-pitch rotation, there is less justification to assume that the quasisteady 

values of lift and drag will hold. We also see in the flapping case that the LEV 

continues to grow throughout the steady portion of the stroke.  

3. For the        cases, the peak spanwise flow was found to not coincide with 

the center of the LEV. Instead, unexpectedly the peak region of spanwise flow 

formed just aft of the wing. This aft spanwise flow was observed in the        

flapping cases as well, and provided a mechanism for the outboard convection of 

the root vortex towards the tip.  

4. For the         cases, the peak spanwise flow was found to coincide with the 

center of the LEV, as expected. Both the        and         cases showed 

stable vortices after 7   of rotational travel distance, however. Therefore, LEV 
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stabilization is not necessarily related to a convection of momentum out of the 

vortex through its core. 

5. The wing surface velocity maps for the quasisteady cases provided a more 

detailed description of the LEV topology than is seen elsewhere in literature. In 

spite of the far more complex flowfield that is observed for the         cases, 

with secondary and tertiary vortices formed at the leading edge, the computed 

forces, particularly drag, again are not particularly sensitive to Reynolds number 

in this range.  

6. The power required for the quasisteady wing increased linearly above a pitch 

angle of    , indicating that it can be simply estimated from the bluff body area. 

More importantly, aerodynamic power required was shown to not significantly 

vary with Reynolds number between the        and         cases. 

7. Reynolds number was shown to have a strong effect on the magnitude of L/D. 

          for the         cases was more than twice that of the         

case. 

8. The effect of Reynolds number on lift/power was less significant, specifically for 

pitch angles below    , which would seem to indicate that the change in 

Reynolds number produces an outboards movement of the effective spanwise 

location of the drag. However, flow visualization at the wing’s upper surface 

appeared to indicate that the peak spanwise location moves inboard at the higher 

Reynolds number.  
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6.2.2.2 Idealized Flapping Stroke 

1. Stroke-averaged lift and drag are shown to not be well predicted by the 

quasisteady values (although the trends with changes in kinematics are 

qualitatively similar). However, when the pronation and supination portions of the 

strokes are removed from the averaging, the lift, drag, and power are predicted 

quite well by the quasisteady simulations. In a flapping wing insect such as 

Drosophila with a flapping frequency of 200 Hz, the sensory feedback and body 

dynamics are not fast enough to respond to these high frequency force peaks, 

therefore a quasisteady simulation, particularly in hover, provides a reasonable 

estimate for dynamics and control applications.   

2. The post-stroke-reversal lift recovery was shown to be critically dependent on a 

balance between the pitch angle at stroke reversal and the induced inflow angle. 

The induced inflow angle itself is dependent on the relative magnitudes of the in-

plane induced flow and the induced flow perpendicular to the stroke plane. For 

this idealized stroke, these dependencies are fixed by mid-stroke angle. However 

by modifying the kinematics to increase the effective angle of attack just after 

stroke reversal, the loss of lift at stroke reversal observed in the lower mid-stroke 

pitch angle cases might be avoided.  

3. It was shown that inflow below the stroke plane rapidly contracts to form a strong 

vortex jet at 49% the velocity of the mean tip velocity only 0.42 radii below the 

stroke plane. The jet is the result of the interaction of the root and tip vortices. 

This interaction is strong because of the relative size of the vortices at the lower 
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  , the vortices’ relative proximity when formed as a result of the low aspect 

ratio wing, and the trailed spanwise peak flow seen in the quasisteady cases which 

forces the root vortex outboard towards the tip vortex.  

4. While one would traditionally expect a contraction of the trailed tip vortex 

towards the root in a higher Reynolds number rotating wing, after a brief period 

of contraction for the tip vortex, the opposite is shown to happen for the low 

Reynolds number case. 

5. Interaction with the shed wake is shown to lead to the production of a vortex pair 

oriented perpendicular to the stroke plane and upstream of the wing just after 

stroke reversal. Their size and strength appears correlated with the lift peak just 

after stroke reversal, however this was only observed on the baseline     flapping 

case. 

6. For the low Reynolds number flapping cases, the pressure lift decreases during 

the mid portion of the stroke, however there is a balance of shear and pressure 

forces that results in a near constant total lift for all pitch angles simulated. Then it 

is surprising that for the higher Reynolds number case we still see a near constant 

lift over the mid-portion of the stroke, since the shear forces are not significant in 

the total force.  

