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Cameras are frequently deployed along with many additisaeasors in aerial and
ground-based platforms. Many video datasets have metadataining measurements
from inertial sensors, GPS units, etc. Hence the developofdyetter video processing
algorithms using additional information attains specighgicance.

We first describe an intensity-based algorithm for staipigjzow resolution and low
guality aerial videos. The primary contribution is the idéaninimizing the discrepancy
in the intensity of selected pixels between two images. &&n application of inverse
compositional alignment for registering images of low tagon and low quality, for
which minimizing the intensity difference over salient @ix with high gradients results
in faster and better convergence than when using all théspixe

Secondly, we describe a feature-based method for staimlizaf aerial videos and
segmentation of small moving objects. We use the coherehtackground motion
to jointly track features through the sequence. This esabéeurate tracking of large
numbers of features in the presence of repetitive textaok, ¢f well conditioned feature

windows etc. We incorporate the segmentation problem wite joint feature tracking



framework and propose the first combined joint-tracking aagmentation algorithm.
The proposed approach enables highly accurate trackirhsegmentation of feature
tracks that is used in a MAP-MRF framework for obtaining depielwise labeling of

the scene. We demonstrate competitive moving object deiest challenging video

sequences of the VIVID dataset containing moving vehictes lmumans that are small
enough to cause background subtraction approaches to fail.

Structure from Motion (SfM) has matured to a stage, whereetin@hasis is on
developing fast, scalable and robust algorithms for lagg®mstruction problems. The
availability of additional sensors such as inertial unitd &PS along with video cameras
motivate the development of SfM algorithms that leveragséadditional measurements.
In the third part, we study the benefits of the availabilityaagpecific form of additional
information - the vertical direction (gravity) and the hieigf the camera both of which
can be conveniently measured using inertial sensors, armhacular video sequence for
3D urban modeling. We show that in the presence of this inédion, the SfM equations
can be rewritten in a bilinear form. This allows us to deriviast, robust, and scalable
SfM algorithm for large scale applications. The proposed &fgorithm is experimen-
tally demonstrated to have favorable properties comparétetsparse bundle adjustment
algorithm. We provide experimental evidence indicatirg the proposed algorithm con-
verges in many cases to solutions with lower error than sthget implementations of
bundle adjustment. We also demonstrate that for the cassgd Feconstruction prob-
lems, the proposed algorithm takes lesser time to reaclolitsiean compared to bundle
adjustment. We also present SfM results using our algorithrthe Google StreetView

research dataset, and several other datasets.
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The figure shows illustrations of the problem domainsre/foeir work is
applicable. Figure (1.1(a)) shows an image of a car with afseameras
attached to the mount on top, collecting image sequenceseofitban
scene. Figure (1.1(b)) shows a helicopter sensing the@mwient with
cameras, IMUs and other sensors. Figure (1.1(c)) illussratUAV sur-
veying the ground plane from a high altitude. These images wewn-
loaded from [1]. In all these cases, we have available awditiinforma-

tion along with the sequences that can be used in our algudtihamework.

An illustration of the pipelined video system develogedpart of the
work presented in this dissertation. . . . . . .. ... ... ... ...

3Dimaginggeometry. . . . . . . ...

A plot of the number of iterations taken for convergeneesus the stan-
dard deviation of image pixel noise for different fractiafsnumber of
pixels used in the registration. As the number of salienglgixised for
registration decreases, the number of iterations usedforergence de-

Creasestoo. . . . . . . . . . e

A plot of the geometric error versus the standard dexnaif image pixel
noise for various ratios of salient pixels used in regigtrat For various
saliency rations, accuracy of registration is almost @imiln some cases
the accuracy of registration is greater for lesser numbpixals used. . .
This figure shows a mosaic of a sequence obtained byedggthe im-
ages of a sequence using the intensity-based stabilizagonithm. Ap-

proximately30% of the pixels in each image were used for the purpose

of registration. . . . . . . . .. ...
This figure shows a mosaic of another sequence obtaineegistering
the images using the intensity-based stabilization algari Approxi-

mately 30% of the pixels in each image were used for the purpose of

registration. . . . . . .. L
Figure 3.5(a) shows a sample image of a sequence cafriomedn aerial
platform. The resolution i230 x 310 pixels. We use our algorithm to
build a mosaic of the sequence. The regions of the imagetsdlbg our
algorithm for minimizing the image difference error withetimosaic is
shown in Figure 3.5(b). Note that these regions contrithegerost to our

perception ofimage motion. . . . . ... ... ... ... .......
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4.1

4.2

4.3

4.4

This figure illustrates the failure of KLT feature tracffimethod. Fig-
ure 4.1(a) shows an image with overlaid features. The redtpaire
classified to be on the background and blue points are cleds$dibe on
the foreground. Ideally, blue points must be restricted twimg vehicle
features. Note the large number of blue points on the backglondicat-
ing misclassifications. Figure 4.1(b) shows an image witkelsaverlaid
on top, indicating detected moving blobs after a backgraautairaction
algorithm was applied on registered images. Notice the rmurotfalsely
detected moving objects. The underlying video sequencevesyswell
stabilized upon evaluation by a human observer, but oytivezls near
edges show up as moving pixels in background subtraction. . . . . .
This figure plots the estimated Y-displacement betwegnitnages es-
timated by jointly tracking features with and without usirabust loss
functions. The red-curve plots the estimated displacemsing a sum-
of-squares cost function (similar to traditional KLT). Thikeie line shows
the ground-truth displacement and the green-curve shosvedtimated
displacement obtained by using robust loss-functions. .. .. .. .

This figure shows the distribution of feature dissiniiies produced by
the background model parameters for features lying on tkk&draund
(inliers) and those on moving objects (outliers). The redreplots the
distribution of dissimilarity for inliers and the blue cwrplots the distri-
bution for outliers. These distributions are obtained gsive data-driven
approach described in the text, and are empirically fourizktolosest to

the lognormal distribution. . . . . . . ... ... o oL

This figure qualitatively compares the mosaics obtabyestabilizing the
original sequence using a homography model and the froatalpl se-
quence using a translation model. Figure (a) shows the mossained
using the translation model. It is one part of a long mosaiarolund
550 frames. Figure (b) shows the mosaic obtained using the haapby
model. The distortion s clear towards the right side of tleesaic because
of the gradual build up of errors in homography estimation.... . . . .
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4.5

4.6

4.7

4.8

This figure shows results on four frames of the 100 frameg MIVID
Video Sequence 1. Column (a) shows results on frame 14, colbin
shows results on frame 23, column (c) shows results on fréham8 col-
umn (d) shows results on frame 92. The top row in each colurenays
the feature points tracked on each frame. The blue pointdassified to
be on the background and the red points are classified to leeandving
objects. As the figures illustrate, the segmentation is geourate and is
much better than individual KLT tracking followed by RANSASased
background feature selection. The middle row in each colillenstrates
the dense segmentations inferred from the feature segtimersta The
background and moving objects are plotted on differentrcof@nnels
for illustration. The bottom row in each column illustratibe tracked
boxes on the images which is the result of a blob trackingralgao [2].
Column (c) shows the only feature on the background whichisslassi-
fied to be on the foreground. There is a false moving targaalization
due to this feature but this is quickly removed by the al¢ponit. . . . . .
This figure shows the mosaic of 100 frames of the VIVID seme 1.
The moving objects are removed from the individual framdsfgemo-
saicking. The absence of moving object trails on the modlistiates
the accuracy of motion segmentation in this sequence. . ;
This figure shows results on four frames of the 190 framg MIVID

Video Sequence 2. Column (a) shows results on frame 1, colinn

shows results on frame 24, column (c) shows results on fraan@

column (d) shows results on frame 175. The top row in eachneolu

overlays the feature points tracked on each frame. The ludgare
classified to be on the background and the red points ardfetdst® be
on the moving objects. As the figures illustrate, the segatemt is very
accurate and is much better than the results from individu@ltracking
followed by RANSAC-based background feature selectione iitiddle
row in each column illustrates the dense segmentations@uférom the
feature segmentations. The background and moving objecpdatted on
different color channels for illustration. The bottom raweach column
illustrates the tracked boxes on the images which is thdtresa blob
tracking algorithm [2]. Column (b) shows a feature on a etery vehicle
which is misclassified to be a a moving feature due to paratiduyced

MOLION. . . . . . .

This figure shows the mosaic of 190 frames of the VIVID sempe 2.
The moving objects are removed from the individual framdsfgemo-
saicking. The absence of moving object trails on the modlaistiates
the accuracy of motion segmentation in this sequence. . . . . . . . .
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4.9 This figure shows results on four frames of the 245 frameg MIVID

5.1

5.2

5.3

Video Sequence 3. Column (a) shows results on frame 70, colbin
shows results on frame 142, column (c) shows results on fle@6eand
column (d) shows results on frame 235. The top row in eachneolu
overlays the feature points tracked on each frame. The ludgare
classified to be on the background and the red points arefa@ds® be
on the moving objects. As the figures illustrate, the segatemt is very
accurate and is much better than individual KLT trackinddieked by
RANSAC-based background feature selection. The middleinogach
column illustrates the dense segmentations inferred flaidature seg-
mentations. The background and moving objects are plotiadifterent
color channels for illustration. The bottom row in each cotuillustrates
the tracked boxes on the images which is the result of a bkoikimg
algorithm [2]. Column (c) shows a frame with a few featurestamback-
ground which are misclassified to be on the foreground. Taere false
moving target initializations due to these feature but theyquickly re-
moved by the algorithm in the subsequent frame.

An illustration of the problem setting and the main cotagional steps.
The image shows a typical scene with a ground plane and sateatd
moving objects on it. The gravity field is shown, which can bsuaned
perpendicular to the ground plane. A camera moves over #resand
gives an image sequence. We may also have measurementgodvitg
vector from an IMU or sensing of the plane normal by additlonaans.
We use these additional measurements to simplify the steieind mo-
tion computations. . . . ... ...
The figure shows an illustration of the coordinate systenthe problem
setting. The world coordinate system and the camera caatelgystems
corresponding to two viewpoints is shown in the figure. GRiktrates
the ground plane normal vector which coincides with theigatior di-
rection of gravity in most problem scenariol;, denotes the homogra-
phy induced by the plane between the two vieWsdenotes a point in
the world whose coordinates in the WCS and CCSRrand P, respec-

. 62

tively, with P, = R, P.+T,2,. As the camera moves, we obtain images

of the world. We also assume that we have measurements oRNea@d
the camera height with every image, as additional inforomati. . . . . .
This figure illustrates convergence curves plottingdigeof error versus
computation time for the minimization of (5.7), using béar alternation,
CG and LM. The plots for bilinear alternation are superidh@mother two
in terms of convergence rate because the bundle of red cargdargely
below the blue and black curves. The reconstruction prohieed for
these plots involved0 cameras and0 features. We used a perturbation
of (3%, 6°) for the out-of-plane translation and ground plane normglen
errorrespectively. . . . . . ..
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5.4

5.5

5.6

5.7

5.8

This figure illustrates convergence curves plottingdigeof error versus
computation time for the minimization of (5.7). Figure @aXplots the
curves for Bilinear alternation and CG, and figure 5.4(byshthe plots

for LM. The z axis in both plots are at the same scale which allows for

comparison of LM with the other two algorithms. The plots bolinear
alternation are superior to the other two in terms of cormecg rate be-
cause the bundle of red curves are largely below the bluelac burves.
The reconstruction problem used for these plots involvedameras and
50 feature points. We used a perturbatior{2ff, 6°) for the out-of-plane
translation and ground plane normal angle error respégtive. . . . . .
This figure shows the cumulative frequency graphs ofépeojection er-
ror for SBA and FBSfM along with the error distribution of thretial so-
lutions. The problem involved0 cameras and0 feature points. The red
curves show the results for set 1 with perturbationd %o, 25°, 2.7%), 2°)
in the in-plane translation, in-plane rotaion angle, ouplane translation
and ground plane normal angle error respectively. The hlnees show
the results for set 2 with initial motion error ¢20%, 35°,0.5%, 5°). In
both sets, the graph for FBSfM is above that of SBA indicatiegter

performance. . . . . . ...

This figure illustrates the convergence curves plottimeglog of the re-
projection error versus computation time for FBSfM and SBA 188
runs. The blue curves are for FBSfM and the red ones are for. 8Bfe
that the blue curves are clearly below the red ones indigdtiat FBSfM
converges faster compared to SBA in this experiment. . . :
This figure illustrates the convergence curves plottimeglog of the re-
projection error versus computation time for the propodgdréhm and
SBA. Figure 5.7(a) plots the curves for FBSfM and figure 5 p{bts the

curvesforSparse BA. . . . . . . ..

These plots show the statistics of the reprojectionreobthe reconstruc-
tions on synthetic data at various noise levels in the imagtufe points.
They show the mean and variance of the estimates for threeitpes:
FBSfM, Rother’'s and Bundle Adjustment. The ground truthlration
matrix was used in the process of extracting initial estenatf GPN and
height (additional information) from the homographiestish values for
the GPN and height differed from the ground truth becausédneogra-
phy estimates were obtained from noisy feature correspuwese There
was low-to-moderate error in the initial GPN and heightreates. In
addition, the iterative techniques (FBSfM and BA) used thees initial
solutions to start the update iterations.
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5.9 These plots show the statistics of the reprojectionreobthe reconstruc-
tions on synthetic data at various noise levels in the imagtufe points.
They show the mean and variance of the estimates for threeitpes:
FBSfM, Rother’s and Bundle Adjustment. There was a largerdfrom
ground truth) in the calibration matrix that was used in thecpss of ex-
tracting initial estimates of GPN and height (addition&mmation) from
the homographies. Hence, this experiment serves as a case eval-
uation was performed with high levels of error in the GPN apayjhts
(from ground truth). FBSfM and BA were started with the sami&al
solution for the reconstruction. . . . . . .. ... ... ... ...... 99

5.10 These plots illustrate the reprojection errors of theonstructions on
synthetic data. The reconstruction errors are plotted Godiferent tri-
als. There is a uniformly distributed noise level-b# pixels in the im-
age features for the plot 5.10(a) and a noise levet8fpixels for the
plot 5.10(b). They serve to give an idea of how the varioushogs per-
form for repeated trials of the same experiment. Resultshfare dif-
ferent techniques are shown: FBSfM, Rother’'s and Bundlaugtdjent.
The ground truth calibration matrix was used in the procdésxtract-
ing initial estimates of GPN and height (additional infotiaa) from the
homographies. Hence, this experiment serves as a case afauation
was performed with low to moderate levels of error in the GRN leights.100

5.11 These plots illustrate the reprojection errors of #m®nstructions on syn-
thetic data. The reconstruction errors are plotted for T@mdint trials.
There is a uniformly distributed noise level &7 pixels in the image fea-
tures for Fig. 5.11(a) and a noise level-bt1.5 pixels for Fig. 5.11(b).
They serve to give an idea of how the various methods perfomnet
peated trials of the same experiment. Results for threerdiit tech-
niques are shown: FBSfM, Rother’s and Bundle Adjustmeneré&hvas
a large error (from ground truth) in the calibration mathatwas used in
the process of extracting initial estimates of GPN and hejagiditional
information) from the homographies. Hence, this experinserves as a
case where evaluation was performed with high levels of @nrthe GPN
and heights. . . . . . . . . ... 101

5.12 This figure illustrates three views of the texture majggle model of the
car in the toycar sequence, obtained by interpolating froanse structure
estimates generated by FBSfM. Manually assisted featurg patches
were also used to generate this result, to ensure the dispyull 3D
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5.13 This figure shows the top view of the reconstructed 3Dpaand the

camera path obtained by solving for structure and motiomfi®0 im-

ages of the streetview sequence using the proposed algorittne red

points show the camera centers and the green lines show tikal@xis

at each camera location. A few images in the sequence arenshdhe

left of the figure. We can clearly distinguish the three iségting roads

in the reconstruction, with the road in the middle approxehatwice as

wide asthe othertworoads. . ... ... ... ... ... ........ 105
5.14 This figure shows a texture mapped 3D model of the sceagddin the

StreetView sequence. Since the urban scene consists pyimidbuild-

ings and other man-made structures, we fit several plandsetoeton-

structed 3D points. The textures for these planar patches algained

from the corresponding images, and these textures weréedppl the

planar patches using the Blender 3D modeling tool. Noveksief the

texture-mapped model were rendered using the same tool. ....... . 106
5.15 This figure illustrates three different parts of thee8tview scene. Each

row shows one particular facade present in the scene. Thgesria col-

umn (a) show the original images from the sequence. The isiageol-

umn (b) show the synthesized images generated using the 8Blifinom

a viewpoint that was similar to (a). The images in column {@ve the

synthesized images generated using the 3D model from a vievgboint

not present in the original sequence. . . . . . ... ... ... .. .. 107
5.16 This figure shows the trajectory of the camera in theeBiiew sequence

obtained by solving for the SfM using our algorithm. The nem@d tra-

jectory was converted fro UTM coordinates to Latitude-libmde and

overlaid on the map in Google Earth. The trajectory reflelts gath

taken by the camera as inferred from the image sequencescahhera

moves on the 'Smithfield Street’ in downtown Pittsburg. #rst from the

intersection of Smithfield antf* avenue, goes past the intersection with

'Blvd of the Allies’, and ends after the intersection wittf avenue. . . . 108
5.17 This figure illustrates the convergence curves plgttire log of the re-

projection error versus computation time for the propodgdrahm and

SBA. Figure 5.7(a) plots the curves for FBSfM, and figure 5) filots

the curves for Sparse BA. Figure 5.7(b) cuts off the time aki$)00 sec,

however the maximum time takenw2s40. . . . . . . . . ... .. ... 109
5.18 This figure illustrates the convergence curves pigttire log of the re-

projection error versus computation time for FBSfM and SBAe blue

curves are for FBSfM and the red ones are for SBA. The bluessuave

clearly below the red ones indicating that FBSfM convergester com-

pared to SBAinthisexperiment. . . . . . . ... .. ... .. ... .. 011
5.19 Fig (5.19a) shows a snapshot of a moving car in the vidgoence, with

the detected features shown in yellow dots. It also showsgbmjected

features shown as green squares. Fig. (5.19b) shows thallgadgcon-

structed 3D model ofthecar. . . . . . ... ... ... ... ... ... 112
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Chapter 1

Introduction

With advances in the development of Unmanned and Micro diicles, there is an
increasing need to process the video streams obtained fioraras on-board these aerial
platforms. Due to the erratic motion of these aerial platf®rrobust stabilization of these
video sequences is an important video pre-processingltaakidition, acquisition of low-
resolution video sequences makes it necessary to mosawdih@ sequences for better
visualization using a larger virtual field-of-view [3]. Gemating mosaics of the scene
involves the detection and removal of moving object pixalsgd hence robust moving
object detection becomes important.

Video stabilization refers to the compensation of the nmotibpixels on the image
plane, when a video sequence is captured from a moving ca®eailization of a video
sequence is achieved by registering consecutive imagke séguence onto each other. A
parametric motion model such as an affine or homography ndstumed for the image
sequence and the model parameters are estimated for evef pansecutive frames
in the image sequence. The pairwise models are used to cerfputransformations
registering each frame onto a global reference or mosaic.

Image registration is a widely researched topic in compuiggon, with applications
in mosaicing, medical imaging, motion detection, tracketc The two main approaches

for image registration are feature-based and intensisgtb@pproaches. In the feature-



based approach, we identify corresponding image featstesh (as points and lines) in
an image sequence. Using these feature correspondences)weefor the motion pa-
rameters that register the images. In intensity-baseddappes, we solve for the motion
parameters by minimizing the intensity difference betwinentwo images.

A video sequence acquired by an aerial platform consistautipie moving targets
of interest moving in and out of the field-of-view of the cameAn important problem
involves the segmentation of the moving object pixels framldackground. This is useful
both for mosaicing the background as well as moving targealization for tracking. An
understanding of the motion of targets in video is neceskargeveral video inference
tasks such as activity analysis, video summarization etc.

