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GroEL/ES is the classical example of molecular chaperone that assists the re-

folding of many misfolded proteins (SP). Recent kinetic analyses revealed a new 

paradigm of how GroEL/ES uses ATP to assist protein folding. Following these 

pioneering biochemical studies, I address two fundamental questions related to 

GroEL-assisted protein folding using structural biology methods. First, how does 

GroEL capture SP and how does SP change the kinetics of ADP release? Second, 

how does GroEL/ES encapsulate SP and control the duration of SP 

encapsulation? 

Chapter 1 summarizes the ATPase cycle of GroEL revealed by systematic 

biochemical studies, and identifies knowledge gaps in the GroEL-assisted protein 

folding. 

Chapter 2 describes general methods of protein purification and computational 

approaches, used to analyze conformational differences between two GroEL 

structures. 



 
 
 

 

Chapter 3 and 4 are focused on the capturing of substrate protein by GroEL. 

Crystal structures of GroELD83AR197A-ADP14 and GroELD83AR197A show for the 

first time, ADP binding breaks seven-fold symmetry in the apical and 

intermediate domains. Such asymmetry provides the structural basis for GroEL 

to capture heterogeneous SPs and for SP to regulate the release of ADP.  

In chapter 5, I described how GroEL/ES encapsulates substrate protein. Two 

crystal structures of the predominate SP encapsulation complexes: GroEL-

GroES2 “football” complex were reported. One of the complexes is SP free and 

the other encapsulates two Rubisco molecules simultaneously. From the 

conformational rearrangement of the inter-ring interface, we proposed “football” 

complex transmits ATP asymmetry between the rings through an electrostatic 

interaction between K105 and A109. 

Chapter 6 summarized the new knowledge gained by determining these four 

crystal structures. This chapter ends with a discussion on how chaperonin 

machine like GroEL promotes the correct folding of various proteins. 
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Chapter 1: Introduction and Specific Aims 

Each protein is a one-dimensional polypeptide chain after translation from 

mRNA [1]. In order for a protein to carry out its designated function, it must 

adopt its characteristic three-dimensional structure [2]. This process is called 

protein folding and the resulting functionally characteristic structure is called the 

native state. A protein’s native structure is coded in its sequence, so in an ideal 

world, any protein should fold spontaneously [2]. But in reality some proteins 

fail to reach their native states under physiological conditions and may become 

“mis-folded”.  

 

Misfolded proteins may be dangerous not only because they lack their designated 

function but also because they tend to aggregate [3, 4].  For example fibrous 

protein aggregates called amyloids have been associated with more than 20 

serious human diseases, including most neurodegenerative disorders [5, 6]. 

Currently 7 million Americans suffer from such neurodegenerative conditions 

including Alzheimer’s, Parkinson’s and Huntington’s diseases [7, 8]. Protein 

aggregates can be toxic for E. coli. The formation of insoluble inclusion bodies 

in recombinant organisms expressing foreign proteins is another manifestation of 

the aggregation problem [9].   

 

Protein aggregates can be prevented by the chaperonin machine GroEL/ES [9]. 

GroEL interacts with a large variety of misfolded proteins and together with 

GroES and ATP, help them to reach their native states [10]. 
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1.1 The overall structure of GroEL/GroES 

The first crystal structure of GroEL was reported in 1994 [11]. This structure of 

nucleotide-free GroEL (apo-GroEL) showed it consists of fourteen identical 

subunits, arranged into two heptametrical rings. These two rings are stacked back 

to back and there is an open chamber in each ring (Fig. 1-1). Although the two 

chambers appear to be connected, C terminal tails invisible to crystallography 

but not to cryo-EM (residue 526-548) may plug the hole between rings [12]. 

 

Each GroEL subunit has a molecular weight of about 57KD and contains three 

domains: the equatorial domain, the intermediate domain and the apical domain 

(Fig. 1-1) [11]. The equatorial domain is the most rigid domain. It mediates inter-

GroEL ring communications and contains the nucleotide-binding pocket that 

accommodates one ADP/ATP-Mg2+-K+. The intermediate domain covers the 

nucleotide-binding pocket like a “lid” and contains a residue crucial for ATP 

hydrolysis, D398. The apical domain is the most flexible domain. It binds both 

GroES and misfolded proteins (SP), with the same hydrophobic groove between 

helices H and I [13]. 



 
 
 

3 

 

 

Fig. 1-1 The overall structure of GroEL.  

The equatorial, intermediate and apical domains are colored in grey, light blue 

and cyan respectively. Helices H and I are colored in red. (PDB ID: 1OEL, 

1GRL, 1XCK) 

 

GroES contains seven identical subunits, approximately 10kD each [14]. The 

seven GroES subunits arrange into a dome shaped “lid” (Fig. 1-2). GroES 

interacts with helices H and I of GroEL through seven so-called “mobile-loops”, 

each containing 28 residues (residue 16-33). Before GroEL binds, these loops are 

unstructured. 
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Fig. 1-2 The overall structure of GroES.  

1.2 GroEL can be either a two-stroke motor or a parallel processor. 

GroEL/ES assisted protein folding depends on the turnover of ATP [15]. The 

classical view of this ATP-driven machine is a two-stroke motor [16, 17]. In the 

two-stroke motor model: (1) the two GroEL rings are always 180 degree out of 

phase of one another so that they hydrolyze ATP and bind GroES alternatively 

and (2) the “bullet”-shaped GroEL-GroES1 is the protein folding functional form 

(Fig. 1-3).  
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30 Å

8 Å
GroES
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Resolution 2.7 Å
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Fig. 1-3 GroEL’s catalytic cycle in the absence of SP.  

According to the two stroke motor model, two GroEL rings work alternatively. 

In each half cycle, only one of two rings binds ATP and GroES (the grey ring) 

while the other ring idles (the red ring).  

  

But the two-stroke motor model is only accurate in the absence of SP. Using 

multiple spectroscopic probes, our lab recently showed that in the presence of 

misfolded proteins, GroEL/ES works as a parallel processor [18, 19]. (1) The two 

GroEL rings are only slightly out-of phase so that they hydrolyze ATP and bind 

GroES simultaneously and (2) the “football”-shaped GroEL-GroES2 is the 

predominate species (Fig. 1-4). 
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Fig. 1-4 GroEL’s catalytic cycle in the presence of SP.   

SP changes the kinetics of ATP turnover, so that two GroEL rings bind ATP, 

GroES and SP simultaneously. 

 

1.3 GroEL assists SP folding in steps 

As a parallel processor, each GroEL ring can be treated as a separate functional 

unit.  

A misfolded protein is treated by GroEL ring through multiple steps. These steps 

include (i) capture, (ii) unfolding and (iii) release (Fig. 1-4). 
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Capture 

GroEL captures a large variety of cytosolic proteins in E.coli, when these 

proteins are in misfolded states [10]. In general GroEL does not interact with the 

native states of SPs, since the recognition motifs are buried in the native states. 

Biochemical and structural biology studies both showed GroEL capture SP with 

hydrophobic interactions. Each hydrophobic groove between apical domain 

helices H and I is able to capture a SP mimicking hydrophobic polypeptide [13]. 

These hydrophobic GroEL recognition motifs are usually buried in native states 

and are only exposed when denatured so that GroEL may distinguish between 

native proteins and misfolded proteins [20].  

 

In order to be captured efficiently, a SP contains at least 3 hydrophobic GroEL 

binding motifs on average [21]. To bind GroEL with high affinity, SP has to 

occupy at least 3 out of seven binding grooves between helices H and I 

simultaneously [22]. Once captured, SP binds to GroEL tightly, the equilibrium 

dissociation constant is nanomolar [15, 23]. But how GroEL captures a variety of 

SP different in size and shape is yet to be determined. 

 

Unfolding 

Two kinds of partial SP unfolding have been observed: passive unfolding and 

forced unfolding. Passive unfolding accompanies SP binding: GroEL prefers to 

capture SP in extended conformations that are in fast equilibrium with compact 
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states [24]. Local unfolding may also occur as SP interacts successively with an 

increasing number of binding sites [25]. 

 

Forced unfolding is triggered by ATP induced conformational changes [25, 26]. 

ATP binding causes GroEL’s apical domains to rotate and separate from each 

other [27, 28]. Because captured SP binds to at least 3 apical domains of 

different subunits, when the apical domains move apart, SP will be stretched and 

partially unfolded. Although forced unfolding was observed using different 

model substrates, including SP mimicking stack-dyes [29], whether GroEL 

assisted protein folding requires forced unfolding is still controversial [25, 26]. 

 

With the addition of GroES following ATP induced unfolding, SP is displaced 

from its binding sites on apical domains into a closed chamber [25]. It is unclear 

if this closed GroEL-GroES chamber guides SP folding actively or only 

passively prevents aggregation like an “Anfinsen’s Cage” [30, 31]. Recent 

structural and biochemical evidence favors the active chamber model slightly 

[30, 32]. But for some SPs, encapsulation after unfolding might not be necessary; 

a partially unfolded SP will continue to fold after released. 

Release 

The duration of encapsulation is controlled by the rate of ATP hydrolysis. SP is 

encapsulated until sufficient nucleotide asymmetry has developed (i.e. the 

difference in number of ATP hydrolyzed between two GroEL rings) when the 

ring with less ATP releases its GroES [18, 33]. Presumably, the nucleotide 
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asymmetry is sensed by the inter-ring interface and eventually triggers the 

release of one GroES “lid” and the encapsulated SP. The average half time of 

encapsulation is 1.5 seconds, after which SP will be released regardless of 

whether it has folded or not [18].  

 

After each round of capture, unfolding and encapsulation, less than <1% of SPs 

are released in folded states [18]. Therefore each SP goes through the chaperonin 

cycle many times before it reaches its native state; this process is referred as 

iterative annealing [34].  

 

Previous studies have attempted to answer how GroEL assisted protein folding 

using a single turnover mutant (GroELSR1), where iterative annealing is 

prohibited. Once SP is captured by GroELSR1, it can be unfolded and 

encapsulated but never released [35]. However the mechanism of SP folding 

under infinite encapsulation by GroELSR1 very likely differs from the mechanism 

of SP folding by GroELWT. For example, in the cavity GroELSR1/ES, the half 

time of SP folding is about 10 minutes but under physiological conditions, one 

SP only remains encapsulated no longer than 2 seconds per turnover [18,19,35].  

  

1.4 Conformational changes that accompany the turnover of ATP 

To optimize SP folding in separate steps, each GroEL ring undergoes 

conformational changes [36, 37]. The conformation of a GroEL ring is coupled 

to the turnover of ATP and GroES [27, 28, 33, 38, 39]. In the absence of ATP 
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and GroES, a GroEL ring resides in the T (Taut) state. The T state has lower 

affinity for nucleotide and higher affinity for SP [11, 40]. 

 

ATP or ADP binding induces a conformational change and drives GroEL from 

the T state to the R (Relaxed) state [27, 39]. The R state has higher affinity for 

nucleotide and lower affinity for SP. AFM and crosslinking studies suggested R-

ATP and R-ADP rings are both taller and wider than the T state ring [28, 41]. 

