ABSTRACT

Title of Dissertation:DIVERSITY AND DISTRIBUTION OF
FUNGAL ENDOPHYTES IN TWO
AMAZONIAN HARDWOOD GENERA

Demetra N. Skaltsas, Doctor of Philosophy, 2017

Dissertation directed by:

Associate Professor Dr. Priscila Chaverri, Department of Plant Science and Landscape Architecture

Hevea brasiliensis (Euphorbiaceae) is the primary species for tapped natural rubber and an economically important crop since the 1870's. Plantation-grown trees of *H. brasiliensis* are susceptible to numerous pathogens, some which are resistant to traditional chemical control. Fungal endophytes obtained from the wild are often considered ideal candidates for developing biological controls for pathogens, however little knowledge of the fungal endophytes associated with wild rubber and related hosts exists. The objectives of this study were the following: 1) determine the composition of the fungal endophyte communities associated with wild *H. brasiliensis* and its close relatives in *Micrandra* using cultures and cultureindependent methods; 2) determine the species identities of endophytes in the genus *Diaporthe* associated with the two host genera; and 3) assess the overall utility of automated and manual methods for curating operational taxonomic unit (OTU) characterization of endophytes. To accomplish these objectives, fungal isolates and DNA from 381 seedlings and 144 adults of *Hevea* and *Micrandra* from three Amazon Peru locations were characterized using sequences from the internal transcribed spacer regions (ITS) of the ribosomal DNA repeat unit for both cultures and cultureindependent samples, the latter using metagenomics methods. To determine the species identities of the *Diaporthe* isolates, four loci were analyzed using phylogenetic methods. A comparison of the effects of manual and automated operational taxonomic unit (OTU) classification was performed by using four different methods. Trichoderma species were most frequently identified from adult trees while *Diaporthe* species were the most abundant from seedlings, suggesting host developmental stage may be a key determinant of tropical endophytic community assemblage. Twenty-one distinct *Diaporthe* lineages were recovered with seven described as new species. Manual OTU curation methods were less error prone suggesting that algorithm adjustments are needed for currently used automated methods. This study resulted in a greater understanding of the diversity of endophytes, particularly Diaporthe spp., associated with wild rubber. Knowledge of fungal diversity, host life stage associations, and spatial distribution of Hevea and Micrandra endophytes will provide additional tools for integrated disease management approaches and aid development of successful biocontrol methods.

DIVERSITY AND DISTRIBUTION OF FUNGAL ENDOPHYTES IN TWO AMAZONIAN HARDWOOD GENERA

by

Demetra N. Skaltsas

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park, in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2017

Advisory Committee: Associate Professor Priscila Chaverri, Chair Associate Professor Daniel Gruner Professor Maile Neel Dr. Lisa A. Castlebury Dr. Kenneth J. Wurdack © Copyright by

Demetra N. Skaltsas

Dedication

To my husband Matthew Allen, for joining me on this journey. You infused each day with warmth and joy, even when the dreary winters seemed impenetrable. You never complained about my long hours in the lab, and even longer hours in the field. You stood beside me, a quiet strength, never pushing, always inspiring, and providing me with absolutely anything I needed to succeed.

To my dearest friend Julia Harshman, for all of the hours on the phone - laughing, complaining, dreaming, planning and plotting, and of course for the many bottles of wine we have shared in joint pursuit of our doctoral degrees. Your faith and belief in me inspired me to keep marching onward when I was most exhausted...wow what a crazy journey, but we made it!

To my parents, for your unconditional support and love, and for instilling in me the drive and work ethic that has been invaluable in pursuing my dreams.

Acknowledgements

I would like to thank Priscila Chaverri as my advisor for the opportunity to pursue my doctorate and for her hands-off approach that allowed me to flourish as a student and professional. I would like to especially thank Lisa Castlebury. She acted as my mentor, invited me into her lab and provided countless hours of guidance and advice. It has been an honor to be your student and the experiences you have shared will forever be invaluable to me.

I would like to thank Maile Neel for serving on my committee, but also for her encouragement in first pursuing my doctorate and her support throughout. I would like to thank Kenneth Wurdack for serving on my committee and for accompanying me on the collection trips to the Amazon. I would like to thank Daniel Gruner for serving on my committee and availability for guidance. I would like to thank the University of Maryland Department of Plant Sciences professors, administrative staff, especially Michelle Neff, and students for their assistance.

I would like to thank Aristóteles Góes-Neto for his guidance and attentiveness in teaching me bioinformatics, as well as the life-changing experience of living abroad in Brazil while hosting me in his lab. I would also like to thank Aline vaz for sharing her home and family with me, Fernanda Badotti for her friendship and support, and Felipe Ferreira da Silva, Marcelo Ribeiro, Paula Luize Camargos Fonseca.

I would like to thank Romina Gazis for her friendship and support, especially when dissertation writing became unbearably onerous. Without your support, I may never have written a complete document. I would also like to thank Catalina Salgado for her friendship and accompaniment to the Amazon.

I would like to thank all of the students who have helped me in the lab and field including Lindsay Garnett, Elizabeth Hellman, Jonathan Huang, Bryana Rivers, Syrus Nourbakhsh and especially Demetra Kallinikos, Akiko Hirooka, and Courtney Quigley for their loyalty in my transition to Dr. Chaverri's program. I would like to thank Tunesha Phipps for all of her help and support in joining Lisa Castlebury's lab.

Lastly, I would to thank Andrea Ottensen for first inspiring my love of the Amazon by inviting me to participate in her study abroad course. That 10-day experience has fueled a lifelong passion and homesickness for the Amazon rainforest. That love inspired me to start this doctorate program, with the promise and fulfillment of several collection trips to the Amazon, and to finish, so that I can go back.

Table of Contents

Dedication	ii
Acknowledgements	iii
Table of Contents	v
List of Tables	viii
List of Figures	xvi
Introduction	1
Chapter 1: Developmental stage as a primary force driving fungal endophytic	
community assemblage in two Amazonian hardwood genera	7
Abstract	7
Introduction	8
Material and Methods	12
Collection sites	12
Adult endophyte isolation	14
Seedling endophyte isolation	15
Environmental sample collection for direct sequencing	15
DNA extraction, PCR and sequencing.	
OTU delimitation and classification	18
Diversity estimates of individual and combined datasets	19
Comparative analysis among host species	
Fine scale comparative analysis	
Results	
Endophyte Isolates	23
Diversity estimates of individual and combined datasets	24
Comparative analyses among host species	
Fine scale comparative analysis at NAPO	
Discussion	
Chapter 2: Cryptic diversity of endophytic Diaporthe spp. in Hevea and Micrand	
(Euphorbiaceae)	
Abstract	66
Introduction:	67
Materials and Methods:	71
Collection sites:	71
Endophyte isolation:	71
Morphology characterization	72
DNA extraction, PCR and sequencing	73
New primer design and PCR optimization	
Species delimitation and phylogenetic analyses	
Species Recognition	
Results	
Isolates	77
Phylogenetic analyses	77
Clustering with MOTHUR	

Taxonomy	80
Diaporthe amazonica D. Skaltsas, P. Chaverri & Castl., sp. nov	81
Diaporthe heveicola D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov	82
Diaporthe napoensis D. Skaltsas, P. Chaverri & Castl., sp. nov.	
Diaporthe neotropica D. Skaltsas, P. Chaverri & Castl., sp. nov	84
Diaporthe peruviensis D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov.	85
Diaporthe ubiqueta D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov	86
Diaporthe umbrina D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov	
Discussion	
Chapter 3: Impact of manual and automated OTU curation of metabarcoding da	
A1 / /	
Abstract	
Introduction	
Materials and Methods	
Collection sites and study system	
Sample collection	
DNA extraction, PCR and sequencing.	
Pipeline automated NCBI BLASTn OTU dataset (PIPE OTU)	
RdP classifier dataset with Warcup Fungal training set (RDP WAR)	
Manual BLAST and Percent-Based OTU dataset (MAN PER)	
Clustered GenBank Representatives OTU dataset (CLU REP)	
Ecological analyses	
Results	
OTU delimitation and classification	
Sampling effort and diversity	120
Distribution of taxa	122
Ecological function guilds	125
Discussion	126
Distribution of taxa	127
Diversity estimates	129
Ecological function guilds	130
RDP WAR	131
Conclusions	132
Appendices	
SUPPLEMENTARY TABLE 1.1. Representative isolates obtained in this stu	udy,
with their corresponding GenBank accession numbers and function guild	-
assignment	163
SUPPLEMENTARY TABLE 2.1. The number of characters per locus, as we	ell as
the nucleotide substation models used in this study.	174
SUPPLEMENTARY TABLE 3.1. Operational taxonomic unit (OTU) taxono	omic
and function guild assignments using Pipeline BLASTn OTUs (PIPE OTU)	
method	175
SUPPLEMENTARY TABLE 3.2. Operational taxonomic unit (OTU) taxono	omic
and function guild assignments using RdP classifier with Warcup Fungal trai	
set (RDP WAR) method.	

SUPPLEMENTARY TABLE 3.3. Operational taxonomic unit (OTU) taxonomi	c
and function guild assignments using Clustered GenBank Representatives (CLU	J
REP) method.	214
SUPPLEMENTARY TABLE 3.4. Operational taxonomic unit (OTU) taxonomi	c
and function guild assignments using Manual BLAST Percent Based (MAN PE	R)
method	236
SUPPLEMENTARY FIGURE 2.1. Phylogenetic tree resulting from ITS	
	258
SUPPLEMENTARY FIGURE 2.2. Phylogenetic tree resulting from TEF1	
alignment	259
SUPPLEMENTARY FIGURE 2.3. Phylogenetic tree resulting from TUB	
alignment	260
SUPPLEMENTARY FIGURE 2.4. Phylogenetic tree resulting from HIS	
	261
	262

List of Tables

TABLE 1.1. Summary of locations, host tree species and the number of trees and developmental stages sampled from Amazon Conservatory for Tropical Studies Biological Station (NAPO), Allpahuayo-Mishana National Reserve (ALPE), and Jenaro Herrera Research Center (JEHE), as well as the total number of endophytes recovered per tree species, location and developmental stage.

TABLE 1.2. Culture dependent method: Observed and estimated species richness (SR) and diversity (Shannon Hill numbers and Simpson Hill numbers), including upper (UCL) and lower (LCL) confidence intervals, of endophytes per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree species and tree developmental stage. Non-overlapping confidence levels signify a significant difference in richness or diversity, while partially overlapping confidence levels do not guarantee nonsignificance (Chao et al. 2014).

TABLE 1.3. The rate of distance decay (DD) of the fungal endophyte communities for each tree host across and within sampling locations (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]). P values in red indicate a significant increase in community dissimilarity with increasing geographic distance.

TABLE 1.4. The number and percent of endophyte species overlap within and across developmental stages (seedling, adult), per tree species, method (culture dependent and culture independent), and location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera

Research Center [JEHE]). Percentages of shared endophytes were calculated with singletons included and excluded from the datasets.

TABLE 1. 5. The distribution of core species per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), separated by developmental stage, and tree species. Columns denote a core species and an "X" indicates that the endophyte species was identified as a core species within a particular location, dataset and tree host. Core species: *Annulohypoxylon* species 1 (Annul.1), *Colletotrichum* species 11(Colle.11), *Diaporthe* species 1 (Diapo.1), *Diaporthe* species 14 (Diapo.14), *Diaporthe* species 19 (Diapo.19), *Diaporthe* species 4 (Diapo.4), *Diaporthe* species 5 (Diapo.5), *Diaporthe* species 7 (Diapo.7), *Diaporthe* species 8 (Diapo.8), *Diaporthe* species 9 (Diapo.9), *Neopestalotiopsis* species 3 (Neope.3), *Pezicula* species 1 (Pezic.1), *Trichoderma* species 11 (Trich.11), and *Trichoderma* species 21 (Trich.21).

TABLE 1.6. Culture independent method: Observed and estimated species richness (SR) and diversity (Shannon Hill numbers and Simpson Hill numbers), including upper (UCL) and lower (LCL) confidence intervals, of endophytes for Amazon Conservatory for Tropical Studies Biological Station [NAPO], tree species and tree developmental stage. Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

TABLE 1.7. Culture independent method: The distribution of core species recovered from tree hosts in Amazon Conservatory for Tropical Studies Biological Station (NAPO)
(HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*).
Columns denote a core species and An "X" indicates that the endophyte species was

ix

identified as a core species within a particular location, dataset and tree host. Core species: *Acremonium* species 3 (Acre 3), Agaricales species 15.2 (Agar 15.2), Basidiomycota species 21 (Basta 21), *Beltrania* species 1 (Beltr 1), *Beltraniella* species 1 (Belta 1), *Beltraniella* species 5 (Bella 5), *Colletotrichum* species 1 (Colle 1), *Colletotrichum* species 2 (Colle 2), *Cyphellophora* species 1 (Cyphe 1), *Debaryomyces* species 1 (Debar 1), *Debaryomyces* species 6 (Debar 6), *Debaryomyces* species 16 (Debar 16), *Debaryomyces* species 18 (Debar 18), Graphidaceae species 2.2 (Grap 2.2), Hypocreales species 3 (Hyp 3), *Sarocladium* species 1 (Saro 1), *Tolypocladium* species 1 (Tolyp 1), *Tolypocladium* species 2 (Tolyp 2), Tricholomataceae 1.1 (Mycen 1.1), Tricholomataceae 1.3 (Mycen 1.3), Xylariales species 4.1 (Xylal 4.1), and *Xylodon* species 5 (Xlod 5).

TABLE 1.8. The proportion of function guilds separated by developmental stage, method (culture dependent and culture independent), and tree host species sampled from Amazon Conservatory for Tropical Studies Biological Station (NAPO).

TABLE 2.1. Summary of the locations, habitat, number of trees and tissues sampled, and number of recovered *Diaporthe* isolates for each location.

TABLE 2.2. Species and sequences used in this study, including GenBank accession number, isolation source, substrate and country of isolation.

TABLE 2.3. MOTHUR results. Operational taxonomic units (OTUs) were generated using the furthest neighbor method in MOTHUR with a 1% dissimilarity criterion. No. OTUs w/split sp = Members of the same species split into different OTUs, No. OTUs w/grouped Spp = Members of different species grouped into an OTU. TABLE 3.1. Number of trees sampled for endophytes per host tree species from Amazon Conservatory for Tropical Studies Biological Station (NAPO; 3°14'57.20"S, 72°54'33.60"W), Allpahuayo-Mishana National Reserve (ALPE; 3°58'1.16"S, 73°25'8.11"W), and Jenaro Herrera Research Center (JEHE; 4°53'54.29"S, 73°38'59.80"W).

TABLE 3.2. Number of sequence reads, number of operational taxonomic units (OTUs) and number and percentage of non-fungal sequences remaining within each dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.3.A. Number and percent of fungal operational taxonomic units (OTUs) that fell below classification criteria. For Pipeline BLASTn OTUs method (PIPE OTU), 80% BLAST similarity was the classification criteria cutoff. For RdP classifier with Warcup Fungal training set (RDP WAR) a 95% phylum confidence level was the classification criteria cutoff.

TABLE 3.3.B. Number and percent of non-fungal OTUs that fell below classification criteria. For Pipeline BLASTn OTUs method (PIPE OTU), 80% BLAST similarity was the classification criteria cutoff. For RdP classifier with Warcup Fungal training set (RDP WAR), a 95% phylum confidence level was the classification criteria cutoff.

TABLE 3.4. Number and proportion of real and chimeric OTUs that had five sequence reads or less in the RdP classifier with Warcup Fungal training set (RDP WAR) and the Pipeline BLASTn OTUs datasets.

xi

TABLE 3.5. Number and percent of operational taxonomic units (OTUs) unresolved at the genus level partitioned by phylum level and dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs, and the RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.6. Observed and estimated richness (SR) and diversity (Shannon Hill numbers [SHAN] and Simpson Hill numbers [SIM]), including upper (UCL) and lower (LCL) confidence intervals, of species level operational taxonomic units (OTUs) per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree genera, and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). LCL and UCL are highlighted in green. Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

TABLE 3.7. Observed and estimated richness (SR) and diversity (Shannon Hill numbers [SHAN] and Simpson Hill numbers [SIM]), including upper (UCL) and lower (LCL) confidence intervals, of species level operational taxonomic units (OTUs) for reduced datasets (non-informative names excluded). These are presented per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree genera, and reduced dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). LCL and UCL are highlighted in green.

Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

TABLE 3.8. Distribution of phyla for each dataset generated using one of four OTU classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), and Pipeline BLASTn OTUs (PIPE OTU), RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.9. Distribution of phyla presented by incidence frequency and sequence reads, partitioned by tree genus, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). Phyla were abbreviated as follows: Ascomycota (Asco), Basidiomycota (Basidio), Chytridiomycota (Chytridio), Mucoromycotina (Mucoro), and Zoopagomycotina (Zoopago).

TABLE 3.10. The five most abundant fungal genera, their incidence frequencies, number of sequence reads, and number of host trees each genus was captured from per dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), and Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.11. The ten most abundant genera per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]) using the Clustered GenBank Representatives (CLU REP) operational taxonomic unit (OTU) classification method, and the corresponding rankings for each genus when using Manual BLAST and Percent (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR) OTU classification methods. Incidence frequencies and number of sequence reads. The number of host trees the genera was captured from is also listed. Cells labeled with "-", denotes datasets with no corresponding genera.

TABLE 3.12. Distribution of core species partitioned by tree genus, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). Columns denote a core species and a blue "X" indicates that the endophyte species was identified as a core species within a particular location, dataset and tree host. A red "X" indicates a chimeric centroid sequence, and a red "*" indicates a centroid sequence that clustered with multiple centroid sequences after CLU REP curation. Core species OTU identifiers were used from CLU REP analysis: otu 2: Debaryomyces species 6, otu 3: Sarocladium species 1, otu 5: Clavicipitaceae species 1.12, otu 6: Metarhizium species 6, otu 7: Agaricales species 15.2, otu 8: Acremonium species 3, otu 10: Hypocreales species 3, otu 12: *Tolypocladium* species, otu 38: Chimera, otu 40: Tolypocladium species 2, otu 77: Sarocladium species 33, otu 434: Sarocladium species 2, multiple OTUs 1: Acremonium species 3, multiple OTUs 2: Tolypocladium species 2.

