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Let G be a connected reductive group over a p-adic field F . The study of rep-

resentations of G(F ) naturally involves the pro-p-Iwahori-Heche algebra of G(F ).

The pro-p-Iwahori-Hecke algebra is a deformation of the group algebra of the pro-

p-Iwahori Weyl group of G(F ) with generic parameters. The pro-p-Iwahori-Hecke

algebra with zero parameters plays an important role in the study of mod-p repre-

sentations of G(F ).

In a series of paper, Vigneras introduced a generic algebra HR(qs̃, cs̃) which

generalizes the pro-p-Iwahori-Hecke algebra of a reductive p-adic group. Vigneras

also gave a basis of the center of HR(qs̃, cs̃) when HR(qs̃, cs̃) is associated with a

pro-p-Iwahori Weyl group. This basis is defined by using the Bernstein presentation

of HR(qs̃, cs̃) and the alcove walk. In this article, we restrict to the case where

qs̃ = 0 and give an explicit description of the center of HR(0, cs̃) using the Iwahori-

Matsumoto presentation.

First, we introduce the generic algebra. Let W be the semidirect product

of a Coxeter group and a group acting on the Coxeter group and stabilizing the



generating set of the Coxeter group. Let W (1) be an extension of W with a commu-

tative group. Let R be a commutative ring. We give the definition of the R-algebra

HR(qs̃, cs̃) of W (1) with parameters (qs̃, cs̃). Then for any pair (v, w) in W × W

with v ≤ w, we define a linear operator rv,w between R-submodules of HR(qs̃, cs̃).

It takes some work to show that rv,w is well defined.

Next, we restrict W to be an Iwahori Weyl group. We show that the maximal

length terms of a central element in HR(qs̃, cs̃) is given by a union of finite conjugacy

classes in W (1). Then we prove some techical results regarding rv,w acting on the

maximal length terms of a central element in HR(qs̃, cs̃).

In the last part, we restrict to the case when qs̃ = 0 and give a explicit basis of

the center of HR(0, cs̃) in the Iwahori-Matsumoto presentation by using the operator

rv,w. Two examples are given to help understand how this basis looks like.
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Chapter 1: Introduction

Iwahori-Hecke algebras are deformations of the group algebras of Coxeter groups

W0. When W0 is finite, they play an important role in the study of representations

of finite groups of Lie type. In [2], Geck and Rouquier gave a basis of the center

of Iwahori-Hecke algebras associated to finite Coxeter groups. The basis is closely

related to minimal length elements in the conjugacy classes of W0.

The 0-Hecke algebra was used by Carter and Lusztig in [1] in the study of

p-modular representations of finite groups of Lie type. 0-Hecke algebras are defor-

mations of the group algebras of finite Coxeter groups with zero parameter. In [7],

He gave a basis of the center of 0-Hecke algebras associated to finite Coxeter groups.

The basis is closely related to maximal length elements in the conjugacy classes of

W0.

Affine Hecke algebras are deformations of the group algebras of affine Weyl

groups W aff. They appear naturally in the representation theory of reductive p-adic

groups. In [9], Lusztig gave a basis of the center of affine Hecke algebras. In [7], He

mentioned that a proof similar to his proof of Theorem 4.4 could be applied to give

a basis of the center of affine 0-Hecke algebras. The basis is closely related to finite

conjugacy classes in W aff.
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Let G be a connected reductive group over a p-adic field F . The study of mod-p

representations of G(F ) naturally involves the pro-p-Iwahori Hecke algebra of G(F ).

Let R be a commutative ring. Let W be the semidirect product of a Coxeter group

and a group Ω, where the action of Ω on the Coxeter group stabilizes the generating

set of the Coxeter group. Let W (1) be an extension of W with a commutative

group. In [14], Vigneras discussed the R-algebra HR(qs̃, cs̃) associated to W (1),

which generalizes the pro-p-Iwahori Hecke algebra of G(F ). In [15], Vigneras gave

a basis of the center of HR(qs̃, cs̃) by using the Bernstein relation and alcove walks

(the definition of alcove walk can be found in [3]). The basis of the center is closely

related to the finite conjugacy classes in W (1).

In general, the expression of the center in [15] is complicated if we want to write

it out explicitly by Iwahori-Matsumoto presentation. But for R-algebras HR(0, cs̃),

we can give an explicit description of the center by Iwahori-Matsumoto presentation.

This is the main result of this article. In Chapter 2, we review the definition of

HR(qs̃, cs̃) and define a new operator rv,w. In Chapter 3, we give a brief review

of the Iwahori Weyl group and show that the maximal length terms of a central

element in HR(qs̃, cs̃) come from finite conjugacy classes in W (1). Then we prove

some technical results regarding rv,w, where w is in some finite conjugacy class and

give a basis of the center of HR(0, cs̃). In Chapter 4, we give some examples to show

how the main result works.
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Chapter 2: A new operator

2.1 Generic algebra

The symbols N,Z,R refers to the natural numbers, the integers and the real num-

bers.

Let R be a commutative ring. Let

W aff, Saff,Ω,W, Z,W (1),

satisfying:

• (W aff, Saff) is a Coxeter system.

• Ω is a group acting on W aff and stabilizing Saff.

• W is the semi-direct product W aff o Ω.

• Z is a commutative group.

• 1→ Z → W (1)
π→ W → 1 is an extension of W by Z.

In the setting of a reductive p-adic group G, W is the Iwahori-Weyl group and

Z corresponds to a finite torus of G. More details of pro-p-Iwahori-Hecke algebra

of reductive p-adic groups can be found in [14].
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We denote by X(1) the inverse image in W (1) of a subset X ⊆ W .

In general, Z may not be finite. The length function ` : W aff → N of (W aff, Saff)

being invariant by conjugation by Ω, extends to a length function ` of W constant

on the double cosets of Ω, and inflates to a length function on W (1), still denoted

by `, such that `(w̃) = `(π(w̃)) for w̃ ∈ W (1). The subgroup of length 0 elements

in W is Ω, and in W (1) is Ω(1). The inverse image of W aff in W (1) is a normal

subgroup W aff(1) such that Z = W aff(1) ∩ Ω(1) and W (1) = W aff(1)Ω(1). The

Bruhat order on W can also be defined. Let v = v′τ, w = w′τ ′ be two elements in

W where v′, w′ ∈ W aff and τ, τ ′ ∈ Ω, then v ≤ w if and only if v′ ≤ w′ and τ = τ ′.

We will use the following result of Bruhat order on W .

Lemma 2.1. Let x, y ∈ W with x ≤ y. Let s ∈ Saff. Then

• min{x, sx} ≤ min{y, sy} and max{x, sx} ≤ max{y, sy}.

• min{x, xs} ≤ min{y, ys} and max{x, xs} ≤ max{y, ys}.

Proof. When Ω is trivial, this is all well-known: see Corollary 2.5 in [10]. The more

general statement is immediate by definition of the Bruhat order on W because

W = W aff o Ω.

For w̃ ∈ W (1) and t ∈ Z, w̃(t) = w̃tw̃−1 depends only on the image of w̃ in

W because Z is commutative. By linearity the conjugation defines an action

(w̃, c) 7→ w̃(c) : W (1)×R[Z]→ R[Z]

of W (1) on R[Z] factoring through the map π : W (1)→ W .

