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The non-trivial vacuum properties of Quantum Chromodynamics can be af-

fected by a constant external magnetic field. The chiral condensate and the mag-

netization of the vacuum are the two properties studied in this work. The chiral

condensate, which is the order parameter for chiral symmetry breaking–one of the

most important properties of QCD–is an optimal quantity to study at intermediate

field strengths. Using both models and chiral perturbation theory, it can be shown

that an electric field suppresses the chiral condensate whereas a magnetic field en-

hances it. Higher-order calculations in χPT may have a substantial effect on the

magnitude of the shift in the chiral condensate, but their exact effect is unknown

due to the uncertainty in the parameters of the theory. The second parameter,

the magnetization, is used at fields large enough for perturbative calculations to

be valid; at these scales, there is large explicit chiral symmetry breaking and the

chiral condensate cannot be used. The first-order magnetization shows a correction

of the form B logB; the calculation to next order in perturbation theory shows a

correction small enough that non-perturbative corrections dominate.
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Chapter 1

Introduction

The study of physics has progressed over time from the study of the very large

to the study of progressively smaller scales. Our understanding of the composition

of matter has deepened from molecules, to nuclei, to the protons and neutrons com-

posing them, and finally to the fundamental degrees of freedom for the interactions

of these hadrons, quarks, governed by Quantum Chromodynamics (QCD). The dis-

cussion which follows and the rest of the introduction follow closely, in many cases,

the discussions in textbooks such as refs. [2, 3]. More details can be found in these

and other sources.

In QCD, the vacuum, or absence of real particles, is nontrivial, and so it is

valuable to analyze the effects of external conditions on this vacuum. This work

discusses the effects of an external electromagnetic field on this vacuum in a variety

of energy regimes.

The following chapter contains a discussion of QCD as a theory. It begins

with the origins of QCD, its structure and pertinent features, and the experimental

results which have confirmed this structure. This is followed by a discussion of the

methods of calculating in QCD at various energy regimes. Finally, a brief overview

of the features of the QCD vacuum and how it is affected by external parameters is

given. Chapt. 2 discusses the effects of an external electromagnetic field of low-to-
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medium strength using models and the leading order in Chiral Perturbation Theory.

Chapt. 3 extends the Chiral Perturbation Theory result to next-to-leading order.

Chapt. 4 discusses the effects of a strong electromagnetic field on the QCD vacuum.

1.1 The Brief Story of QCD

The transition from an understanding in terms of hadrons to one in terms

of quarks is interesting because it was driven by mathematical necessity as well

as by direct experimental observation. The observed hadrons fit very well into

representations of the flavor symmetry group SU(3)F , but none transformed as the

fundamental representation of this group[4, 5]. Mathematically, all representations

can be ultimately decomposed in terms of the fundamental representations of their

group, and so it is natural to postulate a corresponding physical object, the quark,

which must be a fermion. Nature is only approximately symmetric with respect

to flavor, and we know now that the three light quark flavors in this approximate

symmetry group (up, down, strange) are supplemented by additional flavors with

much larger masses (charm, bottom, top).

The quark model [4] was developed from these needs and proved very successful

at explaining the menagerie of known hadrons, but left a few puzzles. Notably, no

candidate particles with fractional charge had been discovered, and one baryon,

the ∆++, would be a completely symmetric bound state of quarks[6, 7, 8, 9]–an

impossibility for fermions. In order to resolve these difficulties, color, an extra

degree of freedom, was introduced[10, 11, 8]. Each quark, in addition to its other
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quantum numbers, has one of three colors. The underlying theory is completely

symmetric with respect to this degree of freedom. Therefore, the wave function for

a baryon, can be completely antisymmetric with respect to color, making it possible

for the rest of the wave function to be completely symmetric.

Color also provides a natural framework for the notion of confinement, the

fact that although quarks fit well with mathematical necessity, no free quarks were

observed. It is postulated that observable particles must be in a completely antisym-

metric, “white,” color state. Not only does color allow a more precise description

of a confined state, but it also leads to at least a qualitative understanding for why

confined states are required. This is closely related to another important feature

of QCD–asymptotic freedom[12, 13], the weakening of the QCD coupling at high

energies. Asymptotic freedom is a natural consequence of a scale anomaly at the

quantum level of the theory.

Real understanding of the strong force requires a precise formulation of the

lagrangian for the theory. Construction of the QCD lagrangian was guided by a

few principles: it must respect the known symmetries of nature, and exhibit all

experimentally observed features. Conveniently, the idea of color fits seamlessly

into an already existing sophisticated mathematical framework, that of non-abelian

gauge theories or Yang-Mills theories[14].

Mathematically, the color symmetry corresponds to the invariance of the la-

grangian under transformations in the color symmetry group, SU(3)C . Quarks nat-

urally transform under the fundamental representation of this group, undergoing

the transformation ψ(x) → eiαataψ(x), where αa is an arbitrary parameter multiply-
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ing the (non-Abelian, non-commuting) generators of the group, ta, and ψ(x) is the

quark field. The global form, where αa is taken to be constant over space, is simple

to implement. However, from the study of quantum electrodynamics (QED), it was

clear that local symmetries, where αa = αa(x), are potentially interesting, and lead

to a rich dynamical theory[15]. The derivative in the kinetic term acts on this trans-

formation when it is applied locally, and in order to keep the lagrangian invariant,

a new position-dependent operator must be introduced–for the non-Abelian group

SU(3) this is the gluon field. As the gauge field for QCD, the gluon moderates the

strong interactions just as the photon and the W± and Z0 bosons moderate the

electromagnetic interaction. The QCD lagrangian can be written[3, 16]

LQCD = − 1

4
Gµν

a Ga
µν + iψ̄α

j γ
µ (Dµ)αβ ψ

β
j −mjψ̄

α
j ψj,α, (1.1)

where Ga
µν ≡ δµA

a
ν −δνAa

µ +gfabcA
b
µA

c
ν , ψ(x) and ψ̄(x) are the quark and anti-quark

fields, and (Dµ)αβ ≡ δαβ∂µ− ig
∑

a
1
2
λa

αβA
a
µ, with α and β representing color indices.

The matrices λa
αβ are the eight 3× 3 generators of the color group, and the fabc are

the structure constants of the SU(3) algebra, [Ta, Tb] = ifabcTc, with (T a)αβ = 1
2
λa

αβ.

One difference between QED and QCD which can be read from the lagrangian

is that in QCD, the gauge bosons can interact with each other in three-gluon and

four-gluon vertices.

More importantly, the peculiar nature of the non-Abelian QCD interaction

leads to a key feature of QCD, asymptotic freedom [12, 13]. It is well known that

couplings in quantum field theory vary by the scale at which interactions take place.

In QED, this can be qualitatively understood as “screening.” Virtual electron-
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positron pairs cluster around each source of charge. When an interaction takes

place at a long distance (low momentum), the source of charge appears screened

(reduced) by these extra pairs. However, closer to the charge carrier, its “bare”

charge is manifest, and in fact becomes infinite as the interaction becomes arbitrarily

close. By contrast, in non-Abelian gauge theories, the opposite occurs, and the

charge is anti-screened, with the interaction appearing weaker at short distances.

The qualitative picture for this is more complex, but its difference with QED is,

as expected, a result of the presence of three different colors interacting in a non-

Abelian way.

Asymptotic freedom is the result of this anti-screening effect in which at small

distances (high energy), QCD becomes weak, in contrast with QED, which becomes

strong at small distances and weak at long distances. Philosophically, asymptotic

freedom is desirable. A theory which is asymptotically free is formally valid up to any

energy and can thus be treated as a fundamental theory in its own right, regardless

of its range of validity in nature. In contrast, a theory like QED is thought to make

sense only as an effective theory, since the theory is presumably not well defined

at short distances and high energies due to the diverging coupling in that regime.

By contrast, anti-screening makes the QCD coupling increase with distance, which

provides an intuitive picture of confinement. Qualitatively, as two colored charges

move away from each other, the potential between them becomes so great that a

new pair of colored charges is created from the vacuum, cancelling the members of

the original pair and forcing the whole system to appear colorless.

The QCD lagrangian fits all of the requisite properties of a theory of the strong
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interactions, but the final test is to see if it produces verifiable numbers in agreement

with experiment. Asymptotic freedom allows perturbative calculations in QCD at

very high energy, which is where persuasive tests of the theory occur. Scattering of

a lepton off of a nucleon (Deep Inelastic Scattering, DIS) is a measurable process

where the scaling of the QCD coupling at various energy scales becomes apparent.

Such experiments give strong experimental evidence that QCD is indeed correct at

high energies. The theory behind this scaling will be discussed briefly below.

The corollary, that the QCD coupling becomes large at low energies, makes

calculation more difficult at these low energies. Not only is experimental verification

at these energies not possible, it is difficult to gain understanding of any kind at these

energies. Numerous methods and models have sprung up which will be discussed

later.

1.2 Calculating in QCD

With the QCD lagrangian, the theory of the strong force can be said to be

formally “known,” but it is of no practical use without the ability to make predictions

that can be tested against experiment. Because the QCD coupling is different in

various energy regimes, the method for making these concrete predictions will vary.

This section discusses the most important of these methods, divided by energy

regime.

At high energies QCD is perturbative, and calculations are simple to per-

form; this is the regime which produces the precise results which have been used
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to verify QCD. At the very lowest energies, it is possible to constrain the number

of possible terms in the “effective” lagrangian to a manageable number, constrain-

ing their relative strength through experiment using Chiral Perturbation Theory

(χPT)[17, 18, 19]. In between, a number of less rigorous methods have been con-

ceived, including the NJL model and related models[20], the linear sigma model[21],

the large-NC expansion[22, 23, 24], and recent attempts to apply the AdS/CFT

correspondence to QCD[25].

1.2.1 High-energy: Perturbative QCD

QCD is perturbative, and so calculations at high energy follow the same pro-

cedure as any field theory calculation. Following is a brief discussion of some of the

more important results.

The calculation of the running of the QCD coupling which leads to asymptotic

freedom demonstrates one of the most important features of QCD. As with any

quantum field theory, the Callan-Symanzik equation[26, 27] is used to calculate the

β-function as a function of the coupling. In QCD, the β-function can be calculated

at lowest non-trival order to be

β(g) = − g3

(4π)2
b0, (1.2)

where the strong coupling αs = g2/4π and b0 ≡
(

11
3
NC − 2

3
Nf

)

; NC is the number

of colors (three in the real world) and Nf is the number of flavors (generally three,

but more at energies above the masses of the heavier quark flavors). This leads to
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an equation for the running coupling of the form

αs(Q) =
αs(µ)

1 + (b0αs(µ)/2π) log(Q/µ)
. (1.3)

This is all the information required to calculate the coupling of QCD at any scale,

but lacks any fixed parameters. The dimensionless coupling can run and thus is

not an essential characteristic of the theory. In addition, the arbitrarily defined

renormalization scale, µ, has entered the problem. The solution is to define the

QCD scale, ΛQCD, via

1 = αsb0/(2π) log(µ/ΛQCD). (1.4)

The relationship between a running dimensionless parameter and an arbitrary renor-

malization scale has been neatly encapsulated into a single physically meaningful

scale, which can help us gain insight into the workings of QCD. It is this scale which

determines whether calculations can be performed perturbatively or whether lower-

energy methodology must be used. ΛQCD is a parameter of the theory and must be

determined from experiment.

It is also worth noting that any observable quantity must be independent of

unphysical scales, so it must also obey a Callan-Symanzik equation, with the running

dependent on the coupling constant evaluated at whatever relevant scales; if there

is only one, that is the scale which determines whether the perturbative expansion

is valid or not.

Another important effect of the running of the QCD constant is scaling viola-

tion. Bjorken scaling[28] (no change in coupling with scale) is derived in the limit

where there are no interactions between quarks. High energy collisions close to this
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limit are in the regime where QCD is perturbative, and so QCD corrections can be

calculated. The Altarelli-Parisi equations[29], which describe the evolution of the

nucleon structure functions over x, cannot be analytically solved but can be evolved

numerically over x. The results of this evolution are in persuasive agreement with

experiment, as can be seen in Fig. 1.2.1[30].

Numerous perturbative QCD processes can and have been calculated. Some

of the most important can be found in textbooks such as Refs. [2, 3].

1.2.2 Low-energy: Chiral Perturbation Theory

On the opposite end of the spectrum from high energy QCD, αs becomes

strong and we might expect that calculations would be absolutely impossible except

by brute force methods such as lattice QCD[31]. This is largely true at medium

energies, but at low energies the situation is simplified. Here, the energy is so low

that the higher-energy degrees of freedom are “frozen,” and the only relevant degrees

of freedom are the pions whose dynamics are explained using Chiral Perturbation

Theory (χPT)[17, 18, 19]. There are a number of good reviews covering the basics

of χPT in some depth, including, for example, Refs. [32, 33]. Much of this section

follows closely the discussion in Ref. [33].

To understand χPT, it is important to first understand chiral symmetry. It

acts on the isospin doublet

ψ =









u

d









. (1.5)
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Quark fields can be expressed more conveniently in terms of their “chirality” as

ψL(x) =
1

2
(1 − γ5)ψ(x) ψR(x) =

1

2
(1 + γ5)ψ(x), (1.6)

where ψL is termed the “left-handed” field and ψR is the “right-handed” field.

Rewriting the QCD lagrangian for massless quarks in terms of these fields results

in independent terms for ψL and ψR; the two different kinds of chiral transforma-

tions correspond to these fields undergoing separate chiral transformations. Thus,

the lagrangian has more symmetry than could naively be expected. This symme-

try, SU(2)L × SU(2)R (or SU(3)L × SU(3)R if the slightly heavier strange quark is

incorporated), can be written in terms of the quark fields as the two independent

transformations

ψ(x) → eiαψ(x) ψ(x) → eiαγ5

ψ(x). (1.7)

Chiral symmetry is not exact; the quark mass term is mixed in left- and right-

handed quark fields, so that the small quark mass results in a slight breaking of

chiral symmetry. However, more interesting than this slight breaking is the large

spontaneous breaking of chiral symmetry which takes place in the QCD vacuum.

The chiral condensate,

Σ = 〈q̄q〉 = 〈0|q̄q|0〉 = 〈0|q̄LqR + q̄RqL|0〉 (1.8)

is not invariant under separate left- and right-handed chiral rotations. Thus, if the

QCD vacuum is really almost invariant under separate chiral rotations, we would

expect this quantity to be very near zero. The measurement and interpretation of

the chiral condensate requires some care, as it is a scale-dependent quantity. Still,
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with this in mind, it can be measured as −(229 ± 9MeV )3 at 1 GeV[34]. This

value is much larger than we would expect from the slight breaking of chiral sym-

metry due to the quark mass, and therefore chiral symmetry must be spontaneously

broken. Goldstone’s theorem says that for every spontaneously broken continuous

symmetry, there will be a massless particle with the quantum numbers of the sym-

metry rotation[35], so it is critical to find out exactly how many symmetries are

broken in this case. While the chiral condensate is not invariant with respect to

independent rotations of the left- and right-handed quarks, it is invariant with re-

spect to the same rotation of both. The symmetry breaking then takes the form

SU(2)L × SU(2)R → SU(2)L+R. Four independent symmetries are broken, and we

should look for massless particles which correspond to these symmetries. There are

no exactly massless particles with the appropriate quantum numbers, but there are

particles with unexpectedly low masses, the pseudoscalar triplet of pions. Their

small mass can be attributed to the small quark masses; in the absence of quark

masses and with exact chiral symmetry they would be massless.

It is now clear why pions are the ideal degrees of freedom for chiral pertur-

bation theory. Pions are mesons, which can be identified as the Goldstone bosons

of spontaneous chiral symmetry breaking, which gives them a mass markedly lower

than other scales in QCD. This scale separation allows the expansion parameter

mπ/Λ to be small (where Λ is the next largest scale). This expansion is Chiral Per-

turbation Theory (χPT)[17, 18, 19], one of a general class of theories called effective

theories (see [36] for a review).

At energies close to the pion mass, it will be convenient to model QCD in-
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teractions as interactions between pions. As with all effective theories, the kinds

of interactions (terms in the Lagrangian) that are possible will be limited by the

symmetries of the problem. The expansion parameter, p/Λ, provides a framework

for ordering these possible interactions. The terms at lowest order in the momen-

tum (mπ, p, or external terms such as the electromagnetic field) will give dominant

contributions to the calculation. These constraints together restrict the lowest or-

ders of the chiral lagrangian to a manageable number of terms. Each of these terms

represents an interaction allowed by the symmetries of the problem. The relative

strength of these interactions, however, is undetermined by χPT; it must somehow

be dictated by the details of higher-energy physics. The only dependence on this

high-energy physics is encapsulated into the “low-energy coefficients” (LECs) which

multiply each term in the lagrangian.

