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gion are projected onto subspaces defined by projection vectors that are generated

using three common pattern classification techniques; the detection performances of
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process that involves nonlinearly mapping the data into a high-dimensional feature
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projection separation statistic determines how anomalous each pixel is. These algo-

rithms are implemented on five hyperspectral images and performance comparisons

are made using receiver operating characteristic (ROC) curves. Results indicate that

detection performance is data dependent but that the nonlinear methods generally

outperform their corresponding linear algorithms.
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Chapter 1

Introduction

Hyperspectral image analysis, otherwise known as image spectroscopy, involves

the use of data acquired from a special type of electro-optical sensor to perform

some desired remote sensing application. Hyperspectral imaging (HSI) sensors are

essentially the same as multispectral sensors, which have been widely used since

the 1970s [1], with the simple distinction that HSI sensors use a greater number of

spectral bands and the sequence of bands used is contiguous [2].

For many years, researchers have developed schemes to exploit the highly use-

ful spectral information often provided by a hyperspectral sensor. Whether for

classification, detection, or surveillance and tracking purposes, many of these meth-

ods have shown promise in terms of being able to effectively analyze a hyperspectral

scene [2–16]. For target detection applications, both spectral match detectors and

anomaly detectors have garnered a great deal of attention. These two classes of

detectors have one key difference. Spectral match detectors require the spectra of

the materials in question to be known a priori; anomaly detectors do not have this

requirement. Instead, they search for pixels in-scene which have spectra that deviate

significantly (in a statistical sense) from those spectra which are part of a globally

assumed background or their respective local backgrounds.

The main goal of an anomaly detector is to distinguish target pixels from
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background clutter pixels using no information about what it is you are searching for;

this is usually accomplished by separating the local area surrounding a pixel into two

distinct regions using a dual-window approach. One way of designing an anomaly

detector is by projecting the input test pixel spectrum onto a subspace whose bases

are defined by some projection vectors which can be generated in some way using

data from the dual window regions. In [3] researchers compared linear subspace-

based anomaly detection algorithms using projection vectors which were generated

using three common subspace projection techniques - Principal Component Analysis

(PCA), Fisher Linear Discriminant (FLD) Analysis, and the Eigenspace Separation

Transform (EST). In addition, the performance of the benchmark Reed-Xiaoli (RX)

anomaly detector is also compared with the performances of the three proposed

linear methods.

In many situations, however, a linear classifier is not always sufficient; that is,

most real-world data are not linearly separable. By using a nonlinear mapping, the

data are transformed into a higher- (possibly infinite-) dimensional feature space

where separating the data using a linear hyperplane is now often possible. This

linear hyperplane in the feature space corresponds to an exact nonlinear boundary

in the original input space. Similarly, the nonlinear boundary theoretically enhances

detection and classification results.

Unfortunately, it is computationally infeasible to carry out any algorithms

in this high-dimensional space. However, using kernelization techniques - a con-

cept which comes from machine learning - this problem can be circumvented. To

kernelize an algorithm, all dot products between mapped vectors in the feature
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space are instead computed using a predetermined kernel function on the input

data which correspond to the mapped data. This significantly simplifies the math-

ematical computation. This thesis examines the performance of the kernel versions

of each of the four methods described above and applies each one to the subspace-

based anomaly detection problem. More specifically, Kernel Principal Component

Analysis (KPCA), Kernel Fisher Discriminant (KFD), and Kernel Eigenspace Sep-

aration Transform (KEST), are all used to generate the projection vectors in the

feature space. In addition to these three subspace-based methods, the Kernel-RX

algorithm is also implemented and the performances of each of these four algorithms

are compared against each other as well as against their linear counterparts.

With so many different variations of hyperspectral detection algorithms avail-

able in the literature, it is often a difficult challenge to determine which method

is superior. Even more, the most optimal method could depend on the hyperspec-

tral image under consideration; therefore, it may be a nearly impossible task to

classify any single algorithm as ‘globally optimal’. This thesis examines multiple

variations (both linear and nonlinear) of one specific type of detection algorithm

- a subspace-based anomaly detection algorithm - and characterizes the detection

performance and average relative computational time of each method. Performance

comparisons are based on receiver operating curve (ROC) and area under the curve

(AUC) analysis.

This thesis is designed to provide a performance comparison of linear and non-

linear subspace-based anomaly detection algorithms and is structured in the follow-

ing manner. Chapter 2 provides a background discussion on hyperspectral imaging
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including the theory and applicability of this type of remote sensing. In Chapter 3,

a more detailed explanation of target detection applications as well as an introduc-

tion to subspace-based anomaly detection can be found. Brief descriptions of the

three linear methods that are used to generate the projection vectors are found in

Chapter 4. Chapter 5 contains an introduction to kernel-based learning techniques

while Chapter 6 shows how each of the three linear methods from Chapter 4 can be

extended into their respective nonlinear kernelized methods. Chapter 7 provides a

detailed discussion of the well-known RX algorithm as well as its nonlinear kernel

version. In Chapter 8, some of the issues involved with kernel methods are discussed.

Results and analysis of all eight methods as applied to simulated data as well as

multiple hyperspectral data sets can be found in Chapter 9. The hyperspectral

images come from the Hyperspectral Digital Imagery Collection Experiment (HY-

DICE) and the Airborne Hyperspectral Imager (AHI) data sets. Finally, concluding

remarks are made in Chapter 10.
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Chapter 2

An Introduction to Hyperspectral Imaging

This chapter provides a very brief introduction into hyperspectral imaging

technology and theory. It is by no means intended to be a complete discussion as

the in depth theory on the subject lies outside the scope of this thesis. For more

information on this topic, please see one of the many references cited in this chapter.

2.1 Hyperspectral Sensors

A hyperspectral sensor is a specific type of electro-optical remote sensing sys-

tem; it gathers spectral information about specific objects without actually phys-

ically contacting them. Typically mounted on an aerial craft (i.e. an airplane or

a satellite), hyperspectral sensors collect radiance data from a spatial area on the

surface of the earth below. There are four main components of a hyperspectral

remote sensing process: the illumination source (often the sun), the path which the

energy takes through the atmosphere, the ground scene, and the sensor itself [8].

An example of the interaction of all parts of a hyperspectral remote sensing system

can be found in Figure 2.1. All four components interact in a very specific way to

allow this technology to provide detailed remotely sensed spectral data. A detailed

description of the overall sensor process is explained very well in [8]. The sun’s

energy as a function of wavelength over the electromagnetic spectrum is referred
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Figure 2.1: This figure illustrates the process involved in a hyperspectral remote
sensing system. The spectrum eventually collected by the sensor is a combination of
the solar spectrum, atmospheric attenuation, and the material spectral signature. [8]

to as the solar spectrum. As this energy travels from the sun to the surface of

the earth, the spectral distribution of intensity is altered by certain atmospheric

conditions. When the solar energy comes in contact with materials on the ground,

it goes through another spectral transformation, a change which depends on how

much that particular material reflects, transmits, or absorbs energy at various elec-

tromagnetic wavelengths. After propagating back up through the atmosphere and

going through more intensity alterations, the sensor collects the data and stores it

for later processing.

At each pixel in the ground scene, the sensor measures spectral radiance in

numerous closely-spaced frequency bands. For example, a typical sensor might
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collect radiance data in each one of a series of 10-nm wide spectral bands over

a spectral range of 0.4 µm through 2.5 µm for a total of 210 frequency bands. This

corresponds to the spectral region encompassing the visible to near infrared (VNIR)

(0.4 µm - 1 µm) and the short wave infrared (SWIR) (1 µm - 2.5 µm) frequencies.

Other sensors are defined in the long wave infrared (LWIR) region (7 µm - 15 µm).

The exact spectral range varies with each sensor.

There are many factors which affect the quality of data acquired by the sensors

- the most significant of which is solar energy. The sensors are in fact measuring

solar reflectance off of objects on the ground. Without enough solar energy, most

hyperspectral sensors will not work. LWIR sensors, which for the most part corre-

sponds to the thermal infrared region, avoid this problem because in this frequency

range, materials do not reflect as much solar radiation as they emit. Other things

that affect data quality and accuracy are air temperature, the presence of water va-

por or other mixed gases in the atmospheric, the solar angle, and shadowing. All of

these things can cause the collected data to be unusable for processing and detection

purposes because of low signal-to-noise ratios.

2.2 Hyperspectral Imagery

The data collected from the sensor are presented in the form of a hyperspectral

cube. Each cube has three dimensions, the first two being spatial dimensions while

the third is the spectral dimension. This third dimension spans the entire frequency

range used by the sensor. The depth of the cube is equal to the number of spectral
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bands being used in the sensor. The cube can be viewed in two distinct, yet equally

informative ways. The first is as a set of spectra, one at each pixel location. Each

spectrum contains the radiance (or associated reflectance) data as a function of

wavelength; in addition, each spectrum has a length equal to the number of spectral

bands. Every pixel contains the spectral signature data collected from a physical

area on the ground scene below; this area is known as the pixel surface. More

specifically, each reflectance spectrum is the average of all of the spectra present

within a pixel surface region. (This concept will be further explained shortly). The

second way to view the cube is as a sequence of radiance (or reflectance) images, one

at each spectral band. This viewpoint is analogous to how video data is presented -

as a sequence of images, one at each time sample. The first method shows spectral

variance at a given spatial location while the second method displays the distribution

of radiance (or reflectance) in the spatial region being measured at a given spectral

value. These concepts are illustrated in Figure 2.2. While all HSI applications

attempt to exploit either the spectral information or the spatial information provided

by the sensor, a large number of applications exploit both simultaneously.

2.3 Hyperspectral Theory

The underlying principle of hyperspectral imaging lies in the fact that any

given material will emit a certain amount of energy - this amount varies with, and

is a function of, wavelength [8]. In particular, ”all materials reflect, absorb, and

emit electromagnetic energy at specific wavelengths in distinctive patterns related
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Figure 2.2: This figure shows the basic layout of a hyperspectral cube (center). The
cube can be viewed in two ways. The first (left) is as a set of material spectra, one
at each pixel location. The second (right) is as a spatial distribution of radiance
(reflectance) data at one specific wavelength. Both ways are equally informative. [8]

to their molecular composition” [6]. The goal of some detection algorithms is to

be able to identify a material in a given scene based on the reflectance spectrum it

emits. Since every pure material emits a unique spectrum, this task is theoretically

feasible. One can simply match the measured spectrum with those in a known

database such as in [17] to detect and/or classify all desired materials in an image.

However, due to complications such as spectral variability, spatial resolution, and

sensor compensation techniques, this concept is only valid theoretically.

There are two very important issues that arise when dealing with HSI data -

spectral variability and spatial resolution. Both must be considered when designing a

target detection system. These issues prevent hyperspectral remote sensing systems

from simply and easily extracting a pixel spectrum and matching it precisely with

a spectrum of a known material. As mentioned before, there theoretically exists

a fixed deterministic spectrum for any given material. However, in practice, this
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is not the case. Due to certain uncontrollable and immeasurable conditions even

spectral data taken from the same sample of a given material will not all be exactly

the same over the entire surface. This effect becomes even more apparent in remote

sensing applications. Variations in purity of the material surface, ”atmospheric

conditions, sensor noise, material composition, location, surrounding materials, and

other factors” are the leading causes of this phenomenon [2]. Figure 2.3, which

shows 36 measured spectra of a theoretically homogeneous region of a hyperspectral

image, illustrates the spectral variability effect. Even within a very confined spatial

region, the spectra are very similar yet do not perfectly match. Thus, ”an inherent

spectral variability prevents the characterization of homogeneous surface materials

by unique spectral signatures” [8].

Another issue which needs to be taken into account is spatial resolution. This

dilemma evolves from the differences in pixel area sizes captured by a single pixel

in the image in relation to the distribution of materials in the ground scene below.

This problem, which is very much dependent upon the actual settings of the sensor

as well as the height at which the sensor collects its data, gives rise to two pixel

types - pure pixels and mixed pixels. A pure pixel is one whose spectrum is that of

only one specific material. On the other hand, a mixed pixel is one whose spectrum

is a mixture of, or a combination of, spectra of multiple materials on the ground. In

this case, detection becomes much more difficult as spectra of non-target materials

interfere with the detection process.

These are two key issues which must be dealt with in order to develop a quality

hyperspectral target detection algorithm. In the algorithms described below, it will

10
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Figure 2.3: This image illustrates the spectral variability that is inherent in hy-
perspectral imagery. Shown here are 36 contiguous spectral signatures from a hy-
pothetically homogenous background clutter region. All spectral vectors have the
same basic shape yet none has an identical spectral signature.

be seen how these issues are taken into consideration.

2.4 HSI Applications

Hyperspectral imaging (HSI) has been used in a variety of civilian and military

applications. For instance, HSI can be used for terrain classification as well as for

environmental and agricultural monitoring. Geologists are able to use hyperspectral

data to determine the composition of the ground at a specific location and search

for locations of certain materials without having to do any physical tests on the soil.

More commonly, however, HSI is used for military applications such as automatic

11



target recognition (ATR) [8, 13] and surveillance [18]. The fact that most military

targets are man-made objects leads directly to the desirability of performing target

detection using hyperspectral imagery. This is due to the fact that most man-

made objects are composed of materials that are often significantly different from

the surrounding background in which they are placed (usually natural objects).

Using spectral information rather than (or in addition to) spatial information to

detect objects is often desirable since most military targets are hidden from plain

view. With recent significant advances in hyperspectral sensor technology, military

applications for hyperspectral imagery continues to grow in number, and with this

comes an increasing need to improve target detection and classification algorithms.

Equally as important is a need to determine which of the many detection algorithms

being proposed are actually capable of quality detection performance. As mentioned

above, the goal of this thesis is to provide a comparison between linear and nonlinear

anomaly detectors for hyperspectral imagery.
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Chapter 3

Anomaly Detection in Hyperspectral Imaging

3.1 Types of Target Detectors

The number of available hyperspectral target detection applications has ex-

ploded in the last decade largely due to advances in hyperspectral sensor technology.

Sensors developed more recently are able to provide both a higher spatial resolution

as well as a higher spectral resolution; both of these are essential for high perfor-

mance detection algorithms. The overwhelming majority of hyperspectral target

detection algorithms that have been studied in recent years can be placed into one

of two major categories: spectral match detectors and anomaly detectors.