We recall the definition of the generic algebra HR(qs̃, cs̃) introduced in [14].
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Theorem 2.2. Let (qs̃, cs̃) ∈ R×R[Z] for all s̃ ∈ Saff(1). Suppose

• qs̃ = qs̃t = qs̃′,

• cs̃t = cs̃t and w̃(cs̃) = cw̃s̃w̃−1 = cs̃′ ,

for any t ∈ Z, w̃ ∈ W (1), and s̃, s̃′ ∈ Saff(1) satisfying s̃′ = w̃s̃w̃−1.

Then the free R-module HR(qs̃, cs̃) of basis (Tw̃)w̃∈W (1) admits a unique R-

algebra structure satisfying

• the braid relations: Tw̃Tw̃′ = Tw̃w̃′ for w̃, w̃′ ∈ W (1), `(w̃) + `(w̃′) = `(w̃w̃′),

• the quadratic relations: T 2
s̃ = qs̃Ts̃2 + cs̃Ts̃ for s̃ ∈ Saff(1),

where cs̃ =
∑

t∈Z cs̃(t)t ∈ R[Z] is identified with
∑

t∈Z cs̃(t)Tt.

The algebraHR(qs̃, cs̃) is called the R-algebra of W (1) with parameters (qs̃, cs̃).

For convenience, we define a W (1)-action on HR(qs̃, cs̃) given by w̃ • Tw̃′ =

Tw̃w̃′w̃−1 for any w̃, w̃′ ∈ W (1), extended linearly to all elements in HR(qs̃, cs̃).

The following lemma is useful in later discussion:

Lemma 2.3. Let w̃1, w̃2, ṽ1, ṽ2 ∈ W (1), s̃1, s̃2 ∈ Saff(1), and suppose w̃1s̃1ṽ1 =

w̃2s̃2ṽ2 and π(w̃1ṽ1) = π(w̃2ṽ2). Then w̃1cs̃1 ṽ1 = w̃2cs̃2 ṽ2.

Proof. Since π(w̃1ṽ1) = π(w̃2ṽ2), we have w̃2ṽ2 = w̃1tṽ1 for some t ∈ Z, hence

w̃−1
1 w̃2 = tṽ1ṽ

−1
2 . Then s̃1 = w̃−1

1 w̃2s̃2ṽ2ṽ
−1
1 = t(ṽ1ṽ

−1
2 )s̃2(ṽ1ṽ

−1
2 )−1, therefore cs̃1

= t(ṽ1ṽ
−1
2 )cs̃2(ṽ1ṽ

−1
2 )−1 = w̃−1

1 w̃2cs̃2 ṽ2ṽ
−1
1 , i.e., w̃1cs̃1 ṽ1 = w̃2cs̃2 ṽ2.
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2.2 Operator rv,w

In this section, we will define an operator rv,w for any pair (v, w) ∈ W ×W with

v ≤ w. This operator is the main ingredient of this article.

For every s ∈ Saff, pick a lifing s̃ in Saff(1), and for every τ ∈ Ω, pick a lifting τ̃

in Ω(1). Let w ∈ W with `(w) = n and w = si1si2 · · · sinτ be a reduced expression of

w. A subexpression of w is a word s
ei1
i1
s
ei2
i2
· · · seinin τ with (ei1 , ei2 , · · · , ein) ∈ {0, 1}n. A

subexpression is called non-decreasing if `(s
ei1
i1
s
ei2
i2
· · · seinin τ) =

∑n
k=1 eik . Let v ≤ w,

then there exists (ei1 , ei2 , · · · , ein) ∈ {0, 1}n such that vw = se1i1 s
e2
i2
· · · senin τ equals v

and is also a non-decreasing subexpression of w. Let w̃ ∈ W (1) be a lifting of w,

then w̃ has an expression w̃ = ts̃i1 s̃i2 · · · s̃in τ̃ for some t ∈ Z. Then the operator

rvw :
⊕

w̃∈W (1),π(w̃)=w

RTw̃ −→
⊕

ṽ∈W (1),π(ṽ)=v

RTṽ

is defined term by term and extended linearly, where

rvw(Tw̃) = TtT
e1
s̃i1

(−cs̃i1 )1−e1T e2s̃i2
(−cs̃i2 )1−e2 · · ·T ens̃in (−cs̃in )1−enTτ̃ .

Here the codomain of rvw is regarded as a submodule of HR(qs̃, cs̃).

In other words, we fix Ts̃ik ’s for ek = 1, and replace all the other Ts̃ik ’s with

−cs̃ik ’s. It is easy to see that rvw is independent of choice of liftings.

Example 2.4. In the SL3 case, W is generated by three elements s0, s1, s2 with

relations s2
i = 1 for all i and sisjsi = sjsisj if i 6= j. Let s̃0, s̃1, s̃2 be liftings of

s0, s1, s2 respectively. Let w = s0s1s2s0s1s2, w̃ = ts̃0s̃1s̃2s̃0s̃1s̃2 for some t ∈ Z. Let

(e1, e2, e3, e4, e5, e6) = (1, 1, 1, 0, 1, 0) so that vw = s0s1s21s11. Then

rvw(Tw̃) = TtTs̃0Ts̃1Ts̃2(−cs̃0)Ts̃1(−cs̃2) = TtTs̃0Ts̃1Ts̃2cs̃0Ts̃1cs̃2 .
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A priori, rvw depends not only on the choice of reduced expression w but also

on the choice of non-decreasing subexpression vw. In the following part, we will

show that, in fact, rvw is independent of these choices, so the notation rv,w makes

sense.

Lemma 2.5. Let w ∈ W with `(w) = n and let w = si1si2 · · · sinτ be a reduced

expression of w. Let w̃ ∈ W (1) be a lifting of w with w̃ = ts̃i1 s̃i2 · · · s̃in τ̃ for some

t ∈ Z. Let v ≤ w, and let vw = se1i1 s
e2
i2
· · · senin τ and v′w = sf1i1 , s

f2
i2
· · · sfnin τ be two

non-decreasing subexpressions of w which both equal v. Then rvw(Tw̃) = rv′w(Tw̃).

Proof. We show this by induction on l = `(w) + `(v).

If l = 0, then rvw(Tw̃) = rv′w(Tw̃) = Ttτ̃ .

If l = 1, then `(w) = 1 and `(v) = 0, so rvw(Tw̃) = rv′w(Tw̃) = Tt(−cs̃i1 )Tτ̃ .

Now suppose that the statement is correct for l < k, and we consider the case

when l = k.

• If e1 = f1, then by induction, the statement is correct.

• If e1 6= f1, then without loss of generality, we may assume that e1 = 1, f1 = 0,

then

rvw(Tw̃) = TtTs̃i1T
e2
s̃i2

(−cs̃i2 )1−e2 · · ·T ens̃in (−cs̃in )1−enTτ̃ ,

rv′w(Tw̃) = Tt(−cs̃i1 )T f2s̃i2
(−cs̃i2 )1−f2 · · ·T fns̃in (−cs̃in )1−fnTτ̃ .

Let `(v) = m, then we may assume that fij = 1 for j ∈ {j1, · · · , jm} ⊆

{2, · · · , n} and fij = 0 otherwise in subexpression v′w. But si1v < v, so by

7



exchange condition, si1v = sij1 · · · ŝijd · · · sijm for some jd. Then by induction,

rvw(Tw̃) = TtTs̃i1T
e′2
s̃i2

(−cs̃i2 )1−e′2 · · ·T e
′
n

s̃in
(−cs̃in )1−e′nTτ̃ ,

where e′ij = 1 for j ∈ {j1, · · · , ĵd, · · · , jm} and e′ij = 0 otherwise.