Moving target pixels do not obey the solved background nmothmdel after video
stabilization and do not register in consecutive framesyvikptargets are typically de-
tected by identifying the subset of pixels that are not adyafter video stabilization,
therefore motion detection results depend on the accurfaggl@o stabilization. Highly
accurate stabilization is extremely important for deteg8mall objects moving in similar
background texture.

Structure from Motion (SfM) refers to the task of recoverthg 3D structure of a
scene and the motion of a camera from a video sequence. Sflddesmsan active area
of research since Longuet-Higgins [4] eight-point aldorit There have been several
different approaches to the SfM problem and we refer theeretw [5] and [6] for a

comprehensive survey of the various approaches.



1.1 Video Stabilization

Video stabilization refers to the compensation of the nmotibpixels on the image
plane, when a video sequence is captured from a moving caBigree several practical
applications just require video stabilization as opposetbimplete estimation of camera
trajectory and scene structure, this is an important sobipm that has received much
attention. Depending on the type of scenario and the typeatiom involved, we have

different algorithms to achieve stabilization.

e Presence of a dominant plane in the sceliet dominant plane is present, then we
can register all the frames using a planar perspectiveftranation (homography)
corresponding to that plane. For pixels that do not lie orpthae, we need to warp
them appropriately depending on the amount of parallaxs &ha very common
assumption for aerial videos and surveillance camerastorarg a scene with a

dominant ground-plane.

e Derotation of the image sequenctn some applications [7, 8], we may want to
estimate and remove the motion due to only the 3D rotatiom@fcemera. This

corresponds to derotation of the image sequence.

e Mosaic constructionWe may need to build an extended field-of-view mosaic of
the scene using images in the sequence. In this case, weaaeclirately register

and blend the various images onto the mosaicing surface.

e Presence of moving object&ne objective of stabilization is to register the video

frames and segment out the moving objects from the scens.ifMalves detecting
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independent motion that is different from ego-motion.

In this dissertation, we address the problems of stahitinaind motion detection
in aerial videos. Our datasets consist of sequences obt&iom low-quality and low-
resolution cameras which have very few prominent featurdéisem, or sequences where
feature tracking is inherently a difficult problem becau$eepeated textures etc. In
addition, our objective is to detect moving vehicles andpbean aerial videos when

these objects occupy a small area in the image.

1.2 Structure from Motion

The problem of SfM has gained renewed interest because tingxnew applica-
tions like 3D urban modeling, terrain estimation from UAMsdgphoto-tourism. Com-
panies like Google and Microsoft, through their StreetVavd WindowsLive products,
already support some applications such as large-scal@ wibaalization. Google has
been collecting image sequences from omnidirectional casnaver thousands of miles
of roads in several cities around the world. Through its&Wew application, it is now
possible to look at these image sequences geo-located op.aFigaire 1.1(a) shows an
image (downloaded from [1]) of a car with cameras attacheit] tapturing images of
a city while driving. Fast, robust and scalable SfM algarithwould enable automatic
creation of 3D models of urban scenes from the sequence gfeisn@corded using such
mobile cameras. This would enrich the content in currenitalignaps and potentially
provide 3D content with both structural information andttegs overlaid.

To solve such large scale SfM applications, several teaholtallenges need to be



addressed. Firstly, most of these large scale image datctiohs usually involve the
presence of additional sensors such as inertial measutemiésy global positioning sys-
tems etc. Traditional SfM approaches need to be adaptedi¢aefly incorporate such
additional sensor measurements into a consistent glotdalasn framework. Secondly,
the scale of models that need to be built are much larger thanbefore. This means
that the algorithms developed for SfM must be fast, scalahl eminently paralleliz-
able. We consider the problem of SfM estimation in the presesf a specific form of
additional information that is frequently available, andgose a fast, scalable and robust

SfM algorithm.

1.3 Contributions

This dissertation consists of several contributions todrtgnt video processing
tasks such as stabilization, mosaicking, motion detedimh structure from motion in
aerial video sequences, that has resulted in a pipelinesbypdocessing system. Fig-
ure 1.2 illustrates the schematic of the pipelined vide@@ssing system. This disserta-
tion makes algorithmic contributions in all the individddbcks shown in the figure 1.2.

The list of contributions is as follows.

e We study the intensity-based alignment algorithm and igiegtion for the stabi-
lization of low quality image sequences. We demonstrateukisg only a subset
of salient pixels for registration, we can get better regishn accuracies in lesser
computation time. This study is new, and has implicationsrégistration algo-

rithms deployed on small devices with limited computatiqaaver.



(a) A car with attached cam- (b) A helicopter with cameras
eras and inertial sensors

(c) A UAV surveying the
ground plane

Figure 1.1: The figure shows illustrations of the problem dora where our work is
applicable. Figure (1.1(a)) shows an image of a car with aobeameras attached to
the mount on top, collecting image sequences of the urbareséegure (1.1(b)) shows a
helicopter sensing the environment with cameras, IMUs déinersensors. Figure (1.1(c))
illustrates a UAV surveying the ground plane from a hightadte. These images were
downloaded from [1]. In all these cases, we have availabdigtiadal information along
with the sequences that can be used in our algorithmic frarew

) Ortho-rectification Stabilization & Moving target 3D model
Video ———=  of the frames mosaicking detection extraction
Metldata

Figure 1.2: An illustration of the pipelined video systenveleped as part of the work
presented in this dissertation.

e We propose a joint tracking and segmentation algorithm faagxmotion co-
herency of the background as well as solve for the classdaliétatures. Although
algorithms exist for tracking features jointly, the idearaforporating segmentation

within this framework and using the feature dissimilasti® infer membership



1.4

probabilities is new. The proposed approach producesyagtdurate labeled fea-
ture tracks in a sequence that are uniformly distributedis €hables us to infer

dense pixelwise motion segmentation that is useful in ngptanget initialization.

We demonstrate competent stabilization and motion detectsults in several
challenging video sequences in the VIVID dataset. We alsalitgtively com-
pare the improvement in image mosaics obtained using tloenmation provided

by associated metadata.

We consider the problem of SfM estimation in the presence sgexific form of
additional information that is frequently available, amdgose a fast, scalable and

robust SfM algorithm that is bilinear in the Euclidean frame

We describe simulation results demonstrating that theqweg algorithm leads to

solutions with lower error than SBA and takes lower time fonwergence.

We describe competitive reconstruction results on the &oSgeetView research

dataset.

Outline

This dissertation is organized as follows.

In chapter 2, we provide the background theory in computapwmithat is funda-

mental to the rest of the dissertation. We describe impbodamera and motion models

and describe how camera motion induces motion in the imaged&¥cribe how image

features extracted from image sequences are related amdtiglewiews, and describe



the general methodology of feature-based algorithms. Wewerelated work in stabi-
lization, mosaicking and structure from motion.

In chapter 3, we describe our work on intensity-based staltibn and present our
study on how a fraction of image pixels can be used for bedtgistration at lower com-
putational cost. We describe registration and mosaickesglts on low quality and low
resolution aerial datasets.

In chapter 4, we present our work on feature-based statidizand motion seg-
mentation. We describe our algorithm for joint feature krag and segmentation and
illustrate how it can be used for stabilizing video and diéecmoving objects with high
accuracy and very few false alarms. We present competigiselts on challenging se-
guences from the VIVID dataset and describe how the metaslated in our algorithm.

Chapter 5 addresses the problem of structure from motiorgueserial or ground-
based sequences with associated metadata. We presentralfast and scalable SfM
algorithm that uses additional measurements about gramiiyheight to express the SfM
equations in a bilinear form in the Euclidean frame. We aralyne computational com-
plexity and memory requirements of the algorithm. We pres&tensive simulation re-
sults that illustrate the favorable properties of the athar compared to bundle adjust-
ment in terms of speed. We present results on several resetatsuch as VIVID, Google
StreetView research dataset etc.

Chapter 6 presents several future directions of reseaitic@mcludes the disserta-
tion. Appendix A provides a proof of convergence of the psgabstructure from motion
algorithm and appendix B describes how to decompose a senubipraphies induced by
a plane in multiple views to obtain the plane normal vectod keights that are useful

8



for our algorithm.



Chapter 2
Background and Prior Art

2.1 Background

Prior to discussing models for the global motion problens worthwhile to verify
whether the apparent motion on the image induced by the @ametion can indeed be
approximated by a global model. This study takes into caraiibn an analytic model
for the camera as a projective device, the 3D structure ostle@e being viewed, and
its corresponding image. We describe the model for a pregcamera and study the
how the image of a world point moves as the camera undergoesaemotion (three

translations and three rotations).

2.1.1 Camera Model

The imaging geometry of a perspective camera is shown inZig. The origin
of the 3D coordinate systeif)X, Y, Z) lies at the optical centef’ of the camera. The
retinal planeor image planas normal to the optical axig, and is offset fronC' by the
focal lengthf. Images of unoccluded 3D objects in front of the camera aradd on the
image plane. The 2D image plane coordinate syster) is centered at thprincipal
point, which is the intersection of the optical axis with the imaugne. The orientation
of (z,y) is flipped with respect to.X,Y) in Fig. 2.1, due to inversion caused by simple

transmissive optics. For this system, the image plane owatel z;, ;) of the image of
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image
plane

/

Figure 2.1: 3D imaging geometry.

the unoccluded 3D pointX;, Y;, Z;) is given by
X Y;
xz—fzy yi—fz- (2.1)

The projective relation (2.1) assumes a rectilinear systeitih an isotropic optical el-
ement. In practice, the plane containing the sensor eleamaay be misaligned from
the image plane, and the camera lens may suffer from optistrtdons including non-
isotropy. However, these effects can be compensated dyrattig the camera, and/or
remapping the image. In the remainder of this chapter, iss&imed that the linear di-

mensions are normalized w.r.t. the focal length, f.e- 1.
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2.1.2 Effect of Camera Motion

The effect of camera motion can be computed using projegignetry [9, 10].
Assume that an arbitrary point in the 3D scene lieg¥t, Yy, Zy) in the reference frame
of the first camera, and moves(#&,, Y7, Z;) in the second. The effect of camera motion

relates the two coordinate systems according to:

Xl Tex Tay Tz XO t:p
Yi | = | 7re Ty Ty Yo | T t, |- (2.2)
Zl Tz Tzy T2z ZO tz

where the rotation matrik;;| is a function ofw. Combining (2.1) and (2.2) permits the
expression of the projection of the point in the second imagerms of that in the first

as:

T2z X0 + T:cyyO + Tzz + tx/ZO
220 + szyO + T2z + tz/ZO ’
Tya®o + TyyYo + Tyz + ty/Zo

= . 2.3
4 Toa®o + Taylo + 722 + 1./ 2o (2:3)

Assuming either that:) points are distant compared to the inter-frame translatien
neglecting the effect of translation, ¢ii) a planar embedding of the real world, the

perspectivaransformation is obtained:

T _ DzzTo + PzyYo + Pz
1 — )
PzzZo + PzyYo + D2z
PyzTo + PyyYo + Py=
g = =0T DT Fyr (2.4)

PzzXo + PzyYo + Dzz

Other popular global deformations mapping the projectiba point between two

12



frames are the similarity and affine transformations, wiaighgiven by:

1 cosf sinf T bo
=S + ) (2 . 5)
Y1 —sinf cos6 Yo by
and
€ Gy aq Zo bo
= + (2.6)
Y1 as as Yo by

respectively. Free parameters for the similarity modellaeescale factog, image plane
rotationd and translatiorib,, b; ). The affine transformation is a superset of the similarity
operator, and incorporates shear and skew as well. Theqmrspoperator is a superset
of the affine, as can be readily verified by setting = p.,, = 0in (2.4).

Next, we discuss how to extract features from images and heywdan be used for

computing the image motion using the models describedegarli

2.1.3 Image features

The basic goal in feature-based motion estimation is to eatufes to find maps
that relate the images taken from different view-points.eSéhmaps are then used to
estimate the image motion by computing the parameters oftmmmodel. Consider the
case of pure rotation. Here, the camera center is fixed andnidge plane is moved to
another position. The image of a point in the real world isrfed by the intersection on
the image plane of the ray joining the camera center and thikywoint. The resulting
images formed on the image planes are quite different bytatesrelated in an interesting
way.

Though various lengths, ratios, angles formed on the imagesll different, the
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cross ratioremains the same [11]. Given four collinear poidts3, C'andD on an image,

AD _ AC . AD

the cross ratio i%% + g—g and it remains constant. In other wor(g + 55 = 25T Pp
where A, B, ¢’ and D are the corresponding points in the second image (formed aft
rotating the camera about its axis).

Looking carefully, we can see that this intuition leads to apmelating the two
images. Given four corresponding points in general pasiticthe two images, we can
map any point from one image to the other. Suppose we know!thaaps toA, B to B,

C to C'and D to D. Then the point of intersection of B andC'D (say E) will map to

the point of intersection afi B andC'D (sayE). Now any pointt’ on ABE will map to
point £ such that the cross rat@g + % is preserved. This way one can map each point
from one image to the other image. Such a map is calledraography As mentioned
before, such a map is defined by four corresponding pointemeigal position. So, it
maps tor by homography{, ' = Hx. Note that such a map exist only in case of pure
rotation.

However, for planar scenes, homography relating the twavsiexist irrespective
of the motion involved. In the case of planar scene, thergt @fnomography relating the

first image to the real-world plane and another one mappiegehl-world plane to the

second image plane, i.e.,

I = Hlﬂfp (27)
Tp = HQJZ‘Q (28)
= x1 = HHyxy = Hxo (29)

whereH; mapsz;, a point on firstimage plane tg, the corresponding point on the

14



real plane whileH, mapsz, to x-, the corresponding point on the second image plane.
Thus homography? = H;H, maps points from one image plane to the other. Such
a homography exists, no matter what the underlying motidwéen the two camera
positions is. This happens because the images formed byaaotation (or in the case
of planar scenes) do not depend on the scene structure. @th#rehand, when there are
depth variations in the scene, such a homography doesst lexiween images formed
by camera translation.

In the case of depth variations, we can use SfM approachesditnate the motion
of the camera. The estimated camera motion can be used wiggle stabilize the
image sequence for the camera motion (such as compenséatiotation, or sideways
translation etc.) The next section discusses about SfM asdribes an algorithm for

SfM using image feature points.

2.1.4 Structure from Motion

Structure from motion refers to the task of inferring the eaaxmotion and scene
structure from an image sequence taken from a moving camsireg either image fea-
tures or flow. We describe an illustrative algorithm for Sflging feature point tracks
in a sequence. Consider an image sequence Withnages. Feature points are detected
and tracked throughout the sequence. Suppose the scerié festures and their pro-
jections in each image are denoteddy = (u, ;,v; ;)T wherei € {1,---, M} denotes
the feature index angl € {1,--- , N} denotes the frame index. For the sake of simplic-

ity, assume that all features are visible in all frames. Tth&cture-from-motion problem

15



involves solving for the camera locations and the 3D coatgis of feature points in the
world coordinate system.

The camera poses are specified by a rotation matyiand a translation vectdr;
forj=1,---,N. The coordinates of a point in the camera system and worlgisyare
related byP. = R, P,, + T;, whereP, denotes the coordinates of a point in the camera co-
ordinate system, anfl, denotes the coordinates of the same point in the world coateli
system. The 3D coordinates of the world landmarks are ddiyt&; = (X;,Y;, Z;)7 for
1=1,---, M. We assume an orthographic projection model for the canh@radmarks

are projected onto the image plane according to the follgwiuation:

ui,j

Vi j
In equation (2.10)K denotes th@ x 3 camera matrix. Let the centroid of tB& points
be C and the centroid of the image projections of all featuresaicheframe be:;. We
can eliminate the translations from these equations byactivig outC' from all world
point locations and; from the image projections of all features in tjié frame. Let

Zi;=x; —c;andX; = X, — C. The projection equation can be rewritten as:
&5 =P X, (2.11)

In equation (2.11)P; = K - R; denotes th@ x 3 projection matrix of the camera.

We can stack up the image coordinates of the all the featunégda all the frames,
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and write it in the factorization format as follows:

A

11 v i'M,I P,
= : [Xl XM} (2.12)

LI,N *° TMN Py

The matrix on the left hand side of equation (2.12) is the mesment matrix, and it has

been written as a product of2aV x 3 projection matrix and 8 x M structure matrix.
This factorization implies that the measurement matrixfisank 3. This observation
leads to a factorization algorithm for solving for the patjen matricesP; and the3D

point locationsX;. The details of the algorithm are described in detail in [12]

2.1.5 Feature based algorithms

We have seen that a homography can be used to map one imageotbéhn in the
case of pure camera rotation, or a planar scene. If such adraptoy exists between
the images, four points are sufficient to specify it pregisdh practice, we extract a
number of features in each image and use feature matchingtalgs [13] to establish
correspondence between the images. The resulting settofédematches between two
images usually have a subset of wrong (“outlier”) matches wuerrors in the feature
extraction and matching process. We handle these outier®RIANSAC framework [14]
which attempts to find the motion parameters by first idemtgythe set of inlier feature
matches. If we have an image sequence, we use feature gadgorithms like KLT [15]
to track a set of features through an image sequence. Thespomdences specified by
these tracks are used to compute the motion model parameters

Usually, neither the scene being viewed is planar nor théamat pure rotation. In
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such cases, there is no linear map that relates one image taher unless one neglects
the effect of translation (similar to assumption made id)R.In such cases, researchers
either make simplifying assumptions based on the domainwlatdge or include addi-
tional constraints involving more views to take care of timeithtions of the geometric
approach. In[16], Morimotet al. demonstrate real time image stabilization that can han-
dle large image displacements based on a two-dimensionigitmasolution technique.
[17] propose an operation callédreadingthat connects two consecutive Fundamental
matrices using the trifocal tensor as the thread. This malesthat consecutive camera

matrices are consistent with the 3D scene without expficgtovering it.

2.2 Related work

2.2.1 Video Stabilization

Video stabilization involves registering consecutiverpaif images of a sequence to
each other using an appropriate motion model such as affin@emography. Image regis-
tration methods have widespread applications and the iggabsican be broadly classified
into intensity-based, flow-based and feature-based tgubsi

In the intensity-based approach, the motion model paramate solved by min-
imizing the sum of squared differences between the intemnsilues of corresponding
pixels of the two images after warping using the geometangform. The inverse-
compositional alignment algorithm of Baker et. al. [18] s efficient way to solve the
optimization problem to perform the alignment. Bartoli [Ifneralized this when the

pair of images differ by a geometric and photometric tramsfttion. In case the inten-
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sity values of corresponding pixels between the two imageselated by an unknown
transformation (such as in multi-sensor registrationpliait similarity functions in the
gradient domain have been used for registration purpo$gs [2

In the flow-based approach [21, 22], the optical flow betwéenpair of images is
used for registration. The registration may be either affaline warp obtained by fitting
a model to the flow, or a non-uniform warp using the dense motextors to take into
account the varying displacements of parallax pixels.

The feature-based approach relies on abstracting an insegysed of salient feature
points with associated geometric locations. Registragqgmerformed by finding corre-
sponding points between the images [23] and using this imatt the motion model
parameters.

Detecting moving objects in a video sequence involves l&abion followed by
identifying the pixels that are in misregistration. Baakgnd subtraction [24] is one of
the most commonly used techniques to identify moving objeathen two registered im-
ages are subtracted, the pixels belonging to the backgroeavela small absolute value.
However, the moving object pixels do not register using thekiground model and hence
light up with high values of absolute differences. Howeeen slight misregistrations
lead to false moving object detections which is a serioublpro in the background sub-
traction framework.

Birchfield and Pundlik [25] propose a framework to combinealcoptic flow with
global Horn-Schunck constraints [26] for joint trackingfe&tures and edges. They ex-
press the idea of motion coherence in terms of a smoothniess Pine key difference of

our work is that we incorporate motion coherence betweeturfes by solving a classifi-
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cation problem to label features. The motion of featuresigihg to the same class are
solved jointly by computing the model parameters.