The chiral lagrangian can most easily be constructed by using building blocks

which naturally carry the symmetries of the problem. For the SU(2) case, the pion

octet can be combined into a unitary matrix U using the Weinberg parameterization,

U = σ +
i

Fπ
~τ · ~π σ2 +

~π2

F 2
π

= 1. (1.9)

Here, the pions are still the independent degrees of freedom, and σ can be expanded

in terms of the pion fields based on the second equation. The U matrix transforms

linearly under a chiral transformation, but because of the nonlinear relationship

between U and π due to the second relation, the pions do not. The U matrix is the

most elementary building block for the lagrangian, but since U †U = 1, a nontrivial

lagrangian will require at least a derivative, which contributes a factor of p, the
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momentum. The lowest-order lagrangian possible is

L2 =
f 2

4
〈∂µU

†∂µU〉, (1.10)

where 〈A〉 indicates a trace, and f is a dimensionful parameter that is yet to be de-

termined. For concrete calculations, U must be expanded in terms of the pion fields;

each term in that expansion will be smaller by a factor of ~π/Fπ. For calculations

involving only L2, only the first term in this expansion can be used. Higher order

terms in the U expansion will also require higher order terms in the lagrangian.

χPT also needs a way to incorporate the relevant parameters of QCD, such

as mπ, and external fields, such as the electromagnetic fields. This is neatly ac-

complished by incorporating these parameters as classical background sources. This

corresponds to modifying the original QCD lagrangian to be

LQCD = L0
QCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q, (1.11)

where these external fields are taken to be probes. Using the standard background

field method, Green’s functions and expectation values for other quantities can be

calculated by varying the generating functional with these external fields and taking

the zero-field limit of this variation. The generating functional is written in terms

of the quark and gluon fields

exp{iZ} =

∫

DqDq̄DGµ exp

{

i

∫

d4xLQCD

}

. (1.12)

This functional becomes S2, the classical action at lowest order.

The concept of gauge invariance can be used to extend the background fields

to the χPT formulation. The QCD lagrangian with these backgrounds obeys global
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symmetry transformations, which when promoted to local symmetries require the

chiral lagrangian to contain the fields aµ and vµ within the constructions

DµU = ∂µU − irµU + iUlµ

DµU
† = ∂µU

† + iU †rµ − ilµU
†

F µν
L = ∂µlν − ∂ν lµ − i[lµ, lν ]

F µν
R = ∂µrν − ∂νrµ − i[rµ, rν].

(1.13)

In the isospin limit (the regime used here) lµ = rµ and thus FL = FR. The param-

eters s and p are not separately gauge invariant, but the combination s + ip is, so

these external fields must appear together in that form. The independent values of

s and ip are arbitrary, so without loss of generality, the p = 0 gauge can be chosen.

In the isospin limit (mu = md) of SU(2) these background fields can be iden-

tified in terms of the parameters we are interested in as

ru ≡ vµ + aµ = eQAµ + . . .

lu ≡ vµ − aµ = eQAµ + . . .

s = M + . . . ,

(1.14)

where Q and M are the charge and mass matrices for the quarks.

Finally, the most general lowest-order lagrangian using all of these components

is

L2 =
f 2

4
〈DµU

†DµU + U †χ + χ†U〉, (1.15)

where χ = 2B0(s + ip), with B0 a constant which will be determined later. With

nonzero external fields, chiral symmetry is broken, but because the symmetries of
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the original theory have been preserved, this breaking takes the same form as that

in the QCD lagrangian.

Armed with the lowest order lagrangian, it is possible to relate the constants

appearing in χPT to the parameters of QCD. The two constants at this level are f

and B0. The first step is expanding the L2 lagrangian in terms of the pion fields.

In particular, the mass terms are (again, taking the isospin limit mu = md = mq)

L(2)
mass = −mqB0(π

0)2 − 2mqB0π
+π−. (1.16)

The pion mass can then immediately be identified as

m2
π = 2mqB0. (1.17)

Other identifications can be obtained from the generating functional (1.12). The

pion coupling constant, fπ, can be obtained from its definition and this generating

functional as

i
√

2fπp
µ ≡ 〈0|(Jµ

A)12|π+〉 =
δS2

δaµ

, (1.18)

which results in the identification f = fπ.

Following these calculations, in the Weinberg parameterization and the isospin

limit, the lowest order lagrangian can be written in terms of the pion fields as

L(2) =
1

2
(∂µπ

0)2 − M2
π

2
(π0)2 + (∂µπ

+ + ieAµπ
+)(∂µπ

− − ieAµπ
−) −M2

ππ
+π−

+
1

2F 2
π

[

π0∂µπ
0 + ∂µ(π+π−)

]2 − M2
π

8F 2
π

[

2π+π− + (π0)2
]2
.

(1.19)

The situation with the L(4) is somewhat more complex. First, it can be constructed

using the same principles as L(2), but has more terms and therefore more undeter-

mined LECs. Another difference is that while the LECs at the lowest order, F and
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M , have an obvious interpretation in terms of physical quantities, the coefficients

at higher orders must be extracted indirectly from experimental processes or the

lattice. In these results, the SU(3) LECs are most often quoted. The full form of

the next order lagrangian using the SU(3) U matrix is

L(4) =L1〈DµU
†DµU〉2 + L2〈DµU

†DνU〉〈DµU †DνU〉

+ L3〈DµU
†DµUDνU

†DνU〉 + L4〈DµU
†DµU〉〈U †χ + χ†U〉

+ L5〈DµU
†DµU

(

U †χ+ χ†U
)

〉 + L6〈U †χ+ χ†U〉2

+ L7〈U †χ− χ†U〉2 + L8〈χ†Uχ†U + U †χU †χ〉

− iL9〈F µν
R DµUDνU

† + F µν
L DµU

†DνU〉 + L10〈U †F µν
R UFLµν〉

+H1〈FRµνF
µν
R + FLµνF

µν
L 〉 +H2〈χ†χ〉.

(1.20)

The form of L(4) is greatly simplified using only two quark flavors (SU(2)) and in

the isospin limit. The relationship between the SU(2) and SU(3) LECs is:

l1 =4L1 + 2L3 l2 = 4L2 l3 = 4(−2L4 − L5 + 4L6 + 2L8)

l4 =4(2L4 + L5) l5 = L10 l6 = −2L9

l7 = − 8(2L7 + L8).

(1.21)

The LECs H1 and H2 multiply terms with no pseudoscalar fields, and so are not

directly measurable.

The chiral expansion has been extended to O(p6)[37, 38], with 115, 94, or 57

terms, for SU(n), SU(3), and SU(2), respectively. It will not be reproduced in full

here, but select terms will be used in calculation later.

In general, χPT predictions have good agreement with experimental and nu-

merical lattice data, with some observables accurately reproduced at O(p4), and
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others requiring O(p6) calculations to be accurately modeled (see Ref. [39] for a

review of some results).

One of the most useful applications of χPT is in lattice QCD. Due to the limi-

tations of computational power, lattice calculations are often made with unrealistic

values for physical QCD parameters, such as Mπ. Rather than outputting results

with as little meaning as the unphysical masses that are input, lattice calculations

can instead be used to obtain values for the LECs, which are independent of the

unphysical QCD inputs[40, 41]. These LECs can then be used with more realistic

QCD values to obtain concrete predictions for the real world.

1.2.3 Medium energy: Models and the Lattice

At energies approaching ΛH , neither pQCD nor χPT can give reliable pre-

dictions. Numerous models are used to try to close this gap, including the NJL

model, the linear-σ model, applications of AdS/CFT, and others, with the large-NC

approximation helping to guide the selection of models. While model-building has

up until now been the only analytical strategy for understanding QCD, numerical

calculation in the form of lattice QCD[31] has come to the forefront in theoretical

understanding (for a recent review of basic lattice results see Ref. [42]).

1.2.3.1 The large NC approximation

The QCD coupling constant is not small at medium energies, and therefore an

expansion in αs is not perturbative. Naively, one might hope to make a perturbative
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expansion in some alternative parameter. In the 1970s, ’t Hooft and Witten[22, 23,

24] identified an unlikely alternative for a small expansion parameter: 1/NC, where

NC is the number of colors and is taken to increase from 3 → ∞. In this case, the

color symmetry group is SU(NC), and the gluon field has N2
C components, and the

quark field has NC components. On its face, this approximation is not very good;

NC = 3 in the real world. Nonetheless, the hope is that the large-NC approximation

can provide some level of qualitative understanding in a regime where there is a

dearth of analytical tools.

The next step is to understand where NC appears in QCD. There is some

explicit NC dependence: A closed quark loop, for example, can be of any color

and therefore results in an extra factor of NC . Other parameters–the QCD cou-

pling constant g, in particular–may or may not have NC dependence, and so the

large-NC expansion is, on some level, inherently arbitrary. This choice can be made

somewhat intelligently by deciding which quantities should have a smooth limit for

NC → ∞. In the canonical ’t Hooft large NC limit, the gluon one-loop vacuum

polarization (Fig. 1.2(a)) is taken to have a smooth large-NC limit. In this diagram,

the gluon contributes an explicit factor of N2
C , but because of the constraints of the

external lines, the diagram has an overall explicit factor of NC . The two vertices

contribute a factor of g2, so any total NC dependence would come from the combi-

nation g2NC , called the ’t Hooft coupling. For a smooth NC limit, this factor must

be NC independent, which requires the dependence g ∝ 1/
√
NC .

Once the NC dependence of the coupling has been determined, it is possible

to make some deductions about the behavior of fields in this limit. A convenient
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(a) lowest-order gluon vacuum

polarization

(b) a planar diagram (c) a non-planar diagram

(d) Quark one-loop correction to gluon vacuum polarization

(e) Meson at large-NC

Figure 1.2: Large NC diagrams
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tool for making these deductions is the “double line notation” of ’t Hooft[22], where

particles can be represented by a number of lines corresponding to their color degrees

of freedom; thus, quarks and anti-quarks are represented by a single line and gluons

are represented by a double line. In this notation, then, a closed loop will contribute

a factor of NC , and a vertex will contribute a factor of 1/
√
NC from the coupling

constant. Before moving on to the properties of mesons, it is possible to list a few

rules determining which diagrams will contribute to a process.

The first of these is the rule that non-planar diagrams are suppressed. Ex-

amples of planar and non-planar diagrams in double-line notation can be seen in

Figs. 1.2(b) and 1.2(c). The planar diagram carries a factor of N3
C(1/

√
NC)4 = NC ,

whereas the non-planar diagram carries a factor of N1
C(1/

√
NC)4 = 1/NC. This

property can be understood in general by considering the iterative insertion of glu-

ons. If a gluon is inserted into a planar diagram to produce another planar diagram,

it is either dividing one loop into two loops (on the inside) or adding a loop where

there was none (on the outside). Thus, the net change in the NC dependence of

the diagram is NC(1/
√
NC)2 = 1. On the other hand, if the insertion of a gluon

produces a non-planar diagram, it will have combined two loops into a single loop,

with a total change of at least 1/NC(1/
√
NC)2 = 1/N2

C .

The other selection rule is that internal quark lines are suppressed. This

can be roughly understood by noting that a closed quark loop has NC degrees of

freedom, and a closed gluon loop has N2
C degrees of freedom, which will lead to

diagrams containing these loops to be down by one order of NC . The particular

case of a single quark loop in the gluon propagator can be seen in Fig. 1.2(d), with
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NC dependence (1/
√
NC)2 = 1/NC. However, rather than understanding this rule

in the context of a quark loop as a gluon loop minus one NC term, it is fruitful to

examine the comparison of a diagram with no internal quark loop to one which has

one. Here, inserting a quark loop within a single gluon propagator will result in two

new orders of the coupling constant, but will not change the number of loops in the

diagram (attaching other gluons to the loop will have the same effect as discussed

above and will not change the NC dependence). Thus, internal quark lines are

suppressed.

Unfortunately, while the number of diagrams can be reduced in the large-

NC limit, there is still an infinite number, so exact calculation of the contributing

diagrams at large-NC is not practical. Even with just the NC dependence, however,

it is still possible to make some interesting deductions from the large-NC limit.

Using these rules, a clear picture of the composition of a meson at large-NC

emerges. It will look something like Fig. 1.2(e), with a single external quark line

and an arbitrary number of gluons in a planar arrangement within it. Similarly,

any process composed of initial and final mesons must have the same structure with

the same overall NC dependence. From this, it is straightforward to find the NC

dependence of meson sources and of meson interactions. In fact, as discussed in

more detail in Ref. [24], intermediate states in diagrams of this form (as represented

by a “cut” across a diagram), must be color singlets with the quantum number of

mesons.

More concretely, J(x) can be defined as a current with the quantum numbers

to create a meson. The fact that any intermediate state must be a one-meson state
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means that
∫

d4xe−ikx〈TJ(x)J(0)〉 =
∑

n

a2
n

k2 −m2
n

, (1.22)

where an = 〈0|J |n〉. The only NC dependence here is from an, and since the overall

NC dependence of the diagram is O(NC), an ∝
√
NC . The NC dependence of meson

interactions can then be deduced. The three-point function 〈JJJ〉 is represented

by a similar diagram with three meson creation currents. Because the intermediate

states must similarly be single-meson states, the amplitude will be of the form

〈0|J |m〉3Γmmm. It can quickly be deduced, then, that Γmmm ∝ 1/
√
NC . An n-

meson interaction vertex will have a similar form, 〈0|J |m〉nΓ(n), with Γ(n) ∝ N
1−n

2

C .

Thus, interactions between any number of mesons disappear at large-NC and

therefore mesons are non-interacting. Following similar logic, it can be shown that

both mesons and gluons are stable, free, and non-interacting as NC → ∞, and

that they do not mix. The analysis for baryons is more complicated[24], but the

result is that baryons have masses which diverge with NC and finite interaction

cross-sections.

Another curious consequence of these properties is that at large-NC the num-

ber of mesons becomes infinite. In perturbative QCD, the two-point function of

eqn. (1.22) is proportional to log k2, and since every individual resonance is distinct

and is only proportional to 1/k2, the only way to get the necessary momentum

dependence is with an infinite number of states.

With these basic properties, it is possible to make an assessment of how well

the behavior in the large-NC approximation describes the behavior of mesons in
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the real world. Some of the original reasons why the large-NC approximation was

attractive are outlined by Ref. [24]. One of the most obvious is Zweig’s rule, which

states that diagrams for meson processes that can be cut by crossing only internal

gluon lines are suppressed. This rule becomes exact at large-NC , where mixing be-

tween gluons and mesons disappears. Zweig’s rule is observed in phenomenology,

but the only theoretical explanation comes from the large-NC limit. Another impor-

tant feature reproducing reality follows closely on the basic rule that internal quark

loops are suppressed. This indicates that the q̄q sea is suppressed, which is true in

phenomenology. The non-interaction of mesons has two other verifiable results; first,

that exotics, which can be described as bound states of two mesons and therefore

depend on their interaction, are suppressed, and second, that Regge phenomenol-

ogy is accurately described. According to Regge theory, the leading contributions

to meson and gluon interactions can be described by tree diagrams. In large-NC

QCD, this fact is evident because of the one-particle nature of the resonances; loop

diagrams would necessarily be described by two-particle resonances, which are down

orders in NC because they contain internal quark loops.

One relevant consequence of large-NC QCD is the Hagedorn spectrum[43]. It

is easy to observe that the number of mesons diverges asNC → ∞, so it is interesting

to ask what form this infinite spectrum will take. As Hagedorn concluded, this form

is

ρ(m) = f(m)em/TH . (1.23)

This spectrum was first determined phenomenologically from p − p and π − p
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scattering[43, 44], and later gained a more analytical basis with the development

of the idea of hadronic strings[45, 46, 47], the formulation of which is one of the

many models supported by a large-NC framework, several of which will be discussed

below. Recent data has continued to fit well with the Hagedorn formulation[48].

1.2.3.2 The Nambu-Jona-Lasinio Model

The Nambu-Jona-Lasinio model[49, 50] was originally formulated in the pre-

QCD era, but afterwards, has served as a useful simple model for QCD at medium

energies, with quarks replacing nucleons as the fundamental degrees of freedom. A

detailed review can be found in Ref. [20]. It is constructed as a simple model with

quark degrees of freedom. In spite of its simplicity, the NJL model has enduring

utility, at least as a pedagogical model, because it is constructed to naturally obey

the observed symmetries of QCD. One of the most important of these symmetries

is chiral symmetry and its dynamical breaking, which results in constituent quark

masses much larger than bare quark masses. As a consequence of this, it has other

desirable features such as its ability to reproduce the Goldberger-Treiman and Gell-

Mann-Oakes-Renner relation. The simplicity of the NJL model comes at a price,

however. One drawback is that the point-like quark interaction leads to a non-

renormalizable theory. Thus, all NJL calculations must be done within a specified

regularization scheme. Another important limitation is that the NJL model for

quarks does not reproduce confinement; this difficulty may or may not be important

at energy scales below the perturbative regime.
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As with all models describing the intermediate regime between perturbative

QCD and low-energy χPT, the NJL model requires a description of both quarks

and mesons and the relationship between these degrees of freedom. The simplest

NJL lagrangian, using only two flavors of quarks in the isospin limit can be written

L(1)
NJL = ψ̄i��∂ψ +G

[

(ψ̄ψ)2 + (ψ̄iγ5τψ)2
]

−mqψ̄ψ. (1.24)

While this form is mathematically more tractable than the actual QCD lagrangian,

approximations are still necessary to obtain meaningful results. The standard way

to perform an NJL calculation is to invoke a mean-field approximation. This is

not justified for general NC ; however, as will be discussed below, it becomes exact

at large NC . In this approach, higher-dimensional operators are reduced to linear

operators by replacing fields by their mean values. Approximate values for the

field are then determined using the effective action approach, treating the field as a

small perturbation about its classical value. The quark self-energy in the mean-field

approximation can be written as

Σ = 2G [TriS(x, x) − iS(x, x)]+2G(iγ5τ)Tr {iS(x, x)iγ5τ}−2G(iγ5τ)iS(x, x)(iγ5τ),

(1.25)

where the pseudoscalar part of the Hartree term will disappear because it involves

the trace of a single γ matrix. Diagrammatically, this is equivalent to the diagrams

in Fig. 1.3(a). This approximation is only valid if it is self-consistent; that is,

the internal propagator satisfies the same equation. This self-consistency condition

requires that the propagator satisfy the equation of motion

[i��∂x − Σ]S(x, x′) = δ(4)(x− x′), (1.26)
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where Σ is the self-energy from above, which leads to a single consistency condition.