Now the only difference between rvw(Tw̃) and rv′w(Tw̃) is that rvw(Tw̃) has Ts̃i1

and −cs̃ijd as factors in the first and jdth position respectively, while rv′w(Tw̃)

has −cs̃i1 and Ts̃ijd
as factors in the first and jdth position respectively. The

factors in all other positions are the same for rvw(Tw̃) and rv′w(Tw̃).

Since cs̃ is just an R-linear combination of elements in Z, it suffices to show

that

s̃i1t1s̃ij1 t2s̃ij2 · · · tjdcs̃ijd · · · tms̃ijm = cs̃i1 t1s̃ij1 t2s̃ij2 · · · tjd s̃ijd · · · tms̃ijm

for any m-tuple (t1, · · · , tm) ∈ Zm, which holds by Lemma 2.3.

This finishes the proof.

This lemma tells us that rvw is independent of the choice of the non-decreasing

subexpression vw. So we can rewrite the operator as rv,w.

Theorem 2.6. Let w ∈ W with `(w) = n and let w1 = s11s12 · · · s1nτ and w2 =

s21s22 · · · s2nτ be two reduced expressions of w. Let w̃ ∈ W (1) be a lifting of w. Let

v ≤ w with `(v) = m, then rv,w1
(Tw̃) = rv,w2

(Tw̃).

Proof. Since w1 and w2 are two reduced expressions of w, then by Theorem 1.9 in

[10] there exists a sequence

w1 = (w)1, (w)2, ..., (w)d = w2

8



of reduced expressions of w such that (w)i and (w)i+1 differ only by a braid relation.

So without loss of generality, we may assume that w1 and w2 differ only by a braid

relation, and even more we may assume n,m are both even and the other cases for

n,m follow by similar proofs. Then

w̃1 = s̃αs̃β · · · s̃αs̃β︸ ︷︷ ︸
n

,

w̃2 = t s̃β s̃α · · · s̃β s̃α︸ ︷︷ ︸
n

,

v = sαsβ · · · sαsβ︸ ︷︷ ︸
m

.

for some t ∈ Z. Therefore,

rv,w1
(Tw̃) = Ts̃α · · ·Ts̃β︸ ︷︷ ︸

m

(−cs̃α)(−cs̃β) · · · (−cs̃β)︸ ︷︷ ︸
n−m

= Ts̃α · · ·Ts̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃β︸ ︷︷ ︸
n−m

,

rv,w2
(Tw̃) = Tt(−cs̃β)Ts̃α · · ·Ts̃β︸ ︷︷ ︸

m

(−cs̃α)(−cs̃β) · · · (−cs̃α)︸ ︷︷ ︸
n−m−1

= Ttcs̃β Ts̃α · · ·Ts̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−1

.

It is enough to show that s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃β︸ ︷︷ ︸
n−m

= tcs̃β s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−1

.

But ts̃β = s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−1

s̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−1

, so tcs̃β = s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−1

cs̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−1

. There-
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fore

tcs̃β s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−1

= s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−1

cs̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−1

s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−1

= s̃α · · · s̃β︸ ︷︷ ︸
m

s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−m−1

cs̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−m−1

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−1

= s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃α s̃β · · · s̃α︸ ︷︷ ︸
n−m−2

cs̃β s̃
−1
α · · · s̃−1

β︸ ︷︷ ︸
n−m−2

cs̃β · · · cs̃α︸ ︷︷ ︸
n−m−2

= s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−m−3

cs̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−m−3

cs̃αcs̃β · · · cs̃α︸ ︷︷ ︸
n−m−3

· · ·

= s̃α · · · s̃β︸ ︷︷ ︸
m

cs̃αcs̃β · · · cs̃β︸ ︷︷ ︸
n−m

.

The third equality holds since

s̃αs̃β · · · s̃α︸ ︷︷ ︸
n−m−1

cs̃β s̃
−1
α · · · s̃−1

β s̃−1
α︸ ︷︷ ︸

n−m−1

cs̃α = cs̃α s̃β · · · s̃α︸ ︷︷ ︸
n−m−2

cs̃β s̃
−1
α · · · s̃−1

β︸ ︷︷ ︸
n−m−2

which is true because s̃β · · · s̃α︸ ︷︷ ︸
n−m−2

cs̃β s̃
−1
α · · · s̃−1

β︸ ︷︷ ︸
n−m−2

∈ R[Z] and s̃αt
′s̃−1
α cs̃α = cs̃αt′s̃−1

α s̃α

= cs̃αt′ = cs̃αt
′ for any t′ ∈ Z. And all subsequent equalities hold for a similar

reason.

As the main result of this section, this theorem guarantees that rv,w is inde-

pendent of the choice of reduced expression of w. So we can rewrite the operator as

rv,w, which is what we need and will be used later.

By definition of the operator, we can easily get the following propositions.
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Proposition 2.7. Let u, v, w ∈ W and suppose u ≤ v ≤ w, then

ru,vrv,w = ru,w.

Proposition 2.8. Let u, v, w ∈ W and ũ, w̃ ∈ W (1) be liftings of u,w respectively.

(1) If v ≤ w and `(uv) = `(u) + `(v), `(uw) = `(u) + `(w), then

Tũrv,w(Tw̃) = ruv,uw(Tũw̃).

(2) If v ≤ w and `(vu) = `(v) + `(u), `(wu) = `(w) + `(u), then

rv,w(Tw̃)Tũ = rvu,wu(Tw̃ũ).
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Chapter 3: Center of HR(0, cs̃)

3.1 Iwahori Weyl Group

From this section, we will assume that W is an Iwahori Weyl group which is a special

case of the Coxeter group. We recall some basic settings of the Iwahori Weyl group.

Let Σ be a reduced root system with simple system ∆. Let W0 be the finite

Weyl group of Σ, and S0 be the set of simple reflections corresponding to ∆. Then

S0 is a generating set of W0.

Let V = ZΣ∨ ⊗Z R be the R-vector space spanned by the dual root system

Σ∨. Let Σaff be the affine root system associated to Σ, i.e. the set Σ + Z of affine

functionals on V . The term hyperplane always means the null-set of an element of

Σaff.

Choose a special vertex v0 ∈ V such that v0 is stabilized by the action of W0.

Let C0 be the Weyl chamber at v0 corresponding to S0 and let A0 ∈ C0 be the alcove

for which v0 ∈ Ā0 where Ā0 is the closure of A0.

Let W aff be the affine Weyl group of Σaff and Saff be the set of affine reflections

corresponding to walls of A0. Then Saff is a generating set of W aff extended from

S0. (W aff, Saff) is a Coxeter system, and we can equip W aff with the length function

` and the Bruhat order ≤.
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Let F be a non-archimedean local field and let G be a connected reductive

F -group. Let T ⊆ G be a maximal F -split torus and set Z and N be G-centralizer

and G-normalizer of T respectively. Let G(F ),T(F ),Z(F ),N(F ) be the groups of

F -points of G,T,Z,N. Then the group Z(F ) admits a unique parahoric subgroup

Z(F )0. We may define the Iwahori-Weyl group of (G,T) to be the quotient W :=

N(F )/Z(F )0.

There are two ways to express the Iwahori-Weyl group as a semidirect product.

By the work of Bruhat and Tits, it is known that there exists a reduced root system

Σ such that the corresponding affine Weyl group is a subgroup of W . Denoting

by W0 the finite Weyl group of Σ, it can be shown that W = Λ o W0 and that

W = W aff o Ω. For more details of these semidirect products, consult [12] and [6].

The action of W aff on V extends to an action of W . The subgroup Λ acts on V by

translations and the subgroup Ω acts on V by invertible affine transformations that

stabilize the base alcove A0 in V .