Sheikh et. al. [27] propose a background subtraction fraoniewhere they track
densely distributed points in a video and segment them iattkdground and moving
points. They use feature segmentations to infer the piessedense image segmenta-
tion using MRF priors. The proposed work is similar to [27]titat we also use the
segmented set of features for pixelwise segmentation andhgnearget detection. The
key difference is that the joint tracking and segmentattoaisgy enables us to track fea-
tures uniformly distributed in the image plane (includirapiogeneous regions) making
the segmentation step more reliable. The earlier workgaeaccurately tracked indi-
vidual feature points and this assumption does not hold irscenarios. In addition, we
use the foreground segmentations for target initializegind tracking.

Buchanan and Fitzgibbon [28] propose a feature trackingrahgn by combining
local and global motion models. More accurate tracks araindtl by generating predic-
tions of feature location using global models. Shi and Toji&g proposed a method for
feature monitoring in KLT tracking, by measuring featurssiimilarities after registration
with an affine model. They use these dissimilarities as arom to judge the goodness of
feature tracks. We use feature dissimilarities producetthéynotion model as a measure
of the likelihood of the feature belonging to the model. Téhdssimilarities are used to

derive the probabilities of belonging to the common backgrbmodel.
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2.2.2 Video Mosaicking

Mosaicing is the process of compositing or piecing togetluecessive frames of
the stabilized image sequence so as to virtually increasdietd-of-view of the cam-
era [29]. This process is especially important for remoteeilance, tele-operation of
unmanned vehicles, rapid browsing in large digital libkgariand in video compression.
Mosaics are commonly defined only for scenes viewed by aifiaaftnera, for which the
images can be related by a projective transformation. Hewescent studies have looked
into qualitative representations, non-planar embeddiB@s31] and layered models [32].
The newer techniques permit camera translation and gilickandle the associated par-
allax. These techniques compute a “parallax image” [33]\aarp the off-planar image
pixels on the mosaic using the corresponding values in thalpa image. Mosaics rep-
resent the real world in 2D, on a plane or other manifold Iike surface of a sphere or
“pipe”. Mosaics that are built on spherical or cylindricakfaces belong to the class of
panoramic mosaics [34, 35]. For general camera motiongtasr techniques to con-
struct a mosaic on an adaptive surface depending on the aanwion. Such mosaics,
called manifold mosaics, are described in [31, 36]. Mostiiasare not true projections
of the 3D world, yet present extended information on a plaeeeferred to agualitative
mosaics.

Several options are available while building a mosaiairAplemosaic is obtained
by compositing several views of a static 3D scene from theesaew point and different
view angles. Two alternatives exist, when the imaged scaseroving objects, or when

there is camera translation. Th&ticmosaic is generated by aligning successive images
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with respect to the first frame of a batch, and performing gotanail filtering operation on
the stack of aligned images. Typical filters are pixelwisamer median over the batch of
images, which have the effect of blurring out moving foregrd objects. In addition, the
edges in the mosaic are smoothed, and sharp features arél@snhatively the mosaic
image can be populated with the first available informatrothe batch.

Unlike the static mosaic, thdynamicmosaic is not a batch operation. Successive
images of a sequence are registered to either a fixed or aiolgaoggin, referred to
as thebackwardand forward stabilizedmosaics respectively. At any time instant, the
mosaic contains all the new information visible in the mestent input frame. The fixed
coordinate system generated by a backward stabilized dgmaasaic literally provides a
snapshot into the transitive behavior of objects in the scé&his finds use in representing
video sequences using still frames. The forward stabildagthmic mosaic evolves over
time, providing a view port with the latest past informatismpplementing the current
image. This procedure is useful for generating an enlargeday field of view in the
remote operation of unmanned vehicles.

In order to generate a mosaic, the global motion of the scefiiesi estimated. This
information is then used to rewarp each incoming image tooseh frame of reference.

Rewarped frames are combined in a manner suitable to thepghidation.

2.2.3 Structure from Motion

Structure from Motion algorithms can be broadly classifigd the following cate-

gories: batch techniques, minimal solutions and recufsaraeworks. A comprehensive
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survey may be found in [37].

In batch techniques, we jointly solve for the views of all ta@neras and the struc-
ture of all the points. Bundle adjustment (BA) [38] is thenegentative algorithm in this
class, and it minimizes an error function measuring theatigpin the detected image
features and those generated from the current reconsinuctihis is a non-linear least
squares minimization problem that is commonly solved usiirglevenberg-Marquardt
(LM) [39] algorithm. The linear system corresponding to tleemal equations for LM is
intractable for large reconstruction problems. To hanaligd problems, the sparse struc-
ture of the Hessian matrix is used for efficiently solving tttgmal equations resulting
in the Sparse Bundle Adjustment (SBA) [40] algorithm. Thajagate gradient (CG)
method [39] is another choice for optimizing the reprojecterror that does not require
the solution of a large system; however suitable pre-cabts are necessary for it to
work well [41]. In addition, its benefits have not yet beeraclg demonstrated for large
scale problems.

Minimal solutions take a small subset of features as inpdtedficiently solve for
the views of two or three cameras. A recent and popular dlguarin this class is the
five-point algorithm which was proposed by Nister [42]. Besa of the small number
of points and views, solving for the parameters is very affiti However, there may be
multiple solutions and we need to disambiguate the varittesnatives using additional
points. An issue with this technique is the propagation odrewhile trying to stitch the
various individual reconstructions together.

Recursive algorithms perform an online estimation of théestector which is com-
posed of the location and orientation of the camera, and Eh&o&ations of the world
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landmarks. The estimation proceeds in a prediction-updatie, where a motion model
is used to predict the camera location at the next time steptlas estimate is updated
using new observations. Simultaneus Localization and Meapfl3] methods also fall
within the recursive framework since they employ a recar§iter to estimate the camera
location in a causal fashion.

Another class of techniques is factorization-based aphem[12, 44] that take the
measurement matrix (containing the feature points obddnvall views) and factorize it
into a product of the motion and structure matrices.

Although solving for 3D locations of points from featuredka is important, it
is just one part of the problem. There are other open resgaatfilems in generating
texture-mapped 3D models of environments after solvingft from image sequences.
Researchers have been actively working on ways to perforrm88el acquisition from
ground-based sequences. Fruh and Zakhor [45] describetamatic method for fast,
ground-based acquisition of 3D city models using camerdslaser scanners. In [46],
they describe a method for merging ground-based and aeré&jas for generating 3D
models. Akbarzadeh et. al. [47] introduce a system for aatmmgeo-registered 3D
reconstruction of urban scenes from video.

In spite of this large body of work in SfM, it is a very hard gbsed and inverse
problem and very few of these algorithms provide satisfggperformance in real-world
scenarios. The main difficulties faced by these algorithm®al world scenarios are in
establishing correspondence across image sequencesefgratking errors, mismatched
correspondences, occlusion etc.

Therefore, recent research has focussed on developing I§tvitams in the pres-
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ence of additional constraints on the problem. For instaposition information about
the cameras from Global Positioning Systems (GPS) can eljplve for the parame-
ters [48]. If inertial measurements from IMUs are availale can reduce the ambigui-
ties in the SfM problem [49].

Our work is related to prior work in SfM literature that assimvisible dominant
plane in the scene. An important algorithm in this class & uke of the plane-plus-
parallax model for the recovery of 3D depth maps [50]. Thetirvigkw constraints im-
posed by a plane were used by Rother [51] and Kaucic [52] tpl#yrthe projective
reconstruction problem into a linear system of equatioresstdi [53] derived a linear al-
gorithm for estimating the structure of objects moving orieap in straight lines without
rotating. Reconstruction of objects moving in an uncomsé@ fashion was studied in
detail by Fitzgibbon and Zisserman [54].

A special case of our algorithm is Structure from Planar Blo(SfPM) where we
have a surveillance scenario with a static camera obseramgng objects on a plane.
In this case, the measurement matrix simplifies into a proolug motion and a structure
matrix that is of rank3. Li and Chellappa [55] describe a factorization algorithon f
solving for the structure and planar motion.

Another special case, leading to a linear multiview recmtsion, arises when
we know the homographies between successive images indycé#ute planar scene.
Rother [51] stabilizes the images using homographies, &odses a projective basis
where the problem becomes one of computing structure andmaftcalibrated translat-
ing cameras. They derive linear equations for the camerngiseand points, and simul-
taneously solve the resulting linear system for all camarakpoints using SVD based
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techniques. The performance of their algorithm is heawlpahdent on the estimate of
the homographies. In addition, the memory and computdtregairements of the algo-
rithm become infeasible when we have a large number of framdgoints.

Our algorithm assumes approximate knowledge of a certagctiton vector in each
image of the sequence and also the altitude from a plane paiquear to this vector.
These quantities are well defined when we observe a domitemrd pn the scene, but the
algorithm does not require the visibility of a plane (fortginary scenes). In this respect,
it is quite different from all other previous approaches.

The proposed algorithm belongs to the class of alternatigorithms that solve
for the structure and motion in an iterative fashion [44,.58hese approaches solve
for the projective depths along with the motion and struetonatrices and result in a
projective reconstruction. The projective depths aredsiby initialized to unity and later
refined iteratively. This has been reported to work well anlgpecial settings where the
depth of each feature point remains approximately the saroaghout the sequence [37].
This does not cover many important scenarios such as raaddidn sequences or aerial
videos where the altitude of the camera varies a lot. Ourrilkgp makes use of the
bilinear form in the Euclidean frame without slack variablélence it does not have any
restrictions on its use except that the gravity and heigldsueements must be available.

Oliensis and Hartley [57] published a critique on the faiztion-like algorithms
suggested in [44, 56] for projective SfM. They investigatieel theoretical basis for per-
forming the suggested iterations in order to decrease tbefenction. They analyzed the
stability and convergence of the algorithms and conclutiedretically and experimen-
tally that the Sturm-Triggs [44] as well as the slightly migel Mahamud [56] algorithm
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converges to trivial solutions. They analyzed the errocfioms for these algorithms and
showed that the stationary points were either local miningt torresponded to trivial
solutions or they were saddle points of the error. Based snatialysis, we investigate

the stability and convergence properties of the proposgatigéhm.
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Chapter 3

Intensity-based Video Stabilization

The intensity-based registration algorithm of Baker et[H8], known as simulta-
neous inverse compositional alignment, iteratively miaes the sum-squared difference
of pixel intensities between corresponding pixels of a péiimages. We discuss the
application of this algorithm for the registration of lowajity and low-resolution video

obtained from aerial platforms [3].

3.1 Intensity-based alignment

In intensity-based registration techniques, we assumelzbparametric transfor-
mation that registers the two images. We pose the regtrégisk as an optimization
problem involving the minimization of the intensity diffsrce between the two images
registered using the current parameters. Supppaad/, are the two images to be reg-

istered. We solve the following minimization problem:

min > |111(a) = B(P(a: ) (3.1)

gER

whereg denotes the coordinates of a pixetjenotes the transformation parameters of the

registration modelP(q; p) denotes the global transformation applied to the pixeind

R is the region off; over which the image intensity differences are computed.
Common choices of the motion model¢; p) used for registration are the affine

model, homography etc. The regighover which the intensity differences are computed
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is typically chosen to be the entire region of overlap betwibe registered images. The
minimization is performed using an iterative minimizati@chnique that linearizes the
objective function (using a Gauss-Newton approximatia®eah iteration and computes
an update that minimizes the error. A pyramidal impleméotabf a Gauss-Newton
minimization procedure was introduced by Bergen et. al].[98ore recently, Baker
et. al. proposed a fast “inverse compositional” algoriti)] [for minimizing (3.1).

We sketch the details of the inverse compositional algoritbet P(q; p) denote the
current transformation between the images. Aét(q; 6,,) denote an update to the current
transformation that reduces the image-difference errerapply the update to the trans-
formation by composing the current transformation with itheerse of the incremental
transformation. The update ruleig; p) < P(AP~*(¢;6,); p).

The optimization (3.1) is performed ov&y, the parameter of the incremental trans-

formation, and can be recast as follows:

2

mmZHIl — L(P(AP Y(q 5)7p))H (3.2)

qgER

The inverse compositional trick is to apply the incrememtahsformation to the first

imagel; as opposed to the second image. The problem can be rewstten a

min d [1(AP(g;,)) = B(P(g;p)|I (3:3)

gJe€R

We linearize this equation using a Taylor series expanditimedntensities of; to obtain:

mind_ [ Lia) + VI () VAP(4:,)) = B(P(:p)|| (3.4)

qgER

This technique is applicable only when there is a correfaiiiothe intensities of corre-
sponding pixels between the two images. Extensions of therse compositional al-

29



gorithm have been proposed [19] when the intensities ofesponding pixels are not
equal, but there is a relation between the intensities ssiehgain and a bias, or an affine

transformation.

3.1.1 Effect of region of registration

Baker’s algorithm is traditionally applied to minimize teem-of-squared intensity
difference of all the corresponding pixels in the image .p&ir other words, the sek
denoted above is chosen to consist of all the pixels of thg@n®/e argue that this most
common default choice does not necessarily result in begtgstrations. We point out
that using a subset of the image pixels for registration emult in better registration
results in lesser computation time. The following are twersrios where registration

may be defined over a subset of pixels.

1. Multisensor image registration:images taken from different sensors have no cor-
relation between their pixel intensities. Multisensoriségtion techniques use im-
plicit similarity functions that are defined for pixels marg prominent features or

with high gradient magnitudes.

2. Low-quality and low-resolution videoln videos obtained from airborne platforms
with small cameras, the noise level in intensities is higtiardow illumination con-
ditions. In these conditions, image motion is perceivedtdube motion of pixels
with high gradients defining prominent edges. This is bee@ualges are preserved
under high image noise levels. Since pixels with small grat$i do not contribute

towards perception of motion, perceptually better regigin results may be ob-
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tained by using only pixels with high image gradients foemgity-based registra-

tion.

We apply this concept to the registration of images in a viskguence, where the
noise levels in the images are high. We demonstrate thaisrncése, we improve the
convergence of the inverse compositional alignment algorby using a small subset of

image pixels for registration.

3.1.2 Experiments

We select a set of0 representative images from a video sequence captured from
a low-resolution camera onboard an aerial platform. Thesehdamages contain large
regions with very little texture information. In other wardhe image gradients are very
small within these regions and hence these regions do natilmate towards the mea-
surement of image motion. Figure 3.5(a) illustrates a sanmphge from the dataset.

For each image, we estimate a homography transformatiogi¢pjacing four cho-
sen points by a pre-specified amount), and warp the imagesdaeg to the homography.
We test the convergence properties of the registratiorri#thgo by registering the orig-
inal and warped image, and measuring the convergence ratgher of iterations, etc.
We perform these experiments for various levels of distaréind various levels of Gaus-
sian noise added to one of the images. In applying the intebased algorithm, we first
compute the gradient magnitudes of the firstimage at eaeh, pirid then order the pixels
according to the gradient magnitudes. We select a chosetioinaf pixels (such ag5%)

which have the highest gradient magnitudes and then use firess for registration. To
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preserve the gradient information, we also select surnmgnpixels within a small win-
dow. An illustration of the pixels selected from the imagdigure 3.5(a) for use in one
run of the intensity-difference minimization is shown igire 3.5(b).

Figure 3.1 plots the standard deviation of image pixel ngesus the number of
iterations taken for convergence. The figure shows five mdiffecurves corresponding
to the noise versus iterations plots when different peeggg of pixels were used for
registration(100%, 83%, 62%, 41%, 24%). We observe a well-defined variation in the
number-of-iteration plots for various saliency ratios. tAs saliency ratio decreases (im-
plying that we use fewer pixels for registration), the numbgiterations needed for
convergence goes down. We also experimentally verifiedttfeatime-per-iteration of
registration goes down linearly with the number of pixelsdis

Figure 3.2 plots the standard deviation of the image pixedeversus the geomet-
ric error of registration. The geometric error is definedlas ground-truth registration
parameters and the solved parameters. The distance is méasuan.2 norm of the
difference between the two parameter vectors. From the pietobserve that there is
little difference between the geometric registration efoo the various registration trials
carried out at different saliency ratios. Unlike the plaisthe number of iterations, we do
not observe a specific variation in the geometric error cufgedifferent saliency ratios.
However, notice that for several noise levels, the geometror obtained by registration
with the lowest saliency ratio is actually higher than thergetric error obtained with the
highest saliency ratio. These observations imply that vmeedmabetter registration of the
two images, by using fewer iterations (and lower computtiime), by choosing a subset
of image pixels (salient pixels).
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Figure 3.1: A plot of the number of iter- Figure 3.2: A plot of the geometric error
ations taken for convergence versus theversus the standard deviation of image
standard deviation of image pixel noise pixel noise for various ratios of salient
for different fractions of number of pix- pixels used in registration. For vari-
els used in the registration. As the num- ous saliency rations, accuracy of regis-
ber of salient pixels used for registration tration is almost similar. In some cases
decreases, the number of iterations usedhe accuracy of registration is greater for
for convergence decreases too. lesser number of pixels used.

3.2 Video Mosaicking

Constructing mosaics out of video sequences is an impaatgpitcation for cam-

eras deployed on MAVs and UAVSs, where the sensors are of éswshation (“strawhole

sensors”). Building mosaics of these sequences will giverdranced field-of-view of

the scene for an operator viewing the video. The noise-ievitle images due to the low

camera quality needs to be addressed while mosaicing vetpeesces. Because of the

changing noise-level, the error in the estimates of therpatars of the image motion

model varies for different images. During the process ofettgying the mosaics, only

those frames must be stitched whose image motion parantesel$o good registration

of the images.

The following criterion can be used as a metric for measuttiegegistration qual-
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ity [3].
R(In, 1) = D(Ing, I,) + G(Ins, 1)

DIy, 1) = Y [In(r) = L(p(r;m))]?

reR

G(In, ) =Y [VIu(r) = VI(p(r;m))]? (3.5)

reR

The above criterion (3.5%(-, -) depends on the image difference erfaf-, -) as well as
the image-gradient difference err6i(-, -). I, is the current frame and,, is the current
mosaic image. The regiai denotes the region of overlap betwdgand/,,. The second
error measuré: (1,,, I;) is derived from gradient-domain image registration me{68,
60, 20, 61]. It primarily measures the mis-registrationighhgradient pixels in both the
images. The reason for adding this extra term is becausenirglality images, the
image difference error (that works on raw intensities) Bglitdoes not accurately reflect
the mis-registration between two images. The gradient ¢éeron (applied on smoothed
images) measures the mis-registration between promingetsdan the image.

We start off with an empty mosaic image, and sequentiallyttiél pixels in the
mosaic with the information in each frame. The error meagifs) is computed for each
frame and the mosaic is updated with information from a framly if its registration
error is below a chosen threshold. There are two ways in wihietpixels of the current
frame are used to update the mosaic: either as reference frexels, or as non-reference
frame pixels. Reference frames are directly pasted ontmtisaic whereas non-reference

frames update only unfilled pixels on the mosaic.

o If the most recent reference frame is more thaftames away from the current
frame in the sequence (for an appropriately chosgrthen the current frame is
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incorporated as a reference frame in the current frame dsr@nee frame.

¢ If the overlap between the current frame warped and theééstance frame (when
warped on the mosaic) falls below a threshold, we incorgdts current frame as

areference frame.

¢ If neither of the above two conditions are satisfied, theantrframe is incorporated

as a non-reference frame.