The consistency condition corresponds to the implicit inclusion of all cactus dia-

grams, as per Fig. 1.3(b). Because Σ is independent of x amd x′, it can be identified

as the mass of the particles in the system, m∗.

Curiously, this expansion is equivalent to the large-NC expansion. To see this,

one must examine the NC dependence of the NJL coupling constant, G. A quark-

antiquark interaction in the NJL model must have a QCD analogue, as depicted

in Fig. 1.3(c). The overall NC counting of the QCD diagram is 1/NC, which, by

the NJL diagram, requires the NJL coupling to scale as G ∝ 1/NC. Then each

bubble adding to the cactus diagram adds a factor of 1/NC from the interaction

vertex and a factor of NC from the fermion trace, so all cactus diagrams are of the

same order. Attaching an extra loop through more than one interaction point will

always produce a diagram lower order in NC , as each extra vertex would introduce

a factor of 1/NC. Using this justification, only the Hartree term contributes to the

self-energy, as it contains the trace which leads to the extra factor of NC ; the Fock

term is one order in NC suppressed.

The effective mass for the fermion using the self-consistency, or “gap,” equation

is[20]

m∗ = m0 + 2iG

[

NCNf +
1

2

]
∫

d4p

(2π)4
tr �p+m∗

p2 −m∗2
, (1.27)

which has made use of the self-consistent propagator

S(p) = �p +m∗

p2 −m∗2
. (1.28)

Since the NJL model is to be used at medium energies, however, both quark
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(a) fermion self-energy (b) a cactus diagram

G

g g

QCDNJL

(c) NJL equivalence with QCD

π
+

u

d̄ d̄

u

(d) Schematic diagram of quarks interacting with pion

(e) Current to create a pion

Figure 1.3: NJL diagrams
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and pion degrees of freedom are of interest. Once the fermion mass has been estab-

lished, then, it is important to ask how the pion degrees of freedom behave. The

pion mass is fairly straightforward to compute under the approximation regime al-

ready outlined. Because calculations take place in the mean field approximation,

pion fields are taken to be non-interacting, and so a pion can be represented as in

Fig. 1.3(d). With the quark interactions of the NJL model, the diagram of Fig. 1.3(d)

can then be written[20]

iUij(k
2) = (iγ5)Ti

[

2iG+ 2iG

(

1

i
Πps(k

2)

)

2iG+ 2iG

(

1

i
Πps(k

2)

)

2iG

(

1

i
Πps(k

2)

)

2iG

+ . . .

]

(iγ5)Tj

= (iγ5)Ti

[

2iG

1 − 2GΠps(k2)

]

(iγ5)Tj,

(1.29)

where the polarization insertion is

1

i
Πps(k

2) = −
∫

d4p

(2π)4
Triγ5TiiS(p+

1

2
k)iγ5TjiS(p− 1

2
k). (1.30)

Given the propagator for the pion, the pion masses can be calculated as the poles of

the propagator, or the zeros of its denominator. Thus, the solution to the equation

1 − 2GΠps(k
2) = 0 (1.31)

yields the pion mass. Similarly, the coupling between quarks and pions, gπqq, can

be extracted as the residue of the same pole from eqn. (1.29) as

g2
πqq =

(

∂Πps

∂k2

)∣

∣

∣

∣

k2=m2
π

, (1.32)
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and, using the explicit form for Πij in eqn. (1.30),

1

g2
πqq

= −4iNCI(0), (1.33)

which will depend on the regularization scheme.

The pions (pseudoscalar modes) should have zero mass in the chiral limit,

when the quark mass m0 = 0, which allows them to be identified as Goldstone

bosons. To demonstrate this, an explicit expression for mπ can be found from the

above expression (in the large-NC limit), yielding

m2
π = −m0

m∗

1

4iGNCNfI (m2
π)

I
(

k2
)

=

∫

d4p

(2π)4

1
[

(

p+ 1
2
k
)2 −m∗2

] [

(

p− 1
2
k
)2 −m∗2

] .
(1.34)

It is then clear that the pions are massless when m0 = 0.

Other important parameters which relate the properties of the theory to QCD

are fπ, the pion decay constant, and Σ, the chiral condensate.

The pion decay constant can be measured using the vacuum to one-pion and

axial-vector current matrix element[20] as in Fig. 1.3(e). When this diagram is

computed, it is related back to the quark coupling via

ikµfπ = NCgπqq4m
∗kµI

(

k2
)

. (1.35)

The regularization-independent pion decay constant is then

f 2
π = −4iNCm

∗2I(0). (1.36)

The relationship between fπ and gπqq quickly yields the Goldberger-Treiman

relation[51]

f 2
πg

2
πqq = m∗2. (1.37)
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The final parameter of interest, Σ, will lead to the Gell-Mann-Oakes-Renner(GMOR)

relation[52]. It can be calculated from the scalar number density (in the isospin limit)

as

Σ =
1

2

(

〈ūu〉 + 〈d̄d〉
)

= − i

2
TrS(x, x). (1.38)

Since S(x, x) =
∫

d4p
(2π)4

S(p), the integral in eqn. (1.27) can be rewritten in terms of

the chiral condensate, yielding

m∗ = m0 − 2GNfΣ, (1.39)

and so, combining this result with Eqns. (1.34) and (1.36), the GMOR relation is

recovered with

m2
πf

2
π = −2m0Σ, (1.40)

with m0 = 1
2
(mu +md) as the quark mass in the isospin limit.

The NJL model, then, is a simple model describing quarks and mesons at

medium energies, and is able to reproduce some of the most salient features of

QCD at these energies. In any usage of this model, its troubling features cannot

be forgotten: it is non-renormalizable and non-confining. However, while the NJL

model will not necessarily generate reliable quantitative predictions, it may be of

use as an important first step in understanding the qualitative behavior of QCD in

a regime where few useful tools exist.

1.3 The QCD vacuum

QCD can be analyzed using different methods in several energy regimes of

interest. The relevant energy regime is determined not only by the kinetic energy
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and rest mass of the particles under consideration, but can also be imposed by

external conditions. To fully analyze the effects of these external conditions, it is

important to ask what the key quantities are in describing the state of the system.

After analyzing the most basic quantities of QCD (mπ,Fπ,ΛQCD,etc.), there are

several aspects of the theory that can be explored. One is to try to determine the

phenomenology of particles in QCD–hadrons at low energy, quarks and gluons at

high energy. However, in addition to analyzing how individual particles will interact,

it is instructive to study the vacuum itself. As in all quantum field theories, in QCD,

the vacuum is non-trivial; particles are always being created and destroyed, and this

effect can have real consequences.

In any physical system, the state of the vacuum is characterized by a “phase,”

with states sharing qualitative behaviors said to be in the same phase. In particu-

lar, systems with different symmetries must be in different phases. Measuring the

properties of the vacuum under various conditions will help determine the phase of

the system. Specifically, quantities which characterize a particular phase transition

are called “order parameters” for that transition. First order transitions are charac-

terized by a discontinuous change in the order parameter. Second order transitions

are characterized by a continuous change in the order parameter with a divergent

derivative. Crossover regions are not properly phase transitions, and the phases

which they differentiate, although qualitatively different, will not be discontinu-

ously separated. It can nonetheless be useful to distinguish a crossover point as the

point where the derivative of an order parameter is maximized.

One important property of the QCD vacuum is the chiral condensate, defined
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in eqn. (1.8). A nonzero value for the chiral condensate is present in the hadronic

phase in the absence of any external parameters, but it must go to zero where QCD

is perturbative, such as in a high temperature phase. In order to cross into such a

regime, then, it will be necessary for some form of phase transition to take place.

Thus, the chiral condensate provides a very useful tool which can be used to probe

the phase structure of QCD. More complex phase structure will require additional

tools, but the chiral condensate is an important first step.

The value of the chiral condensate and other parameters will determine the

structure of the QCD vacuum, but in order to vary them and thus the phase,

some form of external conditions must be imposed. The most traditional external

conditions to examine are temperature and density (or chemical potential). This

analysis leads to the familiar QCD phase diagram. In addition, one can probe QCD

in an external electromagnetic field, which is the focus of this thesis.

1.3.1 Temperature and density: The QCD phase diagram

The study of the effects of temperature and density on QCD has led to a rich

structure for the QCD phase diagram, as seen in Fig. 1.3.1. One of the simplest

features is the necessity for a chiral phase transition and for a hadronic phase tran-

sition. At high energy scales, including temperature and density, QCD should be in

a perturbative regime. This regime is characterized by a sea of quarks and gluons

with a vanishing chiral condensate[53], called the quark-gluon plasma (QGP)[54].

At low temperatures, QCD is dominated by hadronic interactions, and the chiral
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Figure 1.4: The QCD phase diagram: shows the structure of QCD phase transitions

at mu = md � ms, composed the QGP (Quark-Gluon Plasma), Hadronic phase,

nuclear matter phase, and the 2SC (Color superconducting) phase[1]

condensate is observed to have a finite value. There must therefore be a phase

transition between these two regimes; in theory, the hadronic phase transition and

the chiral phase transition could occur at different temperatures and densities, but

they have been observed to be almost exactly coincident[55]. The exact nature and

location of this phase transition, as well as the properties of the high-temperature

phase, are still under investigation[56]. Currently, the data point to there being a

crossover point at zero density and finite temperature, but that at the QCD tricrit-

ical point[57, 58, 59, 60, 61, 62], it becomes a first order transition.

Lattice QCD is an effective method for making theoretical predictions at fi-

nite temperatures not large enough to be perturbative, but at nonzero µB, numer-

ical analysis using lattice methods is extremely problematic, due to the notorious
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“Fermion sign-problem”[63]. At finite chemical potential, the fermion action in the

lattice formulation becomes imaginary, which results in large complex phases which

are problematic in numerical calculation. It is possible to get approximate answers

for very small µB, but for large µB, models are still the only way to obtain theoretical

predictions.

Thus, the structure of the phase diagram of QCD is roughly determined by

the models as discussed above, with a few caveats. At high temperature the cou-

pling is small, but experimental observations point to the QGP being strongly

coupled[64, 65]. Various models and methods of resummation within the QGP

have been employed[66], including models such as NJL[67, 57] and effective field

theories[68] which are used in other energy regimes, but this is still an open area

of investigation. At high densities or µB, the system would similarly be expected

to be perturbative. However, because the interaction between quarks of differ-

ent colors is attractive, at high densities diquark condensates form, similar to

the formation of Cooper pairs in condensed matter physics[69, 70]. This phe-

nomenon, color superconductivity (2SC), has proven key in understanding QCD at

high densities[71, 72, 73, 74].

A more detailed discussion of the features of the QCD phase diagram can be

found in Ref. [1].
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1.3.2 Electromagnetic fields

The effects of electromagnetic fields on QCD are less well-studied than those

of temperature and chemical potential. Arguably, regions of finite temperature

and chemical potential are more common than those of high electromagnetic field

strength, but nonetheless, there are some situations where finite electromagnetic

fields can be of interest in QCD, and some curious phenomena arise due to these

fields which are not evident elsewhere. On one level, quarks and hadronic matter

are minimally coupled to electromagnetism, and their interaction cross sections are

naturally affected by electromagnetic fields. On the other hand, the scales at which

QCD and QED become perturbative are entirely different, and so it is not possible

to perform a perturbative expansion in both couplings. The effect of QED on QCD,

in general, will involve an infinite number of insertions of the electromagnetic field.

This problem can be solved using the Schwinger proper-time formalism[75], which is

used to calculate the exact propagator for any particle in a constant magnetic field.

Using this propagator, the effects of electric and magnetic fields on QCD can

be explored in a variety of energy regimes. The chiral condensate is an obvious

parameter to examine, as it is the order parameter for chiral symmetry breaking.

Using the NJL model and the Schwinger propagator[20, 76], one sees that a magnetic

field leads to an enhancement of chiral symmetry breaking, and the electric field

leads to a restoration of chiral symmetry. Unfortunately, the electric field also leads

to another curious effect in all systems, which is that real pairs of particles can be

created out of the vacuum and propagate.
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Thus, while it might be possible to plot out the phases of QCD in electro-

magnetic fields, the diagram would be rather boring. The magnetic field induces

a shift away from the known QCD phase transition. The electric field brings the

system closer to a phase transition, but the effects of pair production create vacuum

instability and it is unclear whether it is possible to sustain such a state.

Physically, electromagnetic fields powerful enough to have a measurable effect

on QCD are rare. Magnetars, a type of neutron star[77], the source of the most

powerful magnetic fields in nature, have fields that do not exceed eH ∝ (0.02mπ)2,

far below the levels which might affect QCD. Particle accelerators, the source for

much of the data in the traditional probes of temperature and pressure, can do

better, with some recent experiments at RHIC yielding fields as large as 5.3m2
π[78,

79, 80], but the energy of the electromagnetic fields in such experiments still does

not compare to the energy of the particles themselves.

In addition to affecting the scalar quantities in the vacuum such as the chiral

condensate, an externally imposed electromagnetic field is essentially directional.

Thus, the vacuum itself will be directionally dependent, and several vectorial quan-

tities can be nonzero. One of these is the magnetization, calculated as

M = B −H =
δSmatter

eff

δB
. (1.41)

Finding the magnetization will also help elucidate the effects of a magnetic field on

the QCD vacuum.
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Chapter 2

External Electromagnetic field at Low-to-Medium field strength

Electromagnetic fields corresponding to low-to-medium energies in QCD are

arguably the most physically interesting, but their effects are also more difficult

to calculate from first principles than interactions at higher energies. In trying to

perform these calculations, the Schwinger propagator for a particle in an electro-

magnetic field is an important tool which is applicable very generally, but the regime

in which a calculation takes place will determine how the Schwinger propagator is

used. At low field strengths, the relevant degrees of freedom are the pions, and the

relevant calculational scheme is chiral perturbation theory. At intermediate fields

strengths, other degrees of freedom begin to be relevant, and some sort of model,

such as the NJL model, must be employed until reliable lattice calculations can be

obtained. At high energies, the calculations simplify, as perturbative QCD becomes

applicable.

Simplicity of calculation is not the only concern. The usefulness of the cal-

culation must also be taken into account. Calculations at energies which are not

easily physically achievable are not necessarily irrelevant, as they must yield inter-

esting insights, but experimentally verifiable results are certainly more compelling.

QCD becomes perturbative only in certain limited regimes. The largest naturally-

occurring magnetic fields are found within magnetars[81], with magnitudes of up
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to 1011 Tesla. Unfortunately, these maximal magnetic fields are only equivalent to

B ∝ (0.02mπ)2, far below the scale of perturbative QCD. It is therefore desirable to

find results within these low-to-medium energy regimes.

This chapter will discuss the derivation of Schwinger’s proper time formalism,

then proceed to the effects of an electromagnetic field in QCD using the NJL model,

chiral perturbation theory for mπ = 0, and chiral perturbation theory for finite mπ.

2.1 Schwinger’s Proper-Time formalism

In 1951, Schwinger proposed the proper time formalism, to solve for the prop-

agator of any charged particle in an electromagnetic field due to its minimal elec-

tromagnetic coupling. He found that if one neglected back-reaction, it is possible to

calculate a modified propagator for both charged fermions and bosons in the pres-

ence of static external fields. The advantage of such an approach is that the modified

propagator can be used to account for the effects of minimal coupling in a variety

of scenarios, including perturbative QCD, models, and even χPT, which includes

additional electromagnetic interactions that can be accounted for separately.

The free propagator for a fermion of mass m minimally coupled to an electro-

magnetic field Aµ can be written

[i��∂ − q��A−m]G(x, x′) = δ(x− x′). (2.1)

Defining the operator

Πµ = pµ + qAµ, (2.2)
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the equation for the propagator can be symbolically inverted, yielding

G =
1

��Π +m
. (2.3)

This can be represented alternatively by introducing a dummy integration variable

s, so instead can be written

G = i

∫ ∞

0

dse−i(�Π−m)s = i

∫ ∞

0

(−��Π +m)e−i(m2−(�Π)2)s. (2.4)

It is useful to make the transformation s → −is, which results in an exponential

suppression of the infinite integral and a finite result in some situations.