TABLE 3.13. Number of operational taxonomic units (OTU)s and proportion of OTUs assigned to each function guild for each OTU classification method: Clustered GenBank

Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.14. Percent similarity of function guild rankings between datasets based on incidence frequencies and sequence reads generated using four operational taxonomic unit (OTU) classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

TABLE 3.15. Function guild rankings based on incidence frequency and sequence read abundances per tree host endophytic communities, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU] and Rdp classifier with Warcup Fungal training set (RDP WAR). Function guilds were abbreviated as follows: Entomopathogenic (Ento), Fungicolous (Fung), Plant pathogen (Path), Saprotroph (Sapro), Wood decay (Decay), and Undetermined (Undet).

TABLE 3.16. Percent congruence of function guild assignment between incidence frequency and sequence reads per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU] and RdP classifier with Warcup Fungal training set [RDP WAR]).

List of Figures

FIGURE 1.1. Research sites. (A) The three sampling localities demarcated in red. (B)
Google Earth 7.1.5.1557 ACTS Biological Station (3°14'57.20"S, 72°54'33.60"W),
(C) Google Earth 7.1.5.1557 Allpahuayo-Mishana National Reserve (3°58'1.16"S,
73°25'8.11"W), D) Google Earth 7.1.5.1557. Jenaro Herrera Research Center
(4°53'54.29"S, 73°38'59.80"W), viewed 26 September 2016.

FIGURE 1.2. Relative abundance of orders present in each developmental stage under the two different sampling approaches. (A) The most abundant taxonomic orders recovered from seedling stems and adult sapwood using culture dependent method. (B) The taxa with the highest incidence frequency captured using culture independent method.

FIGURE 1.3. Species accumulation and diversity curves for endophytes sampled from adult and seedling trees separated by location. (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 1.4. Diversity results from culture dependent approach from trees distributed in Amazon Conservatory for Tropical Studies Biological Station (NAPO). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2). FIGURE 1.5. Diversity results from culture dependent approach from trees distributed in Allpahuayo-Mishana National Reserve (ALPE). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 1.6. Diversity results from culture dependent approach from trees distributed in the Jenaro Herrera Research Center (JEHE). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEBR: *Hevea brasiliensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 1.7. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values for all three locations and data partitioned by (A) developmental stage (ADULT: Adult, JUVI: Seedling), and (B) tree species (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*).

FIGURE 1.8. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values and data partitioned by developmental stage (ADULT: Adult, JUVI: Seedling) for each tree host species (A) HEBR: *Hevea brasiliensis*, (B) HEGU: *Hevea guianensis*, (C) HENI: *Hevea nitida*, (D) HEPA: *Hevea pauciflora*, (E) MIEL: *Micrandra elata*, and (F) MISP: *Micrandra spruceana*.

FIGURE 1.9. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values and data partitioned by developmental stage (ADULT: Adult, JUVI: Seedling) within each location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

FIGURE 1.10. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values and data partitioned by tree host species (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*) and location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

FIGURE 1.11. Venn diagrams showing the overlap of fungal species among adult tree communities (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*) per location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

FIGURE 1.12. Distribution of function guilds separated by developmental stage and location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]).

FIGURE 1.13. Diversity results from culture-independent approach. Species accumulation and diversity curves for endophytes sampled from seedling and adult

trees separated by host species. Trees were sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 1.14. Diversity results from culture-independent approach. Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Trees were sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 1.15. Community similarity results from culture-independent approach. Nonmetric Multidimensional Scaling (NMDS) analyses using presence/absence data with stress values for all trees sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Data partitioned by (A) developmental stage (ADULT: Adult, JUVI: Seedling), and (B) tree species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, and MISP: *Micrandra spruceana*).

FIGURE 2.1. Phylogenetic tree resulting from combined multilocus (ITS, TEF1, TUB, HIS) alignment. RAxML bootstrap values (bs) and Bayesian probabilities (pp) are displayed at each node (bs/pp). Only those with percentages above 70% are shown. Ex-type and ex-epitype isolates are in bold. Culture collection numbers are given for downloaded sequences and isolate codes for the newly generated sequences. *Diaporthe* from this study isolated from wild trees are indicated in green, while isolates from plantation trees are indicated in red.

FIGURE 2.2. *Diaporthe amazonica* (GPB18-1a). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, C = 5 μm .

FIGURE 2.3. *Diaporthe heveicola* (AHGB25-8b). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 20 \mu m$, C = 10 μm .

FIGURE 2.4. *Diaporthe napoensis* (GXB11-4b2). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, C = 10 μm .

FIGURE 2.5. *Diaporthe neotropica* (JMGB04-6b). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, C = 10 μm .

FIGURE 2.6. *Diaporthe peruviensis* (JMGB13-6a). A) Sporulation on alfalfa stem in Wag, B) pycnidial wall lined with paraphyses, C) conidiophores, D) alpha conidia, E) alpha conidia — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, $C = 20 \mu m$, D) 5 μm , E) 5 μm .

FIGURE 2.7. A) *Diaporthe ubiqueta* (AHGB7-9a1), and B) *Diaporthe umbrina* (JHGB2-8a) on potato-dextrose-agar (PDA) after seven days incubation at room temperature.

FIGURE 3.1. Venn diagram showing overlap of fungal centroid sequences among datasets curated using three different methods (CLU REP: Clustered GenBank Representatives method, PIPE OTU: Pipeline BLASTn method, RDP WAR: RdP

classifier with Warcup Fungal training set method). MAN PER (Manual BLAST Percent Based method), not pictured, had the same centroid sequences as CLU REP. FIGURE 3.2. Species accumulation and diversity curves for fungal communities partitioned by dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and the RdP classifier with Warcup Fungal training set [RDP WAR]) within location (A. Allpahuayo-Mishana National Reserve [ALPE], B. The Jenaro Herrera Research Center [JEHE], and C. the Amazon Conservatory for Tropical Studies Biological Station [NAPO], and host tree genus (1. Hevea and 2. Micrandra). Species accumulation metrics include richness (q=0), Shannon (q=1), Simpson's (q=2). FIGURE 3.3. Distribution of operational taxonomic units (OTUs) at the phylum level for each dataset generated using one of the four OTU classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

FIGURE 3.4. Proportion of operational taxonomic units (OTUs) assigned to each function guild per dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

Introduction

Hevea brasiliensis is the primary species for tapped natural rubber and an increasingly economically important crop since the 1870's. *Micrandra*, another latex producing genus of trees, is a close relative of *Hevea*, and sister to the clade of *Hevea* + *Glycydendron* (Wurdack et al. 2005). *Micrandra* has been a source of food, medicine and lamp fuel for the indigenous people of the Amazon (Schultes 1945, 1977, 1978), but its latex is not suitable for rubber production. Commercially tapped latex is used for a wide range of products essential to modern daily life ranging from the biomedical field (surgical equipment, rubber gloves, prophylactics) to industrial parts (tubes, pipes, connectors, tires) and it is a potential source for biodegradable plastics (Cotter et al. 2009; Mooney 2009). Latex was traditionally harvested directly from wild rubber trees within the Amazon Basin. As the demand for rubber grew, plantations were first established in South America and in India and Malaysia in the late 1800's (Priyadarshan 2011). Today the top rubber producing plantations are located in Southeast Asia and Africa, with demand continuing to grow (FAO 2009).

Plantation grown trees suffer from a variety of diseases that reduce production or destroy entire plantation areas, including White Root Disease (*Rigidoporus microporus*), Leaf Fall Disease (*Corynespora cassiicola*), Pod Rot (*Phytophthora meadii*), Abnormal Leaf Fall Disease (*Phytophthora* sp.) and South American Leaf Blight (*Microcyclus ulei*). South American Leaf Blight (SALB) is the major reason that rubber plantations have failed in South America and SALB has remained resistant to chemical fungicides. To date, the disease is endemic to South and Central

America, but the threat of proliferation to Old World production areas is of great concern (Lieberei 2007; Onokpise and Louime 2012). Breeding efforts have focused on incorporating genetic resistance for diseases such as SALB; however, genetic resistance is often overcome (Rivano et al. 2013). Biocontrol methods have been successful for other tropical commodities. For example, fungal endophytes have been extensively studied and successfully deployed in Theobroma cacao (Bailey et al. 2009; Evans et al. 2003). In particular, the fungal genus *Trichoderma* has been successfully incorporated into a commercial biofungicide (Mukherjee et al. 2012). Hanada et al. (2010) observed that *Trichoderma* spp. were not only the dominant endophytes collected from branches of cultivated Theobroma cacao and wild *Theobroma grandiflorum* in Brazil, but that these endophytes were antagonistic to *Phytophthora palmivora*, an important cacao disease. Coupled with these findings and their own observations, Gazis and Chaverri (2015) proposed that Trichoderma spp. are important or even essential components for protection against pathogens in natural forests.

Efforts for developing methods for the biological control of diseases for *Hevea* have been largely unsuccessful, however those studies have focused on nonendophytic fungi or endophytes isolated from healthy plantation trees outside the native range of *Hevea* (Abraham et al. 2013; Evueh and Ogbebor 2008; Sudirman et al. 1992). Endophytes obtained from the wild that have a highly specialized relationship with their hosts are generally considered to be ideal candidates for developing biological controls against diseases of that host (Thomas et al. 2008). As a preliminary effort toward the development of biological control methods for *H*.

brasiliensis, a fungal endophyte study utilizing culture-based techniques was conducted in Peru (Gazis and Chaverri 2010, 2015). Leaves and sapwood from a total of 190 trees of *H. guianensis* and both wild- and plantation-grown *H. brasiliensis* were collected in eight locations. Sapwood endophytes were found to be more diverse than leaf endophytes and species composition of the endophytic community differed between the two tissue types. However, endophytes were recovered from only 66% of the samples. The most frequently isolated taxa from all hosts were species of *Penicillium*, *Pestalotiopsis* and *Trichoderma*. *Trichoderma* spp. were the dominant endophytic fungi in wild *Hevea* trees (Gazis and Chaverri 2015).

This study, in consideration of the potential for a greater diversity of beneficial endophytes to be found in wild *Hevea*, targeted adults and seedlings of four species (*H. brasiliensis*, *H. guianensis*, *H. nitida*, *H. pauciflora*) and two species of the related host genus, *Micrandra* (*M. elata*, *M. spruceana*), from remote and underexplored areas of the Amazonian Peru. Few studies of other plant species have directly compared the fungal endophytic communities of adults to those of their offspring. In those studies, differences in community composition and diversity were reported (Espinosa-Garcia and Langenheim 1990, Rodrigues 1994, Gure and Birhanu 2014, Oono et al. 2015). For that reason, two developmental stages, adult and seedling trees, were sampled in this study. Lastly, due to the low recovery rate reported by Gazis and Chaverri (2010) when culture-based identification methods were used exclusively, both culture-dependent and culture-independent approaches through high-throughput DNA sequencing were compared for one location in this study. Additionally, this study targeted sapwood and stem tissue, rather than leaf

tissue, due to the greater diversity of endophytes reported in those tissues by Gazis and Chaverri (2010).

During the larger endophyte discovery project presented here and that of Gazis and Chaverri (2010, 2015), a large number of *Diaporthe* isolates were recovered. *Diaporthe* includes a wide array of species that are endophytes, saprobes, opportunistic pathogens, as well as aggressive pathogens of economically important crops. However, morphological species identification remains problematic and past reliance on host species or genus in describing fungal species has resulted in a proliferation of species names. Little is currently known about the distribution of *Diaporthe* spp. on *Hevea*, and reports of *Diaporthe* spp. in Peru are lacking (Rocha et al. 2011, Gomes et al. 2013).

Isolates generated by both Gazis and Chaverri (2010, 2015) and this project were used in the present study to: 1) resolve the identity of the endophytic *Diaporthe* of *Hevea* and *Micrandra*: 2) place these isolates in a phylogenetic context with known pathogenic and non-pathogenic *Diaporthe* spp.: and 3) determine the geographic and host distribution of endophytic *Diaporthe* clades compared with that known from other hosts. Four nuclear loci including the ribosomal internal transcribed spacer region (ITS, comprised of ITS1, 5.8S, ITS2), partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB) and histone H3 (HIS) were sequenced and analyzed to identify phylogenetic species. Since *Diaporthe* spp. are common endophytes, and because choice of genetic barcode has major implications for ecological hypotheses, the utility of each locus for species identification was investigated (Gotelli & Colwell 2001, Agapow et al. 2004, Magurran 2008, Gazis et

al. 2011). Accurate means of identification will aid in monitoring the geographical range and hosts of known *Diaporthe* spp. and allow reporting on previously unknown *Diaporthe* species from the Amazonian Peru.

Metabarcoding data analysis of the samples collected led to an examination of operational taxonomic unit (OTU) classification methods on endophyte distribution, diversity estimates, and ecological function role assignment. Metabarcoding has become an important tool for exploring communities across multiple systems (Gao et al. 2008, Bellemain et al. 2013, Cox et al. 2016, Miller et al. 2016, Núñez et al. 2016, Durand et al. 2017). There are, unfortunately, many inherent errors or biases when using next generation sequencing that may lead to incorrect inferences regarding community composition and diversity: initial amplicon library preparation, PCR and sequencing artifacts, chimera detection methods, and absence of well-curated fungal reference sequences (Nilsson et al. 2015, Brown et al. 2015, Hibbett et al. 2011, Nagy et al. 2011, Dighton and White 2017). Lastly, errors occur during the analyses of clustering and classifying sequences (Gazis et al. 2011, Nguyen et al. 2015, Yahr et al. 2016, Raja et al. 2017a). Multiple methods are accepted for classifying OTUs in environmental metabarcoding studies. In this study, four different methods were used to classify OTUs with the dataset of endophytes collected from multiple hosts in multiple locations. The effect of those different methods on endophyte distribution, endophyte diversity estimates, and endophyte ecological function roles were examined.

This is one of the first studies comparing adult to seedling stem tissue in a systematic manner, the majority of prior studies used fungal communities recovered

from leaves. Metabarcoding is an increasingly standard method used in modern studies, and streamlined data analysis is vitally important. Development of successful biocontrol methods and integrated disease management strategies for *H. brasiliensis* will likely benefit from further understanding fungal diversity, host associations, and spatial distribution of their endophytes.

Objectives

- Determine the influence of host identity on community species composition and abundance in *Hevea* and *Micrandra* adult trees and seedlings.
- Determine the influence of geography on community species composition and abundance in adult and seedlings.
- Investigate whether the patterns observed between adult and seedlings agree when using culture vs. culture independent approaches.
- Determine and quantify the species of *Diaporthe* associated with wild *Hevea* and *Micrandra* in Peru.
- Determine the effect of manual curation vs. automated methods for OTU classification of metabarcoding data.

Chapter 1: Developmental stage as a primary force driving fungal endophytic community assemblage in two Amazonian hardwood genera

<u>Abstract</u>

Euphorbiaceae contains economically and ethnologically important Amazonian hardwood species Hevea brasiliensis and Micrandra inundata. Recent fungal endophyte research has focused on *H. brasiliensis* due to its global importance as a commodity but almost no data exists about the fungal community harbored within other *Hevea* species or its sister genus *Micrandra*. In addition to expanding host sampling to include four *Hevea* spp. and two *Micrandra* spp., we recovered endophytes at two developmental stages of the host. The latter represents a novel approach in endophyte research that will contribute to a better understanding of the dynamics involved in community assemblage of tropical endophytes. Through a culture-based approach, we sampled a total of 381 seedlings and 144 adults distributed across three remote areas within the Amazonian Peru. In addition, at one site we used culture-independent approaches through high-throughput DNA sequencing to test if the patterns in community composition and abundance agreed. Our results from both sampling approaches indicate that host development stage has a greater influence in community assemblage than host taxonomy or locality. Trichoderma was the most abundant genus recovered from adult trees, while Diaporthe prevailed in seedlings. Potential explanations for the disparity of abundance between *Trichoderma* and *Diaporthe* are discussed. Finally, we found that anthropogenic influence has a negative impact on species richness and diversity.

These results are in accordance with previous studies that have suggested that human disturbances could have a strong influence on the establishment of fungal species assemblages

Keywords: Next Generation Sequencing (NGS), ITS nrDNA, mycobiome, phytobiome, Janzen-Connell hypothesis, negative density dependence (NDD).

Introduction

Fungal endophytes are found in almost every plant species and tissue type (Verma and Gange 2014) and have been the topic of a plethora of research articles (2,746) articles in the last decade) (Web of Science Database, Accessed: September 12, 2017). Nevertheless, information regarding turnover of fungal endophytes from one developmental stage of a plant to another (i.e., from seed to seedling to adult) is limited. Characterizing communities from one host at different developmental stages can shed light into community dynamics and can provide the first clues on how these highly complex communities are assembled and change through time. The few studies regarding the effects of developmental stages on endophytic fungal community assemblages have focused on endophytes isolated from seeds and/or emerging seedlings (Johnston-Monje and Raizada 2011, Hodgson et al. 2014, Parsa et al. 2016, (Sarmiento et al. 2017) as compared to older or newly flushed leaves on a single adult plant (Fróhlich et al. 2000, Arnold and Herre 2003, Nascimento et al. 2015), or often involved inoculation of seedlings with fungal endophytes recovered from taxonomically unrelated adult plants with the objective to gauge the effect on plant growth (Fernandes et al. 2013, Leite et al. 2013), disease resistance (Nichol and

Walker 2013, Romeralo et al. 2015, Martínez-Álvarez et al. 2016), or tolerance to abiotic stresses (Hubbard et al. 2014, Navarro-Torre et al. 2016, Barra et al. 2017).