3.2.1 Results

We present some image mosaicks which are the results of tpeged registration
and mosaicking algorithm when it is applied on a video sege@aptured using a video
camera onboard an MAV. The air-vehicle is flying in a jitteagfiion and the video res-
olution (230 x 310) is small. In addition, there is a lot of motion between cansiee
frames of the sequence. In figs. 3.3 and 3.4, we show mosaitvgoofequences that
we generated using our algorithms. Figure 3.5(a) illusta@&n image of the sequence

and 3.5(b) illustrates the set of pixels in that image useddgistration purposes.
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Figure 3.3: This figure shows a mosaic of a sequence obtayeehistering the images
of a sequence using the intensity-based stabilizatiorrigthgo. Approximately30% of
the pixels in each image were used for the purpose of retisira

Figure 3.4: This figure shows a mosaic of another sequeneénalolt by registering the
images using the intensity-based stabilization algoritApproximately30% of the pix-
els in each image were used for the purpose of registration.
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(b) Selected regions for minimization shown in white

Figure 3.5: Figure 3.5(a) shows a sample image of a sequaptared from an aerial
platform. The resolution 1230 x 310 pixels. We use our algorithm to build a mosaic
of the sequence. The regions of the image selected by ountalgafor minimizing the
image difference error with the mosaic is shown in Figur€l8.9Note that these regions
contribute the most to our perception of image motion.
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Chapter 4
Feature-based Stabilization and Motion Segmentation

4.1 Feature-based Image Registration

Intensity-based registration techniques described inastechapter are useful for
registering images when we have prior information aboustheset of pixels that belong
to the dominant motion model. If the image sequence contamsng objects, we do
not know the moving object pixels prior to stabilization. YAmeasures for selecting a
salient set of pixels in one image may select pixels belanptpmmultiple motion layers.
Solving for the registration parameters using a pixel sataiaing outlier pixels not be-
longing to the motion model may lead to biased motion paramedtimates. In order
to handle moving objects in the scene, we need to segment@ulifferent motion lay-
ers in the video along with solving for the parameters of tbmihant motion model. A
feature-based representation of video is more convenierthé problem of registration

and segmentation.

4.1.1 Shortcomings of KLT tracking and background subtoact

Traditionally, features are tracked through the image segetand RANSAC [14] is
used to identify the inlier features belonging to the domiriaackground motion model.
However, tracking errors lead to many misclassificationfeatures. Figure 4.1(a) il-

lustrates an example of an image from our aerial video dataise KLT [62] tracked
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features overlaid on it. The image has very few prominertufea on the background,
and there are large regions of homogeneous texture. Iniaaldibe road in the middle
contains repeated patterns making it difficult to solve far ¢orrect displacement. These
tracking errors result in a large number of background festto be classified as outliers
by a model selection algorithm such as RANSAC.

When the video is stabilized using the solved backgrourglai®ments and a back-
ground subtraction method is employed to detect movingotdjéhere are many spurious
motion blobs due to slight misregistrations at the edgeguréi 4.1(b) illustrates an im-
age with detected moving objects overlaid on top. Many oftibees are false alarms
enclosing false motion blobs near edges. Some of these d&sms may be reduced
by temporal filtering or choosing a higher threshold for rantiletection. However, this
would fail to detect the small moving objects in the sequence

We propose an algorithm for simultaneous registration aongling object detec-
tion that uses feature tracking but comes up with a denseomasggmentation of the
scene [63]. We assume a full-frame parametric backgrounibommodel and directly
solve for the model parameters using all the features beigrig the model. Since mul-
tiple features are used for solving the model parameteissetiables us to select a large
number of features, densely and uniformly distributed i@ ithage plane, and use the
global motion constraint to accurately track the featuk&/s. will now describe the joint

tracking and segmentation algorithm.
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€Y (b)

Figure 4.1: This figure illustrates the failure of KLT featutracking method. Fig-

ure 4.1(a) shows an image with overlaid features. The redtpaire classified to be on
the background and blue points are classified to be on thgrfauad. Ideally, blue points

must be restricted to moving vehicle features. Note theclamgmber of blue points on
the background indicating misclassifications. Figurel#).5hows an image with boxes
overlaid on top, indicating detected moving blobs after ekigepound subtraction algo-
rithm was applied on registered images. Notice the numbéailsély detected moving

objects. The underlying video sequence was very well stalilupon evaluation by a
human observer, but outlier pixels near edges show up asng@ixels in background

subtraction.
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4.1.2 Joint tracking

Consider two consecutive imagésand J in a sequence. Assume that the image
motion comprises of a pure translational motion alongthandY axes. Assume that
N salient feature pointgfi, fo,- - -, fv) have been detected in the imabéhat need to
be tracked on imagé. Let the image displacements be described!bwhich is a two-
tuple denoting the translations along th@andy directions of the image. The objective
is to solve ford by jointly tracking the set of. feature points. We solve the following
optimization problem.

argmmz //[ (z + d (x—%d)r-w(x—fi)dx (4.1)

:BEW (f2)

In this optimization, the double integral denotes the aadatron of the objective func-
tion over a small window around the feature. The term

//[ @+ d (x—%d)r'ww—fi)dx (4.2)

ze€W(f;)

is the same as the objective function that is minimized irLlheas-Kanade feature track-
ing method [62], where one solves for the displacement dfl éa&ture patch separately,
and independently of other features. In our case, the diffe is that we solve for a com-
mon displacement of a set of features that belong to the sastienmmodel, by summing
the image patch difference errors for each feature. We gdlu¢ by expressing the im-
age intensitieg and.J at a displaced pixel pointin a Taylor series around the r@ghg
pixel locations. The optimization (4.1) reduces to:

arg mmz // +gTd} w(z — f;)dx (4.3)

zeW (fi)
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where
T
= l 9 (u) 5 (u) (4.4)
We differentiate (4.3) with respect tbto get

> // () +¢"d] - w(z — fi)de =0 (4.5)

L xeW (fi)

which simplifies to

S [ [orswrut sl a=3 [ [ 0 - r@gwt

zeW (fi) zeW (fi)

We solve the above linear system to obtain the solutior fas follows.

Z // Tw(z — f;)dx Z // lg(x)w(x — f;)dx

zeW fz xEW(fL
4.7)

This derivation is applicable when the image motion is dbsd by a pure translation
model. A similar set of equations can be derived for more ggmaodels such as affine

motion. We assume a translation model for simplicity of akion.

4.1.3 Robustness

In the joint tracking framework described above, the presert outliers in the pool
of features can bias the translation estimates. The quaérabr function measuring the
sum squared differences of image patches is very sensitihetpresence of outliers that
do not follow background motion. To address this, we intealmwbust metrics in the

optimization criterion (4.3) to make the solution robusthe presence of outliers. We
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use the Huber’s robust loss function defined as follows.

su? if ju| <ec

p(u) = (4.8)
c(jul —5) if jul >c

In robust joint-tracking the sum-of-squares objectivection in (4.9) is modified using
the Huber loss function (4.8) to obtain the following robagtimization problem.

argmmz // ( T+ d —](x—id)) w(z — f)dz (4.9)

xeW (fi)

With the introduction of the robust loss-function, the optiation problem (4.9) can be
solved using gradient descent techniques such as the edejggadient method. The
advantage of introducing the robust metric is that the smius much more resilient to
the presence of outliers in the pool of features used fot joactking. We evaluate the
performance of joint tracking and the robustness to ostii@roduced by the Huber loss
function. We choose a set of set2if images from the dataset. For each image, we gen-
erate a second shifted image by translating the first imagieei” direction. Then, we
simulate three moving image patches that move differemtignfthe background. This
procedure effectively produces two images that are shifeegions of each other except
for the moving image patches that do not follow the backgdonmnotion. We select fea-
tures on the background and the moving patches and solvadatisplacement jointly.
For the purposes of joint tracking, all features selectedhenmoving patches are out-
liers. For different fractions of outliers in the featuregbove compare the joint tracking
solution with the robust joint tracking solution. Figur@4lots the solved displacements
for various fractions of outliers. The blue line indicatés ground truth displacement,
and the red curve indicates the averaged displacemennebt&iom joint tracking. It is
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clear that least-squares tracking is highly sensitive ttievg. The green curve plots the
average displacement with robust tracking, and it is muchemabust to outliers. With
60% inliers in the feature pool, the solved displacement is \@oge to the individual

displacement.

Tracking performance with and without robust loss functions for various inlier percentages
12 T T T T T T T

—+— Least-squares tracking|
1uE

Ground truth

Robust tracking

10+

Estimated Y-displacement

; ; ; ; ; ; ; ;
0 10 20 30 40 50 60 70 80 9 100
Inlier Percentage

Figure 4.2: This figure plots the estimated Y-displacemenwben two images estimated
by jointly tracking features with and without using robuss$ functions. The red-curve
plots the estimated displacement using a sum-of-squaigsfuwaction (similar to tra-
ditional KLT). The blue line shows the ground-truth dismatent and the green-curve
shows the estimated displacement obtained by using rodssflinctions.

4.1.4 Segmentation

To estimate the background motion parameters by tracketgifes jointly, the seg-
mentation of features into background and moving featweecessary. However, since
class labels are unknown, the segmentation problem musblizedsalong with back-
ground parameters. In a joint background tracking fram&ywarbetter segmentation
enables more accurate joint feature tracking, and accheateground model parameters
give rise to a better segmentation. We use a simultaneatlgrigpand labeling approach
to solve for the background motion parameters and featass dabels. We have a two-
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class classification problem for each feature point.

H, : featuref; belongs to the background motion model
versus

H, : featuref; does not belong to background motion model
Consider a video sequence consisting-oframes denoted by/;, I5,- - - , Ir). Assume
that NV features are tracked through the sequence. Let'th&eature in the framd,
be denoted byf; ;. Let the background model displacement between franend 7,
be denoted byl;. We maintain for each feature the probability that it belhg each
model. Letp(f; € Hy | J;_Ml:t) denote the probability of featurebelonging to the
background given the background model displacements foames in the past. Then,
p(fi € Hy | J;_Ml:t) =1-—p(f; € H | cﬁ_a+1;t). « is the length of a suitably chosen
temporal sliding window to evaluate the probability basedrmtion in the past frames.
The length of the sliding window is chosen to balance out ¢thiewing opposing factors:
(1) Using multiple frames in the past leads to more accurstienation of probability by
protecting against possible mis-estimation in the lash&a (2) Using too many frames
is not suggested as it does not capture changing featurttiden

The Bayes theorem is used to calculate the probability ofatufe belonging to

the background given all the evidences of background mgtayrameters from the past

frames in the feature window.

Iy i € Ho) - p(di_ai14 | f; € H
p(fiEHO\dt_aH:t): p(f 0) p(t +1t|f 0)

p(fi € Hp) ‘p(CZt—a+1:t | fi € Ho) +p(fi € Hy) ‘p<J;—a+1:t | fi € Hy)
(4.10)
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We assume that the background motion between consecuwtive$ris independent; hence

they are independently estimated.

t

P(diosia | fi€ Ho)= [ pld-| fi € Hy) (4.12)

T=t—a+1
4.1.5 Joint Tracking and Segmentation Algorithm

Given the background motion and feature membership protedup to framef,
we estimate the background motion at fratnd (betweern/,.; and/;,,), and re-estimate
the feature membership probabilities using the new framésiteratively switch between

background model estimation and membership probabiligstanation steps.

4.1.5.1 Motion estimation

Let dﬂ?l denote the background motion parameters betwggnand ;. at the
k' iteration. We rewrite the joint tracking objective fungatiby weighing the contribu-
tion from each feature by the corresponding membershipaiitity. We estimate the

displacemenzrlﬁﬁl) by solving the modified robust optimization problem as faio

arg min / / (f € Ho | diasan, ™) (J<x+ SABY) — 1(r — Saly >)-w<x—fi>dx

LD
t+1 €W (fi)

(4.12)

4.1.5.2 Membership probability estimation

With an estimate of the motion parameters from the motioimagton iteration,
we update the feature membership probabiity; € Hy | di—aso0001) = p(f; € Hy |
JED

J;_Mg;t, i+1 ). This probability is computed using the Bayes rule in (4400 (4.11).
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The termp(d, | f; € Hy) measures the probability that the background displaceatent
framel, is d, using the single featurg which is known to belong to the background. We
define this to be the probability that the displacement dtfiesdocationf; , from I, to I,

is d;. This is computed based on the intuition tha/ifis the true background displace-
ment, then the feature dissimilarity ¢f;, computed as [ [ (L41(z + d;) — Li(2)) -

zeW(f;

w(z — f;)dz, is low. On the other hand, i; is wrongly es(tJ;r)nated, then the computed
dissimilarity is high. Thereforey(d; | f; € H,) is related to the probability of observing
the feature dissimilarity produced lay given that the featurg; was an inlier.

We use a data-driven approach to find the distribution otieadissimilarities. We
track KLT features individually through a small subset of gequence and accumulate
the dissimilarities of the successfully tracked featurége compute the distribution of
the feature residues using histogram estimation techgigliben we fit several differ-
ent parametric distributions to this histogram and find tast lfitting distribution using
statistical tests. We found that the dissimilarities weistridbuted according to a three
parameter log-normal distribution as given below.

log(z—0)—¢)?
o)

p(z) = (4.13)

0 z <46

whered is the thresholdy is the shape parameter which is a positive real number{and
is the scale parameter which is a real number.

If the featuref; does not belong to the background model, then the background
model parameted; leads to a relatively high residue for the featureifis the correct
background displacement. The teptil, | f; € H;) measures the probability thédt is
the background displacement given a featfjrthat does not belong to the background.
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We define this to be the distribution of dissimilarities céfieres that are mistracked. We
start with successfully tracked KLT features and then camplie dissimilarities after
adding nominal errors to the solved displacements. We abldegieen2 to 3 pixels to
the displacement which represented the difference betiiedmackground displacement
and actual displacement of an outlier feature. We use thef sissimilarities to find the
distribution using histogram estimation techniques. Wentbthat the log-normal distri-
bution was a good fit in this case also. Figure 4.3 plots theriahd outlier dissimilarity

distributions obtained in this empirical fashion.

0.035

Inlier residue distribution

KL Outlier residue distribution | |

0.025 -
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Figure 4.3: This figure shows the distribution of featuresoiislarities produced by the
background model parameters for features lying on the bvadkgl (inliers) and those on
moving objects (outliers). The red curve plots the distidouof dissimilarity for inliers
and the blue curve plots the distribution for outliers. Tehesstributions are obtained
using the data-driven approach described in the text, aacempirically found to be
closest to the lognormal distribution.

4.1.6 Initialization and Implementation

We initialize the algorithm by selecting a large number ettéees in the firstimage
and assigning them to the background model. We relax therizaelection thresholds of
KLT by allowing features even with very poor conditioningget selected. This has the
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result of placing features inside homogenous regions akgtiglocations in the image
with strong gradients. Since we track the background featjointly using the idea of
background motion coherence, the well-conditioned featvindows aid the motion es-
timation of poorly conditioned feature windows. This has #ffect of producing feature
tracks that are uniformly distributed in the image whichgsalis in the dense segmenta-
tion step.

We iterate the joint tracking and segmentation steps uotivergence for each suc-
cessive pair of images. Features whose probability of lgghgto the background drops
below(.5 are labeled to be on the moving objects. The foregrond festare tracked in-
dividually using the traditional KLT equations. All the bayround features are assigned
the parameters of the jointly solved background model.

In practice, we have observed that the mislabeled feataréifirst frame (during
the initialization step) are quickly removed by the algumitbecause their probability of
belonging to the background quickly drops below. New features are initialized with
equal probability of being in the background or foregrouAd. the algorithm proceeds
through successive pairs of frames, these features aledabery accurately.

The algorithm provides us with a set of feature tracks thhoing image sequence
that are accurately labeled into foreground and backgrodiekse features are almost
uniformly distributed on the image irrespective of the prese or absence of good fea-

tures to track.
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4.1.7 Dense Segmentation

The joint tracking and segmentation described above givesset of feature tracks
distributed over the entire image area that is classified gh accuracy into features on
the background and features on the moving objects. The tblgexf motion segmenta-
tion is to obtain a binary labeling of the image into backgrd@and foreground regions
which involves labeling all pixels in the image. We use a MKIRF framework proposed
in [64, 27] to infer the class labels of all the pixels from thbels of feature points. We
summarize this algorithm here, as proposed in [64, 27]Hersake of completeness.

Assume there aré&/ pixels in the image indexed by= {1,--- , N}. Let the pixel
labeling be denoted b = [I1, 15, -, Ix] Wwherel; € {0,1} denotes the label for pixel
1 with 0 denoting background anddenoting foreground. Let the feature locations in the
image be represented by = [z, s, - - - , x| Wherex; corresponds to the location of

the j*" feature and” denotes the number of features. We want to estimate
L* = argmaxp(L | X) (4.14)
L

Using Bayes theorem, we can factatl. | X) o« p(L)p(X | L). p(X | L) can be split
using conditional independence@sX | L) = Hlep(xj | 1;). Hence, we can rewrite

the likelihood as

Ew

p(L | X) x p(L p(x; | ;) (4.15)

J:1

We need to defing(z; | I;) appropriately. This is done in [27] by learning a model for
background and foreground pixels using the labeled featdtesuming that), represents

the background model and; represents the foreground model, the probability of the
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feature pointz; given its class label is written as

plaj | ) 1;=0
plx; | ;) = (4.16)

plz; [¢r) ;=1

The modelsy;, and, are expressed as non-parametric densities in the joint eold
location(x, y, r, g,b) space. We use the Gaussian kernel in our experiments.
The smoothness prior is expressed in terms of an MRF thatipesaeighboring

pixels that have different labels.

p(L) o exp )\Z > (Wil + (1= 1)1 - 1)) (4.17)

i=1 jEN()

The likelihood can be written as

p(L|z) = AZ S (-1 (1-1)) +leogp$]|¢f Z(l—li)logp(lewb)
=1 jEN(z)

(4.18)

The optimal solution is efficiently computed using the grapits algorithm [65, 66, 67].

4.2 Experiments

We present stabilization and moving object detection tesut aerial sequences
from the VIdeo Verification and IDentification (VIVID) dates The dataset has associ-
ated metadata with telemetry measurements providingrrdtion about the rotation of

the camera.

4.2.1 Metadata

The aerial platform used to capture the images consists ohhay mounted with
the cameras. The gimbal provides measurements of the foljpguantities: platform

51



roll, pitch and heading, latitude, longitude and altitualed sensor azimuth, elevation and
twist. Using these measurements, we can compute the positid orientation of the
camera in terms of a rotation matrixand translation vectadr with respect to the world
coordinate system [68]. THex 4 projection matrix between the image plane and world
plane is writtenag® = K - R - [] —T} , WhereK is the camera calibration matrix and
I is the3 x 3 identity matrix. This projection matrix is used to transfoeach image of
the sequence into a fronto-parallel view.

If the camera roll is minimal in the video sequence and theudk is high, then the
fronto-parallel transformations are accurate enoughdorag a pure translation model for
the view-normalized image sequence. This simplified matnaael due to the metadata
enables mosaicking of long sequences with minimal projedlistortion. To compare
qualitatively the extent of the distortion in a mosaickeduence with and without meta-
data, we tracked KLT features in an aerial sequence andoitddiparallel equivalent.
We used these feature tracks along with RANSAC to computentieeframe transfor-
mations using a homography model for the original sequendeadranslation model for
the metadata normalized sequence. Figure 4.4 illustia¢amosaicks obtained using the
translation model and homography model. Using the com&damotion model imposed
by the metadata, we are able to mosaic long sequences ofdar@0t frames without
distortion and limited buildup of error [21].

We use the fronto-parallel sequence for moving object dieteaising the joint
tracking and segmentation algorithm. We present resultthoee different video se-

guences in the dataset.
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Figure 4.4: This figure qualitatively compares the mosaia®ioed by stabilizing the
original sequence using a homography model and the froatalpl sequence using a
translation model. Figure (a) shows the mosaic obtainetjusie translation model. It
is one part of a long mosaic of aroudd) frames. Figure (b) shows the mosaic obtained
using the homography model. The distortion is clear tow#rdsight side of the mosaic
because of the gradual build up of errors in homography esitm.
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4.2.2 Video sequence 1

The first video sequence consists of a camera moving overvaagyrsurveying
vehicles moving on the runway. The sequence consists ofrgoxghicles entering and
leaving the field-of-view. The background may be modeled pkae since there is no
parallax due to 3D objects on the air strip. Stabilizing thguence is difficult due to the
textureless background. The presence of repeated texinrége road makes the regis-
tration problem even harder (since the regions of signifigaadients repeat themselves
in the image).