Cryo-EM at 8-9 Å resolution showed nucleotide-induced ring elevation and 

expansion is mainly caused by the conformational changes of the apical domains 

[27]. ATP binding causes the apical domain to tilt up to 35 degrees and twist up 

to 20 degrees around a hinge connecting the intermediate and apical domains. 

Interestingly a total of six R-ATP conformations were observed but due to 

imposed seven-fold symmetry, subunits of the same synthetic ring are identical. 

 

When both ATP/ADP and GroES bind, the GroEL ring further elevates and 

expands [33, 38, 42]. The apical domains rotate 100 degrees and as the result the 

volume of GroEL cavity expands. These conformations are called R’(GroEL7-

ATP7-GroES) state and R” (GroEL7-ADP7-GroES) state [33, 38] (Fig. 1-5).  

Crystal structures showed the R’ state and the R” state are almost identical [33, 

38, 42], indicating it might not be necessary to hydrolyze all seven ATPs of the 

R’ state to proceed in the chaperonin cycle. 
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Fig. 1-5 The Overall structures of GroEL-GroES1 “bullet”.  

Nucleotide and GroES binding induced dramatic conformational changes so that 

the cis-ring looks different from the trans-ring (PDB ID: 1AON (R”) and 1PCQ 

(R’)).  

 

Even though many combinations of conformations between rings are possible, 

only a few turn out to be functionally relevant [38, 42]. High-resolution 

structures were only available for two complexes involved in the functional 

cycle: the [cisGroEL-GroES1-ADP7]-[transGroEL] complex and [cisGroEL-GroES1-

(ADPAlF3)7]-[transGroEL] complex. In both structures GroES bound cisrings 

showed expanded R’ or R” conformation, while the ligand free transrings in these 

two structures liked are T-liked. To distinguish two rings in different 
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conformations, we name the GroEL bound ring the cis-ring and the GroES free 

ring the trans-ring. 

 

1.5 Specific Aims 

The goal of my work is to gain a better understanding of GroEL assisted protein 

folding using structural methods, particularly X-ray crystallography. I am 

interested in two aspects of GroEL assisted protein folding: SP capture and SP 

encapsulation. 

 

(1) SP capture: Previous work in the lab suggested SP is captured by the ADP 

bound trans-ring [18, 19]. Once captured, SP accelerates ADP release so the 

chaperonin machine switches from energy efficient “resting” state in which it 

operates the energy conserving asymmetric cycle, to the active mode, which 

turns over ATP much faster [17, 19]. The questions are: 

(i) How does the ADP bound trans-ring captures various, structurally diverse SP? 

(ii) How does SP bound to the apical domain accelerate ADP release from the 

distant equatorial domains? 

 

To answer these questions, I aimed to determine the structure of the resting state 

capture complex [cisGroEL-GroES1-ADP7]-[transGroEL-ADP7]. However crystals 

of this complex never diffracted well enough to pursue structural studies so we 

made two compromises.  First, I concentrated on the R-ADP ring responsible 

for SP capture, assuming GroEL binding to one ring will not alter the other ring’s 
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conformation dramatically. Second I used a GroEL double mutant D83A/R197A, 

which has a higher affinity for ADP but otherwise behaves very similar to the 

wild-type [43]. By removing two salt bridges (D83-K327 and E386-R197), 

which ordinarily break during T to R transitions, the equilibrium was shifted 

towards the R state. By doing so, we determined the crystal structure of a 

GroELD83A/R197A-ADP14 complex, both rings of which are in the R-ADP state. 

This is also the first high-resolution structure of GroEL in the R state. 

 

In chapter 3, the structure of R-ADP GroEL will be analyzed in detail, 

highlighting dramatic conformational changes of the apical and intermediate 

domains. In chapter 4, the crystal structure of nucleotide free GroELD83A/R197A is 

reported. As we expected, the conformational changes we observed in double 

mutant R-ADP are not caused by mutations but are caused instead by nucleotide 

binding. 

 

(2) SP encapsulation: According to the chaperonin dogma, SP is only 

encapsulated by the cis-ring of the “bullet”-shaped complexes [16, 17]. However 

recent discoveries by a few other labs suggested that “football”-shaped complex 

(GroEL-GroES2) could be crucial in assisting SP folding [44-50]. Ye, Yang and 

Lorimer demonstrated that due to changes in GroEL’s kinetic mechanism, in the 

presence of SP the “football” complex become the predominate species [18, 19]. 

Designated for SP encapsulation, the “football” complex has two chambers and 

may encapsulate two molecules of SPs simultaneously [18, 19, 33].  
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To understand what happens during SP encapsulation, I addressed the following 

questions: 

(i) What are the differences between the “football” complex and the “bullet” 

complex? 

(ii) How do the cavities of “football” complex interact with encapsulated SP. 

(iii) How is ATP hydrolysis coupled to the release of one of GroES “lids” from 

the “football” complex? 

 

To address these questions, I determined two crystal structures of the symmetric 

GroEL:GroES2 “football” complexes; one is SP free and another contains a 

substrate Rubisco in each cavity. These two structures are analyzed in chapter 5 

and a model of transmitting the signal of ATP hydrolysis through equatorial 

domains is proposed. 
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Chapter 2 General methods and experimental procedures 

2.1 Purification of GroEL and GroES 

GroEL and GroES were over-expressed in E. coli. BL21 and purified using an 

existing protocol [17, 51]. After several steps of purification including anion 

exchange chromatography, gel filtration and acetone precipitation, we estimated 

GroEL’s purity using tryptophan fluorescence method [17, 51]. If more than 10% 

of GroEL rings were SP contaminated, the acetone precipitation step was 

repeated. One preparation from 6L of over-night culture typically yields 120 mg 

GroEL or 100 mg GroES. Because freezing affects crystallization, purified 

GroEL and GroES were stored at 4 ºC, in the buffer containing 50 mM Tris-HCl 

pH 7.5, 20 mM MgCl2, 200 mM KCl and 0.03% (w/v) NaN3. 

 

2.2 Quantitative structural comparison using a cylindrical coordinate system 

Each GroEL contains ~7300 residues and a GroEL-GroES1 complex contains 

~8000 residues. The size of GroEL and GroEL/ES complex make it difficult to 

identify conformational difference between two structures by visual inspection. 

Traditional structural alignment method, such as the one implemented in Pymol, 

rotates and translates one structure respect to another, to minimize the sum of 

squared distances [52]. Although this method may work well for smaller 

proteins, it is not ideal for large protein complexes, such as GroEL, which 

contains multiple domains and subunits.  
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To quantitatively compare two GroEL structures and capture conformational 

differences at single residue resolution, we developed a cylindrical coordinate 

system to analyze the conformation of each GroEL subunit [39]. R is the distance 

between the Cα of a given residue and the 7-fold symmetry axis (defined by the 

symmetrical equatorial domains). H is the height of the Cα of a given residue 

over the 2-fold plane of symmetry (between two rings). θ is the angle between 

two vectors; one connects the Cα of residue i to the axis of 7-fold symmetry and 

the other connects the Cα of residue i in the neighboring subunit to the axis of 7-

fold symmetry (Fig. 2-1). Usually, we plotted R, H and θ as a function of residue 

number in a subunit. In this way, these three variables together fully depict the 

conformation of each subunit. Therefore we refer the R, H and θ plots as 

“signature plots” to describe their cursive nature. 

 

 

Fig. 2-1 The cylindrical coordinate system for quantitative structural 

comparison.  

Three cylindrical coordinates (R, H, θ) replace cartesian coordinates (x, y, z). 
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The “signature plots” can be used to quantify the structural difference (i) 

between subunits in a ring and (ii) between two rings. First, the R, H and θ plots 

of each individual subunit in one structure capture any variation or asymmetry 

between subunits. If the seven subunits in one ring show perfect seven-fold 

symmetry, for a given residue R, H and θ are expected to be the same for all 

seven subunits within a ring and the “signatures” of R, H and θ of different 

subunits should overlap (for example, θ plots overlap at 360/7 = 51.43°). 

However, if seven subunits in a ring are not identical, the “signature” plots of 

each subunit will be different. By comparing these “signature” plots, one can 

easily identify domains that show most structural variation between subunits. 

 

Second, we can also quantify the difference between two GroEL rings, by 

comparing (R, H, θ). For example, one can calculate ∆R=<R’>-<R”> and 

∆H=<H’>-<H”>, where <’> is the average over one ring and <”> is the 

average over the other. If two GroEL rings have identical averaged 

conformation, for any residue ∆<R> and ∆<H> are expected to be below a 

certain threshold. To define the threshold, we calculate ∆<R> and ∆<H> 

between two T state structures solved independently in different space groups 

[53, 54].  
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Chapter 3 The crystal structure of GroELD83AR197A-ADP14 

3.1 Introduction 

To assist protein folding the GroEL/GroES chaperonin-machine cycles through a 

series of conformational states in response to ligand binding [34, 36, 55]. Two 

states, T (taut) and R (relaxed) are populated in the absence of GroES. The 

compact T state is favored in absence of nucleotide, while after ADP or ATP 

binding the equilibrium between the T and R states shifts to favors the extended 

R state. Another two states, R’ and R”, that exist before and after ATP 

hydrolysis respectively, are populated upon GroES binding to the R state [34, 36, 

55]. Crystal structures of the T(1OEL) [11], (1XCK) [53], the R’ (1PCQ) [42] 

and the R” (1AON) [38] states are available (Fig.1-1 and Fig. 1-5). 

 

As described by the theory of nested cooperativity, the conformational transitions 

within each heptameric ring are positively cooperative, while the transitions 

between the rings are negatively cooperative [37, 56]. Multiple salt-bridges, 

some within a subunit, others between subunits, stabilize these various 

conformational states. In such a dynamic system, these salt-bridges must 

continually be broken and re-formed at different points during the chaperonin 

cycle. Two salt-bridges, an intra-subunit one D83-K327 and an inter-subunit one 

R197-E386, stabilize the T state are ordinarily broken during the T to R 

transition that follows the binding of ATP to the wild type (Fig. 3-1). 

Individually, the R197A mutation destabilizes the T state [57, 58] while 

replacing the D83-K327 salt-bridge with a disulfide bond locks the ensemble in 
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the T state [40, 59]. Here, two mutations (D83A, R197A) were introduced to 

remove these salt bridges (D83-K327 and R197-E386) so that the T state was 

destabilized. Steady state and pre-steady-state analyses of GroELD83A/R197A 

reveals that it populates a T-like state in the absence of nucleotide but more 

readily transitions to the R-state upon nucleotide binding than the wild-type 

GroEL [39, 43]. We also report the crystal structure at 2.7Å resolution of this 

GroELD83A/R197A containing bound ADP in the R conformational state (Fig. 3-2a 

and Table. 3-1).  The crystal structure of the R state is distinct from previously 

reported crystal structures [11, 38]. It is similar in some respects to the cryo-EM 

(PDB ID 4AAS, etc) structures of GroEL-ATP [27]. However, the structure 

reported here differs by being strikingly asymmetric in the apical domain. 

 

Fig. 3-1 Salt bridges perturbed by mutations are ordinarily broken during 

the T to R transition.  

The positions of the inter-domain, intra-subunit D83-K327 (red and blue spheres) 

and inter-domain, inter-subunit R197-E386 (black and yellow spheres) salt-

bridges before and after the T to R allosteric transition. 
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Fig. 3-2 Overall structure of the R-ADP and its asymmetry.  