In the first case, the spectra of ‘materials of interest’ are assumed to be

known a priori and can be obtained either from one of many preexisting spectral

libraries [17] or can be manually extracted from the hyperspectral data cube it-

self. This information can then be used in many ways in order to locate the de-

sired targets [7,13]. Spectral matching algorithms, however, intrinsically pose many

problems. Researchers in [7] showed that matched subspace detectors are naturally

reliant on how closely the spectra in the hyperspectral image match the spectra for

an already known substance in the spectral library [4]. This creates many significant

issues. First, spectral libraries are limited in size and may not contain the appropri-

ate material spectra needed for one particular hyperspectral image. In other words,
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any given spectral library most likely does not contain the spectra of all materials;

moreover, many man-made materials are not pure material but instead are a com-

posite of materials. It is nearly impossible that there exists spectral information for

all possible combinations of materials. Secondly, as mentioned in Section 2, the data

that are collected by the sensor need to be properly converted from a radiance do-

main to reflectance. This can be problematic if the sensor is not properly calibrated

to compensate for atmospheric conditions or if this information is not accurately

available [4].

On the other hand, anomaly detectors do not use or assume any information

about the spectra of ‘materials of interest’. These types of algorithms are useful

when the target spectra are not readily available or are found to be unreliable [2].

These detectors involve finding pixels in the image which are sufficiently distinct

(in a statistical sense) from either a globally assumed background or the immediate

neighboring pixels. Some anomaly detection algorithms attempt to model the back-

ground in some way and locate those pixels which cannot be described well by that

model [2, 4, 6]. The background can be modeled either by sampling pixels from the

entire image (globally) or by sampling pixels only from a neighboring region immedi-

ately surrounding the current test pixel (locally). Generally, when globally sampling

background spectra, the detector has difficulty locating “isolated targets in the open

if the signature is similar to that of previously classified background material” [2].

Using a local method provides a much more adaptive approach; however, these de-

tectors will sometimes generate a higher false alarm rate (FAR) corresponding to

isolated spectral anomalies [2]. For example, a small bush in an otherwise dusty
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terrain will most likely be classified as an anomaly because the material spectral

signature of the bush will likely be different than that of its immediate surrounding.

Nevertheless, most man-made objects have spectra which typically have a lower cor-

relation with natural objects than the correlation between two natural objects [3].

This fact should help to reduce the number of these types of false alarms. One dis-

advantage of some anomaly detectors is that many of them require the assumption

of a distribution for the background clutter. Since background clutter can contain

many different materials, the assumption of one specific distribution is often prob-

lematic and will increase the FAR. A mixture of Gaussian distributions is often used

because it greatly simplifies the results [4]. The three linear subspace-based methods

used in this thesis require no such assumption of a background model; instead, they

use data from the image in order to generate a subspace describing that data. In

addition, anomaly detectors will almost certainly yield higher false alarm rates than

matched spectral detectors because no knowledge about the desired target spectra

is known. Nonetheless, this thesis examines the performance of anomaly detectors

using a local background approach.

3.2 The Dual-Window Approach

One very common method used in many anomaly detector algorithms is known

as the dual-window approach [3–5, 9]. Using this technique is a way of attempting

to exploit both spatial variability in the image as well as spectral variability among

different materials. At each pixel location concentric rectangular windows centered
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at the test pixel are opened creating two disjoint regions - an inner window region

(IWR) and an outer window region (OWR). Hence, the local pixel neighborhood is

separated into two smaller regions. The size of the inner window is generally set

so that it can fully enclose a target. In most anomaly detectors another concentric

rectangle centered at the test pixel known as the ‘guard band’ is utilized as well. An

example of a dual-window with guard band is seen in Figure 3.1. The guard band

is slightly larger in size than the IWR yet still smaller than the OWR. The main

purpose of the guard band is to reduce the probability that some target spectra will

inhabit the OWR and hence affect the background clutter pixels [5]. Use of a guard

band becomes very critical in situations when the test pixel lies at the edge of a

target region as shown in Figure 3.2. Without the use of a guard band as in Figure

3.2(a), some of the target pixels leak into the OWR. Figure 3.2(b) shows how use

of a guard band prevents this from occurring. In the latter case, there are no target

pixels in the OWR.

The fundamental basis and applicability of the dual window approach lies in

the fact that the statistical properties of the two regions will greatly depend on

where in the image the dual window is centered. For example, if both the inner and

outer windows lie in a relatively homogeneous area (e.g. a grassy field), the spectra

have a high probability of being statistically similar. On the other hand, if the two

windows contain materials which are generally different from one another, (e.g. if the

window is centered around a target), then the statistical properties of the regions will

most likely be dissimilar. The greater this dissimilarity, the greater the projection

differences of the two regions onto the corresponding subspace will be, and hence,
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Figure 3.1: An example of a dual window with guard band. The numbers represent
the length in pixels making up the side of each window. Each ‘x’ in the IWR
represents one pixel. The pixel in red represents the current test pixel. The figure
is not necessarily drawn to scale

the more likely an anomaly will be detected at that particular test pixel. In loose

terms, a pixel will be marked as an anomaly if the statistical properties of its own

spectral vector and those of the region immediately surrounding it are ‘sufficiently’

different from the statistical properties of the spectra in the outer window region.

The term ‘sufficiently’ is determined by an appropriate threshold which will often

depend on the application.
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(a)

(b)

Figure 3.2: This figure illustrates the importance of the use of a dual window with
a guard band. Each ‘x’ represents one pixel. The red ones are the target pixels and
the black ones are the background pixels. The dual window is centered at a pixel
on the edge of the target. (a) Without a guard band, some of the target pixels leak
into the OWR. (b) With a guard band, this problem no longer occurs.
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3.3 Subspace-Based Anomaly Detection

The spectra in both the IWR and OWR can be characterized by their re-

spective first and second moments - i.e. their mean vectors and covariance (or

correlation) matrices. In this thesis these statistical characteristics are used to gen-

erate basis vectors for a subspace onto which test spectra from the IWR and OWR

are projected. Projection vectors are generated using both eigen- and non-eigen

based discrimination methods. Data with Gaussian distributions are optimally rep-

resented in the mean-squared error sense using eigen analysis. Thus, eigen-based

methods can usually effectively distinguish differences between spectra based on

their statistical properties. However, non-eigen based methods can also be used as

long as they are able to exploit second order data statistics [3]. The projection

vectors form the bases for a subspace onto which the mean spectra of the OWR

and the current test pixel spectrum (TPS) are projected. The TPS will hereby be

denoted as r throughout the remainder of this thesis. Ideally, the projection vectors

should be generated in such a way so as to maximize the separation between the

respective projections of the TPS and the mean vector of the OWR spectra if these

two sets are statistically dissimilar.

In [3], the projection separation statistic is calculated using

s =

∣∣∣∣∣
∑

i

wT
i (µ̂X − µ̂Y)

∣∣∣∣∣ (3.1)

where µ̂X and µ̂Y represent the means of the IWR and OWR spectra respectively

and are defined in Equations (4.3)-(4.4). The vectors wi are projection vectors, and

i is some variable which is usually much less than the number of spectral bands.
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This equation can be adapted in very subtle ways that do not significantly alter the

results - only the physical meaning of the metric. The projection separation in this

thesis is calculated using

s′ = (r− µ̂Y)TWWT (r− µ̂Y). (3.2)

where W = [w1 w2 . . . wm] is a matrix whose columns are m projection vectors.

Equation (3.2) is referred to as the projection separation statistic (PSS). This is

notably equivalent to the norm of Equation (3.1) with one minor exception; the

TPS is projected onto the subspace rather than the mean of the IWR spectra (µ̂X).

The product WWT is known as a projection operator and represents a subspace

characterizing the spectra that were used to generate the projection vectors wi. An

anomaly is detected if the projection separation, s’, is greater than some threshold, η.

This threshold can be manually or adaptively chosen depending on the application.

It is also possible to project the difference (r − µ̂Y) onto the complement

subspace (I − WWT ). This subspace represents all that is not represented by

WWT . For example, suppose the sample spectra from the OWR of a dual window

are used in some way to generate the projection vectors wi. In addition, assume that

the OWR contains background clutter. The subspace WWT in some way represents

the background clutter contained within the OWR. The complement subspace (I−

WWT ) will possibly include the target subspace, a subspace representing any noise

present, as well as any other background clutter not present in the current OWR.

Thus, the projection separation can also be calculated using

s′ = (r− µ̂Y)T (I−WWT )(r− µ̂Y). (3.3)
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Equation (3.3), known as the complement projection separation statistic (CPSS),

is only used in some algorithms (e.g. - PCA and EST). In the experimental results

section, only the best results between Equation (3.2) and Equation (3.3) are reported

and mention will be made regarding which equation was used.
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Chapter 4

Linear Methods

This chapter provides an introduction to the three linear methods which are

compared in this thesis. Each method is used to generate projection vectors which

serve as a basis for a subspace onto which input data are projected. All three

methods have been widely used in various pattern classification applications. Here,

of course, they are being used in a hyperspectral anomaly detection setting. The

exact equation that is used in each case is provided at the end of each subsection.

In particular, each method is used to generate the matrix W. Each expression is

then plugged back into Equation (3.2) or Equation (3.3) for the final PSS equation

for each algorithm.

Notation

To help provide notational consistency throughout this thesis, some termi-

nology and notation is detailed here. First, denote a spectral vector which is

contained within the IWR of a dual-window centered at the current test pixel by

xk = (xk(1), xk(2), . . . , xk(J))T where J refers to the number of spectral bands and

k = 1, . . . , Nin. Assuming that there are a total of Nin pixels in the IWR, the matrix

X is of size J ×Nin and contains the spectra of each one of these samples as one of

its Nin columns. Thus,
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X = [x1 x2 · · · xNin
] . (4.1)

Similarly, let a spectral vector which is contained within the OWR of the same dual

window be denoted by yl where l = 1, . . . , Nout. Given that there are Nout pixels in

the OWR, the J ×Nout matrix Y is one whose columns are the spectral vectors of

the pixels in the OWR. So,

Y =
[
y1 y2 · · · yNout

]
(4.2)

represents the matrix of local background clutter samples. That is, the background

clutter is assumed to contain the spectra of the pixels in the OWR of a dual window

centered at the current test pixel.

Furthermore, let

µ̂X =
1

Nin

Nin∑
i=1

xi (4.3)

µ̂Y =
1

Nout

Nout∑
j=1

yj (4.4)

be defined as the statistical means of the IWR and OWR spectra, respectively.

The vector µ̂Y represents the estimate of the mean of the background clutter. The

covariance matrices of the IWR and OWR spectra are given by

CX =
1

Nin − 1
(X− µ̂X) (X− µ̂X)T (4.5)

CY =
1

Nout − 1
(Y− µ̂Y ) (Y− µ̂Y )T . (4.6)

These matrices contain the second order structure of the samples in the IWR and
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the OWR, respectively. Finally, as defined in Section 3.3, the spectral vector of the

current test pixel is denoted by the vector r.

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most commonly used

method for feature extraction and dimensionality reduction and can be found in

countless pattern classification algorithms. The underlying goal is to find a projec-

tion which best represents theinput data in the least-squared sense [19]. In order

to generate the projection vectors, wi, the conventional PCA algorithm found in

numerous texts [19, 20] is used. Here, the method is elaborated as it applies to

subspace-based hyperspectral anomaly detection.

First, background clutter samples are collected from the OWR; these samples

are the columns of the matrix Y defined in Equation (4.2). Next, the covariance

matrix, CY, of these sample vectors is calculated using this dataset in Equation

(4.6). CY is then eigen-decomposed into its eigenvectors V and their corresponding

eigenvalues Λ as

CY = VΛVT . (4.7)

Equation (4.7) is an equivalent form of the solution to the eigenvalue equation

VΛ = CYV. (4.8)

Next, the projection vectors are taken as the first m eigenvectors with the

highest corresponding eigenvalues. Thus,

WPCA = Ṽ = [v1 v2 · · · vm] (4.9)
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where m is a configurable constant. As explained in Section 8, altering the value of

m (i.e. - changing the number of eigenvectors used) could change the performance of

the anomaly detector. Using the PCA eigenvectors as the projection vectors allows

for the extraction of the principal second-order statistics (components) of the input

data.

Using Equation (4.9) as the projection vectors and substituting this result into

Equation (3.2) gives

PCA(r) = (r− µ̂Y)T
(
WPCAWT

PCA

)
(r− µ̂Y). (4.10)

As mentioned in Section 3.3, it is also possible to substitute Equation (4.9) into

Equation (3.3) giving

PCA(r) = (r− µ̂Y)T
(
I−WPCAWT

PCA

)
(r− µ̂Y). (4.11)

The idea behind using the PCA eigenvectors lies in the fact that since these eigen-

vectors are optimal (i.e. - they minimize the mean-square error) in terms of their

representation of the spectral vectors of the OWR, the projection of the difference

between the test pixel, r, and the outer window mean, µ̂Y, will be large if the dual-

window is centered on an anomalous target. Pixels which have low second-order

correlation - corresponding to a high PCA(r) value - will likely be labeled as an

anomaly.

The algorithm outlined above can also be developed using samples collected

form the IWR. In this case, Equations (4.10) and (4.11) remain the same with the

exception that the projection vectors, wi, are generated using the spectral samples

contained in the IWR rather than the OWR. In this thesis, Equations (4.10) and
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(4.11) are referred to as the ‘PCA Algorithm’ or simply ‘PCA’. In Chapter 9, only

the best result among the four possible choices for PCA is given.

4.2 Fisher Linear Discriminant Analysis

Although PCA has proven to be very useful for representing data in a more ef-

ficient way, Fisher Linear Discriminant (FLD) Analysis attempts to seek an optimal

direction for discriminating between classes. FLD has been one of the most widely

used discrimination tools in pattern recognition applications [19]. In this setting,

the objective is to discriminate between a target class and a background class.

First, it is assumed that the IWR pixel spectra are one class of data while the

OWR pixel spectra are a second class. The between-class scatter matrix is defined

as

SB = (µ̂X − µ̂Y )(µ̂X − µ̂Y )T (4.12)

while the within-class scatter matrix can be written as

SW = CX + CY (4.13)

where CX and CY are the covariance matrices of the samples in the IWR and OWR

defined by Equations (4.5) and (4.6), respectively. The matrix SB is a measure

of how well the means of the two classes are separated while the matrix SW is a

measure of the compactness of each class cluster [3].