We compared the performance of the proposed joint feataoking and segmentation-
based registration approach with the intensity-basedagprand individual feature track-
ing approach. We seledi0 frames of the sequence and use the metadata to obtain
fronto-parallel views. We detected the prominent linestmimages and used them to
correct the small rotation-errors in camera-roll due torttetadata. This ensured that the
fronto-parallel sequence obeyed a pure-translation matiodel throughouit.

For the intensity-based method, we used the inverse cotigealiregistration al-
gorithm studied in the earlier section to register conseewgequences of frames. This
algorithm consistently registered the moving objects leetwconsecutive frames, since
the gradients on the moving objects were much more promthantthose on the back-
ground.

We tracked KLT features independently through the sequandesolved for trans-
lation using RANSAC. We found that the presence of repeartlites in the sequence

was a serious problem for many feature points. In practi@eexperienced registration
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failures in multiple images of the sequence due to registraif the moving objects as
opposed to the background.

Finally, we used the proposed joint tracking and segmemntatlgorithm to solve
for inter-frame displacement parameters and motion setatiens. We initialized the
segmentation by choosinzp00 features on the first frame automatically and labeling
all the features as belonging to the background. It must bghesized that there was
no manual initialization or segmentation of any kind. Thigialization of all features
to background incorrectly labels the features on the threemg vehicles as background
features. The joint tracking using robust cost functiowssfor the accurate displacement
and enables the classification block to correctly identifg mislabeled features. The
mislabeled features are subsequently removed and newdsaixe initialized and tracked
on the moving objects.

Figure 4.5 illustrates the results of our algorithm on thgussmce. For four dif-
ferent frames, we show the set of classified features odedithe images, the dense
segmentation and the tracking result. The classificatideatires into background and
foreground is extremely good throughout the sequence antbwed only one feature
on the background that was misclassified to be on the foregroMVe used the set of
labeled features to infer the dense segmentation and db&imotion blobs. We found
that throughout the sequence, there was only one false gtaiget initialization in one
frame (due to a misclassified feature) that was quickly elated in subsequent frames.
Column (c) of figure 4.5 illustrates the frame with the falseving target initialization.
In comparison, a background subtraction followed by a Hlabed tracking algorithm [2]
resulted in70 moving target initializations. Figure 4.6 illustrates asair of the sequence
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with the moving objects detected by the algorithm removethfthe frames. The mosaic
has a very small artifact as a red patch belonging to a vethiakewas not segmented out

completely in one frame.

(@) (b) () (d)

Figure 4.5: This figure shows results on four frames of thefif@e long VIVID Video
Sequence 1. Column (a) shows results on frame 14, columhdh)ssresults on frame 23,
column (c) shows results on frame 50 and column (d) showstsesuframe 92. The top
row in each column overlays the feature points tracked oh #ame. The blue points are
classified to be on the background and the red points arefeas® be on the moving
objects. As the figures illustrate, the segmentation is aegurate and is much better
than individual KLT tracking followed by RANSAC based bac&gnd feature selection.
The middle row in each column illustrates the dense segriensainferred from the
feature segmentations. The background and moving objee{d@ted on different color
channels for illustration. The bottom row in each columastrates the tracked boxes on
the images which is the result of a blob tracking algorithh [olumn (c) shows the
only feature on the background which is misclassified to béherforeground. There is
a false moving target initialization due to this feature this$ is quickly removed by the
algorithm.
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Figure 4.6: This figure shows the mosaic of 100 frames of thélVIsequence 1. The
moving objects are removed from the individual frames b®efapsaicking. The absence
of moving object trails on the mosaic illustrates the accyra motion segmentation in
this sequence.

4.2.3 Video sequence 2

The second sequence consists of a group of humans walkiethergon a runway.
This sequence had sufficient features on the images as wegthdgent information for
intensity-based stabilization. The group of people mova &ngle moving blob and
always lie within the field of view in the sequence. The chasssuence wak0 frames
long. We compared the performance of intensity and featased registrations with the
proposed joint tracking and segmentation approach for tiipgse of stabilization and
moving object detection.

The intensity-based algorithm registered the backgroegans of all the frames
as expected. We used background subtraction techniques [thle stabilized sequence
to detect moving objects. On the entire sequentdalse positives were detected due to
slight misregistrations near edges. In addition, the nmdblobs corresponding to the true
moving objects were broken into multiple connected comptsfor most of the frames.

Among the190 frames,49 of them had multiple connected components for the single
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moving object, and5 of them had no detected blobs corresponding to the true mgovin
object. The absence of blobs was because the group of peapiedsiowly, and there
were homogeneous regions of relatively unvarying intgnaithin the blob.

In the feature-based algorithm, we track KLT features imtliglly, use RANSAC
to identify a set of background tracks, and use them to solvebtion model parameters
between consecutive frames. We stabilize the sequencgthsiestimated homographies
and then identify moving blobs [2]. On the entire sequenera were21 frames where
no blob was detected corresponding to the moving object. Sivge blob was detected
in 88 of the frames2 — 3 blobs in65 frames and — 5 blobs in16 frames. There werg4
false positive moving objects that were tracked throughstttgience.

When the joint tracking and segmentation algorithm wasiagdgdb the sequence,
it detected a single motion blob that enclosed the entireathip all the frames. There
were only5 false positive objects detectetipf which were features in some frames lying
on off-planar objects. These features represented thdlgpamaduced motion between
frames of 3D objects on the plane. Ordyeatures clearly lying on the plane were mis-
classified by the algorithm to lie on moving objects. Figuré #dlustrates the results
of our algorithm on the sequence. For four different franves,show the set of classi-
fied features overlaid on the images, the dense segmenéattbthe tracking result. The
classification of features into background and foregrosneixiremely good throughout
the sequence. Column (b) of figure 4.7 illustrates a framb witeature on a stationary

vehicle that was classified as moving.
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Figure 4.7: This figure shows results on four frames of thefi&@®e long VIVID Video
Sequence 2. Column (a) shows results on frame 1, column @asstesults on frame 24,
column (c) shows results on frame 91 and column (d) showstsasuframe 175. The top
row in each column overlays the feature points tracked oh #ame. The blue points are
classified to be on the background and the red points arefaas® be on the moving
objects. As the figures illustrate, the segmentation is aegurate and is much better
than the results from individual KLT tracking followed by RISAC-based background
feature selection. The middle row in each column illussédtee dense segmentations
inferred from the feature segmentations. The backgrouddr@ving objects are plotted
on different color channels for illustration. The bottomvrim each column illustrates the
tracked boxes on the images which is the result of a blob iingadgorithm [2]. Column
(b) shows a feature on a stationary vehicle which is misiflad4o be a a moving feature
due to parallax-induced motion.
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Figure 4.8: This figure shows the mosaic of 190 frames of thélVIsequence 2. The
moving objects are removed from the individual frames kefopsaicking. The absence
of moving object trails on the mosaic illustrates the accyra motion segmentation in
this sequence.

4.2.4 Video sequence 3

The third sequence captures a scenario where a set of pemplehicles are mov-
ing independently on a road. The sequence consistdioframes. The camera surveys
this scene in such a way that the moving objects continuausiye in and out of the
field of view of the camera. The ground plane has very littedgent information in the
Y direction which is a challenge for intensity-based stahtion algorithms and also for
feature trackers. In addition, since the people move indegetly, each of them occupied
a very small area within the image plane which was a challenge

The intensity-based stabilization algorithm failed forshof the images since the
image motion was in th& direction and the image did not have predominant gradients
along that direction. The feature-based stabilization@tigm performed much better al-
though there were significant registration errors in somespd images. On the entire

sequence, there wefi®6 cases of missing blobs corresponding to moving objects. In
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many of the cases where a blob was detected correspondihg todving people, the
blob was very small and did not enclose the humans. There 4¥efi@se target initial-
izations throughout the sequence for blobs which showednuih® background due to
misregistration and errors in background subtraction.

When the joint tracking and segmentation algorithm wasiagdphll the moving
objects were accurately detected in all the frames. There Wefalse positives due
to isolated background features that were classified agemitiHowever, most of these
features were quickly removed by the algorithm since thegyeld the background model
in subsequent frames. Among the false positives, 8rdfthem were from background
features that were continually classified as moving. Witk #ery simple filtering rule,
the number of false positives of our algorithm got dow td hese results illustrate the
competence of the proposed algorithm in stabilizing anédatgtg small moving objects

from aerial videos.

4.3 Conclusions

This chapter presents a joint tracking and segmentatianrigthgn to exploit motion
coherency of the background as well as solve for the clagtdalh features. Although al-
gorithms exist for tracking features jointly, the idea a@nporating segmentation within
this framework and using the feature dissimilarities teeinfnembership probabilities
yields robust results. The proposed approach producesdadgliracy labeled feature
tracks in a sequence that are uniformly distributed. Thabées us to infer dense pixel-

wise motion segmentation that is useful in moving objedtatization. We demonstrate
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Figure 4.9: This figure shows results on four frames of thefgaBe long VIVID Video
Sequence 3. Column (a) shows results on frame 70, columm@wssresults on frame
142, column (c) shows results on frame 196 and column (d) shesults on frame 235.
The top row in each column overlays the feature points trhake each frame. The
blue points are classified to be on the background and theaietispare classified to be
on the moving objects. As the figures illustrate, the segatemt is very accurate and
is much better than individual KLT tracking followed by RANGS-based background
feature selection. The middle row in each column illussdtee dense segmentations
inferred from the feature segmentations. The backgrouddr@oving objects are plotted
on different color channels for illustration. The bottomvrim each column illustrates the
tracked boxes on the images which is the result of a blob itngadgorithm [2]. Column
(c) shows a frame with a few features on the background whiehmasclassified to be
on the foreground. There are a false moving target iniadilins due to these feature but
they are quickly removed by the algorithm in the subsequamé.
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robust results in several challenging video sequenceseVINID dataset. We also
gualitatively compare the improvement in image mosaicaiabtl using the information

provided by associated metadata containing telemetryrirdgton.
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Chapter 5

Fast Bilinear Structure from Motion

In an urban environment, the additional sensors are notaicanough to measure
the location precisely. In the presence of tall buildingss difficult to triangulate the GPS
position because of obstacles to the line-of-sight. In thapter, we study the effect of
additional information, in the form of measurements of adiion vector and the height of
the camera center from a plane perpendicular to this vetlas.type of side information
is frequently available and accurately measurable in séveal-world scenarios such as
when onboard inertial measurements are available or wheméndnt plane is present.

Inertial sensors like the inclinometer or gravitationahsa's can provide sensing
of a certain direction while altimeters frequently foundd#Vs can provide the required
height information. For example, when there is negligitdenera acceleration, an ac-
celerometer measures the gravity and we can filter out the tvdasurements to get
good estimates of the gravity vector. When we do not haveisidemation but we ob-
serve adominant plane in the scene, we can use the homoggdgaiween multiple views
to obtain estimates of the ground plane normal and heighgusidecomposition tech-
nique. In either case, we will show that this side informatonstrains the ill-posed SfM
problem in such a manner that the SfM equations become sitoila bilinear form in
its unknowns. We then describe a fast iterative procedurehrtike bilinear solvers that

can robustly solve for the SfM unknowns by minimizing therggection error [69, 70].
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Figure 5.1 illustrates the main computational steps of therdhm.

raty AW,

‘Motion _Depth

| - iteratio iteration
| Compute| ——m GPN and height
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Figure 5.1: An illustration of the problem setting and them@mputational steps. The
image shows a typical scene with a ground plane and some atadi moving objects
on it. The gravity field is shown, which can be assumed perpatat to the ground

plane. A camera moves over the scene and gives an image sequée may also

have measurements of the gravity vector from an IMU or sgnsirthe plane normal by
additional means. We use these additional measuremenispifg the structure and

motion computations.

We assume that we have measurements of the gravity vectdhareeight in the
camera coordinate system along with every image in the segueThis form of addi-

tional information is commonly available in the followingenarios:

1. In the problem of urban modeling using a ground-basedagpfat we typically
have a car with a set of cameras mounted on top. These caneeras images
of the city while the car is moving. The car also has other @ensuch as an
inertial measurement unit, GPS receivers and sensors #egure the speed from
the wheel rotation rates. Figure 1.1(a) shows an image df awar with attached
sensors. Since the vehicle moves on the ground, its heigdst wlot vary much. In
addition, since the rotation of the car is primarily alondyothe vertical axis, the
gravity vector (vertical direction) does not vary much wineeasured in the camera
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coordinate system. Both these quantities can be measwethssly using onboard

Sensors.

2. With advances in Micro Air Vehicle (MAV) technology, MAVare increasingly
being used for surveying and mapping environments. Figur@)llshows an illus-
tration of an MAV surveying a scene. These MAVs typically 8daMUs, altimeters
etc that sense the required additional information. Owritlgm can be used in this

situation to solve for the structure and motion from videgusances.

3. In the scenario where a UAV observes the ground plane frademate to high
altitudes, we describe how we can derive the necessaryj@ulitnformation from
the homographies induced by the plane from multiple views. ddh decompose
these homographies [71] to solve for the ground-plane nlovetwor and heights

which can be used as initial solutions in our algorithm.

There are other kinds of additional information that can defaged to develop
video processing algorithms. For instance, the raw inerteasurements sense the accel-
eration and rotation rates that can potentially be fuset imgertial sensors. Range data
from laser scanners found in ground-based platforms caséa with images for highly
accurate mapping. However, these additional data aredeutse scope of the current

work.

5.1 Problem Formulation

We choose a World Coordinate System (WCS) with thaxis along the vertical
direction, and theX andY axes perpendicular to this vector. If a ground plane is priese
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in the scene, thg axis becomes the normal vector to the plane, andktlamdY axes are

on the plane. The Camera Coordinate System (CCS) is chosleth&iZ axis along the
optical camera axis and thé andY” axes along the usual image axes. The transformation
between these two coordinate systems at any instant canittenasP,, = R..,P. +
T.5.,. Here,P is a point whose coordinates are represented in the W3, bgnd in the

CCS byP.. Figure 5.2 illustrates the various coordinate systemsasrtbed above.

Ccsl//\xd ccs,

Additional
Informatio

Figure 5.2: The figure shows an illustration of the coordéngystems in the problem
setting. The world coordinate system and the camera caatelBystems corresponding
to two viewpoints is shown in the figure. GPN illustrates theumnd plane normal vector
which coincides with the vertical or direction of gravity mimost problem scenario$/;,
denotes the homography induced by the plane between theiéws .\’ denotes a point

in the world whose coordinates in the WCS and CCSRyend P. respectively, with

P, = Ro,P. + T.,. As the camera moves, we obtain images of the world. We also
assume that we have measurements of the GPN and the cangdraviigh every image,

as additional information.

We assume that we have measurements of a certain direc@@Scorresponding
to every image in the sequence. This direction could be theityrvector which can be
sensed using inclinometers, or the normal vector to a grplarke which can be obtained
using the homographies. We also assume that we have mea&suseon estimates of the

heights of the camera along the direction of the referenceovérom a plane perpendic-

67



ular to the vector.

A known reference vector in an unknown camera coordinateecarsystem fixes
two degrees of freedom of the rotation matfix,,,. The unknown component is the
rotation of the CCS about an axis parallel to the referencection vector. The full
rotation matrix can be shown to be split uniquely &s,, = R,R,, whereR, is the
rotation along the direction vector, att), is along an axis perpendicular to this vector.
We are now concerned with the estimation of the rotationgitbe direction vectorg,),
and the translations along a plane perpendicular to thivowée andy components of
T.2.,) in addition to the 3D locations of the world points. In thdldaing, we refer
to in-plane motion as the component of translation paratiehe X — Y world plane
and rotation about th&-axis (R,). The out-of-plane motion is th&-axis translation{
component off;,,,), and the rotatiorR?, that changes the reference vector orientation in
the local coordinate system (CCS). Table 5.1 lists all thatmmns used in the following
derivations.

We write the transformation between the WCS and the CCS as:

X Tt
I N R B R o
Z; 1

where the camera-to-world rotation matrix has been fantdrinto its two com-
ponents ask) = RPRY. HereT!?) = 19, 17" 7] whereT" is the height of

the cameralx;, y;, 1]7 is the image feature in homogeneous coordinates, whichées b

normalized for the calibration matrix?! denotes the coordinates of tf& point in the
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Table 5.1: This table lists common notations used in thevdeans for purposes of read-

ability.

Notation

Meaning

P Coordinates of a point
subscript w Quantity expressed in WCS
subscript ¢ Quantity expressed in CCS

subscript c2w

Camera-to-world transformation

—

subscript ti | Coordinates at frame t and featur

index t Frame number

index i Feature number

Tir o) Translation coordinates at frame
R} Out-of-plane rotation at frame t
R; In-plane rotation at frame t
m Number of frames
n Number of points
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WCS. From the additional measurements, we have estimaiéal(values) ongt) and

T, Using this information, we can rewrite (5.1) as

cos@; sinf; O Uts
; t
Py =1 —sin 0; cosb; O Ati vy | T Tc(zzu (5.2)
0 0 1 Wy

where|ug;, vy, wy]T = Rét) [z, vi, 1]T, andRét) is computed from the reference vector in
the side informationRét) is the rotation matrix that rotates the reference vectoresged
in the CCS to the reference vector expressed in the WCS.

We rearrange (5.2) to get (5.3) that relates the coordiraitése feature point in

framet and feature to the world coordinates and the camera positions.

Ui cosf; —sinf; 0 X; — Tff)
Ati v | = | sinf; cos@; O Y, — T, ;t) (5.3)
" 0 o 1) |z -1

We eliminate the projective depth; by taking ratios of the quantities as shown in (5.4)

. _m(t)
Ugi [ Wi cosf; —sinb; Xi T”(”t)
= 2Tz (5.4)
(t)
) YT,
Vg [ Wi sin@;  cos0 ZZ-—Tz(t)

We rearrange (5.4) by multiplying both sides (#; — 7,) to obtain (5.5)

Ugi /W cos@; —sinf; | [X; — ngt)
(2 —TY) = (5.5)
Vg [ Wy sin@; cos0; Y; — T;t)
Let us now assume that we havdeature points that are observedinframes. We have

equations similar to (5.5) for each feature point in eveanfe where it is visible. We

accumulate (5.5) for all the feature points in all views amitenit in the factorization
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format as shown in (5.6).

v owz L, e | - 1) ui,,, Uin
w11 w12 Win Tz 0 e 0 0 w11 Win
Z, 0 ... 0 .
1
vi1 12 . Vin G . Vin
w11 w12 Win 0 T: e 0 0 w11 Win
0 Zo 0
Um1 Um?2 . Umn (m) Um1 . Umn
Wm1 Wm?2 Wmn O 0 e TZ 0 Wm1 Wmn
o 0 ... Z, -
Um1 Um?2 . Umn - - m Um1 . Umn
Wm1 Wm2 Wmn O 0 T 0 TZ Wm1 Wmn
. 1
cosfly —sinf, t§; )
sin 0 0 () X, - X
1 COS U1 ty 1 n
=1 ... Y, - Y, (5.6)
cos@,, —sinb,, &m) 1 - 1
sinf,, cosf,, tg,m)

We denote the measurement matrixAsthe diagonal matrix of camera heights
asT., and the produci,A = B. We denote the diagonal matrix of heights of feature
points from the ground plane a@. The motion matrix on the right hand side ig
and the shape matrix iS. We can rewrite (5.6) concisely astZ — B = M S. Each
column of this matrix equation specifies the relation betwt® projections of a single
point in all the views. Each pair of rows specifies the relati@tween the projections
of all the points in a single view. In (5.4), the quantit[l-‘ﬁ) and Ty(t) refer to thex
andy components of translation measured along the WCS axes..ah (Be variables
) = —cos0, T +sind, T\" andtl! = —sind, TS —cos6,T," refer to the same quantities
measured in the CCS axes. This change of variables is doneatieca factorization
into the motion and shape matrices as shown. Note that ourawrs are the matrices

{M, S, Z} and (5.6) looks similar to a bilinear system in the elemehth@se matrices.
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In practice, we have measurement errors in image features additional mea-
surements or both, and the measurement matisxnot known exactly. We solve for the
unknown parameter§\/, S, Z) by optimizing an objective function which is the Frobe-
nius norm of the difference between the matrices on eachosighe6). The cost function
is written as follows:

E=|A-Z-T.,A—M-S|? (5.7)

In the above, because features may not be observed in ak$;aome entries of the mea-
surement matrix are unknown (not measurable). Howeveplinrg for the unknowns
using our algorithm, we do not need all entries of the measean matrix. In this respect,
it has an advantage over factorization-based approaches.