(a) Overall structure of the R-ADP state viewed from the top (left) and the side 

(right). Seven subunits in one ring are colored in red, orange, yellow, green, 

cyan, blue, and purple, respectively. (b) Arrangement of equatorial (left), 

intermediate (middle) and apical (right) domains in the ring. E130 (in equatorial 

domain), V190 (in intermediate domain) and E310 (in apical domain) are 

connected (Cαs as black spheres and black dash lines) to highlight the degree of 

asymmetry in different domains. 
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Table. 3-1 Data collection and refinement statistics of GroELD83AR197A-

ADP14. 

 

3.2 Methods specific to chapter 3 

3.2.1 Crystallization 

The R-ADP state GroEL was made by mixing 190 µM GroELD83A/R197A and 5 

mM ATP in 50:20:200 buffer (50 mM Tris-Acetate pH 7.5, 20 mM MgCl2, 200 

mM KCl). GroEL and ATP mixture was incubated in room temperature until 

ATP was all converted to ADP. The R-ADP samples were screened for 

crystallization condition by using sitting drop vapor diffusion method (drop: 0.5 

Space group C121
Unit cell a, b, c (Å) 235.222/141.655/156.693
Resolution range (Å) 46.17-2.722(2.819-2.722)
Rmerge (%) 5.2(41.1)
Total number of reflections 120262(10710)
Redundancy 3.1(3.1)
Completeness (%) 95.62(85.28)
I/σ (I) 13.98(3.13)
Number of residues/asymmetry unit 3668
Number of protein atoms 27012
Number of ligand atoms 368
Number of water atoms 597
R (%) 16.63 (23.10)
Rfree (%) 20.30 (28.34)
Test set size (%), selection 5, radom
RMSD
bond lengths (Å) 0.005
bond angles (degree) 0.95
Ramachandran plot
Most favored (%) 97.1
allowed(%) 2.71
outlier(%) 0.11
Average B factors (Å^2)
Protein 88.2
Ligand 81.8
Water 63.2
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µL well solution: 100 µL). Diffraction quality crystals were grown at the screen 

condition with well solution consists of 34% MPD (v/v), 0.1 M acetic acid pH 

5.5 and 20 mM CaCl2. Crystals were optimized by hanging-drop vapor diffusion 

method (drop: 6 µL well solution: 1 mL). Cubic shaped crystals began to show 

up after 3-4 days in drops containing 2:1 mixture of protein sample and well 

solution (Fig. 3-3). One week after the crystallization trays were set up, single 

crystals were removed from mother liquor and soaked in well solution for 5s 

before mounted and then flash-frozen by liquid nitrogen. 

 

 

Fig. 3-3 Crystal of GroELD83AR197A-ADP14, grown in the presence of MPD. 
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3.2.2 Data collection and structural determination 

Diffraction data were collected at the NE-CAT beamline 24-ID-C located at the 

Advanced Photon Source, Argonne National Laboratory (Argonne, IL, USA). 

300 frames with 0.5° oscillation were collected at 100K. The data were indexed 

and integrated using HKL2000. The structure of the R-ADP was solved by 

segmented molecular replacement using apo GroEL(PDB ID: 1XCK) as the 

search model. Three domains in the apo GroEL were dissected and fitted 

sequentially. The first search ensemble consisted of 7 equatorial domains and 7 

intermediate domains. Then search ensembles 2 to 8 were add one at a time, each 

ensemble contains one apical domain. In structure refinement, NCS (non 

crystallographic symmetry) was turned off and each subunit was refined 

independently. Molecular replacement and structure refinement were carried out 

using AutoMR, Refine and Coot in the Phenix suites [60].  The coordinates 

after refinement were deposited in the PDB as 4KI8. 

 

3.2.3 Structure details 

Two heptametrical rings in the R-ADP are related by crystallographic symmetry 

and the asymmetrical unit contains one of two rings. Electron density is weak 

from residue 221 to residue 226 in chain C and chain G due to high flexibility in 

those regions. Data collection and refinement statistics are show in Table 1. The 

figures that depict structures of the R-ADP were prepared using Pymol. The 

analysis of R, H and θ were plotted using Prism. 
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3.3 Results and Discussion 

3.3.1 Asymmetry in the apical domains of the R-ADP is revealed 

In contrast to previously solved GroEL structures in other conformational states, 

the R-ADP shows a striking asymmetry. While the equatorial domains and most 

the intermediate domains are almost perfectly symmetrical, the apical domains 

break the 7-fold symmetry (Fig. 3-2b). A huge gap (~ 1 nm, Fig. 3-2b right) 

exists between the apical domains of the chain E and chain F. 

 

To quantify such asymmetry, we used the cylindrical coordinate system to 

analyze the conformation of each GroEL subunit, as described in chapter 2 (Fig. 

2-1). Three cylindrical coordinates R, H and θ together fully depict the unique 

conformation of each subunit, including possible asymmetry in three different 

directions: radial (R), vertical (H) and rotational (θ). If the seven subunits show 

perfectly 7-fold symmetry, for a given residue R, H and θ are expected to be the 

same for all seven subunits within a ring and the “signature” plots of R, H and θ 

of different subunits should overlap (θ plots overlap at 51.43°). 

 

Our quantitative analysis confirms the asymmetry, showing apparent 

heterogeneity in R, H and θ (Fig. 3-4). This heterogeneity or asymmetry is 

confined to the intermediate and apical domains. For a given residue R can differ 

by up to 20 Å and H by up to 10 Å (indicated by arrows in Fig. 3-4). For a given 

pair of residues, θ deviates from 51.43°(as in perfect 7-fold symmetry) between 

+30°(between chain E and chain F) and -20°(between chain D and chain E). 
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Fig. 3-4 Quantitative analysis of the R-ADP using cylindrical coordinate 

system.  

Asymmetry between the subunits in the R-ADP is dissected (inserts in upper and 

lower panels) and quantified using R, H and θ as described in chapter 2. The 

colors of traces (from red to purple) reflect the arrangement of subunit and are 

consistent with that in Figure 3-2(b). Two black arrows in R and H panels 

indicate the largest degree of asymmetry in radial (R) or vertical (H) direction. 

Four black arrows in θ panel marked with h1 (P137 & G410) and h2 (G192 & 

G375) are hinge residues connecting equatorial and intermediate domains and 

intermediate and apical domains respectively. For comparison, two R-ATP states 

determined by cryo-EM Rd2 (lower black dash, PDB ID: 4AB2) and Rdopen 
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(upper black dash, PDB ID: 4AB3), are analyzed and plotted with the asymmetry 

of R in the R-ADP state. The T state with 7-fold symmetry (PDB ID: 1XCK) is 

also analyzed and plotted with the asymmetry of θ in the R-ADP state (black 

dash). 

 

The signature plots show three features. First, the departure from symmetry that 

is evident in the intermediate and apical domains, begins and ends at the two 

hinge points, hinge1 (P137 and G410) and hinge 2 (G192 and G375), which 

adjoin the intermediate and equatorial and the apical and intermediate domains 

respectively (black arrows in Fig. 3-4, θ plot).  This suggests that the 

asymmetry arises by small differences in the rigid body motion that accompanies 

the T to R transition. Consistent with this idea, the plots corresponding to 

different subunits are parallel to one another (Fig. 3-4, R plot), indicating that the 

secondary structure is conserved among subunits. Secondly, no two signature 

plots overlap at the apical domain (Fig. 3-4), meaning none of the two subunits 

adopts identical conformation. Finally, for a given residue the difference in R is 

smallest between neighboring subunits (Fig. 3-4, R plot), indicating that the 

conformation of a given subunit influences the conformation of the neighboring 

subunits. 
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3.3.2 Crystal structure of R-ADP closely resembles the cryo-EM structure of 

R-ATP 

The flexibility of nucleotide-bound GroEL has recently been observed in the R-

ATP by cryoEM [27]. After imposing 7-fold symmetry it was concluded that six 

different symmetrical conformations of R-ATP existed in solution.  To 

compare the variation of the R-ATP to R-ADP, we plot the residue-dependent R 

and H of the two most distinct conformations of the R-ATP state (two dotted 

lines in Fig. 3-4). For >95% of the residues, the seven R and H signature plots of 

the asymmetric conformations in the R-ADP state (colored solid lines) are within 

the boundaries set by the Rd2 (lower dotted line) and the Rd-open (upper dotted 

line) conformations of the R-ATP state [27]. Therefore, the flexibility of the R-

ADP in the crystal structure is consistent with the variation of the R-ATP 

conformations observed previously in solution by cryo-EM.  However, due to 

the imposition of 7-fold symmetry upon each of the cryo-EM structures at 8.5 Å, 

the asymmetry evident in the crystal structure at 2.7 Å is lost.  

 

To underscore the similarity of the R-ADP and R-ATP structures and their 

common asymmetry, we imposed 7-fold symmetry on each of the sub-units A-G 

to create synthetic R-ADP-A7 to R-ADP-G7 rings (Fig. 3-5).  This affords us 

the opportunity to compare these crystal-based synthetic ensembles with the 

synthetic cryo-EM-based ensembles.  Despite the differences in resolution (2.7 

Å versus 8-9 Å) and correlation coefficients (Fig. 3-6 0.89 versus 0.69) for the x-

ray and cryo-EM structures respectively, it is obvious that the synthetic “x-ray” 
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rings resemble very closely the synthetic “cryo-EM” rings, irrespective of the 

nature of the ligand (ADP or ATP) in the nucleotide-binding site.  The synthetic 

R-ADP rings can readily be ranked from the most “closed” structure (smallest 

value for d1, Fig. 3-5) to the most “open” structure (largest value for d1).  Thus, 

the synthetic R-ADP-A7 corresponds to the cryo-EM based structure Rd2. This 

is especially evident when the two models for the apical domain are super-

imposed upon their respective density maps (Fig. 3-5, left). Similarly, the 

synthetic R-ADP-D7 corresponds to the most open cryo-EM based Rdopen (Fig. 

3-5, Fig. 3-4 right).  We conclude that, were it not for the imposition of 7-fold 

symmetry upon the cryo-EM R-ATP structure, the asymmetry observed in the 

crystal structure of R-ADP would be found in solution in the cryo-EM structure 

of R-ATP. 

 

 

(a)

(b)
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Fig. 3-5 Comparison between symmetry imposed R-ADP to R-ATP 

structures determined by cryoEM.  

Each subunit in asymmetrical R-ADP (top) is isolated and symmetrized to 

generate synthetic R-ADP with 7-fold symmetry (upper line). These seven 

synthetic R-ADP structures are arranged from the least open one (R-ADP-A7) to 

the most open one (R-ADP-D7) according to their diameters (d1 and d2). Seven 

symmetrized R-ADP structures closely resembles a series of cryoEM R-ATP 

structures (lower line) in diameters and fit well to cryoEM electron densities 

(upper line left and right, R-ADP-A7 vs. Rd2 and R-ADP-D7 vs. Rdopen). 

 

 

Fig. 3-6 Detailed view of model-density fitting in asymmetrical R-ADP and 

symmetrical R-ATP.  