In the case of a constant pure magnetic field in the z direction, this propagator

is, for fermions,

G
(H)
ij (p) = − δij

∫ ∞

0

ds

cosh eHs
exp

[

−s
(

m2
q + p2

‖ +
p2
⊥

eHs coth(eHs)

)]

×
(

[cosh(eHs) − iγ1γ2 sinh(eHs)]
[

��
p‖ −m

]

+ ��p⊥
cosh(eHs)

)

,

(2.5)

and for bosons,

DH(k) =

∫ ∞

0

ds

cosh(eHs)
e−s(k2

‖
+k2

⊥
tanh eHs

eHs
+M2), (2.6)

where k2
‖ = k2

3 + k2
4 and k2

⊥ = k2
1 + k2

2, and s is the unphysical proper time variable

introduced by Schwinger.

The case of a pure electric field is similar mathematically, except thatH → iE.

From this, Schwinger was able to derive an important consequence of the shift in

the propagator. The change to an electric field introduces an imaginary part to the

propagator and therefore to the vacuum energy. This vacuum energy in the presence

of an electric field can be written

W =
1

2
E2 − 1

8π2

∫ ∞

0

ds

s3
e−m2s

[

eEs cot eEs− 1 +
1

3
(eEs)2

]

. (2.7)

40



The singularities along the path of integration, due to cot eEs, can be interpreted

as an imaginary part of the integral by assuming that the path of integration lies

infinitesimally above the real axis. With a simple quantum mechanical interpretation

of the vacuum, where its wave function has a phase eiW , the vacuum persistence

probability can be extracted from the vacuum energy as

∣

∣eiW
∣

∣

2
= e−2ImW . (2.8)

Thus, an imaginary part in the vacuum energy will result in a shift away from this

vacuum. Schwinger interpreted the physical mechanism for the breakdown of the

vacuum as pair creation. That is, in quantum field theory, virtual particle and

anti-particle pairs are constantly being created. Using a rough physical picture,

in the absence of an electric field, these virtual pairs recombine without incident.

However, in the presence of an electric field, when this particle-antiparticle pair is

created with an orientation which tends to pull the particles apart, there will be a

negative potential energy for the state proportional to the separation of the particles.

If the potential energy of this state is larger than the masses of the particles, then the

state can survive and the particles will be pulled apart. The probability to create a

particle pair is exponentially suppressed by its separation, and since the separation

required is proportional to the masses of the particles, the probability to create this

particle pair will be exponentially suppressed by the mass of the particles.

This pair creation, the Schwinger mechanism, has gained wide acceptance in

the time since Schwinger proposed it. There has been some discussion as to the exact

relation between the vacuum persistence and the pair creation rate [82, 83, 84], but it
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is well-established that there is some vacuum instability due in part to pair creation.

Because it describes an instability, there is an inherent limitation to the time scales

over which the Schwinger mechanism can be valid. There are two aspects of this

dynamic nature. The first is back-reaction in the electric field[85, 86, 87, 88, 89],

where the newly-created pairs generate a current and an electric field, which leads

eventually to plasma oscillations. This mechanism requires that enough pairs be

created that their effects become comparable to the magnitude of the field.

Another effect, though theoretically might be avoided, results from the ul-

timately finite nature of any real system[90]. First, it is important to note that

the Schwinger mechanism is highly dependent upon the boundary conditions of the

system–i.e., that the system starts in a pure vacuum. The mathematical interpre-

tation of singularities in the propagator as positive imaginary parts is dependent

upon this physical necessity, and is not accurate when the vacuum state is more

complex. The physical situation described by Ref. [90] illustrates this fact. Rather

than describing a system in a pure vacuum with an electric field which is constant

everywhere, it is possible to examine an ideal parallel-plate capacitor, with a large

separation and field. In this case, there is an imbalance in states, where filled nega-

tive energy states on one side of the capacitor correspond to empty positive energy

states on the other side. Pair creation will occur as these states propagate from

one side to the other; however, once all states on both sides of the capacitor are

equalized, pair creation will cease[83, 90].

In many of the cases discussed below, the imaginary part in the condensate

is taken to be a signal of pair creation, with the magnitude of the imaginary part

42



taken to roughly correspond to the importance of the pair creation. Only in the

very specific case of the imaginary part of the vacuum energy shift does this imag-

inary part exactly correspond to pair creation, however, the singularities in other

observables are related and can be used as a qualitative measure.

2.2 Electromagnetism in the NJL model

Because the NJL model was one of the earliest attempts at describing the

strong force and later QCD at medium energies, there is extensive work describ-

ing the effects of the electromagnetic field using the NJL model and other related

models. The NJL model has many drawbacks. However, the chiral condensate

and chiral symmetry breaking are closely related to the symmetry of the lagrangian

and arguably not dependent on confinement, and are therefore quantities which

are natural to study in this model. Klevansky and Lemmer[76] incorporated the

electromagnetic field into the NJL model through minimal coupling, and then used

Schwinger’s propagator to include the effect of the action to all orders in the field

strength. This discussion follows their work closely as discussed in Ref. [20].

The NJL lagrangian can be minimally coupled to electromagnetism by intro-

ducing the four-potential Aµ, with the result that

LNJL+EM = LNJL − qψ̄γµA
µψ − 1

4
F 2, (2.9)

where LNJL has been defined in Eq. (1.24). Then the self-consistent propagator

from Eq. (1.26) must satisfy a new relation,

[i��∂x − e��A(x) − Σ(x)]SA(x, x′) = δ(4)(x− x′), (2.10)
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where SA(x, x) can be related back to the fermion self energy as Σ(x) = 2igtrSA(x, x),

and

qF =
1

2
e

(

τf +
1

3

)

. (2.11)

Without electromagnetism, in a homogenous system, Σ is independent of x and can

be interpreted to be the mass. This is not necessarily the case when an electro-

magnetic field is present, but if the field is constant, then the self-energy will be

constant and can still be interpreted as the dynamically-generated mass, Σ = m∗.

The procedure for obtaining the gap equation is very similar to the case without

electromagnetism, except that the pseudoscalar vertex cannot be ignored in the

Hartree term, as the Aµ term contributes another γ matrix.

Neglecting the Fock term, which is smaller by an order of NC , the equation

for the fermion self-energy can be written

Σ = m∗ = m0 + 2iGTrS(x, x) + 2iG(iγ5)τTr {iγ5S(x, x)τ} . (2.12)

As promised, it is possible to solve Eq. (2.10) using Schwinger’s proper time for-

malism, since Σ is x-independent, though unknown. Using the generalized fermion

propagator, the self-energy for a fermion of flavor f can be written as

Σf = m0 −
GNC

2π2
Σf

(

∑

g

[
∫ ∞

0

ds

s2
e−M2sqgF

′s cot(qgF
′s)qgF

′′s coth(qgF
′′s)

]

+ iγ5τf
F ′F ′′

M2
(q2

u − q2
d)

)

,

(2.13)

where F ′ and F ′′ are related to the eigenvalues of the Lorentz invariants F =
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1
2
(H2 − E

2) and G = E · H as

iF ′ =
i√
2

[

(F + iG)
1

2 − (F − iG)
1

2

]

F ′′ =
i√
2

[

(F + iG)
1

2 + (F − iG)
1

2

]

.

(2.14)

In the frame where E||H (which can always be chosen by Lorentz invariance), these

can be written more simply as F ′ = iE and F ′′ = iH . Separating the divergent por-

tion of the integral from the non-divergent portion, and neglecting the pseudoscalar

term, which is irrelevant in the case where F ′ = 0 or F ′′ = 0 (a pure electric or

magnetic field), the dynamically generated mass becomes

m∗ = m0 +
GNCm

2π2

[

∑

f

∫ ∞

0

ds

s2
e−m∗2s [qfF

′s cot(qfF
′s)qfF

′′s coth(qfF
′′s) − 1]

+
∑

f

∫ ∞

0

ds

s2
e−m∗2s

]

.

(2.15)

The first piece is finite for s→ 0; only the second piece contains divergences. As is

always the case with Schwinger propagators, there will be an imaginary piece in the

integral which will contribute to the non-persistence of the vacuum. A large imagi-

nary component may cast doubt on the validity of the answer, but otherwise, it is

the principal value of this integral that is of interest. The NJL model always results

in divergent integrals, and so NJL quantities must be regularized. In this case, be-

cause the external fields prevent an arbitrary cut-off, Pauli-Villars regularization[91]

should be used, which involves coupling the interaction to some number of arbitrary

massive fields. This corresponds to rewriting the divergent portion of the integral
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(ID(m2)) as

ID(m2) = lim
ρ→0

∑

a

Ca

∫ ∞

ρ

ds

s2
e−M2

as. (2.16)

The conditions
∑

CaM
2
a = 0 and

∑

Ca = 0 are imposed, which force the divergences

to cancel, leaving only logarithms in the masses of the auxiliary fields and the original

mass. This application results in

ID(m2) =
∑

a

CaM
2
a log

M2
a

m2
.

= Λ2

[(

2 +
m2

Λ2

)

log

(

1 + 2
Λ2

m2

)

− 2

(

1 +
m2

Λ2

)

log

(

1 +
Λ2

m2

)]

,

(2.17)

where the masses of the auxiliary fields are chosen as functions of m and an arbitrary

scale Λ.

Further calculation requires choosing particular values for F ′ and F ′′. Klevansky[20]

chooses to first examine the electric field, because it results in chiral symmetry

restoration, despite the difficulties of a nonzero imaginary portion of the integral.

The equation can then be rewritten as

2π2

GNC

[

1 − m0

m∗

]

= NfID(m2) +
∑

f

qfEReIEM(im2/2qfE), (2.18)

where IEM stems from the principle value of the divergent integral as

∫ ∞

0

]
ds

s2
e−m2s [qfEs cot qfEs− 1] = qfEIEM(im2/2qfE), (2.19)

and can be calculated in closed form as

IEM(z) = 2i

[(

z − 1

2

)

log z − z log Γ(z) +
1

2
log 2π

]

. (2.20)

A pure electric field can be exchanged for a pure magnetic field by taking E → iB,

which are equivalent in the Lorentz invariants F and G.
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The self-consistency equation for m∗ cannot in general be solved analytically,

but can be plotted numerically. For m0 = 0, it is possible to find a value for m∗

which is zero for some E field, leading to chiral symmetry restoration. This critical

field strength is[76]

qEC =
2Λ′2

π

(

1 − 2π2

GNCNfΛ′2

)

, (2.21)

where Λ′2 = 2Λ2 log 2. Using Λ = 851 MeV and GΛ2 = 2.87, which correspond to

the physical values fπ = 94 MeV and 〈q̄q〉 = (−250 MeV )3 in the absence of an

electromagnetic field, Ref. [76] calculates this critical strength to be 0.56 GeV fm−1.

With realistic values for the current quark masses (5.2 MeV ), this phase tran-

sition due to the electric field is no longer present. And, as discussed, in the case of

a magnetic field, the sign in the shift is opposite, so the masses move even further

away from the chirally-symmetric phase.

Other models incorporating electromagnetism have found qualitatively similar

results[92, 93, 94, 95, 96, 97, 98, 99], and an expansion of this result for small fields

finds that the shift in the condensate for a magnetic field can be written

Σ(H) = Σ(0)

[

1 + C
e2H2

Σ4
+O

(

e4H4

Σ8

)]

. (2.22)

2.3 Electromagnetism in χPT at the chiral limit

Chiral Perturbation theory is model-independent, depending only on the con-

vergence of the chiral expansion and the LECs, so χPT calculations are to some

degree more robust than those made with models such as NJL. As discussed in the

introduction, it is formally applicable at all energies p� ΛH . The Schwinger prop-
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agator is an exact result, and as such applies at any energy scale. Because χPT is

valid in the same regime where QED is valid, it might be fruitful to pursue a pertur-

bative expansion including a finite number of photon insertions. This section will

aim to do that; the derivation is based on work originally published in Ref. [100],

and follows that work closely.

The chiral condensate will be the probe of choice in this analysis. In the case

of a constant electromagnetic field at these energies, there is a convenient shortcut

to measuring its value. In the path-integral formalism, the expectation value for an

operator can be calculated in the presence of an external source from the functional

integral representation. Here, we define

Z[m] = e−εvac[m] =

∫

DψDψ̄ exp

[

i

∫

d4x
(

L[ψ, ψ̄] +mψ̄ψ
)

]

. (2.23)

Then the value for the chiral condensate can be calculated as

Σ = 〈ψ̄ψ〉 = − δεvac

δmu

∣

∣

∣

∣

mu=0

. (2.24)

Using the Gell-Mann-Oakes-Renner relation, m2
πf

2
π = −(mu +md)Σ, to convert this

derivative in the current quark mass to a derivative in the pion mass yields

Σ =
Σ

F 2
π

∂εvac

∂Mπ

. (2.25)

Past work[101] in χPT has concentrated on the magnetic field; the shift due

a pure magnetic field is strictly well defined. The cases of a pure electric field or a

mixed field are intrinsically ambiguous due to the imaginary part associated with

pair creation.
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Figure 2.1: Lowest-order diagrams treating an electromagnetic field in χPT with a

finite number of insertions

In general, the vacuum energy will be infinite; however, the part related to the

electromagnetic field will be finite, and thus a meaningful answer can be extracted.

The diagrams used to extract this lowest-order contribution are depicted in Fig. 2.3.

Using this approach, Ref. [101] found the first order shift in the condensate to

be

∆Σ(2)(H) = Σ
eH

(4πFπ)2

(

eH

6M2
π

)

. (2.26)

However, there is a potential difficulty in this approach. In the chiral limit, mu =

md = 0, the pion mass mπ → 0, which would result in Eq. (2.26) diverging. It is

worth mentioning that the term “chiral limit” is not absolutely synonymous with

mπ = 0; technically speaking, a system with a finite H field will never be in the

chiral limit, because an electromagnetic field will explicitly break chiral symmetry.

Nonetheless, we will refer to the situation of mπ = 0 as the “chiral limit.”

Ref. [101] solved the difficulty above using Schwinger’s full result for a constant
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magnetic field,

εvac = − 1

(4π)2

∫ ∞

0

ds

s3
e−M2

πs

[

eHs

sinh(eHs)
− 1

]

, (2.27)

which resulted in a well-defined chiral condensate for the limit mπ → 0. Taking the

derivative with respect to the pion mass and the limit mπ → 0 yields

Σ(H) = Σ(0)

[

1 +
eH ln 2

(4πFπ)2
+ · · ·

]

. (2.28)

This answer is not only quantitatively different from the answer in Eq. (2.22),

but the different parameters appearing in this result demonstrate that they are

different expansions altogether. Here, the dependence on eH is linear, whereas in

the NJL model it is quadratic. Similarly, the NC dependence is different; because

of the factor of Fπ in the denominator (where Fπ ∝ N
1/2
c ), this result is one order

in NC reduced from the previous shift. For very small H fields, the shift derived in

χPT will be the leading order term, but as H becomes larger, depending upon NC ,

there will be some point where the term of order N0
c (as seen for example in the NJL

model) becomes dominant. This can be viewed as a case of non-commuting limits,

which appear in QCD in many other well-known cases[102, 103, 104, 105, 106]. In

such cases, it is important to be unusually careful in choosing which limit to take

first. Because χPT contains all possible forms of the interaction by design, it can

be expected that higher orders in the chiral expansion would contain terms which

shift the chiral condensate in the same way as the NJL model; this will be discussed

in Chapt. 3.

In addition to the difficulties due to non-commuting limits, there is another

more profound inconsistency with this result. The chiral limit, Mπ → 0, requires
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Figure 2.2: Shift in the condensate to one loop plotted as a function of temperature

in the chiral limit and with a realistic finite value for mπ.

that Mπ be much less than all other scales in the problem. It is of course true that

Mπ � ΛH , which is a requirement for the chiral expansion, but there is another

scale in the problem:
√
eH . This scale must also obey the relation eH � Λ2

H in

order for the chiral expansion to be valid. Together, these requirements impose a

strict hierarchy of scales, M2
π � eH � Λ2

H(4πFπ)
2, which must be fulfilled in order

for the analysis of Ref. [101] to hold. The physical values of Mπ and Fπ are known,

and optimistically, Λ2
H/M

2
π ∼ 50. This leaves a very narrow region of validity in

which an H field can meet these requirements, and arguably, it is not possible for

an H field to satisfy both conditions simultaneously.

The chiral limit can have similar difficulties in other problems, as well. At finite

temperature, the “low-energy theorem” derived from χPT regarding the behavior
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of the condensate, taken at the chiral limit, is

Σ(T )

Σ(0)
= 1 − T 2

8F 2
π

− T 4

384F 4
π

− ... (2.29)

Similarly to the case of the magnetic field, this series only converges when there is

a strict hierarchy of scales, mπ � T � Tc . ΛQCD. Just as with the magnetic field,

the possible range of temperature for which this theorem is valid is very narrow.