This formulation yields an optimal solution in the maximuikelihood sense when
Gaussian noise is added to the right hand side of (5.6). ktipea we can make a reason-
able assumption that the image feature locations are dedudyy Gaussian noise. How-
ever, the geometric transformations and the non-linearithe rotation matrices do not
preserve the Gaussian nature of the error, and it is diffioudharacterize the distribution
of the error in measurements in (5.6).

The scale ambiguity in SfM implies that we can decrease ttwe €5.7) by scaling
the camera positions ardd coordinates of points by any number larger than one. Since
we refine all components of motion in our algorithm, to guagdiast trivial reductions
in error functions because of such scaling, we impose thstraint: HTzH = k wherek

is a constant.
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5.2 Fast Bilinear Estimation of SfM

We observe that (5.6) is similar to a bilinear form in struetand in-plane motion.
We solve for the unknowns by minimizing the cost functién= |[A-Z — B — M - S||?
where|| - ||* denotes the Frobenius norm.

Our approach is to solve for the unknowns in an iterative regnalternating it-
erations where (1) the motion parameters are kept fixed andtste parameters are
estimated, with iterations where (2) the structure is fixad anotion parameters are
estimated. This approach belongs to a class of SfM techgifnewn as resection-

intersection methods [56, 72]

5.2.1 Structure Iterations

We can rewrite the cost function (5.7) as a sum of terms cpomding to each
feature pointj as follows: £ = Z;‘Zl Ejd WhereE;.l corresponds to the contribution to
the cost function from thg*" feature point, and the superscripis used to note that the
total error is split into terms corresponding to the deptbaxth feature point.

We pick thej** column of the matrix equation (5.6) and write the corresagd

contribution to the error as follows.

- - - - 2
u1;(Z; — T Jwy; cosfly —sinfy tl
v1(Z; — TL) Jwy; sinf,  cosf;  t} _Xj-
Ef = || (2 —T2)jwy; | = | Yj (58)
cos b, —sinb,, t I 1 |
Umj(Z; —TI") [ wmg sinf, costy t

73



We rewrite (5.8) to obtain

Ef =1|M(1) M(,2) —AG)| |y |+ (B(5) + M(:,3)) (5.9)

In structure iterations, we minimize the error contributiE;-l corresponding to each 3D
point indexed byj € (1,---,n). In(5.9),M(:,1) and M (:,2) are the first and second
columns of the motion matrix, containing the cosine and sémms. V/(:,3) contains
the in-plane components of translatior.(:, j) and B(:, j) are thej"* columns of the
matricesA and B respectively. Recall tha® is the product of the heights matrix, and
the measurement matrit. We minimize (5.9) w.r.{X;,Y;, Z;). The cost function is a
linear system in the variablds{;, Y;, Z;) and the minimum is obtained by solving the

following linear system using linear least squares.

M(;,1) M(:2) —AGH)| |Y; | = —BGj) —M(,3) (5.10)

5.2.2 Motion lterations

As in the case of depth refinement iterations, we can rewréesbst function (5.7)
as a sum of terms corresponding to each frame as folldws: > " | E", where E"
corresponds to the contribution to the total cost functiae tb the motion variables of
the:*" frame, and the superscript is used to note that the total error is split into terms
corresponding to the motion parameters of each frame. Waatxhe(2: — 1)"* and

(24)*" rows from the matrix equation (5.6) and write the corresgilogidontribution to the
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error as

2
E" = HC(%—LI)—{COSH@ —sin 0; t;]'s

2

(5.11)

+ HC@Z} D) — {sin 0; cosb; t;] )
where, theC' = AZ — B denotes the left hand side of (5.6). We need to solve for

{6;,t.,t,} by minimizing (5.11). We set the derivative &f" w.r.t (¢,t) to zero to

)y
obtain

t 1i0(2' 1, k) 1ch 9+1iY n (5.12)

= — 1 — - — 0s0; + — sinb; .
T n ) n k n k

k=1 k=1 k=1

t = 1iC’(% l{:)—liX sin@-—li}/cosé’- (5.13)
b e ’ gyt ' Z nk:lk Z .

Denotingus; 1 andus; as the means af'(2i — 1, :) andC'(2i, :) respectively, ang y and
1y as the means of th& andY coordinates of feature points, we can write the solution
of £, andt; as

t; = M2;—1 — Mx COS ‘9@ + My sin GZ (514)

t; = fig; — My cosB; — px sin6; (5.15)

We substitute the solution (5.15) in (5.11) and obtain

2

E™ = H <)Z' — ,LLX> cos6; — (}7 — ,uy) sin 0; — (C(Qi — 1,7 - ,u%_l)

+ H (X - MX) sin 6; + (17 - MY) cos; — (C(24,:)" — o) ‘2 (5.16)

where X andY denote column vectors containing theandY coordinates of all the

points. We set the derivative w.6tto zero and simplify to obtain

n

> (C(2i = 1,k) — paimy) (Xp — pix) sin 6; + (Y — pry) cos 6;) +
k=1

(C(2i, k) — po;) (— (Xg — px) cos 0; + (Y, — py ) sin6;) =0 (5.17)
k=1
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We can simplify (5.17) to obtain
(C(2i,:) = i) - (X = pix ) = (Ci = 1,2) = paica) - (V = oy )
(C(2i = 1,5) = paia) - (X = px) + (C@i) = pai) - (V = )

We obtain two possible solutions féf from (5.18). One of them is a point of local

tan 62 =

(5.18)

maxima and the other is a point of local minima. We choosedheisn that corresponds
to the local minima.

We have described a technique to iteratively estimate théo8Btions, and the
in-plane components of motion. Each of the individual steply involves solving a
linear system. In practice, we iterate these two steps ainartimber of times, or until a
termination criterion is satisfied.

In both the depth and motion iterations, we solve linearaystthat are of much
smaller size compared to the size of systems that we neeldédrstechniques like bundle

adjustment etc. More details on the computational requaetsare given in section 5.3.1

5.2.3 Out-of-plane motion refinement iterations

In case the measurements of the direction vector and theradmaght are not ac-
curate, we may refine these parameters to obtain a better &fMate. We describe a
technique to refine these quantities. The idea is to refineuhef-plane motion compo-
nents so that the error (5.7) decreases.

From (5.5), we have

Ut [ Wi cosf; —sinb, X; - T ﬁ)
(2 —TY) = (5.19)
Vg [ Wi sinf; cos0; Y, — T;t)

Recall that(w,;, vy, wy;) is a function of the out-of-plane rotatidlﬂ_ff) based on the rela-
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tion:

Uts Ttg

_ plt
Vi | — R!(] : Yti (5.20)
Wi; 1

In this step, we hold the 3D locatio®¥ and the in-plane components of motifih, 77, sz}
fixed to their earlier estimates from the previous step. Wéopm a nonlinear refinement
of the heightT”, and the normal vector at each frame separately. Note tisaintiplies

that at any stage, we only refine three parameters simulighe@ comparison to all the

cameras and points for a full bundle adjustment).

We refine the parameters by minimizing the following errardtion obtained from (5.5)

2

m Ugi Wy cosf;, —sinb, X, — 7Y
Eyge =Y (Z; = TY) - (5.21)
=1 vy Jwy sin@, cosb, Y, — Ty(t)
We minimize (5.21) using the Levenberg-Marquardt algonif39] to solve for the out-

of-plane motion parameters. This minimization involvesydihree parameters at any

stage (two for the out-of-plane motion and one for the carherght).

5.2.4 Motion Estimation for Moving Objects

We can incorporate the estimation of structure and motioabpécts moving on
a plane, in the above framework. The objects of interest eatnamslating and rotating
on a plane, and we assume that we can measure the ground planal mnd height
with respect to the same plane. We reformulate the probléonoine where the object is
stationary, and a separate camera is moving over each obf@astapproach is similar to

some earlier works [73]. The world coordinate of a point on@vimg object changes
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depending on the motion of the object, and is therefore patenized by time along with

the feature number.

X cos¢; sing; 0 X; D;
Yii| = | —sin¢g; cos¢: O Y, | + DZ (5.22)
L 0 0 1 Z; 0

In (5.22),¢, corresponds to the rotation of the object in frahweith respect to its initial
orientation. (D}, D}) denote the displacement of the object in the WCS. The relatio

between image feature points and moving scene points is

Xt cos@; sinf; O Ut Tm(t)
Y| = | —sinf; cosf; O Ati v | T T;t) (5.23)
Zs 0 0 1 e ¥

We can rewrite (5.23) in the same form as for static point®ksvis

Uy costy —sinvyy 0 X; - C!t
Ati v | = | sinyy  cosypy O Y; — C';
wyi 0 o 1) |z-1Y
Ct cos¢gy —singy| |TL — DL
C?'j_ sing;  cos ¢y T, - DZ_
Yy = 0 — ¢y (5.24)

Equations (5.24) say that the motion of the object can besteared to the camera,
and the object can be considered to be stationary. We can gwl\{5.24) in the same
framework as for static scene points, and the virtual cameyaons can be estimated.
The object motior(¢,, D.,, D},) can be solved from the real and virtual camera motions
(0:, Ty, Ty, 4, Cf, Cy) using (5.24).
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We initialize the iterations for a moving object by assumantixed height for all
feature points. In practice, we found that the techniquewaasvery sensitive to this ini-
tialization in our sequences. In later sections we refehégaroposed method as FBSfM

which is an acronym for Fast Bilinear Structure from Motion.

5.3 Analysis of FBSFM

5.3.1 Computational Complexity and Memory Requirements

The main computations in our algorithm are in the solutiotheflinear systems in
the depth and motion iterations, and the refinement stepgiditection vector and height
refinements. Suppose there ateviews ofn points, and that all points are visible in all
views. To emphasize, this assumption is not necessary égouhposes of the algorithm
but simplifies the process of quantifying the memory requests.

As mentioned in [52], leSV D(a,b) = 4ab® + 8b* be the cost of carrying out a
singular value decomposition of a matrix wiitrows andb columns. The following are

the main computational requirements:

e Depth lterations: For each point, this involves solving a linear system of size
2m x 4 which is equivalent to a total cost af x SV D(2m,4), wheren is the

number of points.

e Motion Iterations: For each view, this involves performing the computations
in (5.18, 5.15) which is equivalent t&n multiplications andon additions and is

thereforeO(n) in computational cost. This accumulates to a total cost afO(n),
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wherem is the number of views.

e Direction vector and height refinemeniVe need to update only 4 parameters and
hence this requires the solution oftax 4 linear system. For all the frames, this

comes at a cost ofi x SV D(4,4) = 768m per iteration.

Totally, each iteration of FBSfM has a computational cosb¢fun). In compari-
son, one full bundle adjustment takes up computations afttther ofO (nm+nm?+m?).
Rother’s system involves solving a linear system of $kze+ 3m) x (3nm) whose com-
putational cost iSV D(3n + 3m, 3nm) = 108(m3n? + m?n?) + 216m3n>. We observe

that the peak computation for our individual steps increasdy of the order 0© (mn).

5.3.2 Discussion

The FBSfM algorithm derived in the last section has the flafoterative methods
for projective structure from motion [56, 44]. Suppose weehafixed pointsP;, P, - - , P,

observed byn cameras, we can write the projection of tiepoint on thei” camera as:

1
pij = —M;P; (5.25)

Zij

where M; denotes thed x 4 projective matrix associated with th& camera, and;;
denotes the projective depth associated withjthgoint in the:** camera.

In a typical BA algorithm, we usually minimize the reproject error which is
E = Em’ Ipi; — %MinP and solve for the camera location$; and point locations
P;. This technique is commonly known as bundle adjustment ampl@ys a non-linear
minimization method to optimize the objective functiongrgection error). This objec-
tive function is highly non-linear and is difficult to minize and also is reported to have
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many local minima [72]. To simplify the minimization, manythors consider the sim-
plified (but related) objective functiont;,, = Zi’j |zi;pi; — M;P;|*. Many projective

SfM algorithms in the literature minimize this objectiventttion to solve for the SfM

parameters.

The proposed algorithm is similarly derived by scaling {Bhythe(Z; — Tz(t)). The
difference is that unlike earlier techniques, we use thétiatél information to leverage
the bilinear form in the Euclidean frame, without using &laariables. Simulation re-
sults suggest clear advantages in speed and accuracy obihespd algorithm when the
additional information has low error.

Convergence in error value: Our algorithm has three main iterations: depth itera-
tions, motion iterations and side-information refineméetations. LetZ(® be the value
of the initial error. In the depth iterations, we find solutidfor the( X, Y, Z) co-ordinates
that minimize the error with all other variables fixed Af!) is the value of the error after
the depth iterations, we have) < E©, Next, in motion iterations, we find solutions
for the camera in-plane motion parameters that minimizether with all other variables
fixed. If E® is the error after motion iterations, we ha##? < EM. Similarly, if
E®) is the error after side-information refinement, we h&é < E(). Each iteration
finds solutions for the variables that decreases the emagéithe error is non-increasing.
Since the error is lower-bounded by zero, we conclude thastltcessive error values
after each iteration converge to a valkié.

Convergence of parameters. As noted in [56], the above argument does not im-
ply that the parameters converge or that the error convargaslocal minimum. We

prove that the error converges to a local minimum, and tharpaters converge to the
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optimal solution. We make use of the Global Convergence fdmdrom optimization
theory [56]. We elaborate the proof in the appendix A of thesdrtation.

Issue of trivial minima: Oliensis and Hartley [57] pointed out the issue of conver-
gence to solutions that were “trivial” in the sense of getieganonsensical structure and
motion solutions. In our algorithm, since we compute Eedial structure and motion, we
are not affected by the same problems. In particular, we dloeed to deal with “projec-
tive depths” that are considered as independent variabkbg ioptimization. In all of our
experiments on synthetic and real sequences, we have elddéat the iterations always
converge to meaningful results.

Convergence rate and speed of convergence: Iterations of low computational com-
plexity do not imply faster convergence rate or lower timezbnvergence. The proposed
algorithm falls within the class of alternation techniquésich are susceptible to flatlin-
ing and are slower than second-order newton methods in grage case [74]. We claim
based on strong experimental evidence that the proposedambpsurprisingly violates
this conventional wisdom, for thgpecificcase of large-sized problems starting from a
specificclass of initial solutions with low out-of-plane motion errand high levels of

in-plane motion error.

5.4 Simulations

5.4.1 Implementation

For BA, we use the SBA solver code [40] implemented in C. TisigsuLM mini-

mization for non-linear least squares. The normal equatiwe solved by using the Schur
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complement to factor out the structure parameters and sitireg system is solved using
LU decomposition for the update to the camera parametess piidposed algorithm was
also implemented in C with a MATLAB interface. The motiomegtture alternation iter-
ations and out-of-plane motion refinement iterations weti¢tem in C and the interface
to switch between the two sets of iterations was written inTMAB with system calls to

the corresponding C executables. Routines from OpenCV usd to solve the linear
systems corresponding to motion iterations. The LM impletaton in C [75] was used
for the non-linear least squares minimization correspogdo the out-of-plane motion
refinement iterations. The Conjugate gradient (CG) implaatéon in C [76] was used
in the experiments to compare with alternation for minimdzthe bilinear system (5.7).
Computation time was measured using our implementationnafresecond timer. The
reported times include the total time taken to execute @&ldperations within each C

implementation except disk 1/0O operations.

5.4.2 Reconstruction problem generation

A reconstruction problem was synthesized by generatingoints uniformly dis-
tributed within the cube specified by20 < X < 20, —20 <Y <20 and10 < Z < 40.
The coordinates of the camera locations were uniformlyitisted in the cube specified
by —25 < X <25, -25 <Y < 25,55 < Z < 105. The choice of dimensions is for
illustration, and in practice the dimensions were scalemb@ting to convenience. The
orientations of the cameras were chosen by first generdtenditections of the principal

camera axes and then choosing the rotation angle of the aaameund this axis. The
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principal camera axis was chosen by generating a randon ipdime X — Y plane that
specifies the point of intersection of the principal axidwiitis plane. The rotation angle
of the camera axis around the principal axis was randomlgehdetween to 27. This
scheme for generating points and cameras ensured a widéi@aiin the camera matrices
and point locations, to mitigate any potential bias in thgoréed results to the choice of
reconstruction problem. Image feature points were obtdnyeeprojecting the 3D points
on the cameras based on perspective projection. The pamanoéthe camera were: fo-
cal length= 320, principal point= (320, 240) and image size-= 640 x 480. Moderate
Gaussian noise was added to the reprojected image feataolaos to simulate feature

detection errors.

5.4.3 SfM Initialization

Initial motion estimates are obtained by perturbing theugobtruth motion. The
in-plane and out-of-plane motion components are pertuseparately, with high errors
in in-plane components and low errors in out-of-plane motomponents. The and
y locations are displaced by a vector that is oriented in agandirection in theXY
plane, and whose length is a specified fraction of the maxirdimension of the recon-
struction. For example, @Y% error in the in-plane translation means that the camera
center was displaced by a vector of length x 50 in the XY plane. A60° error in the
in-plane rotation anglé means thatl was perturbed in either the clockwise or counter-
clockwise direction bys0°. A 10% error in the out-of-plane translation means that each

camera center was moved either in the positive or negatigigection by0.1 x 40. The

84



ground plane normal is perturbed by adding a random vecibsth that the new vector
makes a pre-specified angle with the original vector. Thiainialues for the 3D coor-
dinates of feature points are obtained by triangulatingdp geant using the image feature
locations and the initial camera motion parameters, afitirgy the linear system of a
structure iteration in (5.10)). All algorithms are iniiid with the same initial solution
and executed on the identical machines under identicaidgasbnditions when reporting

comparative results.

5.4.4 Comparative evaluation of bilinear alternation

We compare the performance of bilinear alternation, CG avdfdr minimizing
the objective function in (5.7). The alternation approdebsen is the motion-structure it-
erations as described in the chapter, where (5.7) is mieniath respect to the in-plane
motion parameters only. We analyze the results of the maatiun using the three ap-
proaches for various levels of out-of-plane motion errasngntional wisdom suggests
that second-order newton methods perform best for the xrfatriorization problem [74];
however the results of this experiment for the case of lowddtlane motion error are
surprising because they suggest that bilinear alterngtésforms fastest under the as-
sumed operating conditions.

A reconstruction problem is obtained by generatiigandom world points antl)
cameras as described above, withi% of the image feature measurements known. The
ground plane normal vector at each camera location is fEdsuch that the new vector

makes angles af0°, 3°, 6°,9°, 12°) with the ground-truth vector. The camera centers are
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perturbed along th&-axis of the WCS by errors ¢0%, 3%, 5.2%, 13%, 26%, 39%, 52.1%).
For each choice of errors in out-of-plane motion componenmés compare the perfor-
mance of the three algorithms &0 runs. The in-plane motion components are per-
turbed by al00% error in theX — Y locations and &0° error in the in-plane rotation
angle to obtain the starting point for the three approachies.total number of runs of the
minimization for all cases wasr500.

Let the final objective function error value of alternati@G and LM after conver-
gence be denoted hy, ¢* andl* respectively. We have the following mutually exclusive
possibilities for each run: (1)* = ¢* = I*, 2)a* = ¢* < I*, () ¢* = I* < a*, (4)

a* =1* < ¢*, (5)a* < min(c*,[*), (6) ¢* < min(a*,l*), and (7)I* < min(a*,c*). The
equality in the above expressions is understood to be walsimall margin of tolerance.
Table 5.2 displays the percentage of runs falling into thevalrases for each unique
choice of out-of-plane error.

