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This dissertation consists of three chapters on empirical macro-finance and the asso-

ciated econometric methods.

In the first chapter, I develop a semiparametric single-index method for estimating

multivariate jump-diffusion processes to model federal funds futures. I find that high-

frequency changes in federal funds futures around FOMC announcements, which are the

predominant measure of monetary policy shocks in the asset pricing and macroeconomic

literature, are strongly forecastable by the estimated models, suggesting that they are not

truly exogeneous. In contrast, the unexpected changes in federal funds futures on FOMC

announcement days constructed from the semiparametric method are unforecastable by

construction, and are strongly correlated with, but not the same as such high-frequency

changes around FOMC announcements, suggesting that they are a better measure of mon-

etary shocks.

In the second chapter, I study the predictability of bond yields. I find that federal

funds futures, a proxy of monetary shocks, exhibit strong forecasting power on bond yields

conditional on information contained in the cross section of the yield curve. Such addi-

tional return-forecasting information is effectively summarized by a single factor, and is



not captured by unspanned macro factors. By focusing on the return-forecastability of

trading strategies that take opposite positions at two different tenors by equal amount and

unwind these positions one-day later, I bypass common econometric issues arising from

the overlapping nature of bond excess returns.

In the third chapter, I study macro factors in the risk premia of G10 currencies. Mo-

tivated by the finding from a structural model with minimalistic assumptions that the

predictability of currency risk premium arises from the differences in the market prices of

risks between the home and foreign countries, I tackle this problem by identifying return-

forecasting macro factors for the G10 currencies. Based on dynamic factor analysis on a

large panel of macro variables, it is found that common macro factors possess strong fore-

casting power on the risk premia of G10 currencies, especially at longer maturities. The

single most important factor loads heavily on activities in the US housing market and bond

yields, which exhibits uniform and nonlinear forecasting power across all currencies and at

a variety of maturities. The strong in-sample forecasting power preserves out-of-sample.
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Chapter 1: Monetary Shocks and Market Expectations: A Semiparametric Iden-

tification Approach

I Introduction

Identifying monetary shocks, defined as unexpected news about future monetary

policy ex ante conditional on currently available information, is a fundamental measure-

ment issue underlying all empirical research on monetary policy, as well as on the effects

of macroeconomic news. Specifically, a class of monetary shocks resulting from the Fed-

eral Reserve’s monetary policy actions, which is referred to as monetary policy shocks, has

been drawing most of the attention in economic research. Pioneered by Cook and Hahn

(1989), Kuttner (2001), Cochrane and Piazzesi (2002), and Gürkaynak, Sack, and Swanson

(2005), among others, the predominant approach to identifying monetary policy shocks

in asset pricing and monetary economics is to measure them as the changes in interest

rate future prices or Treasury yields around a narrow window bracketing each Federal

Open Market Committee (FOMC) announcement, where the window length is commonly

taken as 30-minute long. Their reasoning is that since the prices of interest rate futures

and bonds are forward-looking and are very sensitive to monetary policy (e.g. Angrist,

Jordà, and Kuersteiner, 2018), the arrivals of any information about future monetary pol-

icy through FOMC announcements should be quickly priced in these securities. By taking

the window length narrow enough, it is hoped that any confounding information, such as
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the FOMC’s responses to the financial markets before the announcements are made, and

any variations in the future prices or Treasury yields caused by factors unrelated to FOMC

announcements can be eliminated. It is argued that this identification strategy is superior

to the more conventional approach that measures monetary policy shocks as the structural

shocks to the policy rate in a structural VAR (e.g. Christiano, Eichenbaum, and Evans,

1999) in that it is model-free, and is able to capture news about unconventional monetary

policy unrelated to the short-term policy rate.

There is, however, no established empirical evidence for the exogeneity of these

high-frequency changes around FOMC announcements. While Nakamura and Steinsson

(2018) find some evidence that such high-frequency changes in a 30-minute window brack-

eting each FOMC announcement are less contaminated by noise than in the one-day win-

dow, it does not eliminate the possibility of simultaneity. There may be new information

even in such a narrow window that moves both the Federal Reserve’s decision and the

Treasury or futures market so that such high-frequency changes in bond yields or interest

rate futures are not merely causal effects of unexpected monetary news. If, in addition,

there is some predictability in this information then there should be a significant correla-

tion between high-frequency movements and lagged predictors. I examine this possibility

and propose an alternative measure of monetary shocks, which nests monetary policy

shocks, based on an alternative identification strategy.

I model the federal funds future (FFF) price at each horizon as a jump-diffusion

process governed by five state variables capturing the cross section of the yield curve,

yield curve volatility and real-time real business conditions, and take the unexpected daily

changes of FFF conditional on the values of the state variables on the previous days as a

new measure of monetary shocks at that specific horizon. I achieve this by extending the
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econometrics literature on kernel-based estimation of continuous-time processes to multi-

variate jump-diffusion cases. Pioneered by Bandi and Phillips (2003), Bandi and Nguyen

(2003), and Bandi and Moloche (2018), this approach uses local constant kernel to fit each

infinitesimal moment of the continuous-time process under consideration as a function of

some state variables. Estimates of the parameters governing the process are in turn de-

rived as functions of these moments. While the literature has developed the asymptotic

theories for scalar diffusion, scalar jump-diffusion and multivariate diffusion processes,

there is no existing theory for multivariate jump-diffusion processes specific to this ap-

proch. Given that I take five state variables to capture the dynamics of FFFs, such a theory

is needed. Moreover, given that my sample spans only a short period of time with about

3,500 data points at daily frequency, naively conducting multivariate kernel regressions of

the infinitesimal moments would run into the curse of dimensionality. I thus adapt the

single-index specification of Ichimura (1993) to this problem by assuming that each in-

finitesimal moment is a function of some linear combination of the state variables, which

reduces the dimension from five to one, and derive the corresponding asymptotic theory.

I look at the forecastability of the changes in the first six FFFs in a 30-minute window

bracketing each FOMC announcement. For each FOMC announcement day, I calculate the

drift and the expected value of the jump of each FFF price conditional on the state variables

on the day before. If these high-frequency changes were truly shocks, they should not be

predictable by the sum of these two quantities. It turns out, however, they are strongly

forecastable in both a statistical and an economic sense with adjusted R2s as high as 13.16%.

This is strong evidence that such high-frequency changes are not exogeneous and thus are

invalid measure of monetary policy shocks. Moreover, neither the estimated single index

nor the state variables exhibit significant forecasting power in the linear regression setting,
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suggesting that the forecastable components in these high-frequency changes are related

to the state variables in some highly nonlinear fashion.

By contrast, the alternative measures proposed in this research are unpredictable,

since by construction they have conditional expectations equal to zero. They are highly

correlated with the conventional high-frequency measures of monetary policy shocks on

FOMC days but also with significant amount of differences in their information contents

in that the signal-to-noise ratios of the predictive regressions can be as high as 0.16.

The remainder of this chapter is organized as follows. Section 2 lays out the semi-

parametric single-index method for estimating multivariate jump-diffusion processes, and

discusses how it is applied to identifying monetary shocks from FFFs. The proofs of the

asymptotic properties, however, are left to Appendix A. Section 3 describes the data, and

presents the main results along with an array of robustness checks on their sensitivity to

the choice of sample period and bandwidth selection. Finally, Section 4 concludes and

discusses directions for future research.

II Semiparametric Identification of Monetary Shocks

The n-th FFF contract matures at the end of the last trading day n months ahead. The

underlying fundamental is the averaged daily effective federal funds rate over the month

in which the contract matures. In particular, the fundamental of the first FFF contract

is the averaged daily effective federal funds rate within the current month. The first 36

FFF contracts are available for trading. Denote the n-th FFF price on day t as f (n)t , the

effective federal funds rate as rt, the first (last) trading day of the n-th month as T(n)
0t (T(n)

1t ),

the number of trading days as m(n)
t ≡ T(n)

1t − T(n)
0t + 1, and the underlying risk-neutral

expectation as E∗t [·]. Consider a portfolio of a sequence of consecutive of FFFs, f (n1)
t , ...,
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f (nK)
t with nk = nk−1 + 1 and 2 ≤ k ≤ K, whose portfolio weight on the nk-th contract

is proportional to the number of trading days in the nk-th month. Standard no-arbitrage

arguments imply that the price of this portfolio, denoted as f (n1 , nK)
t , is

f (n1 , nK)
t = ∑K

k=1 m(nk)
t f (nk)

t

∑K
k=1 m(nk)

t

= E∗t


∑

T(
nK)

1t

s=T(
n1)

0t

rs

T(nK)
1t − T(n1)

0t + 1

 (1.1)

which is nothing but the market’s risk-adjusted expectation of the average effective federal

funds rate from the n1-th month to the nK-th month.

Denote some generic FFF contract or portfolio as ft = f (Xt). I model its time-series

dynamics as a function of some underlying state variables. It is widely documented in the

literature that the cross-sectional variations of the US Treasury yield curve are almost en-

tirely spanned by its first three principal components, which are referred to as the level (Lt),

slope (St) and curvature (Ct) factors (e.g. Litterman and Scheinkman, 1991). It is also doc-

umented that the volatilities of bond yields are driven by some hidden variable indepden-

dent of the level, slope and curvature factors. While this variable does not span the cross

section of the yield curve, it is priced in fixed income options (e.g. Collin-Dufresne and

Goldsten, 2002). I take TYVIX index (TYVIXt), the 30-day implied volatility of the 10-year

Treasury future contract published daily by CBOE, as a proxy of such unobserved stochas-

tic volatility factor. Furthermore, to capture other aspects of real business conditions not

incorporated in the current yield curve and its derivatives, but that may affect the Federal

Reserve’s monetary policy decisions, I include the Aruoba-Diebold-Scotti (2009) business

condition index (ADSt) as an additional state variable. I denote the vector of these five

state variables collectively as Xt ≡ (Lt St Ct TYVIXt ADSt)
′.
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I assume that f (Xt) follows some jump-diffusion process denoted as

d log f (Xt) = µ (Xt) dt + σ (Xt) dWt + Jt (Xt) dNt (1.2)

where Wt is a Brownian motion, Nt is a Poisson process with jump intensity λ (Xt), and

the jump size Jt (Xt) is independent of dNt conditional on the state variables Xt.1 The

unexpected components of d f (Xt) and f (Xt) are thus

dZ̄t ≡ d f (Xt)− Et [d f (Xt)] =
(

eJt(Xt) − 1
)

dN̄t + σ (Xt) dWt (1.3)

Z̄t ≡
∫ t

−∞
dZ̄s =

∫ t

−∞

(
eJs(Xs) − 1

)
dN̄s +

∫ t

−∞
σ (Xs) dWs (1.4)

respectively, where dN̄t ≡ dNt − λ (Xt) ds is the compensated Poisson process. Assump-

tion 1 in Appendix A implies that the process Z̄t is null recurrent, and Z̄t < ∞ a.s. for ∀t.

Hence, in the following I shall abuse the notation slightly by denoting Z̄t =
∫ t

1

(
eJs(Xs) − 1

)
dN̄s +∫ t

1 σ (Xt) dWt instead. dZ̄t is the new measure of monetary surprises I shall refer to, which

is unforecastable by construction since E [dZ̄t | Xt] = 0. Correspondingly Z̄t can be inter-

preted as the cumulative information inflow.

Suppose the data are observed at evenly-spaced discrete times 1 = t1 ≤ . . . ≤ tN = T,

where N is the number of observations, and denote the length of the time interval between

two consecutive observations as ∆ ≡ (T − 1) /N. Under some regularity conditions as

outlined in Appendix A, it can be shown that the infinitesimal conditional moments of

1The functional form (2) ensures that the instantaneous jump in d f (Xt), which is
(
eJt − 1

)
dNt by Ito’s

lemma, cannot be smaller than −1 even if Jt has unbounded support. I.e. a negative instantaneous jump can
at most drag f (Xt+dt) to zero. This is an important constraint to impose since f (Xt) cannot be negative.
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f (Xt) satisfy (Gikhman and Skorohod, 1972, pp. 68-69; Johannes, 2004)

plim
∆↓0

E

(
[log ft+∆ (Xt)− log ft (Xt)]

1

∆
|Xt

)
= µ (Xt) + λ (Xt) Et [Jt (Xt)] (1.5)

plim
∆↓0

E

(
[log ft+∆ (Xt)− log ft (Xt)]

2

∆
|Xt

)
= σ2 (Xt) + λ (Xt) Et

[
Jt (Xt)

2
]

(1.6)

plim
∆↓0

E

(
[log ft+∆ (Xt)− log ft (Xt)]

k

∆
|Xt

)
= λ (Xt) Et

[
Jt (Xt)

k
]

(1.7)

for all k ≥ 3. If some consistent estimates of the infinitesimal conditional moments can be

obtained, and the conditional distribution of Jt (Xt) can be pinned down by finitely many

of such moments, then it is possible to identify all model parameters of the stochastic

process (1.2) from equations (1.5)-(1.7).

To this end, I assume that Jt (Xt) is independent conditional on Xt and follows a

normal distribution denoted as2

Jt (Xt) ∼ N
(

µJ (Xt) , σJ (Xt)
2
)

(1.8)

2It is possible to make this model more general by assuming that Jt is in the exponential family, which
nests a wide range of commonly seen distributions such as the normal, beta, Poisson, gamma, Bernoulli, and
Wishart distributions, for which the asymptotic theory in Appendix A can be easily extended. However, as
shall be seen in Section 3, the normal assumption already captures the dynamics of FFFs very well.
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The model parameters can then be identified by the first, second, third, fourth and sixth

monents, namely

plim
∆↓0

E

(
[log ft+∆ − log ft]

1

∆
| Xt

)
= µt + λtµJt (1.9)

plim
∆↓0

E

(
[log ft+∆ − log ft]

2

∆
| Xt

)
= σ2

t + λt
[
µ2

Jt + σ2
Jt
]

(1.10)

plim
∆↓0

E

(
[log ft+∆ − log ft]

3

∆
| Xt

)
= λt

[
µ3

Jt + 3µJtσ
2
Jt
]

(1.11)

plim
∆↓0

E

(
[log ft+∆ − log ft]

4

∆
| Xt

)
= λt

[
µ4

Jt + 6µ2
Jtσ

2
Jt + 3σ4

Jt

]
(1.12)

plim
∆↓0

E

(
[log ft+∆ − log ft]

5

∆
| Xt

)
= λt

[
µ5

Jt + 10µ3
Jtσ

2
Jt + 15µJtσ

4
Jt

]
(1.13)

plim
∆↓0

E

(
[log ft+∆ − log ft]

6

∆
| Xt

)
= λt

[
µ6

Jt + 15µ4
Jtσ

2
Jt + 45µ2

Jtσ
4
Jt + 15σ6

Jt

]
(1.14)

where for notational simplicity I write µt ≡ µ (Xt), etc. For scalar diffusion and jump-

diffusion processes with a single state variable, Bandi and Phillips (2003), and Bandi and

Nguyen (2003), respectively, propose estimating the infinitesimal conditional moments us-

ing local constant kernels. Bandi and Moloche (2018) subsequently extend this approach

to the estimation of multivariate diffusion processes. There is, however, no existing the-

ory on the asymptotic properties of this method for multivariate jump-diffusion processes.

Moreover, due to limited data availability in that TYVIX became available only since 2003,

even if such asymptotic theory existed, applying the multivariate local contant kernel to

this problem would nonetheless run into the curse of dimensionality. For these reasons, I

propose a new approach in which the infinitesimal conditional moments are determined

by the state variables via some index structure à la Ichimura (1993).
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Specifically, I assume the following single index structure for the j-th infinitesimal

moments for each j = 1, 2, . . .

plim
∆↓0

Et

[
[log ft+∆ (Xt)− log ft (Xt)]

j

∆
| Xt

]

= plim
∆↓0

Et

[
[log ft+∆ (Xt)− log ft (Xt)]

j

∆
| Xtβ0

]
(1.15)

≡gj (Xtβ0) (1.16)

where the index parameter β0 is a column vector and is the same for all the six moments.

Following Ichimura (1993), I estimate the infinitesimal conditional moment gj (Xtβ) using

the local constant kernel estimator

ĝj (Xtβ) =
1
T ∑T

t′=1 I
(
Xt′β ∈ Ajn

)
K
(

Xt′ β−Xtβ
hj

)
(log ft′+∆ − log ft′)

j

∆
T ∑T

t′=1 I
(
Xt′β ∈ Ajn

)
K
(

Xt′ β−Xtβ
hj

) (1.17)

Ajn = {Xsβ | | (Xs − Xs′) β |≤ 2hn, ∃Xs′ ∈ A} (1.18)

where K (·) is taken as the Gaussian kernel, hj = hj (N, T) is the bandwidth parameter

that depends on both the time span of the sample T and the number of observations N,

(A, A) ⊂
(
R5, B5) is the state space of the stochastic process Xt, and I (·) denotes the

indicator function. The term I
(
Xt′β ∈ Ajn

)
is merely used to trim out observations whose

values inside the summation sign in the denominator of equation (1.17) are too small, and

has no effect on the asymptotic properties of the estimator. Following Ichimura (1993),

to avoid numerical problems in which ∑T
t′=1 I

(
Xt′β ∈ Ajn

)
K
(

Xt′ β−Xtβ
hj

)
' 0, in such sit-

uations I set ĝj (Xtβ) equal to either maxs (log fs+∆ − log fs)
j or mins (log fs+∆ − log fs)

j,

depending on which one (log ft+∆ − log ft)
j is closer to. The true value of the index pa-
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rameter is estimated by nonlinear least square. I.e.

β̂ ≡ arg min
β

6

∑
j=1

1
T

T

∑
t=1

[
(log ft+∆ − log ft)

j − ĝj (Xtβ)
]2

(1.19)

The infinitesimal conditional moment estimator ĝj (Xtβ) has many local minima as it is

a superposition of single peaked kernel functions. I thus first solve the problem using

simulated annealing with 10,000 iterations, which is a global optimization method that

converges to the global minimum given arbitrary initial value but at a very slow rate (e.g.,

Brémaud, 2013, Section 7.8). I then take the solution as the initial value for some local

optimization routine to get a more accurate estimate.

It is shown in Appendix A that the model parameters µt, σ2
t , etc. can be identified

from the six moment conditions (1.9)-(1.14) as functions of the index Xtβ. Denote µ̂t, σ̂2
t , etc.

as the estimators of µt, σ2
t , etc. obtained by inverting equations (1.9)-(1.14) with the kernel

estimators of the infinitesimal conditional moments (1.17)-(1.18) on the LHS’. Note that

there are two forecastable components of d ft conditional on Xt, namely the instantaneous

drift and the expected value of the jump component. By Ito’s lemma, the sum of these

values is

Et [d ft] = ft

(
µt +

1
2

σ2
t

)
dt +

(
exp

[
µJt +

σ2
Jt

2

]
− 1

)
λtdt (1.20)

and can be estimated by

Êt [∆ ft] ≡ ft

(
µ̂t +

1
2

σ̂2
t

)
∆ +

(
exp

[
µ̂Jt +

σ̂2
Jt

2

]
− 1

)
λ̂t∆ (1.21)
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The estimator of monetary surprise (3) is then taken as

∆ ˆ̄Zt ≡ ∆ ft − Êt [∆ ft] (1.22)

= ∆ ft −
(

ft

(
µ̂t +

1
2

σ̂2
t

)
+

(
exp

[
µ̂Jt +

σ̂2
Jt

2

]
− 1

)
λ̂t

)
∆ (1.23)

In Appendix A, I derive the asymptotic theory of the index estimator β̂ and the in-

finitesimal conditional moment estimators ĝj (Xtβ). The main result is the following:

Theorem. Under Assumptions 1-5 in Appendix A, and conditions on the limiting behav-

iors of the bandwidth hj in Theorem 3 in Appendix A, β̂
p→ β0 and ĝj

(
Xt β̂

) p→ gj (Xtβ0) as

T → ∞, N → ∞ and ∆ ≡ (T − 1) /N → 0, for j = 1, . . . , 6.

Given the consistency of the index and the infinitesimal moment estimators, the model

parameters on the RHS’ of equations (1.9)-(1.14), and so the estimates of Êt [∆ ft] and ∆ ˆ̄Zt,

are solved consistently. In Appendix B, I outline a modification of the randomized proce-

dure devised by Bandi, Corradi, and Moloche (2009) to select the appropriate bandwidths

that ensure consistency. Since Êt [∆ ft] and ∆ ˆ̄Zt, and the yield curve factors, Lt, St and Ct,

are all generated regressors, which shall introduce additional uncertainty in subsequent re-

gression analyses, I conduct all statistical inferences under a bootstrap procedure detailed

in Appendix C.

III Data and Results

I use the daily Treasury yield dataset assembled by Gürkaynak, Sack, and Wright

(2007), which is available on the Federal Reserve Bank of New York website. They fit the
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yield curve using outstanding US Treasury notes and bonds that are to mature in at least

three months. The dataset includes yields with maturities ranging from 1 year to 30 years

with 1-year increment, as well as fitted parameters for the Svensson (1994) method of yield

curve interpolation. Using these parameters, I additionally calculate yields with maturities

ranging from 3 months to 3 years with 3-month increment. I estimate the level (Lt), slope

(St) and curvature (Ct) factors by principal component analysis on this extended panel of

bond yields. The daily TYVIX index is retrieved from the CBOE website, which is available

since the beginning of 2003. The data on FFF prices are retrieved from Bloomberg. Finally,

the ADS index is retrieved from the Federal Reserve Bank of Philadelphia website. I thus

estimate the semiparametric jump-diffusion models of the first six FFF prices using daily

data starting from the beginning of 2003. The entire dataset ends on May 18, 2018. The

high-frequency monetary shocks dataset, which Refet Gürkaynak graciously shared with

me, includes changes in the first six FFF prices within a 30-minute window bracketing each

FOMC announcement from February 1994 to October 2015.

Table 1.1 lists the AR(1) coefficient and the p-value of Phillips-Perron (1988) unit

root test for the first difference of each log-FFF and for each state variable. While the

first differences of log-FFFs are stationary, the state variables are highly persistent and

Phillips-Perron tests fail to reject the unit root hypotheses for the level, slope and ADS state

variables. Nonetheless, the semiparametric procedure as outlined in Section 2 does not

yield spurious correlation between the independent and dependent variables commonly

encountered in linear regression settings. Intuitively, this is because the state variables Xt

enter the kernel estimator (1.17) as a first difference, Xt′β−Xtβ, making the RHS stationary

regardless of whether Xt is cointegrated. In fact, Assumption 2 in Appendix A, the only
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assumption on Xt to ensure the consistency of the index parameter estimator β̂ and the

moment estimators ĝj (·), allows Xt to be nonstationary.

Figure 1.1 plots the daily changes ∆ ft along with the unexpected component ∆ ˆ̄Zt.

As is seen, most of the daily variations in FFFs are driven by the residuals conditional on

all information available on the previous days, suggesting that FFFs are a potentially rich

source of monetary news. It is also noted that FFFs of higher horizons are more volatile

and are governed more by the arrivals of unexpected information, which is intuitive as the

level of uncertainty increases with the underlying investment horizon. Across all the first

six horizons, FFFs are much more tranquil in the zero-lower-bound (ZLB) period, which

is expected as that period was dominated by unconvetional monetary policy influencing

market expectations of the long term well beyond the first six months. To guard against

such a potential structural break, I shall repeat the same empirical analyses in the following

using only the subsample that spans the pre-ZLB period.