The group Ω stabilizes Saff. By the semidirect product W = W aff o Ω, we

know that W aff, Saff,Ω,W satisfy the assumptions mentioned in the beginning of

Section 2.

The group Λ is finitely generated and abelian. In general, Λ may not be torsion

free. The action of Λ on V is given by the homomorphism

ν : Λ→ V

such that λ ∈ Λ acts as translation by ν(λ) in V . The group Λ is normalized by

x ∈ W0: xλx−1 acts as translation by x(ν(λ)). The length ` is constant on each
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W0-conjugacy class in Λ. By Lemma 2.1 in [15], a conjugacy class of W is finite if

and only if it is contained in Λ.

In addition, Λ(1) is normal in W (1) and W (1) = Λ(1)W0(1), Z = Λ(1)∩W0(1).

Any finite conjugacy class of W (1) is contained in Λ(1).

We’ll later use the following geometric characterization of length (see Lemma

5.1.1 in [13]):

Lemma 3.1. Let w ∈ W and s ∈ Saff. If Hs is the hyperplane stabilized by s, then

• `(sw) > `(w) if and only if A0 and w(A0) are on the same side of Hs,

• `(ws) > `(w) if and only if A0 and w(A0) are on the same side of w(Hs).

The following result of Bruhat order on W is also useful.

Lemma 3.2. Let w ∈ W and s ∈ Saff. Suppose `(w) = `(sws).

• If w ∈ Λ and sws = w, then sw = ws > w.

• If sws 6= w, then sw > w > ws or ws > w > sw.

Proof. The first statement follows from Lemma 3.1. When Ω is trivial, the sec-

ond statement follows from Lemma in 7.2 of [11]. The more general statement is

immediate by definition of the Bruhat order and length function on W because

W = W aff o Ω and Ω stabilizes Saff.

When W is an Iwahori Weyl group. A basis of the center of the R-algebra

HR(qs̃, cs̃) associated to W (1) is given in [15] by using the Bernstein presentation.

This basis can be very complicated when written explicitly by Iwahori-Matsumoto

presentation. But when qs̃ = 0, we can write out a basis explicitly.

14



3.2 Maximal Length Elements

Let ZR(qs̃, cs̃) be the center of HR(qs̃, cs̃) and h ∈ ZR(qs̃, cs̃). Then

h =
∑

w̃∈W (1)

aw̃Tw̃, for some aw̃ ∈ R.

Set supp(h) = {w̃ ∈ W (1)|aw̃ 6= 0}. Let supp(h)max be the set of maximal length

elements in supp(h). The following theorem tells what supp(h)max is comprised of.

Theorem 3.3. Suppose h ∈ ZR(qs̃, cs̃), then supp(h)max is a union of conjugacy

classes in W (1).

This theorem comes from the following results.

Lemma 3.4. Let s̃ ∈ Saff(1), h ∈ ZR(qs̃, cs̃) and w̃ ∈ supp(h)max. If `(s̃w̃) > `(w̃)

or `(w̃s̃) > `(w̃), then s̃w̃s̃−1 ∈ supp(h)max and as̃w̃s̃−1 = aw̃.

Proof. Without loss of generality, we may assume that `(s̃w̃) > `(w̃). Then s̃w̃ ∈

supp(Ts̃h) = supp(hTs̃) since Ts̃h = hTs̃, and

supp(Ts̃h)max = {s̃x̃|x̃ ∈ supp(h)max, `(s̃x̃) > `(x̃)},

supp(hTs̃)max = {ỹs̃|ỹ ∈ supp(h)max, `(ỹs̃) > `(ỹ)}.

Both sets are nonempty because s̃w̃ ∈ supp(Ts̃h)max. Therefore, s̃w̃s̃−1 ∈ supp(h)max

and `(s̃w̃s̃−1) = `(w̃). The R-coefficient of Ts̃w̃ in Ts̃h is aw̃ and the R-coefficient of

Ts̃w̃ in hTs̃ is as̃w̃s̃−1 . Thus as̃w̃s̃−1 = aw̃.

We recall the Main Theorem in [13]:
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Theorem 3.5. Fix w ∈ W . If w /∈ Λ then there exists s ∈ Saff and s1, · · · , sn ∈ Saff

such that, setting w′
def
= sn · · · s1ws1 · · · sn,

• `(si · · · s1ws1 · · · si) = `(w) for all i,

• `(sw′s) > `(w′).

Lemma 3.6. Suppose h ∈ ZR(qs̃, cs̃) and w̃ ∈ supp(h)max, then w̃ ∈ Λ(1).

Proof. We prove by contradiction. Assume w̃ ∈ supp(h)max but w̃ /∈ Λ(1).

By Theorem 3.5, there exist s̃ ∈ Saff(1) and s̃1, s̃2, · · · , s̃n ∈ Saff(1) such that

• `(s̃i · · · s̃1w̃s̃
−1
1 · · · s̃−1

i ) = `(w̃) for all i,

• π(s̃is̃i−1 · · · s̃1w̃s̃
−1
1 · · · s̃−1

i−1s̃
−1
i ) 6= π(s̃i−1 · · · s̃1w̃s̃

−1
1 · · · s̃−1

i−1) for all i,

• `(s̃w̃′s̃−1) > `(w̃′), where w̃′ = s̃n · · · s̃2s̃1w̃s̃
−1
1 s̃−1

2 · · · s̃−1
n .

By Lemma 3.2 and Lemma 3.4, s̃i · · · s̃1w̃s̃
−1
1 · · · s̃−1

i ∈ supp(h)max for all i, in

particular, w̃′ = s̃n · · · s̃2s̃1w̃s̃
−1
1 s̃−1

2 · · · s̃−1
n ∈ supp(h)max.

By Lemma 3.4 again, s̃w̃′s̃−1 ∈ supp(h)max. But `(s̃w̃′s̃−1) > `(w̃′), which is a

contradiction.

Proof of Theorem 3.3. It suffices to show that if h ∈ ZR(qs̃, cs̃), w̃ ∈ supp(h)max

and Cl(w̃) is the W (1)-conjugacy class of w̃ in W (1), then Cl(w̃) ⊆ supp(h)max and

aw̃′ = aw̃ for any w̃′ ∈ Cl(w̃).

By Lemma 3.4 and Lemma 3.6, x̃w̃x̃−1 ∈ supp(h)max and ax̃w̃x̃−1 = aw̃ for any

x̃ ∈ W aff(1). It remains to show that τ̃ w̃τ̃−1 ∈ supp(h)max and aτ̃ w̃τ̃−1 = aw̃ for any
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τ̃ ∈ Ω(1). But τ̃ w̃ ∈ supp(Tτ̃h) = supp(hTτ̃ ), and

supp(Tτ̃h)max = {τ̃ x̃|x̃ ∈ supp(h)max},

supp(hTτ̃ )max = {ỹτ̃ |ỹ ∈ supp(h)max}.

Both sets are nonempty because τ̃ w̃ ∈ supp(Tτ̃h)max. Therefore, τ̃ w̃τ̃−1 ∈ supp(h)max.

The R-coefficient of Tτ̃ w̃ in Tτ̃h is aw̃ and the R-coefficient of Tτ̃ w̃ in hTτ̃ is aτ̃ w̃τ̃−1 .

Thus aτ̃ w̃τ̃−1 = aw̃.

By Lemma 1.1 in [15], a conjugacy class C of W is finite if and only if C is

contained in Λ. In W (1), we can only conclude that any finite conjugacy class is

contained in Λ(1). So supp(h)max is a union of some conjugacy classes in Λ(1).