Few studies have directly compared the fungal endophytic communities of adults to that of their offspring. Predominantly, these studies isolated fungal endophytes from adult leaves and leaves of their offspring to evaluate the effect of developmental stage on endophytic communities (Espinosa- Garcia and Langenheim 1990, Rodrigues 1994, Gure and Birhanu 2014, Oono et al. 2015). Espinosa-Garcia and Langenheim (1990) isolated endophytic fungi from adult *Sequoia sempervirens* leaves and their basal sprouts, reporting higher fungal diversity in basal sprouts. Rodrigues (1994) sampled 10 adult trees and 20 saplings (6 to 18 months old) of *Euterpe oleracea* (Arecaceae) from an island located within the Amazon Basin of Brazil. Three leaf-growth stages were examined: unopened leaves, newly expanded leaves, and mature leaves. Rodrigues (1994) also found that isolation frequencies increased with leaf age and that saplings had a higher fungal isolation frequency than adults.

Diversity was not measured in this study; however, Rodrigues (1994) observed that the composition of fungal communities differed between saplings and adults. Gure et al. (2014) isolated fungal endophytes from juvenile (dbh 13.5-16.5 cm) and adult (dbh 68-90cm) *Afrocarpus falcatus* (Podocarpaceae) needles and observed that endophytic communities from juveniles tended to have a higher diversity. Oono et al. (2015) used culture-based and culture-independent methods to assess the fungal communities of *Pinus taeda* pine needles (9 adults and 18 seedlings) in a temperate forest and, as in the previously mentioned studies, the endophytic communities from seedlings had a higher fungal diversity than the surrounding adults.

Prior to the work conducted by Gazis and Chaverri (2010), few studies had evaluated the fungal community harbored within inner bark tissue (phloem + cambium). Therefore, even less is known about the dynamics of community assemblage associated with this tissue. Many tropical trees that have been investigated for endophytes are deciduous and so communities living within the trunk/stem are expected to be more stable but still vary with host age. Tree diameter has been used to gain insight into the relationship between host age and endophyte richness and abundance. For instance, Meaden et al. (2016) used tree diameter as an estimation of host age for *Quercus robur* (Fagaceae) and observed a negative correlation between tree age and the number of endophytic bacterial OTUs (Operational Taxonomic Units) recovered from sapwood, as well as a negative correlation between tree age and abundance of particular bacterial taxa. On the other hand, Gazis and Chaverri (2015) observed a positive correlation between the number of fungal OTUs recovered from *H. brasiliensis* sapwood and tree diameter, but no significant correlation between tree diameter and abundance of particular taxa. Although these studies yielded conflicting results, tree age (inferred from tree diameter) was found to influence endophytic richness.

The main challenges in the study of community dynamics is that tropical fungal endophytes are mainly transmitted horizontally and highly complex (hundreds of genotypes inhabiting a single host), with the surrounding environment acting as the main source of inoculum (Clay 1993, Arnold and Herre 2003, Santamaría and

Bayman 2005). The composition and abundance of these communities are thought to be a function of environmental factors such as light, rainfall, elevation, soil type, salinity and forest type rather than host taxonomy (Arnold and Herre 2003, Arnold 2007, Krishnamurthy et al. 2009, Azad and Kaminskyj 2016, Soares et al. 2016). A survey of leaves of an endemic tree species across the varied environments of Hawaii reported that endophytic communities differed along rainfall and temperature gradients (Zimmerman and Vitousek 2012). Similarly, when four tree species were surveyed across three different tropical forest types, their endophytic communities were found to be significantly different for each forest type, suggesting that the environment structured the endophytic communities rather than host taxonomy (Suryanarayanan et al. 2011).

Surrounding vegetation has been shown to be one of the most important variables driving endophyte species composition and abundance. In the tropics, where plant diversity is high and species density is low, host specificity among endophytes has rarely been reported (May 1991, Bailey et al. 2006, Suryanarayanan et al. 2011). Specific relationships may not be advantageous as host encounters would be more difficult, and a specialized relationship could reduce endophytic reproductive and dispersal success (Cannon and Simmons 2002, Ferrer and Gilbert 2003).

Although host specificity has rarely been reported in the tropics, several studies have shown that host identity does influence endophytic communities (Solis et al. 2016, Vincent et al. 2016, Del Olmo-Ruiz and Arnold 2017). Solis et al. (2016) sampled leaves from three species of *Ficus* (*F. benjamina*, *F. elastica* and *F. religiosa*,) within two forests in the Philippines and in both sampling sites as the

phylogenetic distance of hosts increased, the similarity of endophytic communities decreased. Vincent et al. (2016) isolated leaf fungal endophytes from two more closely related tree genera (*Ficus* [Moraceae], *Macaranga* [Euphorbiaceae]), along with three more distantly related genera (*Psychotria* [Rubiaceae], *Syzygium* [Myrtaceae], *Gnetum* [Gnetaceae]) distributed at three sites in Papua New Guinea. In contrary to the previous study, the authors found that while host identity influenced composition of endophytic communities, dissimilarity among the communities was not correlated to host plant phylogeny.

In this study, we targeted four species of *Hevea* and two species of *Micrandra* distributed in remote and underexplored areas of the Amazonian Peru. In addition to characterizing the endophytic community of the targeted species, this study had three main objectives: 1) determine the influence of host identity on community species composition and abundance in adult and seedlings; 2) determine the influence of geography on community species composition and abundance in adult and seedlings; and 3) investigate whether the patterns observed between adult and seedlings agree when using culture vs. culture-independent approaches. We compared our findings with previous studies and discussed the factors that can be contributing to the differences and similarities among hosts, sites, and developmental stages.

Material and Methods

Collection sites

Samples were collected from three localities within the Loreto Region of Amazonian Peru (Figure 1.1): 1) Amazon Conservatory for Tropical Studies (ACTS) Biological Station (NAPO; 3°14'57.20"S, 72°54'33.60"W), 2) Allpahuayo-Mishana National Reserve (ALPE; 3°58'1.16"S, 73°25'8.11"W), and 3) Jenaro Herrera Research Center (JEHE; 4°53'54.29"S, 73°38'59.80"W). All three locations are high terraced lowland forests (elevation: 103 m to 146 m) (Aquino et al. 2013, Box 2016).

NAPO was the most remote location with no industrial presence, and very little development. The forest surrounding this region is inhabited by indigenous people as well as small villages along the riverbanks. ALPE is located off of a twolane road that connects the cities of Iquitos and Nauta. This small road is surrounded by a river and forested areas and there are no other roads connecting this region to the rest of the country. Although the population is growing on one side of the road, on the other side the forest is well preserved and unfragmented. Many of the trees in this locality were sampled from inaccessible, almost pristine, areas of the forest. JEHE had the highest anthropogenic influence of the three sites. The large research center is 1.6 km (0.99 mi) from the community of Jenaro Herrera, population of 5,632 (Thomas Brinkhoff: City Population, http://www.citypopulation.de/php/perudistr.php?adm1id=1605), off of an unpaved road approximately 12-17 m (39-55 ft) wide leading away from the nearby community and deep into the forest. The surrounding forest is heavily fragmented by small farms, and pastures. Human activity, such as farming, hunting and gathering of natural resources, is prevalent throughout. The community has public electricity and paved roads that are heavily used by motorcyclists, pedestrians and cattle.

Adult endophyte isolation

Endophytic fungi were isolated from stem tissues of a total of 143 adult trees. Four species of *Hevea* (*H. brasiliensis*, *H. guianensis*, *H. nitida*, *H. pauciflora*) and two species of *Micrandra* (*M. elata*, *M. spruceana*) were opportunistically sampled. Vouchers for each host tree were collected, and deposited at the Universidad Nacional de la Amazónia Peruana (AMAZ).

Geographical coordinates were recorded for each sampled tree using a handheld GPS unit (GPSmap 62sc, Garmin Inc., Schaffhausen, Switzerland). Trunk diameter (dbh) was measured at 1.4 meters above the ground (*Hevea* spp.) or 1.4 meters above the swell of buttressed prop roots (*Micrandra* spp.). Trees with dbh of 23 - 100 cm were targeted for sampling. The number of individual trees sampled, per species and site, varied due to their natural low abundance and scatter distribution (Table 1.1). Inner bark tissue (wood containing functioning vascular tissue) samples were collected by shaving the outer tree bark and exposing a 10 cm² area. Using a smaller flame-sterilized knife, three pieces of wood (~4 x 5 mm) were excised and transferred individually to Petri plates containing BBL[™] cornmeal-agar (Sigma-Aldrich, St Louis, Missouri, USA) with 2 % dextrose and 2 mL of 1 % neomycinpenicillin-streptomycin solution to suppress bacterial growth (CMD+). Each tree had this procedure replicated three times, at different points around the tree's circumference, yielding a total of nine subsamples per tree. CMD+ plates were incubated at room temperature and emerging colonies were sub-cultured onto BBLTM potato-dextrose-agar (PDA) until pure cultures were obtained. Cultures are stored at the University of Maryland (College Park, Maryland, USA) in 20% glycerol cryovials at -80° C and in CMD test tubes at 4° C. Representative isolates obtained in this study, with their corresponding GenBank accession numbers, are listed in Supplementary Table 1.1. The endophyte recovery rate was calculated by dividing the number of subsamples with endophytes divided by the number of subsamples (Evans et al. 2003).

Seedling endophyte isolation

Three seedlings, all within approximately 3 m of the parent tree and ranging from 30 to 60 cm in length, were randomly collected per adult tree. From each seedling stem, 3 segments (~ 5mm long) that included the entire stem with all the inner primary tissues (cortex and vascular, both phloem and xylem), were excised in the field station using sterile surgical blades and surface-sterilized through sequential immersion in 2 % sodium hypochlorite solution (2 min), 70 % ethanol (2 min) and sterilize water (Gazis and Chaverri 2010). Each segment was transferred to an individual Petri dish containing CMD+. This procedure was replicated three times, yielding a total of nine subsamples per seedling.

Environmental sample collection for direct sequencing

To investigate whether the recovered endophytic community from adults and seedlings varies when using culture-independent versus direct sequencing approaches, additional samples were collected from adults and seedlings of *H. guianensis*, *H. nitida*, and *M. spruceana* in NAPO. For adult trees, three pieces of inner bark tissue were excised from each individual (as described for the culture-based method) and transferred into individual cryovials containing 500 µL of MoBio

Bead Solution Buffer (MoBio Laboratories, Carlsbad, California, USA). Each adult tree had this procedure replicated three times, yielding a total of nine subsamples divided into three cryovials (each containing 3 inner bark tissue pieces) for direct sequencing. For seedling tissue, three stem segments (~ 5mm long) from each individual were transferred into individual cryovials with 500 µL of MoBio Bead Solution Buffer after surface sterilization (described for culture-based method). Each seedling had this procedure replicated three times, yielding a total of nine subsamples divided in three cryovials (each containing 3 seedling stem pieces) for direct sequencing.

DNA extraction, PCR and sequencing

Isolates were sub-cultured onto PDA and incubated at 25° C for a minimum of 4 days. Mycelial mats were harvested directly from PDA plates and suspended in a microcentrifuge tube containing 60 µL of PrepMan® Ultra Reagent (Applied Biosystems, California, USA). DNA was extracted following the manufacturer's protocol. The Internal Transcribed Spacer regions (ITS) 1 and 2 of the nuclear ribosomal DNA, including the 5.8S, were amplified and sequenced using the primers ITS5 and ITS4 (White et al. 1990). PCR conditions followed Gazis et al. (2015) and were performed on a Bio-Rad Dyad Peltier thermal cycler (Bio-Rad Laboratories, Inc., Hercules, California, USA). PCR products were sequenced at the Systematic Mycology and Microbiology Laboratory (USDA-ARS, Beltsville, Maryland, USA.) and at Macrogen USA (Rockville, Maryland, USA) as outlined by (Udayanga et al. 2014).

For culture-independent samples, excised plant tissues were placed into tubes prefilled with 500-µm garnet sand and a 6-mm zirconium grinding satellite bead (OPS Diagnostics LLC, New Jersey, USA.). The tube contents were ground using a FastPrep® beadmill (MP Biomedicals, Santa Ana California, USA.). Each tube was treated to three cycles of grinding (speed: 5.0 m/s, time: 43 seconds) or until no visually recognizable fragments remained. Total DNA was extracted using the Qiagen® DNeasy Plant Mini Kit according to the manufacturer's instructions (Qiagen, Hilden, Germany). The fungal ITS 2 region was amplified using fITS7 (Ihrmark et al. 2012) and ITS4 (White et al. 1990) primers. To allow multiplexing of samples, unique 6-bp barcode tags were added to the ITS primers, according to the individual tree or seedling sample (Dowd et al. 2008). PCR amplification was performed using HotStarTaq Plus Master Mix Kit (Qiagen®, Hilden, Germany) under the following conditions: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, after which a final elongation step at 72°C for 5 minutes was performed. Three aliquots from each sample were amplified and PCR amplification products were then pooled in equal proportions based on their molecular weight and DNA concentrations, and purified using AMPure® XP beads (Agencourt Bioscience, Massachusetts, USA). PCR amplification and sequencing was performed on an Illumina MiSeq platform at MR DNA (www.mrdnalab.com, Shallowater, TX, USA) using MiSeq Reagent Kit v2 with paired end sequencing read lengths of 150 base pairs. Forward and reverse sequences of each sample were merged into contigs. For quality control and optimization of downstream analyses, contigs with lengths smaller than 300 bp were

discarded and sequences larger than 300 bp were truncated to 300 bp (Puente-Sánchez et al. 2015). Sequences were removed when less than 90% of their base calls fell below the Q30 quality score (Manley et al. 2016). Singletons, contigs with abundance equal to one, were removed from the dataset and the UCHIME database were used to retrieve and remove chimeras from the dataset (Edgar et al. 2011).

OTU delimitation and classification

Full-length ITS sequences (~600 bp) from Sanger sequencing of fungal isolates were aligned using the MAFFT aligner version 7.305 (Katoh and Toh 2008) in CIPRES (Miller et al. 2015). Default parameters were selected, along with the adjust direction option. Sequences were clustered into operational taxonomic units (OTUs) using the furthest neighbor method in MOTHUR version 1.36.1 (Schoch et al. 2014) with a 99 % similarity criterion (Gazis et al. 2011). One representative from each putative species was chosen for OTU taxonomic classification and, when possible, wellcurated sequences (sequences from published studies, with voucher/culture collection numbers) were added to the MOTHUR analysis. OTUs will be considered as putative species hereafter. BLAST (Madden 2002) was used to compare sequences against the National Center for Biotechnology Information Nucleotide database (https://www.ncbi.nlm.nih.gov/nucleotide) excluding uncultured/environmental sample sequences. GenBank sequences of the matched taxa for all OTUs were collected and aligned with all representative sequences from this study using the MAFFT aligner with the default parameters (Katoh and Toh 2008) in CIPRES (Mille et al. 2010). Sequences were then clustered into OTUs using the furthest neighbor

method in MOTHUR (Schoch et al. 2014), and the percent similarity at which all the GenBank representative sequences clustered together exclusively (meaning no other representative sequences from other genera were clustered with them) was considered the genus limit for the OTU.

Sequences (contigs) obtained from environmental samples were ~300 bp in length. Most references sequences in the NCBI nuclear database are full ITS (<550 bp), thus shorter sequences have less resolution, and differences in percent divergence would be partly correlated with sequence length (Monard et al. 2013, Nilsson et al. 2008). To deal with this challenge when assigning OTUs the following steps were completed: 1) a preliminary BLAST search and gathered representative sequences of the matched taxa; 2) dataset constructed that contained 1,835 taxa; 3) sequences aligned using MAFFT aligner with the default parameters (Katoh and Toh 2008) in CIPRES (Miller et al. 2015); 4) reference sequences truncated to 300 bp; and 5) sequences clustered into OTUs using the furthest neighbor method in MOTHUR (Schoch et al. 2014). The percent similarity at which all the GenBank representative sequences clustered together exclusively (meaning no other representative sequences from other genera were included in the group) was considered the genus limit for the environmental OTU.

Diversity estimates of individual and combined datasets Three orders of Hill numbers (HN) were used to interpolate and extrapolate species richness and diversity for all endophyte communities at tree host level within each locality (species richness, q=0), common species (Shannon's entropy, q=1) and dominant species (inverse Simpson's, q=2), decreasingly sensitive to rare species (Jost 2006, Chao et al. 2014). Chao1 was calculated to extrapolate asymptotic richness using iNext package version 2.0.14. Hill numbers are expressed as the number of equally abundant species that would be needed to return the same value given by a diversity measure (Jost 2016, Chao et al. 2014). Accumulation and diversity curves were built using iNext package version 2.0.14. A 95 % confidence interval was obtained by applying 1,000 bootstrap iterations. Non-overlapping confidence intervals denote a significant difference between samples.

Comparative analysis among host species

Nonmetric Multidimensional Scaling (NMDS) analyses were conducted to visualize the trends and groupings of the fungal endophytes, at individual host tree level and developmental stage, using Euclidean distance for quantitative (abundance) data. NMDS was run under a random starting configuration using the metaMDS function in Vegan package version 2.4-2. To obtain a global solution (minimum global stress) and avoid termination of convergence upon recovery of two minimum stress solutions (local minimum), a minimum (20) and maximum (1,000) number of iterations were set according to metaMDS developer recommendations recommendations (Oksanen 2016). Stress values were interpreted according to Clarke's (1993) recommendations, where <0.05 indicates an excellent representation of the observed distances among the samples by the ordination, <0.1 indicates a good representation, <0.2 indicates a good but potentially misleading representation at the upper limits, and >0.3 indicates a poor representation.