At the cost of imposing symmetry, cryoEM R-ATP models show rather poor 

correlation coefficent with maps and parts of the secondary structures show no 

electron density (black arrows). The apical domains are shown as cartoon. The 

(a)

(b)
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colors for symmetrized R-ADP are consistent with the asymmetrical R-ADP 

(top) and reflects the arrangement of subunits in a ring. R-ATP structures are 

colored to the symmetrized R-ADP with smallest RMSD. Electron density maps 

are contoured at 1.0 σ. 

 

3.3.3 The T to R transition is accompanied by the loss of inter-subunit 

stabilizing contacts as the origin of asymmetry. 

The flexibility of intermediate and apical domains in the R-ADP is correlated 

with the loss of inter-subunit stabilizing contacts. In the T state, the intermediate 

and apical domains are stabilized by 42 inter-subunit hydrogen bonds or salt 

bridges per ring, 6 at each interface [11, 51]. However, in the crystal structure of 

R-ADP, these inter-subunit contacts involving intermediate and apical domains 

are absent (Fig. 3-7 and Table. 3-2). As a result, the intermediate and apical 

domains in R-ADP can rotate relatively freely with respect to the equatorial 

domains, leading to the loss of seven-fold symmetry. Thus, the cause of 

flexibility and asymmetry in R-ADP (loss of inter-subunit contacts) differs to 

that observed in another case [61]. In fact the asymmetric arrangement we 

observed in this crystal structure is only one possible conformation from an 

ensemble of flexible conformations the R-ADP may access. An alternate source 

of asymmetry concerns the intra-subunit salt-bridge between D155 and R395, 

both in the intermediate domain. The mutation D155A leads to an ATP-induced 

breakage of symmetry [62].  However, since this particular salt bridge is 

maintained in R-ADP, it cannot be the source of the asymmetry observed here. 
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Compared with the T or R” state, the dramatically increased b-factors for 

intermediate and apical domains in the R-ADP support this argument (Table. 3-

3) A computational study tracking the trajectories of the individual subunits of 

GroEL during the T to R transition reported this dynamic flexibility in the apical 

domain [63]. 

 

 

Fig. 3-7 Numbers of inter-subunit contacts between two neighboring 

subunits, in the asymmetric R-ADP state and symmetric T state.  

These contacts include salt-bridges (<5 Å) and hydrogen bonds (<3.5 Å). Based 

on their locations, the contacts are categorized into three groups: between 

equatorial domains, between apical domains and between intermediate-apical 

domains. 
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Table. 3-2 Possible inter-subunits salt bridges in the R-ADP and T (PDB ID: 

1XCK) states.  

 

 

Table. 3-3 Domain averaged B factors for the T(PDB ID: 1XCK), R-ADP 

and R”(PDB ID: 1AON) states.  

 

3.3.4 R-ADP is distinct from other crystal structures and cryo-EM models of 

GroEL. 

We quantified the averaged difference between the R-ADP state and previously 

solved crystal structures in the T [11] and R” [38] states. We used the same 

cylindrical coordinate system as described above. For each residue, we first 

calculate the average R and H over seven subunits within a ring. ΔR and ΔH is 

AB BC CD DE EF FG GA R-ADP  Average T

Arg197-Cβ Glu386-Cδ 16.6 17.3 20.4 16.8 24.2 20.4 17.3 19.0 4.6

Lys80-Nζ  Glu386-Cδ 12.2 13.6 14.8 16.9 19.7 13.2 13.7 14.9 17.8

Glu255-Cδ Lys207-Nζ 17.3 17.2 28.8 17.7 28.6 22.9 12.8 20.8 4.0

Glu255-Cδ Lys245-Nζ 4.2 7.7 16.7 10.8 22.9 6.3 12.1 11.5 16.4

Glu257-Cδ Lys245-Nζ 14.7 9.8 12.6 9.1 25.1 14.6 20.8 15.2 17.5

Glu257-Cδ Lys242-Nζ 6.2 12.6 15.0 16.5 25.2 3.1 20.0 14.1 12.5

Each interface in R-ADP

R-ADP T R"
equatorial 41.4 29.2 22.5
intermediate 85.0 42.7 55.9
apical 131.2 60.5 98.9
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the difference in R and H, respectively, between the R-ADP state and a 

previously solved state. While the difference between T and R-ADP states is 

larger than 10 Å for some residues (red and blue in Fig. 3-8), the difference 

between the R’’ and R-ADP states exceeds 20 Å (pink and cyan in Fig. 3-8). 

These differences are confined to the intermediate and apical domains. 

 

Fig. 3-8 Conformation differences between the R-ADP and T or R” state, 

analyzed using difference “signature” plots.  

Conformational difference in each residue is quantified by ΔR (upper panel) and 

ΔH (lower panel). ΔR = <R>-<R’>, where R is the distance to the 7-fold axis in 

the R-ADP, R’ is the corresponding distance in the T (red, PDB ID: 1XCK) or 

R” (pink, PDB ID: 1AON) state. < > denotes average over seven subunits. 

Similarly, ΔH = <H>-<H’>, where H is the height in R-ADP state, and H’ the 

corresponding height in a known state (T in blue and R” in cyan). ΔR and ΔH 

between two T state structures (black dash, PDB ID: 1XCK and 2NWC) serve as 

the negative control and showing two crystal structures of the same 

conformational state of GroEL only have little differences.  

 



 
 

34 

 
 

The difference between the R-ADP and the crystal structures of T or R” (solid 

lines in Fig. 3-8) is much larger than the difference between two structural 

models of the same state (black dotted lines in Fig. 3-8). Thus, the R-ADP state 

is distinct from previous known states. Further, the difference is not solely due to 

the flexibility of ADP bound GroEL, as the difference does not vanish upon 

averaging over seven subunits within a GroEL ring.  

 

The R-ADP is also significantly different from the crystal structure of GroEL-

ATPγS14 complex previously considered to be in the R state [64]. We quantified 

the difference between the R-ADP and GroEL-ATPγS14, using ΔR and ΔH as 

described in the main text. Although the contacts between nucleotides and 

nucleotide binding pocket are almost identical in these two structures (Fig. 3-9), 

the intermediate and apical domains of the two have distinctive conformations 

(Fig. 3-10 dashed pink and cyan). The difference between the R-ADP and 

GroEL-ATPγS14 may arise from a difference in crystallization methods. While 

we co-crystallize ADP and GroEL, ATPγS was soaked in after the crystal had 

formed and lattice forces restrained any nucleotide-induced large conformational 

rearrangements. Therefore, GroEL-ATPγS14 is almost identical to the nucleotide 

free T state with small difference in the height of apical domain (~2 Å) (Fig. 3-

10 solid red and blue). 
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Fig. 3-9 Contact between nucleotides and the nucleotide binding residues in 

the R-ADP (a, yellow) and GroEL-ATPγS14
 (b, grey PDB ID: 1KP8).  

Despite the difference in the nucleotide (KMgADP or KMgATPγS), the 

nucleotide binding residues (shown as sticks) in two structures adopt very similar 

conformations. The electron density maps (2Fo-Fc) are contoured at 1.5 σ.  
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Fig. 3-10 Conformation differences between GroEL-ATPS14 and the T or 

R-ADP state.  

Conformational difference in each residue is quantified by ΔR (upper panel) and 

ΔH (lower panel). ΔR = <R>-<R’>, where R is the distance to the 7-fold axis in 

GroEL-ATPγS14, R’ is the corresponding distance in the T (red solid trace, PDB 

ID: 1XCK) or R-ADP (pink dashed trace) state. < > denotes average over seven 

subunits. Similarly, ΔH = <H>-<H’>, where H is the height in GroEL-ATPγS14, 

and H’ the corresponding height in a known state (the T in blue and R-ADP in 

cyan). ΔR and ΔH between two T state structures (black dash PDB ID: 1XCK 

and 2NWC) serve as the negative control and showing two crystal structures of 

the same conformational state of GroEL have only minor differences. 
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We also compared the R-ADP state GroEL to GroEL structures determined by 

cryo-EM at lower resolution. The R-ADP is similar to a series of cryo-EM R-

ATP structures [27]. For seven asymmetrical subunits in the R-ADP GroEL, 

chain A has the conformation most close to R-ATP state Rd2 and chain D is 

most similar to R-ATP state Rd-open (red, cyan and two dashed black traces in 

Fig. 3-4).  

 

The conformational differences between the R-ADP and other structures are 

mainly caused by rigid body rotation of the intermediate and apical domains 

around hinge1 (P137 and G410) and hinge2 (G192 and G375) [38]. For example, 

compared to the crystal structure of the T or R” states, although the averaged 

conformational differences between the intermediate and the apical domains can 

be greater than 20 Å (Fig. 3-8), the secondary structure within these domains 

remain largely unchanged. The RMSDs of isolated intermediate domains are 

only 0.7±0.3 Å (between the T and R-ADP) and 1.0±0.3 Å (between the R” and 

R-ADP). The corresponding deviations of isolated apical domains are 0.5±0.1 Å 

and 1.1±0.1 Å.  

 

3.3.5 Rigid body rotation of the intermediate domain controls nucleotide 

release. 

A structural comparison of the R” and R-ADP states indicates that the rotation 

of the intermediate domain controls access to the nucleotide-binding pocket. In 

progressing from the R” to the R-ADP state, the intermediate domains undergo a 
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10° rotation away from the 2-fold symmetry plane, with respect to hinge-1 (Fig. 

3-10a). Consequently the nucleotide-binding pocket, which contains an 

intermediate domain lid (helices F, G and M) and equatorial domain nucleotide-

binding loops, changes from a “fully closed” state to a “half-closed” state. This 

can be measured from the change in distance between the lid helices and the 

nucleotide binding loops. The average distance from helices F/G (N153) to the 

loops (P33) increases from 5.5±0.3 Å to 7.1±0.4 Å (Fig. 3-10b) while the 

average distance from helix M (R395) to the loops (D52) increases from 7.6 ±0.1 

Å to 10±1 Å (Fig. 3-10c). 

 

 

Fig. 3-11 Conformational changes in the intermediate domains, between the 

T (PDB ID: 1XCK), R-ADP and R” (PDB ID: 1AON) states.  
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(a) A subunit from the R” (pink) aligned with a subunit from the R-ADP 

(yellow) by superposition of the two equatorial domains. The conformation 

difference between the intermediate domains (in cartoon) in two structures is the 

result of domain rotation around hinge-1 (cyan dot). The axes of helix M are 

shown as dashed lines. Black arrows indicate directions of hinged rotations of 

intermediate domains. (b-c) Detailed view of helices F&G and helix M in the 

superimposed structures in (a) showing the distance from these helices to the 

nucleotide binding loops changes as the result of hinged rotation. Two pairs of 

residues  (P33&N153, D52&R395) are shown to highlight this distance change 

(Cαs spheres).  ADP is shown in ball-and stick, Mg2+ and K+ are shown as 

green and purple spheres. Black arrows indicate relative position change of these 

helices from R” state to R-ADP state. (d-f) are same as (a-c), except showing the 

rotation of the intermediate domain and the position of helices F&G and helix M 

as GroEL switches from the R-ADP state (yellow) to the T state (blue). 