3.3 Some Technical Results

Let C be a finite conjugacy class in W (1). Set

hλ,C =
∑

λ̃∈π−1(λ)∩C

Tλ̃,

for every λ ∈ π(C).

In the rest of this section, we fix a finite conjugacy class C in W (1) and write

hλ for hλ,C without ambiguity. Now we prove some properties of rx,λ(hλ).

Lemma 3.7. Let λ ∈ π(C) and s ∈ Saff. Let x ∈ W with x < sx or x < xs.

Suppose that x ≤ λ and x ≤ sλs. Then

rx,λ(hλ) = rx,sλs(hsλs).
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Proof. Without loss of generality, we may assume x < sx.

If sλs = λ, then it is clearly true.

If sλs 6= λ, then by Lemma 3.2 and without loss of generality, we may assume

sλ < λ. In this case, x ≤ sλ by Lemma 2.1. Thus

rx,λ(hλ) = rx,sλ(rsλ,λ(hλ)), rx,sλs(hsλs) = rx,sλ(rsλ,sλs(hsλs)).

It suffices to show that rsλ,λ(hλ) = rsλ,sλs(hsλs).

Since cs̃−1 ∈ R[Z], we may assume that

cs̃−1 =
∑
t∈Z

btt, for some bt ∈ R.

Then

rsλ,λ(hλ) = rsλ,sλs(hsλs)

⇐⇒
∑

λ̃∈π−1(λ)∩C

−cs̃−1Ts̃λ̃ =
∑

λ̃∈π−1(λ)∩C

−Ts̃λ̃cs̃−1

⇐⇒
∑

λ̃∈π−1(λ)∩C

−cs̃−1Ts̃λ̃ =
∑

λ̃∈π−1(λ)∩C

−Ts̃λ̃(s̃cs̃−1 s̃−1)

⇐⇒
∑

λ̃∈π−1(λ)∩C

−(
∑
t∈Z

btt)Ts̃λ̃ =
∑

λ̃∈π−1(λ)∩C

−Ts̃λ̃(s̃(
∑
t∈Z

btt)s̃
−1)

⇐⇒
∑
t∈Z

bt
∑

λ̃∈π−1(λ)∩C

−Tts̃λ̃ =
∑
t∈Z

bt
∑

λ̃∈π−1(λ)∩C

−Ts̃λ̃(s̃ts̃−1).

We want to show the last equation. It suffices to show that

∑
λ̃∈π−1(λ)∩C

ts̃λ̃ =
∑

λ̃∈π−1(λ)∩C

s̃λ̃(s̃ts̃−1)

⇐⇒
∑

λ̃∈π−1(λ)∩C

s̃−1ts̃λ̃ =
∑

λ̃∈π−1(λ)∩C

λ̃(s̃ts̃−1)

⇐⇒(s̃−1ts̃)(
∑

λ̃∈π−1(λ)∩C

λ̃)(s̃−1ts̃)−1 =
∑

λ̃∈π−1(λ)∩C

λ̃
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for any t ∈ Z in the group algebra R[W (1)]. The last equation holds because∑
λ̃∈π−1(λ)∩C λ̃ is fixed by Z.

For w,w′ ∈ W , we write w
s→ w′ if w′ = sws and `(w′) = `(w)− 2.

For w,w′ ∈ W , we write w
s∼ w′ if w′ = sws, `(w′) = `(w), and sw > w or

ws > w. We write w ∼ w′ if ∃ a sequence

w = w0, w1, ..., wn = w′

such that wi−1
si∼ wi for every i and some si ∈ Saff. If λ, λ′ are in the same finite

conjugacy class in W , then λ′ = wλw−1 for some w ∈ W . Since W = Λ oW0, we

can write w = w0λ
′′ for some w0 ∈ W0 and λ′′ ∈ Λ. Thus by commutativity of Λ,

λ′ = (w0λ
′′)λ(w0λ

′′)−1 = w0λw
−1
0 . By Lemma 3.2, we have λ ∼ λ′.

Lemma 3.8. Let λ ∈ π(C). Let x, x′ ∈ W and x ≤ λ. Suppose

x = x0
s1∼ x1

s2∼ · · · sn∼ xn = x′,

for some si ∈ Saff. Let w = sn · · · s1. Then there exist λ′ ∼ λ and w̃ ∈ W (1) a

lifting of w, such that x′ ≤ λ′ and

w̃ • (rx,λ(hλ)) = rx′,λ′(hλ′).

Proof. It suffices to consider the case where x
s∼ x′ for some s ∈ Saff, i.e. x′ = sxs.

Without loss of generality, we may assume that sx > x.

• If sλ > λ, then by Lemma 2.1 sxs ≤ sλs. It is enough to show that
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Ts̃rx,λ(hλ) = rsxs,sλs(hsλs)Ts̃ for any s̃ ∈ Saff (1) with π(s̃) = s. But

Ts̃rx,λ(hλ) = rsx,sλ(Ts̃hλ)

= rsx,sλ(hsλsTs̃)

= rsxs,sλs(hsλs)Ts̃.

The second the equality holds because s̃ • hλ = hsλs, and the other equalities

hold by Proposition 2.8. Therefore,

s̃ • (rx,λ(hλ)) = rx′,sλs(hsλs).

• If sλ < λ, then by Lemma 2.1 and Lemma 3.2, sxs < sx ≤ λ and x ≤ sλ <

sλs. Therefore, for any s̃ ∈ Saff (1) with π(s̃) = s, we have

Ts̃(rx,λ(hλ)) = Ts̃(rx,sλs(hsλs))

= rsx,λs(Ts̃hsλs)

= rsx,λs(hλTs̃)

= (rsxs,λ(hλ))Ts̃.

The first equality holds by Lemma 3.7. The third equality holds because

s̃ • hsλs = hλ and the other equalities hod by Proposition 2.8. Thus

s̃ • (rx,λ(hλ)) = rx′,λ(hλ).

This finishes the proof.

Recall that ν is the homomorphism which defines the action of Λ. Set Λ+ =

{λ ∈ Λ|β(ν(λ)) ≥ 0,∀β ∈ Σ+} where Σ+ is the set of positive roots in Σ. A element
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in Λ is called dominant if it is contained in Λ+. Let µ0 ∈ Λ+ and λ ∈ Λ. Let λ0 be a

dominant element in {λ′ ∈ Λ|λ′ ∼ λ}. In fact, λ0 is unique. Suppose λ0, λ
′
0 are both

dominant and in {λ′ ∈ Λ|λ′ ∼ λ}, then λ′0 = wλ0w
−1 for some w ∈ W . We know

w = w0λ
′′ for some w0 ∈ W0 and λ′′ ∈ Λ. Hence λ′0 = w0λ0w

−1
0 since Λ is abelian.

But ν(λ′0) = ν(w0λ0w
−1
0 ) = w0(ν(λ0)) and ν(λ0) are not in the same chamber unless

w0 = 1, that is, λ′0 = λ0. Suppose µ0 ≤ λ, then by Corollary 4.4 in [4], µ0 ≤ λ0. We

have the following result.

Lemma 3.9. Let µ0 ∈ Λ+ and λ ∈ Λ. Let λ0 be the unique dominant element in

{λ′ ∈ Λ|λ′ ∼ λ}. Suppose µ0 ≤ λ, then there exists a sequence

λ0, λ1, · · · , λn = λ

such that λi−1
si∼ λi for every i and some si ∈ S0, and µ0 ≤ λi for all i.