The rate of distance decay of the fungal endophyte communities was calculated according to Nekola and White (1999), with the assumption that community similarities decrease with increasing geographical distance. In this study, endophytic turnover patterns within site and across sites were examined by constructing two distance matrices, one based on the presence/absaence of an OTU (Jaccard), and the other based on geopgraphic distances between samples (Euclidean). In this way, we are evaluating the change of community similarity across all pairwise samples. The geographic distance between individual tree hosts, within and across collection sites, was determined by first converting their geographic coordinates (latitude and longitude) into Cartesian points and then calculating the Euclidean distance between them. The distance decay relationship was calculated as the slope of a least-squares linear regression on the geographic distance and the fungal endophyte community similarity measured by the Jaccard index). In addition, we tested whether the slope of the distance decay curve of each collection site was significantly different from zero using a randomization with 1,000 iterations (Vegan package version 2.4-2). The slope of the distance similarity relationship is one of the most common measures of beta diversity in ecological studies (Soininen et al. 2007, Goldmann et al. 2016, Oono et al. 2017)

The distribution of fungal richness for each site, tree species and age group was visualized as a Venn diagram using the VIB-UGENT Venn Diagram Tool (Chen and Boutros 2011). Species abundances were ranked for each site, tree species and age group using the Rankabundance function in BiodiversityR package version 2.8-0. Fungal taxa were considered core (abundant) species if they occurred in more than 50 % of the individuals within a tree species within a site (Unterscher et al. 2011). Putative species were parsed into 6 ecological guilds based on genus level using the FunGuild database (Nguyen et al. 2016) including: 1. entomopathogenic (parasitic or causes disease in insects), 2. fungicolous (parasitic or grows on other fungi), 3. plant pathogen (causes disease in plants), 4. saprotroph (rots plant litter), 5. wood decay (rots wood) or 6. undetermined for taxa with no established ecological lifestyle.

Fine scale comparative analysis

For three host tree species in NAPO (H. guianensis, H. nitida, and M. spruceana), both sampling techniques were applied and endophytic diversity, richness and distribution were examined as described above. Sequence data produced by next generation sequencing present more challenges than the ones produced by Sanger sequencing. Customarily, proportional read abundance is correlated to the proportional abundance of an organism within a sample, but often this assumption is incorrect due to factors such as variation of gene copy number among fungal taxa (especially of multi-copy ITS), and amplification artifacts such as biases due to differential primer binding efficiencies among taxa, and stochastic effects (Amend et al. 2010, Kebschull and Zador 2015). Therefore, both sequence reads (number of reads per OTU) and species incidence frequency (number of samples from which an OTU was captured) were analyzed.

<u>Results</u>

Endophyte Isolates

A total of 2,061 endophyte fungi were isolated from 271 trees belonging to four different species of *Hevea* (*H. brasiliensis, H. guianensis, H. nitida* and *H. pauciflora*) and two of *Micrandra* (*M. elata* and *M. spruceana*). Samples (stem and inner bark tissue) were obtained from trees in two developmental stages (seedling and adult) from three different geographic localities in the Amazonian Peru: Napo (NAPO), Allpahuayo (ALPE) and Jenaro Herrera (JEHE) (Figure 1.1). The recovery rate differed greatly between the two developmental stages across all three locations. From seedlings, 1,237 fungi were recovered (average recovery rate of 83%); and from adults, 824 (average recovery rate of 66%) (Table 1.1).

There were 356 putative species from 136 genera recorded. Endophyte communities from adult trees were composed of 255 species, while endophyte communities from seedlings were composed of 153 species, there were 52 fungal species recorded from both adult and seedling hosts. Eighteen percent of the putative species were resolved at the genus level while the rest (82%) were only resolved to higher taxonomic ranks (Supplementary Table 1.1). In all three locations, and for all tree species examined, Ascomycota dominated the fungal endophytic community in seedlings and adults, 97% and 89% of the isolates respectively. Basidiomycota were found in lower amounts for both seedling (3%) and adult (8%) fungal communities. Mucoromycota were only isolated from adult tree samples (2.7% of the isolates). Most abundant fungal orders for endophytic communities in adult trees were

Hypocreales (46% of isolates), Eurotiales (13%) and Xylariales (11%) (Figure 1.2A). Most abundant orders for communities in seedlings were Diaporthales (61% of isolates), Glomerales (11%), and Xylariales (10%) (Figure 1.2B). Three genera were most prevalent in adult trees: *Trichoderma* (26% of isolates), *Penicillium* (9%), and *Tolypocladium* (6%) while all the other genera isolated (142 out of 148) were found in lower quantities (relative abundances below 6%). In seedlings, *Diaporthe* represented 61% of isolates with *Colletotrichum* the second most abundant genus (12%); 86 genera were isolated in abundances below 3%. *Diaporthe* was the most abundant genus recovered from *Hevea* and *Micrandra* seedlings, excepting *M. elata* (sampled only in ALPE), where *Pezicula* (28%) and *Colletotrichum* (26%) prevailed.

Diversity estimates of individual and combined datasets

Richness and diversity (estimated using Shannon and Simpson indices) for endophytic communities of adult trees was not significantly different within each location, regardless of host taxonomy (Table 1.2). Similarly, richness and diversity for endophytes isolated from seedlings were similar for all hosts within location (Table 1.2). Richness and diversity for fungi isolated from adult trees were greater than those isolated from seedling in both NAPO and ALPE (Figure 1.3AB). However, in JEHE the pattern differed from the other regions; fungal richness and diversity for seedlings were greater than for the adult trees (Figure 1.3C).

Species accumulation curves increased steeply and did not reach asymptote for either seedling or adult tree fungal communities (Figures 1.4-1.6). Curves for Shannon HN and Simpson HN diversity, reached or nearly reached asymptote for all seedling fungal communities (Figure 1.4A, Figure 1.5A, Figure 1.6A). For adult tree fungal communities, Simpson HN diversity curves reached or neared asymptote at all three locations. Shannon HN diversity curves, however, did not near or reach asymptote at any location, despite the slopes being less steep than the species accumulation curves (Figure 1.4B, Figure 1.5B, Figure 1.6B).

Based on projected diversity, some samples were nearly complete while others were insufficiently sampled (Table 1.2). The difference between the estimated number of species (Chao and Jost 2015) and observed richness for seedling fungal communities ranged from 8 to 168 (ALPE 24 to 167, NAPO 8 to 30, JEHE 11 to 67), while for adult tree fungal communities it ranged from 23 to 258 (ALPE 70 to 129, NAPO 127 to 213, JEHE 23 to 258). The difference between the estimated diversity and observed Shannon HN ranged from 0.53 to 26 (ALPE 4 to 16, NAPO 0.53 to 4, JEHE 4 to 26) for seedling fungal communities and 23 to 125 (ALPE 30 to 43, NAPO 38 to 125, JEHE 23 to 34) for adult tree fungal communities. The difference between the estimated diversity and observed Simpson HN ranged from 0.04 to 5 (ALPE 0.18 to 4, NAPO 0.04 to 0.14, JEHE 0.41 to 5) for seedlings fungal communities and 2 to 46 (ALPE 6 to 10, NAPO 6 to 46, JEHE 2 to 11) for adult tree fungal communities.

Comparative analyses among host species

Non-metric multidimensional scaling (NMDS) analysis revealed distinctiveness between fungal communities associated with the two developmental stages of host trees (stress = 0.1313) (Figure 1.7A). Seedling and adult trees had different fungal communities across hosts (stress value range 0.1055-0.1742), and across sampling sites (stress value range 0.1129–0.1269) (Figures 8 and 9). There was no clear distinction between the endophytic communities from different host species when the data was not partitioned by developmental stage within each locality (stress value range 0.1129–0.1265) (Figure1.10).

Across all three sampling sites, the fungal endophytic community similarity decreased when the geographic distances between the pairwise set of samples increased, except for adult *H. nitida* (Table 1.3). Within sites, the rate of distance decay indicated that there was no significant increase in community dissimilarity with increasing geographic distance except for Adult MISP in ALPE, adult HEBR in JEHE and seedling HENI in NAPO. There were very few fungal species that overlapped between seedling and their adult counterparts; overlapped species ranged from two to four, with the exceptions of HEGU in NAPO (6) and MIEL in ALPE (1) (Table 1.4). For adult trees within each location, there were more species unique to a host than overlapped with other adult species, largely due to the high percentage of singletons and doubletons (Figure 1.11). The exceptions, where host species had more endophyte species that overlapped between hosts than unique, were HEGU and MISP in ALPE and HENI in NAPO. For seedling trees within each location, the trend was reversed; there were generally more endophyte species that overlapped between hosts than were unique to a single host species.

Core species (those occurring in more than 50% of individuals within a tree species within a site) were only identified from adult HEGU, HEPA and MISP in ALPE, HENI in NAPO, and MISP in JEHE (Table 1.5). No pattern of host preference was observed across the three sites for adults. MISP in ALPE had a different core species (*Neopestalotiopsis* species 3) than MISP in JEHE (*Trichoderma* species 21), while there were no core species recovered from MISP in NAPO (Table 1.5). In all three locations *Trichoderma* species 11 and *Trichoderma* species 21 were the most abundant endophyte species recovered from adult trees. *Trichoderma* species 21 was a core species for HEGU and HEPA in ALPE, while *Trichoderma* species 11 was a core species for MISP adults in JEHE. Seedlings from NAPO had the most fungal species that met core criteria (NAPO 5, ALPE 4, JEHE 3). In ALPE and NAPO, three of the identified core species met the core criteria in multiple hosts, while in JEHE only one core species (*Diaporthe* species 1) met the core criteria in all three host species (Table 1.5). *Diaporthe* species 7 was the most abundant in all three seedlings locations and was also a core species in all seedlings except for MIEL in ALPE, and HENI and MISP in JEHE. *Diaporthe* species 9 and *Diaporthe* species 4 were the second and third most abundant species found in seedlings.

The ecological guilds differed greatly between seedling and adult tree endophytic communities (Figure 1.12). In seedlings, endophytes in the plant pathogen guild were isolated in a higher percentage (79%) than from adult trees (10%). Less than 2% of guilds that would be considered beneficial to plant hosts, entomopathogenic (0.24%) and fungicolous (2%), were isolated from seedlings. A higher percentage of endophytes in saprotrophic (35%), fungicolous (29%), entomopathogenic (9%), undetermined (9%) and wood decay (8%) guilds were isolated from adult trees. The distribution of ecological guilds differed in JEHE. Adults trees in this region harbored more potentially plant pathogenic fungi (JEHE 15%, ALPE 11%, NAPO 7%) and less saprotrophic fungi than what was found in ALPE and NAPO (JEHE 32%, ALPE 34%, NAPO 37%). In seedlings, the overwhelming majority of fungi recovered were members belonging to potentially plant pathogenic taxa, however, in JEHE there were less isolates under this guild recovered (JEHE 67%, ALPE 85%, NAPO 84%) as well as less fungicolous fungi (JEHE 0.5%, ALPE 2%, NAPO 2%).

Fine scale comparative analysis at NAPO

A total of 1,086,242 reads from 91 trees belonging to two different species of *Hevea* (H. guianensis and H. nitida) and one species of Micrandra (M. spruceana) met bioinformatic quality control measures for further analysis. Samples (stem and inner bark tissue) were obtained from trees in two developmental stages (seedling and adult). There were 1,039 putative fungal species identified from 436 genera. Generated sequences have been archived in the NCBI Sequence Read Archive (SRA) database (project # pending). When considering the number of OTUs, the number of reads, and incidence frequencies, Ascomycota dominated the fungal endophytic community for both seedlings (57% of OTUs, 61% of reads, 62% incidence frequency) and adult trees (73% of OTUs, 87% of reads, 89% incidence frequency). For adult tree samples, the proportion of Basidiomycota comprising fungal communities (13% of sequence reads, 10% incidence frequency) was similar to that observed using culture-based methods, in which 8% of the isolates recovered from NAPO were Basidiomycota. A higher proportion of Basidiomycota were observed in seedlings using culture-independent methods (32% sequence reads, 37% incidence frequency) than what was recovered from cultured samples (0.7 %). Mucoromycota

taxa were captured from both seedling and adult tree samples at low incidence frequencies (0.23% seedlings, 0.48% adults), whereas Mucoromycota fungal isolates were recovered solely from adult tree samples and at a higher proportion than what was captured using culture-independent methods (3% of the isolates).

Fungal genera identified using culture methods were underrepresented in culture-independent methods. For seedling endophytic communities, 50% of the recovered genera were represented in the culture-independent dataset, for adult tree endophytic communities only 23% of the recovered genera were represented. For all adult trees hosts in NAPO, four endophytic genera were the most prevalent: *Acremonium* (18% of sequence reads, 10% incidence frequency), *Debaryomyces* (14% of sequence reads, 10% incidence frequency), *Tolypocladium* (14% of sequence reads, 9% incidence frequency), *Sarocladium* (1% of sequence reads, 8% incidence frequency). *Tolypocladium* was also one of the most abundant genera recovered using culture-dependent methods. No *Sarocladium* species were recovered from cultured samples and less than 1% of recovered isolates were members of *Debaryomyces* and *Acremonium*. *Trichoderma*, the most abundant genus recovered using culture methods, was captured from only one tree sample (HEGU), at a very low abundance (2 reads). For all seedling species in NAPO the two most prevalent genera,

Debaryomyces and *Tricholomataceae* species 1, were not recovered from seedling in NAPO using culture methods. *Diaporthe*, the most abundant genus recovered using culture methods, was captured in 26% of seedling trees at a low abundance (0.14% reads) and incidence frequency (0.61%). *Colletotrichum*, the second most abundant

genus recovered from cultured samples, was captured in 43% of seeding trees, also at low abundance (0.56% reads) and incidence frequency (3.60%).

Richness and diversity, based on Shannon HN and Simpson HN indices, of endophytic communities captured using culture-independent methods were significantly different among adult trees with HEGU having the greatest endophytic (richness 318) and diversity (Shannon HN 221, Simpson HN 134), followed by HENI (Richness 133, Shannon HN 105, Simpson HN 76), and MISP (Richness 122, Shannon HN 72, Simpson HN 42) (Table 1.6). Richness and diversity of endophytic communities from HEGU and HENI seedlings were similar, however the endophytic community from MISP (Richness 562, Shannon HN 385, Simpson HN 222) was significantly more diverse than HEGU (Richness 72, Shannon HN 45, Simpson HN 32) and HENI (Richness 53, Shannon HN 37, Simpson HN 27). Richness and diversity of endophytic communities captured from adult trees were greater than those captured from seedlings except for MISP, which was significantly more diverse than communities captured from all adult tree species (Figure 1.13). The number of species captured per MISP seedling sample ranged from 33 to 111 with a mean/median of 56/50, whereas the number of species captured from HEGU and HENI seedlings ranged from 8 to 24 with a mean/median of 15/13.

Species accumulation curves increased steeply and did not asymptote for either seedlings or adults (Figure 1.14). Curves for Shannon HN and Simpson HN diversity reached or nearly reached asymptote for HEGU and HENI seedlings while the curve for MISP seedlings remained steep (Figure 1.14A). For all adult tree species, Simpson diversity curves approached asymptote. Shannon HN diversity

30

curves, however, did not near or reach asymptote, despite the slopes being less steep than the species accumulation curves.

The difference between the estimated number of species (Chao and Jost 2015) and observed richness ranged from 32–1,490 (HEGU 32, HENI 108, MISP 1,490) for seedlings, whereas for adult tree communities it ranged from 269–527, (HEGU 526, HENI 527, MISP 269) (Table 1.6). The difference between the estimated diversity and observed Shannon HN ranged from12–554 (HEGU 12, HENI 29, MISP 554) for seedlings 62–241 (HEGU 225, HENI 241, MISP 62) for adult tree communities. The difference between the estimated and observed Simpson HN ranged between 4 to 67 (HEGU 4, HENI 8, MISP 67) for seedlings and 8 to 47 (HEGU 40, HENI 47, MISP 8) for adult tree communities.

Non-metric multidimensional scaling (NMDS) analysis revealed distinctiveness between fungal communities associated with the two developmental stages of host trees (Figure 1.15A). Clear separation between the endophytes captured from seedlings and adult tree communities was observed when either presence/absence data (stress=0.1388) or sequence read data (stress=0.2183) was analyzed. There was no significant distinction between the different host species (Figure 1.15B). Core species were identified from all adult and seedling host species (Table 1.7). As with culture-dependent results, seedling endophytic communities had the most fungal species that met core criteria (16 species), six of the species identified met the core criteria in all three seedling host species. In adult endophytic communities seven species were identified as core species, four of which met the criteria in all three host species.

As with culture-dependent methods, the ecological guilds differed greatly between seedling and adult tree endophytic communities; however, the proportions of fungal guilds comprising the endophytic communities differed between the two methods (Table 1.8). A higher percentage of endophytes in entomopathogenic guild (31% of incidence frequency, 30% of sequence reads) and a lower percentage of fungicolous guild (10% of incidence frequency, 19% of sequence reads) were captured from adult tree communities than from seedlings. On the other hand, endophytes in the plant pathogen guild were equally captured from seedling (9% of incidence frequency, 3% of sequence reads) and adult trees (10% of incidence frequency, 3% of sequence reads). A higher percentage of endophytes with unknown functions (39% of incidence frequency, 25% of sequence reads) were detected in seedling communities, than in adult tree communities (16% of incidence frequency, 23% of sequence reads). Similar to results from the culture-based approach, seedlings harbored less than 1% of guilds that would be considered beneficial to plant hosts, entomopathogenic (0.61% of incidence frequency) and fungicolous (0.08% of incidence frequency), which is similar to the results using culture dependent methods.

Discussion

Different fungal communities, in terms of abundance and species composition, were recovered from seedlings and adult tree tissues. A greater number of endophytic fungi were recovered from seedlings (83% of isolates) than from adult trees (66% of isolates). Higher isolation rates have been reported in younger host tissues in other host systems as well. Espinosa-Garcia and Langenheim (1990) observed that in

Sequoia sempervirens endophyte isolation frequency increased with leaf age and then decreased after the leaves reached full maturity in both adult and basal sprout leaves; however, a higher isolation frequency was recorded from basal sprout leaves. Rodrigues (1994) observed higher isolation frequency from sapling leaves of *Euterpe oleracea* than adult leaves, and Gure et al. (2014) observed a higher isolation frequency from juvenile *Afrocarpus falcatus* needles than adults.

The known and described dominance of Ascomycota in plant endophytic communities (Neubert et al. 2006, Higgins et al. 2007, Hoffman and Arnold 2008, Gazis and Chaverri 2010, 2015) was confirmed in this study, as they represented 89% of isolates recovered from adult trees and 97% of isolates recovered from seedling stems. *Trichoderma* and *Penicillium* were the most commonly cultured fungi from adult trees but were rarely isolated from seedling stems (0.2%). An opposite pattern was observed for *Diaporthe* and *Colletotrichum*, which were more abundant in seedling stems than in adult trees (0.6 and 0.2%, respectively). This pattern of one taxon being isolated more frequently from one host developmental stage rather than another has been reported for other tree hosts and tissue types as well, suggesting that host developmental stage is key to shaping endophytic communities (Espinosa-Garcia and Langenheim 1990, Rodriguez et al. 2009, Gure and Birhanu 2014, Oono et al. 2015).