To assess model fits, I regress each infinitesimal moment [log ft+∆ − log ft]
j /∆ on its

fitted values ĝjt, and report the in-sample R2 in Table 1.2. The model fits the data rea-

sonably well in that the R2s for the third to the sixth moments, which are critical to the

estimation of model parameters governing the jump components, λt, µJt and σ2
Jt, range

from 12.33% to 53.58% across all horizons except for the fifth moment at the 1-month hori-

zon. The R2s for the second moment range from 20.89% to 44.15%, and those for the first

moment range from 9.98% to 19.76%. To assess the robustness of the main results in the

following to the choice of bandwidths, I shall repeat the same empirical exercises using

bandwidths that are five times of the optimal ones chosen by the procedure in Appendix

B, as well as taking the bandwidth for each horizon as the median value of the optimal

bandwidths across all six horizons.
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III.I Main Results

As is discussed, as long as Xt includes all state variables underlying the FFF market,

the identified unexpected daily change ∆ ˆ̄Z(n)
t is unforecastable by construction. On the

other hand, the very claim made by the literature that high-frequency changes of FFFs in

a 30-minute window bracketing each FOMC announcement do not contain endogeneous

information has not been statistically justified. If these high-frequency changes are truly

exogeneous, they should not be predictable by any information available before the FOMC

announcements are made, including information contained in the state variables Xt. If not,

then the confounding information in these high-frequency changes contributes to the dis-

crepency between the information contents of the conventional high-frequency measures

of monetary policy shocks and those of the new measure ∆ ˆ̄Z(n)
t .

For each of the first six FFFs, the expected daily change Êt−1

[
∆ f (n)t−1

]
as in equa-

tion (1.21) is a natural candidate for predicting the high-frequency change around FOMC

announcement at the same horizon n on day t, ∆FOMC(n)
t . For each horizon n, I run pre-

dictive regression of ∆FOMC(n)
t on Êt−1

[
∆ f (n)t−1

]
, and report the results in Panel A of Table

1.3. The slope coefficients are all positive and are significant at the 5% level or above at

all but the 2-month and the 3-month horizons. This is strong evidence that the so-called

monetary policy shocks identified as high-frequency changes in FFFs around FOMC an-

nouncements are predictable, and thus are invalid measure of monetary policy shocks.

Moreover, the signal-to-noise ratios, defined as the variance of the fitted values of the re-

gression divided by the variance of the residuals, range from 0.06 to 0.16 across all but

the 2-month and the 3-month horizons, suggesting that while there is significant amount
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of overlap between the information contents of such high-frequency changes and the new

measure of monetary shocks (1.23), there is also vast difference between them.

For comparison, I run predictive regressions of high-frequency changes in FFFs around

FOMC announcements, ∆FOMC(n)
t , on the values of the state variables one-day before,

Xt−1. The results are summarized in Panel B of Table 1.3. In contrast to Êt−1

[
∆ f (n)t−1

]
,

which is nothing but some highly nonlinear function of Xt−1, Xt−1 itself does not exhibit

any joint significance in the linear setting as is evident from the Wald tests. I also run pre-

dictive regressions of such high-frequency changes in FFFs on the forecastable components

Êt−1

[
∆ f (n)t−1

]
conditional on the state variables Xt−1. As is seen in Panel C, Êt−1

[
∆ f (n)t−1

]
re-

main significant at the 5% level or above at all but the 2-month and the 3-month horizons.

While one explanation of these phenomena is that the forecastable component of high-

frequency changes at, say, the n-month horizon ∆FOMC(n)
t is related to the state variables

Xt−1 in some highly nonlinear way not captured by the linear combination of Xt−1 found

via ordinary least square, another potential explanation is that ∆FOMC(n)
t is indeed pro-

portional to some linear combination of Xt−1 that is better captured in finite sample by

the single index Xt−1 β̂ estimated from the problem (1.19). To rule out this second possibil-

ity, I run predictive regressions of ∆FOMC(n)
t on the estimated single index Xt−1 β̂, whose

results are summarized in Panel D. The slope coefficients are more than three orders of

magnitude smaller than those in Panel A, and are insignificant at the 10% level across all

horizons. Thus, the semiparametric model developed in this research is indeed necessary

to capture the highly nonlinear forecastable components in ∆FOMC(n)
t . Such high degree

of nonlinearity is perhaps also why the forecastability of the so called high-frequency mon-

etary policy shocks has not been discovered for such a long time in the literature.
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Finally, as a robustness check that the new measure of monetary shocks proposed in

this research is indeed unforecastable, I run predictive regression of the unexpected daily

changes in FFF as identified by the semiparametric jump-diffusion model, ∆ ˆ̄Z(n)
t , on the

set of state variables Xt for each horizon n = 1, . . . , 6. Panel E of Table 1.3 summarizes

the results for the version in which the regressions are run over both FOMC and non-

FOMC days, and Panel F summarizes the results over FOMC announcement days only.

In both samples, the F-statistics for the joint significance of the state variables are insignif-

icant at the 10% level across all horizons. While the new measure of monetary shocks,

dZ̄(n)
t ≡ d f (n) (Xt)− Et

[
d f (n) (Xt)

]
, is unpredictable by definition, the resulting estimates

may nonetheless be forecastable if the semiparametric jump-diffusion model of f (n) (Xt)

as described in Section 2 is misspecified. A special situation of such violation is that dZ̄(n)
t

is not orthogonal to the L2 space spanned by the state vector Xt. As is verified here, this is

not the case.

III.II Robustness Checks

As is seen in Figure 1.1, FFFs exhibit little variability in the ZLB period, raising the

concern that the semiparametric model may behave very differently during this period.

To ensure robustness of the results reported in Section 3.1 to such pontential structural

break, I estimate the semiparametric model and then repeat the same regression analyses

using only the pre-ZLB sample period, where the bandwidths are taken the same as the

optimal values selected for the whole sample. The results are summarized in Table 1.4.

The forecastable component of daily changes at horizon n, Êt−1

[
∆ f (n)t−1

]
, exhibits signifi-

cant forecasting power on high-frequency changes in FFF around FOMC announcements,

∆FOMC(n)
t , at the 1% level at the 2-month, 3-month, 4-month and 6-month horizons, and
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at the 5% level at the 5-month horizon. Such forecasting power is also economically sig-

nificant in that the adjusted R2s range from 11.40% to 47.55% across all but the 1-month

horizon. The high signal-to-noise ratios, which range from 0.15 to 0.94 across all but the

1-month horizon, indicate that the forecastable component in ∆FOMC(n)
t still counts for

large amount of discrepency between the information contents of ∆FOMC(n)
t and those

of ∆ ˆ̄Z(n)
t . The same pattern remains when the state variables Xt−1 are included as control

variables, and neither Xt−1 nor the estimated single index Xt−1 β̂ exhibit significant fore-

casting power at the 10% level. Finally, the new measure of monetary shocks, ∆ ˆ̄Z(n)
t ,remain

unforecastable by the state variables one period both through the entire sample period and

on FOMC announcement days only. These are all consistent with the main results in Sec-

tion 3.1.

To guard against potential overfitting of the semiparametric models, and to inves-

tigate the sensitivity of the main results to the choice of bandwidth, I repeat the same

exercises using bandwidths five times of the optimal ones as selected by the procedure

outlined in Appendix B. The results are summarized in Table 1.5. The high-frequency

changes around FOMC announcements, ∆FOMC(n)
t , remain significantly forecastable by

the expected daily change, Êt−1

[
∆ f (n)t−1

]
, at the 5% level or above across all horizons both

with and without the state variables Xt−1 being included as control variables. On the

other hand, neither the state variables Xt−1 nor the index Xt−1 β̂ exibit significant forecast-

ing power at the 5% level. Finally, the new measure of monetary shocks ∆ ˆ̄Z(n)
t remains

unforecastable by the state variables Xt−1.

Additionally, I repeat the same exercises using the median bandwidth across all hori-

zons, whose results are summarized in Table 1.6. ∆FOMC(n)
t is still strongly forecastable

by the expected daily change Êt−1

[
∆ f (n)t−1

]
at the 1% significance level for n = 1, 4, 5, 6;
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and if controlled for the state variables Xt−1, it is forecastable by Êt−1

[
∆ f (n)t−1

]
at the 5%

significance level or above for n = 1, 2, 3, 4, 5. The estimated index Xt−1 β̂ exhibits no fore-

casting power at the 5% significance level across all horizons. Finally, the state variables

still exhibit no forecasting power on the new measure of monetary shocks ∆ ˆ̄Z(n)
t both in

the entire sample and only on FOMC announcement days.

As is discussed earlier, the semiparametric model developed in this research does

not generate spurious correlation when the independent and/or the dependent variables

are nonstationary. In fact, if some of the independent variables are cointegrated, and de-

viations from such equilibrum relationship are correlated with the (stationary) dependent

variable, the conventional prescription for spurious regressions by taking first differences

of the independent variables is inappropriate as it will mistakenly wipe out this correla-

tion. To demonstrate this, I reestimate the semiparametric jump-diffusion model taking

the first differences of the state variables used previously, ∆Xt, as the new set of state vari-

ables, and then repeat the same empirical analyses of the information contents of the con-

ventional high-frequency measure of monetary shocks as well as the new measure (1.23).

The results are summarized in Table 1.7. At the 10% significance level, Êt−1

[
∆ f (n)t−1

]
no

longer possesses any forecasting power on ∆FOMC(n)
t with and without conditioning on

∆Xt across all six horizons. Finally, ∆Xt do not exhibit significant forecasting power on the

new measure of monetary shocks ∆ ˆ̄Z(n)
t at the 10% level.

IV Conclusions

I demonstrate that the predominant measure of monetary policy shocks in the aca-

demic literature for the past twenty years, which are changes in FFF prices in a narrow

window bracketing each FOMC announcement, are in fact forecastable and thus invalid.
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In contrast, the alternative measures of monetary shocks proposed in this research are

unforecastable by construction. To estimate the shocks, I extend the method of kernel-

based estimation of continuous-time processes to multivariate jump-diffusion processes

with single-index structure, and derive the asymptotic theory.

A follow-up study may reestimate the model using intraday data, which shall be able

to disentangle shocks triggered by different events on the same day. Moreover, given that

some previous research on the effects of monetary policy shocks looks at high-frequency

price changes in the Treasury market instead of in the futures market around FOMC an-

nouncements (e.g. Hanson and Stein, 2015), a follow-up study may repeat the same exer-

cises conducted in this research on high-frequency Treasury data. Given that the main

focus of this research is on the validity of the conventional high-frequency identifica-

tion strategy of monetary shocks, and that in this research I do not have access to high-

frequency data on Treasury yields, I do not investigate this question.

Given that future rates and forward rates are highly correlated, it is very likely that

the unforecastable component in forward rate covering the period, say, (T0, T1)

F(T0, T1)
t ≡ P(T0)

t /P(T1)
t (1.24)

= E∗t

[
exp

(
−
∫ T1

T0

rsds
)]

(1.25)

capture monetary surprises specific to the horizon (T0, T1). Since yield curve data are

available at a much wider range of maturities than FFFs and eurodollar futures, this can

be very useful to research on the effects of shocks indicative of monetary policy in the long

term.
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Finally, FFF prices are not really the physical expectations of future policy rates. Pi-

azzesi and Swanson (2008) illustrate that the risk premium term, i.e. the difference between

the physical expectation and FFF price, can be measured by macroeconomic and financial

variables, and that future prices corrected for such risk adjustments have stronger fore-

casting power on monetary policy rates. Subsequent research may look into how to incor-

porate such risk adjustments in the semiparametric model developed in this research.

Incorporating such risk adjustments may also shed light on the source of the fore-

castable components in high-frequency changes of FFFs around FOMC announcements.

One possibility is that such a high-frequency change is partly a change in the risk premium

and partly a change in the physical expectation of future monetary policy rates. While the

arrival of monetary news that triggers the change in expectation can be exogeneous, the

change in risk aversion may well be predictable. In fact, a recent literature on FOMC cycle

has found that large portions of the excess returns on US equities (e.g. Lucca and Morench,

2015; Cieslak, Morse and Vissing-Jorgensen, 2019) and currencies (Mueller, Tahbaz-Salehi,

and Vedolin, 2017) are earned within periods before the scheduled FOMC announcements.

Similar phenomena may also be present in the FFF market.
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Appendix A: Asymptotic Theory of Continuous-Time Single-Index Estimators

Let (Ω, F , P) be the underlying probability space endowed with some filtration

{Ft}t≥0, where P is the physical probability measure. The vector of state variables {Xt}t≥1

is a family of measurable mappings from the probability space to its state space (A, B (A)),

where A ⊆ R5 and B (A) denotes the Borel σ-algebra of A, and is adapted to {Ft}t≥0. I

label the start of time as t = 0 and the time of the first observation as t = 1.

I start by imposing the following standard condition on log f (Xtβ) defined in equa-

tion (1.2), which guarantees the existence and uniqueness of a càdlàg strong solution (e.g.

Gikhman and Skorohod, 1972, Chapter 2; Bandi and Nguyen, 2003):

Assumption 1. The process log f (Xtβ) whose time-series dynamics is given by equation

(1.2) satisfies:

1. µ (·), σ (·) and λ (·) are twice continuously differentiable, and satify the local Lips-

chitz condition. I.e. for evey compact subset S of the range D of the process, there

exists a constant C1 such that

|µ (x)− µ (z) |+|σ (x)− σ (z) |+λ (x) E [J (x)− J (z)] ≤ C1|x− z| (1.26)

for ∀x, z ∈ S. They also satisfy the growth condition that there exists a constant C2

such that

|µ (x) |+|σ (x) |+λ (x) E|J|≤ C2 (1 + |x|) , ∀x ∈ S (1.27)
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2. For any α > 2, there exists a constant C3 such that

λ (x)
∫

R
|y|αNµ, σ2 (dy) ≤ C3 {1 + |x|α} , ∀x ∈ D (1.28)

where Nµ, σ2 (·) is the distribution function of N
(
µ, σ2).

3. λ (·) ≥ 0 and σ2 (·) > 0 on D.

Under Assumption 1, it can be shown using Ito’s lemma and the dominated convergence

theorem that the infinitesimal conditional moments on the LHS’ of equations (1.9)-(1.14)

converges to the RHS (Gikhman and Skorohod, 1972, pp. 68-69; Johannes, 2004).

I impose the same condition on the state variables Xt.

Assumption 2. The vector of state variables Xt is a null recurrent multivariate jump-

diffusion process with each element satisfying the same set of conditions as in Assumption

1. This implies that there exists a σ-finite measure Φ (·) on (A, B (A)) such that

Φ (D) =
∫

A
P (Xt ∈ D)Φ (dx) , ∀D ∈ B (A) (1.29)

Moreover, ∑0<s≤t||Xs − Xs−||2< ∞ a.s. for ∀t > 0.

Φ (·) is referred to as the invariant measure of Xt. For Lévy processes, Φ (·) is absolutely

continuous with resepect to Lebesgue measure, and I denote φ (x) ≡ Φ (dx) /dx. The ex-
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istence of an invariant measure Φ (·) leads to the following result:

Lemma 1 (Quotient Limit Theorem). Given Assumption 2, for any Borel measurable func-

tions f (·) and g (·) that are integrable with respect to Φ (dx)

∫ T
1 f (Xs) ds∫ T
1 g (Xs) ds

a.s.→
∫

A f (x)Φ (dx)∫
A g (x)Φ (dx)

(1.30)

as T → ∞, provided
∫

A g (x)Φ (dx) > 0.

Proof. See Revuz and Yor (2013, Theorem 3.12, Chapter 10). #

Let [Xβ]ct denote the quadratic variation of the continuous component of the index

Xtβ. A useful tool for the consistency proof below is the notion of local time

LXβ (t, a) ≡ lim
ε→0

1
ε

∫ t

1
I (Xsβ ∈ [a, a + ε)) d [Xβ]cs (1.31)

which, intuitively speaking, measures the amout of time the index Xtβ spends around a in

information unit. The scaled local time is defined as

L̄Xβ (t, a) ≡
LXβ (t, a)

σ2
Xβ (a)

(1.32)

where σ2
Xβ (·) denotes the diffusion term of Xβ. The local time has the following properties:

Lemma 2. Given Assumption 2:

1. LXβ (t, a) is continuous in t, and a.s. càdlàg in a.
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2. Let g (·) be a bounded Borel measurable function. Then

∫ t

1
g (Xs−β) d [Xβ]cs

a.s.=
∫

A
LXβ (t, a) g (a) da (1.33)

Proof. See Protter (1995, Theorem 56 and Corollary 1, Chapter 4). #

I make the following standard assumption on the kernel function (e.g. Bandi and

Nguyen, 2003; Ichimura, 1993):

Assumption 3. The kernel function K (·) : R → R+ is twice continuously differentiable,

bounded and symmetric around 0 such that

∫
R

K (s) ds = 1 (1.34)∫
R
[K (s)]2 ds < ∞ (1.35)∫

R
s2K (s) ds < ∞ (1.36)∫

R
|∂K (s)

∂s
|ds < ∞ (1.37)

and its second derivative satisfies a Lipschitz condition.

In the following, I first show that the functional estimators of the infnitesimal mo-

ments are consistent as long as β̂ = β0 + op (1). I then show that β̂ is indeed consistent.

They together imply that the functional estimators of the model parameters on the RHS’

of equations (1.9)-(1.14) are consistent. The following preliminary results are useful for

proving the first step, Theorem 1:
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Lemma 3.

1. Let C be a time change that is a.s. finite and Y be a continuous Ft-local martingale.

If Y is C-continuous, i.e. Y is continuous in [Ct−, Ct] for any t, then YC is a continuous

FCt -local martingale and [YC]t = [Y]Ct
, where [Y]t denotes the quadratic variation of Y.

2. (Dambis-Dubins-Schwarz). Let Mn be a sequence of continuous local martingales such

that a.s. Mn
0 = 0 and [Mn]∞ = ∞. Define time change Tn

t ≡ inf {s | [Mn]s > t}, then

Bn
t ≡ Mn

Tt
is a Brownian motion and Mn

t = Bn
[Mn]t

. Moreover, Bn converges in distribution

to a Brownian motion.

Proof. See Revuz and Yor (2013, Proposition 1.5, Chapter 5) for the first part, and Re-

vuz and Yor (2013, Theorem 1.6, Chapter 5, and Theorem 2.3, Chapter 8) for the second

part. #

Lemma 4 (Chow’s Law of Large Number for MDS). Let {Yi}i≥1 be a martingale differ-

ence sequence (MDS). If sup
i

E
(
Y2

i
)
≤ K < ∞ for some constant K, then

1
n

n

∑
i=1

Yi
p→ 0 (1.38)

Proof. See Stout (1974, Theorem 3.3.8). #
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Lemma 5 (Central Limit Theorem for MDS). Let {Yni}n
i=1 be a MDS, and Fni be the σ-

algebra generated by Yni. Suppose that: (1) maxi | Yni |
p→ 0; (2) ∑i Y2

ni
p→ η2, where η2 is

some positive constant; and (3) E
[
maxi Y2

ni
]

is bounded in n. Then

∑
i

Yni
d→ N

(
0, η2) (1.39)

Proof. See Eagleson (1975), and Hall and Heyde (1980, Theorem 3.2, Chapter 3). #

Bandi and Nguyen (2003) propose the following local constant kernel estimator for

scaled local time, which I state without proof:

Proposition 1. Let Y be a scalar jump-diffusion process satisfying the same set of condi-

tions as in Assumption 1, which is observed at evenly-spaced discrete times 1 = t1 ≤ . . . ≤

tN = T. Let K (·) be some kernel function satisfying Assumption 3, and the bandwidth h

be such that (1/h) (∆ log (1/∆))1/2 = op (1), where ∆ ≡ (T − 1) /N. Then

ˆ̄LY (T, a) ≡ ∆
h ∑

j
K
(

Yj − a
h

)
a.s.→ L̄Y (T, a) (1.40)

Proof: See Bandi and Nguyen (2003, Theorem 1). #

Theorem 1. Suppose Assumptions 1-3 hold. As N → ∞, T → ∞ and ∆ ≡ T/N → 0, if the

bandwidth hj is such that
(

LXβ̂ j

(
T, Xβ̂

)
/hj

)
(∆ log (1/∆))1/2,

(
Llog f (T, log f ) /hj

)
(∆ log (1/∆))1/2
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and 1/
(

h1 L̄Xβ̂

(
T, Xβ̂

))−1/2
converge in probability to 0, then

ĝj
(
Xt β̂

) p→ gj (Xtβ0) (1.41)

for j = 1, . . . , 6, provided that β̂ = β0 + op (1).

Proof. Denote a ≡ Xtβ0 and â ≡ Xt β̂. Write

ĝ1 (â) =
1
h1

∑T
t′=1, t′ 6=t I (Xt′ ∈ An)K

(
Xt′ β̂−â

h1

)
(log ft′+∆ − log ft′)

∆
h1

∑T
t′′=1 I

(
Xt′′ β̂ ∈ An

)
K
(

Xt′′ β̂−â1
h1

) (1.42)

=
T

∑
t′=1, t′ 6=t

1
h1

I
(
Xt′ β̂ ∈ An

)
K
(

Xt′ β̂−â
h1

) ∫ t′+∆
t′ [µ (Xs) + µJ (Xs) λ (Xs)] ds

∆
h1

∑T
t′′=1 I

(
Xt′′ β̂ ∈ An

)
K
(

Xt′′ β̂−â1
h1

)
+

T

∑
t′=1, t′ 6=t

1
h1

I
(
Xt′ β̂ ∈ An

)
K
(

Xt′ β̂−â
h1

) ∫ t′+∆
t′ σ (Xs) dWs

∆
h1

∑T
t′′=1 I

(
Xt′′ β̂ ∈ An

)
K
(

Xt′′ β̂−â
h1

)
+

T

∑
t′=1, t′ 6=t

1
h1

I
(
Xt′ β̂ ∈ An

)
K
(

Xt′ β̂−â1
h1

) ∫ t′+∆
t′ dZ̄s

∆
h1

∑T
t′′=1 I

(
Xt′′ β̂ ∈ An

)
K
(

Xt′′ β̂−â
h1

) (1.43)

≡
T

∑
t′=1, t′ 6=t

k11, t′+∆ (â) +
T

∑
t′=1, t′ 6=t

k12, t′+∆ (â) +
T

∑
t′=1, t′ 6=t

k13, t′+∆ (â) (1.44)

≡ K11 (â) + K12 (â) + K13 (â) (1.45)

where Z̄t ≡
∫ t

0 Js (Xs) dNs −
∫ t

0 µJ (Xs) λ (Xs) ds denotes the compensated Poisson jump

process. I follow similar steps as in Bandi and Nguyen (2003, Theorem 2) to show con-

vergence of K11 (â). Denote K∗
(
Xs β̂

)
≡ I

(
Xs β̂ ∈ An

)
K
(

Xs β̂−â
h1

)
and µ∗ (Xs) ≡ µ (Xs) +
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µJ (Xs) λ (Xs). Note that by the mean value theorem

|
T

∑
t′=1, t′ 6=t

K∗
(
Xt′ β̂

) ∫ t′+∆

t′
µ∗ (Xs) ds−

∫ T

1
K∗
(
Xs β̂

)
µ∗ (Xs) ds|

=|
T

∑
t′=1

∫ t′+∆

t′

[
K∗
(
Xt′ β̂

)
− K∗

(
Xs β̂

)]
µ∗ (Xs) ds| (1.46)

≤
T

∑
t′=1

∫ t′+∆

t′
| dK∗

dx
(
X̃s β̂

)
µ∗ (Xs) || Xs β̂− Xt′ β̂ | ds (1.47)

≤
(

T

∑
t′=1

∫ t′+∆

t′
| dK∗

dx
(
X̃s β̂

)
µ∗ (Xs) | ds

)

×
(

max
t′

sup
t′≤s≤t′+∆

| Xs − Xt′ |
)
‖ β̂ ‖1 (1.48)

for some X̃s β̂ between Xt′ β̂ and Xs β̂. Note that the first term on the RHS satisfies

T

∑
t′=1

∫ t′+∆

t′
| dK∗

dx
(
X̃s β̂

)
µ∗ (Xs) | ds

≤
∫ T

1
| dK

dx

(
Xs β̂− â

h1
+ op (1)

)
g1
(
Xs β̂

)
| ds (1.49)

=
∫ ∞

−∞
| dK

dx
(
q + op (1)

)
g1 (q) | L̄Xβ̂1

(T, qh1 + â) dq (1.50)

≤C5Oa.s.