In order to calculate the optimal discrimination direction, w∗, the criterion

function needs to be maximized over all possible w [19]. The criterion function is
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given by

w∗ = max
w

J(w) =
|wTSBw|
|wTSWw| . (4.14)

Solving this is accomplished by solving the eigenvalue problem

SBw = λSWw. (4.15)

and taking the most significant (leading) eigenvector. Further analysis shown in

[19,21] leads to the solution

wF = w∗ = S−1
W(µ̂X − µ̂Y) (4.16)

Using Equation (4.16) as a single projection vector, W, and substituting this

result into Equation (3.2) gives

FLD(r) = (r− µ̂Y )T
(
wFwT

F

)
(r− µ̂Y ). (4.17)

The idea behind using FLD is that it will produce a large projection separation

if the spectral means of the IWR and OWR are sufficiently dissimilar while the

spectral vectors in each region are tightly clustered. In this thesis, Equation (4.17)

is referred to as the ‘FLD Algorithm’ or simply ‘FLD’.

4.3 Eigenspace Separation Transform

The Eigenspace Separation Transform (EST) was developed by Torrieri as a

preprocessing technique to extract features for neural network classifiers [22] and has

been used successfully by researchers for automatic clutter rejection [23]. Like PCA,

EST aims to extract features from a training set by projecting the input patterns
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onto a lower-dimensional orthogonal subspace. In this thesis it is used to generate

projection vectors in order to separate target pixels from background clutter.

The EST algorithm is laid out as follows:

1. Compute the J × J Difference Correlation (DCOR) matrix

M̂ = RX −RY

=
1

Nin

XXT − 1

Nout

YYT (4.18)

where M̂ is simply the difference between the correlation matrices of the IWR

(RX) and OWR (RY ) and represents the second order statistic differences

between the two regions [3] .

2. Calculate the eigenvalues of M̂. Since this matrix is symmetric yet not neces-

sarily non-negative definite, there will be at least one negative eigenvalue.

3. Calculate Ep and En by

Ep =
N∑

i=1

λi if λi ≥ 0 (4.19)

En =
N∑

i=1

|λi| if λi < 0 (4.20)

These represent the sums of the absolute values of the positive and negative

eigenvalues, respectively.

a. If Ep > En then use some number, m, of eigenvectors of M̂ associated

with the m largest positive eigenvalues to form the N x m matrix S.

b. If En > Ep then use some number, m, of eigenvectors of M̂ associated

with the m largest negative eigenvalues to form the N x m matrix S.
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c. If En = Ep then use some number, m, of either set of eigenvectors of M̂

associated with the largest m positive or negative eigenvalues to form the

N x m matrix S, with a bias towards the smaller set.

The matrix S then becomes the set of EST projection vectors

WEST = S = [v1 v2 · · · vm] (4.21)

where vi (i = 1, . . . , m) are the m most significant (either positive or negative)

eigenvectors or M̂. The effects of the value of m on the performance of EST is

shown in Section 8.

Using Equation (4.21) as the projection vectors and substituting this result

into Equation (3.2) gives

EST(r) = (r− µ̂Y )T
(
WESTWT

EST

)
(r− µ̂Y ). (4.22)

As in Section 4.1 for PCA, it is also possible to project onto the complement sub-

space,
(
I−WESTWT

EST

)
. Thus, substituting Equation (4.21) into Equation (3.3)

yields

EST(r) = (r− µ̂Y)T
(
I−WESTWT

EST

)
(r− µ̂Y). (4.23)

Since it is possible to use either the positive eigenvectors or the negative eigenvectors,

there are four possible equations that can possibly be used. In this thesis, Equations

(4.22) and (4.23) are referred to as the ‘EST Algorithm’ or simply ‘EST’. In the

experimental results in Chapter 9, only the best results among the four possible

choices of EST are shown. Once again, mention is made as to which of the algorithms

is used.
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Chapter 5

Kernel Learning Theory

This chapter explains the theoretical foundation on which we are able to ex-

tend the linear methods to their corresponding nonlinear (kernelized) versions by

using an arbitrary nonlinear mapping associated with a special class of kernel func-

tion k. This kernel function can be informally thought of as a similarity measure.

Using such nonlinear mappings and certain kernel functions allows for the implicit

transformation of the data into a high- (possibly infinite-) dimensional kernel feature

space without actually ever having to map the data into that space.

5.1 An Introduction to Kernel Learning Theory

The main concept of kernel-based theory is illustrated by the 2-D simulated

data set in Figure 5.1. Readers familiar with Support Vector Machine theory will

find very similar concepts here. In the figure on the left, it is clear that there

exists no linear boundary that will perfectly discriminate the two classes in the

input space. By using a nonlinear mapping Φ, the data is projected into a higher-

dimensional feature space F . The mapped data in F is shown in the figure on the

right. It is clear that the data has been positioned in F in such a way that a linear

boundary can perfectly discriminate the two data sets. To be precise, the figure

on the right is not a two-dimensional space, though it appears that way on paper.
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Figure 5.1: This figure displays the basic idea behind the use of kernels. In the
input space, only a highly nonlinear decision boundary can be found to separate the
data. However, if the data is mapped into a higher-dimensional feature space using
Φ, a linear separating hyperplane can (often) be found. By using kernel functions,
it is possible to find this separating hyperplane without actually mapping the data
into the feature space.

Furthermore, the dashed line that separates the data is in fact meant to be a linear

separating hyperplane with dimension one less than the dimension of F . This linear

separating hyperplane corresponds to an exact nonlinear discriminating boundary

in the original input space.

Suppose the input data set lies in the data space (χ ∈ <J) and let F be a

feature space (also known as a Hilbert space) associated with χ by some nonlinear

mapping function Φ. In particular,

Φ : χ → F

x 7→ Φ(x). (5.1)

where x is an input vector (x ∈ χ) which is mapped into a much higher dimensional

feature space. Mapping the data using Φ into F is useful in many ways. The most

significant benefit is that it is possible to define a similarity measure using the dot
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product in F in terms of a function of the corresponding data in the input space.

Thus, it is possible to write

k(xi,xj) = 〈Φ(xi), Φ(xj)〉

= Φ(xi) · Φ(xj). (5.2)

Equation (5.2) is commonly referred to in machine learning literature as the ker-

nel trick [24] and was first used in [25]. The nonlinear mapping Φ could potentially

generate a feature space in which it is not computationally feasible to directly imple-

ment any algorithm (or realistically perform any computations at all); fortunately,

the kernel trick helps circumvent this problem.

Equation (5.2) states that all dot products in F (a task which is otherwise

computationally infeasible) can be implicitly computed by simply using kernel func-

tions defined on the input data. Moreover, all of this can be accomplished without

actually mapping the input vectors into F . Hence, conveniently, the mapping Φ

does not even need to be identified nor defined. In other words, Equation (5.2)

illustrates that all dot products in F can be replaced by an appropriately chosen

kernel function k.

It is then reasonable to ask what types of kernel functions can be deemed ‘ap-

propriate’. The answer to this question is that k(·, ·) must be continuous, symmetric,

and positive definite. That is, the following conditions must be satisfied:

1. k(xi,xj) must be a continuous function

2. k(xi,xj) = k(xj,xi)
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3. k(xi,xj) > 0 for all xi, xj.

Any function that satisfies the above three conditions is known as a Mercer Kernel

[24]. Equivalently, Mercer’s Theorem states that if k(·, ·) is a Mercer kernel, then

there exists a feature (Hilbert) space F and an associated nonlinear mapping Φ such

that Equation (5.2) holds true [26].

For a more comprehensive discussion about the properties of various types of

kernels and for more information on kernel-based learning in general, see [24, 27].

5.2 Choosing the Kernel Function

Table 5.1 shows a few of the many types of kernel functions which are useful

in kernel-based learning algorithms. As mentioned above, in order to be able to

use the kernel trick, one must choose a Mercer kernel. It is common practice in

hyperspectral imaging applications to choose the Gaussian radial basis function

(RBF) kernel, which is indeed a Mercer kernel. This kernel is often chosen for

mathematical convenience as well as to match the Gaussianity assumption explained

in Chapter 3. Another reason why the RBF kernel is useful is due to its translation-

invariance property [9]. This means that the value of the kernel at any two points

x and y only depends on the relative difference between the two spectra; it does

not depend on the absolute position of either vector in the input space. Since we

are comparing spectral differences between a test pixel and its local background,

this kernel property is highly desirable. The RBF kernel parameter σ > 0 is the

standard deviation defining the width of the Gaussian distribution. Naturally, the
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Kernel Function k(x,y) Kernel Parameters

Gaussian (RBF) e
−‖x−y‖2

2σ2 σ > 0
Polynomial 〈x,y〉d d ∈ N

Sigmoid tanh(κ〈x,y〉 + γ) κ > 0, γ < 0
Inhomogeneous Polynomial (〈x,y〉+ c)d d ∈ N, c ≥ 0

Table 5.1: Examples of common kernel functions. For this thesis, the Gaussian RBF
kernel is chosen.

choice of σ affects the performance of any algorithm using the RBF kernel. This

parameter should be chosen so that the kernel can fully exploit the variations among

the data [9]. This issue is explored in greater detail in Chapter 8.
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Chapter 6

Kernel Method Extensions

In this chapter, each of the three methods in Sections 4.1-4.3 is extended

into the feature space F and then kernelized. As described in Chapter 5, this

involves using a nonlinear mapping function Φ as defined in Equation (5.1). Since

the dimensionality of F is very high (possibly infinite), it is impractical to actually

implement any algorithm in that space. In order to circumvent this problem, dot

products in the feature space are replaced by kernel functions using the kernel trick

(Equation 5.2). The following three sections present a derivation of each of the

kernelized algorithms.

Notation

As was done at the beginning of Chapter 4, some terminology associated with

the nonlinear kernel methods is defined here to help provide notational consistency

throughout this thesis. First, using a nonlinear mapping Φ all of the data in the

input space is mapped into F . The original data sets in the input space defined by

X and Y are mapped into the feature space and denoted by

XΦ = Φ(X) = [Φ(x1) Φ(x2) . . . Φ(xNin
)] (6.1)

YΦ = Φ(Y) =
[
Φ(y1) Φ(y2) . . . Φ(yNout

)
]

(6.2)
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This means that XΦ represent the mapped IWR spectra and YΦ represents the

mapped OWR spectra. The statistical means of the mapped data in F are given by

µ̂XΦ
=

1

Nin

Nin∑
i=1

Φ(xi) (6.3)

µ̂YΦ
=

1

Nout

Nout∑
j=1

Φ(yj). (6.4)

Note that due to the nonlinearity of the mapping Φ, µ̂XΦ
6= Φ(µ̂X). In other words,

the mapped mean vector is in general not equal to the mean of the mapped vectors

in the feature space.

For many of the following methods, it is assumed that the mapped data is

centered in F . Thus, denote a centered vector in F as Φc(xi) = Φ(xi) − µ̂XΦ
,

i = 1, . . . , Nin. The same holds true for all data in the OWR (i.e. - Φc(yj) =

Φ(yj)− µ̂YΦ
, j = 1, . . . , Nout). Then, let

XcΦ = [Φc(x1) Φc(x2) . . . Φc(xNin
)] (6.5)

YcΦ =
[
Φc(y1) Φc(y2) . . . Φc(yNout

)
]

(6.6)

where the columns of XcΦ and YcΦ represent the centered IWR and OWR spectra

in the feature space, respectively. The covariance matrices of the centered spectra

in the feature space are given by

CXΦ
=

1

Nin

XcΦX
T
cΦ

(6.7)

CYΦ
=

1

Nout

YcΦY
T
cΦ

. (6.8)

Finally, the mapped test pixel spectra is given by Φ(r).

Using Φ, Equation (3.2) is projected into F yielding a nonlinear projection
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separation statistic (NPSS) equation of

s′ = (Φ(r)− µ̂YΦ
)TWΦWT

Φ(Φ(r)− µ̂YΦ
) (6.9)

where WΦ = [w1
Φ w1

Φ . . . wm
Φ ] is a matrix whose columns are the set of m projection

vectors in F . As mentioned in Section 3.3, it is also possible in some cases to project

onto the complement subspace. Using Φ, Equation (3.3) becomes

s′ = (Φ(r)− µ̂YΦ
)T

(
IΦ −WΦWT

Φ

)
(Φ(r)− µ̂YΦ

) (6.10)

Once again, an anomaly is detected if the projection separation, s’, is greater than

some threshold, η.

The following methods outline a few of the ways in which the projection vectors

can be calculated. These methods are simply nonlinear versions of each of the four

algorithms detailed in Chapter 4.

6.1 Kernel Principal Component Analysis

In this section, the Principal Component Analysis method is mapped into the

feature space F and then reformulated solely in terms of dot products. The kernel

trick is then utilized to help make the problem computationally feasible. As in the

linear PCA algorithm, the Kernel Principal Component Algorithm (KPCA) can be

formulated using either the IWR or OWR spectra to formulate the KPCA projection

vectors in the feature space. For the purposes of the development, the OWR spectra

will be used.
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6.1.1 PCA in the Feature Space

Let µ̂YΦ
be the mean of the background samples in the feature space as defined

in Equation (6.4) and let CYΦ
be the background clutter covariance matrix in the

feature space as defined in Equation (6.8). The PCA eigenvectors in the feature

space are found by solving the mapped version of Equation (4.8); more specifically,

the eigenvalues ΛΦ and the eigenvectors VΦ of CYΦ
in F can be obtained by solving

VΦΛΦ = CYΦ
VΦ. (6.11)

In fact, ΛΦ = diag (λ1
Φ λ2

Φ . . . λp
Φ) and VΦ = [v1

Φ v2
Φ . . . vp

Φ] contain only the p

nonzero eigenvalues and corresponding eigenvectors of CYΦ
. Equation (6.11) rep-

resents all solutions of the associated eigen problem. For notational convenience in

the discussion to follow, one single solution of this problem is

λk
Φvk

Φ = CYΦ
vk

Φ (6.12)

for k = 1, . . . , p.