Specificity to the host developmental stage was found to have greater influence on the assemblage of endophytic communities, than host identity or locality. The fungal genera recovered from seedling and adult trees using culturedependent methods were not the same than the ones captured using next generation sequencing, and yet the pattern was similar in that the two developmental stages harbored distinctly different communities regardless of method used. There are several factors that may be contributing to the differences: 1) fungal endophytes might be adapted to particular "microenvironments" (*e.g.*, host cells and tissues) (Vujanovic and Brisson 2002, Kumaran and Hur 2009, Feinstein and Blackwood 2012); 2) seedlings may be more susceptible to the colonization by fungi that belong to plant pathogenic groups than adults (Lieberei et al. 1996, Ballhorn et al. 2005); and 3) the Negative Density Dependence (NDD) effect may be occurring due to an accumulation of pathogenic taxa surrounding the parent tree (Janzen 1970, Connell 1971).

Because seedlings and adult trees in natural forests are generally exposed to the same surrounding *ex-planta* fungal inoculum, there are likely other factors influencing differences between developmental stages. Therefore, one hypothesis to explain the differences observed between seedling and adult trees maybe micro-niche specialization (Vujanovic and Brisson 2002, Kumaran and Hur 2009, Feinstein and Blackwood 2012). Studies have shown that different tissues types (*e.g.*. twig, leaf, flower and fruit) from a single plant may harbor distinct endophytic communities, thus the observed dissimilarity between adult and seedling tissues may be determinant to fungal colonization mechanisms (Huang et al. 2008, Martinson et al. 2012, Wu et al. 2013). For instance, many *Trichoderma* thrive on lignin/hemicellulose rich plant tissues (Kubicek 2012, Navarro et al. 2012) and this may explain their low abundances in young tissues and leaves. A second hypothesis to explain the observed differences between seedlings and adults is that seedlings are more susceptible to the colonization by fungi that belong to plant pathogenic groups than adult trees. Seedling stems and new leaves of *Hevea* lack some of the physical and chemical properties that make colonization of adult trees difficult for certain fungal taxa (Fang et al. 2016). The immature tissues are tender, lack lignin, and have not fully developed defensive biochemical pathways that produce fungitoxic compounds such as the coumarin scopoletin (Lieberei 2007). Alternatively, younger leaves contain higher levels of gaseous hydrogen cyanide (HC), which protect against herbivores but negatively affects fungicidal enzymes (Lieberei et al. 1996, Ballhorn et al. 2005). It is in these juvenile foliar growth stages that *Hevea* is most susceptible to fungal diseases such as *Pseudocercospora ulei*, the causal agent of South American leaf blight (Chee and Holliday 1986, Jayasuriya et al. 2003).

Gazis and Chaverri (2015) found *Trichoderma* spp. to be the dominant culturable endophytic fungi in wild adult *Hevea* trees. The same study found a negative correlation between the presence of *Trichoderma* spp. and the abundance of potentially pathogenic fungi, *Diaporthe* in particular. Likewise, Hanada et al. (2010) observed that *Trichoderma* spp. were not only the dominant endophytes collected from branches of cultivated *Theobroma cacao* and wild *Theobroma grandiflorum* in Brazil, but that these endophytes were antagonistic to *Phytophthora palmivora*, an important cacao disease. Coupled with these findings and their own observations, Gazis and Chaverri (2015) proposed that this taxon is an important or even an essential component for host protection against pathogens in natural forests. The

35

opportunistic plant pathogenic *Diaporthe* was more abundant in seedlings (61% of isolate), whereas *Trichoderma* was almost absent (0.2% of isolates). The absence of *Trichoderma* spp. may be one of the reasons for the successful colonization of pathogenic strains (Gazis and Chaverri 2015). As was suggested by Evans et al. (2003) upon observing a high proportion of mycoparasitic hypocrealean fungi in asymptomatic wild pods of *Theobroma gileri*, and none of the usual opportunistic pod pathogens normally colonizing diseased pods such as *Fusarium*, *Colletotrichum*, and *Xylaria*. The negative correlation observed between the presence of *Trichoderma* and potentially pathogenic fungi may be due to competitive exclusion mechanisms or to the antifungal properties of *Trichoderma* (Harman et al. 2004, Hanada et al. 2010, Hermosa et al. 2012).

A third hypothesis to explain the differences between fungal communities of seedling and adult trees may be explained by the Negative Density Dependence (NDD) hypothesis. Janzen and Connell hypothesized that specialized natural enemies (herbivores, pathogens) maintain high tree diversity in tropical forests (Janzen 1970, Connell 1971). Areas nearest the parent plant have accumulated a high inoculum load, making the surrounding area inhospitable for seedlings. The resulting high rates of seedling mortality prevent dominant plant species from competitively excluding others. Both *Hevea* and *Micrandra* produce abundant crops of seedlings around the bases of parent trees from seeds that germinate immediately after localized dispersal via their explosive fruits. Few of these seedlings appear to survive beyond the first season with few saplings observed except near light gaps. It is hypothesized that plant species richness is maintained by allowing rarer tree species to accumulate more than

the dominant species. Eventually the "rarer" species become more common and the situation is reversed. Bagchi et al. (2014) demonstrated that although insects help structure plant communities, fungi are the natural enemies that maintain high tropical diversity. Classical NDD pathogens involved with seedling mortality are thought to be specialists; however, host specificity has rarely been observed and the agents of seedling mortality are more likely generalists (Augspurger and Kelly 1984, Peters 2003, Gilbert 2005, Bell et al. 2006, Freckleton and Lewis 2006). NDD may partly account for the observed division of functional groups between seedling stem endophytes and adult tree endophytes.

When examining the patterns of diversity, richness and community composition across sampling locations, JEHE differed from both ALPE and NAPO. Adult trees generally had a higher endophytic richness than seedlings (Table 1.2), except in JEHE where endophytic richness of adult trees was not only lower than the richness of seedlings, but also lower than the endophytic richness of adults in the other two locations. Although we did not measure disturbance, the latter may have an influence on fungal endophyte diversity based on our personal observations of the sites. NAPO was the most remote location, ALPE was easily accessible but well preserved, and JEHE had the most anthropogenic pressures such as forest fragmentation due to small scale farming and conversion of forested areas into pastures. Expansion of human activities into natural forests may be one explanation for the observed differences among locations as they lead to changes in host microclimate, soil chemistry (due to pollutants and agricultural practices) and forest fragmentation and isolation (Helander et al. 2007, Jumpponen and Jones 2010,

37

Hossain and Sugiyama 2011, Matsumura and Fukuda 2013, Sikes et al. 2017). Forest fragmentation exposes the landscape to sunlight which has a strong effect on leaf endophytes. Several studies have shown that incidence frequencies significantly increase or decrease for particular fungal taxa depending on a leaf's position in tree canopy (light vs shade) (Osono and Mori 2004, Unterscher et al. 2007, Gure and Birhanu 2014, Harrison et al. 2016, Kato et al. 2016). Furthermore, Alvarez-Loayza et al. (2011) observed that light can regulate how an endophyte affects the fitness of its host by triggering an endophyte's mutualistic or pathogenic response.

The degree to which a taxon or functional grouping is impacted by urbanization varies according to an endophyte's taxonomy (Ochimaru and Fukuda 2007). While examining fungal communities recovered from soil and leaf litter in urban and rural Japanese forests, Ochimaru and Fukuda (2007) found that the abundance of amanitaceous (Agaricales, Basidiomycota) species was lower in urban and suburban forests than in the rural forest. In contrast, the frequency of Russulaceae (Russulales, Basidiomycota) species was higher in the urban forest than in the rural forest. We also found that the most common species/genera in mainly undisturbed areas were either absent or not as dominant in JEHE. For seedling stems, *Diaporthe* species 7 was the most recovered species in all three locations. However, in JEHE, the abundance of this species was almost half of what was recovered from the other two locations (ALPE 40%, NAPO 46%, and JEHE 23%). Diaporthe species 4 was the second most recovered species in ALPE and NAPO but in JEHE it was not one of the top ten abundant species. Conversely, the dominance of Trichoderma 11, the most abundant species recovered from adult trees, did not significantly change. The impact

38

of anthropogenic activities on the richness and diversity of fungal communities has been well documented (Ochimaru and Fukuda 2007, Jumpponen and Jones 2010, Matsumura and Fukuda 2013, Robles et al. 2015). Our data are in accordance with these studies, suggesting that human disturbances could have a strong influence on the establishment of fungal species even in communities living within trees.

All of the results discussed so far have been based on culture-dependent methods. For one collection site (NAPO), both culture-independent and -dependent methods were utilized. Results of culture-independent methods concur with culturedependent methods in that a clear distinction between the taxonomic community composition and abundance of fungal endophytes of adult and seedlings was observed. However, endophytes identified with culture-dependent and cultureindependent methods had very little overlap. We obtained drastic differences in the abundance of some of the common isolated genera. For instance, Trichoderma was found to be the most abundant genus recovered through the culture-based approach from adult trees, but was one of the least abundant (number of reads and incidence in individual samples/sub-samples) when culture-independent approaches were applied. Some of the explanations are that *Trichoderma* is a relative fast-growing genus that grows readily on artificial media and so tends to overgrow other fungi that may colonize the sapwood. Previous reports in other systems have also shown that these two approaches recover different endophytes and have suggested that both approaches are needed for a comprehensive exploration of these highly diverse communities (Allen et al. 2003, Arnold 2007, Stenström et al. 2014). Cultureindependent methods detect species that are not able to grow in artificial culture

medium, or that have low growth rates and are easily overgrown by other coinhabitants.

This is one of the first studies comparing adult tissue to seedling stem tissue. The majority thus far had compared fungal communities recovered from adult tree leaves and offspring leaves. Differences between seedling and adult tree fungal communities as well as differences among locations were expected; however, this is the first study to address the question in a systematic manner. Results from this study suggest that host developmental stage, more than host taxonomy or locality, is a key determinant of community assemblage of tropical endophytes. We believe that anthropogenic activities can also influence species richness and diversity as reflected by the lower metrics in the location with highest anthropogenic impact. TABLE 1.1. Summary of locations, host tree species and the number of trees and developmental stages sampled from Amazon Conservatory for Tropical Studies Biological Station (NAPO), Allpahuayo-Mishana National Reserve (ALPE), and Jenaro Herrera Research Center (JEHE), as well as the total number of endophytes recovered per tree species, location and developmental stage.

	Host Tree Species	No. of Adult trees that had		No. of adult trees sampled (Sapwood) / No. subsamples/No.	No. of e recove		Recovery Rates (%)		
		seedlings	subsamples with endos	of subsamples with endos	Seedling	Adult	Seedling	Adult	
Site	Hevea guianensis	16	48 /144/ 127	13/81/53	180	69	88%	65%	
Site	Hevea pauciflora	15	45/ 135/103	16/117/70	132	81	76%	60%	
	Micrandra elata	10	30 / 63/38	15/126/84	54	92	60%	67%	
	Micrandra spruceana	5	15/45/41	9 /54/45	58	52	91%	83%	
	Total sampled	46	141/396/309	55/387/256	424	294	78%	66%	
	Hevea brasiliensis	13	39 /126/105	13 /54/23	121	51	83%	43%	
JEHE	Hevea nitida	10	30 /99/80	10 /45/27	94	30	81%	60%	
	Micrandra spruceana	14	42 /126/112	15 /108/70	181	74	89%	65%	
	Total sampled	37	114/351/297	38/207/120	396	155	84%	58%	
	Hevea brasiliensis	-	-	-	-	-	-	-	
	Hevea guianensis	16	48 /144 /133	21/189/153	197	201	92%	81%	
NAPO	Hevea nitida	9	27/72/54	11/ 72/45	64	58	75%	63%	
	Micrandra spruceana	17	51/ 144 /121	19/ 162/99	156	116	84%	61%	
	Total sampled	42	126/360/308	51/423/297	417	375	86%	70%	
Totals	Total sampled	125	381/1107/914	144/1017/673	1237	824	83%	66%	

TABLE 1.2. **Culture dependent method:** Observed and estimated species richness (SR) and diversity (Shannon Hill numbers and Simpson Hill numbers), including upper (UCL) and lower (LCL) confidence intervals, of endophytes per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree species and tree developmental stage. Non-overlapping confidence levels signify a significant difference in richness or diversity, while partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

Site	Host tree	Dev.			C	Observ	ed			Estimated								
Site	species	stage	SR	Shannon	LCL	UCL	Simpson	LCL	UCL	SR	LCL	UCL	Shannon	LCL	UCL	Simpson	LCL	UCL
		Adult	39	29	20	38	20	12	27	168	77	480	70	29	113	27	20	44
	H. guianensis	Seedling	43	15	11	19	6	4	8	91	59	183	19	15	25	6	6	8
		Adult	44	32	26	38	22	15	30	132	74	301	66	33	100	31	22	45
ALPE	H. pauciflora	Seedling	39	16	11	21	8	6	10	206	80	715	27	16	39	9	8	12
	M. elata	Adult	53	39	30	49	26	19	33	138	89	256	82	54	110	36	26	52
		Seedling	23	17	11	23	13	9	17	119	39	597	33	17	53	16	13	23
		Adult	32	22	14	31	15	10	21	102	53	259	53	22	90	21	15	35
	M. spruceana	Seedling	19	8	6	11	4	2	6	43	25	118	12	8	18	4	4	6
	TT 1 -1	Adult	28	23	18	28	19	15	24	46	33	87	38	27	49	30	19	43
	H. brasiliensis	Seedling	57	38	30	47	23	15	31	124	84	225	64	45	83	28	23	39
JEHE		Adult	17	13	7	18	9	4	15	40	23	114	25	13	42	13	9	24
	H. nitida	Seedling	40	25	20	30	15	10	20	62	48	101	36	27	45	17	15	24
	14	Adult	39	23	14	32	12	6	18	197	86	572	58	23	103	14	12	22
	M. spruceana	Seedling	45	19	15	23	9	7	11	56	49	80	23	19	28	9	9	12

C *4	Host tree	Dev.		Observed								Estimated								
Site	species	stage	SR	Shannon	LCL	UCL	Simpson	LCL	UCL	SR	LCL	UCL	Shannon	LCL	UCL	Simpson	LCL	UCL		
	H. guianensis	Adult	90	55	45	64	32	25	38	218	150	359	93	72	114	37	32	48		
		Seedling	35	12	10	15	6	5	7	51	40	89	14	12	17	6	6	8		
NARO	H. nitida	Adult	43	35	25	46	26	14	37	170	88	400	117	38	197	46	26	84		
NAPO		Seedling	19	10	7	14	7	5	9	49	25	162	15	10	22	7	7	10		
	M. spruceana	Adult	79	67	55	79	54	42	66	292	175	550	192	119	265	100	63	136		
		Seedling	18	6	4	7	3	2	4	26	20	60	6	6	8	3	3	4		

TABLE 1.3. The rate of distance decay (DD) of the fungal endophytecommunities for each tree host across and within sampling locations (AmazonConservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]).P values in red indicate a significant increase in community dissimilarity withincreasing geographic distance.

Location	Developmental stage	Host Tree species	Slope Intercept	Rate of DD	P value
		Hevea guianensis	0.978	-0.042	0.129
	Adult tree	Hevea pauciflora	0.947	-0.009	0.250
		Micrandra elata	0.950	-0.001	0.965
ALPE		Micrandra spruceana	1.015	-0.078	0.017
		Hevea guianensis	0.797	-0.014	0.399
	Seedling tree	Hevea pauciflora	0.786	0.013	0.208
	_	Micrandra elata	0.906	-0.004	0.899
		Micrandra spruceana	0.612	0.054	0.179
	A 1 1/ /	Hevea guianensis	0.959	-0.010	0.097
	Adult tree	Hevea nitida	0.946	0.003	0.699
NAPO		Micrandra spruceana	0.984	-0.002	0.563
		Hevea guianensis	0.705	-0.033	0.249
	Seedling tree	Hevea nitida	0.681	0.060	0.001
		Micrandra spruceana	0.612	0.001	0.952
	A 1 1/ /	Hevea brasiliensis	0.989	-0.034	0.010
	Adult tree	Hevea nitida	0.993	-0.011	0.310
JEHE		Micrandra spruceana	0.896	0.008	0.420
	G 11: 4	Hevea brasiliensis	0.900	-0.004	0.563
	Seedling tree	Hevea nitida	0.898	0.010	0.366
		Micrandra spruceana	0.788	-0.001	0.926
	A 1 1/ /	Hevea guianensis	0.965	-0.00054	0.000
	Adult tree	Micrandra spruceana	0.973	-0.00031	0.000
All locations		Hevea nitida	0.982	-0.00017	0.078
		Hevea guianensis	0.758	-0.00048	0.011
	Seedling tree	Micrandra spruceana	0.814	-0.00134	0.000
		Hevea nitida	0.914	-0.00046	0.004

TABLE 1.4. The number and percent of endophyte species overlap within and across developmental stages (seedling, adult), per tree species, method (culture dependent and culture independent), and location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]). Percentages of shared endophytes were calculated with singletons included and excluded from the datasets.