The percentage of runs for which bilinear alternation penfosuboptimally com-
pared to LM or CG (i.e. with higher error than the best of CG bh)lis listed in Table 5.3
for each choice of out-of-plane motion errors. This sugg#sat for moderate levels of
errors in the out-of-plane motion, alternation turns outéca suboptimal choice of algo-
rithm in roughly17% of cases. At low to moderate errors where we propose the use of
our algorithm, alternation turns out to be suboptimal ingloly 9% of cases. In practice,
since we switch between in-plane and out-of-plane itenatithe effect of suboptimality
in 9% of the cases does not adversely affect the structure andm@tonstruction.

We compared the number of iterations and times taken for algchithm to reach

convergence, where the error function decreases by lea)th@001%. We find that

86



Height Ground plane vector error

error 0° 3° 6° 9° 12°
96.8 96.4 94.6 96.6 95.6
0% 0 0 0 0 0 0 0 0 0 0 1 0 0.2 4
3.2 0 0 3.6 0 0 5.4 0 0 22 02 O 0.2 0
95.8 95.2 95.2 95.6 93.4
3% 0 02 O 02 04 O 0 06 04 0 06 O 0 5.2
0 4.2 0 3.8 0 0 3.8 0 06 06 0.2
86.6 87.4 87.2 88.0 84.8
5.2% 04 52 0.2 0 50 0.6 08 32 0 0 54 0.2 0.4 8 0.6
4.2 2.2 1.2 32 28 1 36 22 3 28 24 1.2 1.4 32 1.6
70.8 71.0 71.4 72.6 74.6
13% 1.2 9 4.6 24 112 238 1.4 102 26 1.4 104 3.0 1.2 12 2.0
5.8 6.2 24 50 3.6 4 58 44 4.2 52 42 32 22 36 44
71.2 71.2 69.6 68.4 71.4
26% 2.6 9.0 28 20 114 24 1.4 118 46 26 120 3.6 2.2 10 3.4
3.6 58 5.0 30 38 6.2 22 52 52 48 3.0 56 36 54 4
69.4 64.4 64.4 64.4 65.2
39% 1.4 124 46 32 142 26 3.2 11 4 32 152 32 2 128 54
4 4.2 32 58 6.6 5 78 46 26 6.2 5.2 58 2.8
60.8 58.4 59.2 56.4 61.8
52.1% 4.4 17 3 52 208 3.8 58 154 238 52 20.2 3 48 158 3.2
44 6.2 4.2 28 48 4.2 44 56 6.8 5 6 4.2 7 38 3.6
(1)
Layout 2 3 @
G ® O

Table 5.2: Comparison of performance of Alternation, CG hRtfor minimizing the
bilinear system in (5.7). Let the final error value of alt¢iroia, CG and LM be denoted
by a*, ¢* andl* respectively. We have the following mutually exclusive sibsities for
eachrun: lp* =c* =10, Qa* =c < I*, Q) =1" <a*, @) a" =1* < ¢,
(5) a* < min(c*, 1*), (6) ¢ < min(a*,*), and (7)I* < min(a*, ¢*). Each cell shows
the percentages of runs in all the cases (1) through (7). THaegement of the seven
numbers within each cell is specified by the layout on thertastof the table.
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Height Ground plane vector error

error 0° 3° 6° 9° 12°

0% 0 0 0 | 12| 4

3% 02| 04| 06| 06| 6

52% | 86| 88| 84| 9 |128

13% | 17.6|18.8| 18.8| 17.8| 20

26% |19.8| 21.4|22.2|20.6| 19.4

39% | 20.6|26.6| 23.4| 26.6| 21.4

521% | 27.4| 29.8| 27.8| 30.4| 23.2

Table 5.3: Percentage of runs on which the solution of Aieam was higher than the
minimum of the solutions of CG and LM.

alternation, CG and LM take an average time)@f257, 0.0550 and2.8875 seconds re-
spectively. In other words, CG takesl424 times longer, and LM takekl2.5413 times
longer than alternation to converge. The correspondingageenumber of iterations is
48.4882, 316.8153, and96.5334 (although number of iterations do not directly compare).
The large time taken by LM may be attributed to the large Hastiat must be inverted
at each iteration. Using a sparse implementation of LM (sinto SBA), we may be
able to reduce the computation time. However, we did not @mant the sparse LM
since in a later experiment we demonstrate that the ovelB8F algorithm took lesser
time-to-converge compared to the SBA implementation. Edu3 shows convergence
plots of the three algorithms fdi 3%, 6°) error in out-of-plane motion. The red curves

corresponding to bilinear alternation are largely belog/titue CG and black LM curves.
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In this plot, a lower curve implies a faster convergence.rdtiee plots show the same
trend for other choices of error levels. Figure 5.4 plotsdbevergence curves of LM on

a separate figure so that the time axis can be chosen to bear Boale.

Figure 5.3: This figure illustrates convergence curvestipiptthe log of error versus
computation time for the minimization of (5.7), using béder alternation, CG and LM.
The plots for bilinear alternation are superior to the ottee& in terms of convergence
rate because the bundle of red curves are largely below tleearid black curves. The
reconstruction problem used for these plots involitdameras and0 features. We used
a perturbation of3%, 6°) for the out-of-plane translation and ground plane normglan
error respectively.

The strong advantage in computation time along with thetfeattalternation con-
verges to the same solution as CG and LM under low out-ofephamise levels justifies its

use under the operating conditions of the dissertation éioar in out-of-plane motion).

5.4.5 Comparison of FBSfM with SBA

We generated a reconstruction problem withcameras ané0 feature points and
96% of the image measurements known. Two sets of initial camerytom solutions
were generated for different choices of error levels in protomponents. Set 1 had

perturbations of(12%, 25°,2.7%, 2°) in the in-plane translation, in-plane angle, verti-
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Convergence plots for Bilinear alternation and Conjugate descent Convergence plots for Levenberg-Marquardt
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Figure 5.4: This figure illustrates convergence curvestipiptthe log of error versus
computation time for the minimization of (5.7). Figure &}plots the curves for Bilinear
alternation and CG, and figure 5.4(b) shows the plots for LKe ¥ axis in both plots
are at the same scale which allows for comparison of LM withdther two algorithms.
The plots for bilinear alternation are superior to the ottwey in terms of convergence
rate because the bundle of red curves are largely below tleearid black curves. The
reconstruction problem used for these plots involi@dameras and0 feature points. We
used a perturbation ¢8%, 6°) for the out-of-plane translation and ground plane normal
angle error respectively.

cal position and ground plane normal vector respectivelgt Shad perturbations of
(20%, 35°,0.5%, 5°). Each set ha®d00 different initial solutions. The structure initial-
izations were obtained by triangulating each 3D point ugimgge feature locations and
initial camera parameters, after solving the linear sygted0) of a structure iteration.

In set 1, minimum error reconstruction produced by SBA wa$99 and that pro-
duced by our algorithm was3570. In 86% of the runs, the SBA reconstruction error was
lower than the minimum error produced by our algorithm. Thgh#ly higher error of
our algorithm on successful runs compared to SBA is becaesaiwimize the algebraic
as opposed to the reprojection error. On the remainiri§ of the runs, SBA produced an
error of aboves. In comparison, our algorithm produced an error lower tharon 99%

of the runs. This illustrates the reliability of our algdt in producing good reconstruc-

90



tions when initialized from a number of random initial saduts. In set 238% of the runs
had a lower reprojection error for SBA than for FBSfM. Thetdisition of reprojection
errors of both algorithms on each of the sets is illustratddjure 5.5. The red curves are
for set 1 and the blue curves for set 2. The figure plots the tatime distributions of the
reprojection error, hence a higher curve implies a betteiopming algorithm. In both
sets, the curve for FBSfM is largely above that for SBA intiimgbetter performance.

We repeated the experiments on a reconstruction problemi@itameras and50
feature points, witl96.4% measurements known. We obtairigd initial starting points
by perturbing with motion error of30%, 25°,3.75%, 4°). The initial reprojection errors
ranged from199.4611 to 3476.6 and the SBA code reported failures in minimization on
70.6% of the runs. On the remainin2p.4% of the runs on which SBA succeeded, our
algorithm produced reconstructions whose final reprajecsirror ranged from.6277 to
0.7603. SBA produced an error df.3723 on 87.5% of the succeeded runs, and errors
ranging from9.0526 to 278.6074 on the remainingl2.5% of the succeeded runs. On
the 70.6% of the original runs on which SBA reported failures, our aition produced
reconstructions ranging from6209 to 0.7848, whereas the errors of SBA ranged from
208.28 to 1.0993¢ + 05 (which were very close to the initial errors). These expental
results clearly demonstrate the advantage of our algomen SBA, because it generally

avoids getting stuck in poor local minima and is more coesisin its results.
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Cumulative frequency graphs of reprojection error
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Figure 5.5: This figure shows the cumulative frequency gsagftthe reprojection error
for SBA and FBSfM along with the error distribution of thetiai solutions. The problem
involved 10 cameras and0 feature points. The red curves show the results for set 1
with perturbations of(12%, 25°,2.7%, 2°) in the in-plane translation, in-plane rotaion
angle, out-of-plane translation and ground plane normgleaarror respectively. The
blue curves show the results for set 2 with initial motioroeof (20%, 35°,0.5%, 5°). In

both sets, the graph for FBSfM is above that of SBA indicabeger performance.

5.4.6 Comparison of convergence rates of FBSfM and SBA

We compare the convergence rates of our algorithm with SBA metonstruction
problem with300 cameras and50 feature points, witl$2% of the image measurements
known. We generategh0 initial solutions by perturbing the ground truth motion ke
3.33% error in the in-plane translation,1&: error in out-of-plane translation,1&° error
in the in-plane rotation angle and4a error in the ground plane vector. SBA converged
successfully in57 of the 350 runs, among which38 converged to the global minimum,
with a reprojection error of.1316. On thesel38 runs, FBSfM converged to solutions
with errors ranging from.1427 to 1.1432. Convergence of FBSfM was declared if the
number of iterations exceededo or if the error decreased by less than-5 or 0.0001%
whichever was higher. We attribute the slightly higher oggetion error of FBSfM to

the fact that it minimizes the algebraic error as opposetie¢catctual reprojection error.
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Since the final errors of FBSfM are very close to those of SBA,b&lieve this is very
close to the global optimum. For th&8 runs described earlier, the number of iterations
taken by FBSfM ranged fror3 to 102 with an average 096.6 iterations and the total
computation time ranged fro203.3 to 254.2 seconds with an average 2i3.6 seconds.
It is possible that because of the termination conditiors$fiv had not converged to
its global optimum in a strict sense but had exhibited flatinbeyond100 iterations.
However, for practical purposes, this is not consequestie a minimum reprojection
error solution can be realized by directly minimizing th@ngection error using SBA.
Accumulated over all the runs, the amount of time taken fer dht-of-plane motion
refinement iterations wak).5% of the total time spent. This fraction ranged fra6¥s to
55.4% for all the runs.

Sparse BA required iterations ranging frar to 4639 for convergence, with an
average number of iterations @84.3. Convergence was declared if the norm of the
update to the parameter vector was less thidn- 12. The total computation time taken
ranged froml57 seconds td 7864 seconds with 32 of the 138 runs requiring computation
time larger than the maximum time taken by FBSfM on all thesrun

Figure 5.6 shows the convergence plots for FBSfM (plottdalue) and SBA (plot-
ted in red). SBA exhibits fast convergence when the solusorery close to the global
minimum. On the other hand, FBSfM exhibits slow convergeriose to the minimum.
Figure 5.7 plots the convergence curves of FBSfM and SBA jpasse curves on linear
scale in the time axis. Although FBSfM is faster than SBA allethese two algorithms
are good candidates to be used together in a hybrid apprdtaciust be noted that this
advantage in computation time is larger as the problem siz@ases (corresponding to
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Convergence plots of FBSFM and SBA
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error — Global minimum)
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Figure 5.6: This figure illustrates the convergence curVetipg the log of the reprojec-

tion error versus computation time for FBSfM and SBAI®8 runs. The blue curves are
for FBSfM and the red ones are for SBA. Note that the blue cuare clearly below the

red ones indicating that FBSfM converges faster compar&B® in this experiment.

Convergence plots for FBSFM Convergence plots for Sparse BA
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Figure 5.7: This figure illustrates the convergence cunlettipg the log of the repro-
jection error versus computation time for the proposedritlym and SBA. Figure 5.7(a)
plots the curves for FBSfM and figure 5.7(b) plots the cuneesSparse BA.
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the size of the matrix that needs to be inverted). We haverebdehat for300 cameras,
FBSIM is much faster than SBA, and fod camerasS B A is faster. The critical problem
size above which the reduced Hessian matrix inversion asltveness of gradient descent
starts to become a disadvantage for SBA depends on the neaaihthe processing re-
sources available. However, for mobile devices, we exgextitemory limitation to be
the bottleneck where FBSfM would find the most advantageseswith a low critical

problem size).

5.4.7 Comparison with Linear multiview reconstruction S8A

The results of simulation experiments described here shatvRBSfM performs
very consistently and advantageously over a wide range iserevel in image feature
locations compared to Linear multiview reconstruction| [&id SBA [38].

In order to apply our algorithm, we generate points both ah @ffian imaginary
plane. We generated camera tracks by ensuring that thersuffasent variation in the
'look-angle’ of the camera with respect to the imaginarynglaand also sufficient vari-
ation in the rotations and camera heights. In the abovek-kwle’ refers to the angle
made by the camera principal axis with the plane. We gerneithie feature tracks by
backprojecting the points onto each camera. We add difféegals of noise to the gen-
erated image feature point tracks and then use them fomgpfor structure and motion
using the various techniques.

In this set of experiments, the additional information far algorithm is derived di-

rectly from the feature point correspondences. Using tatufe correspondences known
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to lie on the plane, we first compute the induced homograptwden the various virtual
images of the synthetic sequence. Then, we decompose tbes®raphy matrices and
obtain estimates of the ground plane normal and heightptbatde the side information
for algorithm [71]. The decomposition process requirestdedge of the calibration ma-
trix of the camera, and is described in detail in the appeBdiXhe estimates of GPN
and height are inaccurate when we have errors in homogragihmates (due to errors
in image features) or errors in the calibration matrix. Henwe report results under
two scenarios: when we have (a) accurate camera calibratidr{b) inaccurate camera

calibration.

5.4.7.1 Results with accurate calibration

Figs. (5.8(a),5.8(b)) illustrate the mean reprojectianerand the deviation of these
reconstruction estimates at a range of noise levels forhitettechniques. The ground
truth camera calibration was used in this case. Over a witgeraf noise levels, we see
that FBSfM performs consistently and competitively. Atywéw noise levels, Rother’s
performs slightly better than FBSfM. But at realistic andhpixel noise levels, FBSfM
seems to perform the best.

The experiment was repeated fortrials under scenarios with different pixel noise
levels. Fig. (5.10(a),5.10(b)) plot the reconstructioroes for each method for all the
trials. We observe that in different settings, both bundigistment (BA) and Rother’s
give bad solutions in many cases. BA is considered the galisird in SfM algorithms

because it minimizes the reprojection error starting witjoad initial solution. But it
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involves a highly nonlinear iterative refinement and is grom getting stuck at a local
minimum. The mean reprojection error of BA varies widelyigading that it may be

affected by local minima unlike FBSfM which is a lot more cimtent.

5.4.7.2 Results with inaccurate calibration

The above experiments were repeated for the case where warbactalibration
errors (around®0% error in the focal lengths and camera center estimates). nTdan
reprojection error plots (Fig. 5.9(a)) are similar, and tlewiations of the estimates are
lowest for FBSfM (Fig. 5.9(b)).

The experiment was repeaté&d times under scenarios with different pixel noise
levels with an inaccurate calibration matrix as depictedriom (5.11(a),5.11(b)). The

observations from these figures is similar to the case ofrategalibration.

5.4.8 A note on alternation methods

A popular alternative to SBA that falls within the class dfeahation algorithms
is resection-intersection [38]. This involves iteratiomgere (1) the cameras are fixed
and structure variables are updated, and (2) the struddireed and camera matrices are
updated. Each iteration is of low complexity similar to otliear alternation, but it in-
volves non-linear minimization in all the iterations. Theyldifference of our work is the
use of additional measurements for the decomposition ofom@iarameters that leads to
a better performing algorithm for low out-of-plane noisenditions. Our experimental

results do not show a clear advantage over either SBA ortiesdatersection from a
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Plot of pixel noise error levels versus mean reprojection error
T T

30

—<— Rother
BA
—+— FBSfM

251

Mean reprojection error
= N
o o

T T

i
o
T

i i i i i i i i
0 1 2 3 4 5 6 7 8 9
Standard Deviation of Uniform Noise

(a) Mean reprojection error

Plot of pixel noise error levels versus deviation of reprojection error
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Figure 5.8: These plots show the statistics of the reprojectrrors of the reconstruc-
tions on synthetic data at various noise levels in the imagwife points. They show the
mean and variance of the estimates for three techniquestMEB®other’'s and Bundle
Adjustment. The ground truth calibration matrix was usedhim process of extracting
initial estimates of GPN and height (additional informadiédrom the homographies. Ini-
tial values for the GPN and height differed from the groumnditbecause the homography
estimates were obtained from noisy feature correspondeiit®ere was low-to-moderate
error in the initial GPN and height estimates. In addititw, iterative techniques (FBSfM

and BA) used the same initial solutions to start the updatations.
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Plot of pixel noise error levels versus mean reprojection error with camera calibration errors
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Plot of pixel noise error levels versus deviation of reprojection error with high camera calibration errors
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(b) Variance of reprojection error

Figure 5.9: These plots show the statistics of the reprigjeetrrors of the reconstructions
on synthetic data at various noise levels in the image fegboints. They show the
mean and variance of the estimates for three techniquestMrB®other’'s and Bundle
Adjustment. There was a large error (from ground truth) im ¢alibration matrix that
was used in the process of extracting initial estimates o @GRd height (additional
information) from the homographies. Hence, this experinsamves as a case where
evaluation was performed with high levels of error in the G&td heights (from ground
truth). FBSfM and BA were started with the same initial smaotfor the reconstruction.
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Plot of mean reprojection error for different trials with uniform pixel noise with + 4 pixe Plot of mean reprojection error for different trials with uniform pixel noise with + 8 pixels
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Figure 5.10: These plots illustrate the reprojection erafrthe reconstructions on syn-
thetic data. The reconstruction errors are plotted for T@rmint trials. There is a uni-
formly distributed noise level of-4 pixels in the image features for the plot 5.10(a) and
a noise level oft8 pixels for the plot 5.10(b). They serve to give an idea of hbe t
various methods perform for repeated trials of the samerarpat. Results for three
different techniques are shown: FBSfM, Rother’'s and Buidlgistment. The ground
truth calibration matrix was used in the process of extnaginitial estimates of GPN and
height (additional information) from the homographiesnkke, this experiment serves as
a case where evaluation was performed with low to moderattd®f error in the GPN
and heights.
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Mean reprojection error for 55 trials with uniform noise with + 7 pixels, at high calibration Mean reprojection error for 55 trials with uniform noise with + 11.5 pixels, at high calibration errors
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Figure 5.11: These plots illustrate the reprojection erafrthe reconstructions on syn-
thetic data. The reconstruction errors are plotted for T@rmint trials. There is a uni-
formly distributed noise level of7 pixels in the image features for Fig. 5.11(a) and a
noise level ott11.5 pixels for Fig. 5.11(b). They serve to give an idea of how thBous
methods perform for repeated trials of the same experimieasults for three different
techniques are shown: FBSfM, Rother’'s and Bundle AdjustmEmere was a large error
(from ground truth) in the calibration matrix that was usethie process of extracting ini-
tial estimates of GPN and height (additional informatiaojf the homographies. Hence,
this experiment serves as a case where evaluation wasmpedavith high levels of error

in the GPN and heights.
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general class of initial solutions. However, the advantstyavs up very clearly when
the out-of-plane motion is known (with low error) througmser measurements. To the
best of our knowledge, we do not know of a previously proposathnt of resection-
intersection for the specific setting discussed here. &aslorks [38] have evaluated the
most general variant of resection-intersection and havadat to be suboptimal com-
pared to SBA in terms of accuracy. Based on this study, weladadhat the cumulative

frequency graphs of resection-intersection are expeotbd below that of SBA.