7. Mean lift for the ‘steady’ portion of the flapping stroke was found to decrease at 

the same rate as the quasisteady case for decreases in mid-stroke pitch angle, 

however there was an offset in magnitude. Mean drag for the ‘steady’ portion of 

the flapping stroke and the quasisteady cases agreed quite well with each other. 
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8. By comparing the forces generated during the steady portion of the stroke to those 

of the corresponding quasisteady cases, it was shown that as mid-stroke pitch 

angle is reduced, the influence of the induced flow through the stroke plane on 

force production is increased. The wake for the reduced mid-stroke pitch angles 

remains closer to the stroke plane as mid-stroke pitch angle decreases. 

9. The     mid-stroke pitch angle case required the highest mean aerodynamic 

power of the three cases. Therefore, in cases where it is advantageous to minimize 

mean power expenditures (such as hover), the 45  case is the leaset efficient. 

However, in other measures it compared more favorably against the     and     

cases:  

- Effective aerodynamic power loading is maximized for the     case. 

This is in contrast to the quasisteady cases which showed the peak lift-

to-power at     

- Instantaneous peak power requirements are minimized 

- Instantaneous power extraction is maximized 

10. The mean values for lift and drag change less than 10% by increasing the 

Reynolds number one order of magnitude. This shows that forces are somewhat 

independent of    at this range, although flow structures are significantly 

different. This was observed for the flapping as well as the quasisteady cases and 

is similar as to what was observed by Sane [23] “[Although] viscosity is 

necessary for vorticity generation, its contribution to net forces is very small 

beyond Re=100 and the forces may be predominantly due to the dynamic pressure 
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gradients across the wing.” However, the present study would extend that 

conclusion to say that viscosity’s contribution to net forces is small below 

       . 

6.3 Future Directions 

Some of the most interesting conclusions reached have to do with the sensitivity of 

the forces to changes in Reynolds number. As a direct continuation of this work, it would 

be useful to simulate the modified mid-stroke pitch angle kinematics at         to see 

if the conclusions about the stroke reversal lift peaks hold. Furthermore, running a 

parametric sweep of the Reynolds number would facilitate building a more complete 

understanding of this and other Reynolds number dependencies.  

 

Figure 6.1: IBINS simulation showing iso-surfaces of Q-criterion surrounding flapping 

wings in steady axial descent. 
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While hovering flight was the goal of the present simulations, moving to steady flight 

simulations with similar kinematics could further expand on the above conclusions. It 

would particularly be interesting to characterize the various aerodynamic modes present 

when moving from hover to axial descent (Figure 6.1), where wake interaction is 

increased. It is at present unclear what would happen to the required power and the 

aerodynamic efficiency in these modes. Furthermore, as of this writing, the code has 

already been used in a non-hover mode to compute stability derivatives for the 

configuration shown in Figures 6.1 and 6.2 to be used in improving the predictions of 

quasisteady aerodynamic models [92]. 

While the capability was not utilized in this work, IBINS can compute the flowfields 

around multiple bodies moving separately (Figure 6.2), opening up the possibility to 

study how the forces and flowfield are affected by asymmetries in the flapping stroke, 

and the presence of a vehicle or insect body.  

The incompressible solver developed for this work, while effective, is only a starting 

platform. With continued development, IBINS can become a far more versatile solver 

and provide insight into a variety of low Reynolds number fluid dynamics problems. 

Some potential next steps that would improve efficiency, stability, and the range of 

problems for which the code is efficient include: 

 Application of cut-cell immersed boundary methodologies specifically geared 

towards reducing spurious pressure oscillations (e.g. the mass conservative 

method of Seo and Mittal [93]) 
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 Implementation of a parallel multigrid Poisson solver to decrease iteration 

time, and improve convergence.  

 Modification of the dynamic Smagorinsky model to smooth and limit the 

Smagorinsky constant based on a weighted average over particle paths [67]. 

This would eliminate the current ad-hoc Smagorinsky constant limiting and 

would improve stability for moderate    flows.  

 Implementation of an inertial frame version of the code, and/or application to 

curvilinear coordinates to allow for better positioning of nodes. This could 

dramatically reduce mesh node count for a number of problems. 

 Implementation of fluid/structural coupling allowing externally provided 

forces to dictate or modify the prescribed motions of the immersed bodies. 

This modification would open up the possibility of studying, for example, 

gusts on flapping wings, trimmed flight, and flexible membrane non-

prescribed simulations. 
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Figure 6.2: Top and isometric views of the multi-body capability of IBINS, showing a 

model insect body and two flapping wings.  
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