Site	Dev. stage	Tree host I species	No. endophyte	No.	No. shared endo species within dev.	No. shared endo species across dev.	within de	hyte overlap evelopmental tages	% endophyte overlap across developmental stages		
Site	Dev. stage	species	species	Singletons	species within dev. stage	stage	with singletons	without singletons	with singletons	without singletons	
		H. guianensis	39	16	21	4	54%	91%	10%	17%	
	Adult trees	H. pauciflora	44	21	21	2	48%	91%	5%	9%	
	Adult frees	M. elata	53	26	22	1	41%	79%	2%	4%	
ALDE		M. spruceana	32	14	17	2	53%	94%	6%	12%	
ALPE	Seedling trees	H. guianensis	43	14	25	4	58%	86%	9%	14%	
		H. pauciflora	39	16	23	2	59%	100%	5%	9%	
		M. elata	23	7	15	1	65%	94%	4%	6%	
		M. spruceana	19	3	15	2	79%	94%	11%	13%	
		H. brasiliensis	28	12	12	3	43%	75%	11%	19%	
	Adult trees	H. nitida	17	8	8	2	47%	89%	12%	22%	
JEHE		M. spruceana	39	24	12	3	31%	80%	8%	20%	
	Seedling	H. brasiliensis	57	25	31	3	54%	97%	5%	9%	
	trees	H. nitida	40	12	25	2	63%	89%	5%	7%	
		M. spruceana	45	9	28	3	62%	78%	7%	8%	

Site	Dev. stage	Tree host species	No. endophyte	No.	No. shared endo species within dev.	No. shared endo species across dev.	within de	hyte overlap evelopmental tages	% endophyte overlap across developmental stages		
Site	Der. suge	species	species	Singletons	stage	stage	with singletons	without singletons	with singletons	without singletons	
		H. guianensis	90	40	38	6	42%	76%	7%	12%	
	Adult trees	H. nitida	43	16	26	4	60%	96%	9%	15%	
NAPO		M. spruceana	79	47	27	3	34%	84%	4%	9%	
NAPO	Seedling trees	H. guianensis	35	11	15	6	43%	63%	17%	25%	
		H. nitida	19	7	11	4	58%	92%	21%	33%	
		M. spruceana	18	3	14	3	78%	93%	17%	20%	
		H. guianensis	317	225	31	3	10%	34%	1%	3%	
	Adult trees	H. nitida	133	108	20	3	15%	80%	9%	15%	
NAPO Culture		M. spruceana	122	87	23	2	19%	66%	4%	9%	
Independent		H. guianensis	72	32	35	3	49%	88%	4%	8%	
	Seedling trees	H. nitida	53	33	20	3	38%	100%	21%	33%	
		M. spruceana	562	430	30	2	5%	23%	17%	20%	

TABLE 1.5. The distribution of core species per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), separated by developmental stage, and tree species. Columns denote a core species and an "X" indicates that the endophyte species was identified as a core species within a particular location, dataset and tree host. Core species: *Annulohypoxylon* species 1 (Annul 1), *Colletotrichum* species 11 (Colle 11), *Diaporthe* species 1 (Diapo 1), *Diaporthe* species 14 (Diapo 14), *Diaporthe* species 19 (Diapo 19), *Diaporthe* species 4 (Diapo 4), Diaporthe species 5 (Diapo 5), *Diaporthe* species 7 (Diapo 7), *Diaporthe* species 8 (Diapo 8), *Diaporthe* species 9 (Diapo 9), *Neopestalotiopsis* species 3 (Neope 3), *Pezicula* species 1 (Pezic 1), *Trichoderma* species 11 (Trich 11), and *Trichoderma* species 21 (Trich 21).

Site	Tree host	A	dult tree e	ndophyte o	core specie	es	Seedling tree endophyte core species									
Site	species	Trich 21	Neope 3	Diapo 19	Annul 1	Trich 11	Diapo 4	Diapo 7	Diapo 14	Pezic 1	Diapo 5	Diapo 8	Colle 11	Diapo 1	Diapo 9	
ALPE	H. guianensis	х	-	-	-	-	х	Х	-	-	-	-	-	-	-	
	H. pauciflora	х	-	-	-	-	Х	х	-	-	-	-	-	-	-	
	M. elata	-	Х	-	-	-	х	х	Х	х	-	-	-	-	-	
	M. spruceana	-	-	-	-	-	-	-	-	х	-	-	-	-	-	
JEHE	H. brasiliensis	-	-	-	-	-	-	Х	-	-	-	-	-	х	-	
	H. nitida	-	-	-	-	-	-	-	-	-	-	-	-	х	-	
	M. spruceana	-	-	-	-	Х	-	-	-	-	-	-	-	х	Х	
NAPO	H. guianensis	-	-	-	Х	-	х	х	-	-	Х	-	-	-	-	
	H. nitida	-	-	-	-	-	-	х	-	-	-	-	х	-	-	
	M. spruceana	-	-	-	-	-	-	х	-	-	х	х	-	-	-	

TABLE 1.6. Culture independent method: Observed and estimated species richness (SR) and diversity (Shannon Hill numbers and Simpson Hill numbers), including upper (UCL) and lower (LCL) confidence intervals, of endophytes for Amazon Conservatory for Tropical Studies Biological Station [NAPO], tree species and tree developmental stage. Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

Site	Host tree	Dev. stage	Observed								Estimated								
Site	species		SR	Shannon	LCL	UCL	Simpson	LCL	UCL	SR	LCL	UCL	Shannon	LCL	UCL	Simpson	LCL	UCL	
	H. guianensis	Adult	318	221	199	242	134	112	156	844	674	1096	446	389	502	174	138	210	
		Seedling	72	45	39	50	32	27	36	104	85	148	57	49	64	36	32	43	
NAPO	H. nitida	Adult	133	105	88	122	76	56	96	660	399	1179	346	239	452	123	76	173	
		Seedling	53	37	31	43	27	21	34	161	91	361	66	45	87	35	27	45	
	M. spruceana	Adult	122	72	60	83	42	32	53	391	261	645	134	102	165	50	42	60	
		Seedling	562	385	351	418	222	192	252	2052	1649	2602	938	816	1061	289	234	344	

TABLE 1.7. The distribution of core species recovered from tree hosts in Amazon Conservatory for Tropical Studies Biological Station (NAPO) using culture independent method. HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*. Columns denote a core species and an "X" indicates that the endophyte species was identified as a core species within a particular location, dataset and tree host. Core species: *Acremonium* species 3 (Acre 3), Agaricales species 15.2 (Agar 15.2), Basidiomycota species 21 (Basta 21), *Beltrania* species 1 (Beltr 1), *Beltraniella* species 1 (Belta 1), *Beltraniella* species 5 (Bella 5), *Colletotrichum* species 1 (Colle 1), *Colletotrichum* species 2 (Colle 2), *Cyphellophora* species 1 (Cyphe 1), *Debaryomyces* species 1 (Debar 1), *Debaryomyces* species 6 (Deb 6), *Debaryomyces* species 16 (Debar 16), *Debaryomyces* species 18 (Debar 18), *Graphidaceae* species 2.2 (Grap 2.2), Hypocreales species 3 (Hyp 3), *Sarocladium* species 1 (Saro 1), *Tolypocladium* species 1 (Tolyp 1), *Tolypocladium* species 2 (Tolyp 2), Tricholomataceae 1.1 (Mycen 1.1), Tricholomataceae 1.3 (Mycen 1.3), Xylariales species 4.1 (Xylal 4.1), and *Xylodon* species 5 (Xlod 5).

Tree host	A	dult t	ree en	dophy	te cor	e speci	es	Seedling tree endophyte core species															
species	Deb 6	Hyp 3	Toly	Saro	Toly	Acre 3	Agar	Debar	Debar 16	Debar 18	2	Mycen 1.3	Mycen 1.1	Colle	Colle	5	Basta 21	Bella 5	Belta	Beltr	Cyphe 1	Debar 6	Xylal 4
	0	5			1		1	1	10	10		1.5	1.1	1	2		21		1	1	1	0	
HEGU	х	х	х	х	х	-	-	x	х	х	х	х	х	х	х	х	-	-	-	-	-	-	-
HENI	х	х	х	х	-	-	-	x	х	х	х	х	х	-	-	-	-	-	-	-	-	-	-
MISP	х	х	х	х	-	х	х	X	х	х	х	х	х	-	-	-	х	х	х	х	х	х	х

Developmental		Tree host	Proportion of function guild								
stage	Method	species	Entomopathogenic	Fungicolous	Plant pathogen	Saprotroph	Undetermined	Wood decay			
		H. guianensis	7%	36%	5%	34%	9%	8%			
	Culture	H. nitida	9%	19%	5%	34%	17%	16%			
	dependent	M. spruceana	6%	14%	11%	42%	13%	13%			
Adult		Site total	7%	27%	7%	37%	12%	11%			
7 Kuut		H. guianensis	29%	11%	10%	32%	15%	2%			
	Culture	H. nitida	22%	11%	9%	46%	12%	0%			
	independent	M. spruceana	40%	6%	5%	27%	19%	2%			
		Site total	31%	10%	9%	33%	16%	2%			
		H. guianensis	1%	1%	79%	19%	0%	1%			
	Culture	H. nitida	2%	6%	77%	16%	0%	0%			
	dependent	M. spruceana	0%	3%	95%	2%	1%	0%			
Saadling		Site total	1%	2%	84%	12%	0.2%	0%			
Seedling	G 1	H. guianensis	0%	0%	23%	37%	38%	2%			
	Culture independent	H. nitida	19%	10%	10%	48%	13%	1%			
	r onaono	M. spruceana	1%	0%	7%	39%	45%	9%			
		Site total	3%	2%	10%	40%	39.2%	7%			

and tree host species sampled from Amazon Conservatory for Tropical Studies Biological Station (NAPO).

TABLE 1.8. The proportion of function guilds separated by developmental stage, method (culture dependent and culture independent),

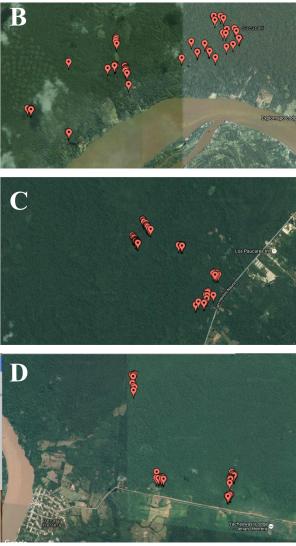


FIGURE 1.1. Research sites. (A) The three sampling localities demarcated in red.
(B) Google Earth 7.1.5.1557 ACTS Biological Station (3°14'57.20"S,
72°54'33.60"W), (C) Google Earth 7.1.5.1557 Allpahuayo-Mishana National
Reserve (3°58'1.16"S, 73°25'8.11"W), D) Google Earth 7.1.5.1557. Jenaro,
Herrera Research Center (4°53'54.29"S, 73°38'59.80"W), viewed 26 September
2016.

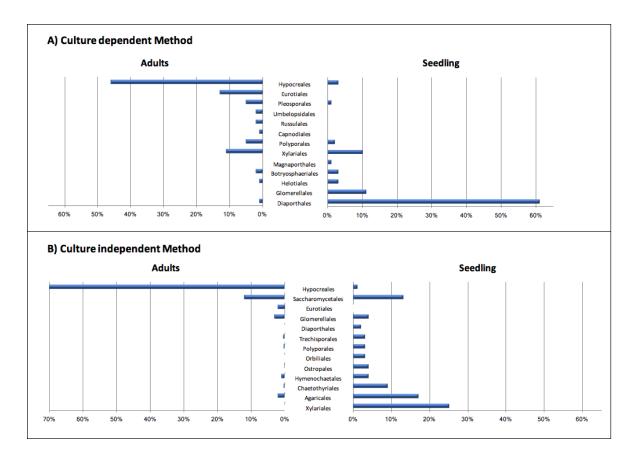


FIGURE 1.2. Relative abundance of orders present in each developmental stage under the two different sampling approaches. (A) The most abundant taxonomic orders recovered from seedling stems and adult sapwood using culture dependent method. (B) The taxa with the highest incidence frequency captured using culture independent method.

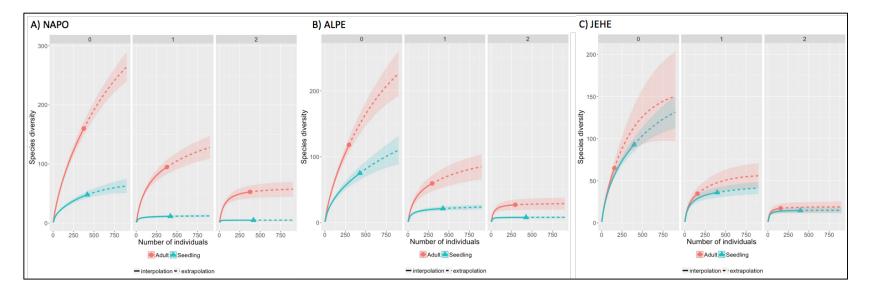


FIGURE 1.3 Species accumulation and diversity curves for endophytes sampled from adult and seedling trees separated by location. (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) The Jenaro Herrera Research Center (JEHE). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

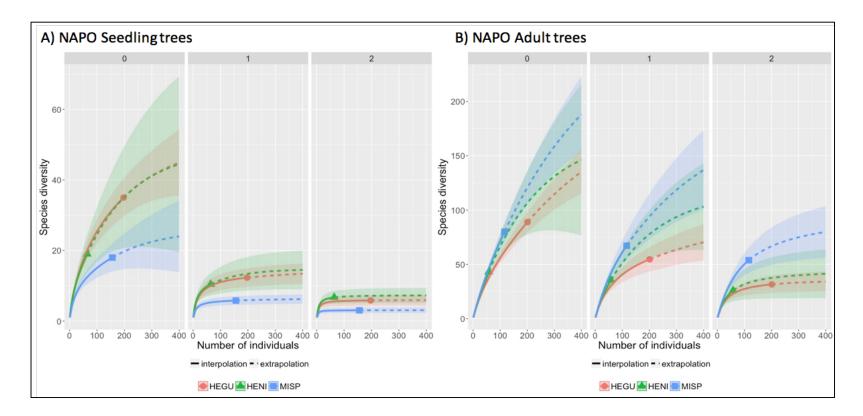


FIGURE 1.4. Diversity results from culture dependent approach from trees distributed in Amazon Conservatory for Tropical Studies Biological Station (NAPO). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

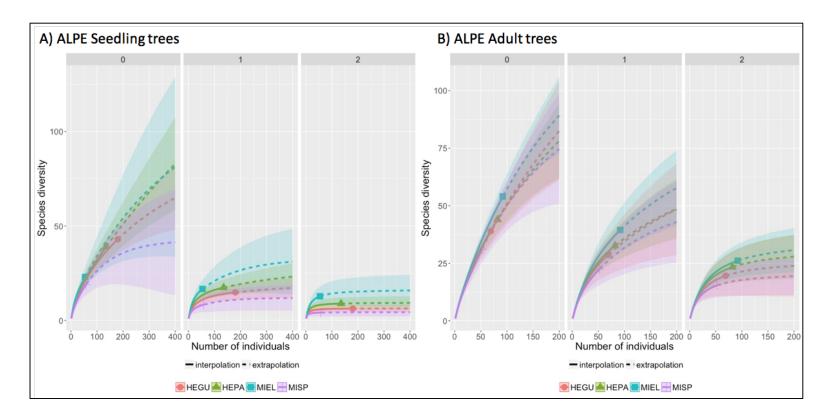


FIGURE 1.5. Diversity results from culture dependent approach from trees distributed in Allpahuayo-Mishana National Reserve (ALPE). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

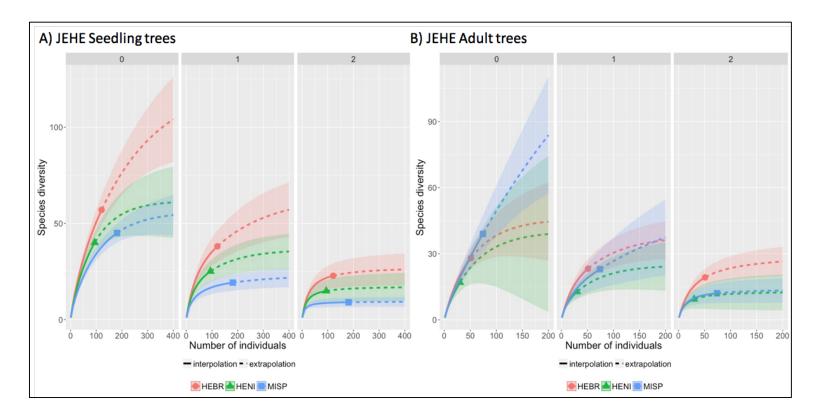


FIGURE 1.6. Diversity results from culture dependent approach from trees distributed in Jenaro Herrera Research Center (JEHE). Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEBR: *Hevea brasiliensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

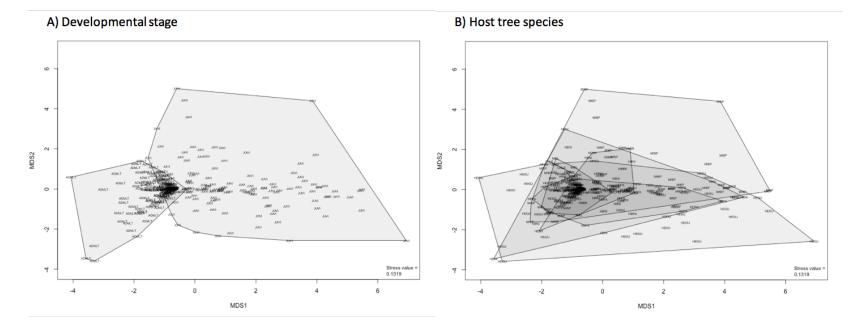


FIGURE 1.7. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values for all three locations and data partitioned by (A) developmental stage (ADULT: Adult, JUVI: Seedling), and (B) tree species (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*).

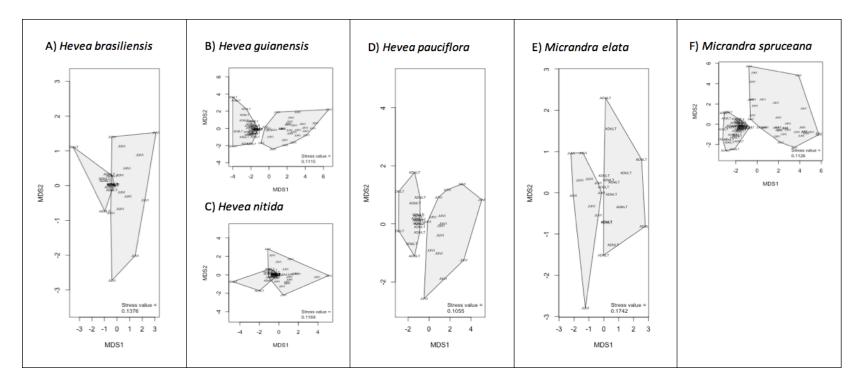


FIGURE 1.8. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values. Data partitioned by developmental stage (ADULT: Adult, JUVI: Seedling) for each tree host species (A) HEBR: *Hevea brasiliensis*, (B) HEGU: *Hevea guianensis*, (C) HENI: *Hevea nitida*, (D) HEPA: *Hevea pauciflora*, (E) MIEL: *Micrandra elata*, and (F) MISP: *Micrandra spruceana*.