 

The structural transition of the nucleotide-binding site from “fully closed” in the 

R” state to the “half-closed” R-ADP state is accompanied by an increase in the 

rate of ADP release. ADP, sequestered in the cis ring, in the R” state does not 

exchange with free ligand in solution at all. On the other hand, ADP dissociates 

for the “half-closed” R-ADP state at a rate of ~ 0.1s-1 compared with the pre-

steady state rate of ATP hydrolysis of ~ 0.6 s-1 [17, 39] . In other words, ADP 

release from the “half-closed” R-ADP state, while faster than release from the 

R” state, is still slower than ATP hydrolysis and thus remains the rate-
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determining step in the chaperonin cycle in the absence of SP [17, 19].  By 

introducing the mutations that stabilized the “half-closed” R state, we expect 

ADP release to be even slower. This is reflected in the three-fold increase in the 

mean residence time of GroES dissociation, induced upon adding ATP to the 

resting state complex of GroELD83A/R197A and wild-type [17]. 

 

During the R-ADP to T transition the intermediate domain rotates away from 

cavity center and further away from the 2-fold plane of symmetry by total of 

22°(Fig. 3-11d). This brings about a change in the nucleotide-binding site from 

the “half-closed” state to the “open” state. The average distance between the lid 

helices F/G (N153) and nucleotide binding loop (P33) increases from 7.1±0.4 Å 

to 12.2±0.2 Å (Fig. 3-10e). Similarly the average separation between lid helix M 

(R395) and nucleotide binding loop (D52) expanded from 10±1 Å to 14.2±0.1 Å 

(Fig. 3-11f). The opening of the nucleotide-binding pocket associated with the 

reformation of the T state permits rapid ADP/ATP exchange that is necessary for 

continued cycling of the chaperonin machine. 

 

While the average distance between lid and loop is related to the rate of ADP 

release, the variance of distance in the R-ADP state explains SP accelerated ADP 

release. The variance of the distance is significantly larger in the R-ADP than in 

the other two, as the result of asymmetry (Fig. 3-4). For example, the distance 

from helix M lid to loop varies from 8.5 Å to 11.9 Å in the R-ADP, approaching 

the average lid-to-loop distance in the “open” T state (14.2±0.1 Å) on the one 
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hand, and the “fully-closed” R” (7.6±0.1 Å) state on the other. As described 

above, this variance is the result of flexibility of the R-ADP, and very likely 

exists in solution as well. Thus, it is likely that the nucleotide binding pockets in 

the R-ADP switch stochastically between the “open” and the “fully closed” 

conformation in solution, due to its structural flexibility. 

 

We suggest that SP accelerates ADP/ATP exchange by selectively binding to 

GroEL with “open” nucleotide-binding pockets. SP would consequently increase 

the population and life-time of the “open” conformation permitting rapid 

nucleotide exchange. This mechanism is similar to the out-of-equilibrium 

conformational cycling that others have proposed [65]. 

 

3.3.6 Rigid body rotation of apical domain enables selective binding to 

GroES or substrate protein 

The apical domains rotate with respect to hinge-2 when GroEL cycles through 

the R” to R-ADP to T states (cyan dots in Fig. 3-12c). The apical domains bind 

both SP and GroES that share the same binding site; the groove between helices 

H and I [13, 66]. Hinged rigid body rotation changes the position of helices H 

and I and the binding grooves between two helices. Thus, GroEL binds to SP or 

GroES selectively at different stages of its cycle: the R” state binds GroES and 

the T binds SP while the R-ADP state has a conformation intermediate. 
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Fig. 3-12 Conformational changes in apical domains, between the T (PDB 

ID: 1XCK), R-ADP and R” (PDB ID: 1AON) states.  

(a) The top views and (b) sides views of a single GroEL ring in the T (left), R-

ADP (middle) and R” state (right). Positions of helices H and I (blue), helices K 

and L (yellow) and T357 (pink spheres) are highlighted to trace apical domain 

rotations. (c) Detailed views of one subunit from each state. The conformation 
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differences between the intermediate domains (in cartoon) are the result of 

domain rotation around hinge-2 (cyan dots). ADP is shown in sticks.  Note in 

particular that the major motion of helices K and L, a flip that brings T357 from 

position on the external surface of GroEL to one on the internal surface, occurs 

during the R to R” transition. 

 

In progressing from the R” state to the R-ADP state, the apical domains in the 

R” state swing about 80° clock-wise and move toward the 2-fold plane (Fig. 3-

12, right and middle). As the apical domains move and the overall shape of 

GroEL changes, the position of the SP/GroES binding helices H and I changes 

dramatically. In R” state, helices H and I present themselves at the upper surface 

of GroEL ring, with the binding grooves between two helices fully exposed on 

the GroEL surface and well separated to each other (Fig.3-12a, 3-12b, 3-12c 

right). In R-ADP state, however, these two helices tilt towards the center of the 

cavity and partially exposing the binding grooves between helices H and I to 

surface (Fig. 3-12a, middle). At the same time in the R-ADP state these helices 

move closer to each other and line the collar of GroEL cavity (Fig. 3-12a, 3-12b, 

middle). 

 

The structure of the R-ADP suggests that it has lower affinity for GroES, 

compared to the R” state. The binding grooves in R” favor GroES binding 

structurally by adopting a separated and exposed conformation, which adapt to 

the seven well-separated “mobile” loops of GroES dome [38]. However, in the 
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R-ADP state the binding grooves rotate towards the center of the ring and 

become partially buried, so that GroES binds less readily to R-ADP state than it 

does to the R” state. Reduced affinity for GroES would prevent it binding to R-

ADP state GroEL before SP capture.  

 

During the R-ADP to T transition the apical domains swing about 30° counter-

clock-wise and move closer to the 2-fold plate (Fig. 3-12, middle and left). The 

partially exposed binding groove between helices H and I in the R-ADP state 

now re-orient such that they point towards the center of cavity in the T state (Fig. 

3-12c, middle and left). The circumference of the binding collar that contains 

seven pairs of helices H and I decreases (Fig. 3-12a, middle and left), as a 

consequence of which, the SP binding sites on adjacent subunits move 7 Å closer 

on average. Such conformational difference between the R-ADP and T state 

suggest that the T state binds SP tighter than the R-ADP. Because SP need to 

interact with multiple binding sites in order to bind GroEL with nanomolar-

affinity [22], the T state with smaller SP binding collar and shorter distance 

between adjacent binding sites is likely to have higher affinity to SP than the R-

ADP state.  

 

In E. coli GroEL interacts with half of the soluble, misfolded proteins, diverse in 

sequence and structure [10]. In order to capture so many heterogeneous proteins, 

the binding sites on GroEL have to be adaptive. The flexibility of apical domains 

would allow the R-ADP to adjust its binding collar according to a specific 
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misfolded protein. While it enables high promiscuity, the flexibility of the apical 

domain may lead to weaker affinity for SP. Nevertheless, not until SP binds 

could GroEL release bound ADP and proceed to the T state. 

 

3.4 Summary 

The crystal structure at 2.7 Å resolution of the GroEL in its relaxed R allosteric 

state that we report here differs in important respects from the ensemble of cryo-

EM structures solved at lower resolution [27]. Due to symmetry that was 

artificially imposed on the cryo-EM images, an ensemble of GroEL rings was 

created that essentially consists of the sub-unit conformations that we observe 

within a single ring.  In contrast, our data show that the asymmetry within a ring 

results from the intrinsic flexibility of the apical domain. Inter-subunit, apical 

domain contacts stabilize the T state.  When these contacts are broken upon the 

addition of ATP/ADP, the apical domains become free to express the intrinsic 

flexibility that is characteristic of the R state.  

 

Hitherto, conventional wisdom dictated that the oligomeric class I chaperonin 

rings were fundamentally symmetrical. Previously determined crystal structures 

of GroEL in the nucleotide free T state and GroES bound R” state were both 

almost perfectly symmetric (RMSD between chains <0.3) [11, 38]. As the result, 

it was further speculated that this symmetry was maintained in the ADP/ATP 

bound R state and during the various allosteric transitions [27]. However, 

asymmetry in the related class II chaperonins has been known for some time 
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[67]. Here, we present an example of how this symmetry is broken in the class I 

chaperonin, GroEL, merely by removing two salt bridges that are normally 

broken during the T to R transition. Intriguingly, one example has very recently 

emerged in classes I chaperonins [32], raising the possibility that transient 

departures from structural symmetry may be an important and intrinsic part of 

the mechanism(s).  
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Chapter 4: The crystal structure of GroELD83A/R197A 

4.1 Introduction 

The first crystal structure of GroEL in the R state, highlighting its unpreceded 

asymmetry was described in chapter 3. Although biochemical studies of this 

mutant have shown that these two mutations only destabilize the T state but do 

not eliminate it [39, 43], one might still argue these mutations are the source of 

the asymmetry. 

 

To confirm that by removing two salt bridges (D83-K327 and E386-R197) alone, 

which ordinarily break during T to R transition, did not cause significant 

conformational changes and asymmetry, we determined the crystal structure of 

nucleotide free (apo) GroELD83A/R197A at the resolution of 3.11 Å. 

 

4.2 Methods specific to chapter 4 

4.2.1 Crystallization 

The GroELD83A/R197A was screened for crystallization by using the sitting-drop 

vapor diffusion method (drop: 0.5 µL well solution: 100 µL), using the ARI 

Crystal PHOENIX robot. Diffraction quality crystals were grown at the screen 

condition with well solution consisting of 25% PEG 3000 (w/v), 0.1M acetic 

acid pH 4.5. Crystals were optimized by the hanging-drop vapor diffusion 

method (drop: 3 µL well solution: 1 mL). Long cubic shaped crystals appeared 

after 3 days in drops containing 2:1 mixture of protein sample and well solution. 
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Three days after the crystallization trays were set up, single crystals were 

removed from the mother liquor and Cryo-protected in well solution containing 

20% glycerol before being mounted and flash-frozen by liquid nitrogen. 

 

4.2.2 Data collection and structural determination 

Diffraction data were collected at the NE-CAT beamline 24-ID-E located at the 

Advanced Photon Source, Argonne National Laboratory (Argonne, IL, USA). 

300 frames with 0.5° oscillation were collected at 100K. The data were index and 

integrated using iMosflm [68]. The structure was solved by molecular 

replacement using apo wild-type GroEL (PDB ID: 1XCK) as the search model. 

Molecular replacement and structure refinement were carried out using AutoMR, 

Refine and Coot in Phenix suites [60]. 

 

4.3 Results and Discussion 

4.3.1 apo-GroELD83A/R197A is in the T state 

The overall architecture of GroEL is preserved in this mutant. The 14 subunits 

are arranged into two heptameric rings, stacked back-to-back. Each subunit 

consists of three domains: equatorial, intermediate and apical, as previously 

described for other high-resolution structures (Fig. 4-1). Data and refinement 

statistics are listed in Table 4.1. The asymmetric unit contains a full functional 

unit, i.e. a 14mer. One of the 14 subunits, subunit K, has a weaker apical domain 

density than the other subunits. 
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Fig. 4-1 Overall structure of GroELD83A/R197A.  

Equatorial, intermediate and apical domains are colored in grey, blue and cyan 

respectively. 
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Table. 4-1 Data collection and refinement statistics of GroELD83A/R197A. 