Any temperature large enough for the chiral limit to be valid has passed beyond Tc

and is well outside the region of validity of χPT. It is still possible to hope that the

theorem may still be applicable even when it is not formally valid, but fig. 2.2 shows

that this is not the case and that the shift in the condensate for a finite mπ is much

different than that expected in the chirally symmetric case.

Given these difficulties, it becomes critical to examine the effects of a finite

Mπ on the result.

2.4 The effects of a finite Mπ

Addressing the case of the chiral condensate in an electromagnetic field for

finite Mπ (the chiral limit) is desirable because of the doubtful validity of the prior

result. A further interesting generalization will be to analyze the effects of a pure

electric field or of a mixed field. As discussed previously, both of these situations

will lead to an imaginary part in the expression for the condensate, which indicates

a fundamental instability in the result due to the creation of particle-antiparticle

pairs from the vacuum. Nonetheless, an analysis of the χPT result can provide some

guidance as to when this instability proves significant. This section discusses results
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originally obtained in Ref.[100], and follows closely the derivations therein.

At lowest-order, pions, the relevant degree of freedom at low energies, are

non-interacting. Their interactions with the electromagnetic field occur in the L(2)

lagrangian. As determined by Ref. [101], an interaction vertex reduces the result

in powers of eH/m2
π, which is invalid in the chiral limit. Given the assertion that

magnetic fields not much greater than mπ are more realistic for a number of reasons,

this might be attractive once the chiral limit has been given up. However, the limit

eH � m2
π is also unecessarily restrictive, and a more general approach would be to

consider the case m2
π, eH � ΛH , without imposing any additional restrictions on the

relationship between m2
π and eH . Therefore, it is still advantageous to consider an

infinite number of insertions contributing to the result and the Schwinger propagator

is necessary.

The first-order vacuum energy in the case of a generalized electromagnetic

field was calculated by Schwinger to be[75]

εvac =
1

16π2

∫ ∞

0

dss−3e−m2
πs

(

(es)2G
Im(cosh esX)

− 1

)

, (2.30)

where F = H2−E2

2
and G = ~E · ~H and X = (F + iG)

1

2 .

2.4.1 Constant Magnetic Field

The Schwinger expression for the vacuum energy is complicated, and it turns

out, as will be discussed later, that for arbitrary E and H fields, only numerical

studies will be possible. In order to proceed to some analytical result, then, it

is necessary to choose either a pure magnetic or a pure electric field. Because the
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magnetic field does not have the problematic issue of pair creation (and an imaginary

component of the integral), it will be the simplest situation to consider first.

In a pure H field, the expression in Eq. (2.30) can be simplified to the result

in Eq. (2.27). This result is simplified by Ref. [101] in the chiral limit. Writing the

result differently, in order to highlight the differences between the chiral limit and

finite mπ, yields

∆Σ(H) =
∂Leff

∂mu

=
log(2) eHΣ(0)

16π2F 2
π

IH

(

m2
π

eH

)

IH(y) ≡ − 1

log(2)

∫ ∞

0

dz

z2
e−yz

[

z

sinh(z)
− 1

]

,

(2.31)

where the parameter y is the dimensionless ratio m2
π/eH . IH(y) is defined in such

a way that the value of the integral in the chiral limit yields IH(0) = 1, returning

the prior result. This is the one-loop order χPT result which makes no assumptions

about the ratio m2
π/eH and is therefore able to incorporate a finite mπ. It is then

possible to analyze how accurate the prior result, derived in the chiral limit, is in

describing the result for finite mπ.

This expression includes the subtraction of an infinite term equal to εvac(H =

0), to yield a finite contribution for the shift due to the magnetic field. It is possible

to have tree-level, inherently finite, diagrams which contribute to the vacuum energy,

but because of the nature of the chiral expansion, these terms do not contribute at

lowest order. Any tree diagram would require a vertex with two powers of the

magnetic field, (eH)2, and a power of the mass squared, m2
π, in order to result in a

contribution for non-zero H and a non-zero result in the variation with respect to

the pion mass. Such a term would have a minimum power of O(p6), and therefore
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does not contribute at O(p4). These terms are still potentially intersting, as they

are also closer to the form of the NJL result, and will be discussed in Chapt. 3.

Conveniently, it is also possible to derive a closed-form analytic result for this

integral using standard mathematics[107]:

IH(y) =
1

log 2

(

log(2π) + y log
(y

2

)

− y − 2 log Γ

(

1 + y

2

))

. (2.32)

The comparison of the result in the chiral limit to the result for finitemπ = 140MeV ,

using this analytic expression, is plotted in fig. 2.3. From this plot, it is clear that

the convergence to the chiral result is very slow, with a substantial difference even

as high as eH/m2
π = 30, where the one-loop expression is still only 85% of the value

for mπ = 0. It is also clear from the plot that even when eH/m2
π = 50 ∼ Λ2

H/m
2
π, far

outside the validity of the chiral expansion, that there are still substantial differences

between themπ = 0 result and the result for finitemπ. Any value of eH large enough

for the mπ = 0 result to be reasonably close to the more accurate result for finite mπ

is so far above the region of validity for the chiral expansion that even higher-order

terms are unlikely to make the result credible. However, the generalized low-energy

theorem is valid for any relationship between m2
π and eH , as long as both are small

enough for the chiral expansion to be valid.

2.4.2 Constant Electric Field

Prior analysis in the chiral limit[101] concentrated primarily on the magnetic

field; the electric field presents problems due to the imaginary part, but as was done

in Ref. [100], it is possible to derive a result for both the real part and imaginary
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Figure 2.3: Exact expression for the integral representing the shift in the condensate

plotted as a function of eH/m2
π, as compared to the mπ = 0 value of unity.

part, and the comparison of these quantities can help to understand when the result

is sensible. The NJL calculations have addressed the problem of the electric field and

derived an expression for the condensate, but this expression consists only of the real

part, neglecting the effects of the imaginary part of the result. One interesting aspect

of these calculations, as discussed above, is their derivation of a critical electric field

which leads to chiral symmetry restoration. To the extent that the imaginary part

can somehow be neglected, this is sensible in the NJL model, which, to the extent

it is valid at all, should be valid up to the energies of this critical electric field.

Even without the imaginary part, however, such a critical electric field is outside

the range of validity of χPT, so will not be discussed here.

In general, this imaginary part represents an instability in the state of the
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system; the vacuum is not the true ground state. Mathematically, in simple quan-

tum mechanics, the time-evolution operator of the vacuum for a simple quantum

mechanical system goes like eiεvact; for a real vacuum energy for the single vacuum

state, this is merely a phase. If the vacuum energy is imaginary, then the state

will evolve away from this “vacuum” into another state. For the electric field, this

instability can be interpreted to be pair creation. In the NJL model, the degrees

of freedom are quarks, so the imaginary part represents the creation of quark pairs

from the vacuum; χPT describes the interactions of pions, so the instability in that

case represents the creation of charged pion pairs (π±) from the vacuum. However,

one of the most important issues with the NJL model is its lack of confinement; in

that case, the instability in the imaginary part could be argued to be a result of this

flaw. However, χPT has no analogous difficulty, so the imaginary part is a physical

instability.

Knowing, then, that there are some circumstances under which the shift in

the condensate due to the electric field is meaningless, it is important to understand

what these circumstances are in the context of χPT. In physical systems, the real

and imaginary parts will cause two separate effects: first, the shift in the condensate

due to the real part, and second, the creation of π+ −π− pairs due to the imaginary

part. If the condensate shift takes place more quickly than the pair creation from the

vacuum, then it will be sensible to consider the principal value of the integral alone,

without taking into account the imaginary part. If, on the other hand, pair creation

takes place on a time scale similar to that of the condensate shift, then it will no

longer be reasonable to consider the real part alone; even if the pair creation is not

57



large enough to change the electric field, a system with many free charges is not the

same as the vacuum and calculations must be treated in a qualitatively different

way. Because it depends on the exponential of the time-evolution operator, the rate

scales as exp
(

−πm2
π

eE

)

, and is thus exponentially suppressed for eE substantially

smaller than mπ. It is certainly the case, then, that in the regime eE � m2
π that

the instability due to pair creation mechanism is slow and that this instability can

be neglected.

Another useful tool is the ratio of the imaginary part to the real part of the

shift. This is a rough indicator of whether the effects of the real part or the imaginary

part is dominant. While the effects produced by each cannot be directly compared,

it is clear that if the imaginary part is on the order of the real part, the instability

cannot be neglected in comparison to the shift in the condensate.

The shift due to the electric field will also be calculated to one loop in χPT.

While the qualitative situations in the magnetic and the electric field cases are quite

different, especially because of the instability discussed above and the reversal of

sign, the mathematical method for calculating each is very similar, and both can be

derived from Eq. (2.30). The chiral condensate is a Lorentz scalar, so must depend

only on Lorentz-invariant quantities. The two unique Lorentz invariants that can be

constructed from the electric and magnetic fields are F = 1
2
(H2 −E

2) and G = E·H.

For either a pure magnetic or a pure electric field, G = 0, and so the answer will

only depend on F , which will be positive for a pure magnetic field and negative for a

pure electric field. An electric field of E is mathematically equivalent to a magnetic

field of H → iE. Formally, it is necessary to make an analytic continuation of the
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result for the condensate, but practically, a direct substitution is suitable in this

case.

The integrand in Eq. (2.31) depends on the magnetic field through y =

m2
π/eH → m2

π/ieE = −iy′. To keep yz real and positive, it is necessary to modify

z → iz′. The integral part of the shift in the case of the electric field can then be

written

IH→iE(−iy′) = − 1

log 2

∫ ∞

0

(−i)dz
′

z′2
e−y′z′

[

z′

sin z′
− 1

]

. (2.33)

Redefining −iIE(y) ≡ IH(−iy′) to avoid explicit factors of i, the full shift can be

written[100]

∆Σ(E) =Σ(0)

[

log(2)
eE

16π2F 2
π

IE

(

m2
π

eE

)]

IE(y) = − 1

log 2

∫ ∞

0

dz

z2
e−yz

[ z

sin z
− 1
]

.

(2.34)

While the integrand for IH has no poles, the sin(z) in the denominator of the IE

integrand results in an infinite number of poles along the axis of integration, leading

to an imaginary part of the shift. One caution here is that it is not immediately

obvious from this expression how to treat these poles; it is possible to choose an in-

tegration path infinitesimally above the axis, below the axis, or to simply choose the

principal value. The choice of treatment is dependent upon the physical boundary

conditions imposed. The convention used by Schwinger[75], corresponding to the

creation of pairs from the vacuum, is the substitution 1/ sin(z) → 1/(sin(z) + iε).

The shift is then mathematically well-defined. The shift 1/ sin(z) → 1/(sin(z) − iε)

would correspond to the recombination of pairs in the vacuum, and the principal

value would correspond to some steady-state solution. Both of these latter solutions
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require pre-existing particles in the vacuum, so the Schwinger choice seems to be the

most sensible here, resulting in the instability discussed above. However, this situ-

ation deserves some careful examination, and some recent work has shown that the

Schwinger mechanism is not necessarily as straightforward as it originally appeared

to be[108].

Proceeding with the standard interpretation, then, it is straightforward to find

the imaginary part of the integral. There are an infinite number of non-trivial poles

along the integration axis, and their residues correspond to the imaginary part of

the integral, whereas the real part corresponds to the principal value of the integral.

These poles represent the instability mentioned above and will result in the evolution

over time from a vacuum which is empty of particles. The principal value part of

this integral may be more difficult to obtain.

Practically, there are actually two ways to find a result for this integral: Ana-

lytic continuation of the result from Eq. (2.35) and direct evaluation of the principal

value and the poles in Eq. (2.34).

The apparently easier way is to analytically continue the closed-form result

for the integral. Making the standard choice of branch cut yields for the analytic

expression[100]

I(IE) =
1

log 2
log(1 + e−πy)

R(IE) =
1

log 2

{

y log
(y

2

)

− y + Cy + 2 tan−1y

+ 2

∞
∑

n=1

[

tan−1

(

y

2n+ 1

)

− y

2n

]

}

(2.35)

where C is Euler’s constant. These expressions result in analytic expressions for the
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real and imaginary parts of the shift in the case of an electric field. However, because

of the analytic continuation, it is not immediately apparent that these expressions

include the correct branch cuts of the function.

The next way is to evaluate the integral directly, which is more reliable but

also more involved. It is straightforward to find the sum of the poles from the

integrand, and as expected it is the same as the imaginary part found in Eq. (2.35).

It is also important to compare the principal value to its value in this equation.

Unfortunately, this is a bit trickier, as there is no really straightforward way to

evaluate the principal value of the integral analytically, due to the singularities in

the integration path. However, it is possible to employ a trick to evaluate the integral

numerically. New terms can be added to the integrand which have zero principal

value, but which exactly cancel the poles, to yield the expression[100]

P (IE)=

∫ ∞

0

dz

{

e−yz

z2

[

z

sin(z) + iε
− 1

]

−
∞
∑

n=1

(−1)n−1

nπ
e−nπy

(

1

z−nπ+iε
− 1

z+nπ+iε

)

}

.

(2.36)

This extracts the principal value, but is unfortunately still not easy to evaluate

analytically. It is nonetheless possible to evaluate this expression numerically, since

it is completely real-valued; doing so results in the same answer as in Eq. (2.35), to

very high precision.

The values for the real and imaginary parts (identical in both derivations) are

plotted in fig. 2.4. As discussed above, the ratio of the imaginary part to the real

part dictates the regime of validity for the pricipal value of the result; this ratio is

plotted in fig. 2.5.
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Figure 2.4: Real and imaginary parts of IE defined in Eq. (2.35) are given in sub-

figures (a) and (b).
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Figure 2.5: The ratio of the real and imaginary parts for the shift in the condensate

due to an electric field
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The plots demonstrate explicitly, as expected, that the imaginary part of the

answer can be neglected when eE � m2
π and abruptly becomes considerable, in-

validating the shift in the condensate, as eE approaches m2
π. Any shift beyond the

field strength where the imaginary part becomes dominant will not be achievable in

nature, because the vacuum will have disappeared before that shift can take place.

Thus, the shift in the chiral condensate in a constant electromagnetic field to

one loop in χPT can be calculated as in Eq. (2.34), which is numerically identical to

the analytically continued closed-form result given in Eq. (2.35). When eE � m2
π,

this shift is sensible and can be examined in the same way as the magnetic field.

For larger electric fields, the answer is meaningless and the time-dependence of the

Schwinger mechanism takes over.

2.5 General case: ~E · ~H 6= 0

In the general case, unfortunately, unlike the case of a pure electric or a pure

magnetic field, an elegant analytic solution is difficult to extract, so numerical calcu-

lations are the only way to analyze the shift in the condensate. Here, it is important

to keep in mind that while the electric and magnetic fields are more intuitively

comprehensible, the relevant variables are the Lorentz invariants. The system being

in a “pure electric” field means that F is negative and G = 0; a “pure magnetic”

field means that F is positive and G = 0. If both an electric and magnetic field are

present, but they are orthogonal, one of these two results will apply, depending upon

the sign of F . The mixed general case that will be addressed in this section allows
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G = E ·H 6= 0, and both F and G can take on any value. Though the calculation

here is analytically intractable, some of the methodology from the previous sections

can aid in obtaining a numerical result.

The answer is ultimately given in terms of Lorentz invariants, but we have

used “pure electric” and “pure magnetic” to refer to the fields in the frame which

has been shifted so that the field is one or the other. Rather than using a specific

frame, it will be illuminating in the general case to choose a new set of variables

defined as in Ref. [100] by

F =
f 2 cos(2φ)

2
G =

f 2 sin(2φ)

2
(2.37)

with π/2 ≥ φ ≥ −π/2. In fact, the domain can be restricted even further. The

underlying theory, χPT, is parity-invariant, so any results must be parity-invariant;

E and thus φ are parity-odd, so any result will ultimately be an even function of φ;

for convenience, then, the domain can be limited at this early stage.