(
L̄Xβ̂1

(T, â)
)

(1.51)

for some constant C5, where the second step follows from Lemma 2. Moreover, Lévy’s

modulus of continuity implies that the second term

(
max

t′
sup

t′≤s≤t′+∆
| Xis − Xit′ |

)
= Oa.s.

(√
∆ log (1/∆)

)
(1.52)
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for each element i of Xt. Combining equations (1.48), (1.51) and (1.52) yields

1
h1

T

∑
t′=1, t′ 6=t

K∗
(
Xt′ β̂

) ∫ t′+∆

t′
µ∗ (Xs) ds

=
1
h1

∫ T

1
K∗
(
Xs β̂

)
µ∗ (Xs) ds + Op

(
L̄Xβ̂ (T, â)

√
∆ log (1/∆)/h

)
‖ β̂ ‖1 (1.53)

Similarly, the denominator of K11 (â)

∆
h1

T

∑
t′=1, t′ 6=t

K∗
(
Xt′ β̂

)
=

1
h1

∫ T

1
K∗
(
Xs β̂

)
ds + Op

(
L̄Xβ̂ (T, â)

√
∆ log (1/∆)/h

)
‖ β̂ ‖1 (1.54)

Thus

K11 (â)
p→

∫ ∞
1 K∗ (Xsβ0) g1 (Xsβ0) ds∫ ∞

1 K∗ (Xsβ0) ds
(1.55)

a.s.=

∫
A K (q) g1 (qh1 + a) φ (qh1 + a) dq∫

A K (q) φ (qh1 + a) dq
(1.56)

= g1 (a) (1.57)

I use Lemma 3 to derive the asymptotic property of K12 (â). Denote the nominator

of K12 as k̃12, T ≡ 1
h1

∑T
t′=1 I

(
Xt′ β̂ ∈ An

)
K
(

Xt′ β̂−â
h1

) ∫ t′+∆
t′ σ (Xs) dWs and define time change

CT ≡ inf
{

s |
[
k̃12
]

s > T
}

. Since CT is continuous and a.s. increasing, k̃12, T is C-continuous.

Therefore, Lemma 3, Part 1 implies that MT ≡ k̃12, CT is a continuous local martingale.

Since
[
k̃12
]

∞ = ∞, CT is a.s. finite and [M]∞ =
[
k̃12
]

C∞
= ∞. Define another time change

DT ≡ inf {s | [M]s > T}, then by Lemma 3, Part 2, BT ≡ MDT is a Brownian motion that

coverges in distribution to a Brownian motion BMT. Thus k̃12, T = BV12, T

d→ BMlim
N

V12, T ,
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where V12 ≡ [M][k̃12] =
[
k̃12
]

C[k̃12]
=
[
k̃12
]
. This together with Proposition 1 implies

ˆ̄LXβ̂1
(T, â)

K12 (â)√
Var

(
k̃12
) d→ N (0, 1) (1.58)

I.e.

K12 (â) = Op


√

Var
(
k̃12
)

L̄Xβ̂ (T, â)

 = Op

 1√
h1 L̄Xβ̂ (T, â)

 (1.59)

To show the convergence of K13 (â), define k̃13, t′ ≡ 1√
h1

I
(
Xt′ β̂ ∈ An

)
K
(

Xt′ β̂−â
h1

)
×
∫ t′+∆

t′ dZ̄s and Ṽ13 ≡ Var
(
k̃13, t′

)
. Then both k̃STD

13, t′ ≡ k̃13, t′/
√

N2Ṽ13 and
(

k̃STD
13, t′

)2
− 1

are MDS’. Levy-Khintchine formula implies that
(

k̃STD
13, t′

)2
= Op

(√
∆
)

. Thus, there exists

some K ≥ O (∆) such that sup
t′

Var
[(

k̃STD
13, t′

)2
− 1
]
≤ K. I.e. Σt′

(
k̃STD

13, t′

)2 p→ 1 ≡ η2 accord-

ing to Lemma 4. Moreover, max
t′
| k̃STD

13, t′ |
p→ 0 and E

[
max

t′

(
k̃STD

13, t′

)2
]

is bounded. Lemma 5

together with Proposition 1 thus implies

K13 (â) = Op

 1√
h1 L̄Xβ̂ (T, â)

 (1.60)

In summary, ĝ1 (â)
p→ µ (a) + µJλ (a).
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I now turn to the second infinitesimal moment ĝ2 (â). Following Bandi and Nguyen

(2003, Theorem 2), I use Ito’s lemma to write

[log ft+∆ − log ft]
2

= (log ft+∆)
2 − (log ft)

2 − 2 log ft [log ft+∆ − log ft] (1.61)

=2
∫ t+∆

t
(log fs − log ft) µ∗ (Xs) ds + 2

∫ t+∆

t
(log fs − log ft) σ (Xs) dWs

− 2
∫ t+∆

t
log ft (Js (Xs) dNs − µJλ (Xs) ds)

+
∫ t+∆

t
σ2 (Xs) ds +

∫ t+∆

t

[
µJ (Xs)

2 + σJ (Xs)
2
]

λ (Xs) ds

+
∫ t+∆

t

[
(log fs + Js)

2 − (log fs)
2
]
[Js (Xs) dNs − µJ (Xs) λ (Xs) ds] (1.62)

Thus

ĝ2 (â) =
1
h2

∑T
t′=1 K∗

(
Xt′ β̂

)
2
∫ t+∆

t (log fs − log ft) µ∗s ds
∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

)
+

1
h2

∑T
t′=1 K∗

(
Xt′ β̂

)
2
∫ t+∆

t (log fs − log ft) σsdWs

∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

)
−

1
h2

∑T
t′=1 K∗

(
Xt′ β̂

)
2
∫ t+∆

t log ft JsdN̄s

∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

)
+

1
h2

∑T
t′=1 K∗

(
Xt′ β̂

) ∫ t+∆
t

[
σ2

s +
[
µ2

Js + σ2
Js

]
λs

]
ds

∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

)
+

1
h2

∑T
t′=1 K∗

(
Xt′ β̂

) ∫ t+∆
t

[
(log fs + Js)

2 − (log fs)
2
]

JsdN̄s

∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

) (1.63)

≡ K21 (â2) + K22 (â2) + K23 (â2) + K24 (â2) + K25 (â2) (1.64)

K22 (â), K23 (â) and K25 (â) converge to zero following the same reasoning for show-

ing K12 (â) and K13 (â) converge to zero. Moreover, K24 (â)
p→ σ2 (a)

[
µJ (Xs)

2 +σJ (Xs)
2
]

λ (a)

following the same reasoning for proving K11 (â)
p→ g1 (a). As for K21 (â), the same argu-

31



ments for proving K11 (â)
p→ g1 (a) leads to

K21 (â) ≤ Op

(
L̄log f (T, log ft)

√
∆ log (1/∆)/h2

)
×

1
h2

∑T
t′=1, t′ 6=t K∗

(
Xt′ β̂

)
2
∫ t+∆

t µ∗ (Xs) ds
∆
h1

∑T
t′=1 K∗

(
Xt′ β̂

) (1.65)

= Op

(
L̄log f (T, log f )

√
∆ log (1/∆)/h2

) (
2µ∗ (â) + op (1)

)
(1.66)

p→ 0 (1.67)

In summary, ĝ2 (â)
p→ g2 (a).

The consistency of the other moments follows from similar arguments. #

I now proceed to proving that the nonlinear least square estimator β̂ is indeed con-

sistent. To start with, I show that the true value of the index parameter β0 is identified up

to a multiplicative constant. Similar to the serially uncorrelated case studied by Ichimura

(1993), identification of the true value β0 is based on the observation that on the contour

line Xtβ0 = a, where a is some constant, variations in the residual

εjt (β0) ≡ (log ft+∆ − log ft)
j − gj (Xtβ0) (1.68)

result only from innovations independent of the state variables Xt, whereas for some other

β 6= β0 variations in εjt (β) along the contour line Xtβ = a may also result from variations in

Xtβ0, since the true index Xtβ0 is no longer necessarily a constant. Finding the true value
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β0 thus amounts to minimizing the joint variability

J (β) ≡ ∑
j=1, 2, 3, 4, 6

E

{[
plim

∆↓0

[
∆ log ft+∆ (Xt)

∆

]j

− plim
∆↓0

(
E
[

∆ log ft+∆ (Xt)

∆

]j

| Xtβ

)]2
 (1.69)

which motivates the estimator β̂ defined by equation (1.19). To establish conditions for the

uniqueness of such β0 that minimizes J (β), I follow essentially the same arguments as in

Ichimura (1993, Theorem 4.1):

Assumption 4. The unknown function gj (·) is differentiable and not a.e. constant on

the support of xβ0, where j = 1, . . . , 6.

Proposition 2. Under Assumptions 1, 2 and 4, the index parameter β0 is unique up to

a multiplicative constant.

Proof. Suppose both β0 and β1 minimize the objective function J (β). Then

J (β0) = J (β1) (1.70)

= J (β0) +
6

∑
j=1

E
{[

gj (Xtβ0)− E
[
gj (Xtβ0) | Xtβ1

]]2
}

(1.71)

This implies that

gj (Xtβ0)
a.e.= E

[
gj (Xtβ0) | Xtβ1

]
(1.72)
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for j = 1, . . . , 6. Fix a = Xtβ1 and denote γm ≡ β0, m − β0, 1β1, m, where β0, m (β1, m) is the

m-th element of β0 (β1). The above equation can be rewritten as

gj
(

β0, 1rj + γ2X2t + · · · γ5X5t
) a.e.= E

[
gj (Xtβ0) | a

]
= gj (a) (1.73)

Taking partial derivatives with respect to the m-th state variable, Xmt, gives

g′j (Xtβ0) γm
a.e.= 0, for m = 2, 3, 4, 5 (1.74)

Since gj is not a constant with strictly positive measure, this implies γ2 = · · · = γ5. I.e.

β0 = cβ1 for some constant c. #

Since the index parameter is identified only up to a multiplicative constant, I follow

the convention in the literature by taking β0, 1 = 1.

Given a sequence of positive numbers
{

MjN
}

, denote a ≡ xβ and

A(j)
t (x, β) ≡ 1

Nhj
∑
t′ 6=t

I (Xt′β ∈ An)K
(

Xt′β− a
hj

)
× (log ft′+∆ − log ft′)

j (1.75)

B(j)
t (x, β) ≡ 1

Nhj
∑
t′ 6=t

I (Xt′β ∈ An)K
(

Xt′β− a
hj

)
(1.76)

l̃(j)
t+∆ (x, β) ≡ I (Xtβ ∈ An)K

(
Xtβ− a

h

)
(log ft+∆ − log ft)

j

×I
(
(log ft+∆ − log ft) /∈

[
−MjN , MjN

])
(1.77)

l(j)
t+∆ (x, β) ≡ I (Xtβ ∈ An)K

(
Xtβ− a

hj

)
(log ft+∆ − log ft)

j

×I
(
(log ft+∆ − log ft) ∈

[
−MjN , MjN

])
(1.78)
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and the probability limits of A(j)
t and B(j)

t as Ā(j)
t and B̄(j)

t , respectively. Note that

sup
(x, β)∈A×B

| A(j)
t − Ā(j)

t |

≤ sup
(x, β)∈A×B

| 1
Nhj

∑
t′ 6=t

(
l(j)
t′+∆ (x, β)− Et′

[
l(j)
t′+∆ (x, β)

])
|

+ sup
(x, β)∈A×B

| 1
Nhj

∑
t′ 6=t

(
l̃(j)
t′+∆ (x, β)− Et′

[
l̃(j)
t′+∆ (x, β)

])
|

+ sup
(x, β)∈A×B

| ∑
t′ 6=t

Et′
(

l(j)
t′+∆ (x, β) + l̃(j)

t′+∆ (x, β)
)
− Ā(j)

t | (1.79)

Similar to Ichimura (1993), the goal here is to find an appropriate sequence
{

MjN
}

such

that each term on the RHS of the above inequality converges in probability to 0. I first

show that the third term on the RHS of inequality (1.79) converges to zero.

Proposition 3. Let {Yt}t≥1 be a discrete-time homogeneous first-order Markov process

with transition density fY, and F : R → R be a function. If F f is twice continuously dif-

ferentiable, the second derivative satisfies a Lipschitz condition, the kernel function K (·)

satisfies Assumption 3, and y is an interior point of the support of Y, then for h > 0 and

h→ 0 as n→ ∞,

| Et−1

[
F (Yt)

h
K
(

y−Yt

h

)]
− F (y) fY (y) | p→ 0 (1.80)

provided that Et−1

[
F (Yt)K

(
y−Yt

h

)]
exists.
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Proof. Denote φ (x) ≡ F (x) fY (x). Note that

|
∫

R

F (x)
h

K
(

y− x
h

)
fY (x) dx− F (y) fY (y) |

= |
∫

R
φ (y− hs)K (s) ds− φ (y) | (1.81)

= |
∫

R

[
φ (y)− hsφ′ (ȳ)

]
K (s) ds− φ (y) | +o (1) (1.82)

→0 (1.83)

for some ȳ between y and y− hs. #

Proposition 4 gives the stochastic order of the second term in inequality (1.79).

Assumption 5. Let B denote the parameter space of β. A ⊆ R5 and B ⊆ R5 are com-

pact. Moreover, the true value β0 is in the interior of B.

Proposition 4. Suppose Assumptions 1, 2, 3 and 5 hold, then

sup
(x, β)∈A×B

| 1
Nhj

∑
t′ 6=t

(
l̃(j)
t′ (x, β)− Et′−1

[
l̃(j)
t′ (x, β)

])
|= Op

([
Mm−1

jN hj

]−1
)

(1.84)
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Proof. Note that

P

(
sup

(x, β)∈A×B
| 1

Nhj

T

∑
t′=1

(
l̃(j)
t′+∆ (x, β)− Et′

[
l̃(j)
t′+∆ (x, β)

])
|> εn

)

≤P

(
sup

(x, β)∈A×B

T

∑
t′=1
| l̃(j)

t′+∆ (x, β)− Et′
[
l̃(j)
t′+∆ (x, β)

]
|> Nhjεn

)
(1.85)

≤
E
(

sup(x, β)∈A×B ∑T
t′=1 | l̃(j)

t′+∆ (x, β)− Et′
[

˜l(j)
t′+∆ (x, β)

]
|
)

Nhjεn
(1.86)

Since the kernel function K (·) is bounded, there exists some large constant C6 such that

E

(
sup

(x, β)∈A×B

T

∑
t′=1
| l̃(j)

t′+∆ (x, β) |
)

≤C6

T

∑
t′=1

E
[
| log ft′+∆ − log ft′ |j I

(
(log ft′+∆ − log ft′) /∈

[
−MjN , MjN

])]
(1.87)

Moreover, Hölder’s and Chebyshev’s inequalities imply that

T

∑
t′=1

E
[
| log ft′+∆ − log ft′ |j I

(
(log ft′+∆ − log ft′) /∈

[
−MjN , MjN

])]
≤

T

∑
t′=1

E
[(
| (log ft′+∆ − log ft′)

j |m
)1/m

(1.88)

× P
(
I
(
(log ft′+∆ − log ft′) /∈

[
−MjN , MjN

]))1−1/m
]

(1.89)

≤
T

∑
t′=1

E
(
| (log ft′+∆ − log ft′)

j |m
)1/m

M1−m
jN (1.90)

where the moment E
(
| log ft+∆ − log ft |jm

)
exists for ∀j, m since both log ft and Xt satisfy

the growth condition specified in Assumptions 1-2. I.e.

E

(
sup

(x, β)∈A×B

T

∑
t′=1
| l̃(j)

t′+∆ (x, β) |
)
≤

C6E
(
| (log ft+∆ − log ft)

j |m
)1/m

Mm−1
jN hjεn

(1.91)
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Similarly,

E

(
sup

(x, β)∈A×B

T

∑
t′=1

Et′ | l̃(j)
t′+∆ (x, β) |

)
≤

C6E
(
| (log ft+∆ − log ft)

j |m
)1/m

Mm−1
jN hjεn

(1.92)

provided that the constant C6 is taken large enough.

Hence, inequalities (1.85), (1.90) and (1.91) together imply

P

(
sup

(x, β)∈A×B
| 1

Nhj

T

∑
t′=1

(
l̃(j)
t′+∆ (x, β)− Et′

[
l̃(j)
t′+∆ (x, β)

])
|> εn

)

≤
2C6 ∑T

t′=1 E
(
| (log ft′+∆ − log ft′)

j |m
)1/m

Mm−1
jN Nhjεn

(1.93)

≤
2C6E

(
| (log ft+∆ − log ft)

j |m
)1/m

Mm−1
jN hjεn

(1.94)

≤Op

([
Mm−1

jN hj

]−1
)

(1.95)

by triangular and Jensen’s inequalities. #

To prove the convergence of the first term on the RHS of inequality (1.79), I resort to

Freedman’s (1975) inequality for MDS.

Lemma 6 (Freedman’s Inequality). Suppose {Yn}n≥1 is a sequence of random variables

adapted to a filtration {Fn}n≥0 such that E (Yn | Fn−1) = 0. Let τ be a stopping time, and

K a positive real number. Suppose P (| Yi |≤ K for i ≤ τ) = 1. Denote Sn ≡ ∑n
i=1 Yi and

Vn ≡ ∑n
i=1 Var (Yi | Fi−1). Then for all positive real numbers s and v

P (Sn ≥ s and Vn ≤ v for some n ≤ τ) ≤
[( v

Ks + v

)Ks+v
exp (Ks)

]1/K2

(1.96)
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Proof. See Freedman (1975, Proposition 2.1). #

Proposition 5. Suppose Assumptions 1-4 hold. If hj = o
(

MjN
N

)
and NM−1

jN → ∞, then

P

(
1

Nhj
sup
A×B
| ∑

t′ 6=t

(
l(j)
t′+∆ (x, β)− Et′

[
l(j)
t′+∆ (x, β)

])
|≥ εn

)
→ 0 (1.97)

Proof. First note that | l(j)
t′ (x, β)− Et′

[
l(j)
t′ (x, β)

]
|≤ C7Mj

jN for some constant C7, since the

kernel function is bounded and the indicator function I ((log ft+∆ − log ft) ∈
[
−MjN , MjN

])
implies that | log ft+∆ − log ft | cannot be larger than MjN . Popovicio’s (1935) inequality

then implies that

Var
(

l(j)
t′+∆ (x, β) | Ft′

)
≤ C2

7 Mj
jN (1.98)

Thus

VN ≡ ∑
t′ 6=t

Var
(

l(j)
t′+∆ (x, β) | Ft′

)
≤ C2

7 NMj
jN (1.99)

Take the stopping time τ ≡ ∞, K ≡ C7Mj
jn, s ≡ C−1

7 Nhjεn, and v ≡ C2
7 NMj

jN . Freedman’s

inequality implies that

P

(
1

Nhj
sup
A×B
| ∑

t′ 6=t

(
l(j)
t′+∆ (x, β)− Et′

[
l(j)
t′+∆ (x, β)

])
|≥ εn

)

≤ P

(
| ∑

t′ 6=t

(
l(j)
t′+∆ (x, β)− Et′

[
l(j)
t′+∆ (x, β)

])
|≥ C−1

7 Nhjεn

)
(1.100)

≤ 2
(

Nhjεn

C2
7 N

+ 1
)− Nhjεn/C2

7+N

Mj
jN exp

 Nhjεn

C2
7 Mj

jN

 (1.101)

→ 0 (1.102)
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if hj = o
(

Mj
jN

N

)
and NM−j

jN → ∞. #

The following uniform convergence result follows directly from Propositions 3-5.

Proposition 6. Under Assumptions 1-5, if Nhj → ∞, then for ∀ε > 0

P

{
sup

(x, β)∈A×B
| ĝj (xβ)− gj (xβ) |> ε

}
→ 0 (1.103)

as N → ∞.

Proof. To show A(j)
t

p→ Ā(j)
t uniformly using Propositions 3-5, it is sufficient to choose

some appropriate m and MjN such that hj = O
(

MjN
N

)
, NM−j

jN → ∞, and
(

Mj
jN

)m−1
hj → ∞.

Given Nhj → ∞, the choice of m = 2 and Mj
jN = Op

(√
N
)

shall do the job. Since B(j)
t is

a special case of A(j)
t with (log ft′+∆ − log ft′)

j replaced by 1, the same arguments imply

that B(j)
t

p→ B̄(j)
t uniformly under the same conditions. Thus ĝj = A(j)

t /B(j)
t

p→ Ā(j)
t /B̄(j)

t

uniformly. #

I am now ready to state the consistency of β̂. The proof follows the standard outline

used in the literature (e.g. Ichimura, 1993, Theorem 5.1; Newey and McFadden, 1994).

Theorem 2. Suppose Assumptions 1-5 hold. As N → ∞, T → ∞ and ∆ ≡ (T − 1) /N → 0,

if the bandwidth hj is such that
(

LXβ̂

(
T, Xβ̂

)
/hj

)
(∆ log (1/∆))1/2,

(
Llog f (T, log f ) /hj

)
(∆ log (1/∆))1/2

and 1/
(

h1 L̄Xβ̂

(
T, Xβ̂

))−1/2
converge in probability to 0, and Nh → ∞, then the index es-

timator β̂ is consistent.
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Proof. Denote

ĴjN (β) ≡ 1
T

T

∑
t=1

[
(log ft′+∆ − log ft′)

j − ĝj (Xtβ)
]2

(1.104)

JjN (β) ≡ 1
T

T

∑
t=1

[
(log ft′+∆ − log ft′)

j − gj (Xtβ)
]2

(1.105)

Jj (β) ≡ 1
T

T

∑
t=1

E
[
(log ft′+∆ − log ft′)

j − gj (Xtβ)
]2

(1.106)

and recall that the true value of the index parameter β is denoted as β0.