 

Compared with other known conformation states, including the T, R, R’ and R” 

state. GroELD83A/R197A is very similar to the wild-type T state and significantly 

different from R-ADP structure in the same mutation background (Fig.4-2). For 

example the apical domain helices H and I in GroELD83A/R197A form a small and 

compact collar just like in the wild-type T state, while in GroELD83A/R197A-ADP14 

a ring of seven helices H and I move away from each other (Fig. 4-2a). 

 

Space group P 21 21 21
Unit cell a, b, c (Å) 135.62/259.71/280.85
Resolution range (Å) 123.5-3.13(3.232-3.13)
Rmerge (%) 13.8(68.8)
Total number of reflections 174049(17260)
Redundancy 5.3(5.6)
Completeness (%) 99.62(99.84)
I/σ(I) 10.2(3.0)
Number of residues/asymmetry unit 3668
Number of protein atoms 27012
Number of ligand atoms 368
Number of water atoms 597
R (%) 16.65 (26.31)
Rfree (%) 22.09 (33.63)
RMSD
bond lengths (Å) 0.01
bond angles (degree) 1.36
Ramachandran plot
Most favored (%) 98
allowed(%) 1.52
outlier(%) 0.48
Average B factors (Å^2)
Protein 81.7
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Fig. 4-2 Nucleotide-free GroELD83A/R197A is in the T state.  

(A) Comparison between apo-GroELD83A/R197A and (i) the apo-GroELwt in the T 

state and (ii) GroELD83A/R197A-ADP14 in the R state. Helices H and I are colored 

in blue, helices K and L are colored in pink and the rest of apical domains are 

colored in grey. (B) Quantitative comparison between apo-GroELD83A/R197A and 

apo-GroELwt, using difference “signature” plots. ∆R= <R>-<R’>, where <R> is 

the average distance from the Cα of residue i to the seven-fold symmetry axis 

(red: apo-GroELD83A/R197A subunit A-G; pink: apo-GroELD83A/R197A subunit H-N) 
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and <R’> is the corresponding distance in apo-GroELwt. Similarly ∆H=<H>-

<H’>, where <H> is the average distance from the Cα of residue i to the two-

fold symmetry axis between rings (blue: apo-GroELD83A/R197A subunit A-G; light 

blue: apo apo-GroELD83A/R197A subunit H-N) and <H’> is the corresponding 

distance in apo-GroELwt. (C) θ plots show the degree of asymmetry of apo-

GroELD83A/R197A. Seven colored traces (red, orange, yellow, green, cyan, blue and 

purple) correspond to seven subunits in a ring of apo-GroELD83A/R197A, two 

dotted traces showing the maximum degree of asymmetry observed in the R 

state. ΔR and ΔH between two T state structures (black dashed lines; PDB ID: 

1XCK and 2NWC) serve as negative controls. 

 

The quantitative “signature plot” analysis agrees with visual inspection. The 

difference “signature plots”, ∆R and ∆H show the differences between both rings 

of GroELD83A/R197A and GroELWT are within experimental error (Fig. 4-2b). The 

“signature plot” of theta shows seven subunits in one ring of GroELD83A/R197A 

only slightly deviate from seven-fold symmetry, by up to 5 degrees. But for 

GroELD83A/R197A-ADP14, in which the seven subunits in one ring all have 

different conformations, the asymmetry in theta exceeds 30 degrees for some 

residues (Fig. 4-2c). In summary apo GroELD83A/R197A is in the T state, just like 

apo-GroELWT. 

 

The structure of apo-GroELD83A/R197A suggests that removal of two salt bridges 

stabilizing the T state is insufficient to eliminate the T state. This result is 
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consistent with biochemical studies, which shows this mutant populates the T 

state at very low ATP concentrations. Moreover, the similarity between apo-

GroELD83A/R197A and apo-GroELWT support our previous claim. The unique 

conformation of GroELD83A/R197A-ADP14
 including its dramatic deviation from 

seven-fold symmetry, is not cause by the mutations, but instead caused by ADP. 

The cryo-EM structures of the wild-type GroEL-ATP complex as ~ 9 Å 

resolution displayed similar asymmetry [27]. Thus it can be concluded that this 

asymmetric state is populated at least once and perhaps twice during the course 

of the chaperonin cycle. 

 

4.3.2 A systematic analysis of all inter-subunit salt bridges. 

Salt bridges are commonly observed non-covalent interactions, which stabilize a 

protein’s tertiary and quaternary structures. For GroEL, conformational changes 

are correlated with the breaking and formation of salt bridges [63]. To 

understand why breaking two salt bridges did not make the T state of apo-

GroELD83A/R197A asymmetrical, we analyzed the inter-subunit, intra-ring salt 

bridges in three different conformational states, T (PDB ID: 1XCK), R-ADP 

(PDB ID: 4KI8) and R” (PDB ID: 1AON). 

 

Salt bridges are a combination of two non-covalent interactions, hydrogen bond 

and electrostatic interactions [69, 70, 71]. The strength of a salt bridge depends 

on the distance between two charged side chains. The distance between two 
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centroids of charges has to be less than 4 Å for a strong salt bridge while weaker 

salt bridges extend out to ~ 6Å [69, 70, 71].  

 

However, some measurements of the distances between two centroids have 

larger uncertainties than the others. That is because some of the charged side 

chains are not crystallographically well defined. With the average resolution of 

approximately 3 Å [11, 38, 39], side chains of the flexible residues of the apical 

domain including Arg or Lys, are not visible in the electron density map 

contoured at 1.0 σ. 

 

To account for all possible salt bridges including those involving flexible side 

chains, we estimate the uncertainty of distance between two centroids of charges 

using B factors. The B factor of an atom is proportional to the mean square 

displacement of this atom caused by thermal motion: 

B = 8π2<µ2> 

where <µ2> is the mean square displacement of an atom 

Assuming that the B factor is isotropic, meaning that the atom has the same 

amount of thermo flexibility in x, y, and z directions, then we can deduced the 

uncertainty of the distance between two centroids of charges: 

€ 

δD = 0.5 × ( B1 + B2) × ( X2 −X1 + Y2 −Y1 + Z2 − Z1) ÷π × 6 ÷D  

Where B1 and B2 are B factors of two centroids of charges, (X1, Y1, Z1) and (X2, 

Y2, Z2) are the coordinates of two centroids. 

The interaction between two charged side chains is a salt bridge when: 
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D- δD ≤ 4 Å 

Where D is the distance between two centroids of charges and δD is the 

uncertainty of the distance. 

Using the method described above, we found the T state has the largest number 

of inter-subunit salt bridges, more than twice as many as the R-ADP and R” 

state (Fig. 4-3). Although a salt bridge between E386 and R197 will be disrupted 

by the R197A mutation, the negatively charged E386 interacts with other 

positively charged side chains, including R285 and K277. Therefore the 

interactions between neighboring intermediate and apical domains are 

maintained, with a total of 16 salt bridges still present. However, if an E386A 

mutant were created instead of R197A, the T state and inter-subunit interactions 

would be destabilized even more. 

 

Fig. 4-3 Analysis of all inter-subunit salt bridges in the T, R, and R” state.  
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(A) All inter-subunit salt bridges can be categorized into five patches, based on 

their locations. The inter-subunit interface is shown in white surface, residues 

involved in inter-subunit salt bridges are colored as in (B). (B) Residues involved 

in inter-subunit salt bridges. Two residues of opposite charges are considered 

forming a salt bridge when the D-δD < 4.0 Å. d is the distance between the 

centroids of two charged side chains, δD is the uncertainty of distance calculate 

from the B factors. 

 

4.3 Summary 

The crystal structure of nucleotide free GroELD83A/R197A is shown in this chapter. 

This mutant has very similar conformation to the apo-GroELwt in the T state but 

different from GroELD83A/R197A-ADP14 (Fig. 4-2). This indicates that the 

asymmetry we observed in GroELD83A/R197A-ADP14 is not caused by mutations.  

 

We also performed a systematic analysis on inter-subunit salt bridges of the T, R 

and R” states. With the exception of one inter-subunit salt bridge removed in this 

mutant (E386-R197), the apical and intermediate domains of the T state are 

connected with four other salt bridges (Fig.4-3). Therefore the seven-fold 

symmetry in GroELD83A/R197A is maintained. 
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Chapter 5 Crystal structures of symmetric “football” 

complexes: [GroEL-(ADPBeF3)7-GroES]2 

5.1 Introduction 

For many years, the GroEL/ES machine has been described as a two-stroke 

motor [16, 50]. But the two-stroke motor model is only accurate in the absence 

of SP. Using multiple spectroscopic probes, our lab recently showed that in the 

presence of misfolded proteins, GroEL/ES works as a parallel processor [18, 19]. 

When the two GroEL rings process misfolded proteins simultaneously under 

turnover conditions, “football” complexes [GroEL-SP-GroES]2 are predominate 

functional forms [18, 19, 33]. 

 

In normal circumstances the football complexes formed in the presence of SP are 

dynamic, with a lifetime of ∼1 s, after which time only a tiny fraction (<1%~2%) 

of the transiently encapsulated SP will have folded to the native state [18, 72]. 

Under these cycling conditions it is unclear exactly where the SP folds. 

Nevertheless, the chaperonins function as parallel processing devices and not as 

alternating machines. Regardless of SP, the football complexes become 

indefinitely stable in the presence of ADP+BeF3, enabling the formation of 

diffraction-quality crystals.  

 

Two crystal structures of the football complex were determined; one is empty, 

the other contains encapsulated SP in both chambers. However, the encapsulated 



 
 

58 

 
 

SP is not visible in the electron density map. Compared with the bullet-shaped 

complex (PDB ID: 1AON), the football complexes differ at the interface 

between the rings, suggesting a structural basis for negative inter-ring 

cooperativity.  

 

5.2 Methods specific to chapter 5 

5.2.1 Crystallization 

The “MT-football” complex: GroEL:GroES2 was made by mixing 150 µM 

GroELwt, 900 µM GroESwt, 3.6 mM ATP, 4.8 mM BeCl2 and 48 mM KF in 

Buffer A (50mM Tris-Acetate pH 7.5, 20 mM MgCl2, 200 mM KCl). Crystals 

containing both GroEL and GroES were first grown in 25% PEG 550 

monomethyl ether (v/v) and 0.1 M Tris-HCl buffer, pH 8.5. In crystal 

optimization followed, diffraction-quality crystals were grow in 8.5% PEG 550 

monomethyl ether (v/v) and 0.1 M acetic acid-KCl buffer, pH 5.0. These crystals 

took about 10 days to fully-grown and can reach their maximum size, 

approximately 1 mm × 0.5 mm × 0.5 mm. Before crystals were mounted, they 

were removed from mother liquor and soaked in dehydration buffer (12% PEG 

550 monomethyl ether (v/v), 20% ethylene glycol, 0.1 M acetic acid pH 5.25, 20 

mM MgCl2, 200 mM KCl, 1 mM BeCl2 and 10 mM KF) for 3 to 7 minutes.  