While the analysis will be with respect to these Lorentz invariants, it is useful

to choose a particular frame to gain physical insight into the problem. In this case,

in the frame where E is parallel to H , the newly defined variables are related to the

physical fields as

H = f cos(φ) E = f sin(φ) . (2.38)

Thus, f is a measure of the overall strength of the field, whereas φ specifies how

much the field resembles an electric field vs. a magnetic field. At φ = π/2, the

system is in the state of a pure electric field, and at φ = 0, the system is in the state

of a pure magnetic field.
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Using the same expression for the effective lagrangian as specified in Eq. (2.30),

but this time for the case where both G and F are nonzero and using the new

variables f and φ, the shift in the condensate can again be obtained by differentiating

with respect to m2
π, yielding[100]

∆Σ(f, φ) =
efΣ(0) log 2

16π2F 2
π

IEH(f, φ), (2.39)

where IEH(f, φ) is defined to be

IEH(f, φ) =
1

log 2

∫ ∞

0

du

u2
e−(m2

π/ef)u

(

u2 sin(2φ)

2 sin (u sin(φ)) sinh (u cos(φ)) + iε
− 1

)

,

(2.40)

As predicted, this integral cannot be evaluated analytically, and so further analysis

will require numerical evaluation. The principal value and imaginary parts of the

integral must first be extracted, as with the E field. This requires another imposition

of a convention for the integration path, and the same condition is used as was used

for the case of the E field and by Schwinger. The residues are, again, straightforward

to extract, and the principal value can be separated using the same trick as for the

E field in Eq. (2.36). The real and imaginary parts are then

R(IEH(f, φ)) = IEH − 1

log 2

∞
∑

n=1

cos(φ)(−1)ne−nπm2
π/(ef sin(φ))

sinh(nπ/ tan(φ))
(2.41)

×
∫ ∞

0

(

du

u− nπ
sin(φ)

+ iε
− du

u+ nπ
sin(φ)

+ iε

)

(2.42)

I(IEH(f, φ)) =
1

log 2

∞
∑

n=1

π cos(φ)(−1)ne−nπm2
π/(ef sin(φ))

sinh(nπ/ tan(φ))
. (2.43)

The principal value of the integral is plotted as a function of tan(φ) and ef in fig. 2.6,

and the imaginary part is plotted in fig. 2.7. Both figures are plotted as a function
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of increasing ef/m2
π and also as a function of m2

π/ef , to make asymptotic behavior

at both extremes clear.

In the principal value plots, the curves for the mixed fields approach the curve

for the E field at one extreme and the H field at the other extreme, as expected.

In the plots of the imaginary part, there is also a smooth transition from the

case of the magnetic field, where there is no imaginary part and no pole creation, to

the case of the electric field, with a maximal value for the imaginary part and the

electric field. It is also clear that for large m2
π, as expected, the imaginary part of

the shift is suppressed regardless of the type of field. In this case, which is far from

the mπ = 0 limit, it will be sensible to regard the principle value part of the shift as

a physical shift in the chiral condensate, because not enough pairs will be created in

a relevant time scale for the imaginary part to play a role. It is also the case that in

the chiral limit, as discussed in previous work for the magnetic field[101], discussing

the shift due to the electric field would not be sensible, because of this effect. Only

when a finite mπ is present is it reasonable to discuss the effects of the electric field.

Another interesting characteristic of the plot of the poles is that in the limit

of large m2
π/ef , there is no difference between the shift due to the electric and

magnetic fields, aside from a sign. This is the case generally for a mixed field where

the electric and magnetic parts are interchanged. Mathematically, this means that

IEH(f, φ) → −IEH(f, φ) when φ → π/2 − φ. Therefore, in the absence of an

imaginary part which will sap some of the effect of the electric field into the pair

creation mechanism, the difference between the electric and magnetic fields is a

change of sign. It is this regime which best highlights the difference between the
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Figure 2.6: Principal value of the shift in the condensate plotted against the Lorentz

invariants tan(φ) and ef as defined in the text.
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Figure 2.7: Sum of the residues of the shift in the condensate plotted against the

Lorentz invariants tan(φ) and ef as defined in the text.
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fields, that the magnetic field enhances the chiral condensate, while the electric field

suppresses it.

In the opposite extreme, m2
π/ef = 0, it is illuminating to consider the ratio of

the real to imaginary parts of the result as a function of tan(φ), as plotted in fig. 2.8.

In the frame where E and H are parallel, this corresponds to E/H . The value of

m2
π/ef has been chosen to highlight the situation for each φ where the imaginary

part is maximized. Predictably, the imaginary part becomes exponentially large as

the field approaches a pure electric field, and is negligible when the electric field

is less than half of the magnetic field, tan(φ) . 0.5. The instability due to the

imaginary part can certainly not be neglected once the fields are of comparative

magnitude, tan(φ) ∼ 1.

Overall, then, the results of the general case are unsurprising once the electric

and magnetic field results are known, showing a smooth mapping between them.

The general numeric result is helpful, however, as in fig. 2.8, to determine how much

electric field can be present before the pair creation mechanism becomes significant.

2.6 Discussion

Several methods for calculating the first-order shift in the chiral condensate

due to a constant electromagnetic field, all derived from Schwinger’s proper time

formalism, have been discussed in this chapter. These include the NJL model, χPT

in the chiral limit, and χPT for finite mπ. There are two expansion parameters

which may be of relevance in these cases, eH and NC .
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plotted as a function of tan(φ) for m2
π/ef = 0.
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The NJL model was historically the first model to be used for this investi-

gation. It has the advantage of being applicable up to higher energies than those

which are possible in the chiral expansion, and includes quarks as a degree of free-

dom. However, it is limited by being only a model, lacking certain key features of

QCD, such as confinement. Additionally, the regime where it can be assumed to

be more useful, medium strength fields, is arguably less interesting than the lower

energy regime; firstly, because such fields are less easily-achievable, and secondly,

because an electromagnetic field in that regime is so large that the Schwinger pair

creation mechanism will dominate, as discussed above. The leading-order shift for

the magnetic field in this regime is shown to be proportional to (eH)2/Σ(0)4.

The chiral perturbation theory result at mπ = 0 is even more limited, requiring

both a field large enough that mπ is negligible, but small enough that the pertur-

bative expansion is still valid. As demonstrated by the finite mπ result, this regime

is arguably not achievable, even in theory. The leading-order shift for the magnetic

field in this case can be shown to be proportional to (eH)/Λ2NC .

The result in χPT with finite mπ is far more flexible, but still has important

limitations. It is clearly not valid in the limit where eH or m2
π ∼ Λ2, but has no

limitations in terms of the relationship between eH and mπ, so has a well-defined

region of validity, and can potentially address very small fields, which are more easily

achievable in experiment. The experimental outlook is not as optimistic as this

might imply, however, because the field must still be substantial in order for there

to be a measurable effect on the chiral condensate; the issue has simply shifted from

achievability to precision in measurement. Furthermore, the case for the electric
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field continues to be problematic in this calculation, due to the creation of particle

pairs from the vacuum. However, because this effect is less marked when the electric

field is smaller, this regime is essentially the only one where a physical shift in the

condensate due to the electric field is calculable. The calculation demonstrates that

for a magnetic field, a small electric field, or a large mixed field where the magnetic

field portion is at least ∼ 2× as strong as the electric field, it is sensible to discuss

the shift in the condensate. In this case, the shift due to the magnetic field is

f(m2
π/eH)eH/Λ2NC .

The results from the NJL model and the χPT expansion are not in agreement,

which is due to the non-commutativity of the small eH and large-NC limits, as can

be seen from the leading order terms in the expansion. It is desirable to understand

when these results can be brought into agreement, and this can be achieved by

performing a higher-order calculation. Because of the limitations of the NJL model,

as well as the difficulties in obtaining a higher-order result, it is clearly beneficial to

perform the calculation in χPT. The prior work of Ref. [109] discusses the higher-

order result in the chiral limit, and Ref. [110] discusses the higher-order result with

finite mπ. These results will be considered in the following chapter.
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Chapter 3

External Electromagnetic Field at Next-To-Leading Order in χPT

This chapter discusses how the results of the previous chapter can be expanded

to analyze the effects of an electromagnetic field in chiral perturbation theory to

O(p6). In doing so, it follows closely the results of Ref. [110].

As discussed in the previous chapter, it is interesting to examine the effects

of an electromagnetic field of a strength corresponding to low energies, with eH �

Λ2
H . The ideal tool to study such effects is chiral perturbation theory, which is

applicable within this energy range. In the prior chapter, the effects of this field

at lowest order in chiral perturbation theory were examined. However, there are

some inconsistencies in the answers obtained via chiral perturbation theory and the

NJL model. Of course, it is possible to dismiss the NJL results as “just a model,”

but the result in the NJL model has qualitatively different dependencies from the

χPT result in the relevant expansion terms, eH and NC . Presumably, if it has any

validity at all, the NJL result ought to correspond to the χPT result in some limit.

There are no terms in χPT to order O(p4) which match, but there are potential

terms at O(p6) which appear to have a similar structure. Regardless, χPT at O(p6)

is more accurate than the lower order result, particularly on the border of the regime

of validity.

As was the case for the O(p4) case, prior work at O(p6) focused on the chiral
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limit[109]. The same limitations for the chiral limit apply at O(p6) as applied at

O(p4), but are more acute. Not only will the free propogator be evaluated differently

(the same as at O(p4), but there will be additional terms for finite mπ which were

not included at mπ = 0.

Increased precision of a result from higher orders of calculation is always of

interest. As mentioned, however, the disagreement in lower orders of calculation

makes the higher order result more compelling. One important aspect of this dis-

agreement comes from large-NC QCD[24, 22, 23]. The chiral expansion is in terms

of momentum order, but the NC dependence of the LECs varies from LEC to LEC.

The L2 LECs which correspond to usual physical parameters, Mπ and Fπ, have

the same NC dependence as they always do (Mπ ∝ N0
c , Fπ ∝ N

1/2
c ). However, in

order to make the χPT processes consistent with QCD, LECs in the higher-order

lagrangians can and must have nontrivial NC dependence. The rule for determining

this dependence is straightforward: The NC dependence of a particular LEC is con-

trolled by the number of flavor traces in the term it multiplies. A flavor trace occurs

when there is a quark loop in the corresponding QCD calculation. Large-NC count-

ing rules for QCD, as discussed in the previous chapter, indicate that each quark

loop reduces the order of a diagram by an order of NC (this is generally qualified to

include only internal quark loops, but only because diagrams with different external

lines represent different processes). In order to equate the χPT process to the QCD

process, some extra NC dependence must be introduced, and the only parameters

available to absorb this dependence are the LECs. Thus, each LEC is down by one

power of NC for every flavor trace in its multiplying term.
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This large-NC dependence may be related to the chiral expansion. This con-

vergence has been tested using a number of known processes which can be calculated

to two-loop order[39]. The difference between the O(p4) result and the O(p6) is of-

ten very small, with very little quantitative and no qualitative difference. In some

cases, however, such as the calculation of the process γγ → π0π0, the O(p6) result

is persuasively more accurate than the O(p4) result[111]. This sort of correction is

desirable in the sense that it indicates that the chiral expansion produces an ac-

curate result, but that it comes at next-to-leading order means that the expansion

parameter is not very small and that higher order terms can be important. The case

of the shift of the chiral condensate due to an electromagnetic field was obviously

not part of the analysis in Ref. [111], but the relevant LEC is derived from the same

γγ → π0π0 process which produced a large qualitative difference at O(p6), so it is

conceivable that the next-to-leading order result will be important here, as well.

This chapter discusses the necessary parts of χPT in more depth than in

Chapt. 1, then proceeds with the calculation of the correction to the vacuum energy

at O(p6), including its renormalization.

3.1 Chiral Perturbation Theory

An introduction to the basics of χPT was provided in Section 1.2.2. The calcu-

lation of Chapt. 2 was technically in χPT, but only uses the lowest-order lagrangian,

which includes electromagnetic fields only in the minimally coupled way, and thus

only needs the Schwinger propogator to determine the shift. At O(p6), the shift will
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include not only terms added from the O(p4) lagrangian, but terms from the O(p6)

lagrangian, as well.

It is important to understand how various diagrams contribute to the calcula-

tion at each order. In general, each loop contributes an order of p2, in addition to

the powers of momentum from the vertices in the diagram. Diagrams contributing

to the vacuum shift in the condensate at any order do not have external legs other

than those from the constant electromagnetic field. The lowest order term would

be a tree-level diagram using the L2 lagrangian, but no such diagrams contribute as

there can be no vertices which contain both mπ and the electromagnetic field in L2.

The next order of calculation is O(p4), as calculated in Chapt. 2. The possibilities

for terms which might contribute at this order would be one-loop terms with the L2

lagrangian and tree-level terms at O(p4). However, the latter do not exist, as tree

level terms require both the electromagnetic field and mπ; to remain Lorentz invari-

ant, the electromagnetic field must appear either twice or contracted with a pion

field. The latter is obviously excluded for a tree diagram, and the former would

be too high-order to also include orders of mπ, so it is also excluded. At O(p6),

terms contributing are two-loop order in L2, one-loop order in L4, and tree-level

in L6. Here, all three sorts of terms do exist. For the first time, it is possible to

have tree-level terms multiplying m2
π(eF )2, which is the lowest-order possibility for

a tree-level calculation of the shift.

With this discussion of the terms which will be possible, the term which is
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relevant to this calculation can be picked out of the L6 lagrangian. It is[37]

L6 = c34〈χ+f+µνf
µν
+ 〉 +

∑

i6=34

ciPi, (3.1)

where the ciPi are the other terms in the expansion which do not contribute to the

calculation at hand.

For this calculation, as with all calculations, some renormalization will be

required. Chapt. 1 discussed how χPT can be renormalized order-by-order. Gasser

and Leutwyler calculated the explicit form for the counterterms required[18, 19],

with the result that the L4 LECs can be expressed as

li = (cµ)d−4 (lri + γiΛ)

Λ =
1

16π2(d− 4)

γ1 =
1

3
, γ2 =

2

3
, γ3 = −1

2
, γ4 = 2,

γ5 = −1

6
, γ6 = −1

3
, γ7 = 0

(3.2)

When M 6= 0, these can be expressed in terms of scale-independent parameters l̄i

as

lri =
γi

32π2

(

l̄i + log
M2

µ2

)

. (3.3)

The L6 term can be renormalized as calculated in Ref. [38] using the expression

ci =
(cµ)2(d−4)

F 2

(

cri (µ, d) − γ
(2)
i Λ2 − (γ

(1)
i + γ

(L)
i (µ, d))Λ

)

γ
(L)
34 = −lr5 +

1

2
lr6, γ

(1)
34 = γ

(2)
34 = 0,

(3.4)

which will allow a finite result using the renormalized LECs to be calculated.
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3.2 Calculation of Σ from vacuum energy

The shift in the chiral condensate due to the electromagnetic field, ∆Σ, can

be calculated at this order from the vacuum energy in the same way as described in

Chapt. 2, using the equation

Σ = −∂εvac
∂m̂

. (3.5)

However, the GMOR relation, F 2
πM

2
π = Σ(mu +md), is only accurate to first order,

and so some ambiguity is introduced. The chiral condensate and the quark mass

are not independent, with only their product being an experimentally measurable

number. This product can be derived to be

2m̂Σ = F 2M2

{

1 +
M2

π

32π2F 2
π

(4h̄1 − l̄3) + O(M4
π)

}

. (3.6)

The LEC h̄ is unphysical, and will vary with normalization condition. The ambiguity

is in the definition of Σ, so in order to avoid it, it is possible to define the quantity

Σ0 using the equation,

2m̂Σ0 = F 2
πM

2
π , (3.7)

which allows all results to be expressed as a function of ∆Σ/Σ0, where ∆Σ is only

expressed as a function of H , or ∆Σ ≡ Σ(H) − Σ(H = 0). The result will then be

well defined at order O(p6).

Another important difference at O(p6) is that at this order, Fπ and Mπ are

not identical to the L2 LECs. When all terms in a calculation are of the same

order, this is irrelevant, because any such corrections will be beyond the scope of

the calculation. However, at O(p6), the corrections to the L2 LECs appearing at
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O(p4) will be of the same order as the O(p6) terms. One correction term will be

sufficient to increase the level of accuracy in this case. Expressing Mπ and Fπ as

functions of the LECs M ≡ 2Bm̂ and F produces[18]

M2
π =M2

[

1 − M2

32π2F 2
l̄3 + O(M4)

]

Fπ =F

[

1 +
M2

16π2F 2
l̄4 + O(M4)

]

.

(3.8)

Again, these corrections need only be applied to the O(p4) calculations, because at

O(p6) they will be beyond the stated accuracy of the calculation.

With the O(p4) terms modified with the LECs to higher accuracy for O(p6),

it is then necessary to enumerate the new diagrams which contribute to the vacuum

energy at this order. As discussed in the introduction, these new terms will include

two-loop order terms from the L2 lagrangian, one-loop terms from the L4 lagrangian,

and even a tree level term from the L6 lagrangian. There are two further require-

ments for diagrams that can contribute–first, obviously, they must be dependent

on the electromagnetic field, otherwise they will cancel in the electromagnetic field.

Second, they must contain at least one power of Mπ, so that there is a nonzero result

when the derivative with respect to this quantity is taken. With these criteria, the

diagrams which contribute at O(p6) are those depicted in Fig. 3.1.

The form of these terms is dictated by the symmetries of QCD. In the L4

lagrangian, the contributing terms are those proportional to l3, l5 and l6. In L6, the

only term contributing is c34. Using the Weinberg parameterization of Eq. (1.9) in

SU(2), as discussed previously, and taking mu = md, the contributing terms from
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Figure 3.1: Diagrams contributing to the vacuum energy shift due to an electro-

magnetic field. Dashed lines denote π0 and solid lines denote π±.
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all three levels of the lagrangian can be written explicitly as[109, 110]

L2 =
1

2
(∂µπ

0)2 − M2(π0)2

2
−M2π+π−

+ (∂µπ
+ + ieAµπ

+)(∂µπ− − ieAµπ−)

+
1

2F 2

[

π0∂µπ
0 + ∂µ(π+π−)

]2

− Mπ2

8F 2

[

2π+π− + (π0)2
]2

L4 = − 2l5
F 2

(eFµν)
2π+π−

− 2il6
F 2

eFµν

[

∂µπ−∂νπ+ + ieAµ∂ν(π+π−)
]

− 2l3
M4

F 2
π+π−

L6 =4c34M
2(eFµν)

2.