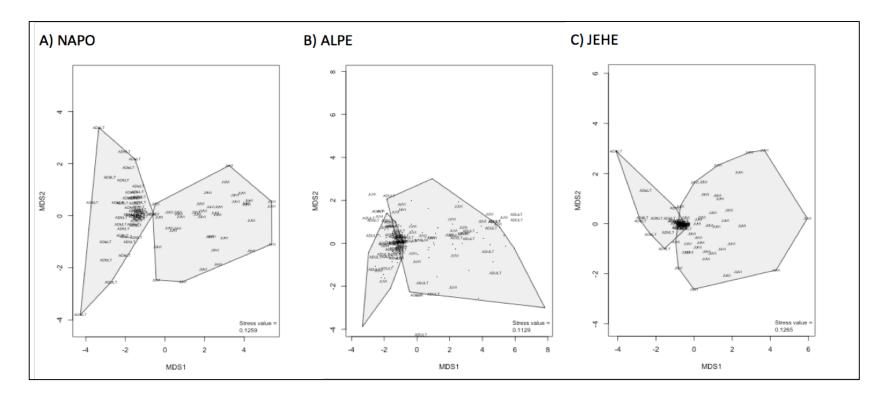


FIGURE 1.9. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values. Data partitioned by developmental stage(ADULT: Adult, JUVI: Seedling) within each location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO),(B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

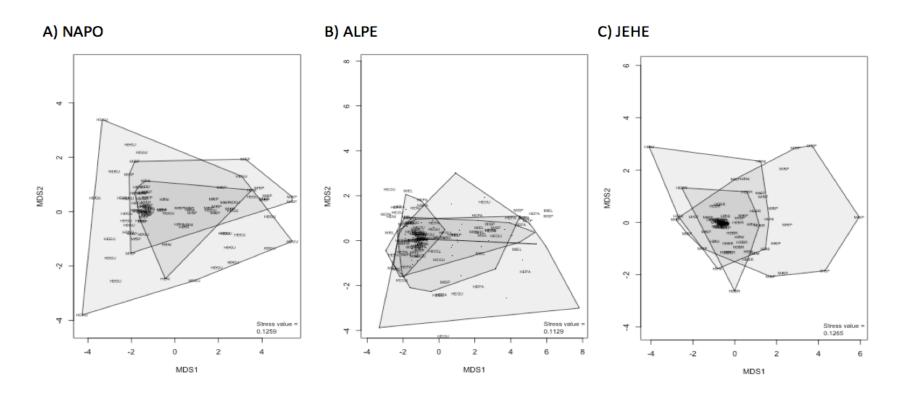


FIGURE 1.10. Nonmetric Multidimensional Scaling (NMDS) analyses with stress values. Data partitioned by tree host species (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*) and location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

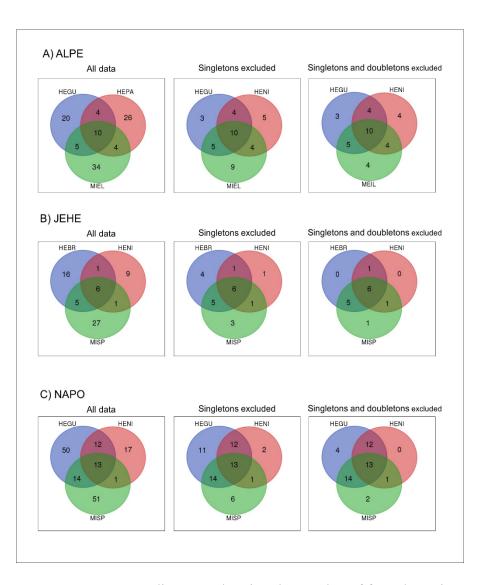


FIGURE 1.11. Venn diagrams showing the overlap of fungal species among adult tree communities (HEBR: *Hevea brasiliensis*, HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, HEPA: *Hevea pauciflora*, MIEL: *Micrandra elata*, and MISP: *Micrandra spruceana*) per location (A) the Amazon Conservatory for Tropical Studies Biological Station (NAPO), (B) Allpahuayo-Mishana National Reserve (ALPE), and (C) Jenaro Herrera Research Center (JEHE).

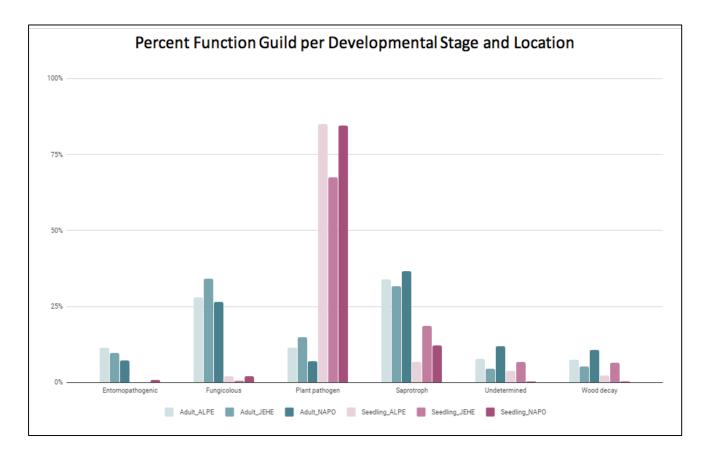


FIGURE 1.12. Distribution of function guilds separated by developmental stage and location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]).

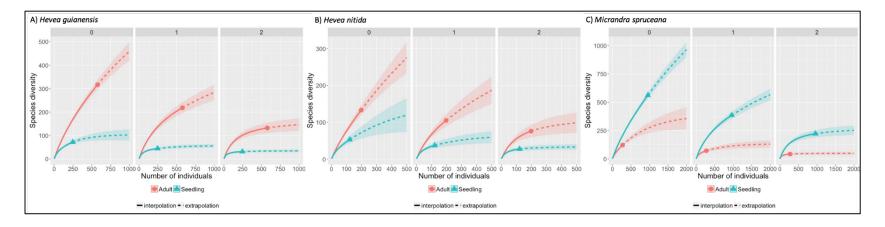


FIGURE 1.13. Diversity results from culture-independent approach. Species accumulation and diversity curves for endophytes sampled from seedling and adult trees separated by host species. Trees were sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

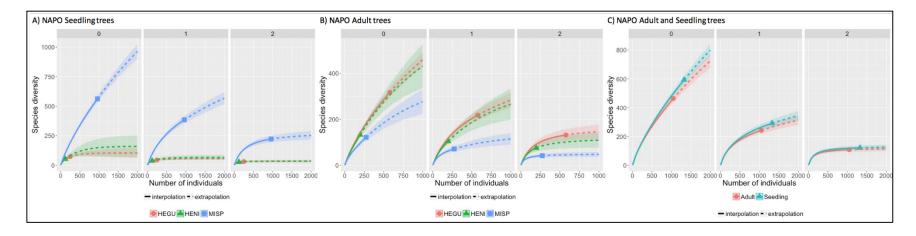


FIGURE 1.14. Diversity results from culture-independent approach. Species accumulation and diversity curves for endophytes sampled from (A) seedling and (B) adult trees separated by host species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida* and MISP: *Micrandra spruceana*). Trees were sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Metrics include richness (q=0), Shannon HN (q=1), Simpson's HN (q=2).

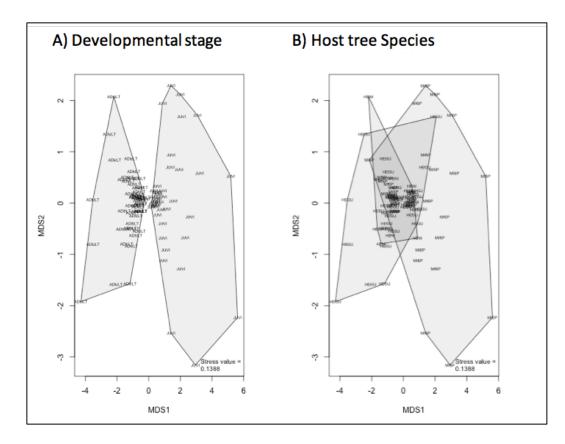


FIGURE 1.15. Community similarity results from culture-independent approach. Nonmetric Multidimensional Scaling (NMDS) analyses using presence/absence data for all trees sampled from the Amazon Conservatory for Tropical Studies Biological Station (NAPO). Data partitioned by (A) developmental stage (ADULT: Adult, JUVI: Seedling), and (B) tree species (HEGU: *Hevea guianensis*, HENI: *Hevea nitida*, and MISP: *Micrandra spruceana*).

Chapter 2: Cryptic diversity of endophytic *Diaporthe* spp. in *Hevea* and *Micrandra* (Euphorbiaceae)

<u>Abstract</u>

Diaporthe (Diaporthaceae, Diaporthales, Ascomycota) includes a wide array of species that are endophytes, saprobes, and opportunistic pathogens as well as aggressive pathogens of economically important crops. Unfortunately, species identification in Diaporthe remains troublesome due to the lack of meaningful diagnostic morphological and the historically and current reliance on host species for species identification. As part of a larger endophyte discovery project in Peru, 970 *Diaporthe* isolates were recovered from asymptomatic tissues of two Euphorbiaceae genera, Hevea (wild and plantationgrown) and Micrandra (wild). Four loci [internal transcribed spacer region (ITS1, 5.8S, ITS2), partial translation elongation factor 1-alpha (TEF1), beta-tubulin (TUB) and histone H3 (HIS)] were used to identify species. In addition, reference sequences from GenBank were included in the; most of which derived from ex-type specimens. For each locus, a standard clustering method was used to cluster sequences into OTUs and results were compared with species delimited through multilocus phylogenetic analyses. TEF1 was the most efficient locus for initial clustering of sequences into OTUs. Although TEF1 overestimated the number of putative species by 18, it did not incorrectly group different species into a single OTU as did the other loci used in this analysis. The commonly used fungal barcode, ITS, performed the poorest. Multilocus analysis revealed 21 distinct lineages of endophytic *Diaporthe*, 15 of which represent novel species. Seven

of these novel lineages are described in this study, and morphological, ecological, and molecular data is provided. The results of this study have major implications for ecological hypotheses since the number of OTUs affects diversity estimates. This is especially problematic for endophyte studies, since *Diaporthe* is a common endophyte. **Keywords:** Morphology, Peru, *Phomopsis*, Phylogenetic analysis, Rubber trees

Introduction:

Diaporthe Nitschke 1870 (= *Phomopsis* (Sacc.) Bubák, 1905) (Diaporthaceae, Diaporthales, Sordariomycetes, Pezizomycotina, Ascomycota) includes a broad diversity of species that are endophytes, saprophytes, and opportunistic as well as aggressive pathogens of economically important crops (Murali et al. 2006, Santos et al. 2011, Elfar et al. 2013, Mathew et al. 2015). Although progress in understanding their systematics has been made recently using multilocus phylogenetic analyses (Gomes et al. 2013, Huang et al. 2013, Tan et al. 2013, Thompson et al. 2015, Udayanga et al. 2014a, Udayanga et al. 2014b, Dissanayake et al. 2015, Fan et al. 2015, Gao et al. 2016, Lawrence et al. 2015, Udayanga et al. 2015), species identification in *Diaporthe* remains difficult.

Morphologically, *Diaporthe* is characterized by dark brown to black perithecia, often aggregated and embedded in black-lined pseudostromata composed of host and fungal tissues (Hanlin 1998). Perithecia have ostiolar necks that are erumpent through host tissue and contain asci that are unitunicate, clavate, evanescent at the base, and have a large apical ring. Asci are usually eight-spored, ascospores are hyaline, 2-celled, septate, fusoid, ellipsoid to cylindrical, straight, inequilateral or curved, and sometimes with appendages (Wehmeyer 1933). The asexual stage of *Diaporthe*, formerly referred to as *Phomopsis*, is characterized by dark brown to black pycnidia that protrude from the substratum surface, containing cylindrical and elongated phialides, and conidia (Rehner & Uecker 1994). There are traditionally two types of conidia produced: alpha and beta (Dennis 1978). Alpha conidia are hyaline, aseptate, fusiform to fusiform-cylindrical, and with guttules typically at either end, but can be present in greater numbers or absent. Beta conidia are hyaline, aseptate, filiform, sometimes hamate and lack guttules. Alpha conidia are more commonly observed than beta, but both may be present. A third, intermediate type, gamma conidia, has been described in a limited number of species; gamma are similar to alpha conidia, but with an exaggerated fusiform-cylindrical to sub-cylindrical shape.

Endophytic *Diaporthe* species are common plant endophytes, having been isolated from numerous and diverse plant families from angiosperms, gymnosperms, bryophytes and ferns (Rehner & Uecker 1994) and are the dominant endophyte species in temperate woody angiosperms (Sieber 2007). Endophytic *Diaporthe* spp. have been isolated from diverse tissues including healthy stems, bark, leaves, seeds and pericarps (Gamboa-Gaitan et al. 2005, Gomes et al. 2013, Udayanga et al. 2011 Washington et al. 1999, Tang et al. 2003, Gure et al. 2005, Maehara et al. 2016). Many *Diaporthe* spp. appear to be generalists, with a single species inhabiting multiple host families (Suryanarayanan & Johnson 2005, Murali et al. 2006, Sun et al. 2008, Lawrence et al. 2015). It is also not uncommon for multiple species of *Diaporthe* to be reported for a particular host (Girish et al. 2012, Diogo et al. 2010). Sometimes a single *Diaporth*e species can be pathogenic in some plant families and endophytic and asymptomatic in others. For example, *Diaporthe eres* Nitschke has been recovered from asymptomatic *Acer* (Aceraceae), *Citrus* (Rutaceae), *Fagus* (Fagaceae), and *Pinus* (Pinaceae) (Sieber 2007, Lee et al. 2014, Huang et al. 2015), but has also been associated with diseases in *Juglans* (Juglandaceae), *Prunus* and *Rubus* (Rosaceae), and *Vitis* (Vitaceae) (Anagnostakis 2007, Thomidis & Michailides 2009, Vrandecic et al. 2011, Kaliterna et al. 2012, Baumgartner et al. 2013, Lawrence et al. 2015).

The ecological role of *Diaporthe* cannot be generalized even at the species level, meaning that a single *Diaporthe* can be pathogenic in some plant families and endophytic and asymptomatic in others (Udayanga et al., 2011). For example, D. gulyae R.G. Shivas, S.M. Thomps. & A.J. Young and *D. helianthi* Munt.-Cvetk., Mihaljc. & M. Petrov have only been isolated from Helianthus spp. (Asteraceae), causing stem canker disease (Muntanola-Cvetkovic et al. 1981, Thompson et al. 2015, Mathew et al. 2015). Diaporthe helianthi was first described by Mihaljcic and Petrov (1981) from Helianthus in the former Yugoslavia and it is now known to have a worldwide distribution on cultivated Helianthus. Mihaljcic and Petrov (1994) also examined over 50 unrelated plant species to detect D. helianthi and were unsuccessful. Diaporthe vaccinii Shear is another example of another species that shows host specificity. Widespread in United States, Canada and Chile (EPPO 2016) with isolated incidents in Europe (EFSA PLH Panel 2014), D. vaccinii causes twig blight, canker, fruit rot and storage rot on cultivated Vaccinium spp. (Ericaceae) (Weingartner & Klos, 1975, Farr et al., 2002). Reports of D. vaccinii on other Ericaceae hosts, such as heather and rhododendrons, are rare and have been based on

morphological characteristics not molecular (Eglitis et al. 1966, Petrini 1984). *Diaporthe vaccinii* needs to be molecularly confirmed as it is at times misidentified as *D. eres* (Lombard et al. 2014). *Diaporthe citri* (H.S. Fawc.) F.A. Wolf causes melanose and stem end rot diseases on *Citrus* spp. (Rutaceae). Reported in all the major citrus producing countries (EPPO 2016), *D. citri* has not been isolated on non-*Citrus* spp. (Udayanga et al. 2014b). These examples of host specificity in *Diaporthe* are all on cultivated crop species where disease management is a necessity. Further sampling of endophytes may find additional hosts for *D. helianthi*, *D. citri* and *D. vaccinii*. There may be additional examples of host specificity in the many plant species that are not commercially important and not typically studied. *Diaporthe* species have also been associated with seed-borne diseases such as damping off, seedling mortality and seed rots in nursery and agronomic crops (Bienapfl & Balci 2013, Girish et al. 2012, Kita & Ohya 2005). On the other hand, host-specific relationships of non-pathogenic or endophytic *Diaporthe* have not been reported.

During a larger endophyte discovery project in Peru, a great number of *Diaporthe* isolates were recovered from asymptomatic leaves and seedlings of wild and planted *Hevea* spp. and *Micrandra* spp. (Euphorbiaceae). These isolates were used in the present study to (1) resolve the identity of the endophytic *Diaporthe* of *Hevea* and *Micrandra*, (2) place these isolates in a phylogenetic context with known pathogenic and non-pathogenic *Diaporthe* spp., and (3) determine if endophytic *Diaporthe* lineages group based on host identity. Knowledge generated from this research will aid in monitoring the geographical range and hosts of known pathogenic *Diaporthe* spp. and will contribute to the knowledge or the poorly studied mycoflora from from the Amazonian Peru.