6.1.2 Kernelization of PCA in the Feature Space

Since Equation (6.11) cannot be solved explicitly due to the extreme high-

dimensionality of F , we must find some way to make use of the kernel trick. Using

theoretical analysis found in [28], all eigenvector solutions, vk
Φ, of Equation (6.11)

lie in the span of the vectors in YcΦ . In other words,

vk
Φ =

Nout∑
j=1

αjkΦc(yj)

= YcΦαk (6.13)
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where αk = [α1k, α2k, . . . , αNoutk]
T are expansion coefficients. At this point, it is

not yet clear how to calculate these expansion coefficients. However, continuing with

the derivation will provide more insight.

Substituting Equations (6.8) and (6.13) into Equation (6.12) produces

Noutλ
k
Φ

Nout∑
j=1

αjkΦc(yj) =
Nout∑
i=1

Nout∑
j=1

αjkΦc(yi)Φc(yi)
T Φc(yj)

=
Nout∑
i=1

Nout∑
j=1

αjkΦc(yi)k(yi,yj) (6.14)

where the second equality utilizes the kernel trick. Pre-multiplying both sides of

Equation (6.14) by Φc(yi)
T and simplifying yields a new generalized eigen problem

of

Noutλ
k
ΦKYαk = K2

Yαk (6.15)

where KY is the kernel (Gram) matrix whose elements are (KY)ij = k(yi,yj) with

i, j = 1, . . . , Nout. After using the centering procedure outlined in Appendix A to

achieve the centered Gram matrix K̂Y, it is possible to write all solutions of Equation

(6.15) as

NoutΛΦK̂YA = K̂
2

YA (6.16)

where A = [α1 α2 · · · αp] is a matrix whose columns are the nonzero eigenvectors

of the centered Gram matrix K̂Y and ΛΦ contains the associated nonzero eigenval-

ues. Removing the Nout term is easily accomplished by absorbing it into K̂Y. It is

shown in [28] that the solution to the generalized eigenvalue problem in Equation

(6.16) can be found by equivalently solving

Λ̆ΦĂ = K̂YĂ (6.17)
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and setting

αi =
ᾰi√
λ̆i

(6.18)

for i = 1, . . . , p. These αi are exactly the expansion coefficients referenced in Equa-

tion (6.13). In addition, it turns out that the set of eigenvalues for the two problems

are equal - i.e. ΛΦ = Λ̆Φ.

Using Equation (6.13), the truncated set of eigenvectors in the features space

can be written as

ṼΦ = YcΦÃKPCA (6.19)

where Ã = [α1 α2 · · · αm] is a matrix containing the m most significant eigenvec-

tors of K̂Y divided by the square root of their respective eigenvalues and m is a

configurable constant. The vectors ṼΦ are now the projection vectors in the fea-

ture space and are used as the vectors of WΦ. Substituting Equation (6.19) into

Equation (6.9) gives

KPCA(r) = (Φ(r)− µ̂YΦ
))T

(
ṼΦṼ

T

Φ

)
(Φ(r)− µ̂YΦ

).

= (Φ(r)− µ̂YΦ
)TYcΦÃKPCAÃ

T

KPCAYT
cΦ

(Φ(r)− µ̂YΦ
).

(6.20)

The above equation can be simplified by noting that

Φ(r)TYcΦ = Φ(r)T

(
[
Φ(y1), Φ(y2), . . . , Φ(yNout

)
]− 1

Nout

Nout∑
i=1

Φ(yi)

)

= k(Y, r)T − 1

Nout

Nout∑
i=1

k(yi, r)

, KYr (6.21)
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where the entries in k(Y, r)T are the kernels k(yi, r) with i = 1, . . . , Nout and

(1/Nout)
∑Nout

i=1 k(yi, r) is simply the mean value of the vector k(Y, r)T . Using sim-

ilar mathematical analysis,

µ̂T
YΦ

YcΦ =
1

Nout

Nout∑
i=1

K(yi,Y)− 1

N2
out

Nout∑
i=1

Nout∑
j=1

k(yi,yj)

, Kµ̂Y
(6.22)

where the latter term in the first equation above is simply the mean of the ker-

nel matrix K̂Y. In machine learning, KYr and Kµ̂Y
are commonly referred to as

empirical kernel maps [24].

Substituting these results into Equation (6.20) results in

KPCA(r) =
(
KT

Yr −KT
Yµ̂

)T
ÃKPCAÃ

T

KPCA

(
KT

Yr −KT
Yµ̂

)
. (6.23)

In addition, it is also possible to use the complement subspace. Using Equation

(6.13) as the projection vectors in feature space, WΦ, and substituting into Equation

(6.10) yields

KPCA(r) = (Φ(r)− µ̂YΦ
)T

(
IΦ −YcΦÃKPCAÃ

T

KPCAYT
cΦ

)
(Φ(r)− µ̂YΦ

).

(6.24)

As mentioned above, the KPCA algorithm can be formulated using the IWR

spectra rather than the OWR spectra to generate the projection vectors wi
Φ in the

feature space. In this case, Equations (6.23) and (6.24) are still used; however,

ÃKPCA will be the m most significant eigenvectors of the centered Gram matrix

(K̂X)ij = k(xi,xj) with i, j = 1, . . . , Nin. Equations (6.23) and (6.24) are the

equations used for the Kernel Principal Component Analysis algorithm in this thesis
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and are referred to as ‘KPCA’. In the experimental results in Chapter 9, only the

best results out of the four possible KPCA equations are reported for each image.

6.2 Kernel Fisher Discriminant Analysis

In [21,24,29] researchers used the kernel trick to compute the Fisher discrimi-

nant in the feature space F and showed that it is a powerful discrimination tool. A

description of the extension of FLD into the feature space and subsequent kernel-

ization is shown below.

6.2.1 FLD in the Feature Space

In this section, the FLD algorithm is extended to the feature space where-

upon the problem is reformulated in terms of kernel functions. Using the nonlinear

mapping Φ to map the input data into the feature space F it is now necessary to

maximize the cost function

J(wΦ) =
|wT

ΦSΦ
BwΦ|

|wT
ΦSΦ

WwΦ|
. (6.25)

Here, w ∈ F and SΦ
W and SΦ

B are the within-class and between-class scatter matrices,

respectively, in F given by

SΦ
W = XcΦ + YcΦ (6.26)

SΦ
B = (µ̂XΦ

− µ̂YΦ
)(µ̂XΦ

− µ̂YΦ
)T . (6.27)

The mean vectors in the features space µ̂XΦ
and µ̂YΦ

are defined in Equations (6.3)

and (6.4) while the covariance matrices XcΦ and YcΦ are defined in Equations (6.7)
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and (6.8).

Finding an optimal wΦ by maximizing Equation (6.25) is not mathematically

tractable considering the simple fact that the feature space is of high- (possibly

infinite-) dimensionality.

6.2.2 Kernelization of FLD in the Feature Space

Fortunately, we can reformulate this problem in terms of dot products in the

feature space and then utilize the kernel trick. Doing so makes the problem at hand

much more computationally feasible.

Based on reproducing kernel theory any solution wΦ to Equation (6.25) can

be expanded as

wΦ =

NTOT∑
i=1

αiΦ(zi)

= ZΦα (6.28)

where NTOT = Nin + Nout and

ZΦ = [z1 z2 . . . zNTOT
]

=
[
Φc(x1) . . . Φc(xNin

) Φc(y1) . . . Φ(yNout
)
]

(6.29)

is a matrix whose columns are the mapped vectors in F of the corresponding spectra

in both the IWR and OWR. Combining the definition of µ̂XΦ
and Equation (6.28)
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yields

wT
Φµ̂XΦ

=
1

Nin

NTOT∑
j=1

Nin∑

l=1

αjΦ(xj)
T Φ(xl)

=
1

Nin

NTOT∑
j=1

Nin∑

l=1

αjk(xj,xl)

= αTMin (6.30)

where (Min)j , 1
Nin

∑Nin

l=1 k(xj,xl). Similarly, using the definition of µ̂YΦ
and Equa-

tion (6.28) gives

wT
Φµ̂YΦ

=
1

Nout

NTOT∑
j=1

Nout∑

l=1

αjΦ(yj)
T Φ(yl)

=
1

Nout

NTOT∑
j=1

Nout∑

l=1

αjk(yj,yl)

= αTMout (6.31)

where (Mout)j , 1
Nout

∑Nout

l=1 k(yj,yl). Notice that the second equations in both

expansions above are the direct result of using the kernel trick.

By using Equations (6.27), (6.30) and (6.31) the numerator of Equation (6.25)

can be written as

wT
ΦSΦ

BwΦ = αTAα (6.32)

where A = (Min −Mout)(Min −Mout)
T . Similarly, using a similar argument, the

denominator of Equation (6.25) can be rewritten as

wT
ΦSΦ

WwΦ = αTBα (6.33)

where B = Kin(I−1Nin
)KT

in+Kout(I−1Nout)K
T
out, I is the identity matrix, Kin is an

NTOT ×Nin Gram matrix, Kout are NTOT ×Nout Gram matrix, and 1Nin
and 1Nout
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are matrices with each entry equal to 1/Nin and 1/Nout, respectively. For example,

each element of Kin and Kout is given by

(Kin)mn = k(xn,xm)

(Kout)mn = k(yn,ym).

A combination of Equations (6.32) and (6.33) means that α can now be found

by maximizing

J(α) =
αTAα

αTBα
. (6.34)

As in the solution to the analogous problem in the input space (Equation (4.14)),

Equation (6.34) can be solved simply by finding the leading eigenvector, αKFD, of

B−1A. Thus, the Fisher discrimination vector in F in Equation (6.28) becomes

wΦ = wFΦ
= ZΦαKFD.

Substituting this result as the projection vector in WΦ into Equation (6.9),

gives

KFD(r) = (Φ(r)− µ̂YΦ
)T

(
wFΦ

wT
FΦ

)
(Φ(r)− µ̂YΦ

).

= (Φ(r)− µ̂YΦ
)TZΦαKFDαT

KFDZT
Φ(Φ(r)− µ̂YΦ

). (6.35)

To simplify this equation, let

Φ(r)TZΦ = Φ(r)T [Φ(x1) Φ(x2) . . . Φ(xNTOT
)]

= k (Z, r)T

= KZr (6.36)
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and

µ̂T
YΦ

ZΦ =
1

Nout

∑
y∈OWR

Φ(y)T [Φ(z1) Φ(z2) . . . Φ(zNTOT
)]

=
1

Nout

∑
y∈OWR

k (Z,y)T

= KZµ. (6.37)

Using Equations (6.36) and (6.37), Equation (6.35) becomes

KFD(r) =
(
KT

Zr −KT
Zµ

)T
αKFDαT

KFD

(
KT

Zr −KT
Zµ

)
(6.38)

Equation (6.38) is the equation used for the Kernel Fisher Discriminant algorithm

in this thesis.

Numerical Issues

Unfortunately, as explained in [21] this problem is ill-posed as it is formulated.

More specifically, numerical issues result in the matrix B not being positive definite

- a potentially serious problem since the algorithm calls for its inversion. There

are a few ways to circumvent this issue. One of the most common way is to use a

technique known as regularization. In this method, a multiple (γ - known as the

regularization constant) of the identity matrix is added to the matrix B. Thus, the

matrix

Bγ = B + γI. (6.39)

If γ is chosen large enough, the problem is no longer numerically unstable as Bγ will

be positive definite. Another regularization technique is to add a multiple of the
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kernel matrix KZ where each element (KZ)ij = k(zi, zj) where i, j = 1, . . . , NTOT .

Then,

Bγ = B + γKZ. (6.40)

Clearly, the choice of an appropriate regularization constant will be data de-

pendent. In this research, the value of γ was chosen experimentally and the regu-

larization method shown in Equation (6.40) was used as it produced better results.

6.3 Kernel Eigenspace Separation Transform

In this section, the Eigenspace Separation Transform is mapped into the fea-

ture space F and then reformulated solely in terms of dot products. Once again,

the kernel trick is utilized to help make the problem computationally feasible.

6.3.1 EST in the Feature Space

Recall that, like Fisher Discriminant Analysis, the Eigenspace Separation

Transform is defined for two classes and uses information about both classes to

determine a discrimination boundary. The difference correlation matrix (DCOR)

RΦ for the input data in the feature space can be written as

RΦ =RXΦ
−RYΦ

=
1

Nin

Φ(X)Φ(X)T− 1

Nout

Φ(Y)Φ(Y)T

=

[
Φ(X) −Φ(Y)

]



Φ(X)T /Nin

Φ(Y)T /Nout


 . (6.41)

Here, the correlation matrix in the feature space of the IWR spectra set is RXΦ
=

Φ(X)Φ(X)T /Nin and likewise, the correlation matrix in the feature space of the
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OWR spectra set is RYΦ
= Φ(Y)Φ(Y)T /Nout. The eigen decomposition of DCOR

in the feature space can be rewritten in block-matrix form in terms of its positive

and negative eigenvalues and eigenvectors as

RΦ =

[
V+Φ

V−Φ

]



Λ+Φ
0

0 Λ−Φ







VT
+Φ

VT
−Φ


 (6.42)

where the columns of V+Φ
and V−Φ

are the eigenvectors in the feature space with

their corresponding non-zero positive (Λ+Φ
) and negative (Λ−Φ

) eigenvalues, respec-

tively. In order to diagonalize the DCOR matrix RΦ we must find all eigenvectors

(both positive and negative) VΦ and all nonzero eigenvalues ΛΦ which satisfy the

equation

VΦΛΦ = RΦVΦ. (6.43)

6.3.2 Kernelization of EST in the Feature Space

Due to the (possibly) extreme high-dimensionality of the feature space, (6.43)

cannot be explicitly solved. In order to circumvent this problem, the equation can

be kernelized by writing it in terms of kernel functions. Doing so allows us to

implement the equation in the original input domain in terms of kernel functions.