(3.9)

The simplest case, as at the O(p4) level, is that of a pure magnetic field, which

is simpler than a pure electric field because it does not contain any imaginary part.

This will be extended later to the case of a pure electric fields, which will have

analytic results similar to those of the pure magnetic field case, and to the mixed E

and H field case, which is only tractable numerically.

In the expansion to O(p6), it will be necessary to use not just the vacuum en-

ergy as calculated by Schwinger[75], but the explicit propagator for a scalar particle

in an H field, which was also first derived by Schwinger, but was recast in a more

useable form in Ref. [109] as

DH(x, y) =Φ(x, y)

∫

d4k

(2π)4
eik(x−y)DH(k)

DH(k) =

∫ ∞

0

ds

cosh(eHs)
e−s(k2

‖
+k2

⊥
tanh eHs

eHs
+M2),

(3.10)

where Φ(x, y) = exp{ie
∫ x

y
Aµ(z)dzµ}, k2

‖ = k2
3 + k2

4 and k2
⊥ = k2

1 + k2
2.
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For a propagator closed in on itself, this will be normalized by the scalar

propagator without an electromagnetic field, whose explicit form will also be of use,

and can be written

D(0) ≡D(x, x) =

∫

ddk

k2 +M2

=2M2(cµ)d−4

[

Λ +
1

32π2
log

M2

µ2

]

Λ =
1

16π2(d− 4)
.

(3.11)

Thus, although D(0) and DH(0) ≡ DH(x, x) are both divergent, the H = 0 propa-

gator can be subtracted to obtain a finite result, with

D∆H(0) ≡DH(0) −D(0)

= − eH

16π2

∫ ∞

0

dx

x2
e−βx

(

1 − x

sinh x

)

,

(3.12)

where the parameter β ≡ M2/eH . The integral is of the same form as the one

calculated in Ref. [100] and discussed in Chapt. 2, and is simplifies the propagator

to the expression

D∆H(0) = − eH

16π2
IH(β)

IH(β) = log(2π) + β log

(

β

2

)

− β − 2 log Γ

(

1 + β

2

)

.

(3.13)

The simplified forms of the relevant terms can be used to calculate the vacuum

energy contributions from each of the diagrams, resulting in[109, 110]

ε
(2)
3.1(a) =

M2

2F 2
D(0)DH(0)

ε
(2)
3.1(b) =

1

F 2
DH(0)

∫

ddk

(2π)d
(k2 +M2)DH(k)

ε
(2)
3.1(c) =

2(eH)2

F 2
(2l5 − l6)D

H(0)

ε
(2)
3.1(d) =2l3

M4

F 2
DH(0)

ε
(2)
3.1(e) = − 8c34M

2(eH)2.

(3.14)
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The notation ε
(2)
3.1(x) refers to the vacuum energy contribution resulting from the

diagram in subfigure (x) of fig. 3.1. The total vacuum energy contribution at second

order will later be denoted as ε(2).

The calculation of ε
(2)
3.1(b) is the only one which has a more complicated integral

than that for DH(0) − D(0), but upon explicit calculation, this diagram vanishes

generally, not just in the Mπ = 0 case considered by Ref. [109].

While the divergences with no dependence at all on the electromagnetic field

can always be immediately neglected, there is some delicacy in parts of the renor-

malization, as counterterms will be required. However, these counterterms have

been calculated generally for the LECs in both L4[18] and L6[38]. To be reas-

sured more explicitly that all these cancellations take place as they should, it is

convenient to express DH(0) as a combination of a finite and an infinite piece,

DH(0) = D∆H(0) +D(0). Divergences due only to D(0) which do not multiply H

are immediately ignored, and those which do multiply H must be carefully exam-

ined for renormalization. Specifically, the L2 term ε
(2)
3.1(a) is a divergent term, which

is cancelled by the renormalization of the L4 term l3. Similarly, the L4 term ε
(2)
3.1(c)

has a finite piece which contributes to the calculation, and a divergent piece which

is cancelled by the renormalization of the L6 LEC c34. The final two contributions,

ε
(2)
3.1(d) and ε

(2)
3.1(e), do not have any explicit divergences, aside from the counterterms

which they must include to cancel the divergences of the other terms.

Combining all these terms into the full contribution to the vacuum energy at
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O(p6) results in

ε(2)(H) = − (eH)3

(16π2)2F 2

{

IH(β)

[

1

3
(l̄6 − l̄5) −

β2

2
l̄3

]

+ βd̄(M2)

}

. (3.15)

The l̄i have standard definitions as the scale-independent values for the LECs. The

scale-independent quantity d̄ has been defined here and can be written explicitly as

d̄(M2) = 8(16π2)2cr34 −
1

3
(l̄6 − l̄5)log

(

M2

µ2

)

. (3.16)

Eq. (3.15) is an explicit form for the vacuum energy using new diagrams for O(p6).

These must be combined with the result of substituting the next-order calculation

of Mπ in the O(p4) result from Chapt. 2. This substitution cancels the l̄3 term

(the correction to F only appears at second order, and therefore is not relevant in

this calculation). Finally, taking the derivative of the combined vacuum energy and

applying the GMOR relation, the shift in the condensate can be expressed

∆Σ(H)

Σ0
=

eH

16π2F 2
π

IH(βπ) +

(

eH

16π2F 2
π

)2

×
{

− 1

3
(l̄6 − l̄5)

[

1 + log 2 + ψ

(

1 + βπ

2

)]

+ d̄(eH)

}

,

(3.17)

with ψ(x) ≡ d
dx

log Γ(x) and βπ ≡M2
π/eH .

This shift should agree with the result in the chiral limit when β → 0, and

indeed, in this case ψ
(

1
2

)

= −γe and the shift is identical to that derived in Ref. [109].

The translation to the E field is again straightforward, with the substitution

H → iE yielding a similar analytic expression. The generalization to the E ·H 6= 0

case is, of course, far more complicated, and unfortunately yields an expression

which is not analytically tractable–unsurprising, as the O(p4) result was also not

analytically tractable. As in Chapt. 2, the result will most conveniently be expressed
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in terms of the variables f and φ, defined by F = f2 cos(2φ)
2

and G = f2 sin(2φ)
2

.

Because the result of the above calculation depends only on the H field through the

propagator as calculated by Schwinger, the calculation of the integral is the same

as in the O(p4) case, and the generalized form of the integral can be written

∆Σ(F ,G)

Σ0

=
ef

16π2F 2
π

IEH(βf , φ) +

(

ef

16π2F 2
π

)2

cos 2φ

×
{

1

3
(l̄6 − l̄5)(I

′
EH(βf , φ) − 1) + d̄(M2

π)

}

IEH(βf , φ) =

∫ ∞

0

dz

z2
e−βf z

[

1 − z2 sin 2φ

2 sin(z sinφ) sinh(z cos φ) + iε

]

.

(3.18)

As the integral is the same as that discussed in Ref. [100] and Chapt. 2, it will again

have some potential ambiguity. The integral has divergences from its poles, which

are interpreted using the Schwinger mechanism as pair creation in an electric field

to whatever degree it is present. The divergence is regulated in the same manner

as in the prior result, which is a physical choice corresponding to pair creation. As

in the prior result, the magnitude of the imaginary part of the result is taken as a

rough indicator of the importance of the instability.

3.3 Numerical results

The structure of χPT is due only to the symmetries of QCD, so it is plausible

to say that the content of the theory is encoded only in the values of the LECs, which

must be measured from known processes. The L2 LECs were, of course, very well

known experimentally from an early stage, and the uncertainties on the L4 LECs,

while not as small, are still very manageable and lead to relatively insensitive results.

The situation with the L6 LECs is unfortunately far less satisfactory. This is natural,
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as the number of processes that can be used to measure the L6 LECs is generally

far less than the number of LECs themselves. In addition to the uncertainty in its

magnitude, the LEC necessary in this calculation, c34, has an additional difficulty as

it only contributes to resonance processes involving scalar exchange where it appears

squared, and thus its sign remaines undetermined. The complete ambiguity in sign

occurs at the scale of these resonance processes, ∼ Mρ = 768MeV [111], so it is the

scale-dependent experimental value which has an undetermined sign. The quantity

d̄ used in this discussion is positive in both cases, but the ambiguity in the sign of

the scale-dependent LEC makes its uncertainty very large.

With these discussions in mind, the relevant experimental values for the pro-

cesses discussed here are[111, 112]

l̄6 − l̄5 = 3.0 ± 0.3

dr(768MeV ) ≡ 8(16π2)2cr34 = ±1.5 ± 1.5,

(3.19)

where the value of the constant dr at the measured scale has been listed. The

uncertainty of this estimate is obviously too great to make a real quantitative de-

termination of the O(p6), but some information may still be forthcoming.

With these values, the shift in the condensate can be plotted up to the level

of precision which is available. The first piece of data is to compare the value of

the shift in a pure magnetic field for a finite Mπ to the value of the shift when

Mπ = 0, to see how much the result is improved by a more realistic calculation.

This comparison is plotted in fig. 3.2. This plot, which includes both the O(p4)

shift and the O(p6) shift, shows a significant difference when a finite Mπ is included,

and that even with the large uncertainty in dr, there is no possibility of overlap.

87



2 4 6 8 10

eH

FΠ
2

0.01

0.02

0.03

0.04

0.05

0.06

DS

S0

MΠ=0

MΠ=140 MeV

Figure 3.2: A comparison of the shift due to a pure magnetic field in the Mπ = 0

case to the Mπ = 140 MeV case. Shaded regions indicate uncertainty due to the L6

constant dr.

The difference in the O(p6) contribution alone is also of interest, and is plotted in

fig. 3.3. The contribution of this portion alone is fairly close in the Mπ = 0 vs. the

finite Mπ case, however, because the shift at this order is less in the finite case, the

O(p6) portion is potentially more significant as a percentage of the total shift.

Another interesting limit is the one opposite to that calculated previously,

namely M2
π � eH (or βπ → ∞). The analytical expression in this case is

∆Σ(H)

Σ0
=

eH

16π2F 2
π

(

F 2
π

6M2
π

− l̄6 − l̄5
48π2

+
d̄

16π2

)

, (3.20)

which disappears as βπ → ∞ (no magnetic field). This encodes the low-energy

behavior in a perfectly sensible experimental regime, namely that of a finite pion

mass and a very small external field. This regime is the one most likely in experi-
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Figure 3.3: A comparison of the shift due to a pure magnetic field in the Mπ = 0

case to the Mπ = 140 MeV case, using only the O(p6) portion. Shaded regions

indicate uncertainty due to the L6 constant dr.
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ment, which as discussed previously, can only achieve very small values for the ratio

eH/M2
π .

For the case of generalized E andH fields, the numerical trick used in Ref. [100]

and Chapt. 2 is still applicable to separate the principal value part of the integral

from the imaginary part due to the poles. Subtracting the expression

i
∑

n

Rn(zn)

(

1

z − zn

− 1

z + zn

)

. (3.21)

from the integral will yield the principal value. This expression has all the poles of

the original integral, but when integrated, its principal value is obviously zero by

symmetry.

This method allows the total shift in the condensate due to a generalized

electromagnetic field to be plotted up to O(p6). The real and imaginary parts of

the shift are plotted in fig. 3.4, and the ratio of the added correction from O(p6)

to the total shift in the condensate is plotted in fig. 3.5. In these plots, as well as

the prior ones, the shaded region indicates the possible values for the shift, based

on a dr which can vary within the range (−3, 3). In these figures, the value of

ef/F 2
π = 10 corresponds to a value of ef = 290 MeV (the expansion parameter is

ΛH = 4πFπ = 1.2 GeV).

From Fig. 3.5 and Eq. (3.20), it is clear that the O(p6) correction is potentially

significant for some dr values within the experimentally estimated range, but that

other dr values result in very little impact. In particular, positive dr would result

in a significant difference between the O(p6) calculation and the O(p4) calculation,

whereas a negative value for the shift is negligible until large values for ef/F 2
π are
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Figure 3.4: The imaginary and real parts of the total value of the shift in the

condensate due to general E and H fields, with f and φ as defined in the text.

Shading depicts uncertainty due to c34.

.
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Figure 3.5: The imaginary and real parts of the ratio of the shift at two loops to

the total shift for the case of general E and H fields, with f and φ as defined in the

text. Shading depicts uncertainty due to c34.

.
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achieved.

The imaginary part of this integral is also revealing, as it indicates when

the result is invalidated by pair creation. Here, the contribution of O(p6) is more

significant at larger H ; while in this situation the imaginary part as a whole is

smaller, the contribution to the imaginary part due to the next order result is more

significant. In this regime, however, the imaginary part appears to be small enough

not to invalidate the result. In a regime with a larger imaginary part, the O(p6)

portion is small, and therefore also not significant enough to meaningfully affect the

validity of the result.

3.4 Discussion

This chapter discussed the effect of the correction at order O(p6) in chiral

perturbation theory to the shift in the chiral condensate in an electromagnetic field,

using a finite value for Mπ. The difference at O(p4) between the finite Mπ and

the Mπ = 0 result was dramatic, so an O(p6) calculation was desirable in learning

whether this would be the case at the next order. The O(p6) result might play an

important role, but the size of the correction is not qualitatively different for a finite

Mπ versus Mπ = 0.

One interesting aspect of the O(p6) extension is a tension between the large-NC

limit and the low-momentum limit as described by χPT. Terms which are lower in

the chiral expansion are not necessarily lower in large-NC QCD, and so it is possible

for higher-order terms in the chiral expansion to be lower-order in NC . Lowest-order
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terms in NC are those with no trace at all, or with no pion fields. There are no such

terms which contribute to the shift in the chiral condensate due to electromagnetic

fields at O(p4), but at O(p6), there is such a term. Higher-order terms in the chiral

lagrangian can also have such low-order terms in NC , but these are second order

corrections.
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Chapter 4

Directional Dependence: Magnetization at the Perturbative Scale

4.1 Introduction

The previous chapters focused on the effects of an electromagnetic field at

relatively small field strength. The quantity used to probe this regime was the

chiral condensate, a scalar quantity. However, electric and magnetic fields do not

only shift the chiral condensate, but contain new vectorial information which did not

exist before they were imposed. One of the most interesting quantities in measuring

the directional effects of a magnetic field is the magnetization, which was defined in

the introduction via Eq. (1.41) as

M = B −H =
δSmatter

eff

δB
. (4.1)

This chapter will examine the magnetization of the vacuum due to a magnetic field

in the perturbative regime; the calculations are based on those originally discussed

in Ref. [113].

In the past, the magnetization has been studied at low-to-medium energy

regimes[114], also using chiral perturbation theory, as was done in earlier chapters

for the chiral condensate. These results, while not employing the full analytic result

discussed here, were derived in the limits qB � m2
π and Λ2 � qB � m2

π. As dis-

cussed in Chapt. 2, the former approximation is valid, wheareas the latter will likely
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remove the results from the regime of validity for χPT. In the previous chapters,

this problem was solved by assuming no relationship between qB and mπ, and then

applying chiral perturbation theory. Another possible solution is to take qB to be

extremely large, qB � ΛQCD, and thus place the calculation firmly within the per-

turbative regime. As discussed previously, realistic magnetic fields are not nearly

this large, so results in this regime are not likely to be experimentally relevant, but

provide another perspective on the shift in vaccuum quantities.

Another important motivation for not studying the chiral condensate at high

energies is that chiral symmetry becomes almost meaningless at these energies.

There is a very large explicit breaking of the symmetry due to the external field,

which renders the possibility of spontaneous symmetry breaking immaterial. This

is in contrast to the magnetization, which has no such difficulties.

In addition to the calculation in χPT, Ref. [114] also considered the case of

a strong magnetic field in the context of a model. The assumptions of this model

were twofold; first, that the interactions of quarks and anti-quarks dominate the

calculation of magnetization, and second, that a potential model is a good approx-

imation for these interactions. Physically, the magnetic field causes the quarks and

anti-quarks into relativistic Landau orbits in the plane perpendicular to the field, so

that only one free dimension remains, and interactions between the quarks and anti-

quarks must occur along this direction. When the magnetic field is strong enough,

the quarks and anti-quarks form spin polarized pairs, which results in a magnetiza-

tion of the vacuum. As the field gets stronger, the binding between the quark and

anti-quark will become tighter, and at very strong fields, the coupling between a
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tightly bound quark and anti-quark can be effectively modeled via a color coulomb

potential, with the effects of perturbative QCD at this scale being taken into ac-

count via the running of the coupling. With these assumptions, then, Ref. [114]

solves the interaction in the WKB approximation. In this case, the pairs are taken

to be packed as closely as possible, so their density is taken to be determined by the

size of the pairs. Using these approximations, the magnetization resulting from the

condensation of a particular quark flavor is calculated by Ref. [114] to be

M ≈ q2BΛQCD

mπ

(

qB

Λ2
QCD

)
1

2
exp(−π/2A))

A =
8π

11Nc − 2Nf

(4.2)

where m is the constituent quark mass and Nc and Nf are the numbers of colors

and flavors respectively in the theory.