By definition of the nonlinear least square estimator β̂,

P
(

ĴjN
(

β̂
)
≤ ĴjN (β0)

)
= 1, ∀j = 1, . . . , 6 (1.107)

On the other hand, for any open neighborhood of β0, U (β0),

P
(

ĴjN
(

β̂
)
≤ ĴjN (β0)

)
=P
(

ĴjN
(

β̂
)
≤ ĴjN (β0) and β̂ ∈ U (β0)

)
+ P

(
ĴjN
(

β̂
)
≤ ĴjN (β0) and β̂ ∈ B \U (β0)

)
(1.108)

≤P
(

β̂ ∈ U (β0)
)

+ P

(
in f

β̂∈B\U(β0)

ĴjN
(

β̂
)
≤ ĴjN (β0)

)
(1.109)

Thus

P

 in f
β̂/∈U(β0)

ĴjN
(

β̂
)
≤ ĴjN (β0)

→ 0, ∀j = 1, . . . , 6 (1.110)

implies consistency.
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Note that

P

(
in f

β̂∈B\U(β0)

ĴjN
(

β̂
)
≤ ĴjN (β0)

)

≤P

(
in f

β̂∈B\U(β0)

[
ĴjN
(

β̂
)
− JjN

(
β̂
)]

+ in f
β̂∈B\U(β0)

[
JjN
(

β̂
)
− Jj

(
β̂
)]

+ in f
β̂∈B\U(β0)

Jj
(

β̂ j
)

+ Jj (β0) ≤ ĴjN (β) + Jj (β0)

)
(1.111)

≤P

 sup
β̂∈B\U(β0)

| ĴjN
(

β̂
)
− JjN

(
β̂
)
| + sup

β̂∈B\U(β0)

| JjN
(

β̂
)
− Jj

(
β̂
)
|

+ | ĴjN (β0)− Jj (β0) |≥ in f
β̂∈B\U(β0)

Jj
(

β̂
)
− Jj (β0)

)
(1.112)

Proposition 1 implies that there exists ε > 0 such that

in f
β̂∈B\U(β0)

Jj
(

β̂
)
− Jj (β0) > ε (1.113)

Proposition 4 implies that

sup
β̂∈B\U(β0)

| ĴjN
(

β̂
)
− JjN

(
β̂
)
| p→ 0 (1.114)

Moreover,

JjN
(

β̂
)
− Jj

(
β̂
) p→ 0 (1.115)

following the same arguments as in the proof of Theorem 1 except that here β̂ is taken as a

fixed constant instead of
p→ β0. Since B is compact and JjN (·) is continuous

sup
β̂∈B\U(β)

| JjN
(

β̂
)
− Jj

(
β̂
)
| p→ 0 (1.116)
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Thus, P

(
in f

β̂∈B\U(β)

ĴjN
(

β̂
)
≤ ĴjN (β0)

)
→ 0. #

Finally, Theorems 1-2 together immediately imply the consistency of the functional

estimates of the infinitesimal conditional moments:

Theorem 3. Suppose Assumptions 1-5 hold. As N → ∞, T → ∞ and ∆ ≡ (T − 1) /N → 0,

if the bandwidth hj is such that
(

LXβ̂

(
T, Xβ̂

)
/hj

)
(∆ log (1/∆))1/2,

(
Llog f (T, log f ) /hj

)
(∆ log (1/∆))1/2

and 1/
(

hj L̄Xβ̂

(
T, Xβ̂

))−1/2
converge in probability to 0, and Nhj → ∞, then

ĝj
(
Xt β̂

) p→ gj (Xtβ0) (1.117)

for j = 1, . . . , 6. #

It remains to identify the model parameters in equations (1.9)-(1.14), µ (·), σ2 (·),

λ (·), µJ (·) and σ2
J (·), from the first six moment conditions.3 For convenience, I omit the

time subscripts in the following. Denote the ratio between the i-th and the j-th infinitesimal

3Mathematica codes are available from the author upon request.
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moments as gi|j ≡ gi/gj, and the n-th smallest real roots of

r3|4 (x) ≡ 375g4
4|5 − 3600g3

4|5x + 8088g2
4|5x2 − 6912g4|5x3 + 2048x4 (1.118)

r5|6 (x) ≡ 256g5
3|4g2

4|5 +
(
−1920g4

3|4g2
4|5 + 800g3

3|4g3
4|5

)
x

+
(

384g4
3|4g4|5 + 4080g3

3|4g2
4|5 − 3000g2

3|4g3
4|5 + 375g3|4g4

4|5

)
x2

+
(
−1248g3

3|4g4|5 − 2120g2
3|4g2

4|5 + 2400g3|4g3
4|5 − 375g4

4|5

)
x3

+
(

48g3
3|4 + 720g2

3|4g4|5 − 150g3|4g2
4|5 − 250g3

4|5

)
x4 (1.119)

rµJ (x) ≡ 3− 18g4|5x +
(

24g3|4g4|5 + 15g2
4|5

)
x2 − 40g3|4g2

4|5x3 + 16g2
3|4g2

4|5x4 (1.120)

as r(n)3|4 , r(n)5|6 and r(n)µJ , respectively. The solution of µJ (·) is given by

µJ =


µJ1, if g4|5 < 0

µJ2, if g4|5 > 0

(1.121)

where

µJ1 ≡



r(1)µJ , if g3|4 ≤ g4|5 and g5|6 = r(1)5|6

r(2)µJ , if g3|4 ≤ g4|5 and g5|6 = r(2)5|6 , or g4|5 ≤ g3|4 <

r(4)µJ , otherwise

r(2)3|4 (1.122)

µJ2 ≡


r(1)µJ , otherwise

r(2)µJ , if g4|5 ≤ g3|4 < r(2)3|4 and g5|6 = r(2)5|6

(1.123)
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Given µJ (·), σ2
J (·) can be solved as

σ2
J =

3µ2
J − 5g4|5µ3

J +
√

2
(

3µ4
J − 6g4|5µ5

J + 5g2
4|5µ6

J

)
3
(
−1 + 5g4|5µJ

) (1.124)

and then λ (·) as

λ =
g3

µ3
J + 3µJσ

2
J

(1.125)

Finally, µ (·) and σ2 (·) can be solved as

µ = g1 − λµJ (1.126)

σ2 = g2 − λ
(
µ2

J + σ2
J
)

(1.127)
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Appendix B: A Randomized Bandwidth Selection Procedure

Set h1 = · · · = h6 = h. In line with the requirement that Nh → ∞, I consider band-

widths within the range H ≡
{ 5c+1

N | c = 0, 1, . . . , 60
}

. Theorem 3 imposes three asymp-

totic conditions on h, namely

(
LXβ̂

(
T, Xβ̂

)
/h
)
(∆ log (1/∆))1/2 p→ 0 (1.128)

hLXβ̂

(
T, Xβ̂

) p→ ∞ (1.129)

(
Llog f (T, log f ) /h

)
(∆ log (1/∆))1/2 p→ 0 (1.130)

Following Bandi, Corradi, and Moloche (2009), to test if each candidate bandwidth

h ∈ H satisfies these conditions I consider the following test statistic:

VR, h ≡ min
{

V1, R, h, V2, R, h, Vf , R, h
}

(1.131)

where

Vi, R, h =
∫

U

[
2√
R

R

∑
r=1

(
I {vi, h, r ≤ u} − 1

2

)]2

π (u) du (1.132)

for i = 1, 2, π (u) is some weight function satisfying
∫

U π (u) du = 1 and π (u) ≥ 0, and

v1, h, r =

(
exp

[(∫
h(1+ε) ˆ̄LXβ̂ (T, a) da

)−1
])1/2

ηj1, r (1.133)

v2, h, r =

exp

∫ ˆ̄LXβ̂ (T, a) (∆ log (1/∆))1/2

h(1+ε) da

1/2

ηj2, r (1.134)

v f , h, r =

(
exp

[∫ ˆ̄Llog f (T, a) (∆ log (1/∆))1/2

h(1+ε) da

])1/2

η f , r (1.135)
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with
(
η1, r, η2, r, η f , r

) i.i.d.∼ N (0, I3) for r = 1, . . . , R, and ε > 0 is some arbitrarily small

number. The index and functional estimates here are calculated with h being the band-

width.

The idea of the test is as follows. Suppose the condition
(

LXβ̂

(
T, Xβ̂

)
/h
)
(∆ log (1/∆))1/2 p→

0 is violated, then
(

LXβ̂

(
T, Xβ̂

)
/h(1+ε)

)
(∆ log (1/∆))1/2 p→ ∞ since h → 0. This implies

that v2, h, r diverges to ∞ with probability 1/2 and to −∞ with probability 1/2. I.e. the ran-

dom variable I {vi, h, r ≤ u} − 1
2 follows a Bernoulli distribution, and so Vi, R, h

d→ χ2
1. If in-

stead
(

LXβ̂

(
T, Xβ̂

)
/h
)
× (∆ log (1/∆))1/2 p→ 0 is satisfied, then 2√

R ∑R
r=1
(
I
{

vji, h, r ≤ u
}
− 1

2

)
diverges to infinity. The same reasoning also applies to the other two conditions. They to-

gether imply that VR, h
d→ χ2

3 if any of the three asymptotic conditions is violated, and

diverges otherwise.

I take π (u) as the standard normal density, U = [−2.5, 2.5], ε = 10−5, and R =

100, 000. I estimate the integral terms in v1, h, r, v2, h, r and v f , h, r using trapzoidal rule with

1,000,000 grid points over the range of the sample, and those in Vi, R, h and Vi, R, h with 1,000

grid. Following Bandi, Corradi, and Moloche (2009), among all h ∈ H that satisfy these

asymptotic conditions, I pick the one that minimizes the Kolmogorov-Smirnov distance

dKS ≡ sup
x
| Fh (x)− N (x) | (1.136)

where N (x) is the distribution function of N (0, 1), and Fh (x) is the empirical distribution

function of

ε̂t+∆ ≡
∆ log ft − µ̂t√

∆σ̂t
(1.137)
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which is asymptotically distributed as N (0, 1) if all these three conditions on h are satis-

fied.4

4To avoid numerical problem in which the estimated standard deviation σ̂2 (Xt) ' 0, I add a small value
10−50 to σ̂2 (Xt) in such occasions.

48



Appendix C: Bootstrap Procedure

Denote the residuals of some generic regression model estimated under the null hy-

pothesis as ŵt. For the i-th bond yield in the dataset, yit, denote its estimated loadings on

PCt ≡ (Lt St Ct)
′ as λ̂i, and its residuals as êit = yit − λ̂iPCt. I start by fitting an AR(1)

model êit = ρ̂i êit−1 + ûit for each i, and stack the residuals ûit across i as well as ŵt into a

vector ût.

I conduct resampling in the following way. If the regression model is conducted on

both FOMC and non-FOMC days, I simply stack ŵt with ût into v̂t ≡ (ŵt, ût). Denote

V̂ as the matrix whose t-th row is v̂t. I conduct independent sampling with replacement

from the rows of V̂. If instead the regression model is conducted on FOMC days only,

I define a new sequence of residuals w̃t, which is equal to ŵt if t is an FOMC day, and is

labeled as missing value otherwise, and stack w̃t with ût into ṽt ≡ (w̃t, ût). Denote Ṽ as the

matrix whose t-th row is ṽt, ṼFOMC as the submatrix of Ṽ keeping only rows correponding

to FOMC days, and Ṽnon−FOMC as the submatrix keeping only rows correponding to non-

FOMC days. For each t = 1, . . . , T, I conduct independent sampling with replacement

from the rows of ṼFOMC if t is an FOMC day, and from the rows of Ṽnon−FOMC otherwise.

I use the bootstrapped sample of ût, denoted as û∗t , to form a bootstrapped sample

of the residuals ê∗it ≡ ρ̂i ê∗it−1 + û∗it, which are in turn used to form a bootstrapped sample

of each individual yield ŷ∗it ≡ λ̂iPCt + ê∗it. I conduct principal component analysis on the

bootstrapped yields to get the first three principal components PC∗t . I then take X∗t ≡

(PC∗t
′ TYVIXt ADSt)

′ as the bootstrapped state vector to re-estimate the semiparametric

jump-diffusion models.5

5To reduce the excessive computing resources needed, I do not re-estimate the bandwidth for each boot-
strapped sample using simulated annealing. Instead I run a local optimization routine to choose the band-
width by taking the optimal bandwidth found in-sample as the initial value.
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I construct bootstrapped sample of the dependent variable of the regression under

consideration by adding the bootstrapped sample of ŵt, denoted as ŵ∗t , to the fitted values

estimated under the null hypothesis. Finally, I run the regression using the bootstrapped

independent and dependent variables. The bootstrapped p-value for some t-statistic, t, is

taken as the fraction of the same statistics in the bootstrapped samples, denoted as t∗, sat-

isfying | t∗ |>| t |. Similarly, the p-value for some F-statistic, F, is taken as the proportion

in the bootstrapped samples satisfying F∗ > F.

I generate 1,000 bootstrapped samples for statistical inferences.
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Tables and Figures

Table 1.1: Summary Statistics
AR(1) Coefficient Phillips-Perron p-Value

Panel A: Daily Changes of log-Federal Funds Futures

1-Month Ahead 0.0630 < 0.01

2-Month Ahead 0.0141 < 0.01

3-Month Ahead 0.0105 < 0.01

4-Month Ahead 0.0075 < 0.01

5-Month Ahead 0.0209 < 0.01

6-Month Ahead 0.0173 < 0.01

Panel B: State Variables

Level 0.9991 0.9221

Slope 0.9988 0.6065

Curvature 0.9939 0.0475

TYVIX 0.9879 < 0.01

Business Condition 0.9994 0.4193

Notes: AR(1) coefficients and p-values of Phillips-Perron (1988) unit root tests.

Table 1.2: In-Sample R2s of Fitted log-Federal Funds Futures
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Moment #1 19.76% 13.27% 11.37% 11.46% 10.22% 9.98%

Moment #2 26.13% 44.15% 43.11% 40.31% 29.90% 20.89%

Moment #3 23.81% 50.98% 51.68% 51.07% 41.89% 22.07%

Moment #4 20.77% 53.17% 53.32% 53.13% 48.21% 22.91%

Moment #5 0.91% 53.07% 53.29% 53.07% 46.62% 12.33%

Moment #6 15.40% 53.64% 53.58% 53.52% 52.29% 21.61%

Notes: Goodness-of-fit of the single-index estimators for the infinitesimal moments of federal funds futures.
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Table 1.3: Information Contents and Endogeneity of High-Frequency Monetary Shocks
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Panel A: Predictability of HF Monetary Shocks by Expected Daily Changes

Expected Changes in FFF 0.36**

(p =0.01)

0.25

(p =0.10)

0.29*

(p =0.08)

0.63***

(p =0.00)

0.82***

(p =0.00)

0.64***

(p =0.00)

Adjusted R2 5.20% 1.28% 2.29% 10.04% 13.16% 8.88%

Signal-to-Noise Ratio 0.06 0.02 0.03 0.12 0.16 0.11

Panel B: Predictability of HF Monetary Shocks by State Variables

State Variables (1.24,

p =0.29)

(1.12,

p =0.34)

(0.97,

p =0.43)

(1.08,

p =0.34)

(1.16,

p =0.28)

(1.22,

p =0.25)

Adjusted R2 1.10% 0.53% -0.13% 0.35% 0.74% 0.98%

Signal-to-Noise Ratio 0.06 0.05 0.05 0.05 0.06 0.06

Panel C: Predictability of HF Monetary Shocks by Expected Daily Changes, Conditional on State Variables

Expected Changes in FFF 0.39**

(p =0.03)

0.29*

(p =0.07)

0.29*

(p =0.09)

0.65**

(p =0.01)

0.80***

(p =0.00)

0.60**

(p =0.02)

Adjusted R2 6.60% 2.38% 2.01% 10.39% 12.81% 8.55%

Signal-to-Noise Ratio 0.13 0.08 0.08 0.18 0.21 0.16

Panel D: Predictability of HF Monetary Shocks by Index of State Variables

Expected Changes in FFF 0.00

(p =0.50)

0.00

(p =0.31)

0.00

(p =0.75)

0.00

(p =0.86)

0.00

(p =0.77)

0.00

(p =0.74)

Adjusted R2 -0.33% -0.84% -0.84% -0.90% -0.85% -0.84%

Signal-to-Noise Ratio 0.01 0.00 0.00 0.00 0.00 0.00

Panel E: Predictability of Unexpected Changes in FFF, All Days

State Variables (4.09,

p =0.46)

(15.47,

p =0.46)

(16.47,

p =0.47)

(16.02,

p =0.46

(12.08,

p =0.46)

(9.70,

p =0.48)

Adjusted R2 0.40% 1.86% 1.98% 1.92% 1.43% 1.12%

Signal-to-Noise Ratio 0.01 0.02 0.02 0.02 0.02 0.01

Panel F: Predictability of Unexpected Changes in FFF, FOMC Days

State Variables (0.68,

p =0.50)

(2.71,

p =0.49)

(2.40,

p =0.48)

(2.16,

p =0.46)

(2.00,

p =0.44)

(2.19,

p =0.44)

Adjusted R2 -1.50% 7.32% 6.10% 5.09% 4.44% 5.21%

Signal-to-Noise Ratio 0.03 0.13 0.12 0.10 0.10 0.11

Notes: Panel A – predictive regressions of high-frequency (HF) changes in federal funds futures (FFFs) within a
30-minute window bracketing each FOMC announcement on expected daily changes in FFFs on FOMC announcement
days, where the slope coefficients and the p-values are reported. Panel B – predictive regressions of HF changes on
values of the state variables the days before, where the F-statistics along with the p-values are reported in brackets.
Panel D – Predictive regressions of HF changes on estimated index of state variables, where the slope coefficients are
reported. Panel E – predictive regressions of unexpected daily changes in FFF on the state variables over entire sample,
where the F-statistics are reported in brackets. Panel F – same as in Panel E except the regressions are conducted over
FOMC announcement days only. All significance levels are calculated from the boostrap procedure outlined in
Appendix C.

“***”: Significance at 1% level; “**”: Significance at 5% level; “*”: Significance at 10% level.
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Table 1.4: Robustness Check - Pre-Zero-Lower-Bound Sample
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Panel A: Predictability of HF Monetary Shocks by Expected Daily Changes

Expected Changes in FFF 0.24

(p =0.35)

0.89***

(p =0.00)

0.97***

(p =0.00)

0.67***

(p =0.00)

0.56**

(p =0.01)

0.72***

(p =0.00)

Adjusted R2 -0.34% 19.35% 47.55% 14.30% 11.40% 16.81%

Signal-to-Noise Ratio 0.02 0.26 0.94 0.19 0.15 0.23

Panel B: Predictability of HF Monetary Shocks by State Variables

Expected Changes in FFF (0.74,

p =0.64)

(1.06,

p =0.41)

(1.39,

p =0.25)

(1.34,

p =0.28)

(1.12,

p =0.37)

(0.96,

p =0.46)

Adjusted R2 -2.47% 0.59% 3.52% 3.13% 1.13% -0.40%

Signal-to-Noise Ratio 0.08 0.11 0.14 0.14 0.12 0.10

Panel C: Predictability of HF Monetary Shocks by Expected Daily Changes, Conditional on State Variables

Expected Changes in FFF 0.54

(p =0.12)

0.92***

(p =0.00)

0.91***

(p =0.00)

0.67**

(p =0.01)

0.54**

(p =0.03)

0.70***

(p =0.00)

Adjusted R2 2.04% 21.84% 46.09% 17.02% 11.01% 14.83%

Signal-to-Noise Ratio 0.15 0.44 1.09 0.36 0.27 0.32

Panel D: Predictability of HF Monetary Shocks by Index of State Variables

Expected Changes in FFF -0.00

(p =0.79)

-0.00

(p =0.39)

-0.00

(p =0.55)

-0.00

(p =0.45)

-0.00

(p =0.36)

-0.00

(p =0.48)

Adjusted R2 -1.80% -0.45% -1.19% -0.01 -0.16% -0.84%

Signal-to-Noise Ratio 0.00 0.01 0.01 0.01 0.02 0.01

Panel E: Predictability of Unexpected Changes in FFF, All Days

State Variables (1.42,

p =0.76)

(1.61,

p =0.75)

(0.60,

p =0.78)

(0.48,

p =0.76)

(0.26,

p =0.76)

(0.40,

p =0.74)

Adjusted R2 0.14% 0.21% -0.13 -0.18% -0.25% -0.20%

Signal-to-Noise Ratio 0.00 0.01 0.00 0.00 0.00 0.00

Panel F: Predictability of Unexpected Changes in FFF, FOMC Days

State Variables (0.48,

p =0.39)

(2.16,

p =0.79)

(1.29,

p =0.73)

(1.30,

p =0.83)

(1.58,

p =0.34)

(0.80,

p =0.81)

Adjusted R2 -5.25% 10.06% 2.75% 2.81% 5.26% -1.91%

Signal-to-Noise Ratio 0.05 0.23 0.14 0.14 0.17 0.09

Notes: Same empirical exercises as in Table 1.3 using subsample prior to zero-lower-bound period. See notes for Table

1.3 for more details.
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Table 1.5: Robustness Check - Using Bandwidths Five Times of Optimal Values
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Panel A: Predictability of HF Monetary Shocks by Expected Daily Changes

Expected Changes in FFF 0.90**

(p =0.01)

1.77***

(p =0.00)

0.96***

(p =0.00)

1.51***

(p =0.00)

0.32**

(p =0.04)

0.94***

(p =0.00)

Adjusted R2 12.33% 36.10% 23.06% 40.67% 3.65% 30.26%

Signal-to-Noise Ratio 0.15 0.58 0.31 0.70 0.05 0.45

Panel C: Predictability of HF Monetary Shocks by Expected Daily Changes, Conditional on State Variables

Expected Changes in FFF 0.90***

(p <0.01)

1.83***

(p =0.00)

0.97***

(p =0.00)

1.54***

(p =0.00)

0.32**

(p <0.05)

0.92***

(p =0.00)

Adjusted R2 13.28% 36.34% 20.72% 39.51% 4.23% 30.35%

Signal-to-Noise Ratio 0.22 0.66 0.33 0.75 0.10 0.52

Panel D: Predictability of HF Monetary Shocks by Index of State Variables

Expected Changes in FFF 0.00*

(p =0.07)

0.00*

(p =0.09)

0.00

(p =0.17)

0.00

(p =0.21)

0.00

(p =0.18)

0.00

(p =0.13)

Adjusted R2 2.02% 1.69% 0.99% 0.70% 1.06% 1.52%

Signal-to-Noise Ratio 0.03 0.03 0.02 0.02 0.02 0.02

Panel E: Predictability of Unexpected Changes in FFF, All Days

State Variables (5.29,

p =0.46)

(7.41,

p =0.43)

(7.73,

p =0.41)

(7.65,

p =0.42)

(6.03,

p =0.42)

(6.51,

p =0.41)

Adjusted R2 0.56% 0.83% 0.87% 0.86% 0.65% 0.71%

Signal-to-Noise Ratio 0.01 0.01 0.01 0.01 0.01 0.01

Panel F: Predictability of Unexpected Changes in FFF, FOMC Days

State Variables (0.55,

p =0.56)

(1.96,

p =0.47)

(0.83,

p =0.46)

(1.42,

p =0.50)

(0.82,

p =0.47)

(1.16,

p =0.46)

Adjusted R2 -2.12% 4.24% -0.79% 1.89% -0.84% 0.01

Signal-to-Noise Ratio 0.03 0.09 0.04 0.07 0.04 0.06

Notes: Same empirical exercises as in Table 1.3 except using bandwidths five times of their optimal values selected by

the method outlined in Appendix B. See notes for Table 1.3 for more details.
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Table 1.6: Robustness Check - Using Median Bandwidth across Horizons
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Panel A: Predictability of HF Monetary Shocks by Expected Daily Changes

Expected Changes in FFF 0.59***

(p =0.00)

0.17

(p =0.23)

0.19

(p =0.21)

0.60***

(p <0.01)

0.81***

(p =0.00)

0.63***

(p =0.00)

Adjusted R2 15.01% 0.27% 0.45% 8.18% 12.94% 7.85%

Signal-to-Noise Ratio 0.19 0.01 0.01 0.10 0.16 0.10

Panel C: Predictability of HF Monetary Shocks by Expected Daily Changes, Conditional on State Variables

Expected Changes in FFF 0.90***

(p <0.01)

1.83***

(p =0.00)

0.97***

(p =0.00)

1.54***

(p =0.00)

0.32**

(p <0.05)

0.92

(p =0.00)

Adjusted R2 13.28% 36.34% 20.72% 39.51% 4.23% 30.35%

Signal-to-Noise Ratio 0.22 0.66 0.33 0.75 0.10 0.52

Panel D: Predictability of HF Monetary Shocks by Index of State Variables

Expected Changes in FFF 0.00*

(p =0.07)

0.00*

(p =0.09)

0.00

(p =0.17)

0.00

(p =0.21)

0.00

(p =0.18)

0.00

(p =0.13)

Adjusted R2 2.02% 1.69% 0.99% 0.70% 1.06% 1.52%

Signal-to-Noise Ratio 0.03 0.03 0.02 0.02 0.02 0.02

Panel E: Predictability of Unexpected Changes in FFF, All Days

State Variables (5.29,

p =0.46)