Proof. Since λ ∼ λ0, there exists w ∈ W0 such that λ = wλ0w
−1. We prove the

statement by induction on l = `(w).

If l = 0, 1, then it is obvious.

Now suppose that the statement is correct for l < k, and we consider the case

when l = k. Let w = sik · · · si1 and it suffices to show that µ0 ≤ sikλsik .

If sikλsik = λ, then it is obvious.

If sikλsik 6= λ, then by sikw < w and Lemma 3.1, w(A0) and A0 are on

different sides of Hsik
. On the other hand, sikλsik 6= λ, then ν(λ) = ν(wλ0w

−1) =

w(ν(λ0)) ∈ w(C̄0)\Hsik
. Thus λ(A0) = A0 + ν(λ) and A0 are on different sides of

Hsik
, i.e. sikλ < λ by Lemma 3.1. We also have sikµ0 > µ0, thus by Lemma 2.1,

µ0 ≤ sikλ < sikλsik , which finishes the proof.
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Theorem 3.10. Let λ1, λ2 ∈ π(C) and x ∈ W . Suppose x ≤ λ1, λ2, then

rx,λ1(hλ1) = rx,λ2(hλ2).

Proof. We prove it by induction on d = `(λ1)− `(x) = `(λ2)− `(x).

If d = 0, then it is obvious since x = λ1 = λ2.

Now suppose d > 0.

• If x /∈ Λ, then by Theorem 3.5 there exist s1, s2, · · · , sn, s′ ∈ Saff such that

sisi−1 · · · s1xs1 · · · si−1si
si+1∼ si+1sisi−1 · · · s1xs1 · · · si−1sisi+1 for all i and

s′snsn−1 · · · s1xs1 · · · sn−1sns
′ s′→ snsn−1 · · · s1xs1 · · · sn−1sn. Let w̃ ∈ W aff(1)

be a lifting of snsn−1 · · · s1 and x′ = snsn−1 · · · s1xs1 · · · sn−1sn. Then by

Lemma 3.8,

w̃ • (rx,λ1(hλ1)) = rx′,λ′1(hλ′1), w̃ • (rx,λ2(hλ2)) = rx′,λ′2(hλ′2),

for some λ′1 ∼ λ1, λ
′
2 ∼ λ2. We have λ′1 ∼ λ′2 because λ1 ∼ λ2.

It suffices to show that rx′,λ′1(hλ′1) = rx′,λ′2(hλ′2). It can be checked using Lemma

2.1 that s′x′ ≤ λ′j or s′λ′js
′ for j = 1, 2. By Lemma 3.7 and without loss of

generality, we may assume that s′x′ ≤ λ′1, λ
′
2, then

rx′,λ′1(hλ′1) = rx′,s′x′(rs′x′,λ′1(hλ′1)) = rx′,s′x′(rs′x′,λ′2(hλ′2)) = rx′,λ′2(hλ′2),

where the second equality holds by induction. If s′x′ ≤ s′λ′js
′, then x′ < s′λ′js

′.

By Lemma 3.7,

rx′,λ′j(hλ′j) = rx′,s′λ′js′(hs′λ′js′) = rx′,s′x′(rs′x′,s′λ′js′(hs′λ′js′)),

and we can apply a similar proof as above.
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• If x ∈ Λ, then there exists w = sn · · · s1 with si ∈ W0 such that x = x0
s1∼ x1

s2∼

· · · sn∼ xn = x′ and x′ ∈ Λ+. Let w̃ ∈ W (1) be a lifting of w, then by Lemma

3.8,

w̃ • (rx,λ1(hλ1)) = rx′,λ′1(hλ′1), w̃ • (rx,λ2(hλ2)) = rx′,λ′2(hλ′2),

for some λ′1 ∼ λ1, λ
′
2 ∼ λ2. We have λ′1 ∼ λ′2 because λ1 ∼ λ2.

It suffices to show that rx′,λ′1(hλ′1) = rx′,λ′2(hλ′2). By Lemma 3.7 and 3.9,

rx′,λ′1(hλ′1) = rx′,λ0(hλ0) = rx′,λ′2(hλ′2) where λ0 ∈ Λ+ and λ0 ∼ λ′1, λ0 ∼ λ′2.

This finishes the proof.

3.4 Main Theorem

From this section, all our discussions will be under the condition where qs̃ = 0 for all

s̃ ∈ Saff(1), that is, we will consider the algebra HR(0, cs̃) and the center ZR(0, cs̃).

In this case, the quadratic relations become T 2
s̃ = cs̃Ts̃.

Let C be a finite conjugacy class in W (1). Then C ⊂ Λ(1), π(C) ⊂ Λ and

there is a unique element λ0 ∈ π(C) ∩ Λ+. Set

Adm(C) = Adm(λ0) = {w ∈ W |w ≤ λ for some λ ∈ π(C)}.

We define

hC =
∑

w∈Adm(C)

hw,

where hw = rw,λ(hλ) for any λ ∈ π(C) with λ > w. By Theorem 3.10, hC is well

defined.

Lemma 3.11. Suppose C is a finite conjugacy class in W (1). Then hC ∈ ZR(0, cs̃).
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Proof. For any τ̃ ∈ Ω(1) with π(τ̃) = τ ,

Tτ̃hC =
∑

w∈Adm(C)

Tτ̃hw

=
∑

w∈Adm(C)

hτwτ−1Tτ̃

= (τ̃ • (
∑

w∈Adm(C)

hw))Tτ̃

= hCTτ̃ .

The second equality holds by definition of hC and Proposition 2.8, and the third

equality holds because hC is stable under the action of W (1).

It remains to show that for any s̃ ∈ Saff(1) with π(s̃) = s, Ts̃hC = hCTs̃. The

left hand side

Ts̃hC =
∑

w∈Adm(C)

Ts̃hw =
∑

x,sx∈Adm(C)

Ts̃hx +
∑

y∈Adm(C),sy /∈Adm(C)

Ts̃hy.

If x, sx ∈ Adm(C), then without loss of generality, we may assume x < sx ≤

λ ∈ π(C). In this case,

Ts̃hx + Ts̃hsx = Ts̃rx,λ(hλ) + Ts̃rsx,λ(hλ)

= Ts̃rx,λ(hλ) + cs̃rsx,λ(hλ)

= Ts̃rx,λ(hλ) + Ts̃(−rx,sx(rsx,λ(hλ)))

= Ts̃rx,λ(hλ) + Ts̃(−rx,λ(hλ))

= 0.

The second equality holds because Ts̃Ts̃x̃ = cs̃Ts̃x̃ for any x̃ ∈ W (1) with π(x̃) = x.

The third equality holds because cs̃Ts̃ = Ts̃cs̃ and cs̃Ts̃x̃ = Ts̃(cs̃Tx̃) = Ts̃(−rx,sx(Ts̃x̃))
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for any x̃ ∈ W (1) with π(x̃) = x. The fourth equality holds by Proposition 2.8.

Therefore,

Ts̃hC =
∑

x∈Adm(C),sx/∈Adm(C)

Ts̃hx.

Similarly,

hCTs̃ =
∑

x∈Adm(C),xs/∈Adm(C)

hxTs̃.

But it is easy to check by Lemma 2.1 that there is a one-to-one correspon-

dence between the two sets {x ∈ Adm(C)|sx /∈ Adm(C)} and {x ∈ Adm(C)|xs /∈

Adm(C)}, i.e., y ∈ {x ∈ Adm(C)|sx /∈ Adm(C)} if and only if sys ∈ {x ∈

Adm(C)|xs /∈ Adm(C)}. Therefore, it is enough to show that if x ∈ Adm(C)

and sx /∈ Adm(C), then

Ts̃hx = hsxsTs̃.