5.5 Experiments

5.5.1 Experiments on an Indoor Handheld Sequence

We report reconstruction results on an indoor image sequeken with a digital
camera of a toy car resting on a plane. SIFT features weractgtt and matched across
the image sequence. Inter-image homographies were estima@iustly using RANSAC,
and planar points were separated from those off the plane.hdmographies were de-
composed as described in appendix B to obtain the additiof@mation. The repro-
jection errors for the three techniques FBSfM, Rothers’ BAdare shown in Table 5.4.
Figure 5.12 illustrates the texture mapped 3D model of the This is an example of a
short video sequence, with the number of keyframes b&drand the number of feature

points around0.
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Reprojection errot

FBSfM 2.79
Rother 3.40
BA 4.10

Table 5.4: Mean reprojection error of the reconstructionBBSfM, BA, and Rother’s
for the indoor toycar sequence.

Figure 5.12: This figure illustrates three views of the textmapped 3D model of the car
in the toycar sequence, obtained by interpolating fromsspatructure estimates gener-
ated by FBSfM. Manually assisted feature point matches alks@ used to generate this
result, to ensure the display of a full 3D model.
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5.5.2 SfM on StreetView data

The Google StreetView Research dataset consists of raanisafje sequences and
metadata with the locations and orientations of the camar@sgponding to each image,
solved using GPS and IMU measurements deployed onboardné&taelata contained the
additional measurements in the form as required by the gexpalgorithm. We chose a
segment of the dataset containifhg) images when the car is moving on a single road.
We obtained feature tracks by SIFT feature detection andhireg, and used RANSAC
and the epipolar constraint to prune out outliers. Afteisthpost-processing steps, we
obtained3145 distinct feature tracks in the sequence.

We obtained an initial solution for the camera motion by asisg a straight line
motion and placing the camera centers equally distributethe line. We initialized
the out-of-plane camera rotation matrices using the dorctectors obtained from the
metadata, and the in-plane rotations were all fixed to zetee RAeights of the cameras
were later fixed to the measurements obtained from the ntetatlais provided an initial
solution for the camera motion. We used this initial motiowl ahe feature trajectories
to triangulate the 3D points using structure iteration ¢igna (5.10). The triangulated
3D locations were used as the initial structure solution. BeBEfM and SBA were
initialized with the same starting point. The initial refction error wa37.49. FBSfM
converged to a solution with an error b9 and SBA converged to a solution bf1.88.
Figure 5.13 illustrates the top view of the reconstructedp®ints and the camera path
corresponding to the FBSfM solution. When we initialized®SRBith the final solution of

FBSfM, the reprojection error reduced 1342.
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Figure 5.13: This figure shows the top view of the reconsédiBD points and the camera
path obtained by solving for structure and motion from 15@ges of the streetview

sequence using the proposed algorithm. The red points di@eaimera centers and the
green lines show the optical axis at each camera locatioewAirhages in the sequence
are shown in the left of the figure. We can clearly distinguishthree intersecting roads

in the reconstruction, with the road in the middle approxehatwice as wide as the other
two roads.
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Figure 5.14: This figure shows a texture mapped 3D model otleae imaged in the
StreetView sequence. Since the urban scene consists pyiroBbuildings and other
man-made structures, we fit several planes to the recotst@® points. The textures
for these planar patches were obtained from the correspgmuiages, and these textures
were applied to the planar patches using the Blender 3D rmupelol. Novel views of
the texture-mapped model were rendered using the same tool.

Figure 5.14 illustrates the textured 3D model of the seqe@enerated using the
Blender modeling tool. Figure 5.15 illustrates novel vieyathesized using the textured
3D model of figure 5.14 obtained using Blender software. Fdul6 illustrates the
trajectory of the camera overlaid on a map in Google Earttwswé.

Since we do not currently use sparse representations faurezaent matrices, our
implementation was not suited to execute multiple trialstanearlier sequence for mea-
suring computation times. Hence we select a subsequenicéasger number of feature
points. From the SfM solution with errdr342, we selected the first) frames, and’55
points with reprojection error less tharfor all frames. We used SBA for tH&5 point
subsequence and obtained an SfM reconstruction with efrorl013. We repeated the
camera configuration of th&) cameras twice by translating in thé and Z directions
by chosen distances. This produced a tota2af cameras. We generated the feature

points on the virtual cameras by reprojecting the origiiaj®ints on each of the images
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Row (1)

Row (2)

Row (3)

(a) Original (b) Rendered (c) Rendered
Images Images Images
(Novel View)

Figure 5.15: This figure illustrates three different partshe StreetView scene. Each
row shows one patrticular facade present in the scene. Thgesna column (a) show
the original images from the sequence. The images in collmnshow the synthesized
images generated using the 3D model from a viewpoint thatsiadar to (a). The
images in column (c) show the synthesized images generated the 3D model from a
novel viewpoint not present in the original sequence.
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Figure 5.16: This figure shows the trajectory of the camerthénStreetView sequence
obtained by solving for the SfM using our algorithm. The nem@d trajectory was con-
verted fro UTM coordinates to Latitude-longitude and oaetlon the map in Google
Earth. The trajectory reflects the path taken by the camemafaised from the image
sequences. The camera moves on the 'Smithfield Street’ imbovn Pittsburg. It starts
from the intersection of Smithfield and’ avenue, goes past the intersection with 'Blvd
of the Allies’, and ends after the intersection witlf avenue.

and adding random noise to the pixel locations, to simukeatuire detection errors. We
use this SfM problem witR10 cameras755 points with10% of the measurement matrix
known, as the test problem for measuring computation tifike.ground truth reprojec-
tion error (global optimum) for this problem was3g892. We generated initial solutions
by perturbing the in-plane translation by%, out-of-plane translation by%, in-plane
rotation angle by° and direction vector by°. Among thel5 runs of SBA that terminated
successfully, the final reprojection errors of two best nwese1.104 and1.311, and the
rest of the errors were all abo28. In contrast, the final errors of FBSfM ranged from
0.3906 to 0.3948 with the motion and structure reconstructions very closenéoground
truth. The average time taken by the proposed algorithmaohra solution wag5.957
seconds. Convergence of our algorithm was declared if ¢hation count reache)0 or

if the reprojection error decreased by less than- 5. All trials used100 iterations. The
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algorithm probably exhibit flatlining behavior beyomd0 iterations since the error was
decreasing very slowly. However, beyond this point, SBA le#er choice for minimiz-
ing the reprojection error and can be used in a hybrid appraéang with FBSfM. We
do not estimate the average time taken by SBA since none ofittseconverged close to
the global optimum. However, the time taken for the two beasiwerel 36.7 and138.5
seconds. Figure 5.18 plots the convergence curves for bgthithms. The bundle of
blue curves for FBSfM is clearly below the red ones of SBA aadiing a faster overall
convergence rate. The curves suggest that towards thekthg minimization, FBSfM
converges faster but when the solution is close to the min8B& converges faster. Fig-
ure 5.17 plots the convergence curves for both algorithragfrarate graphs with the time

axis in linear scale.

Convergence plot of FBSFM Convergence plot of SBA
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Figure 5.17: This figure illustrates the convergence cupleting the log of the repro-
jection error versus computation time for the proposedritlym and SBA. Figure 5.7(a)
plots the curves for FBSfM, and figure 5.7(b) plots the cufeeSparse BA. Figure 5.7(b)
cuts off the time axis at000 sec, however the maximum time taken \2ag0.

These results illustrate the computational advantageB8f¥ over SBA and make

it a good candidate for urban modeling which involves sajuarge reconstruction prob-
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Convergence plots of FBSFM and SBA for the StreetView sequence
T T T

error - Global minimum)

Log(Reprojection

Figure 5.18: This figure illustrates the convergence cupl@tsing the log of the reprojec-
tion error versus computation time for FBSfM and SBA. Theebturves are for FBStM
and the red ones are for SBA. The blue curves are clearly bislewed ones indicating
that FBSfM converges faster compared to SBA in this experime

lems.

5.5.3 SfM on Static Points in Aerial Video - 1

The algorithm was tested on a long real aerial video sequdri@metadata asso-
ciated with the sequence made available the normal vectbtrencamera heights from
additional sensors on-board. This information was conpfrtam the measurements of
the slant range and the azimuth, elevation and twist of theeca (which was part of the
metadata). Around700 feature points were tracked through the sequence, which was
225 frames long. Around0 keyframes were selected, which were the frames for which
timestamped metadata was available. This sequence is a dszmnstruction problem
because a large percentage of the feature points is obsargadh view. Two versions of
the algorithm were compared, one with the initial GPN and Jtmeates obtained from
the homographies, and another with estimates obtainedtfienrmetadata.

From table 5.5, we infer that FBSfM produces the best recoatsbn when used

110



with the metadata. With the homography-based estimate$6f, &he reprojection error
was worse, and this was to a largely due to a high reproje@ioor in one particular
frame. We feel this is because of a bad initial estimate ofGR&s and heights. The
homography decomposition step is sensitive to the caidrahatrix. Rother's method
requires the solution of a very large matrix equation whikighly time and memory
consuming. Hence we could perform a reconstruction for arigw of the points. Bundle
adjustment requires the inversion of a large Hessian matdxr technique performs
faster than these techniques because at any iterationetile ppemory requirement is

very limited.

FBSfM with metadata FBSfM | Rother| BA

2.83 10.5 | 24.32 | 5.56

Table 5.5: Mean reprojection error for the long aerial videguence in which we had
225 frames and 700 features.

5.5.4 SfM on Moving Objects in Aerial Video - 2

We report experiments on reconstruction of moving objenta planar scene. The
theoretical derivations suggest that the moving objecsssimed stationary, and there is
a separate camera moving over it. We did not compute theimigge homographies, but
obtained the GPN and height from the metadata, and estilmatgucture and in-plane
motion using the bilinear algorithm without direction veccor height refinement.

Fig. (5.19a) shows a snapshot of a moving vehicle with deteand reprojected

features shown in yellow dots and green squares respsctitAgd. (5.19b) shows the
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reconstructed 3D-model. The reprojection error was ardungixels. This experiment
illustrates how we can use our technique to perform SfM oeabjmoving on a plane,
when these objects are rotating and translating on the piaregeneral way. Earlier

techniques [53, 54] assume constrained object motion ierdcdcompute the structure.

@)

Figure 5.19: Fig (5.19a) shows a snapshot of a moving cardrvitheo sequence, with
the detected features shown in yellow dots. It also showsdpmjected features shown
as green squares. Fig. (5.19b) shows the partially reaartett 3D model of the car.

5.6 Discussion and Conclusions

We discussed the importance of exploiting the availabletismlemeasurements in
the SfM estimation framework. We described a fast, robudtsmalable SfM algorithm
that leverages additional measurements for computing ¢eresstructure and camera
motion from a sequence of images. We described how thisitiigotackles the needs
of scalability and speed required in current and future Sfidli@ations involving very
large datasets. We show that with the availability of meaxsients of the gravity vector
and camera height, the SfM problem can be simplified into iadar form and solved
using a fast scalable iterative procedure. The followirggtae lessons learned from the

experiments.

1. FBSFM produces better solutions than SBA from initiabsiohs with low out-of-
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plane motion error. We have compared the performance offoots much as°

in ground plane vector error aid; in the camera vertical position error.

2. The total time taken by FBSFM to attain convergence (vatimination conditions
set by a maximum number of iterations or minimum decreaserar)ds less than
that of SBA for large-sized problems when initialized frotaring points with low

error in out-of-plane motion.

3. When initialized from a large number of random startingnfgg FBSFM seems
to converge to solutions that are lower than those produge®BA (as is demon-

strated by the cumulative frequency graphs).

The chapter provides a direction of research in SfM in thesgme context where
we have large video datasets with associated metadatateoaciguisition platforms with
multiple sensors.

One avenue for future research is to develop algorithmstirabine video with the
raw data from inertial sensors for better SfM algorithmsertial measurements give us
the accelerations and rotation rates of the cameras whiels gs more information about
the camera motion than the measurements of gravity vectbn@ight. Such an algorithm
will potentially be more generally applicable in scenandsere we have cameras with

additional sensors.
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Chapter 6
Conclusions and Future Research Directions

6.1 Summary

This dissertation revolves around the present day avéilabf video datasets with
metadata containing additional information from sensoichsas inertial measurement
units, global positioning systems, wheel speed readeggdinnd-based platforms), mag-
netic compasses etc. The ubiquitous deployment of thesdadd sensors along with
cameras makes it possible to collect such metadata aloigwdeo sequences. With
additional data, the development of better video procgsaligorithms leveraging the ad-
ditional information is of prime research importance. Imstlissertation, we propose
novel studies and algorithms for several video processiskstsuch as stabilization, mo-
saicking, moving object detection and structure from nmgtleveraging the presence of

metadata with video datasets. The contributions are suinedbas follows.

1. We propose a methodology to reduce the computationab€ogensity-based reg-
istration by using a subset of salient pixels with high geats for the registration.
We study the variation of number of iterations and regigiraaiccuracy with the

number of pixels used for registration.

2. We propose a feature-based algorithm for stabilizatmhraoving object detection

in aerial datasets with accompanying metadata. The metaslatseful because
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it provides partial information about the camera motion ttealuces the motion
model to a pure translation model. We propose and demoegtratworking of
a joint feature tracking and segmentation algorithm thabiizes and identifies

moving objects in the video sequence

3. We use additional information about camera height anditgrdirection to come
up with a fast, robust, and scalable algorithm for strucftwen motion. The pro-
posed algorithm, which we call Fast Bilinear Structure fribtation (FBSfM) is
experimentally demonstrated to have favorable propect@spared to the sparse
bundle adjustment algorithm. In specific scenarios withdowr in the gravity and
height measurements, we are able to demonstrate that FBStidter than bundle
adjustment, and produces more consistent results frometyaf initial solutions.
We also describe results on several real datasets inclaldinGoogle StreetView

dataset.

6.2 Future work

There are several avenues for extending the work presemthdsidissertation. In
chapter 4, we presented an algorithm for joint tracking augreentation, where we used a
pure translation model for tracking the background featjoamtly. We assumed only one
motion model for the background and we classified featurasl@ss and outliers with
respect to the single background model. The outlier featwere tracked as independent
KLT features. We plan to extend this framework under the mggion of multiple motion

models in the image sequence. The use of multiple motion leedk extend the appli-
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cation of this framework for more general scenes. In addjtibough we have used the
pure translation model, the algorithm would work just aslvwele solved the parameters
of a higher order model such as affine or homography. Thisextitnd the applicability
of the algorithm for scenes with multiple planes.

In chapter 5, we presented a structure from motion algorl#veraging the avail-
ability of gravity and height measurements obtained froemtial sensors. This leads to a
bilinear algorithm that is demonstrated to be fast and robdswever, we do not use the
complete information available from these sensors to fuieimage measurements. In
particular, fusing image features with rate measuremeaits & gyro and accelerometer
for estimating trajectory can lead to algorithms for a beyagnge of scenarios beyond

what is addressed in this dissertation.
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Appendix A

Proofs of convergence

We reproduce the Global Convergence Theorem as stated Jiridi7the sake of
completeness:

Theorem 1 (GCT)Consider a topological space, a solution sef’ C X, and letA
be an algorithm onX. Suppose that given,, a sequence of poinfs:; }7° , is generated

in X such that fok > 0, 24,1 € A(zy). Suppose
1. all the pointsX, are generated in a compact $et X,
2. there exists a continuous functigh: X — R such that

o ifx ¢ ', thenZ(y) < Z(x) forally € A(x)

o ifz el thenZ(y) < Z(z)forally € A(x)
3. the mappind is closed at points outside

then the limit of any convergent subsequence;obelongs td".

Let S denote the matrix containing tiD coordinates of all the points. Lét/;
denote the matrix containing the in-plane motion pararséter¢,, 6) of all the frames,
and M, contain out-of-plane motion parametéts, ¢, ) for all frames. We show using
the Global Convergence Theorem that the proposed FBSFMithigpconverges to a

solution(S*, M}, M) and the error converges to a local minimush

117



Let the sef2 denote the set of all valid structure and motion parameteh tat
||TZ||2 = k, and the angle®, ¢, ¢) € [—m, x]. This set is a compact set of the parameter
spaceR3" %™, Each iteration maps the current estimaté &y, My, S) to the next one
computed according to the equations. In case of depth andmitgrations, this involves
solving linear systems. In case of side-information refiaptriterations, this involves
performing gradient descent on the error functions. Aftaheiteration, since the points
xp = (MF, M}, S*) generated by the iterations belong%pthe first assumption of GCT
holds.

Let us define the descent functighto be the same as the error functiéh(5.7)
being optimized. The solution sét € X contains the critical points of the objective
function. Since the error is non-increasing, it is easilgrsthatE'(y) < E(x) for anyz.

We have to show that the error is strictly decreasing whenppéyahe algorithm starting
from a point that is not in the solution sBt Alternately, we must show that after the
iterations, if the error is constant, then we started offrfi@ point in the solution set. This
is proved using a very similar reasoning as done in [56, 78hd#, the second condition
of GCT is also satisfied.

To show that the mapping is closed, we take an approach similar to [56, 78] and

decomposel into elementary mappings corresponding to each iteration:

e A, associates witlis®), ™ M%) the solutionS*+1) obtained by solving the
depth iterations. This is a continuous point-to-point magpsince the linear sys-

temin (5.9) has a unique solution.
o A,associates withs*+1, (* 115 the solutiond**") obtained by solving the
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motion iterations. This is a continuous point-to-point miayg, since the equations

in (5.15), (5.18) give rise to a unique solution.

e Aj; associates withs+D, A% 11%) the solutionhz; " obtained by refining
the out-of-plane motion parameters using Levenberg-MandfuLM) iterations.
This is a continuous point-to-point mapping since LM conastits solutions using

line-search.

The composition of closed point-to-point mappings is ftsksed [56, 77]. Since

all the conditions of GCT are satisfied, the FBSFM algoritlrglobally convergent.
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Appendix B

Decomposition of homographies to obtain additional infation

When a dominant plane is present in the scene, we can useathe pbrmal and
the height from the plane as side information in our algonithVe can accumulate the
homographies induced by the plane from multiple views aredaudecomposition tech-
nique [71] to compute the plane normals and the heights. fiee-image homographies
are robustly estimated using RANSAC.

We briefly describe the technique that can be used to estimatgound plane nor-
mals, rotations, translations and other geometric parma@&tom a set of homographies
induced by a plane between multiple views.

Supposefd;; is the homography from view to view i. It is expressed in terms

tint

nl
J
d;

of rotations, translations and the ground plane normalS;as= R;; +

. Here,Qij
denotes quantities from vieyvto view i, n; is the ground plane normal at viewandd;
is the corresponding perpendicular distance from the pléfeecan compose a matrix

containing the various homographies as follows:

Hyy -+ Hip

G=|: . (8.1)

Hml te Hmm

The individual homographies are normalized so that theaiaresingular value i$. The
G matrix can be decomposed@s= R+T N whereG andR are3m x 3m, T is 3m xm
andN is 3m x m with m being the number of views. Her#), is a block diagonal matrix
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of all the normal vectors, andl, T, are a block matrices with thg, ;) block composed
of R;; andT;; respectively.

It has been shown in [12] that the matiix= W GTW ! has rank3, where

W = diag(Is, det(Hx )13, . .. det(Hm ) I3) (B.2)

L has three eigenvectors with eigenvalueshof m. As the vector of ground plane
normals(nq, ns, . .., n,) can be shown to be an eigenvector/oWith eigenvalue ofn,

it is a linear combination of the top three eigenvectord.ofThey elaborate a technique
to solve for the normals using these constraints. Aftervering the normal vectors, the
translations and rotations can be solved using GN — NU,, andR = G — GNNT +
NU,,NT, wherelU,, is anm x m matrix of ones. Thus, the heights from the ground plane
can be estimated using only the homography matrices andatemsing the formula

d, = —3—, whered,, is the height of the camera at view

ni Hypny
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