(7.41,

p =0.43)

(7.73,

p =0.41)

(7.65,

p =0.42)

(6.03,

p =0.42)

(6.51,

p =0.41)

Adjusted R2 0.56% 0.83% 0.87% 0.86% 0.65% 0.71%

Signal-to-Noise Ratio 0.01 0.01 0.01 0.01 0.01 0.01

Panel F: Predictability of Unexpected Changes in FFF, FOMC Days

State Variables (0.55,

p =0.56)

(1.96,

p =0.47)

(0.83,

p =0.46)

(1.42,

p =0.50)

(0.82,

p =0.47)

(1.16,

p =0.46)

Adjusted R2 -2.12% 4.24% -0.79% 1.89% -0.84% 0.71%

Signal-to-Noise Ratio 0.03 0.09 0.04 0.07 0.04 0.06

Notes: Same empirical exercises as in Table 1.3 except bandwidth for each horizon is taken as the median of the optimal

bandwidths across horizons. See notes for Table 1.3 for more details.
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Table 1.7: Robustness Check - Using First Differences of State Variables
1 Month

Ahead

2 Months

Ahead

3 Months

Ahead

4 Months

Ahead

5 Months

Ahead

6 Months

Ahead

Panel A: Predictability of HF Monetary Shocks by Expected Daily Changes

Expected Changes in FFF -0.42

(p =0.11)

0.71

(p =0.16)

0.65

(p =0.43)

0.22

(p =0.71)

0.82

(p =0.35)

0.29

(p =0.68)

Adjusted R2 1.81% 0.60% -0.40% -0.84% -0.00% -0.83%

Signal-to-Noise Ratio 0.03 0.02 0.01 0.00 0.01 0.00

Panel C: Predictability of HF Monetary Shocks by Expected Daily Changes, Conditional on State Variables

Expected Changes in FFF -0.48*

(p =0.06)

0.20

(p =0.68)

1.36

(p =0.14)

0.49

(p =0.44)

1.26

(p =0.11)

0.68

(p =0.40)

Adjusted R2 7.33% 6.21% 0.09 4.19% 2.84% 0.95%

Signal-to-Noise Ratio 0.14 0.13 0.16 0.11 0.09 0.07

Panel D: Predictability of HF Monetary Shocks by Index of State Variables

Expected Changes in FFF 0.00

(p =0.37)

0.01

(p =0.33)

0.00

(p =0.61)

0.00

(p =0.80)

-0.00

(p =0.86)

-0.00

(p =0.93)

Adjusted R2 -0.30% -0.15% -0.74% -0.88% -0.91% -0.93%

Signal-to-Noise Ratio 0.01 0.01 0.00 0.00 0.00 0.00

Panel E: Predictability of Unexpected Changes in FFF, All Days

State Variables (1.28,

p =0.46)

(2.94,

p =0.52)

(1.11,

p =0.52)

(2.48,

p =0.48)

(0.88,

p =0.51)

(0.90,

p =0.57)

Adjusted R2 0.04% 0.26% 0.01% 0.19% -0.02% -0.00

Signal-to-Noise Ratio 0.00 0.00 0.00 0.00 0.00 0.00

Panel F: Predictability of Unexpected Changes in FFF, FOMC Days

State Variables (1.01,

p =0.40)

(1.75,

p =0.60)

(1.16,

p =0.61)

(1.37,

p =0.66)

(1.73,

p =0.46)

(2.06,

p =0.44)

Adjusted R2 0.06% 3.37% 0.76% 1.70% 3.28% 4.68%

Signal-to-Noise Ratio 0.05 0.09 0.06 0.07 0.08 0.10

Notes: Same empirical exercises as in Table 1.3 using first differences of the state variables used previously as the new

set of state variables. See notes for Table 1.3 for more details.
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Figure 1.1: First Differences of Federal Funds Futures and Their Unexpected Components
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Chapter 2: Unspanned Monetary Shocks in the Yield Curve

I Introduction

Identifying forecastable components in bond risk premia is a central problem in fi-

nance and macroeconomics. A predominant view in the literature is that the cross section

of the yield curve, which is effectively spanned by its first three principal components,

contains all available information necessary to forecast bond yields (Bauer and Hamilton,

2018). A large literature, however, has been looking at macroeconomic variables that pre-

dict bond yields beyond information in the yield curve. Among others, Ludvigson and

Ng (2009) identify common factors in a large panel of US macroeconomic variables using

dynamics factor analysis, and find that these common factors exhibit strong forecasting

power on bond risk premia conditional on the Cochrane-Piazzesi (2005) yield curve fac-

tor, and account for a large fraction of the business cycle variations in long-term Treasury

yields. Joslin, Priebsch, and Singleton (2014) develop an affine term structure model in

which real economic activities and inflation drive the market prices of yield curve risk

factors. Cieslak and Povala (2015) find that a measure of trend inflation has strong fore-

casting power on bond excess returns. Variables that exhibit such forecasting power on top

of information contained in the yield curve are commonly termed as “unspanned factors”.

Whether these macro factors are truly unspanned is still left open to debate. Specif-

ically, Bauer and Hamilton (2018) argue that the overlapping nature of the excess returns
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coupled with the high persistence of the yield curve factors can lead to severe size distor-

tion. After taking this into account by a bootstrap procedure, they find that these so called

unspanned macro factors documented in the literature have little additional forecasting

power conditional on the first three principal components of the yield curve.

Given that monetary policy is a major disturbance to the economy, a natural question

to ask is whether unexpected news about future monetary policy, which I term as “mon-

etary shocks”, is unspanned, and whether its forecasting power is robust to unspanned

macro factors. To avoid the econometric complications caused by the overlapping nature

of bond excess returns, I instead look into Treasury carry trade strategies that buy a long-

maturity bond and borrow from a short-maturity bond by equal amount, and unwind the

positions one day later, whose returns are serially uncorrelated by construction. Follow-

ing the literature on high-frequency identification of monetary shocks pertaining to FOMC

announcements (e.g. Kuttner, 2001; Cochrane and Piazzesi, 2002; Hanson and Stein, 2015),

I measure monetary shocks as the daily changes in federal funds futures (FFFs).

I find that monetary shocks exhibit both statistically and economically significant

forecasting power on Treasury carry trade returns across a variety of maturity pairs on top

of information contained in the cross section of bond yields. Morever, such forecasting

power can be effectively summarized by a single factor constructed from changes in the

first 24 FFFs, which is not specific to each maturity pair. The forecasting power of the single

factor is robust to macro factors à la Ludvigson and Ng (2009).

The remainder of this chapter is organized as follows. Section 2 outlines the econo-

metric framework that bypasses the critique of Bauer and Hamilton (2018). Section 3 dis-

cusses the data and results. Finally, Section 4 concludes.
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II Econometric Framework

The literature on bond risk premia predictability almost entirely focuses on strategies

that buy one unit of n-period bond at time t and sell it at time t + k as one unit of (n− k)-

period bond, meanwhile financing this position by borrowing at the k-period bond yield.

This is equivalent to a k-period forward contract on one unit of (n− k)-period bond. De-

note the time-t price of an n-period zero coupon bond as P(n)
t , and the corresponding yield

as y(n)t ≡ − 1
n log P(n)

t . The excess return of this strategy is

rx(n)t+k ≡ − (n− k) y(n−1)
t+k + ny(n)t − ky(k)t (2.1)

which I shall refer to as “bond excess return”. The spanning hypothesis asserts that the

cross section of yield curve contains all information available for forecasting future bond

yields. This is conventionally tested by regressing rx(n)t+k on the suggested variable(s) that

may contain additional return-forecasting information while controlling for variables that

are supposed to span the cross section of yield curve. An econometric complication, as is

argued by Bauer and Hamilton (2018), is that the overlapping nature of the excess return

rx(n)t+k coupled with the high persistence of the control variables can result severe finite-

sample distortion, leading to spuriously large t-value(s) of the additional variable(s) to be

tested as well as spurious increase in R2. Such distortion may persist even if the variables

are cointegrated, and cannot be corrected by HAC estimators that take into account serial

correlation in the error term. They thus suggest using a bootstrap procedure for statistical

inference.

I instead avoid this problem by looking at the predictability of Treasury “carry trade”

returns at daily frequency, which are strategies in the line of, say, buying an n1-month bond
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and financing it by borrowing at the n2-month interest rate with n2 < n1 on day t, and

then unwinding these positions one day later. Let ∆ ≡ 1/21 denote the time interval of

one trading day, and t be in monthly unit. The realized return is

rx+n1/−n2
t+∆ ≡ − (n1 − ∆) y(n1−∆)

t+∆ + n1y(n1)
t+∆ + (n2 − ∆) y(n2−∆)

t+∆ − n2y(n2)
t+∆ (2.2)

which, unlike the conventional measure rx(n)t+k, is nonoverlapping. Note that any excess

return in the form of equation (2.1) can be approximated by some nonoverlapping return

as in equation (2.2), and thus testing the predictability of daily Treasury carry trades is

equivalent to testing that of bond excess returns with much longer holding periods, except

now without the econometric complication. For example, the excess return of holding a

two-year bond for one year, rx(24)
t+12, can be replicated by the cumulative return of a carry

trade of buying a 24-month bond and selling a 12-month bond on the first day, a carry

trade of buying a (24− ∆)-month bond and selling a (11− ∆)-month on the second day,

etc. such that

rx(24)
t+12 = rx+24/−12

t+∆ + rx+23/−11
t+2∆ + · · · + rx+13/−1

t+12 (2.3)

'
21

∑
s=1

rx+18/−6
(t+1)+(s−1)∆ (2.4)

The approximation (2.4) is a result of the fact that yields of adjacent maturities are similar

so that on average the cumulative return of the long legs of the terms on the RHS of equa-

tion (2.3) is equal to the 12-month cumulative return of repeatedly holding a 18-month

bond for one day, which also applies to the short legs. I look at five maturity pairs with

(n1, n2) = (12-month, 6-month), (18-month, 12-month), (24-month, 18-month), (30-month,

24-month) or (36-month, 30-month). Forecasts of the returns of any other maturity pairs
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in-between can be conveniently inferred from these these five benchmark cases. For exam-

ple, forecast of the returns at the (18-month, 6-month) horizon is the sum of the forecasts

of the (12-month, 6-month) and (18-month, 12-month) returns.

Let Xt be the vector of state variables spanning the cross section of the yield curve,

which is to be specified in the following, and ∆ f (n)t be the daily change in the n-th FFF

from t− ∆ to t. I take ∆ f (n)t as the measure of monetary shocks and run the regression

rx+n1/−n2
t+∆ = α+n1/−n2 + β+n1/−n2 ∆Ft + γ+n1/−n2 Xt + ε

+n1/−n2
t+∆ (2.5)

for each maturity pair (n1, n2), where ∆Ft ≡
(

∆ f (1)
t · · · ∆ f (24)

t

)′
. The null hypothesis

that monetary shocks have no forecasting power on bond yields on top of the information

already priced in the current yield curve is thus H0 : β+n1/−n2 = 0. Under the null hypothe-

sis, all the serial correlation in rx+n1/−n2
t+∆ net of measurement errors is captured by the time

series behavior of Xt. Morever, the fact that rx+n1/−n2
t+∆ is nonoverlapping means that the

measurement errors do not accumulate over time. Thus, the error term ε
+n1/−n2
t+∆ is serially

uncorrelated under the null hypothesis.

The set of control variables Xt is commonly taken as the first three principal com-

ponents of bond yields, which are termed as the level, slope and curvature factors (e.g.

Bauer and Hamilton, 2018). It is widely documented that they almost entirely explain

the cross sectional variations of the yield curve (e.g. Litterman and Scheinkman, 1991).

This naturally raises the critique that the additional forecasting power found within the

new variable(s) may merely come from the principal components that are left out. I ad-

dress this critique by taking Xt as the collection of five out of the ten bond yields used to

construct the returns of the five maturity pairs (n1, n2), namely the 6-month, 12-month, 18-
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month, 24-month, 30-month and 36-month bond yields. The (6− ∆)-month yield is very

similar to the 6-month yield and is thus excluded. The same applies to the (12− ∆)-month,

(18− ∆)-month, (24− ∆)-month, (30− ∆)-month and (36− ∆)-month yields.

III Data and Results

I use the US Treasury yield dataset assembled by Gürkaynak, Sack, and Wright

(2007), which is published and updated daily on the New York Fed website. They fit the

daily yield curve using the Svensson (1994) method and report the estimated parameters

for each day. I use these parameters to interpolate the yields needed to construct the daily

returns of Treasury carry trades. The FFF data for the first 24 months are downloaded from

Bloomberg.1 To form a balanced panel, I take December 8, 2004 as the start of the sample.

The sample ends on May 18, 2018.

Figure 2.1 plots the time series of the five carry trade returns. As expected, they

are more tranquil in the zero-lower-bound (ZLB) period due to the expansionary mone-

tary policy implemented at an immense scale, making them easier to predict. As a result,

wherever possible I repeat the empirical exercises in the following over the ZLB period,

non-ZLB period and full sample, respectively, for robustness check.

III.I Unspanned Monetary Shocks in the Yield Curve

Table 2.1 summarizes the results for regressions (2.5), where Wald test is conducted

to test against the null hypotheis that β+n1/−n2 = 0 for each maturity pair (n1, n2). The null

hypothese are rejected at the 1% level across all maturity pairs and in all three different

sample periods, except the +30-month/-24-month and +36-month/-30-month horizons in

1The 25th to 36th FFF contracts were not available for trading until February 28, 2011. They are not
included in the dataset given the very short sample period they would otherwise result.
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the ZLB period. In the two exceptions, however, the results are still statistical significant

at the 5% and 10% levels, respectively. The results are not only statistically significant,

but also economically significant. In the full sample, the adjusted R2s for the +12-month/-

6-month and +18-month/-12-month horizons increase for more than 1% from 2.89% and

1.77%, respectively, compared with the baseline model including only the control variables

as independent variables. They also increase for about 50% of their baseline values for

the +24-month/-18-month and +30-month/-24-month horizons. In the ZLB period, the

adjusted R2s are more than doubled for all but the +30-month/-24-month horizon com-

pared with the baseline model. For the +30-month/-24-month horizon, it is nonetheless

almost doubled from 0.71% to 1.36%. In the non-ZLB period, the adjusted R2s increase for

about 1.7% from 2.16%-3.02% for the +12-month/-6-month, +18-month/-12-month and

+24-month/-18-month horizons, for about 1.4% from 2.37% for the +30-month/-24-month

horizon, and for about 0.9% from 2.39% for the +36-month/-30-month horizon. These are

strong evidences that monetary shocks as identified from FFFs are unspanned factors, and

have strong influences on the variations of the yield curve.

Figure 2.2 plots the values of the slope coefficients β+n1/−n2 for each maturity pair

(n1, n2). While there is some heterogeneity at the short end in full sample and non-ZLB

period, and at the 6th to 7th horizons as well as the long end in the ZLB period, the slope

coefficients β+n1/−n2 are largely proportional across maturity pairs. This suggests that there

is a single factor in the cross section of monetary shocks, which counts for a large pro-

portion of the additional forecasting power of monetary shocks for each maturity pair.

Following Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009), I construct such

a single return-forecasting factor, MPt, by regressing the average of the returns of differ-

ent maturity pairs, r̄xt ≡ 1
5 ∑(n1 , n2) rx+n1/−n2

t , on the same set of independent variables in
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model (2.5), and taking the proportion of the fitted value due to monetary shocks as the

new factor. I.e.

r̄xt+∆ = ᾱ + β̄∆Ft + γ̄Xt + ε̄t+∆ (2.6)

MPt ≡ ˆ̄β∆Ft (2.7)

where ˆ̄β denotes the OLS estimate of β̄. To evaluate the empirical performance of MPt, I

run predictive regression

rx+n1/−n2
t+∆ = α

+n1/−n2
MP + β

+n1/−n2
MP MPt + γ

+n1/−n2
MP Xt + ε

+n1/−n2
MP, t+∆ (2.8)

The results are reported in the columns named “Model 2” in Table 2.1. The slope coef-

ficients β
+n1/−n2
MP are significant at the 1% level for all maturity pairs and in all the three

different sample periods. The adjusted R2s see small increases compared with the results

for model (2.5) taking individual monetary shocks as predictive variables. These confirm

the conjecture that the joint forecasting power of ∆Ft is effectively summarized in a single

factor.

This, however, does not imply that the entirety of the forecasting power of ∆Ft is

captured by MPt, which amounts to the hypothesis that the matrix of slope coefficients for

model (2.5) across maturity pairs, β ≡
(

β+12/-6 · · · β+36/-30

)
, is of rank one, which

corresponds to the collection of linear constraints (e.g. Hansen and Hodrick, 1983; Camp-

bell, 1987; Cochrane and Piazzesi, 2005)

β1, 1

βi, 1
=

β1, 2

βi, 2
= · · · =

β1, 24

βi, 24
, for i = 1, . . . , 5 (2.9)
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where βi, j denotes the (i, j)-th element of β. Allowing both cross-sectional correlation and

heteroskedasticity between equations, I test the null hypothesis (2.9) using Wald statistic

in each sample period, which is asymptotically Chi-squared distributed with 92 degrees of

freedom. As is shown in Panel F of Table 2.1, the resulting Wald statistics all have p-values

being effectively zero across the three sample periods.

III.II Robustness to Unspanned Macro Factors

A large class of unspanned factors documented in the literature is macro variables

(e.g. Ludvigson and Ng, 2009; Joslin, Priebsch, and Singleton, 2014). Given the strong

impacts of monetary policy on the economy, it is quite possible that there is significant

amount of overlap between the monetary factor MPt and macro factors. On the other

hand, monetary policy affects the economy with some lag, suggesting that there may be

sizeable information in MPt that has not yet been incorporated by macro variables at time

t. The objective of this section is to test whether MPt contains extra unspanned return-

forecasting information on top of macro factors.

I choose the set of factors studied by Ludvigson and Ng (2009) as it nests macro vari-

ables studied in other research. The set of macro variables in Ludvigson and Ng (2009)

are constructed from the FRED-MD dataset, which includes time series of 134 macro vari-

ables of the US economy at monthly frequency. Following their procedure, I first estimate

a factor model for the entire panel using principal component analysis, and determine the

appropriate number of factors to include using the information criterion developed by Bai

and Ng (2002). Denote the set of factors chosen by the information criterion as LN, and the

vector containing the j-th order of each element in LN as LN j. For each return process, say

rx+n1/−n2
t , I conduct forward variable selection based on BIC criterion for the regression at
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monthly frequency

rx+n1/−n2 = φ+n1/−n2 + LNθ
+n1/−n2
1 + LN2θ

+n1/−n2
2 + LN3θ

+n1/−n2
3 + ε+n1/−n2 (2.10)

where the monthly values of rx+n1/−n2
t are taken as its value on the last trading day of each

month, and the higher-order terms are included to capture potential nonlinearity in the

relationship. I denote the replicated factors chosen from LN, LN2 and LN3 by the variable

selection procedure collectively as LN+n1/−n2 .

Given the relatively short time span of my dataset, simply rolling all daily variables

to monthly frequency may leave too few observations to conduct meaningful statistical

inferences. I instead adopt the mixed frequency Granger causality test à la Ghysels, Hills,

and Motegi (2016), which takes the values of MP over the last k trading days within month

m, M̃Pm =
(

MPm MPm−∆ · · · MPm−(k−1)∆

)′
, into the monthly regression

rx+n1/−n2
m+1 = α̃

+n1/−n2
MP + β̃

+n1/−n2
MP M̃Pm + γ̄

+n1/−n2
MP Xm + θ̃

+n1/−n2
MP LN+n1/−n2

m + ε̃
+n1/−n2
MP, m+1 (2.11)

The null hypothesis is H0 : β̃
+n1/−n2
MP = 0, which can be examined by Wald test. I take k = 15

(i.e. three trading weeks). Compared with rolling all variables to lower frequency and then

running OLS, this test also utilitzes high-frequency information and is less vulnerable to

misspecification.

The results are summarized in Table 2.2. Across all maturity pairs +n1/−n2, the

Wald statistics for the joint significance of the 15 daily lags of the single monetary variable

are significant at the 1% level.
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IV Conclusions

By focusing on the return-forecastability of Treasury carry trade returns, I resolve

the econometric complication caused by the overlapping nature of bond excess returns,

a problem that underlies most of the literature on bond return predictability. I find that

monetary shocks, which are proxied by daily changes in FFFs, have additional forecasting

power on bond yields on top of information contained in the cross section of the yield

curve. Such forecasting power is effectively captured by a single factor, and is robust to

unspanned macro factors.

The fact that such a single monetary factor is unspanned by the cross section of

Treasury yields may or may not be a result of irrational behaviors of investors. It is possible

that investors are aware of this monetary policy factor, but do not wish to be exposed to

it. If the disutility of exposure to this factor exactly cancels out the utility of exploiting it to

better forecast bond returns, then it is not priced in the Treasury market. In other words,

while the monetary policy factor does not Granger cause the yield curve factors in the risk-

neutral measure, it does Granger cause them in the physical measure. A setting like this

can be effectively realized in the reduced-form affine term structure model developed by

Joslin, Priebsch, and Singleton (2014).

While the literature in the past 15-20 years has been adopting high-frequency changes

in FFFs as the standard measure of monetary shocks, one potential problem is that these

changes may have forecastable components, making them endogeneous and thus invalid

measure. In fact, in Chapter 1, I find that changes in the first six FFFs in a 30-minute

window bracketing each FOMC announcement are strongly forecastable by information

in the yield curve, Treasury yield volatility and real business conditions. Subsequent re-
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search may reexamine the findings documented in this research using alternative measure

of monetary shocks that do not contain such endogeneous information.
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Tables and Figures

Table 2.1: Predictability of Treasury Carry Trade Returns
Full Sample ZLB Period Non-ZLB Period

Baseline Model 1 Model 2 Baseline Model 1 Model 2 Baseline Model 1 Model 2

Panel A: +12-Month/-6-Month Horizon

∆Ft (6.16)*** (3.28)*** (3.71)***

∆MPt 0.99***

(0.13)

0.56***

(0.08)

0.96***

(0.17)

Adjusted

R2

2.89% 4.35% 4.48% 1.31% 4.21% 4.01% 3.02% 4.71% 4.86%

Panel B: +18-Month/-12-Month Horizon

∆Ft (4.24)*** (2.66)*** (3.20)***

∆MPt 1.16***

(0.17)

0.79***

(0.12)

1.50***

(0.20)

Adjusted

R2

1.77% 2.86% 3.19% 1.23% 3.00% 3.48% 2.16% 4.01% 4.22%

Panel C: +24-Month/-18-Month Horizon

∆Ft (3.59)*** (2.07)*** (3.19)***

∆MPt 1.89***

(0.19)

0.94***

(0.15)

1.19***

(0.21)

Adjusted

R2

1.46% 2.26% 2.64% 0.95% 2.02% 2.99% 2.26% 4.00% 4.26%

Panel D: +30-Month/-24-Month Horizon

∆Ft (3.05)*** (1.67)** (3.00)***

∆MPt 1.38***

(0.20)

1.03***

(0.17)

1.15***

(0.21)

Adjusted

R2

1.28% 1.75% 2.24% 0.71% 1.36% 2.64% 2.37% 3.73% 4.25%

Panel E: +36-Month/-30-Month Horizon

∆Ft (2.62)*** (1.46)* (2.68)***

∆MPt 1.06***

(0.21)

1.09***

(0.19)

1.08***

(0.20)

Adjusted

R2

1.19% 1.35% 1.96% 0.06% 0.98% 2.42% 2.39% 3.28% 4.10%
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Full Sample ZLB Period Non-ZLB Period

Panel F: Test on Single Factor Restriction across Horizons

Wald

Statistic

(428.71)*** (5732.28)*** (1861.06)***

Degree of

Freedom

92 92 92

Notes: Panels A-E - predictive regressions of daily Treasury carry trade returns on the collection of daily changes in the first 24
federal funds futures, ∆Ft, or on the single monetary factor ∆MPt, conditional on the 6-month, 12-month, 18-month, 24-month,
30-month and 36-month yields. For each test on the joint significance of ∆Ft, the Wald statistic is reported in brackets, which has 24
degrees of freedom. For each test on the significance of ∆MPt, point estimate of the slope coefficient is reported in the first line,
whereas the corresponding standard error is reported in brackets in the second line. Panel F - Wald tests on the restriction that the
slope coefficients of ∆Ft are proportional across horizons. The Wald statistics are reported in brackets.