Each eigenvector vk
Φ in the feature space can be written as a linear combination

of the centered input data as

vk
Φ=

1√
Nin

Nin∑
i=1

αk
i Φ(xi)λ

− 1
2

i − 1√
Nout

Nout∑
j=1

βk
j Φ(yj)λ

− 1
2

j

=
1√
Nin

Φ(X)αkΛ
− 1

2
+ − 1√

Nout

Φ(Y)βkΛ
− 1

2− (6.44)

where the expansion coefficients, αk and βk, are defined as αk = (αk
1, α

k
2, . . . , α

k
Nin

)T
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and βk = (βk
1 , βk

2 , . . . , βk
Nout

)T for k = 1, . . . , Nt where Nt = Nin + Nout. Equation

(6.44) can be used to write all eigenvectors with non-zero eigenvalues as

VΦ =
[
v1

Φ v2
Φ · · · vNt

Φ

]

= Φ(X)AΛ
− 1

2
+ − Φ(Y)BΛ

− 1
2−

=

[
Φ(X) −Φ(Y)

]



A

B







Λ
− 1

2
+ 0

0 Λ
− 1

2−




=

[
Φ(X) −Φ(Y)

]
D (6.45)

where 


A

B


 =




α1√
Nin

α2√
Nin

· · · αNt√
Nin

β1√
Nout

β2√
Nout

· · · βNt√
Nout




Λ =




Λ+ 0

0 Λ−




and the columns of

D =




A

B







Λ
− 1

2
+ 0

0 Λ
− 1

2−




=




α1√
Nin

α2√
Nin

· · · αNt√
Nin

β1√
Nout

β2√
Nout

· · · βNt√
Nout




[
Λ

]− 1
2

(6.46)

represent the eigenvectors of a kernel matrix associated with the kernelized version

of EST (shown below). By substituting equations (6.41) and (6.45) into (6.43) and

using the kernel trick from Equation (5.2) to simplify we obtain

Λ

[
Φ(X) −Φ(Y)

]
D =

[
Φ(X) −Φ(Y)

]



KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout


D (6.47)
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where KXX = Φ(X)T Φ(X) is an Nin×Nin kernel (Gram) matrix, KYY = Φ(Y)T Φ(Y)

is an Nout×Nout kernel matrix, KXY = Φ(X)T Φ(Y) is an Nin×Nout kernel matrix,

and KYX = Φ(Y)T Φ(X) is an Nout × Nin kernel matrix. Each of the entries in all

four matrices is obtained in terms of the kernel function k.

Multiplying both sides of (6.47) by [Φ(X) Φ(Y)]T and again using (5.2) to

simplify produces

Λ




KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout


D =




KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout




2

D. (6.48)

As in Section 6.1, solving equation (6.48) is tantamount to finding the eigenvectors

and eigenvalues of the kernel matrix

KKEST =




KXX

Nin
−KXY

Nin

KYX

Nout
−KYY

Nout


 = D̃ΛD̃

T
. (6.49)

and normalizing each of the eigenvectors by the square root of its associated eigen-

value. Here, the columns of the matrix D̃ =
[
d̃1 d̃2 . . . d̃Nt

]
represent the posi-

tive and negative eigenvectors of the KEST kernel matrix, KKEST . Then, D =
[

d̃1√
λ1

d̃2√
λ2

. . .
d̃Nt√
λNt

]
where Λ = diag (λ1, λ2, . . . , λNt) .Equivalently, they are the ex-

pansion coefficients in (6.44). The corresponding positive and negative eigenvalues

are contained in the diagonal matrix Λ. For simplicity, the eigenvalues and cor-

responding eigenvectors should be ordered from most positive significant to most

negative significant.

Let the KEST projection vectors, WKEST vectors be either the first m positive
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or negative eigenvectors of D. Thus, either

WKEST = W+
KEST = [d1 d2 · · · dm]

WKEST = W−
KEST = [dNt dNt−1 · · · dNt−m+1] (6.50)

where, as with KPCA, m is a configurable constant. More on this topic can be

found in Chapter 8. The choice of using most positive significant or most negative

significant is a data dependent choice and is determined using the procedure outlined

for the linear EST method in Section 4.3.

Substituting Equation (6.50) for D in Equation (6.45) (i.e. - only using the

first m positive or negative eigenvectors) and using this result as the projection

vectors, WΦ, in Equation (6.9) yields

KEST(r) =
(
Φ(r)− µ̂YΦ

)T (
VΦVT

Φ

)
(Φ(r)− µ̂YΦ

).

= (Φ(r)− µ̂YΦ
)T Φ(Z̄)WKESTWT

KEST Φ(Z̄)T
(
Φ(r)− µ̂YΦ

)
.(6.51)

where Φ(Z̄) = [Φ(X) − Φ(Y)]. For notational convenience, let

Φ(r)T Φ(Z) = Φ(r)T
[
Φ(x1), . . . , Φ(xNin

),−Φ(y1), . . . ,−Φ(yNout
)
]

=
[
k(x1, r), . . . , k(xNin

, r),−k(y1, r), . . . ,−k(yNout
, r)

]

= k(Z̄, r)T

= KZ̄r (6.52)

where the second equal sign is as a direct result of using the kernel trick in Equation

(5.2). The vector k(Z̄, r)T is commonly referred to as the empirical kernel map of
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an input vector r [24]. Similarly, define

µ̂T
YΦ

Φ(Z̄) =
1

Nout

∑
y∈OWR

Φ(y)T
[
Φ(x1), . . . , Φ(xNin

),−Φ(y1), . . . ,−Φ(yNout
)
]

=
1

Nout

∑
y∈OWR

k
(
Z̄,y

)T

= KZ̄µ̂. (6.53)

Using Equations (6.52) and (6.53), Equation (6.51) becomes

KEST(r) =
(
KT

Z̄r −KT
Z̄µ̂

)T

WKESTWT
KEST

(
KT

Z̄r −KT
Z̄µ̂

)
(6.54)

As in the case of linear EST in Section 4.3, it is also possible to project onto the

complement subspace. Again using Equation (6.45) as the projection vectors, WΦ,

in Equation (6.10) yields

KEST(r) = (Φ(r)− µ̂YΦ
)T

(
IΦ − Φ(Z̄)WKESTWT

KEST Φ(Z̄)T
)
(Φ(r)− µ̂YΦ

).

(6.55)

Equations (6.54) and (6.55) are the equations used for the Kernel Eigenspace Sepa-

ration Transform algorithm in this thesis and are referred to as ‘KEST’. Of the four

possible choices here, only the best results are presented in Chapter 9.
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Chapter 7

RX and Kernel-RX Anomaly Detectors

7.1 RX Anomaly Detector

Since its introduction by Reed and Yu, the Reed-Xiaoli (RX)-anomaly detector

[30] has become the benchmark for hyperspectral anomaly detection methods. Using

the generalized-likelihood ratio test (GLRT) as its detection basis, the algorithm is a

constant false-alarm rate (CFAR) anomaly detector. The RX-detector has become

so popular in HSI anomaly detection applications because of its natural assumption

that neither the target spectrum nor the covariance matrix of the background clutter

need to be known [9].

The foundation of the RX-algorithm is a binary hypothesis testing problem

with hypotheses H0 and H1. The two competing hypotheses are formulated as

H0 : x = n (No target present)

H1 : x = as + n (Target Present) (7.1)

where a is a scale factor which is equal to zero for H0 and a > 0 for H1. The vector

n is for the noise process of the background samples while s = (s1, s2, . . . , sJ)T is the

target spectrum. This algorithm assumes that for hypothesis H0, the data can be

modeled as a zero-mean normal density with covariance matrix CY; for hypothesis

H1, the data can be modeled as a normal density with mean s and covariance matrix
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CY. Hence,

H0 ∼ N (0,CY)

H1 ∼ N (s,CY). (7.2)

Both s and the true structure of the background clutter covariance matrix, Cb, are

unknown. Instead, the covariance matrix of the OWR samples, ĈY, is assumed to

be an estimate of CY. When a specific target spectrum is sought, the assumption

that both distributions have the same covariance matrix CY is invalid. However,

since the specific statistical form of the anomaly is not known, it is not possible

to estimate the covariance matrix in this case (under hypothesis H1). In order to

simplify matters, the aforementioned assumption is made.

In [30], the final form of the RX-algorithm is given as

RX(r) = (r− µ̂Y )T

(
Nout

Nout + 1
ĈY +

1

Nout + 1
(r− µ̂Y )(r− µ̂Y )T

)−1

(r− µ̂Y )

H1

≷

H0

η

(7.3)

where η is an alterable detection threshold. As the number of background clutter

samples approaches infinity (Nout →∞), the above equation becomes

RX(r) = (r− µ̂Y )T Ĉ
−1

Y (r− µ̂Y ). (7.4)

The RX-algorithm (which compares the difference between the test spectrum

and the mean spectrum of the immediate background) is similar to the Mahaloanobis

distance measure. In this thesis, Equation (7.4) was used for all implementation

purposes as the conventional RX-algorithm.
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7.2 Kernel-RX Algorithm

7.2.1 RX in the Feature Space

In this section, the RX algorithm is extended into the feature space. Using

similar Gaussianity assumptions as were used in Section 7.1, the two hypotheses in

the feature space become

H0Φ
: Φ(x) = nΦ (No target present)

H1Φ
: Φ(x) = bΦ(s) + nΦ (Target Present) (7.5)

where, again, b is a scale factor which is equal to zero for H0Φ
and b > 0 for H1Φ

.

Using the GLRT in the feature space allows the RX algorithm in the feature space

to be defined as

RX(Φ(r)) = (Φ(r)− µ̂YΦ
)T Ĉ

−1

YΦ
(Φ(r)− µ̂YΦ

) (7.6)

where ĈYΦ
is the estimated covariance matrix of the background clutter in the fea-

ture space and µ̂YΦ
is the mean of the background samples in the feature space.

Again, similar to the linear case, two Gaussian distributions are assumed with dif-

ferent means but equal covariance structures. In the feature space Equation (7.6)

corresponds to a linear detector; however, it corresponds to a nonlinear detector in

the original input space.

7.2.2 Kernelization of the RX algorithm in the Feature Space

Unfortunately, Equation (7.6) cannot be directly implemented because of the

high dimensionality of the feature space F into which Φ maps the data. Once again,

55



circumventing this problem is easily accomplished using kernel trick to kernelize the

equation.

The background covariance estimate matrix, ĈYΦ
, can be decomposed as

ĈYΦ
= VΦΛY VT

Φ (7.7)

where ΛY is a diagonal matrix who diagonal elements are the eigenvalues of ĈYΦ
.

The matrix VΦ contains the corresponding eigenvectors of ĈYΦ
in the feature space.

That is,

VΦ =
[
v1

Φ,v2
Φ, . . . ,vp

Φ

]
(7.8)

where p corresponds to the number of eigenvectors whose eigenvalues are nonzero.

The decomposition in Equation (7.7) is also known as a spectral decomposition [20].

Inverting a matrix whose eigenvalues contain values which are very close to

zero (or are equal to zero) can potentially result in numerically unstable results. For

this reason, the pseudo-inverse is used instead. The pseudoinverse of ĈYΦ
can be

expressed as

Ĉ
#

YΦ
= VΦΛ−1

Y VT
Φ. (7.9)

Furthermore, the nonzero eigenvectors of the centered Gram matrix
(
KY , K̂(Y,Y)

)

normalized by the square root of the corresponding eigenvalues are denoted as

βj =
(
βj

1, β
j
2, . . . , β

j
p

)T
j = 1, . . . , Nout (7.10)

Analysis in [9] shows that the feature space eigenvectors vj
Φ can also be written as

vj
Φ =

Nout∑
i=1

βj
i Φc(y(i))λ

− 1
2

j . = YcΦβjλ
− 1

2
j . (7.11)
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where λj is the eigenvalue corresponding to the jth eigenvector. That is, each eigen-

vector in the features space can be expressed in terms of the centered input vec-

tors and the normalized eigenvectors of the centered Gram matrix. If only the

eigenvectors with corresponding nonzero eigenvalues are considered, the eigenvector

ensemble can be written as

VΦ = YcΦBΛ−
1
2 (7.12)

where B =
(
β1, β2, . . . , βNout

)T
and Λ is a diagonal matrix containing the cor-

responding eigenvalues. Inserting Equation (7.12) into Equation (7.9) and then

subsequently substituting that result into Equation (7.6) gives

RX(Φ(r)) = (Φ(r)− µ̂YΦ
)TYcΦBΛ−2

Y BTYT
cΦ

(Φ(r)− µ̂YΦ
). (7.13)

For notational simplicity, let Φ(r)TYcΦ and µ̂T
YΦ

YcΦ be as defined in Equations

(6.21) and (6.22), respectively. Finally, it is possible to express

K̂Y = BΛY BT . (7.14)

It is possible to only use m vectors of B in Equation (7.14); doing so helps with the

regularization issue. Using the results from Equations (6.21, 6.22, and 7.14) and

inserting them into Equation (7.13) yields

KRX(r) =
(
KT

Yr −KT
µ̂Y

)T

K̂
−2

Y

(
KT

Yr −KT
µ̂Y

)
. (7.15)

Equation (7.15) is the kernel-RX equation used in this thesis.

57



Chapter 8

Kernel Parameters

8.1 RBF Kernel Parameter

Recall that the Gaussian radial basis function (RBF) kernel has the form

k(x,y) = e
−‖x−y‖2

2σ2 (8.1)

where x and y are input data vectors and σ > 0 is the RBF kernel parameter which

represents the standard deviation and defines the width of the Gaussian distribution.

When used in an anomaly detection setting, the choice of the kernel parameter

is crucial; it has an undeniable effect on the performance of many kernel-based

algorithms including the ones explored in this paper. Figure 8.1 shows the effect

sigma can have on the detection performance of a subspace-based anomaly detector.

The example shown consists of five values of σ ranging from 0.002 to 20 for a detector

using KPCA. It can easily be seen that the performance of the detectors at different

values of the kernel parameter are quite different. This example helps underscore

the importance of choosing σ properly.

Unfortunately, the choice of an optimal σ is a highly nontrivial problem and

at this time, there exist no analytical solutions for optimizing this parameter. This

is mainly due to the fact that the optimal σ is highly data dependent; in addition,

the best choice also changes with each algorithm.
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Figure 8.1: This figure illustrates the importance of choosing a good value of the
kernel parameter, σ. Using σ values of [0.002, 0.01, 0.1, 2, 20], the detector perfor-
mance changes drastically. If a bad value of σ was chosen, the detector would not
perform up to its potential.

However, in order to compare the performance of these algorithms against the

others it is important to be able to do so when each algorithm is exhibiting its

best performance (or at least close to it). Therefore, an attempt was made in this

thesis to experimentally optimize the value of σ by using a kind of cross-validation

technique.