 

The Rubisco containing “football” complex: GroEL-GroES2-Rubisco2 (“SP-

Football”) was prepared by first mixing 150 µM GroELwt, 900 µM GroESwt and 
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42 µM acid-denatured Rubisco-His6 in Buffer A. The protein mixture was place 

at room temperature for 15 minutes. After that, ATP (3.6 mM), BeCl2 (4.8 mM) 

and KF (48 mM) were added to the protein mixture. Crystals of “SP-Football” 

were obtained at conditions similar to the “MT-Football”. Single cubic shaped 

crystals were mounted after a similar dehydration procedure.  

 

5.2.2 Data collection and structure determination 

Diffraction data for the SP free “football” complex were collected at the NE-

CAT beamline 24-ID-E located at the Advanced Photon Source, Argonne 

National Laboratory (Argonne, IL, USA). 300 frames with 0.5° oscillation were 

collected at 100K. The data were indexed and integrated using iMOSFLM (68). 

The structure was solved by segmented molecular replacement. Seven search 

models were fitted one at a time. Each model consisted of one GroEL subunit 

and one GroES subunit extracted from the cis-ring of GroEL-GroES1-ADP7 

(1AON).  

 

Diffraction data of the “SP-football” complex were collected at the NE-CAT 

beamline 24-ID-C located at the Advanced Photon Source, Argonne National 

Laboratory (Argonne, IL, USA). 900 frames with 0.2° oscillation were collected 

at 100K. The data were indexed and integrated using iMOSFLM [68]. The 

structure was solved by molecular replacement using “MT-football” complex as 

the search model.  
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Structural refinement of the “MT-football” and “SP-football” complexes were 

carried using standard procedures. Refinements include rigid body, NCS (non 

crystallographic symmetry) and TLS refinement. Molecular replacement and 

structure refinement were carried out using AutoMR, Refine and Coot in Phenix 

suites [60]. Over 96% of the residues in the model of “MT-football” and “SP-

football” are within the favored regions of the Ramachandran plot. The 

asymmetric unit of both “MT-” and “SP-footballs” contain a full functional unit: 

GroEL14-GroES14.  

 

5.2.3 Interface analysis. 

Hydrogen bonds, salt bridges and interface surface areas are analyzed using 

PISA [73]. 

 

5.3 Results and Discussion 

5.3.1 Overall structures of the “football” complexes, with or without SP. 

Two crystal structures of two [GroEL-(ADPBeF3)7-GroES]2 “football” complexe 

were determined; one devoid of SP (MT football) (Fig. 5-1) and the SP football 

containing encapsulated Rubisco (Fig. 5-1 and Table. 5-1) The crystal packing of 

both football complexes is almost identical. One layer of footballs pack with 

their seven-fold axis parallel to one another and the footballs in the next layer 

pack with their seven-fold axis orthogonal to the footballs in the first layer (Fig. 

5-2). Both football complexes consist of two heptameric GroEL rings, capped by 
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two heptameric GroES “lids.” All 14 nucleotide-binding sites on GroEL are 

saturated with the ATP analog ADP-BeF3. 

 

 

Fig. 5-1 Crystal structures of the “MT-football” complex and the “SP-

football” complex with encapsulated Rubisco.  

Three domains of GroEL are colored in grey (equatorial domain), blue 

(intermediate domain), and cyan (apical domain), respectively. GroES is colored 

in lime. The left panel shows the overall view of the “football” complex as a 

ribbon diagram. The middle panel shows the cross-section of the “MT-football” 

complex in surface representation (along a plane containing the axis of 7-fold 

symmetry). The right panel shows the cross-section of the “SP-football” complex 

containing encapsulated Rubisco. Note that no electron density attributable to 

Rubisco was apparent in the central cavity even though biochemical evidence 

indicates the presence of Rubisco [33]. Electron densities are shown as grey 

mesh. All 2Fo-Fc electron density maps in this manuscript are contoured at 1σ. 
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Table. 5-1 Data collection and refinement statistics of MT-football and SP-

football. 

 

 

Fig. 5-2 Packing of the “football” complex in the crystal.  

Both of the “MT-football” and “SP-football” are packed in the same way in the 

crystals. GroEL is shown in grey and GroES in green/lime. 

 

MT-Football (PDB ID: 4PKO) SP-Football (PDB ID: 4PKN)
Space group P 21 21 21 P 21 21 21
Unit cell a, b, c (Å) 169.79/174.49/410.16 171.95/173.65/411.27

Resolution range (Å) 90.9-3.84 (3.91-3.84) 122.19-3.66 (3.86-3.66)
Rmerge (%) 2.9 (70) 18.6 (65.5)
Total number of reflections 842530 (41896) 826508 (125226)
Number of unique reflections 116895 (5711) 135754 (19644)
Redundancy 7.2 (7.3) 6.1 (6.4)
Completeness (%) 100 (100) 98.9 (99.2)
I/σ(I) 9.2 (2.8) 6.9 (2.34)
R (%) 18.30 (25.18) 18.80 (26.38)
Rfree (%) 24.80 (30.85) 24.10 (31.69)
RMSD
bond lengths (Å) 0.008 0.006
bond angles (degree) 1.1 1.207
Ramachandran plot
Most favored (%) 96 95
outlier(%) 0.3 0.3
Average B factors (Å^2) 160 106

90° 90°

7-fold

7-fold

7-fold

7-fold 7-fold

7-fold

7-fold
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Our biochemical data indicate that the SP football contains Rubisco in both 

cavities [33]. Given the time for crystal formation it is likely that the Rubisco 

monomer in the cavity will have assumed a native-like, folded state. However, 

the encapsulated Rubisco is not visible on the electron density map and does not 

significantly distort the GroEL/GroES structure overall (rmsd = 0.74; Fig. 5-3). 

Here we are dealing with an asymmetric object (Rubisco) in a container of near 

seven-fold symmetry (GroEL). So the conformation and orientation of 

encapsulated Rubisco varies between different unit cells in the crystal. For the 

same reason, an SP-containing bullet complex is also devoid of electron density 

attributable to encapsulated SP [74].  

 

 

 

Fig. 5-3 Quantitative analysis of the conformational differences between 

“MT-football” and “SP-football”.  

ΔR = <R> − <R′>, where R is the distance from Cα to the seven-fold axis in the 

“MT-football” complex, R′ is the corresponding distance in the “SP-football” 
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complex. < > denotes average over fourteen subunits. Similarly, ΔH = <H> − 

<H′>, where H is the distance from Cα to the twofold axis between rings in the 

“MT-football” complex, H′ is the corresponding distance in the “SP-football” 

complex. < > denotes average over fourteen subunits. ΔR and ΔH between two T 

state structures (PDB ID: 1XCK and 2NWC) serves as negative control, showing 

the level of structural “noise”. 

 

5.3.2 Structural Plasticity of the Football Complexes.  

Although both MT footballs and SP footballs seem symmetric, closer inspection 

reveals that the apical domains of GroEL and the GroES are not truly seven-fold 

symmetric, but rather pseudosymmetric. The θ plots (Fig. 5-4) show that the 

GroEL apical domains and GroES in both footballs deviate from perfect seven-

fold symmetry by up to 10°. We attribute this asymmetry in these football 

complexes to their intrinsic flexibility, similar to but of a smaller magnitude than 

the asymmetry in the R state GroEL-ADP14 [39].  

 

However, the asymmetry in the football complexes is not identical to the 

asymmetry we observed in the R state. First, the overall degree of asymmetry 

decreases by 70% in the football complexes compared with the R state (Fig. 5-

4B, C). Second, rather than being distributed throughout the entire apical 

domain, the asymmetry in the football complexes is restricted to several regions 

of the apical domain. This suggests that when GroES binds to the R state GroEL 

it gathers GroEL’s flexible apical domains together, making GroEL more rigid. 
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Finally, greater asymmetry occurs at the solvent-exposed residues facing the 

inside of the cavity, indicating that the encapsulated SP is surrounded with a 

plastic chamber rather than a rigid cage (Fig. 5-4C and Fig. 5-5). Such plasticity 

might allow GroEL to closely interact with SPs of different sizes and shapes 

during encapsulation. In this regard we note that the average B-factor of apical 

domains in the SP football is lower than that of the MT football (147 Å2 vs. 225 

Å2), which could be caused by SP-GroEL interactions (Fig. 5-6).  

 

 

Fig. 5-4 Asymmetry in the “football” complexes.  

(a) Definition of asymmetry probe θ, as previously described in chapter 2. (b) A 

histogram showing the average deviation from perfect 7-fold symmetry (θ 
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=360o/7=51.4o) for “SP-footballs”, “MT-footballs”, the cis-ring of 

T.Thermophilus GroEL:GroES1 (7) and the R-ADP structure of a 

GroELD83A/R197A mutant devoid of the salt-bridges which break during the T to R 

allosteric transition in the normal chaperonin cycle [37, 41]. (c) Quantitative θ 

plots showing that the apical domains and GroES mobile loops (black bars) of 

both the “MT-football” and the “SP-football” deviate from 7-fold symmetry. 

Subunit colors are as the same as in (a). Also shown (dashed lines) are θ plots of 

the two most asymmetric subunits of the R-ADP structure. In both “football” 

complexes, greater deviations from symmetry occur in solvent-exposed residues 

of the central cavity (black circles) than in exterior solvent exposed residues 

(white circles).  
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Fig. 5-5 Solvent-exposed residues inside the central chamber are more 

asymmetric than those outside the chamber.  

Histograms showing the average deviations from perfect 7-fold symmetry (θ = 

360o/7=51.4o) for residues exposed to the inside and outside the central chambers 

of “SP-football” and “MT-football”. The error bars show SEM. 

 

 

Fig. 5-6 Averaged B factors of the Cα of each residue in the “MT-

football”(green) and “SP-football”(orange) complexes. 

None of the apical domains in the football complexes have identical 

conformations and the interaction at the GroEL/GroES interfaces was 

heterogeneous. Indeed, no two GroES “mobile loops” have the same 

conformation, and each GroEL/GroES interface is maintained by a unique set of 

hydrogen bonds (Fig. 5-7). This is quite different from the GroEL/GroES 

interface in the asymmetric bullet complex (PDB ID: 1AON), where, owing to 

imposed symmetry, all seven GroEL/GroES interfaces consist of the same 

hydrogen bonds between residues from helix I and the mobile loop of GroES 

(Fig. 5-7, red).  
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Fig. 5-7 GroEL-GroES interfaces in the “football” complexes.  

(d) Interactions between GroEL subunit and GroES subunit are heterogeneous. 

(e) Hydrogen bonds stabilize GroEL-GroES interfaces are represented by circles. 

Area of circles represents the relative occurrence of hydrogen bonds. Two 

hydrogen bonds presented in the “bullet” complex are colored in red. 

 

The nonspecific interactions between GroEL and GroES mobile loops could be 

important for GroES binding. Before the binding of GroES, both the GroEL 

apical domains, including helices H and I, and the mobile loops of GroES are 

extremely flexible [14, 27, 39]. Having a large number of nonspecific 

interactions in the GroEL/GroES interface would permit the engagement of these 

flexible partners with fewer entropic costs that highly specific interactions would 

entail. For example, T28 on the mobile loop interacts through hydrogen bonds 

with up to four residues in helices H and I (Fig. 5-7), which increases the 

probability of GroES capture.  