Now x < sx, and we suppose x ≤ λ ∈ π(C). If sλ > λ, then by Lemma 2.1

sxs ≤ sλs, thus

Ts̃hx = Ts̃rx,λ(hλ)

= rsx,sλ(Ts̃hλ)

= rsx,sλ(hsxsTs̃)

= rsxs,sλs(hsλs)Ts̃

= hsxsTs̃.

The second and fourth equalities hold by Proposition 2.8. The third equality holds

because s̃ • hλ = hsλs.

If sλ < λ, then by Lemma 2.1 sx ≤ λ, but λ < λs so by Lemma 2.1 again
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sxs ≤ λ and sx ≤ λs, therefore x ≤ sλs. Now let y = sxs, then y ≤ λ and

sys ≤ sλs, therefore applying a similar proof as above, we have hyTs̃ = Ts̃hsys, i.e.,

Ts̃hx = hsxsTs̃.

This finishes the proof.

Theorem 3.12 (Main Theorem). The center ZR(0, cs̃) of HR(0, cs̃) has a basis

{hC}C∈F(W (1)), where F(W (1)) is the family of finite conjugacy classes in W (1).

Proof. First, we show that {hC}C∈F(W (1)) is linearly independent.

Let C1, C2, · · · , Cn be distinct conjugacy classes in F(W (1)). Suppose that

h =
∑n

i=1 aihCi = 0 for some ai ∈ R. We show that ai = 0 for all i by induction on

n.

If n = 1, apparently a1 = 0.

Suppose the statement is correct for n < k, and we consider the case when

n = k. We write `(C) as the common length of elements in a finite conjugacy class

C. Choose Cj from {C1, C2, · · · , Ck} such that `(Cj) is maximal. Let w ∈ Cj, then

only hCj contains the term Tw and the R-coefficient of Tw in h is aj, so aj = 0. Then

by induction, we also have ai = 0 for all i 6= j. Therefore, {hC}C∈F(W (1)) is linearly

independent.

By Lemma 3.11, we know hC ∈ ZR(0, cs̃) for all C ∈ F(W (1)). Next, we show

that {hC}C∈F(W (1)) spans ZR(0, cs̃). For any h ∈ ZR(0, cs̃), we show that h is an

R-linear combination of elements in {hC}C∈F(W (1)). We prove this by induction on

n = maxw∈supp(h) `(w).

If n = 0, then by Theorem 3.3 and its proof, we know that the statement is
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correct.

Suppose the statement is correct for n < k. We consider the case when n = k.

By Theorem 3.3, we know that supp(h)max = ∪mi=1Ci for some Ci ∈ F(W (1)).

By the proof of Theorem 3.3, we know that, for any i, if we choose two arbitrary

elements w,w′ from Ci, then the R-coefficients of Tw and Tw′ are the same in h, so

we can write this common coefficient as aCi . Then the element

h′ = h−
n∑
i=1

aCihCi

is also in ZR(0, cs̃), and maxw∈supp(h′) `(w) < k. By induction, h′ is an R-linear com-

bination of elements in {hC}C∈F(W (1)). Therefore, h is also an R-linear combination

of elements in {hC}C∈F(W (1)).

This finishes the proof.
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Chapter 4: Examples

Given a finite conjugacy class C in W (1), we can write out the corresponding central

element hC as follow.

Since we know what π(C) is, we can write out hλ,C for each λ ∈ π(C). For

other x ∈ Adm(C), it is easy to find a λ ∈ π(C) such that x < λ. Then we can

apply the operator rx,λ on hλ,C by changing some factors Ts̃ to −cs̃. Adding up all

these terms, we get hC .

In this section, we give two examples to show how the above process works.

Example 4.1. In the GL2 case, the Iwahori Weyl group W = W aff oΩ. The affine

Weyl group W aff is generated by Saff = {s0, s1}. The group Ω is generated by τ and

τs0 = s1τ, τs1 = s0τ .

Suppose C1 is a finite conjugacy class in W (1) with

π(C1) = {s0s1s0s1, s1s0s1s0}.

Then Adm(C1) = {s0s1s0s1, s1s0s1s0, s0s1s0, s1s0s1, s0s1, s1s0, s0, s1, 1}.

Suppose

hs0s1s0s1,C1 =
∑
t∈Z1

Ts̃0s̃1s̃0s̃1t,
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for some subset Z1 ⊆ Z. Then

hs1s0s1s0,C1 =
∑
t∈Z1

Ts̃1s̃0s̃1ts̃0 ,

where s̃1s̃0s̃1ts̃0 is indeed a lifting of s1s0s1s0.

Since s0s1s0, s1s0s1 < s0s1s0s1, we have

hs0s1s0,C1 = rs0s1s0,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

−Ts̃0s̃1s̃0cs̃1t,

hs1s0s1,C1 = rs1s0s1,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

−cs̃0Ts̃1s̃0s̃1t.

Since s0s1, s1s0 < s0s1s0s1, we have

hs0s1,C1 = rs0s1,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

cs̃0cs̃1Ts̃0s̃1t,

hs1s0,C1 = rs1s0,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

cs̃0Ts̃1s̃0cs̃1t.

Since s0, s1 < s0s1s0s1, we have

hs0,C1 = rs0,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

−Ts̃0cs̃1cs̃0cs̃1t,

hs1,C1 = rs1,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

−cs̃0cs̃1cs̃0Ts̃1t.

Since 1 < s0s1s0s1, we have

h1,C1 = r1,s0s1s0s1(hs0s1s0s1,C1) =
∑
t∈Z1

cs̃0cs̃1cs̃0cs̃1t.

We can easily tell that the parity of the sign is determined by the length dif-

ference.
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Therefore the corresponding central element is

hC1 =
∑
t∈Z1

Ts̃0s̃1s̃0s̃1t + Ts̃1s̃0s̃1ts̃0 − Ts̃0s̃1s̃0cs̃1t

− cs̃0Ts̃1s̃0s̃1t + cs̃0cs̃1Ts̃0s̃1t + cs̃0Ts̃1s̃0cs̃1t

− Ts̃0cs̃1cs̃0cs̃1t − cs̃0cs̃1cs̃0Ts̃1t + cs̃0cs̃1cs̃0cs̃1t.

Suppose C2 is another finite conjugacy class in W (1) with

π(C2) = {s0s1s0τ, s1s0s1τ}.

Then Adm(C2) = {s0s1s0τ, s1s0s1τ, s0s1τ, s1s0τ, s0τ, s1τ, τ}.

Suppose

hs0s1s0τ,C2 =
∑
t∈Z2

Ts̃0s̃1s̃0τ̃ t,

for some subset Z2 ⊆ Z. Then

hs1s0s1τ,C2 =
∑
t∈Z2

Ts̃1s̃0s̃1s̃0τ̃ ts̃−1
1

=
∑
t∈Z2

Ts̃1s̃0s̃1τ̃(τ̃−1s̃0τ̃ ts̃
−1
1 ),

where τ̃−1s̃0τ̃ ts̃
−1
1 is an element in Z. So s̃1s̃0s̃1τ̃(τ̃−1s̃0τ̃ ts̃

−1
1 ) is indeed a lifting of

s1s0s1τ .

Since s0s1τ, s1s0τ < s0s1s0τ , we have

hs0s1τ,C2 = rs0s1τ,s0s1s0τ (hs0s1s0τ,C2), hs1s0τ,C2 = rs1s0τ,s0s1s0τ (hs0s1s0τ,C2).