The algorithm for choosing a nearly optimal σ̂ is as follows:

1. Vary the value of σ over an appropriate range.

2. Randomly sample β background pixels and τ target pixels. It is important

here to choose β and τ such that there are enough pixels to have this method
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be statistically worthwhile. For this paper, β = 250 and τ = 120.

3. For each value of sigma, and at each pixel, open up a dual window obtain an

output PSS value using one particular method.

4. Perform ROC analysis on the sampled results as a function of σ.

5. Determine which value of σ generated the best performance by calculating the

highest area under the ROC curve.

Figure 8.2 shows an example of the algorithm outlined above. This example

comes from analysis using a KEST-based anomaly detector on the DR-II HYDICE

image. (See Chapter 9 for more on this image). From this graph, the value of the

kernel parameter is chosen to be the one at which the value of the area under the

ROC curve is highest - here, that value is σ = 38.

This method is advantageous for two reasons: first, it significantly reduces

the computation time and secondly, it provides a relatively good approximation

concerning the overall performance of a given method at each value of σ.

8.2 Choosing the Number of Eigenvectors

In the linear and nonlinear versions of both the PCA and EST algorithms,

choosing the number of significant eigenvectors to use, m, becomes important. For-

tunately, while varying the number of eigenvectors used affects the performance

results, experimental results show that the difference in performance ability is not

drastically altered - in fact, the difference is minimal at best. Figure 8.3 shows
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Figure 8.2: This figure shows an example of how σ was chosen in this thesis. The
graph plots the area under the ROC (AUROC) curve as a function of σ. The value of
σ corresponding to the greatest AUROC value was chosen as the kernel parameter.
This example comes from a KEST analysis on the DR-II HYDICE image. Here, the
optimal value for the kernel parameter occurs at around σ = 38.

the performance results of an EST-based subspace-anomaly detector when m =

3, 5, 8, 10, 20, and 35. From this figure, it can be seen that altering the number of

eigenvectors used as the bases for the subspace often does not drastically change

the performance of the detector in question - if at all. Here, there is a slight yet

insignificant change in detector performance. However, for the most part, it is clear

that increasing the number of eigenvectors used will not significantly alter the per-

formance. There are some cases, however, where the performance changes more

than what is shown in the figure. It is for this reason that the following method is

used to determine the number of eigenvectors to choose.
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Figure 8.3: This figure shows an example of how the detector performance does
not change significantly if the number of eigenvectors used as the bases vectors to
generate the subspace is altered.

It is very difficult to systematically determine an optimal value for m. A

graph of the average eigenvalues arranged from most significant to least significant

can be found in Figure 8.4 and it can be seen that the eigenvalues decay very

rapidly. Results indicate that choosing m so that the eigenvalues chosen represent

a large portion of the energy yield acceptable outcomes. This technique was used in

choosing m for PCA, EST, KPCA, and KEST. While it is certainly not a method

which will optimize performance, this method does provide results which in most

cases are relatively close to the optimal performance bound.
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Figure 8.4: This plot shows the average eigenvalues for an anomaly detector using
KPCA. It is easy to see that the eigenvalues die out very quickly. Results indicate
that using the m most significant eigenvectors (where the corresponding m eigenval-
ues represent a large portion of the total energy in the eigenvalues) yield acceptable
performance levels.
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Chapter 9

Experimental Results

In this chapter, each of the eight algorithms is implemented using both simu-

lated illustrative toy data as well as real hyperspectral imagery from the Hyperspec-

tral Digital Imagery Collection Experiment (HYDICE) and Airborne Hyperspectral

Imager (AHI) data sets. Performance results using ROC analysis, area under the

ROC curve (AUC) analysis, and implementation time statistics for each of the eight

methods are provided and compared.

9.1 Simulated Data

Each of the eight equations are implemented here as discrimination methods

on an illustrative toy data set. The data set, shown in Figure 9.1, consists of two

nonlinear Gaussian mixtures. Class 1 is represented by the red (*) points; Class

2 is represented by the blue (o) points. It is clear from this figure that no linear

separating hyperplane can be placed that perfectly separates the two data classes.

In order to implement the algorithms, Class 1 and Class 2 were defined as

the two sets corresponding to the data in the IWR and OWR of a fictional dual

window. Extending the problem to an anomaly detection setting, Class 1 represents

the target data and Class 2 represents the background data. The results using each

of the methods on the simulated data set are shown in Figures 9.2(a)-9.2(h). To
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improve visual quality, the points in Class 2 are now yellow (o). For the nonlinear

algorithms, the kernel parameter σ was experimentally determined and set equal to

a value which provided a decent looking result. The green lines in Figures 9.2(c),

9.2(e), and 9.2(g) are the projection vectors used in each case. The blue contour

lines are decision boundaries at different thresholds. The shading defines relative

projection separation values; lighter shading means a larger projection separation

statistic value which in turn implies a higher likelihood that point will be classified

as an anomaly. Similarly, darker areas correspond to points which are more likely

to be classified as background clutter.

It is strikingly clear that all four of the nonlinear methods have significantly

better discrimination abilities than their linear counterparts. Each of the four non-

linear methods generates decision boundaries which very nicely conform to the over-

all shape of the distribution. While it is difficult to actually compare the performance

among the four nonlinear algorithms, it is nonetheless easy to see that the nonlinear

methods perform better detection than the linear methods.

9.2 Hyperspectral Imagery

A total of five real hyperspectral images from two different HSI sensor data sets

were use two compare the performances of the eight algorithms outlined above. Two

of the images are from the Hyperspectral Digital Imagery Collection Experiment

(HYDICE) data set and the other three are from the University of Hawaii’s Airborne

Hyperspectral Imager (AHI) sensor.
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Figure 9.1: Original Simulated 2-D Data Set. A mixture of two nonlinear Gaussian
distributions. The red points (*) represent the data in Class 1 and the blue (o)
represent the data in Class 2.

Before any processing, all spectra in each image are normalized so that all

values the data cube lie between zero and one. The normalization factor is calculated

as the largest value among all spectral components in each hyperspectral image. This

normalization helps to effectively use the dynamic range of the RBF kernel [9]. In

all algorithms a dual window was used to collect data as described in Chapter 3. To

keep things consistent, an IWR of 7x7 pixels, a guard band of 9x9 pixels, and an

OWR of 19x19 pixels were used for all algorithms and for all images. It was stated

that the IWR size should be about as large as the biggest target in the image. This

is more or less the case for all images. The size of the OWR was chosen such that

there are a sufficient number of background samples available for further processing.
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Figure 9.2: Contour and surface plots for the 2-D simulated data set using (a) RX,
(b) KRX, (c) PCA, (d) KPCA, (e) FLD, (f) KFD, (g) EST, and (h) KEST.
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9.2.1 Methods of Comparison

In order to compare the performances of each of the methods, receiver operat-

ing characteristic (ROC) curves were generated based on ground truth information

obtained from each image. The ROC curves provide a visual quantitative compari-

son by plotting the probability of correct detection, PD, versus the false alarm rate

(FAR), RFA. For each hyperspectral image, ground truth was obtained by deter-

mining the locations of all pixels in the image which correspond to a target to be

detected. To generate the ROC curves, the resulting output image from one of the

detectors must first be normalized to values between 0 and 1; this can be easily ac-

complished by dividing each pixel in the image by the maximum pixel value. Next, a

threshold (T) is varied from 1 decreasing incrementally to 0. Usually, the increment

is kept small (on the order of 10−3 so that the resulting ROC curve is relatively

smooth. At each threshold, all pixels with values greater than T are classified as a

target while all pixels with values less than T are classified as background. Then,

PD and RFA are calculated by

PD =
Nhit

NT

RFA =
Nmiss

NTP

(9.1)

where, at each threshold T, Nhit is the number of pixels correctly identified as target,

NT is the total number of target pixels in the ground truth for that image, Nmiss is

the number of pixels incorrectly labeled as targets, and NTP is the total number of

pixels in the image. The value of PD is only equal to 1 when every single one of the

target pixels are correctly detected. Since some of the target pixels may correspond
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to mixed pixels, achieving a value of PD = 1 at low FAR is often difficult to achieve.

PD is often less than 1 until higher FAR rates. Naturally, a ‘good’ ROC curve is

one that approaches PD = 1 very rapidly; in other words, for very good detection

performance, the ROC curve should climb rapidly before it moves towards the right

and levels out. Theoretically, the best possible detection result is one that detects

all of the target pixels before it detects even one background pixel; this corresponds

to an ROC curve that goes straight up until PD = 1 and then remains at this value

for all RFA. In a geometric sense, the more concave the ROC curve, the better the

performance of the anomaly detection method. For an anomaly detector, achieving

this theoretical limit is extremely difficult.

Making a direct comparison of the ROC curves of different algorithms is occa-

sionally a difficult task. In some instances, the ROC curve analysis for one method

will exhibit better performance over another method over all values of RFA as shown

in Figure 9.3(a). In these instances it is easy to claim with confidence that Algo-

rithm 1 performs better than Algorithm 2. In other cases, however, the ROC curves

for two different algorithms can cross one or more times as in Figure 9.3(b). It

cannot therefore be claimed that Algorithm 1 performs better than Algorithm 2 by

simply looking at which curve is higher because at some point in the range of RFA,

each curve is higher than the other.

One way to address this issue is to compare the detection probabilities at a

single operating point - this method will be referred to as single operating point

(SOP) comparison. That is, given a false alarm rate, RFA, determine the values of

PD for each of the methods at that FAR. Then simply use these detection prob-
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Figure 9.3: This figure illustrates the occasional difficulty in analyzing ROC curves
simply by visual observation. In (a), it is quite clear that Algorithm 1 performs
better than Algorithm 2. However, (b) illustrates a case where it is not so obvious
which algorithm is best. The ROC curves here are extremely close and cross each
other many times over the whole range of RFA. This issue illustrates the need for
the use of AUROC analysis.
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abilities to compare the performance of each algorithm. Unfortunately, there are

situations where this method will fail to accurately characterize the performances

of the methods. For example, consider a situation in which the ROC curve of Al-

gorithm 1 is significantly higher than that of Algorithm 2 except for one very small

FAR region around RFA = 0.1. By visual inspection, it could be concluded with

a high degree of confidence that Algorithm 1 performs better than Algorithm 2.

However, if the SOP comparison is used to compare the performances of the two

algorithms, and the operating point is blindly chosen at RFA = 0.1, then the result

will be that Algorithm 2 is incorrectly declared as the stronger performing method.

Another, more statistically significant way of addressing this issue is by using

a singular scalar index which characterizes the performance of an ROC curve. In

[31, 32], researchers claim that calculating the area under the ROC curve (AUC)

provides such a measure. Geometrically, the AUC provides a sense of how concave

the ROC curve is. As explained above, a greater concavity generally indicates

a better performing detection algorithm. The AUC can also be calculated over

different ranges of RFA. Calculating it over the entire range (0 - 1) measures an

overall performance of the algorithm. Calculating over a smaller range (varying

from 0 to 0.3 for example) provides a measure of the performance of the algorithm

over that FAR range.

In this thesis, a general algorithm comparison is qualitatively provided by

visual subjective inspection of the output images followed by a more quantitative

comparison using ROC curves and the AUC metric. The ranges over which the

AUC is calculated is stated where appropriate.
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Figure 9.4: A portion of the DR-II hyperspectral image from the HYDICE data set.

9.2.2 HYDICE Imagery

The HYDICE sensor collects radiance information over a spectral range span-

ning the VNIR and SWIR frequency ranges (0.4 - 2.5 µm). Each band is approxi-

mately 10 nm wide generating a spectral resolution consisting of 210 spectral bands.

Due to water absorption and low signal-to-noise ratio (SNR), only 150 of those bands

are actually used; bands 1-22, 102-108, 137-151, and 195-210 had been previously

removed. The ground sample distance for a HYDICE sensor, which refers to the

actual length on the ground corresponding to one pixel, depends on the height of

the sensor during data collection and can range anywhere from 0.75 m - 4 m. The

two HYDICE images used in this thesis are the Desert Radiance (DR-II) and Forest

Radiance (FR-I) data sets. The DR-II image consists of 6 ‘targets of interest’ on

a dirt road running through a dusty terrain with light vegetation. The FR-I image

has 14 ‘targets of interest’ in a grassy field situated near a dense forrest. The DR-II

and FR-I images are shown in Figures 9.4 and 9.5, respectively.
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Figure 9.5: A portion of the FR-I hyperspectral image from the HYDICE data set.

9.2.2.1 DR-II Results and Analysis

The ground truth for the DR-II image is shown in Figure 9.6(a). It clearly

shows the location of the six ‘targets of interest’. All eight algorithms were imple-

mented for this image and the best outputs for each can be seen in Figures 9.6(b)

- 9.6(i). From the output images of the algorithms alone, it is often difficult to

visually determine how well the anomaly detector is performing. Therefore, for vi-

sual purposes as well as for easier comparison, a binary threshold was used on each

image where the threshold in each image corresponds to the level which achieves an

80% correct detection rate for that image. Note that he threshold changes for each

output.

The results shown are the best results obtained using the detectors outlined

in Chapters 4, 6, and 7. The optimal values for the kernel parameter σ and the

number of eigenvectors to use were calculated using the algorithms described in

Chapter 8. For PCA, the first 6 eigenvectors using the OWR spectra were used in

Equation (4.11). For KPCA, the first 6 eigenvectors using the OWR spectra were

used in Equation (6.24). For EST and KEST, the first 3 positive eigenvectors were
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Figure 9.6: (a) Ground truth for the DR-II HYDICE image. Output results at 80%
detection rate using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h)
KFD, and (i) KEST.
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used in Equations (4.22) and (6.54), respectively. For RX and KRX, the highest 50

eigenvectors were kept when implementing the inverse covariance matrix.

The ROC curves over the entire range of FAR for each of the eight methods

can be seen in Figure 9.7. To gain a better perspective on the performance of the

algorithms at low FAR, Figure 9.8 shows the same results over a FAR range of 0 to

0.1. From the graphs alone, it appears that each of the four nonlinear methods per-

form better than their respective linear counterparts. In addition, all four nonlinear

detectors aggregately exhibit better results than all four linear detectors. At low

FAR, KPCA in this situation performs best among all methods followed by KRX,

KEST and KFD. Among the linear methods, PCA, EST, and RX all perform about

the same with FLD clearly performing the worst out of all the detectors.