Because of these ad-hoc assumptions, however, these predictions are not as

robust as might be hoped. Ref. [114] discusses these difficulties, and notes that the

quantitative result could differ substantially from that derived. It also expresses the

belief that the assumptions of the model are good enough to predict the qualitative

behavior. One issue which affects this accuracy is the inclusion of the constituent

quark mass, which is not a property of QCD, but rather a model-dependent quantity

relevant at long distances. This may or may not be a problem in the regimes where

the applicable model is reasonably accurate, but in the regime of strong fields, the

length scales probed become smaller than the size of the constituent quark and

therefore using a constituent quark mass as a parameter becomes highly suspect.

This leads to the motivation for studying the magnetization in the perturbative
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regime. Because the difficulties with the approach in Ref. [114] result from its

dependence upon a particular model, a model-independent approach is clearly of

interest. The perturbative regime is applicable because the electromagnetic field

is the only external parameter in the problem, and therefore sets the scale for the

interaction. In the physical picture discussed above, then, the electromagnetic field

sets the scale for the Landau orbits, and when qB � Λ2
QCD, the orbits are small and

gluon exchange is the appropriate description of the interaction. Of course, when

this field is large, asymptotic freedom guarantees that these interactions will be

weak. Thus, qualitatively, even though the quarks might be thought of as still being

within hadrons, they are stuck in Landau orbits so small that they will only weakly

interact with any other parts of the hadron. The only interactions between the quark

and anti-quark relevant at such a short range is the electromagnetic interaction and

the strong interaction via gluon exchange in the perturbative regime.

The directional effect of a strong external magnetic field imposed on a vacuum

is measured here via the magnetization. In the first section, the magnetization at

leading order is discussed, then its generalization to next-to-leading order, and the

chapter concludes with a brief discussion of the results.

4.2 Magnetization at leading order

The magnetization can be calculated via Eq. (4.1). As discussed, for the case

of qB � ΛQCD, pQCD can be used to calculate the effective lagrangian. At lowest

order, the effective lagrangian can be calculated using only a single quark flavor; this
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is because the first order lagrangian has a only a single quark loop, which means

that only a single flavor will be present in a single calculation and the calculation

for each flavor is independent. Another assumption that must be addressed is that

the masses of the quarks are assumed to be small, but because in this context this

means that mq � qB, this requirement is met easily. For fields large enough, the

analysis will apply even to heavy quarks, as the perturbative expansion does not

have an upper bound in momentum. In regions not quite so large, eB ∼ 2GeV , the

perturbative calculation will apply to the u, d, and s quarks and the contribution

from the heavier quarks will be suppressed.

In pQCD, the interactions at lowest order do not involve contributions of or-

der αs, but rather simply use the electromagnetic interaction of the quarks with

the external field. This means that the effective action is just that calculated by

Schwinger, as discussed in the introduction, with the mass and charge of the partic-

ular flavor under consideration substituted for the mass and charge of the pion as

discussed in prior chapters. This results in an effective lagrangian of the form [75]:

Lf
eff = − Nc

8π2

∫ ∞

0

ds

s3
e
−m2

qf
s

(

qfBs

tanh qfBs
− 1 − 1

3
(qfBs)

2

)

, (4.3)

where superscript Lf
eff indicates the contribution to the effective action for a partic-

ular flavor of quark, qf is the charge for quarks of that flavor, and mq is the current

quark mass for that flavor.

From this expression, the magnetization is easy to obtain by taking the deriva-

tive. Changing to the dimensionless variable z for the integration yields for the
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magnetization:

M
(0)
f = −

q2
fBNc

8π2
I(B,mqf

)

I(B,mqf
) ≡

∫ ∞

0

dz

z2
e−

m2
q

qB
z

(

coth z − z

sinh2 z
− 2

3
z

)

,

(4.4)

where the superscript (0) indicates that the calculation is lowest order in αs. The

additional term in the integrand from the expression discussed in previous chapters,

proportional to −2/3z, is required to renormalize the electric field and cancel di-

vergent fermion loops. With this term, the integrand converges for z → 0. In the

previous chapters, it was possible to simplify similar integrals analytically. However,

in this case, that is not necessary as the condition qfB � m2
q can be used to greatly

simplify the expression. Because its parameter is so small, the exponential in the

integrand decays very slowly so that the large z region dominates the integral. The

relevant part of the integral is then the part above some cutoff, c, with the properties

that c � 1,
m2

q

qfB
c � 1; it is possible to choose a large parameter c because

m2
q

qfB
is

very small so that the hierarchy of scales is not problematic. The separated integral

is then

I(B,mqf
) = I1 + I2

I1 =

∫ c

0

dz

z2
e
−

m2
q

qf B
z
(

coth z − z

sinh2 z
− 2

3
z

)

I2 =

∫ ∞

c

dz

z2
e
−

m2
q

qf B
z
(

coth z − z

sinh2 z
− 2

3
z

)

.

(4.5)

As discussed, I2, as the large-z portion of the integral, dominates. In this region,

coth(z) ∝ 1 and z/ sinh2(z) ∝ 4ze−2z, both of which can be dropped in comparison

to the −2/3z term. With only small corrections, then, the only relevant part of the
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integral is

I(B,mq) = −2

3

∫ ∞

c

dz

z
e−m2

q/(qf B)z . (4.6)

This can be simplified straightforwardly to I(B,mq) = −2
3
Γ(0)

(

m2
q

qfB
c
)

, where Γ(0)(Z)

is a plica function of zero order. This expression can be even further simplified using

the condition
m2

q

qfB
c� 1, yielding:

I(B,mqf
) = −2

3
log

(

m2
q

qfB
c

)

=
2

3
log

(

qfB

µ2

)

+ const, (4.7)

where µ2 is a scale parameter. The constant in Eq. (4.7) is of the same order

as the previously neglected corrections to the integral, and can be ignored. With

this expression for the integral, the first-order magnetization correction in pQCD

becomes

M
(0)
f =

q2
fBNc

12π2
log

qfB

µ2
, (4.8)

up to small corrections. The leading corrections to this expression are proportional

to B, rather than B logB, and the choice of µ can allow these corrections to be fully

canceled. The corrections of that order contain not only perturbative corrections,

but substantial contributions from the nonperturbative region, and therefore µ also

contains nonperturbative information. However, in the case of strong fields, the

expression is only weakly dependent on µ, depending upon it only logarithmically.

4.3 Magnetization at next-to-leading order

With this leading order expression, it is instructive to consider the corrections

in more detail, through next-to-leading-order corrections. As discussed, these correc-

tions are both perturbative and nonperturbative. The nonperturbative corrections
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Figure 4.1: Diagram contributing to magnetization at next-to-leading order

are of course due to interactions in the low momentum region, and so should be

power-law suppressed in Λ2
QCD/(eB) compared to both the leading-order result and

the leading order corrections to this result. The primary corrections to Eq. (4.8)

should then be perturbative. Their general form will be

M = M
(0)
(

1 + c1αs + c2α
2
s + · · ·

)

, (4.9)

where c1, c2, etc., are dimensionless constants. The strong coupling constant, αs,

is scale-dependent, and in this case should be evaluated at the only external scale

in the problem, eB. This section will derive the form of the leading perturbative

correction, c1; full calculation shows that it vanishes.

As at leading order, the first step is to find the effective lagrangian, or the

vacuum energy at this order. The diagram contributing at this order is depicted

in Fig. 4.1. At this order, as well as in the leading order vacuum energy, the

contributions from each flavor are independent, because there is still only a single

quark loop contributing. Only at the next order, where there is a second quark loop

and therefore a second flavor of quark, will the flavors begin to mix. The calculation

is similar to any perturbative QCD calculation, with the propagator for the fermion
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replaced with the the propagator for a spin-1
2

fermion in a constant magnetic field

as derived by Schwinger[75]. The next-to-leading order contribution to the vacuum

energy is then

G
(B)
ij (p) = − δij

∫ ∞

0

ds

cos eBs
exp

[

−is
(

m2
q + p2

z +
p2

x + p2
y

eBs cot(eBs)
−E2

)]

×
(

[cos(eBs) + γ1γ2 sin(eBs)] [γ3pz − γ0E −mq] +
γ1px + γ2py

cos(eBs)

)

.

L(1)
f (B) = − 32π2αsN

2
fNc

∫ ∞

0

ds

∫ ∞

0

ds′ exp
[

−(s+ s′)m2
q

]

I(s, s′, B,mq)

I(s, s′, B,mq) =
1

(4π)4a2
1a

2
2(b1 − b2)

{

− a1

(cc′)2
+ a2

+ log

(

b1
b2

)(

2m2
qa1a2 +

1

b1 − b2

[

a1

(cc′)2
b1 − a2b2

])

}

a1 =s+ s′

a2 =st+ s′t′

b1 =
ss′

s+ s′

b2 =
sts′t′

st+ s′t′

c = cosh(qfBs), c
′ = cosh(qfBs

′), t =
tanh(qfBs)

qfBs
, t′ =

tanh(qfBs
′)

eqfBs′
,

(4.10)

where the superscript (1) indicates an expression at order α1
s.

These expressions include an expression for the quark mass, which would in

general make these expressions appear suspicious, as calculations in the perturbative

limit should not be dependent on the quark mass. In this case, it is a very small

parameter, serving as an infrared regulator of the integrals.

Without some modification, I(s, s′, B,mq) appears to be divergent. Fortu-
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nately, the only relevant part of this integral is its dependence on the B field. It is

straightforward to subtract the value of the integral for B → 0, which will not affect

the magnetization as it is dependent on the derivative with respect to B (and must

furthermore be zero for B = 0). The non-divergent part of the effective lagrangian

depending upon B is then

L(1)
eff (B) = −32παsN

2
fNc

∫ ∞

0

ds

∫ ∞

0

ds′ exp
[

−(s + s′)m2
q

]

(I(s, s′, B,mq) − I(s, s′, 0, mq)) .

(4.11)

While the integral is convergent, there is no straightforward way to evaluate it

analytically. Again, however, as with the leading order correction, this expression

can be greatly simplified in the regime of interest, eB � m2
q . This is done using the

same method as previously by dividing the integral into high-s and low-s regimes

at the (dimensionful) scale s = 1/m2
0. Taking the high-s part of both integrals then

yields the expression

L(1)
f (B) = −32παsN

2
fNc(qfB)

m2
0

2(4π)4
Ei

(

−2
m2

q

m2
0

)

(

2 − 2e
−

m2
q

m2
0 +

(

m2
q

m2
0

)

Γ

(

0,
m2

q

m2
0

)

)

,

(4.12)

again up to small corrections. The regime m0 � mq (equivalent to the limit qfBc�

1 above) will yield further simplifications. Making these, then taking the derivative

with respect to B, yields the next-order correction for the magnetization in the form

M
(1)
f (B) = παsNc(q

2
fB)

m2
q

qfB

1

16π4

(

log
eB

µ2

)2

, (4.13)

where again, µ is a renormalization scale chosen to minimize the nonperturbative

corrections.
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The magnetization at both leading and next-to-leading order can be combined

in the form

Mf (B) = q2
fB

Nc

12π2
log

qfB

µ2

(

1 + 4παs

m2
q

qfB

3

16π2
log

(

qfB

µ2

))

, (4.14)

plus corrections of order α2
s.

The dependence of the result on mq is here made manifest. A meaningful

result should not be dependent upon that value, and so the fact that the result

multiplies αsm
2
q/(qfB) rather than αs is troubling, as indicates that the result is

power-law suppressed in B, or that the coefficient c1 is zero. For light quarks,

the correction is not reliable at all, because its magnitude is so small, and will be

dominated by the (unknown) nonperturbative correction. For heavy quarks, on the

other hand, the correction is more likely to be reliable (though the fields must be

stronger to satisfy the relationship qfB � m2
q � Λ2

QCD), and will be the leading

order correction for these. In either case, the leading order result of Eq. (4.8) is

accurate up to corrections of order α2
s.

4.4 Discussion

This chapter examines the magnetization of the vacuum in the region where

perturbative QCD is valid, eB � ΛQCD, in contrast to previous chapters, which

focused on the effects of weaker electromagnetic field. The contribution from each

flavor can be determined independently. When eB is either much greater or much

smaller than all of the quark masses, their contributions are identical, and the

total contribution to the magnetization can be written as a sum of the individual
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contributions as

M(B) =







∑

active
flavors

q2
f

e2






e
2
B

1

4π2
log

eB

µ2

(

1 + O(α2
s)
)

, (4.15)

where the active flavors are those whose squared mass is well below eB.

The lack of perturbative correction in this result is puzzling. There may be

some deep reason for the lack of next-to-leading order correction, but at present it

is unclear what this might be.

Regardless, the leading order result is a model independent calculation of the

magnetization, and as such can be compared to the prior result obtained by Ref. [114]

using a quark potential model and repeated in Eq. (4.2). The qualitative behavior

of the two is naively very similar, as the form for both is a function linear in B times

a function which increases very slowly as a function of B/Λ (in the case of the prior

result, the constituent quark mass m is O(Λ)). This slowly increasing function is

logarithmic in the case of the perturbative expansion, and in the case of the model,

is a power law with an extremely small exponent. This apparent similarity does not

extend as far as it might seem, however.

For comparison, the large-Nc expansion used in the previous chapters can again

be invoked. As before, it is an interesting tool useful in analyzing the qualitative

behavior of various phenomena; the Nc order of various expressions can be helpful in

determining how similar they are in origin. Expressions with dissimilar orders of Nc,

while appearing to be very close otherwise, are likely based on very different physics.

In this case, the expression derived in perturbative QCD, Eq. (4.14), is proportional

to Nc. Because the expansion is based on quark degrees of freedom, it is not difficult
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to understand the root of this dependence. The quarks are approximately free, so

the single quark loop in the expansion contributes this single factor of Nc. The

expression based on the quark model in Eq. (4.2), however, has no Nc dependence

at all. In that case, while the model was based in part on the potential between a

quark and an anti-quark, the expression for the actual magnetization is based on

the condensed quark-anti-quark pairs, which are color singlet, and therefore do not

contribute a factor of Nc. And, of course, although the power law in Eq. (4.2) is

small, when the fields become extremely large, the power law will eventually become

substantially larger than the logarithmic expression of Eq. (4.14).

Ultimately, the perturbative result should be more reliable than the model-

based calculation as energies increase. The physical picture which justifies the per-

turbative expansion only becomes more valid as the strength of the field increases;

the Landau orbits of the quarks become even smaller, such that they can even more

accurately be approximated as being free for the purposes of vacuum polarization.

In contrast, the model result of Eq. (4.2) is less justifiable in the regime of large

fields. Because the quarks can be approximated as being free due to their small

Landau orbits, it is less likely for them to condense with anti-quarks and form color

singlet pairs for vacuum polarization. In fact, the presence of the constituent mass

in the expression was a clue to this breakdown; the constituent mass is only a mean-

ingful expression at lower energies, and at higher energies becomes an inappropriate

description of quark dynamics.

The magnetization is thus one of many vacuum quantities which can be of

interest in studying QCD. Like in all quantum field theories, the vacuum of QCD is
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nontrivial, but the ideal quantity for measuring this structure changes at different

energies. At low energies, the chiral condensate can be used, and as the order pa-

rameter for chiral symmetry breaking, it is desirable to measure it wherever it can

be used. For an electromagnetic field at perturbative scales, however, the strength

of the field which has pushed the calculation into the perturbative regime is high

enough that there is a large explicit breaking of chiral symmetry, and another pa-

rameter must be used. The parameter here, magnetization, is of interest because,

of course, it is intimately related to electromagnetism. It differs from the chiral

condensate in that it is a vectorial quantity, which is interesting because it captures

the vectorial nature of the applied field.

Previous chapters discussed the effects of the electromagnetic field on the

vacuum of QCD at lower energies and used the chiral condensate to measure these

effects. In Chapt. 2, the effects of an electromagnetic field at intermediate strengths

was discussed using primarily chiral perturbation theory, though other models were

also discussed. In general, all methods show the electric field to suppress the chiral

condensate, whereas the magnetic field enhances it. In Chapt. 3, the effects of the

electromagnetic field were examined to next-order in chiral perturbation theory, with

the idea that this will extend the region of validity to slightly higher energies. It is

possible that the next order correction could be significant, but because of the high

error on the L6 coefficients in χPT, it is not possible to determine how significant

at this time. In both of these first chapters, a large enough electric field invalidates

the result for the shift in the chiral condensate due to pair creation, or instability of

the vacuum. Finally, the current chapter discusses the magnetization of the QCD
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vacuum at field strengths large enough to push the calculation into the perturbative

regime due to magnetic fields, which has the expected form for the first order result

in perturbation theory, but the next-order result in perturbation theory is small

enough that non-perturbative corrections become impossible to ignore.
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