 

5.3.3 Conformational Changes at the Inter-Ring Interface. Although the football 

complex encapsulates two SP molecules simultaneously, the two GroEL/GroES 
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cavities do not act independently. Biochemical evidence has shown that the 

communication between two GroEL rings is crucial for GroES release [66]. 

When such inter-ring communication is disrupted, as it is in the single-ringed 

version SR1, GroEL fails to release GroES, SP, and ADP, resulting in a “dead-

end” complex [75].  

 

The crystal structure of the football complex at ~3.7 Å resolution allows us to 

analyze the inter-ring communication during chaperonin’s natural catalytic cycle. 

The two GroEL rings in the football complex communicate through the same 

two inter-ring interfacial sites, L and R, as previously reported (Fig. 5-8, Inset) 

[38].  
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Fig. 5-8 Switching of electrostatic interactions at the inter-ring interface.  

(a) Interaction between ADP-BeF3 and the N terminus of helix D in the 

“football” complex. The relative position of inter-ring interfaces L, R, and the 

nucleotide-binding pocket (NBP) is shown in the inset. (b) and (c) are close 

views of the inter-ring interfaces L and R in the “football” complex. The 2-fold 

axis of symmetry is shown as a long dashed line. (d) Interaction between ADP 

and the N termini of helix D in the “bullet” complex. The relative position of 

inter-ring interfaces L, R, and the nucleotide-binding pocket (NBP) is shown in 

the inset. (e) and (f) are the same as (b) and (c), except showing the inter-ring 

interface L and R in the “bullet” complex. (g) A structure based mechanism for 
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sensing ATP hydrolysis. The dashed arrows indicate movement of helix D in 

response to ATP binding and hydrolysis. 

 

The L interface involves interactions between helix D of one subunit with the 

same helix in the opposite ring. The axes of the two helices D are anti-parallel to 

one another. The C termini of each helix (A109) are slightly offset from one 

another, across the twofold axis of symmetry (Fig. 5-8 B, E). The R interface 

involves interactions between helix P of one subunit and the same helix in the 

opposite ring. The axes of the two helices P are nearly anti-parallel to one 

another and also to the twofold axis of symmetry (Fig. 5-8 C, F).  

 

When GroEL/GroES switches from the football complex to the bullet complex, 

the total contact surface area of L and R interfaces increases only slightly (from 

2,232 Å2 to 2,464 Å2). However, close inspection shows the relative size of the 

two interfaces has changed. The L interface expands by ∼50% (from 764 A2 to 

1,132 Å2), whereas the R interface shrinks by ∼25% (from 1,472 A2 to 1,132 

A2). This change in the inter-ring interface is caused by a reduction in the radius 

(up to 6 Å) of the equatorial plate of the trans ring (Fig. 5-9A) plus a slight 

rotation (up to 8°) of the trans GroEL ring relative to the cis GroEL ring (Fig. 5-

9B).  
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Fig. 5-9 Quantitative analysis of the conformational changes at the inter-

ring interface during the “football” to the “bullet” transition.   

(a) We use a cylindrical coordinate system to analyze the changes in the inter-

ring interface, as previously described in chapter 2. ΔR = <R> − <R′>, where R 

is the distance to the seven-fold axis in the “football” complex, R′ is the 

corresponding distance in the “bullet” complex. < > denotes average over seven 

subunits. (b) Definition of Ω, the quantity used to measure ring to ring rotation. 

Ω is the angle between two vectors, one from the Cα of residue i in subunit j, to 

the seven-fold axis of symmetry; another from the Cα of residue i to the seven-

fold axis of symmetry, in the subunit form L interface with subunit j, from the 

opposite ring. Δ Ω = < Ω > − < Ω ′>, where Ω is the ring-to-ring angle in the 
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“football” complex, Ω ′ is the corresponding angle in the “bullet” complex. < > 

denotes average over seven L interfaces. 

 

We further analyzed the change in electrostatic interactions at both L and R 

interfaces. Accompanying the release of one GroES, the two interacting D 

helices at the L interface move closer and twist to established one electrostatic 

interaction between e-amino group of K105 of the cis ring and helix dipole- 

induced charge on the carbonyl oxygen of A109 of the trans ring. (Fig. 5-9 B, E). 

At the R interface, the two helices P move apart and twist so one of the two salt 

bridges between E461 of the trans ring and R452 of the cis ring breaks (Fig. 5-9 

C, F).  

 

5.3.4 Structural Basis for Inter-Ring Communication.  

During the chaperonin’s natural catalytic cycle, the dissociation of GroES from 

the football complex requires the hydrolysis of ATP and the development of 

nucleotide asymmetry (i.e., the difference in the number of ATPs hydrolyzed 

between two GroEL rings) [18, 19]. We propose that helix D senses and 

transmits the signal of ATP hydrolysis and ATP asymmetry by exploiting the 

helix dipole that is positively charged at the N-terminal G88 and negatively 

charged at the C-terminal A109 (Fig. 5-8 A, D).  

 

Before the football complex hydrolyzes ATP and releases GroES, the N terminus 

of helix D (G88) in the two GroEL subunits from opposite rings both form 
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electrostatic interactions with the ATP γ-phosphate (Fig. 5-8A, G). The 

interaction between γ-phosphate and the N terminus of the two helices D draws 

the two helices apart from one another (arrows in Fig. 5-8G). Once ATP in one 

subunit is hydrolyzed and the γ-phosphate is released, helix D in that subunit 

moves closer to helix D in the other ring and a cross-ring electrostatic interaction 

forms between A109 and K105 (Fig. 5-8G). As more ATP is hydrolyzed and a 

critical number of cross-ring A109-K105 interactions is reached, one or the other 

GroES departs [76].  

 

The mechanism of inter-ring communication in the football complex is quite 

different from a previously proposed model that is based on the comparison 

between the interfaces of apo-GroEL and the bullet complex [77]. However, our 

current understanding of the chaperonin cycle (Fig. 1-2, Fig. 1-3) assigns no role 

whatsoever to apo-GroEL. Exactly how the events at the equatorial plate are 

transmitted to the apical domains leading to the dissociation of GroES is yet to 

be determined, however.  

 

5.4 Summary 

We report structures of two such “football” complexes to ∼3.7 Å resolution; one 

is empty whereas the other contains encapsulated SP in both chambers. 

Compared with the bullet-shaped GroEL:GroES1 complex, the GroEL:GroES2 

football complex differs conformationally at the GroEL-GroES interface and also 

at the interface between the two GroEL rings. We propose that the electrostatic 
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interactions between the ε-NH3+ of K105 of helix D in one ring with the 

negatively charged carboxyl oxygen of A109 at the carboxyl end of helix D of 

the other ring provide the structural basis for negative inter-ring cooperativity.
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Chapter 6: Summary and final discussion 

6.1 What happens during SP capture? 

In chapter 3 and chapter 4 of this thesis I tried to answer two questions related to 

SP capture. First, how does GroEL capture SPs, which are different in sequence 

and structure? Second, how does SP promote the release of ADP? 

 

Previous experiments have shown that without SP, GroEL idles with ADP bound 

to the trans-ring. In that case the turnover of ATP is limited by the slow release 

of ADP so that ATP will not be consumed when there is no “work” for GroEL to 

do. In the presence of SP, the release of ADP is accelerated by more than 100 

fold so GroEL turns over both ATP and SP rapidly [17,19]. However without 

structural information, it is not clear how SP accelerates the release of ADP from 

previous cycle. It is also not clear if the ADP bound trans-ring has other roles in 

addition to limiting ATP turnover. 

 

In order to answer these two questions we determined two crystal structures: 

GroELD83A/R197A-ADP14 and GroELD83A/R197A. We found that upon ADP binding, 

two out of three domains of GroEL, the intermediate domains and the apical 

domains deviate from seven-fold symmetry. The deviation from symmetry is 

caused by the loss of inter-subunit interactions and increased domain flexibility. 

 

Flexible apical domains allow GroEL to capture SPs of different sizes and 

shapes. Such plasticity might be necessary for GroEL to capture SP in solution. 
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After SP is captured, it catalyzes ADP release by favoring the T state and 

holding the lid of nucleotide binding pocket of the flexible intermediate domain 

in the open position. 

 

6.2 What happens during SP encapsulation? 

In chapter 5 I tried to answer a few questions related to SP encapsulation. In each 

chapronin cycle, the “football” complex briefly encapsulates SP. What happens 

during encapsulation is quite mysterious. Are the encapsulation cavities in the 

“football” complex different from the single cavity in the “bullet” complex? 

Does the cavity interact with encapsulated SP and actively promote SP folding? 

And finally how is encapsulation timed by ATP hydrolysis? 

 

To answer these questions, we determined two crystal structures of the “football” 

complexes. One contains no SP, another encapsulates one misfolded Rubisco in 

each cavity. The two cavities of the “football” complex are very similar to the 

cavity of the “bullet” complex, except the mobile loops of GroES in the 

“football” have heterogeneous GroEL contacts. Solvent accessible residues in the 

cavity are flexible and could be stabilized upon SP encapsulation. 

 

Based on the “football” structures and other biochemical evidence, we proposed 

that the duration of encapsulation is determined by nucleotide asymmetry. The 

signal of ATP hydrolysis and release of phosphate is sensed by a helix dipole and 

transmitted through inter-ring electrostatic interactions between K105 and A109.  
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6.3 Final discussion 

GroEL is the first molecular chaperone discovered, which helps misfolded 

proteins regain their native structures and functions [15]. After years of studies, 

each step in GroEL/ES assisted protein folding is becoming clear. The flexible 

apical domains of GroEL capture heterogeneous SPs and SP promotes ADP to 

ATP exchange in GroEL’s nucleotide binding pockets. ATP binding unfolds SP 

and helps SP to overcome the energy barrier between misfolded state and native 

state. Partially unfolded SP is encapsulated in a closed GroEL/GroES chamber. 

At saturating SP concentration, the “football” complexes with two GroEL/GroES 

chambers and two encapsulated SPs is the predominate species. The timer of 

encapsulation is ATP hydrolysis. The signal of phosphate release is transmitted 

through inter-ring electrostatic interactions involving K105 and A109.   

 

What is the most important step for SP folding? The answer is likely to depend 

on the SP. For stably misfolded SPs, ATP induced unfolding maybe the most 

important step; and for SPs with complicated native topology, encapsulation 

maybe crucial because it bring distant residues together. Thus the mechanism of 

chaperonin assisted protein folding very likely differs among substrates, and 

even for the same substrate in different misfolded conformations. Therefore the 

active turnover of ATP is crucial, it enables a misfolded protein to try different 

folding strategies every 2 seconds, with a different starting structure each time. 
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GroEL is very robust in helping different SP to reach their respective native 

states [35, 78]. 

 

To prove this model, it is necessary to probe the conformation of different SPs 

during GroEL/ES assisted folding. Given the conformational heterogeneity of 

misfolded SP, we have shown that it is impossible to study GroEL-SP interaction 

using X-ray crystallography [33]. High-resolution cryo-EM will be very helpful 

in studying such heterogeneous ensembles [32]. Another advantage of cryo-EM 

is that the same sample containing SP, GroEL, GroES and ATP may be frozen at 

different times. This allows us to analyze the conformation of SP at different 

steps of assisted folding such as during capture and encapsulation, at realistic 

time scale. 
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