The areas under the curves calculated over the full range of FAR (0-1) and

over the subinterval (0-0.1) are shown in Tables 9.1 and 9.2. Table 9.1 indicates that

on the average over all FAR, KEST actually performs the best among all detectors.

The ROC curve for KEST crosses that of KPCA at a FAR of about 0.09. From then

on, its performance remains at a higher level than any of the other detectors. Over

all FAR, KEST, KPCA, and KRX all perform at about 95% average detection rate.

KFD and RX are slightly lower at around 93% average detection rate. EST and

PCA are around 92% average detection. FLD clearly performs the worst at around

an average detection rate of 87%.

Table 9.2 indicates that at low FAR (between 0 and 0.1 FAR), KPCA performs

the best among all detectors with an average detection rate of 87%. KEST and

KRX perform relatively similarly at average detection rates of approximately 83%
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Full Range (0-1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.9393 93.93% KRX 0.9501 95.01%
PCA 0.9208 92.08% KPCA 0.9524 95.24%
FLD 0.8691 86.91% KFD 0.9393 93.93%
EST 0.9211 92.11% KEST 0.9567 95.67%

Table 9.1: AUC and average detection rates under the ROC curves for the DR-II
results calculated over the full FAR range [0,1].

Low FAR Range (0-0.1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.0741 74.10% KRX 0.08159 81.59%
PCA 0.07113 71.13% KPCA 0.08713 87.13%
FLD 0.06075 60.75% KFD 0.07933 79.33%
EST 0.07115 71.15% KEST 0.08298 82.98%

Table 9.2: AUC and average detection rates under the ROC curves for the DR-II
results calculated over the FAR range [0,0.1].

and 82%, respectively. KFD has an average detection rate of 79%. Both EST and

PCA exhibit an average detection rate of approximately 71% while RX performs

at around 74%. FLD again performs worst among all detectors with an average

detection rate of 61%. These results confirm the fact that even at low FAR, the

nonlinear detectors each perform better than their respective linear counterparts.

In addition, as a whole, all four nonlinear detectors also perform better than all four

linear methods.

9.2.2.2 FR-I Results and Analysis

The ground truth for the FR-I HYDICE image is shown in Figure 9.9(a). It

clearly shows the location of the fourteen ‘targets of interest’. All eight algorithms

were implemented for this image and the best outputs for each can be seen in Figures
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Figure 9.7: ROC curves for the DR-II image.

9.9(b) - 9.9(i). Again, for visual purposes as well as for easier comparison, a binary

threshold was used on each image where the threshold in each image corresponds

to the level which achieves an 80% correct detection rate for that image.

The results shown are the best results obtained using the detectors outlined

in Chapters 4, 6, and 7. As in the analysis for the DR-II HYDICE image, the

optimal values for the kernel parameter σ and the number of eigenvectors to use

were calculated using the algorithms described in Chapter 8. The best results for

PCA and KPCA were achieved using the same number of eigenvectors as above.

That is, for PCA, the first 6 eigenvectors using the OWR spectra were used in

Equation (4.11) and for KPCA, the first 6 eigenvectors using the OWR spectra

were used in Equation (6.24). For EST, the first three negative eigenvectors were
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Figure 9.8: ROC curves for the DR-II image at very low false alarm rates.

used in Equation (4.23) and for KEST the first 3 positive eigenvectors were used

in Equation (6.54). For RX and KRX, the highest 50 eigenvectors were kept when

implementing the inverse covariance matrix.

From the images, it is clear that KPCA performs the best among all eight

algorithms for this image since it detects very few background clutter regions. The

results for KFD, KEST, and PCA also appear to perform very well with slightly

more false alarms detected at this detection rate. KEST appears to perform much

better than EST for this image as EST exhibits a large amount of false alarms around

the treeline region. A region similar to this one could prove to be problematic for

anomaly detectors as there is an abrupt change from foliage material to a shadowed

grassy region. Once again, the result using FLD is the poorest among all detectors.
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 9.9: (a) Ground truth for the FR-I HYDICE image. Output results at 80%
detection rate using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h)
KFD, and (i) KEST.
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Figure 9.10: ROC curves for the FR-I image.

The ROC curves for each of the eight algorithms over all false alarm rates as

well as at low FAR are shown in Figures 9.10 and 9.11, respectively. These figures

confirm the analysis given above based on the output images. It is easy to see

that KPCA performs the best both at low FAR and over the entire range and that

FLD performs the worst by far. At very low RFA, PCA outperforms all algorithms

except KPCA and KFD. The ROC curve results indicate that each of the nonlinear

algorithms performs better compared with their respective linear versions. That is,

KPCA does better than PCA, KRX does better than RX, etc. However, since PCA

performs well for this image, it cannot be said that all nonlinear versions as a whole

perform this task better than the four linear methods.

The areas under the curves calculated over the full range of FAR (0-1) and
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Figure 9.11: ROC curves for the FR-I image at very low false alarm rates.

over the subinterval (0-0.15) are shown in Tables 9.3 and 9.4. The AUC statistics

confirm the analysis provided for the ROC curves. That is, each nonlinear algo-

rithm performs better than its respective linear method. KPCA shows the best

performance on the FR-I image with an average detection rate of about 93% at low

RFA. KFD also performs very well at about 85% detection rate in this range. For

this image, PCA performs at a rate of approximately 82.5%, better than all other

detectors except for KPCA and KFD.

9.2.3 AHI Imagery

The other three images are from Hawaii’s Airborne Hyperspectral Imagery

(AHI) database. These hyperspectral cubes contain 70 spectral bands and span
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Full Range (0-1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.9122 91.22% KRX 0.934 93.40%
PCA 0.9424 94.24% KPCA 0.9653 96.53%
FLD 0.7803 78.03% KFD 0.9425 94.25%
EST 0.9183 91.83% KEST 0.9387 93.87%

Table 9.3: AUC and average detection rates under the ROC curves for the FR-I
results calculated over the FAR range [0,1].

Low FAR Range (0-0.15)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.0951 63.40% KRX 0.114 76.00%
PCA 0.1237 82.47% KPCA 0.1399 93.27%
FLD 0.062 41.33% KFD 0.1276 85.07%
EST 0.105 70.00% KEST 0.119 79.33%

Table 9.4: AUC and average detection rates under the ROC curves for the FR-I
results calculated over the FAR range [0,0.15].

the long-wave infrared (LWIR) frequency range (8 - 11.5 µm). Thus, a spectral

resolution of 50 nm is provided by the sensor. The AHI-1, AHI-2, and AHI-3

images used in this thesis are shown in Figures 9.12, 9.17, and 9.21, respectively.

The images shown are only a portion of a each hyperspectral image; these smaller

regions were used in order to reduce computation times. The light blue objects

in the images are fiducials, man-made objects used for post-collection calibration

and ground truthing. These objects are not considered as targets to detect and

pre-processing is done in order to remove their effect on the results.

9.2.3.1 AHI-1 Results and Analysis

The ground truth for the AHI-1 image is shown in Figure 9.13(a). It shows

the locations of the thirty-five ‘targets of interest’ - buried mines in this case. All
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Figure 9.12: A portion of a hyperspectral mine image from the AHI database.

eight algorithms were once again implemented for this image and the best outputs

for each can be seen in Figures 9.13(b) - 9.13(i). Once again, for visual purposes

as well as for easier comparison, a binary threshold was used on each image where

the threshold in each image corresponds to the level which achieves an 80% correct

detection rate for that image.

The results shown are the best results obtained using the detectors outlined

above. As in the analysis for the HYDICE images, the optimal values for the kernel

parameter σ and the number of eigenvectors to use were calculated using the algo-

rithms described in Chapter 8. For PCA, the first six eigenvectors using the OWR

spectra were used in Equation (4.11) and for KPCA, the first six eigenvectors using

the OWR spectra were used in Equation (6.24). For EST, the first five positive

eigenvectors were used in Equation (4.22) and for KEST the first five positive eigen-

vectors were used in Equation (6.54). For RX, the first 50 eigenvectors were kept

when implementing the inverse covariance matrix. Similarly, for KRX, the first 50

eigenvectors were used as B in Equation (7.14).

The ROC curves for each of the eight algorithms over all false alarm rates as
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 9.13: (a) Ground truth for the AHI-1 image. Output results at 80% detection
rate using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h) KFD, and
(i) KEST.
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Figure 9.14: ROC curves for the AHI-1 image.

well as at low FAR are shown in Figures 9.14 and 9.15, respectively. In addition, the

areas under the curves over all false alarm rates and at low FAR are presented in

Tables 9.5 and 9.6, respectively. From the images, ROC curves, and AUC analysis,

it can easily be seen that for this image over all detection rates, KFD performs the

best among all methods at about 94.5% average detection rate while RX clearly

exhibits the worst detection performance here at around 79.5% average detection

rate. KPCA and KRX both perform very similarly throughout the entire image

providing a detection rate of about 93%. From the ROC analysis, it can be seen

that after a false alarm rate of 0.08, the KPCA, KRX, and KEST detectors all

exhibit almost exactly identical performances. Among the linear methods, FLD

performs the best at around 91% average detection rate. Both PCA and EST have
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Figure 9.15: ROC curves for the AHI-1 image at very low false alarm rates.

an average detection rate of about 90%. Comparing overall detection statistics, all

four nonlinear methods achieve better performance than all four linear methods.

However, at low false alarm rates (defined to be [0,0.2] for this image), FLD

achieves a higher detection rate than KEST at around 70.5% compared to 68%. The

other three nonlinear algorithms all perform better than all four linear methods. The

RX detector really suffers from a high false alarm rate, only achieving an average

detection rate of 54% over this range. This is due to a regularization issue in the RX-

algorithm that has to deal with the fact that an inverse of a nearly singular matrix

must be found. Once again, each nonlinear detector performs at a higher level than

its linear counterpart. However, the increases from each linear detector performance

to each nonlinear detector performance is not as large as in the HYDICE images.
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In fact, the highest overall rate in the low RFA range is KFD at around 77.5%.

This is much lower than the highest detection rate for other images. The reason

for this is most likely explained by two facts. The first is that in the HYDICE

images, the targets were surface tanks which were clearly visible in the open. In

this AHI image (and the two that follow), the targets of interest were either buried

mines or disturbed soil. This means that the objects were either not visible in plain

sight, or were not even placed at all (holes were dug, but nothing was placed in

them). The second explanation is the large anomalous area detected on the left

side of the images in Figure 9.13. This region corresponds to the darker regions in

Figure 9.12. Further analysis leads to the conclusion that the terrain of these areas

are vastly different spectrally than the background. Figure 9.16 shows the average

spectra of background pixels compared with the average of some of the spectra in

the dark region. It is easy to see that the spectral properties of the dark region

are significantly different from those of the background immediately surrounding

this area. This explains why these pixels are labeled as anomalies in the detector

outputs and why a large number of false alarms are generated in this region. While

they are in fact anomalies (with respect to the background), they are not considered

targets. Thus, the nonlinear detectors suffer greatly from false alarms in this region,

hindering their overall detection rates. From Figure 9.13(h), it can be seen that

KFD does not generate a lot of false alarms in this region, helping it to achieve a

higher detection performance than all other detectors for this image.

87



0 10 20 30 40 50 60 70
0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Band Number

R
a

d
ia

n
ce

 

 

Background
Dark Area

Figure 9.16: Average spectrum of background pixels versus average spectrum of
dark area pixels in the AHI-1 image. The extreme difference in statistical properties
between these two averages explains the high number of false alarms generated in
this region.

Full Range (0-1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.8467 84.67% KRX 0.931 93.10%
PCA 0.897 89.70% KPCA 0.933 93.30%
FLD 0.91 91.00% KFD 0.946 94.60%
EST 0.897 89.70% KEST 0.92 92.00%

Table 9.5: AUC and average detection rates under the ROC curves for the AHI-1
results calculated over the entire FAR range.

9.2.3.2 AHI-2 Results and Analysis

The ground truth for the AHI-2 image is shown in Figure 9.18(a). It shows the

locations of the nineteen targets of interest’. All eight algorithms were once again
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Low FAR Range (0-0.2)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.108 54.00% KRX 0.146 73.00%
PCA 0.118 59.00% KPCA 0.147 73.50%
FLD 0.141 70.50% KFD 0.155 77.50%
EST 0.118 59.00% KEST 0.136 68.00%

Table 9.6: AUC and average detection rates under the ROC curves for the AHI-1
results calculated over the low FAR range [0,0.2].

Figure 9.17: A portion of a hyperspectral mine image from the AHI database. This
image is labeled AHI-2 in this thesis.

implemented for this image and the best outputs for each can be seen in Figures

9.18(b) - 9.18(i). A similar binary threshold as above was again used on each image

where the threshold in each image corresponds to the level which achieves an 80%

correct detection rate for that image. The results shown are the best results obtained

using the detectors outlined above. For methods with configurable parameters, the

same parameters are used as for the AHI-1 image above.

The ROC curves for each of the eight algorithms over all false alarm rates as

well as at low FAR are shown in Figures 9.19 and 9.20, respectively. Furthermore,

the areas under the curves over all false alarm rates and at low FAR are presented

in Tables 9.7 and 9.8, respectively. From the images, ROC curves, and AUC results,
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(a)
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(d) (e)

(f) (g)

(h) (i)

Figure 9.18: (a) Ground truth for the AHI-2 image. Output results at 80% detection
rate using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h) KFD, and
(i) KEST.
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we conclude that KFD performs the best among all methods at about 92% average

detection rate while EST clearly exhibits the worst detection performance here at

around 71% average detection rate. KPCA and KRX once again perform very

similarly throughout the entire image providing a detection rate of about 90.5%.

From the ROC analysis, it can be seen that after a false alarm rate of 0.3, the KPCA,

KRX, and KEST detectors all exhibit very similar performances. After this rate,

none can be considered a clear favorite. Among the linear methods, FLD performs

the best at around 89% average detection rate. The AUC results indicate that RX

outperforms PCA over the whole FAR range. In this sense, the output image for

RX and PCA (Figures 9.18(b)-9.18(c), respectively) are a little bit misleading. RX

looks relatively noisy compared to PCA; however, the ROC curves and AUC analysis

indicates that the performance distinction is made at low FAR and as mentioned,

these images are thresholded at a level which generates an 80% detection rate. PCA,

EST, and KEST (the three worst performing methods at low FAR) all exhibit very

large false-alarm clusters. These areas are the reasons for these algorithms’ poor

detection performances. At low FAR, KRX, KPCA, and KFD all perform about

the same at around a 78.5% average detection rate. Comparing overall detection

statistics, each nonlinear method once again achieves a better performance than its

respective linear method. However, since FLD outperforms KEST both at low FAR

and over the entire FAR range, the results from this image do not indicate that all

of the nonlinear methods here perform better than all of the linear methods.
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Figure 9.19: ROC curves for the AHI-2 image.