“***”: Significance at 1% level; “**”: Significance at 5% level; “*”: Significance at 10% level.

Table 2.2: Robustness of Single Monetary Factor to Macro Factors, Full Sample
+12-Month/-6-

Month

+18-Month/-

12-Month

+24-Month/-

18-Month

+30-Month/-

24-Month

+36-Month/-

30-Month

Wald Statistic (5.34)*** (3.90)*** (3.35)*** (2.91)*** (2.58)***

Note: predictive regressions of end-of-month Treasury carry trade returns on the first 15 daily lags of monetary factor,
conditional on the Ludvigson-Ng (2009) macro factors and the 6-month, 12-month, 18-month, 24-month, 30-month and
36-month yields. For each maturity pair, Wald test on the joint significance of the lags of monetary factor is conducted.
The degree of freedom is 15. This procedure is in line with the mixed-frequency Granger causality test in Ghysels, Hills,
and Motegi (2016).

“***”: 1% significant; “**”: 5% significant; “*”: 10% significant.
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Figure 2.1: Time Series of Treasury Carry Trade Returns
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Figure 2.2: Slope Coefficients of Monetary Shocks across Horizons
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Chapter 3: Macro Factors in Currency Risk Premia and Cross-Country Differen-

tials in Risk Pricing

I Introduction

Currency trading strategies pursued by practitioners, such as carry trade and mo-

mentum, typically involve exploiting deviations from the well-known uncovered interest

rate parity (UIP). Such strategies can generate sizeable profit but are also subject to signif-

icant downside risk under periods of market stress.

While a large body of the literature has been focusing on explaining the occasional

crashes of carry trades, a phenomenon termed as the “peso problem” (e.g. Burnside,

Eichenbaum, and Rebelo, 2011), and on identifying risk factors determining the cross sec-

tion of currency returns (e.g. Ang and Chen, 2010; Lustig, Roussanov, and Verdelhan, 2011;

Menkhoff, Sarno, Schmeling, and Schrimpf, 2012), questions that have not been sufficiently

addressed are their time series predictability, as well as the underlying mechanism driving

such predictability. I investigate these problems through the lense of the risk premia of

zero-net investment strategies involving the US dollar and a foreign currency. Predictabil-

ity of carry trade returns involving, say, the Australian Dollar and Japanese Yen in the

long and the short legs, respectively, can be inferred from the difference between their re-

spective risk premia relative to the US dollar. Specifically, I study the predictive power of

macro factors on currency risk premia.
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It is shown under some minimalistic assumptions that currency risk premium is

predictable by a risk factor only if the domestic and the foreign economies assign different

market prices to that same underlying source of risk. This interesting connection is the mo-

tivation behind my focus on the predictability of currency risk premia. To incorporate as

much information about the global economy as possible, and meanwhile to minimize the

impact of measurement errors in individual variables and to avoid running into the curse

of dimensionality, I adopt dynamic factor analysis to effectively summarize the informa-

tion contained in a large number of time series variables by a small number of factors.

The method is applied to a dataset consisting of 129 macroeconomic variables of the US

economy at monthly frequency. Foreign variables that mimic the economic interpretations

of these US factors are then chosen to capture the foreign macroeconomic conditions. For

each currency and horizon, a variable selection scheme is conducted on some transfor-

mations of these variables, and then the resulting set of variables being chosen is used as

regressors in the predictive regression. To guard the results against finite sample distor-

tions as illustrated by Bauer and Hamilton (2018), a semiparametric bootstrap procedure

is conducted for statistical inferences.

Several interesting phenomena are observed. First, currency risk premia exhibit

strong long-horizon predictability. For each currency, as the maturity increases from 1

month to 12 months, more predictors are selected and are significant at the 5% level or

above, and the predictors that are selected and significant at shorter maturities tend to

stay selected and significant at longer maturities. This suggests that the pricing differen-

tials of macro risks become more prevalent at longer horizons. Moreover, the adjusted R2s

increase dramatically from 0-4% at 1-month maturity to 13-29% at 12-month maturity, sug-

gesting that a large proportion of the variation in currency risk premia at longer maturities
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are driven by macro risks. Second, conditional on the US factors being selected, foreign

variables seldom contribute to the predictability of currency risk premia, suggesting that

much of the return-forecasting information in the foreign variables is already incorporated

in the US factors.

The single most important predictor for currency risk premia is a US factor that loads

heavily on nominal interest rates, yield spreads, and measures of housing market activities.

It is significant at the 1% level at the 6-month and 12-month maturities across all currencies,

and at the 5% significance level or above at the 2-month and 3-month maturities for 4

currencies. Its predictive power is also nonlinear in that its higher-order transformations

are also selected and significant across various currencies and maturities. This is striking

in that no previous research has documented such a single source of risk that exhibits

uniform forecasting power across all currencies.

The strong in-sample predictability is preserved out-of-sample. To assess the out-

of-sample predictive power of the factors selected in-sample, the factor loadings and the

set of factors being selected for each currency and maturity are held the same as those

in the in-sample analyses, whereas the parameters in the predictive regressions are recur-

sively estimated. It it found that in 36 out of the 45 cases across different currencies and

maturities, the regression models generate lower mean squared prediction errors than the

baseline models that predict returns using their historic means. A formal statistical test

of the out-of-sample performance using the ENC-T statistic as in Clark and McCracken

(2001) is conducted and is significant at the 5% level or above in all but only 4 cases at the

3-month, 6-month and 12-month maturities across different foreign currencies.

Their out-of-sample predictive power becomes even stronger when estimations of

the factor loadings and the varaible selection procedures are also conducted recursively,
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which mimics the real-time implementation of these strategies. it is found that in 42 out

of the 45 cases the regression models generate lower mean squared prediction errors, and

the ENC-T statistics are significant at the 5% level or above in all but only 3 cases at the 3-

month, 6-month, and 12-month maturities. The reduction in root mean squared prediction

errors can be as high as 40% compared with the benchmark specifications.

While the literature devoted to currency returns is huge, this research differs from

others in either objective or methodology. While Ang and Chen (2010), Lustig, Roussanov

and Verdelhan (2011), and Menkhoff, Sarno, Schmeling, and Schrimpf (2012) put emphasis

on the cross section of carry trade returns, this research focuses on the time series dimen-

sion. Brunnermeier, Nagel, and Pedersen (2009) find that a higher level of VIX predicts

higher return of the long leg and lower return of the short leg of a carry trade. I also in-

clude VIX as a potential predictor in the dataset but do not put special emphasis on it.

Instead, I let the model decide which variables are more important. While Jordà and Tay-

lor (2012) tackle the same problem by focusing on exchange rate predictability in a vector

error correction model (VECM), this research focuses on the predictability of currency risk

premia and the role of macro factors. While Bakshi and Panayotov (2013) study the pre-

dictability of carry trade using three variables that capture the global financial conditions,

this research focuses on predictability of individual currencies and the roles of macroe-

conomic variables. The method of dynamic factor analysis has previously been used by

Ludvigson and Ng (2007), and Ludvigson and Ng (2009) to study the predictability of

equity and bond risk premia, respectively.

The remainder of this chapter is organized as follows. Section 2 fixates terminolo-

gies and notations, and develops a theoretic framework demonstrating how currency risk

premia emerge. Section 3 outlines the econometric framework for in-sample and out-of-
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sample analyses. Section 4 presents and discusses the empirical results. Finally, Section 5

concludes.

II Economic Origin of Currency Risk Premia

I take US Dollar (USD) as the domestic currency and study the risk premia of nine

commonly traded currencies, namely Australian Dollar (AUD), Canadian Dollar (CAD),

Swiss Franc (CHF), Deutsche Mark (DEM), British Pound (GBP), Japanese Yen (JPY), New

Zealand Dollar (NZD), Norwegian Krone (NOK) and Swedish Krona (SEK). Carry trade

on a pair of currencies purchases 1-USD worth of a high interest rate currency, say AUD,

to earn the h-period risk-free rate in Australia, and finances this position by selling 1-USD

worth of a low interest rate currency, say JPY, at the cost of the h-period risk free rate in

Japan. The return of this strategy is

R+AUD/−JPY
t, t+h = R+AUD/−USD

t, t+h − R+JPY/−USD
t, t+h (3.1)

where the plus (minus) sign in the superscript indicates which currency to buy (sell). I

shall formulate separate forecast of each term on the RHS, from which the return of the

overall strategy can be inferred. The return of such a strategy whose short leg involves the

domestic currency, USD, is

R+FCU/−USD
t, t+h =

SUSD/FCU
t+h

SUSD/FCU
t

R f ,FCU
t, t+h − R f

t, t+h (3.2)

where the gross return of the domestic zero-coupon bond with maturity h is denoted as

R f
t, t+h, that of the foreign zero-coupon bond of maturity h as R f ,FCU

t, t+h , and the spot exchange

rate, i.e. the dollar value of one foreign currency unit (FCU), as SUSD/FCU
t .
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Alternatively, this strategy can be implemented in the currency forward market. Let

FUSD/i
t, t+h denote the forward exchange rate of currency i, i.e. the exchange rate at which the

two parties in the contract agree to trade the underlying currency i at time t + h. Using the

covered interest rate parity (CIP),

FUSD/i
t, t+h

SUSD/i
t

R f ,i
t, t+h = R f

t, t+h (3.3)

it is straightforward to verify that the return (2) is porportional to that of a strategy that

enters one unit of the forward contract FUSD/i
t, t+h :

R̃+i/−USD
t, t+h =

SUSD/i
t+h

FUSD/i
t, t+h

=
SUSD/i

t+h

SUSD/i
t

R f ,i
t, t+h

R f
t, t+h

(3.4)

I define the corresponding yield as

rxi
t, t+h ≡

1
h

log
(

R̃+i/−USD
t, t+h

)
=

1
h

log

SUSD/i
t+h

SUSD/i
t

R f ,i
t, t+h

R f
t, t+h

 (3.5)

What determine the predictability of currency risk premia? Consider a simple model

featuring two countries, home and foreign. To simplify notations, for now I drop the su-

perscript of the spot exchange rate St, which is supposed to denote the dollar value of

one unit of the foreign currency. Suppose that the world economy is driven by a vector

of M state variables Xt, which follows some generic diffusion process under the physical

measure P. I.e.

dXt = γ(t, Xt)dt + η(t, Xt)dB (3.6)

where B is a vector of M × 1 independent Brownian motions that capture all sources of

uncertainty in the global economy, and the matrix η(t, Xt) has full rank. Denote the P-
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dynamics or the domestic riskless asset as

dR f
t

R f
t

= r(t, Xt)dt (3.7)

where r(t, Xt) is the short rate, then no-arbitrage condition implies that the stochastic dis-

count factor (SDF) of the domestic economy takes the form

dMt

Mt
= −r(t, Xt)dt− θ(t, Xt)′dB (3.8)

where θ(t, Xt) is the M × 1 vector of market prices of risk endowed in the state variables

Xt. These assumptions are minimal in that no specific restrictions on what exact processes

the state variables and the risk-free rate have to follow are placed.

The equivalent martingale measure of home, Q, is defined by the Radon-Nikodym

derivative dQ
dP
≡ MtR

f
t . Girsanov theorem implies that the dynamics of the state variables

under the Q measure is

dXt = [γ(t, Xt)− η(t, Xt)θ(t, Xt)] dt + η(t, Xt)dB (3.9)

The following expression of the market prices of risk then follows immediately:

θ(t, Xt) = η(t, Xt)−1
[

EP
t (dXt)− EQ

t (dXt)
]

(3.10)

where EP
t (·) denotes the expectation under the P measure conditional on all information

up to time t, and EQ
t (·) denotes that under the domestic Q measure.

Similarly, suppose that the foreign SDF follows the diffusion process
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dM∗t
M∗t

= −r∗(t, Xt)dt− θ∗(t, Xt)′dB (3.11)

where the foreign market prices of risk θ∗(t, Xt) are expressed as

θ∗(t, Xt) = η(t, Xt)−1
[

EP
t (dXt)− EQ∗

t (dXt)
]

(3.12)

and EQ∗
t (·) denotes the conditional expectation under the foreign Q measure.

Backus, Foresi, and Telmer (2001) first establish the result that in discrete time, the

assumption of market completeness implies that currency appreciation risk is equal to the

ratio of the underlying foreign and domestic SDFs. The continuous-time analog under the

setup presented here is

St =
M∗t
Mt

(3.13)

To see this, consider an asset that is traded both within both countries and across the bor-

der. Denote its price denominated in the foreign currency as P∗t , then its price denominated

in the domestic currency is Pt = StP∗t . No-arbitrage condition requires that MtPt and M∗t R∗t

are P-martingales, which implies that

EP

[
Mt+dt

Mt

Pt+dt

Pt

]
= 1 = EP

[
M∗t+dt
M∗t

St

St+dt

Pt+dt

Pt

]
(3.14)

Note that given any feasible domestic SDF Mt, the foreign SDF M∗t as defined by equation

(13) obviously satisfies (14). If the markets are dynamically complete, then the domestic

and the foreign SDFs are unique. Since equation (14) holds for any assets traded across the

border, equation (13) is the unique solution.
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The potential controversy is of course whether the markets really are dynamically

complete. While this assumption is appealing in that it simplifies many potential com-

plications and is widely adopted in the literature, in some occasions it is not fully in line

with the empirical findings. In fact, Backus, Foresi, and Telmer (2001) find that under the

assumption of market completeness, their model has the difficulty in accounting for the

empirical characteristics that the exchange rates are more volatile than the interest rates.

Anderson, Hammond, and Ramezani (2010) show that in addition to the canonical as-

sumptions of affine term structure models of interest rates (e.g. Dai and Singleton, 2000)

that the state variables evolve according to an affine diffusion under the equivalent mar-

tingale measure Q and that the short rate is an affine function of the state variables, if in

addition the log of the exchange rate is an affine function of the state variables, then equa-

tion (13) still holds. In the setup presented here, suppose that the exchange rate follows

some diffusion process under the P measure:

dSt

St
= µ(t, Xt)dt + σ(t, Xt)dB (3.15)

this set of assumptions translates to that the drift and diffusion terms of the state variables

and the exchange rate, γ(t, Xt), η(t, Xt), µ(t, Xt) and σ(t, Xt), and the domestic and foreign

short rates r(t, Xt) and r∗(t, Xt) are all affine functions of the state variables Xt. Equation

(13) under either set of assumptions has been widely adpoted in the fixed income and

international finance literature.

Given the focus of this research, I assume that equation (13) holds without entering

the debate of which set of assumptions is more realistic. The objective here is simply to

demonstrate that the risk-pricing-differential interpretation of currency risk premium pre-
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dictability holds in a very general context, for which it should be noted that both sets of

assumptions are quite generic and are applied to a large body of research.

Combining equations (8) and (10)-(13), it is possible to write the conditional expec-

tation of currency yield as in equation (5) as

EP
t
[
rx∗t,t+h

]
=

1
2

∫ t+h

t
η(s, Xs)−2

([
EP

t (Xs)− EQ
t (Xs)

]′ [
EP

t (Xs)− EQ
t (Xs)

]
−
[

EP
t (Xs)− EQ∗

t (Xs)
]′ [

EP
t (Xs)− EQ∗

t (Xs)
])

ds (3.16)

The discrete-time analog is

EP
t
[
rx∗t,t+h

]
=

1
2

η(t, Xt)−2
([

EP
t (Xt+h)− EQ

t (Xt+h)
]′ [

EP
t (Xt+h)− EQ

t (Xt+h)
]

−
[

EP
t (Xt+h)− EQ∗

t (Xt+h)
]′ [

EP
t (Xt+h)− EQ∗

t (Xt+h)
])

=
1
2

M

∑
m=1

[
θm(t, t + h, Xt)2 − θ∗m(t, t + h, Xt)2] (3.17)

where θm(t, t + h, Xt) is the domestic market price of risk of the state variable Xm at time

t + h. Similarly, θ∗m(t, t + h, Xt) denotes that in the foreign economy. Hence, any state vari-

able Xm exhibits predictive power on currency risk premium at time t only if it is priced

differently between the two countries, in which case the conditional mean of its future real-

ization under the domestic Q measure is different from that under the foreign Q∗ measure.

If no such variable exists, then currency risk premium is only driven by noise and thus

unpredictable. This implies that testing whether a macro variable has the same degree of

impact on home and foreign in terms of its shadow prices can be conducted by testing

whther it predicts the currency risk premium between the two countries.
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The problem here is of course that without further parametric assumptions, it is

impossible to tell whether a macro factor is priced differently merely from equation (17).

As a result, I undertake a reduced-form approach to tackle this problem, which is outlined

in the next section.

III Econometric Framework

III.I In-Sample Predictability

To start with, consider a regression of some currency risk premium, rxi
t,t+h, on a

set of N macro variables of the domestic and foreign economies denoted as Zt and Zi
t,

respectively:

rxi
t,t+h = αi + βi ′Zt + γi ′Zi

t + εi
t+h (3.18)

where i = 1, . . . , I is the index of foreign currencies. In principal, one would want to

include as many predictors as possible in order to take into account more relevant infor-

mation. But doing it in the naive way in which one simply puts these many predictors into

the regression will quickly run into the degrees-of-freedom problem as N increases, and

identification will eventually become infeasible as N becomes larger than the sample size

T. This is indeed the case in this research, where Zt consists of 129 US macro variables,

and Zi
t consists of 8 macro variables of foreign country i. Another concern is that macro

variables are in general imperfectly measured with a fair amount of noise. To deal with

these problems, I undertake the method of dynamic factor analysis by assuming that Zt

has a factor structure of the form:

Zt = λ′i f t + et (3.19)
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where ft is an r × 1 vector of latent common factors with r � N, λi is the corresponding

r × 1 factor loadings, and et is the vector of error terms. The crucial assumption here

is r � N so that substaintial dimension reduction can be achieved by replacing Zt with a

subset of factors PCt ⊂ ft. I follow common practice in the literature by estimating ft using

principal components analysis (PCA) on the panel of Zt, and choose the optimal number

of principal components (PCs) to keep using the panel information criterion developed by

Bai and Ng (2002).

It remains to narrow down a subset of factors P̂Ct from the estimated factors f̂t,

as well as a subset of foreign macroeconomic variables FPCi
t from Zi

t to include in the

predictive regression. This step is important in that it further reduces the problem of mul-

ticolinearity and overfitting, and in that factors that are pervasive in the panel of Zt and

Zi
t need not be important predictors of the currency risk premium. According to Stock

and Watson (2002), conducting such a variable selection scheme by minimizing the BIC

leads to the preferred set of predictors. To come up with such a suitable variable selection

scheme, several issues have to be taken care of. First, while by construction the variables

in f̂t are orthogonal to each other, they may still be correlated with the foreign variables

Zi
t. Thus, variable selection should be conducted among the factors in f̂t. Second, while

Zt is a balanced panel, the foreign variables are not and in general span shorter periods of

time. Thus, variable selection should be conducted among f̂t first in order to fully exploit

their predictive power. Finally, to capture any possible nonlinear effect, variable selection

is also conducted on the second and third order terms of the domestic and foreign factors.

The resulting variable selection scheme is as follows:

1. Choose a subset of f̂t using stepwise variable selection routine such that the BIC

value of the regression of rxi
t,t+h on this chosen subset, P̂Ct, is mininal;
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2. Keeping the set of variables chosen in step 1, P̂Ct, choose a subset of Zi
t in the same

way as in step 1;

3. Keeping the set of variables chosen in steps 1 and 2, P̂Ct and FPCi
t, choose among

the second and third order terms of P̂Ct and FPCi
t in the same way as in step 1.

Denote the chosen sets of second and third order terms of P̂Ct as P̂C2t and ˆPC3t, and those

of FPCi
t as FPC2i

t and FPC3i
t, respectively. The resulting predictive regression is

rxi
t,t+h = αi + βi

1
′P̂Ct + βi

2
′ ˆPC2t + βi

3
′ ˆPC3t + γi

1
′FPCi

t + γi
2
′FPC2i

t + γi
3
′FPC3i

t + εi
t+h (3.20)

It is shown in Bai and Ng (2006) that as N, T → ∞ with
√

T/N → 0, the estimated PCs,

P̂Ct, P̂C2t and ˆPC3t, can be treated as if they are observed in the second-stage regression. In

other words, the fact that the factors are estimated does not affect the asymptotic properties

of the least square estimates of equation (20). As a result, in the follow I shall slightly abuse

the notations by rewriting the estimated factors as PC, PC2, and PC3 to emphasize that

asymptotically they can be regarded as observed.

Note that by the overlapping nature of rxi
t,t+h, the error terms εt+h are serially corre-

lated with lag h. I thus use the Newey-West (1994) covariance matrix estimator, where the

number of lags is chosen automatically.

III.II Bootstrap Procedure

Bauer and Hamilton (2018) demonstrate in the context of forecasting bond risk pre-

mia that when examining the predictive power of a predictive variable on certain asset

return, the overlapping nature of the return process coupled with highly persistent con-

trol variables can result significant size distortions in small sample, leading to spuriously
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large increase in R2 and large t-statistic. As is seen in Appendix, the second macro variable

for each foreign country, FPCi
2, which is constructed as the difference between the 10-year

bond yield and the policy rate, is indeed highly persistent. To guard against this problem,

I conduct statistical inferences based on the following bootstrap procedure:

1. Estimate the coefficients in equation (20), the corresponding t-statistics constructed

from the Newey-West (1994) covariance matrix estimator, and the adjusted R2 . Store

the parameters and the residuals.

2. Estimate a VAR(1) model on PCt and another VAR(1) model on FPCi
t. Store the pa-

rameters and the residuals.1

3. Form a matrix of the residuals from steps 1 and 2, and resample, with replacement,

the rows of the matrix. This preserves potential cross-sectional dependencies be-

tween the regression residuals and the predictors, as well as possible heteroskedas-

ticity in the regression residuals (e.g. MacKinnon, 2006).

4. Given the k-th bootstrapped sample of the error terms, k = 1, . . . , K, build the boot-

strapped series of currency premium under the null hypothesis of no predictability,

i.e. rxi (k)
t,t+h ≡ α̂i + εi (k)

t+h .

5. Given the k-th bootstrapped sample of the error terms, k = 1, . . . , K, build the boot-

strapped series of PCt and FPCi
t using the parameters estimated in step 2.

6. Run the regression as in equation (20) using the k-th bootstrapped series of each

variable. Store the resulting t-statistics and the adjusted R2.

1While one might argue that fitting a single VAR(1) model on both PCt and FPCi
t for all i could better

capture the true data generating process, this would lead to too many variables to estimate given the small
sample size. The step implemented here is in fact a compromise.
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7. For each parameter in equation (20), calculate the porportion of the absolute values of

the bootstrapped t-statistics that exceed the absolute value of the t-statistic estimated

in step 1. This is its bootstrapped p-value of the parameter. For the adjusted R2, its

p-value is taken as the the porportion of the bootstrapped adjusted R2s that exceed

the adjusted R2 estimated in step 1.

I take the number of bootstrap samples K = 1, 000.