Since s0τ, s1τ < s0s1s0τ , we have

hs0τ,C2 = rs0τ,s0s1s0τ (hs0s1s0τ,C2), hs1τ,C2 = rs1τ,s0s1s0τ (hs0s1s0τ,C2).

Since τ < s0s1s0τ , we have

hτ,C2 = rτ,s0s1s0τ (hs0s1s0τ,C2).
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Therefore the corresponding central element is

hC2 =
∑
t∈Z2

Ts̃0s̃1s̃0τ̃ t + Ts̃1s̃0s̃1τ̃(τ̃−1s̃0τ̃ ts̃
−1
1 ) − Ts̃0s̃1cs̃0Tτ̃ t − cs̃0Ts̃1s̃0τ̃ t

+ cs̃0cs̃1Ts̃0τ̃ t + cs̃0Ts̃1cs̃0Tτ̃ t − cs̃0cs̃1cs̃0Tτ̃ t.

Example 4.2. In the SL3 case, the Iwahori Weyl group W = W aff. The affine Weyl

group W aff is generated by Saff = {s0, s1, s2} with braid relations sisjsi = sjsisj for

i 6= j.

Suppose C is a finite conjugacy class in W (1) with

π(C) = {s0s1s2s1, s1s0s1s2, s2s0s2s1, s1s2s1s0, s2s1s0s1, s1s2s0s2}.

Then

Adm(C) = {s0s1s2s1, s1s0s1s2, s2s0s2s1, s1s2s1s0, s2s1s0s1, s1s2s0s2,

s1s2s1, s1s0s1, s2s0s2, s0s1s2, s0s2s1, s1s0s2, s1s2s0, s2s1s0, s2s0s1,

s0s1, s0s2, s1s2, s2s1, s1s0, s2s0, s0, s1, s2, 1}.

Suppose

hs0s1s2s1,C =
∑
t∈Z′

Ts̃0s̃1s̃2s̃1t,
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for some subset Z ′ ⊆ Z. Then

hs1s0s1s2,C =
∑
t∈Z′

Ts̃1ts̃0s̃1s̃2 ,

hs2s0s2s1,C =
∑
t∈Z′

Ts̃2s̃0s̃1s̃2s̃1ts̃−1
2

=
∑
t∈Z′

Ts̃2s̃0s̃2s̃1(s̃−1
1 s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 ),

hs1s2s1s0,C =
∑
t∈Z′

Ts̃1s̃2s̃1ts̃0 ,

hs2s1s0s1,C =
∑
t∈Z′

Ts̃2s̃1ts̃0s̃1 ,

hs1s2s0s2,C =
∑
t∈Z′

Ts̃−1
2 s̃1s̃2s̃1ts̃0s̃2

=
∑
t∈Z′

T(s̃−1
2 s̃1s̃2s̃1ts̃

−1
2 s̃−1

1 )s̃1s̃2s̃0s̃2
,

where s̃−1
1 s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 , s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 s̃−1

1 are elements in Z. So the elements

s̃2s̃0s̃2s̃1(s̃−1
1 s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 ) and (s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 s̃−1

1 )s̃1s̃2s̃0s̃2 are indeed liftings of

s2s0s2s1 and s1s2s0s2 respectively.

Since s1s2s1, s0s1s2, s0s2s1 < s0s1s2s1; s1s0s1, s1s0s2 < s1s0s1s2;

s2s0s2 < s2s0s2s1; s1s2s0, s2s1s0 < s1s2s1s0; s2s0s1 < s2s1s0s1, we have

hs1s2s1,C = rs1s2s1,s0s1s2s1(hs0s1s2s1,C), hs1s0s1,C = rs1s0s1,s1s0s1s2(hs1s0s1s2,C),

hs2s0s2,C = rs2s0s2,s2s0s2s1(hs2s0s2s1,C), hs0s1s2,C = rs0s1s2,s0s1s2s1(hs0s1s2s1,C),

hs0s2s1,C = rs0s2s1,s0s1s2s1(hs0s1s2s1,C), hs1s0s2,C = rs1s0s2,s1s0s1s2(hs1s0s1s2,C),

hs1s2s0,C = rs1s2s0,s1s2s1s0(hs1s2s1s0,C), hs2s1s0,C = rs2s1s0,s1s2s1s0(hs1s2s1s0,C),

hs2s0s1,C = rs2s0s1,s2s1s0s1(hs2s1s0s1,C).

Since s0s1, s0s2, s1s2, s2s1 < s0s1s2s1; s1s0, s2s0 < s1s2s1s0, we have

hs0s1,C = rs0s1,s0s1s2s1(hs0s1s2s1,C), hs0s2,C = rs0s2,s0s1s2s1(hs0s1s2s1,C),
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hs1s2,C = rs1s2,s0s1s2s1(hs0s1s2s1,C), hs2s1,C = rs2s1,s0s1s2s1(hs0s1s2s1,C),

hs1s0,C = rs1s0,s1s2s1s0(hs1s2s1s0,C), hs2s0,C = rs2s0,s1s2s1s0(hs1s2s1s0,C).

Since s0, s1, s2 < s0s1s2s1, we have

hs0,C = rs0,s0s1s2s1(hs0s1s2s1,C), hs1,C = rs1,s0s1s2s1(hs0s1s2s1,C),

hs2,C = rs2,s0s1s2s1(hs0s1s2s1,C).

Since 1 < s0s1s2s1, we have

h1,C = r1,s0s1s2s1(hs0s1s2s1,C).

Therefore the corresponding central element is

hC =
∑
t∈Z′

Ts̃0s̃1s̃2s̃1t + Ts̃1ts̃0s̃1s̃2 + Ts̃2s̃0s̃2s̃1(s̃−1
1 s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 )

+ Ts̃1s̃2s̃1ts̃0 + Ts̃2s̃1ts̃0s̃1 + T(s̃−1
2 s̃1s̃2s̃1ts̃

−1
2 s̃−1

1 )s̃1s̃2s̃0s̃2

− cs̃0Ts̃1s̃2s̃1t − Ts̃1ts̃0s̃1cs̃2 − Ts̃2s̃0s̃2cs̃1(s̃−1
1 s̃−1

2 s̃1s̃2s̃1ts̃
−1
2 )

− Ts̃0s̃1s̃2cs̃1t − Ts̃0cs̃1Ts̃2s̃1t − Ts̃1ts̃0cs̃1Ts̃2

− Ts̃1s̃2cs̃1tTs̃0 − cs̃1Ts̃2s̃1ts̃0 − Ts̃2cs̃1tTs̃0s̃1

+ Ts̃0s̃1cs̃2cs̃1t + Ts̃0cs̃1Ts̃2cs̃1t + cs̃0Ts̃1s̃2cs̃1t + cs̃0cs̃1Ts̃2s̃1t

+ Ts̃1cs̃2cs̃1tTs̃0 + cs̃1Ts̃2cs̃1tTs̃0 − Ts̃0cs̃1cs̃2cs̃1t

− cs̃0cs̃1cs̃2Ts̃1t − cs̃0cs̃1Ts̃2cs̃1t + cs̃0cs̃1cs̃2cs̃1t.
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[3] U. Görtz, Alcove walks and nearby cycles on affine flag manifolds, J. of Alge-
braic Combinatorics, 26(4) (2007), pp. 415-430.

[4] T. Haines and X. He, Vertexwise criteria for admissibility of alcoves, Amer. J.
Math., vol.139, No.3 (2017), 769-784.
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