Full Range (0-1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.8834 88.34% KRX 0.901 90.10%
PCA 0.798 79.80% KPCA 0.908 90.80%
FLD 0.893 89.30% KFD 0.921 92.10%
EST 0.711 71.10% KEST 0.851 85.10%

Table 9.7: AUC and average detection rates under the ROC curves for the AHI-2
results calculated over the entire FAR range.

Low FAR Range (0-0.25)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.179 71.60% KRX 0.196 78.40%
PCA 0.107 42.80% KPCA 0.197 78.80%
FLD 0.191 76.40% KFD 0.197 78.80%
EST 0.057 22.80% KEST 0.138 55.20%

Table 9.8: AUC and average detection rates under the ROC curves for the AHI-2
results calculated over the low FAR range [0,0.25].
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Figure 9.20: ROC curves for the AHI-2 image at low false alarm rates.

9.2.3.3 AHI-3 Results and Analysis

The ground truth for the AHI-3 image is shown in Figure 9.22(a). It shows the

locations of the seventy-six ’targets of interest’. All eight algorithms were once again

implemented for this image and the best outputs for each are displayed in Figures

9.22(b) - 9.22(i). A similar binary threshold as above was again used on each image

where the threshold in each image corresponds to the level which achieves an 80%

correct detection rate for that image. The results shown are the best results obtained

using the detectors outlined above. For methods with configurable parameters, the

same parameters are used as for the AHI-1 image above.

The ROC curves for each of the eight algorithms over all false alarm rates as

well as at low FAR are shown in Figures 9.23 and 9.24, respectively. Furthermore,
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Figure 9.21: A portion of a hyperspectral mine image from the AHI database. This
image is labeled AHI-3 in this thesis.

the areas under the curves over all false alarm rates and at low FAR are presented in

Tables 9.7 and 9.8, respectively. From the images, ROC curves, and AUC analysis,

it appears as if these algorithms have an extremely difficult time in detecting the

target pixels. One reason for this could be due to the significant increase in the

number of pixels to detect. Looking at the original image in Figure 9.21, another

possible reason is that is much harder to locate the targets visually - an indication

that the target spectra are much more similar to the local background than in the

previous images. A very large number of false alarms are generate throughout the

entire image for all of the methods, significantly reducing the performances for this

image. It can be concluded that KFD performs the best overall for this image with

an average detection rate of about 82.54%. However, its performance rate is not too

much higher than KPCA or FLD. FLD once again is the best linear method and

performs better than two of the nonlinear methods (KRX and KEST) over all false

alarm rates as well as at low FAR with average detection rates of 80.5% and 66.7%,

respectively.
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(a)
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(d) (e)

(f) (g)

(h) (i)

Figure 9.22: (a) Ground truth for the AHI-3 image. Output results at 80% detection
rate using (b) RX, (c) PCA, (d) FLD, (e) EST, (f) KRX, (g) KPCA, (h) KFD, and
(i) KEST.
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Figure 9.23: ROC curves for the AHI-3 image.

At low FAR, the detection performances for KPCA, KFD, and FLD are very

similar with KPCA doing slightly better than the other two methods. In fact, at a

FAR between 0.025 and 0.15, KPCA is the best method for this image. However,

for FAR after 0.175, KFD performs the best among all methods. There is very small

FAR range in which FLD is actually the best method. The performances of KFD

and FLD can essentially be considered equal at low FAR. This might be due to a

regularization issue in KFD. In order to fully investigate this effect, more analysis

on the exact statistical properties of the image are required. Once again overall,

each nonlinear method outperforms its corresponding linear method. However, it

cannot be concluded that all of the nonlinear methods outperform all of the linear

methods.
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Figure 9.24: ROC curves for the AHI-3 image at low false alarm rates.

Full Range (0-1)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.8283 82.83% KRX 0.776 77.60%
PCA 0.728 72.80% KPCA 0.819 81.90%
FLD 0.806 80.60% KFD 0.824 82.40%
EST 0.689 68.90% KEST 0.767 76.70%

Table 9.9: AUC and average detection rates under the ROC curves for the AHI-3
results calculated over the entire FAR range.

Low FAR Range (0-0.3)

Algorithm AUC
Avg.

Det. Rate
Algorithm AUC

Avg.
Det. Rate

RX 0.186 62.00% KRX 0.184 61.33%
PCA 0.157 52.33% KPCA 0.202 67.33%
FLD 0.2 66.67% KFD 0.199 66.33%
EST 0.118 39.33% KEST 0.173 57.67%

Table 9.10: AUC and average detection rates under the ROC curves for the AHI-3
results calculated over the low FAR range [0,0.3].
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9.3 Further Analysis

The results shown above lead to the conclusion that each nonlinear method

outperforms its corresponding linear method. The natural follow question might be

to ask how significant this increase is. Since ROC analysis provides an immense

amount of information, there are many other ways to analyze the data presented

above. For example, one can calculate the percentage increase in detection prob-

ability at a specific false alarm rate from each linear method to its corresponding

nonlinear method. Naturally, this increase will be different at various false alarm

rates. However, this kind of analysis requires one to pick an appropriate FAR at

which to perform these calculations. Unfortunately, without knowing the exact ap-

plication for which this technology is being used, it is very difficult to know which

FAR to choose. For example, if the application calls for accurate detection, a very

low FAR would be required. On the other hand, if the application is such that a

larger amount of false alarms are acceptable, then one might choose a slightly higher

FAR. The point is that at these two distinct false alarm rates, the ‘best’ methods

might possibly be different.

In addition, the results above indicate that the best performing method - while

almost always a nonlinear method - is very much image dependent. If one were given

an image to analyze and forced to choose one algorithm, the user must be aware

of which method gives the highest probability of performing the best detection. In

order to precisely answer this question, it would be necessary to assign some sort

of value to each image measuring the ease of pixel detection. However, to simplify
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Average Overall Detection Rates

Method Avg. AUC
Avg.

Det. Rate
Method Avg. AUC

Avg.
Det. Rate

RX 0.8819 88.19% KRX 0.89842 89.84%
PCA 0.85724 85.72% KPCA 0.91554 91.55%
FLD 0.85168 85.17% KFD 0.91456 91.46%
EST 0.82728 82.73% KEST 0.88668 88.67%

Table 9.11: This table provides the average overall detection rates for each of the
eight methods. These values were calculated by averaging the detection rates over
each of the five images for each method.

matters, equal weights are assumed and the average probability of detection over

all five images of each method is calculated; this is accomplished by averaging the

detection rates for each of the methods over all images. These results are shown in

Table 9.11.

From this table, it appears that both KPCA and KFD perform very well with

average overall detection rates of 91.5%. KRX and KEST are not very far behind

with average detection rates of around 89.8% and 88.7%, respectively. Based on

these results, each nonlinear method outperforms its corresponding linear method.

In addition, on average (over these five hyperspectral images) all nonlinear methods

outperform all four linear methods, a result that cannot be confirmed based on

the results of each individual image. This is only an average performance. Thus, it

would seem that KPCA or KFD should be chosen as the method of choice if only one

algorithm could be used at a time. Of the eight methods here, using one of those

two algorithms would yield the highest chance of achieving the highest detection

performance.
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9.4 Implementation Time

In target detection applications, processing time becomes a major factor, espe-

cially when used in military settings. The correct detection of targets of interest in

a timely and efficient manner is often critical to the success of a mission. One would

expect that a large number of hyperspectral bands significantly adds to computa-

tion time. This in fact turns out to be the case; the inherent high-dimensionality

of hyperspectral data does lead to a slight computational burden. However, it is

the necessity in many of the applications above to compute and invert large covari-

ance matrices that eventually is the main cause of the heavy processing load. In

addition, the eigen-decomposition of large matrices adds to the processing times.

In Table 9.12, relative average processing times (APT) per pixel are reported for

each of the eight methods. The same results are plotted in Figure 9.25. Average

processing times are computed using all measured times from all pixels in the two

HYDICE hyperspectral data sets. Times have been normalized to the APT of the

RX-algorithm since this is the benchmark anomaly detection algorithm. All of the

algorithms are implemented using MATLAB. The code has not been optimized. For

comparison purposes, the exact times are not needed - only the relative processing

times. (In addition, due to certain restrictions, exact processing times cannot be

reported here).

From the chart, it is clear that each of the four kernel-based algorithms is

considerably computationally heavier than their respective linear methods. This

can be easily attributed to the larger matrix inversions and eigen-decompositions
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Method
Relative

Avg. Time

RX 1
PCA 0.552
FLD 4.174
EST 1.544
KRX 7.750

KPCA 14.008
KFD 30.203
KEST 17.851

Table 9.12: Relative implementation times per pixel for all eight methods on the
HYDICE images. Each spectral vector is of length 150. All times are relative to the
average processing time for the RX-algorithm.

Figure 9.25: Relative implementation times per pixel for all eight methods on the
HYDICE images. Each spectral vector is of length 150. All times are relative to the
average processing time for the RX-algorithm.

that are necessary in these algorithms.

The most computationally intensive algorithm is the KFD algorithm. It takes

about 30 times longer per pixel than the RX-algorithm. Additionally, the FLD
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method is the slowest linear technique. These observations are the result of both a

large scale inversion in addition to an eigen-decomposition. It is the only method

that requires both processes. Comparing each of the nonlinear algorithms with

only its linear counterpart, the data show that the KPCA algorithm has the largest

increase in APT, taking about 25 times longer than PCA. The KRX algorithm takes

about 8 times as long as the RX-algorithm while the KFD requires a little more than

7 times the processing time than FLD. Finally, KEST takes about 11.5 times longer

to run than EST. If the image being processed is relatively large, these computation

time increases can become very significant. In fact, they can mean the difference

between running in a few minutes to taking many hours to process one image.

It should be noted that the above results are for data that has 150 spectral

bands. The question then becomes whether increasing or decreasing the number

of spectral bands alters the implementation time performance. It turns out that

altering the number of spectral bands only affects the computation time of the linear

methods. Decreasing the number of bands (to 70 as in the case of the AHI data sets)

decreases the run time of the linear methods but has no effect on the run-time of the

nonlinear methods. This is due to the fact that a nonlinear method implementation

time is dependent on, as mentioned above, inverting and/or eigen-decomposing a

large Gram matrix. The size of this Gram matrix is not dependent on the length of

the spectral vector; rather, it depends on the size of the IWR and OWR. Therefore,

since the dual window size remains constant throughout the experiments, decreasing

the number of spectral bands in a data cube will decrease the run-time of the linear

methods but will have no affect on the nonlinear methods. To reduce the run-time of
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the nonlinear methods, a k-means clustering algorithm could be used to reduce the

number of background samples. However, no such method was used in this thesis.

From these results, it is clear that while for the most part the nonlinear meth-

ods provide better anomaly detection than their linear counterparts, they are much

more computationally intensive. In applications where real time detection results

are required, a kernel method will have a difficult time meeting these specifications

without further software optimizations.
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Chapter 10

Conclusion

This thesis provided a performance characterization of linear and nonlinear

subspace-based anomaly detection algorithms for hyperspectral imaging. Initially,

three linear algorithms were used to generate projection vectors onto which samples

from the inner window region and outer window region of a dual window centered at

the test pixel were projected. In addition, the popular RX-anomaly detector was im-

plemented. Each of these algorithms was then mapped into a high-dimensional fea-

ture space in an attempt to exploit the higher-order correlation between the spectral

characteristics of the pixels. The nonlinear algorithms in the feature space needed

to be rewritten in terms of kernels - otherwise, the extremely high-dimensionality

made computation impractical. With each nonlinear algorithm formulated in terms

of kernel functions of the data in the original input space, eight anomaly detection

algorithms were briefly explained and implemented using five hyperspectral data

cubes containing a varying number of ‘targets of interest’. Performance compar-

isons were made using ROC curve and area under the curve (AUC) analysis.

In addition to a performance comparison, this thesis also provided a time

comparison of the methods. Using the same machine and processing power for

all algorithms, results indicate that the kernel methods require significantly more

time to completely process each image. This added computational cost varied by
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algorithm and was caused by the need to invert and eigen-decompose larger matrices.

Results from the five images show a generally improved performance for the

nonlinear algorithms compared with their corresponding linear algorithms. The

best performing algorithm, while always a kernel-based method, proved to be image

dependent. Overall, however, KPCA and KFD showed the highest average detec-

tion rates over all five hyperspectral images. This superior detection abilities come

with a high computational cost. In addition, with a large number of configurable

parameters for some of the methods and no way to analytically optimize these pa-

rameters, it becomes difficult to compare the algorithms against each other with a

high degree of certainty. Further research should examine the task of optimizing the

parameters used in these algorithms (i.e. - kernel parameter, number of eigenvectors

used for projection vectors, dual window size, etc.). In addition, more hyperspectral

imagery could being tested in order to formulate a more accurate comparison of the

algorithms. Finally, performances of these nonlinear methods should be compared

with other common nonlinear anomaly detectors such as the support vector machine

(SVM) novelty detector.
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Chapter A

Centering a Matrix in Feature Space

In the kernel methods described in Chapters 6 and 7, it is occasionally assumed

that the data are centered in the feature space. However, since there is no specific

knowledge of the actual mapping Φ, there is no way to explicitly center the data in

the highly-dimensional F . To circumvent this problem, the kernel (Gram) matrix

K must first be calculated using the uncentered input data. (Exactly how the Gram

matrix is calculated is detailed in each section where appropriate). At that point,

a technique shown in [28] provides a centered Gram matrix K̂ using the uncentered

Gram matrix K. This is accomplished for any general M ×M Gram matrix using

the relationship

K̂ = (K− 1MK−K1M + 1MK1M) (A.1)

where (1M) is an M ×M with each element equal to 1/M .
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