III.III Out-of-Sample Predictability

Another interesting question to address is the out-of-sample predictability of cur-

rency risk premia. In the first exercise, I study whether the factors as estimated and se-

lected in-sample exhibit out-of-sample forecasting power. This involves fixing the factor

loadings and the set of variables selected in-sample, and recursively fit the predictive re-

gression (20) to forecast the h-period ahead yield. In the second exercise, I also run PCA

and variable selection recursively. The first exercise is useful in that under assumption

(19), the underlying US factors are most precisely estimated in the full sample, and thus it

provides a more convincing answer to their out-of-sample predictive power. The second

exercise is useful in that it mimics real-time trading.

Specifically, in the out-of-sample analyses the data of length T is splitted into two

parts, where the first part spanning t = 1, . . . , R is used as the training sample. In the

first round of iteration, for the second exercise the PCA is conducted from t = 1 to t =

R, and then the variable selection scheme as well as the estimation of equation (20) is

conducted using data up to time t = R− h; whereas for the first exercise only the estimation

of equation (20) is conducted.2 The resulting model (20) is then used to forecast the return

2Note that the latest return an investor at time R is able to observe is that of the trade initiated at time
R− h. Hence the subsample for variable selection and estimation of equation (20) has to stop at time R− h.
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of the trade that is initiated at time R and is to mature at time R + h. The training period

is then extended for one time unit, and the same procedure is repeated to forecast the the

yield of the trade initiated at time R + 1 and to mature at time R + 1 + h. This routine is

repeated until the end of the sample is reached.

The same iterative routine is also conducted on the regression of currency risk pre-

mium on a constant:

rxi
t,t+h = κi + ui

t+h (3.21)

such that in the j-th out-of-sample iteration, the point estimate of κi is simply the historic

mean of rxi
t,t+h, i.e. 1

R+j−h

(
∑

R+j−h
t=1 rxi

t,t+h

)
.

Denote the forecasting errors of the two out-of-sample exercises as
{

ε̃i
R+h, . . . , ε̃i

T
}

and
{

ũi
R+h, . . . , ũi

T
}

, respectively. Two measures are used to evaluate the out-of-sample

predictive performance. The first one simply looks at the ratio between the mean squared

prediction error (MSPE) of the unrestricted model (20) and that of the restrictive model

(21). I.e.

MSPEu

MSPEr
=

∑T
t=R+h

(
ε̃i

t
)2

∑T
t=R+h

(
ũi

t
)2 (3.22)

where a value less than 1 indicates that the unrestricted model performs better than the

restrictive benchmark.

The second one employs the ENC-T test as in Clark and McCracken (2001) for the

null hypothesis that the benchmark model encompasses the unrestrictive model with ad-

ditional predictors, whereas the alternative hypothesis is that the unrestrictive model con-

tains additional information that predicts the risk premium. Let P ≡ T − R. It is shown

that if P/R→ 0 as P, R→ ∞, then the test statistic ENC-T→d N(0, 1).
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Some final comments have to be made on what out-of-sample predictability really

implies. While a common perception in applied works is that in-sample tests are more

prone to spurious predictability than out-of-sample tests, it is argued by Inoue and Kilian

(2004), Campbell and Thompson (2007), and Lettau and Ludvigson (2010), among others,

that this is generally not true in that the discrepency between in-sample and out-of-sample

predictability can simply be the result of bias-variance tradeoff in small sample. Suppose

the predictors in the unrestricted model (20) do have predictive power, then the historic

mean κi is a biased predictor of the yield, which blows up MSPEr. On the other hand, esti-

mation errors of the parameters in the unrestritive model (20) tend to increase the variance

of the forecast, which leads to larger MSPEu. Whether MSPEr is larger or smaller than

MSPEu depends on how much the reduction in bias is relative to the increase in variance.

This intuition is formalized in Inoue and Kilian (2004), who demonstrate that in-sample

and out-of-sample tests of predictability are asymptotically equally reliable under the null

hypothesis of no predictability, where a test is defined to be unreliable if its effective size

is larger than its nominal size. As a result, I simply regard out-of-sample predictability as

a test of whether it is feasible to implement the predictability discovered in-sample into a

trading strategy instead of another test of whether the predictability exists.

IV Data and Results

As is discussed, I focus on the predictability of risk premia of the G10 currencies,

where USD is taken as the domestic currency. Euro (EUR) is taken as a proxy of DEM

starting from 1999:01 after being converted at the rate 1.95583 DEM/EUR. I implement

the strategies using currency forward contracts, where the spot and forward exchange

rates are taken as the means of their respective bid and ask rates. The data is retrieved
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from Datastream, which spans the period 1983:10-2016:03 for CHF, DEM, GBP and JPY,

and 1984:12-2016:03 for AUD, CAD, NOK, NZD and SEK. Five different maturities are

available for forward contracts on each foreign currency, namely 1 month, 2 months, 3

months, 6 months and 12 months.

The macroeconomic variables of the US economy are taken from the FRED-MD

dataset, in which 5 out of the 134 available time series are deleted to form a balanced

panel spanning the period 1963:10-2015:11.3 These 129 variables are broadly classified into

8 groups, namely output and income (G1), labor market (G2), housing (G3), consump-

tion, orders and inventories (G4), money and credit (G5), interest and exchange rates (G6),

prices (G7), and stock market (G8). These variables are stationarized by the correspond-

ing transformation methods described in the appendix of McCracken and Ng (2016). The

panel information criterion developed in Bai and Ng (2002) suggests that the factor struc-

ture is optimally described by the first 8 PCs.

Table 3.1 presents summary statistics for the 8 chosen PCs. The first PC explains

the largest fraction of the total variation in the panel, the second PC explains the second

largest fraction, and so on. The first column reports estimates of the first-order autocorrela-

tion (AR1) coefficients, whereas the second column reports the p-values of Phillips-Perron

(1988) test of the null hypothesis that the variable under consideration is a unit root pro-

cess. The first PC has the highest AR1 coefficient in absolute term, which is still far less than

0.9. The p-values of Phillips-Perron test are all less than 0.01. These are strong evidences

that the 8 PCs are stationary.

3Details on the variables included in the dataset are discussed in McCracken and Ng (2016). Note that
these variables start earlier than the carry trade yields. To fully capture the variations in the panel of US
variables, PCA is conducted from the beginning of the US macro data instead of the beginning of the carry
trade data.
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IV.I Factor Interpretation and Choice of Foreign Macro Variables

To provide some economic interpretation of the PCs and some guideline for choosing

foreign macroeconomic variables. I regress each of the 129 time series on each of the 8 cho-

sen PCs, and record the resulting R2 values. Figure 3.1 plots these R2 values for each PC.

The first PC loads heavily on variables in the categories of real economic activities, namely

output and income (G1), labor market (G2), housing (G3), and consumption, orders and

inventories (G4). It exhibits little correlations with prices and financial variables. I thus

refer to it as a real factor. The second PC loads heavily on yield spreads, which I call the

yield curve factor. The third PC loads heavily on measures of inflation and price pressure,

which I call the inflation factor. The fourth and fifth PCs both load heavily on measures

of housing activities, as well as on interest rates. They display little correlation with other

measures of real economic activities and measures of inflation. I thus refer to them as

the housing and yield curve factors. The sixth PC is most correlated with variables in the

categories of output and income (G1), and consumption, orders and inventories (G4), as

well as with several yield spreads. I thus refer to it as another real factor. The seventh

PC loads almost exclusively on measures of the aggregate stock market, which I call the

equity factor. Finally, I call the eighth PC the money and credit factor since it loads almost

exclusively on variables within category G5. It should be noted, however, that these inter-

pretations are by no means perfect since each PC loads more or less on all variables in the

panel.

Ideally, the same dimension reduction procedure should be conducted on each for-

eign country so that its macroeconomic conditions can be captured as much and as accu-

rate as possible, but such a dataset is not available. Instead, for each foreign country I pick
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one representative variable corresponding to each of the 8 broad categories in the FRED-

MD dataset. To proceed, for each variable in the FRED-MD dataset, I calculate the average

of its R2 values for the regressions of the PCs that load heavily on the category it belongs to.

Within each of the 8 categories, I then look for the foreign counterpart of the variable with

the highest average R2. If such a variable is not available at monthly frequency or is too

short, I then look for the one with the second highest average R2, and so on. The hope is

that the foreign countries share similar latent factor structure with the US so that the most

relevant variables for the US are also the most relevant for the foreign countries. Although

there is no theoretic justification for this procedure, this is perhaps the most reasonable

and straightforward way to proceed without imposing further assumptions. These for-

eign variables are collected from Datastream, OECD database, IMF database, and FRED,

and are transformed in the same way as the corresponding US variables whenever possi-

ble. Detailed descriptions of these foreign variables, the transformation methods, the data

sources, as well as tests of stationarity are presented in Appendix. As is seen, the second

variable for each country (FPCi
2), which is the difference between the 10-year bond yield

and the policy rate, is highly persistent and has AR1 coefficient ranging from 0.92 to 0.99

although Phillips-Perron test indicates it is not a unit root process. This is common for

yield curve data, and indicates that the bootstrap procedure described above is indeed

necessary.

IV.II In-Sample Analysis

Table 3.2 summarizes the results of regressions (20). To save space, only the predic-

tors that are chosen for at least one maturity by the variable selection scheme are shown in

the table. A cell is left empty if the predictor is not chosen for that specific maturity.
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Note that in general the bootstrapped significance levels of the parameters closely

follow those derived from the asymptotic distributions. Moreover, the bootstrap proce-

dure shows that the adjusted R2s are all significant at the 5% level across different cur-

rencies except AUD at 2-month maturity and SEK at 3-month maturity, while most are in

fact significant at the 1% level. Thus, the empirical results are not seriously distorted as

suggested by Bauer and Hamilton (2018).

Some interesting patterns are observed. First, currency risk premia are better pre-

dicted at longer horizons than at shorter horizons. At the 1-month horizon, 5 out of the

10 currency premia, namely AUD, CAD, CHF, GBP and NOK, have no predictors being

selected by the variable selection scheme. At the 2-month horizon, 2 out of the 10 strate-

gies, namely CHF and JPY, either have no predictor selected or have no predictor that is

significant at the 5% level. As the maturity increases, more predictors are selected and they

tend to be significant, the adjusted R2s increase from about 0-4% at the 1-month horizon to

about 13-29% at the 12-month horizon, and the predictors that are selected and/or signifi-

cant at a shorter horizon tends to stay selected and/or significant at a longer horizon. This

pattern holds across different currencies. This implies that the differentials in risk pricing

between countries are more prevalent in longer horizon, and is driven by macro factors.

Another interesting pattern is that most of the predictors selected are the US fac-

tors, whereas foreign macro variables are selected mostly for the 6-month and 12-month

horizons. These include CAD at the 12-month horizon, CHF at the 6-month an 12-month

horizons, DEM at the 12-month horizon, GBP at the 6-month horizon, NZD at all horizons,

and SEK at the 1-month horizon. Since foreign variables are selected only if they exhibit

additional predictive power conditional on the chosen US factors, this implies that in most

cases the predictive power of the foreign variables, if any, is already incorporated in the
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US factors. This is consistent with a large body of literature showing that country-level

macroeconomic and financial conditions can be largely explained by the global factors.

For example, Kose, Otrok, and Whiteman (2003) find that a global factor is an important

source of variations in output, consumption and investment across countries. Similar pat-

tern in country-level inflation rates is also found by Ciccarelli and Mojon (2010). Moreover,

Ehrmann and Fratzcher (2009), and Wongswan (2009) find that equity markets around the

world respond strongly to US monetary shocks. Given that the US economy represents a

disporportionately part of the world, it is thus reasonable to regard the US macroeconomic

factors as global factors.

The single most important predictor is PC5, a housing and yield curve factor, whose

first- and/or higher-order terms exhibit predictive power at the 1% bootstrapped signifi-

cance level at the 6-month and 12-month maturities across all currencies. They also exhibit

predictive power at the 5% bootstrapped significance level at the 2-month and 3-month

maturities for currencies DEM, GBP, NOK and NZD, and at the 3-month maturity for CAD.

Such predictive power is nonlinear in that the higher order terms are selected across all the

9 currencies and are in general significant at least at the 5% bootstrapped significance level.

This is striking in that no previous research has found such a single factor that possesses

uniform predictive power across the G10 currencies, or equivalently, that are priced differ-

ently across all G10 countries.

IV.III Out-of-Sample Analysis

Is the strong predictability of currency risk premia found in-sample also preserved

out-of-sample? To answer this question, I use the sample period 1983:10-2010:10 as the

training sample, and 2010:11-2015:11 as the test sample. The training sample is chosen
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much longer than the test sample so that the asymptotic distribution of the ENC-T statistic

is preserved.

As is shown in Table 3.3, the in-sample predictability is well-preserved out-of-sample.

Out of the 45 cases across 9 foreign currencies and 5 maturities, only 9 cases have the MSPE

ratios being greater than 1 in the first exercise, and 3 cases in the second exercise. More-

over, for the first exercise, out of the 36 cases whose MSPE ratios are less than 1, 26 have

significant ENC-T statistics at the 5% level or above. For the second exercise, out of the

43 cases whose MSPE ratios are less than 1, 28 have significant ENC-T statistics at the 5%

level or above.

As in the in-sample cases, strategies for longer horizons exhibit stronger out-of-

sample predictability. This is seen by that in general, as the maturity increases, the MSPE

ratio for each currency decreases, and the number of currencies whose ENC-T statistics

are significant at the 5% level or above increases. For the second exercise, at the 6-month

maturity, 6 out of the 9 currencies have significant ENC-T statistics at the 1% level, and the

remaining 3 have significant ENC-T statistics at the 5% level. At the 12-month maturity, 8

out of the 9 currencies have significant ENC-T statistics at the 1% level, whose MSPE errors

can be as low as 0.5215 and no higher than 0.8417.

V Conclusions

This research investigates macro factors in currency risk premia. Motivated by the

fact that a macro factor predicts currency risk premium only if there is difference between

its market prices in the home and foreign countries, respectively, I tackle this problem by

focusing on the predictability of currency risk premia. To effectively summarize informa-

tion about global macroeconomic conditions, I fit a dynamic factor model to a large panel
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of US macro variables. Based on the economic interpretations of the estimated factors,

I then collect data on their foreign counterparts. A variable selection procedure is then

conduted to get a siccinct set of predictors for each currency and each maturity.

Some interesting phenomena are observed. First, currency risk premia exhibit stronger

predictability at longer horizons, suggesting that differences in risk pricing between the US

and other G10 countries are more prevalent in longer term. Second, foreign macro vari-

ables rarely exhibit additional forecasting power on top of the US macro factors, suggesting

that the price differentials of foreign factors, if any, are mostly captured by those of the US

factors. Third, a factor that loads heavily on activities in the US housing market and bond

yields exhibits strong and nonlinear predictive power across all currencies.

The strong in-sample predictive power of macro factors is preserved out-of-sample.

It is found that in most cases the predictive models developed in the in-sample analysis

perform both economically and statistically better than those corresponding to the null hy-

potheses of no predictability. Moreover, as in the in-sample analysis, currency risk premia

at longer horizons exhibit stronger out-of-sample predictability.
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Appendix: List of Non-US Data Collected

Variable

Class

Foreign Variable

Selected

Period Transformation

Method

Source AR1 Philips-

Perron

P-Value

Panel 1: AUD Variables

G1 Industrial Production 1974:08-2015:11 5 Datastream 0.7147 < 0.01

G2 10-Yr Yield Minus Short

Rate

1969:07-2016:02 1 Datastream 0.9226 < 0.01

G3 New Permits for Dwelling 1963:01-2016:01 4 Datastream -0.3762 < 0.01

G4 Retail Sales 1982:03-2016:01 5 Datastream -0.1566 < 0.01

G5 M3 1963:01-2016:01 6 IMF IFS -0.6428 < 0.01

G6 Total Employment 1980:01-2016:01 5 OECD 0.1718 < 0.01

G7 CPI 1963:01-2015:11 6 Datastream -0.0033 < 0.01

G8 S&P/ASX 200 1971:02-2016:02 5 Datastream 0.0570 < 0.01

Panel 2: CAD Variables

G1 Industrial Production 1963:01-2015:12 5 OECD 0.0040 < 0.01

G2 10-Yr Yield Minus Short

Rate

1963:01-2016:02 1 Datastream 0.9657 < 0.01

G3 New Permits for Dwelling 1963:01-2016:01 4 Datastream -0.2131 < 0.01

G4 Retail Sales 1991:01-2016:01 5 Datastream -0.1122 < 0.01

G5 M2 1968:01-2016:01 6 Datastream -0.5165 < 0.01

G6 Total Employment 1963:01-2016:01 5 OECD 0.2848 < 0.01

G7 CPI 1963:01-2016:02 6 OECD -0.4686 < 0.01

G8 S&P/TSX 1963:01-2016:02 5 Datastream 0.1181 < 0.01

Panel 3: CHF Variables

G1 Industrial Production

(Growth Rate)

1966:11-2016:02 1 Datastream 0.5814 < 0.01

G2 10-Yr Yield Minus Short

Rate

1974:01-2016:02 1 Datastream 0.9596 < 0.01

G3 N/A

G4 Finished Goods Stocks 1967:01-2016:03 5 Datastream 0.9710 < 0.01

G5 M2 1984:12-2016:02 6 Datastream -0.5124 < 0.01

G6 N/A

G7 CPI 1963:01-2016:02 6 OECD -0.4523 < 0.01

G8 SMI 1988:06-2016:02 5 Datastream 0.1544 < 0.01
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Panel 4: DEM Variables

G1 Industrial Production 1963:01-2015:12 5 OECD -0.2745 < 0.01

G2 10-Yr Yield Minus Short

Rate

1963:01-2016:02 1 Datastream 0.9800 < 0.01

G3 New Permits for Dwelling 1979:01-2015:11 4 Datastream -0.3648 < 0.01

G4 Retail Sales 1994:01-2016:01 5 Datastream -0.4605 < 0.01

G5 M2 1963:01-2016:01 6 Datastream -0.5059 < 0.01

G6 Unemployment Rate 1963:01-2016:02 2 Datastream 0.4577 < 0.01

G7 CPI 1963:01-2016:02 6 OECD -0.5063 < 0.01

G8 DAX 1964:12-2016:02 5 Datastrean 0.0695 < 0.01

Panel 5: GBP Variables

G1 Industrial Production 1963:01-2015:12 5 OECD -0.1645 < 0.01

G2 10-Yr Yield Minus Short

Rate

1978:01-2016:02 1 Datastream 0.9717 0.0117

G3 N/A

G4 Retail Sales 1963:01-2016:02 5 Datastream -0.1430 < 0.01

G5 M2 1982:07-2016:01 6 Datastream -0.5913 < 0.01

G6 Total Employment 1971:02-2015:12 5 Datastream 0.7255 < 0.01

G7 CPI 1963:01-2016:02 6 OECD -0.4280 < 0.01

G8 FTSE 100 1978:01-2016:02 5 Datastream 0.0077 < 0.01

Panel 6: JPY Variables

G1 Industrial Production 1963:01-2015:12 5 OECD 0.0721 < 0.01

G2 10-Yr Yield Minus Short

Rate

1989:01-2016:02 1 Datastream

& FRED

0.9879 0.0932

G3 Number of New

Constructions

1965:01-2016:01 4 Datastream -0.2009 < 0.01

G4 Retail Sales 1970:01-2016:01 5 Datastream -0.3946 < 0.01

G5 M2 1963:01-2016:02 6 Datastream -0.4823 < 0.01

G6 Total Employment 1963:01-2016:01 5 OECD -0.0200 < 0.01

G7 CPI 1963:01-2016:01 6 OECD -0.3275 < 0.01

G8 Nikkei 225 1963:01-2016:02 5 Datastream 0.0730 < 0.01

Panel 7: NOK Variables

G1 Industrial Production 1963:01-2015:12 5 OECD -0.4285 < 0.01

G2 10-Yr Yield Minus Short

Rate

1985:01-2016:02 1 Datastream 0.9416 < 0.01

G3 New Permits for Dwelling 1990:01-2016:01 4 Datastream -0.4631 < 0.01

G4 Private Comsumption on

Goods (Index)

1979:01-2016:01 5 Datastream -0.3978 < 0.01

G5 M2 1963:01-2014:02 6 Datastream -0.6367 < 0.01

G6 Total Employment 1972:02-2015:11 5 Datastream 0.7044 < 0.01

G7 CPI 1963:01-2016:02 6 OECD -0.5187 < 0.01

G8 OBX 1987:01-2016:02 5 Datastream 0.1812 < 0.01
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Panel 8: NZD Variables

G1 N/A

G2 10-Yr Yield Minus Short

Rate

1973:12-2016:02 1 Datastream 0.9048 < 0.01

G3 New Permits for Dwelling 1973:02-2016:01 4 Datastream -0.4000 < 0.01

G4 Retail Sales 1992:07-2016:01 5 Datastream 0.9617 < 0.01

G5 M2 1988:02-2016:01 6 Datastream -0.4802 < 0.01

G6 N/A

G7 Inflation Rate 1963:01-2015:12 2 Datastream < 0.01

G8 DJ New Zealand 1992:01-2016:02 5 Datastream -0.0880 < 0.01

Panel 9: SEK Variables

G1 Industrial Production 1963:01-2015:12 5 OECD -0.3339 < 0.01

G2 10-Yr Yield Minus Short

Rate

1986:12-2016:02 1 Datastream 0.9444 < 0.01

G3 Volume Index of Bldg

Production

1994:01-2015:12 4 Datastream -0.3461 < 0.01

G4 Retail Sales 1990:01-2016:01 5 Datastream -0.4382 < 0.01

G5 M3 1963:01-2016:01 6 IMF IFS -0.6157 < 0.01

G6 Total Employment 1987:01-2016:02 5 Datastream -0.2514 < 0.01

G7 CPI 1963:01-2016:02 6 OECD -0.4304 < 0.01

G8 OMXS30 1986:01-2016:02 5 Datastream 0.1408 < 0.01

The tranformation codes are the same as for the FRED-MD dataset. For each series x: (1) no transformation; (2)

∆xt; (3) ∆2xt; (4) log (xt); (5) ∆ log (xt); (6) ∆2 log (xt).
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Tables and Figures

Table 3.1: Summary Statistics of US Factors
Principal Component AR(1) Coefficient Philips-Perron P-Value Cumulative R2

1 0.794 < 0.01 0.165

2 0.728 < 0.01 0.237

3 -0.087 < 0.01 0.304

4 0.546 < 0.01 0.360

5 0.650 < 0.01 0.404

6 0.346 < 0.01 0.441

7 0.153 < 0.01 0.471

8 -0.237 < 0.01 0.494

Notes: Summary statistics of the first eight principal components of the FRED-MD dataset of US macroeconomic

variables. The AR(1) coefficient measures the persistence of each time series, and a formal unit-root test is conducted à

la Phillips and Perron (1988) under the null hypothesis that the time series is integrated with order 1. Cumulative R2

indicates the proportion of the cross sectional variation of the macro dataset explained by the first few principal

components.
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Table 3.2: In-Sample Predictability of Currency Risk Premia
1-Month 2-Month 3-Month 6-Month 12-Month

Panel 1: AUD

PC1 -2.00×10−4

(6.66×10−4)

-2.13×10−4

(5.00×10−4)

1.58×10−4

(3.75×10−4)

PC2
1 0.47×10−4

(0.23×10−4**)

PC3
1 0.07×10−4***

(0.02×10−4***)

0.05×10−4***

(0.01×10−4***)

PC5 10.02×10−4***

(4.18×10−4**)

19.86×10−4***

(8.21×10−4**)

PC2
5 5.91×10−4***

(1.38×10−4***)

3.00×10−4***

(0.92×10−4***)

PC3
5 -0.64×10−4

(0.31×10−4**)

PC6 18.34×10−4***

(7.85×10−4**)

17.23×10−4***

(7.60×10−4**)

PC7 8.55×10−4***

(3.24×10−4***)

5.72×10−4**

(2.97×10−4*)

R2
adj N/A 1.51%* 6.73%*** 18.30%*** 20.38%***

Panel 2: CAD

PC5 11.27×10−4***

(4.53×10−4**)

10.35×10−4***

(3.64×10−4***)

20.57×10−4***

(5.41×10−4***)

PC2
5 4.00×10−4***

(1.49×10−4***)

3.38×10−4***

(1.22×10−4***)

1.73×10−4**

(0.68×10−4**)

PC3
5 -0.62×10−4

(0.22×10−4***)

PC6 13.96×10−4***

(7.14×10−4)

PC7 5.44×10−4***

(2.63×10−4**)

3.50×10−4***

(1.98×10−4*)

FPC6 6.61×10−4

(8.83×10−4)

R2
adj N/A 2.21%** 7.15%*** 12.88%*** 29.49%***

Panel 3: CHF

PC2 6.57×10−4***

(3.83×10−4*)

4.21×10−4**

(1.79×10−4**)

PC5 12.88×10−4***

(5.30×10−4**)

7.66×10−4**

(3.89×10−4**)

PC2
5 4.82×10−4***

(1.72×10−4***)

3.80×10−4***

(1.24×10−4***)

FPC4 -1.33×10−4

(1.15)

-2.25

(0.80***)

FPC6 24.60×10−4

(10.57×10−4**)

-21.32×10−4

(7.90×10−4***)

R2
adj N/A N/A N/A 11.07%*** 21.02%***
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1-Month 2-Month 3-Month 6-Month 12-Month

Panel 4: DEM

PC1 -0.12×10−4

(2.32×10−4)

PC3 8.64×10−4**

(3.67×10−4**)

6.29×10−4**

(2.47×10−4**)

PC4 -2.04×10−4

(4.26×10−4)

PC5 15.48×10−4**

(7.66×10−4**)

14.36×10−4***

(5.32×10−4***)

15.05×10−4**

(5.36×10−4***)

14.30×10−4***

(5.29×10−4***)

13.40×10−4***

(4.47×10−4***)

PC2
5 7.72×10−4***

(2.73×10−4***)

4.55×10−4***

(1.73×10−4***)

4.45×10−4***

(1.75×10−4**)

4.13×10−4***

(1.65×10−4**)

2.50×10−4**

(1.27×10−4*)

FPC6 16.32×10−4

(19.31×10−4)

FPC2
6 -5.50×10−4

(2.83×10−4**)

R2
adj 3.99%** 5.46%** 7.39%*** 10.94%*** 22.49%***

Panel 5: GBP

PC4 6.34×10−4**

(2.91×10−4**)

PC2
4 2.33×10−4***

(0.67×10−4***)

PC5 12.55×10−4**

(6.40×10−4*)

11.19×10−4***

(5.66×10−4**)

13.14×10−4***

(3.63×10−4***)

11.19×10−4***

(3.77×10−4***)

PC2
5 2.80×10−4***

(1.12×10−4**)

PC6 15.71×10−4*

(7.98×10−4**)

14.76×10−4*

(6.78×10−4**)

10.39×10−4**

(4.96×10−4**)

FPC1 0.16**

(0.07**)

R2
adj N/A 3.20%*** 4.03%*** 9.02*** 15.16%***
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Panel 6: JPY

PC1 9.16×10−4***

(3.28×10−4***)

PC2
1 -0.44×10−4

(0.18×10−4**)

PC2 22.66×10−4**

(6.21×10−4***)

18.59×10−4***

(2.79×10−4***)

9.72×10−4**

(4.57×10−4**)

PC3 6.08×10−4***

(1.90×10−4***)

PC4 0.57×10−4

(4.35×10−4)

PC5 33.15×10−4***

(5.60×10−4***)

20.47×10−4***

(7.75×10−4***)

PC3
5 -1.10×10−4

(0.27×10−4***)

-0.71×10−4

(0.29×10−4**)

FPC6 -1.65

(0.36***)

R2
adj 2.95%*** 2.83*** N/A 13.47%*** 13.33%***

Panel 7: NOK

PC1 2.69×10−4**

(1.96×10−4)

PC3 8.22×10−4**

(3.56×10−4**)

7.98×10−4***

(2.90×10−4***)

PC5 10.41×10−4**

(6.79×10−4)

12.77×10−4***

(6.18×10−4**)

12.96×10−4***

(5.19×10−4**)

13.17×10−4***

(4.41×10−4***)

PC2
5 4.94×10−4***

(2.13×10−4**)

4.80×10−4***

(2.09×10−4**)

5.09×10−4***

(1.80×10−4***)

3.63×10−4***

(1.32×10−4***)

PC6 13.52×10−4

(9.36×10−4)

6.78×10−4

(5.13×10−4)

R2
adj N/A 4.52%** 5.82%*** 10.55%*** 18.72%***
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Panel 8: NZD

PC1 7.02×10−4**

(2.84×10−4**)

PC2 15.59×10−4**

(8.10×10−4*)

17.19×10−4***

(7.08×10−4**)

10.86×10−4***

(6.01×10−4*)

PC3 3.21×10−4

(7.31×10−4)

2.77×10−4

(3.66×10−4)

8.61×10−4***

(4.08×10−4**)

PC3
3 0.11×10−4***

(0.03×10−4)

0.12×10−4**

(0.03×10−4***)

PC5 17.18×10−4***

(6.82×10−4**)

22.54×10−4***

(7.82×10−4***)

22.01×10−4***

(6.31×10−4***)

30.26×10−4***

(8.34×10−4***)

PC2
5 7.89×10−4***

(2.05×10−4***)

5.10×10−4***

(2.03×10−4**)

4.06×10−4***

(1.50×10−4***)

PC3
5 -0.77×10−4

(0.33×10−4**)

PC7 14.48×10−4***

(4.22×10−4***)

6.78×10−4***

(2.80×10−4**)

FPC4 3.68*

(1.77**)

2.88**

(1.31**)

2.41*

(1.26*)

1.97

(1.38)

FPC6 9.45×10−4

(14.48×10−4)

R2
adj 2.55%*** 15.78%*** 19.86%*** 23.34*** 28.21%***

Panel 9: SEK

PC3 9.59×10−4*

(6.28×10−4)

PC5 11.21×10−4**

(6.03×10−4*)

12.65×10−4***

(5.30×10−4**)

PC2
5 5.93×10−4***

(1.90×10−4***)

4.36×10−4***

(1.29×10−4***)

PC6 13.90×10−4**

(10.17×10−4)

9.67×10−4*

(8.50×10−4)

FPC1 0.33***

(0.09***)

R2
adj 3.79%*** 3.00%** 0.47% 10.61%*** 15.42%***

Notes: Predictive regressions of currency risk premia on macro factors. The domestic currency is taken as USD. For each
foreign currency being traded, only the macro factors chosen for at least one horizon by the stepwise variable selection
procedure are listed, where PCj

i (FPCj
i ) denotes the j-th order of the i-th US (foreign) macro factor. The first row in each

cell presents the corresponding parameter estimate, followed by marks of its significance level calculated from the
bootstrap procedure. The number in paranthese is its Newey-West (1994) standard deviation, followed by marks of its
significance level calculated from the asymptotic distribution.

“***”: Significance at 1% level; “**”: Significance at 5% level; “*”: Significance at 10% level.
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Table 3.3: Out-of-Sample Performance of Macro Variables
1-month 2-month 3-month 6-month 12-month

Panel 1: Out-of-Sample Test with In-Sample Factors

AUD 1.000

(0.0000)

1.002

(-0.6321)

1.005

(-0.4865)

0.9741**

(2.244)

0.9367***

(3.575)

CAD 0.9987

(0.4304)

0.9995

(0.2492)

0.9520***

(3.223)

0.9382***

(3.295)

0.8067***

(6.434)

CHF 1.001

(-0.3589)

0.9980

(0.8936)

0.9939**

(1.835)

0.9980

(1.043)

1.043

(-0.6119)

DEM 0.9865

(1.336*)

0.9725**

(2.020)

0.9519***

(2.675)

0.9194***

(3.391)

1.159

(-0.9105)

GBP 1.000

(0.0000)

1.008

(-0.8259)

1.007

(-0.4207)

0.9705***

(2.878)

0.8875***

(4.265)

JPY 0.9881

(1.275)

0.9831**

(1.738)

0.9767**

(1.990)

0.9123***

(3.293)

0.8358***

(4.854)

NOK 0.9929

(1.209)

0.9655***

(2.714)

0.9352***

(3.994)

0.8921***

(4.572)

0.8198***

(5.001)

NZD 0.9956

(0.9562)

0.9686***

(2.451)

0.9572***

(2.684)

0.9493***

(3.015)

0.9515***

(2.535)

SEK 0.9932

(0.9693)

0.9943

(0.8669)

0.9787***

(1.790)

0.9086***

(3.751)

0.8654***

(4.100)

Panel 2: Out-of-Sample Test with Recursively Updated Macro Factors

AUD 0.9975*

(1.4240)

0.9990

(0.854)

0.9869**

(2.176)

0.8225***

(4.512)

0.6592***

(6.771)

CAD 0.9875**

(1.822)

0.9615*

(1.610)

0.8721***

(3.597)

0.7121***

(6.475)

0.5215***

(9.225)

CHF 0.9915

(1.063)

0.9966*

(1.348)

0.9907*

(1.581)

0.9409**

(1.979)

0.7700***

(4.112)

DEM 0.9866

(0.684)

0.9532*

(1.545)

0.9211**

(2.313)

0.8078***

(3.783)

0.8114***

(4.724)

GBP 0.9981*

(1.283)

1.0149

(-1.425)

1.0158

(-1.260)

0.9453**

(2.033)

0.8394***

(3.502)

JPY 0.9387**

(2.111)

0.9246***

(2.653)

0.8683***

(3.633)

0.9605**

(1.938)

1.6990

(1.145)

NOK 0.9905

(1.243)

0.9612**

(2.073)

0.8779***

(3.601)

0.7468***

(5.690)

0.6393***

(8.077)

NZD 0.9926

(0.852)

0.9430**

(2.098)

0.9175**

(2.161)

0.8411***

(3.686)

0.8417***

(4.021)

SEK 0.9889

(0.957)

0.9825*

(1.370)

0.9595***

(2.482)

0.7838***

(3.697)

0.6876***

(5.563)

Notes: Out-of-sample forecasts of currency risk premia by macro factors. The domestic currency is taken as USD. The
training period is taken as 1983:10-2010:10, and the prediction period is 2010:11-2015:11. Panel 1 reports results for the
specification taking macro factors estimated in-sample as predictive variables, whereas Panel 2 report those for the
specification with macro factors estimated recursively. The first row in each cell reports the ratio of the root mean
squared prediction errors (RMSE) of the unrestricted and restricted models. The number in paranthese is the test
statistic of the ENC-T test on forecasting performance, which is asymptotically N (0, 1).

“***”: Significance at 1% level; “**”: Significance at 5% level; “*”: Significance at 10% level.
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Figure 3.1: Loadings of US Macro Factors on Macro Variables
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Aruoba, S. Borağan, Diebold, Francis X., and Scotti, Chiara. 2009. “Real-Time Measure-

ment of Business Conditions.” Journal of Business and Economic Statistics, 27(4): 417-427.

Backus, David K., Foresi, Silverio , and Telmer, Chris I. 2001. “Affine Term Structure

Models and the Forward Premium Anomaly.” Journal of Finance, 56(1): 279-304.

Bai, Jushan, and Ng, Serena. 2002. "Determining the Number of Factors in Approxi-

mate Factor Models." Econometrica, 70(1): 191-221.

108



Bai, Jushan, and Ng, Serena. 2006. “Confidence Intervals for Diffusion Index Forecasts

and Inference for Factor-Augmented Regressions.” Econometrica, 74(4): 1133-1150.

Bakshi, Gurdip, and Panayotov, George. 2013. “Predictability of Currency Carry Trades

and Asset Pricing Implications.” Journal of Financial Economics, 110(1), 139-163.

Bandi, Federico, Corradi, Valentina, and Moloche, Guillermo. 2009. “Bandwidth Se-

lection for Continuous-Time Markov Processes.” MPRA Paper, No. 43682.

Bandi, Federico M., and Moloche, Guillermo. 2018. “On the Functional Estimation of

Multivariate Diffusion Processes.” Econometric Theory, 34(4): 896-946.

Bandi, Federico M., and Nguyen, Thong H. 2003. “On the Functional Estimation of Jump–

Diffusion Models.” Journal of Econometrics, 116(1): 293-328.

Bandi, Federico M., and Phillips, Peter C. B. 2003. “Fully Nonparametric Estimation of

Scalar Diffusion Models.” Econometrica, 71(1): 241-283.

Bauer, Michael D., and Hamilton, James D. 2018. “Robust Bond Risk Premia.” Review

of Financial Studies, 31(2): 399-448.

Brémaud, Pierre. 2013. “Markov Chains: Gibbs Fields, Monte Carlo Simulation, and

Queues.” Springer Science & Business Media.

109



Brunnermeier, Markus K., Nagel, Stefan, and Pedersen, Lasse H. 2008. “Carry Trades

and Currency Crashes.” NBER Macroeconomics Annual, 23(1): 313-348.

Burnside, Craig, Eichenbaum, Martin, and Rebelo, Sergio. 2011. “Carry Trade and Mo-

mentum in Currency Markets.” Annual Review of Financial Economics, 3(1): 511-535.

Campbell, John Y. 1987. "Stock Returns and the Term Structure." Journal of Financial

Economics 18(2): 373-399.

Campbell, John Y., and Thompson, Samuel B. 2007. “Predicting Excess Stock Returns

Out of Sample: Can Anything Beat the Historical Average?” Review of Financial Studies,

21(4): 1509-1531.

Christiano, Lawrence J., Eichenbaum, Martin, and Evans, Charles L. 1999. “Monetary

Policy Shocks: What Have We Learned and to What End?” In Handbook of Macroeconomics,

Vol. 1: 65-148. Elsevier.

Ciccarelli, Matteo, and Mojon, Benoit. 2010. “Global Inflation.” Review of Economics

and Statistics, 92(3): 524-535.

Cieslak, Anna, and Povala, Pavol. 2015. "Expected Returns in Treasury Bonds." Review

of Financial Studies, 28(10): 2859-2901.

110



Cieslak, Anna, Morse, Adair, and Vissing-Jorgensen, Annette. 2019. “Stock Returns

over the FOMC Cycle.” Journal of Finance, forthcoming.

Clark, Todd E., and McCracken, Michael W. 2001. “Tests of Equal Forecast Accuracy

and Encompassing for Nested Models.” Journal of Econometrics, 105(1): 85-110.

Cochrane, John H., and Piazzesi, Monika. 2002. “The Fed and Interest Rates – a High-

Frequency Identification.” American Economic Review, 92(2): 90-95.

Cochrane, John H., and Piazzesi, Monika. 2005. "Bond Risk Premia." American Economic

Review, 95(1): 138-160.

Collin-Dufresne, Pierre, and Goldstein, Robert S. 2002. “Do Bonds Span the Fixed In-

come Markets? Theory and Evidence for Unspanned Stochastic Volatility.” Journal of Fi-

nance, 57(4): 1685-1730.

Cook, Timothy, and Hahn, Thomas. 1989. “The Effect of Changes in the Federal Funds

Rate Target on Market Interest Rates in the 1970s.” Journal of Monetary Economics, 24(3):

331-351.

Dai, Qiang, and Singleton, Kenneth J. 2000. “Specification Analysis of Affine Term Struc-

ture Models.” Journal of Finance, 55(5): 1943-1978.

Eagleson, G. K. 1975. “Martingale Convergence to Mixtures of Infinitely Divisible Laws.”

111



Annals of Probability, 3(3): 557-562.

Ehrmann, Michael, & Fratzscher, Marcel. 2009. “Global Financial Transmission of Mone-

tary Policy Shocks.” Oxford Bulletin of Economics and Statistics, 71(6), 739-759.

Freedman, David A. 1975. “On Tail Probabilities for Martingales.” Annals of Probability,

3(1): 100-118.

Ghysels, Eric, Hill, Jonathan B., and Motegi, Kaiji. 2016. “Testing for Granger Causality

with Mixed Frequency Data.” Journal of Econometrics, 192(1): 207-230.

Gikhman, I. I., and Skorokhod, A. V. 1972. “Stochastic Differential Equations.” Springer

Verlag: Berlin.

Gürkaynak, Refet S., Sack, Brian P., and Swanson, Eric T. 2005. “Do Actions Speak

Louder than Words? The Response of Asset Prices to Monetary Policy Actions and State-

ments.” International Journal of Central Banking, 1(1): 55-93.

Gürkaynak, Refet S., Sack, Brian P., and Swanson, Eric T. 2007. “Market-Based Measures

of Monetary Policy Expectations.” Journal of Business and Economic Statistics, 25(2): 201-212.

Hall, P., and Heyde, C. C. 1980. “Martingale Limit Theory and Its Applications.” Aca-

demic Press: New York.

112



Hansen, Lars P., and Hodrick, Robert J. 1983. "Risk Averse Speculation in the Forward

Foreign Exchange Market: An Econometric Analysis of Linear Models." In Exchange Rates

and International Macroeconomics. University of Chicago Press.

Hanson, Samuel G., and Stein, Jeremy C. 2015. “Monetary Policy and Long-Term Real

Rates.” Journal of Financial Economics, 115(3): 429-448.

Ichimura, Hidehiko. 1993. “Semiparametric Least Squares (SLS) and Weighted SLS Es-

timation of Single-Index Models.” Journal of Econometrics, 58(1-2): 71-120.

Inoue, Atsushi, and Kilian, Lutz. 2004. “Bagging Time Series Models.” Working Paper.

Johannes, Michael. 2004. “The Statistical and Economic Role of Jumps in Continuous-

Time Interest Rate Models.” Journal of Finance, 59(1): 227-260.

Jordà, Òscar, and Taylor, Alan M. 2012. “The Carry Trade and Fundamentals: Nothing

to Fear but FEER Itself.” Journal of International Economics, 88(1): 74-90.

Joslin, Scott, Priebsch, Marcel, and Singleton, Kenneth J. 2014. "Risk Premiums in Dy-

namic Term Structure Models with Unspanned Macro Risks." Journal of Finance, 69(3):

1197-1233.

Kose, M. Ayhan, Otrok, Christopher, and Whiteman, Charles H. 2003. “International

Business Cycles: World, Region, and Country-Specific Factors.” American Economic Re-

113



view, (93)4: 1216-1239

Kuttner, Kenneth N. 2001. “Monetary Policy Surprises and Interest Rates: Evidence from

the Fed Funds Futures Market.” Journal of Monetary Economics, 47(3): 523-544.

Lettau, Martin, & Ludvigson, Sydney. C. 2010. “Measuring and Modelling Variation

in the Risk-Return Trade-Off.” In Handbook of Financial Econometrics, Vol.1: 617-690. Else-

vier.

Litterman, Robert, and Scheinkman, Jose. 1991. “Common Factors Affecting Bond Re-

turns.” Journal of Fixed Income, 1(1): 54-61.

Lucca, David O., and Moench, Emanuel. 2015. “The Pre-FOMC Announcement Drift.”

Journal of Finance, 70(1): 329-371.

Ludvigson, Sydney C., and Ng, Serena. 2007. “The Empirical Risk–Return Relation: A

Factor Analysis Approach.” Journal of Financial Economics, 83(1): 171-222.

Ludvigson, Sydney C., and Ng, Serena. 2009. "Macro Factors in Bond Risk Premia."

Review of Financial Studies, 22(12): 5027-5067.

Lustig, Hanno, Roussanov, Nikolai, and Verdelhan, Adrien. 2011 “Common Risk Fac-

tors in Currency Markets.” Review of Financial Studies, 24(11): 3731-3777.

114



MacKinnon, James G. “Bootstrap Methods in Econometrics.” 2006. Economic Record, 82(1):

S2-S18.

McCracken, Michael W., and Ng, Serena. 2016. “FRED-MD: A Monthly Database for

Macroeconomic Research.” Journal of Business and Economic Statistics, 34(4): 574-589.

Menkhoff, Lukas, Sarno, Lucio, Schmeling, Maik, and Schrimpf, Andreas. 2012. “Carry

Trades and Global Foreign Exchange Volatility.” Journal of Finance, 67(2): 681-718.

Newey, Whitney K., and West, Kenneth D. 1994. “Automatic Lag Selection in Covari-

ance Matrix Estimation.” Review of Economic Studies, 61(4): 631-653.

Mueller, Phillippe, Tahbaz-Salehi, Alireza, and Vedolin, Andrea. 2017. “Exchange Rates

and Monetary Policy Uncertainty.” Journal of Finance, 72(3): 1213-1252.

Nakamura, Emi, and Steinsson, Jón. 2018 “High Frequency Identification of Monetary

Non-Neutrality: The Information Effect.” Quarterly Journal of Economics, 133(3): 1283-1330.

Newey, Whitney K., and McFadden, Daniel. 1994. “Large Sample Estimation and Hy-

pothesis Testing.” In Handbook of Econometrics, Vol.4: 2111-2245. Elsevier.

Phillips, Peter C. B., and Perron, Pierre. 1988. “Testing for a Unit Root in Time Series

Regression.” Biometrika, 75(2): 335-346.

115



Piazzesi, Monika, and Swanson, Eric T. 2008. “Futures Prices as Risk-Adjusted Forecasts

of Monetary Policy.” Journal of Monetary Economics, 55(4): 677-691.

Popoviciu, Tiberiu. 1935. “Sur les Équations Algébriques Ayant toutes Leurs Racines

Réelles.” Mathematica, 9: 129-145.

Protter, Philip E. 1995. “Stochastic Differential Equations.” Springer: Berlin, Heidelberg.

Revuz, Daniel, and Yor, Marc. 2013. “Continuous Martingales and Brownian Motion.”

Springer Science and Business Media.

Stock, James H., and Watson, Mark W. 2002. “Forecasting Using Principal Components

from a Large Number of Predictors.” Journal of the American Statistical Association, 97(460):

1167-1179.

Stout, William F. 1974. “Almost Sure Convergence.” Academic Press.

Svensson, Lars E. 1994. “Estimating and Interpreting Forward Interest Rates: Sweden

1992-1994.” NBER Working Paper, w4871.

Wongswan, Jon. 2009. “The Response of Global Equity Indexes to US Monetary Policy

Announcements.” Journal of International Money and Finance, 28(2): 344-365.

116


	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Monetary Shocks and Market Expectations: A Semiparametric Identification Approach
	Introduction
	Semiparametric Identification of Monetary Shocks
	Data and Results
	Main Results
	Robustness Checks

	Conclusions
	Appendix A: Asymptotic Theory of Continuous-Time Single-Index Estimators
	Appendix B: A Randomized Bandwidth Selection Procedure
	Appendix C: Bootstrap Procedure
	Tables and Figures

	Unspanned Monetary Shocks in the Yield Curve
	Introduction
	Econometric Framework
	Data and Results
	Unspanned Monetary Shocks in the Yield Curve
	Robustness to Unspanned Macro Factors

	Conclusions
	Tables and Figures

	Macro Factors in Currency Risk Premia and Cross-Country Differentials in Risk Pricing
	Introduction
	Economic Origin of Currency Risk Premia
	Econometric Framework
	In-Sample Predictability
	Bootstrap Procedure
	Out-of-Sample Predictability

	Data and Results
	Factor Interpretation and Choice of Foreign Macro Variables
	In-Sample Analysis
	Out-of-Sample Analysis

	Conclusions
	Appendix: List of Non-US Data Collected
	Tables and Figures

	References