70

Materials and Methods:

Collection sites:

Wild plants (adults and seedlings) of *Hevea brasiliensis, H. guianensis, H. nitida, H. pauciflora, Micrandra spruceana* and *M. elata* were sampled within five Peruvian localities: ACTS Biological Station (3°14'57.20"S, 72°54'33.60"W), Allpahuayo-Mishana National Reserve (3°58'1.16"S, 73°25'8.11"W), Jenaro Herrera Research Center (4°53'54.29"S, 73°38'59.80"W), Los Amigos Biological Station (3°14'52.3"S, 72°54'53.8"W), and Madre Selva Biological Station (3°37'14.90"S, 72°14'48.33"W). Samples were also collected from planted *H. brasiliensis* in Tabasco, Mexico (17°58'32.53"N, 93°23'13.65"W); Tocache, Peru (8°11'33.69"S, 76°32'35.86"W), and Ekonna, Cameroon (4°9'18.61"N, 9°13'53.00"E). A summary of the locations, habitat, number of trees and tissues sampled, and number of recovered *Diaporthe* isolates for each location is provided in Table 2.1.

Endophyte isolation:

Sapwood samples from adult trees were collected by shaving the outer tree bark and using a flame-sterilized knife to expose 10 cm² of sapwood at 1.5 m height. Using a smaller flame-sterilized knife, three pieces of sapwood (~5 mm length) were excised and transferred to nine individual Petri plates containing BBLTM cornmeal-agar (Sigma-Aldrich, St Louis, Missouri) with 2% dextrose and 2 mL of 1% neomycin-penicillinstreptomycin solution to suppress bacterial growth (CMD+). Adult leaf samples from wild and cultivated *H. brasiliensis* were sampled as described by Gazis and Chaverri (2010, 2011). Three leaflets were collected per adult-tree sampled. Three segments from each leaflet (lamina tip, midrib, and lamina base were surface-sterilized through sequential immersion and transferred onto CMD+.

Three seedlings were collected per adult-tree sampled. Each seedling was selected randomly from those within approximately 3 m of the parent tree, and ranged between 20 to 30 cm in height. From each seedling stem, 3 segments (~ 5mm long) that included the entire stem with all the inner primary tissues (cortex and vascular, both phloem and xylem), were excised in the field station using sterile surgical blades and surface-sterilized through sequential immersion in 2 % sodium hypochlorite solution (2 min), 70 % ethanol (2 min) and sterilize water (Gazis and Chaverri 2010). Each segment was transferred to an individual Petri dish containing CMD+.

All cultures emerging from plant tissues were incubated at room temperature in the field and later the lab, and emerging colonies were sub-cultured onto BBL[™] potatodextrose-agar (PDA) to obtain pure cultures. Cultures are stored at University of Maryland (College Park, Maryland, U.S.A.) in 20% glycerol cryovials at -80° C and in CMD test tubes at 4° C. Ex-type and ex-epitype isolates designated in this study were deposited in CBS-KNAW Fungal Biodiversity Centre (Utrecht, Netherlands) and U.S. National Fungus Collections (Maryland, USA).

Morphology characterization

Specimens were grown on 1% water agar (WA) with alfalfa stems to induce sporulation and pycnidia formation. All illustrations of type and epitype specimens and documented morphological characteristics were observed as described by Udayanga et al. (2014a). Observations of conidiomata were made with a Discovery V20 stereo microscope and Axioplan2 compound light microscope, each mounted with an AxioCam digital camera (Carl Zeiss Microscopy, Thornwood, NY, USA) imaging system. Twenty to 30 measurements of each structure were made using 40x or 100x objectives. Mean and standard deviations were calculated and are presented with extreme measurements in parenthesis.

DNA extraction, PCR and sequencing

Isolates were sub-cultured onto PDA and incubated at 25° C for 4 days. Mycelia harvested directly from PDA plates was suspended in a microcentrifuge tube containing 60 µL of PrepMan® Ultra Reagent (Applied Biosystems, California, U.S.A). DNA was extracted following the manufacturer's protocol. PCR conditions used were previously described by Gomes et al. (2013) and were performed on a Bio-Rad Dyad Peltier thermal cycler (Bio-Rad, Hercules, CA). PCR products were sequenced at the Systematic Mycology and Microbiology Laboratory (USDA, Beltsville, Maryland, U.S.A.) as outlined by Udayanga et al. (2014a).

The following loci were sequenced and used in the phylogenetic analyses: (1) the internal transcribed spacer regions (ITS) 1 and 2 of the nuclear ribosomal DNA, including the 5.8S, primers ITS5 and ITS4 (White et al. 1990); (2) a region of the β -tubulin gene (TUB), primers T1 (O'Donnell & Cigelnik 1997) and BT-2b (Glass & Donaldson 1995); (3) an intron-containing region of the translation elongation factor 1- α gene (TEF1), primers EF1-728F and EF1-986R (Carbone & Kohn 1999); (4) a region of the histone H3 gene (HIS), primers CYLH3F (Crous et al. 2004); and H3-1b (Glass & Donaldson 1995); and (5) the partial mini-chromosome maintenance protein (MCM7)

(primers designed here Dia-MCM7F2: GACTGCAAGGCCAACCAGA; and Dia-MCM7R3: GACTGCAAGGCCAACCAGA). All sequences newly generated in this study were deposited in GenBank (Table 2.2).

New primer design and PCR optimization

Frequent failures of sequencing and non-specific priming in the sequences of MCM7 were observed when using primer pairs MCM7-1348r and MCM7-709f, and MCM7-1447 and MCM7-709f (Schmitt et al. 2009). New primers (Dia-MCM7F2 and Dia-MCM7R3) were designed by aligning successfully amplified MCM7. OligoCalc (http://www.basic.northwestern.edu/biotools/oligocalc.html) was used to check for selfcomplementarities and hairpin formations. Standard PCR protocol from Schmitt et al. (2009) was followed.

Species delimitation and phylogenetic analyses

To reduce costs, a two-step strategy was chosen to narrow down the set of isolates multiple locus sequencing. First ITS sequences were clustered into operational taxonomic units (OTUs) and then one to four representatives from each putative species were chosen for further sequencing. The ITS region is the recommended DNA barcode marker for fungi and is commonly used to cluster sequences into OTUs (Schoch et al. 2014). Advantages to ITS include that it is a multi-copy region, its amplification is feasible even with low concentrations of DNA and a large reference database exists for comparison (Nilsson et al. 2008, Kõljalg et al. 2013). Clusters were created using the furthest neighbor algorithm implemented in MOTHUR (Schloss et al. 2009) with a 1% dissimilarity criterion, meaning all sequences within each OTU were not more than 1%

different from one another. Due to the large number of sequences, the initial alignment was done using the MAFFT aligner (Katoh & Toh 2008) within SATé suite (Liu et al. 2009). Choosing up to four representatives from each OTU reduced the number of isolates for further analysis from 970 to 200 (91 OTUs). Sequence alignments were submitted to TreeBase (www.treebase.org) as study ID pending.

To further reduce the representative numbers, TEF1 was amplified for each of the representative isolates. TEF1 was chosen due to its species level resolution in *Diaporthe* (Gomes et al. 2013, Udayanga et al. 2015), its ease of amplification, and short amplicon products (~300 bp). A maximum likelihood gene tree was used to further reduce the representative numbers. A total of 71 representatives were used for further study.

To place the chosen representative isolates associated with *Hevea* and *Micrandra* in a phylogenetic context, 149 sequences were retrieved from GenBank; 97 of which were derived from ex-type specimens (Supp. Table 1). To evaluate the utility of each locus in assigning sequences to a known taxon through a cluster algorithm, clusters were created using the same parameters for each of the five loci (ITS, TUB, TEF1, HIS and MCM7). Clusters or OTUs for each locus were then compared to the groups obtained through phylogenetic reconstruction using the four loci. The analyses included the 97 type-derived sequences and the 71 endophytic representative sequences. To explore congruence among single gene trees (ITS, TUB, TEF1, HIS and MCM7) a 70% reciprocal bootstrap threshold (Gueidan et al. 2007) was implemented. All trees were analyzed using both maximum likelihood (ML), estimated by RAxML 8.0.0 (Stamatakis 2014), and Bayesian inference (BI), performed using MrBayes 3.2 (Huelsenbeck &

Ronquist 2001). Substitution models for each gene were determined using the Akaike Information Criterion (AIC) as implemented in PartitionFinder (Lanfear et al. 2012).

A large tree based on four loci (ITS, TUB, TEF1, HIS) was constructed for the chosen representative isolates, along with sequences obtained from GenBank. Diaporthella corylina (CBS 121124), a genus within Valsaceae (sister family to Diaporthaceae), was selected as the outgroup. Additionaly, smaller clade trees were constructed. *Diaporthe* species, distantly related to each clade, were chosen as outgroups. Alignments were done using the MAFFT aligner (Katoh & Toh 2008). The ITS dataset was complete. TEF1 dataset had one missing sequence, and TUB had 2 missing sequences. There were 15 missing sequences from the HIS dataset, nine of which were from GenBank representative taxa. Each locus within the concatenated dataset was partitioned and substitution models were applied for maximum likelihood (ML) and Bayesian inference (BI) analyses. In MrBayes v 3.2, four Markov chains ran simultaneously for 10,000,000 generations. The initial 25% of the trees sampled were discarded. Trees were saved every 100th generation after the initial burn-in trees were discarded. In total, 10,000 trees were generated. The resulting consensus tree was visualized using Geneious 6.0.6 software. Maximum likelihood was conducted with RAXML v 8.2.10 in CIPRES (Miller et al. 2015) and using 10,000 replicates were used to calculate bootstrap support. A smaller tree was constructed excluding GenBank species that were distantly related to the species of interest, using the same parameters described above (Table 2.2).

Species Recognition

The genealogical concordance and genealogical non-discordance criteria of the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) (Taylor et al. 2000, Dettman et al. 2003) were applied to delimit species. A clade was considered genealogically concordant if it was present in at least three of the single gene trees. Those clades were then considered genealogical non-discordant if they were well supported (ML BP \geq 70%) and not contradicted in another single gene tree by similar or greater support. A multilocus phylogeny was constructed to further refine species delimitation.

Results

Isolates

A total of 970 *Diaporthe* isolates were recovered from 317 adult trees and 390 seedling stems. Of the 1440 leaf subsamples from adult trees, only 46 *Diaporthe* isolates were recovered (3.19%) and 17 *Diaporthe* isolates were recovered from 2178 adult sapwood subsamples (1.01%). Of the 1170 seedling subsamples, 907 *Diaporthe* were recovered (77.52%). There was no apparent host preference among the isolates collected in Peru, being that they each were recovered from several different hosts.

Phylogenetic analyses

From the 71 representative isolates, 362 sequences were generated. Additional sequences were obtained from GenBank. Each gene region was analyzed individually and in combination. Maximum likelihood and Bayesian tree topologies were similar except that MrBayes generally had higher support values. Individual gene tree topologies of ITS,

TUB, TEF1, HIS and MCM7 were similar and did not show supported conflicts (Supplementary Figure 2.1, 2.2, 2.3, 2.4). Twenty-one distinct lineages of endophytic *Diaporthe* in *Hevea* spp. and *Micrandra* spp. were recognized, 15 of which are novel. Seven are described as new species; the others were left as *Diaporthe* sp. until more data is gathered (Fig. 2.1)

The multilocus alignment consisted of 175 strains with 1,967characters including gaps (Supplementary Table 2.1). For the Bayesian analysis, the GTR+G+I nucleotide substitution model was applied to ITS, whereas HKY+I+G was applied to TEF, TUB1 and HIS. The Bayesian tree was used to represent the multilocus phylogeny with bootstrap and Bayesian posterior probability values at the nodes. For the maximum likelihood analysis, the model of nucleotide substitution applied to the partitioned dataset was general time reversal (GTR) with gamma distribution (G), and a proportion of invariable sites (I).

Of the 71 chosen representative isolates, four seedling endophytes formed a clade with *D. ueckerae* a muskmelon pathogen from Oklahoma, USA. Six seedling endophytes formed a monophyletic group with *Diaporthe hongkongensis* (CBS 115448), a strain recovered from *Dichroa febrifuga* in Hong Kong. Eight endophytes recovered from seedling stems formed a clade with *Diaporthe inconspicua* (CBS 133813), a leaf endophyte strain from *Maytenus ilicifolia* (espinheira-santa) in Brazil; and with *D. pterocarpi* (CBS 135768), a strain recovered from *Pterocarpus indicus* (New Guinea Rosewood) in Thailand. However, *D. pterocarpi* (CBS 135768) had only three of the four genes in GenBank used in this study and resolution was lacking. Isolate GPB18_1A, an endophyte collected from ACTS biological station in Peru, was monophyletic with *D*. cf. *hevea* 1 (CBS 852.97, sensu Gomes et al. 2013) an isolate collected from *H. brasiliensis* in Brazil. CM15, collected from a plantation in Cameroon, was sister species to *Diaporthe* cf. *hevea* 2 (CBS 681.84, sensu Gomes et al. 2013), a strain isolated from *H. brasiliensis* leaves in India. Of the four representative isolates collected from a rubber plantation in Tabasco, Mexico, three formed a clade with *D. pseudomangiferae* (CBS 101339), a strain recovered from *Mangifera indica* (mango) in the Dominican Republic and one formed a clade with *D. mayteni* (CBS 133185), a petiole endophyte strain from Brazil. Of the three representative isolates collected from a rubber plantation in Tocache, Peru, one was sister species to *D. schini* (CBS 133181), a leaf endophyte recovered from *Schinus terebinthifolius* in Brazil. TC239 formed a monophyletic group with *Diaporthe heveicola* and TC78 formed a monophyletic group with *Diaporthe umbrina* sp. nov., both novel species.

Clustering with MOTHUR

The number of species used in the analysis was 110. TEF1 was the most efficient gene for initial clustering of sequences into OTUs. It overestimated the number of putative species by 18, but did not incorrectly group different species into a single OTU as did the other loci used in this analysis. BTUB performed similarly to TEF1, it overestimated by 19 OTUs, unlike TEF1 one OTU comprised sister species. While the OTUs generated with HIS more closely reflected the true species diversity (overestimated by 7), successful amplification and sequencing proved to be inconsistent. ITS1, ITS2 and the entire ITS, including 5.8S, performed the poorest (Table 2.3). ITS tended to split members of a single species into several smaller groups. 36% of the OTUs generated by ITS were problematic, meaning that either members of the same species were split out into separate putative species or that they were incorrectly grouped with more distance relatives. ITS1 had similar results, 44 of the 133 OTUs generated by ITS1 were comprised of split species (members of the same species split into different OTUs). The most severe instance being *Diaporthe ubiqueta*, which had its 13 representative isolates split into six separate OTUs. ITS1 also had eight OTUs which were comprised of sister species from neighboring clades grouped together. Three OTUs had both types of grouping errors.

Clustering with ITS2 yielded the poorest results. 40% of the OTUs generated were problematic. Several OTUs comprised distantly related members, while at the same time they excluded members of a species. The most severe instance being OTU 1 which grouped together members from 8 different species.

For MCM7 tended to split species into several groups. Clustering using the furthest neighbor algorithm in MOTHUR with a 1% dissimilarity criterion resulted in 38 OTUs. Increasing the similarity criteria to 2% reduced the number of OTUs to 33. With 3% similarity, splitting still occurred and lumping of sister species was introduced.

Taxonomy

Of the 15 novel *Diaporthe* species, seven species are described and illustrated as new species based on morphological and molecular phylogenetic evidence. Two species were described solely based on molecular data, as they did not sporulate in culture. Eight putative species were left as *Diaporthe* sp. until more data is gathered Diaporthe amazonica D. Skaltsas, P. Chaverri & Castl., sp. nov. (Fig. 2.2)

Mycobank TBD.

Holotype: Peru: ACTS Biological Station, endophyte from *Hevea guianensis* seedling stem, D. Skaltsas, July 2012 (ex-type culture GPB18-1a = CBS TBD) *Etymology*: Named after the South American Amazon where the endophytes were sampled.

Pycnidia on alfalfa twigs on WA, globose, ostiolate, occurring as clusters, 80–100 μ m diam., embedded in tissue, erumpent at maturity, with reduced black neck, often with a yellowish, conidial cirrus extruding from ostiole. Conidiophores hyaline, smooth, unbranched, ampulliform, long, slender, (14–)15–21(–30) × 1.4–2 μ m. Paraphyses absent. Alpha conidia abundant in culture and on alfalfa twigs, aseptate, hyaline, smooth, ellipsoidal, multiguttulate, base subtruncate, (4–)5–6(–6.8) × 1.5–2.3 μ m (x ± SD = 5.5 ± 0.7 × 2 ± 0.2, n = 30). Beta conidia not seen. *Additional specimens:* Brazil: São Paulo, CBS 852.97 from *Hevea brasiliensis*, D.S. Attili, April 1997 (Gomes et al.).

Habitat and distribution: Endophyte from *Hevea guianensis* seedling stems. Known from Brazil and Peru.

Notes: Diaporthe cf. *hevea* 1 was the working name given by Gomes (2012) to CBS 852.97, which had originally been deposited in CBS-KNAW as *Phomopsis hevea*. *D*. cf. *hevea* 1 was collected from leaves of *Hevea brasiliensis* in Brazil, and thus far has only been reported from the Amazon. There is also an isolate in CBS-KNAW deposited as *Diaporthe heveae* (CBS 681.24) from India, which Gomes (2012) temporarily named *D*. cf. *hevea* 2. *Diaporthe heveae* and *Phomopsis hevea* were both described from *Hevea brasiliensis* in Sri Lanka and have also been reported in Brazil, China, India, Indonesia, Malaysia, and Thailand (Gomes et all. 2012). Being that *Diaporthe* cf. *hevea* 1 CBS 852.97 has only been reported from the Amazon and *D*. cf. *hevea* 2 has been reported in southeast Asia, it is most likely that *Diaporthe* cf. *hevea* 2 CBS 852.97 is *Diaporthe hevea*.

Diaporthe heveicola D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov. (Fig. 2.3) Mycobank TBD.

Holotype: Peru: Allpahuayo-Mishana National Reserve, endophyte from *Hevea pauciflora* seedling stem, D. Skaltsas, July 2013 (ex-type culture AHGB25-8b= CBS TBD).

Etymology: Refers to the occurrence of species on Hevea.

Pycnidia on alfalfa twigs on WA, globose, ostiolate, scattered, 70–100 mm diam., superficial on tissue, erumpent at maturity, with short, black neck 40–80 mm high, often with a yellowish, conidial cirrus extruding from ostiole. Conidiophores hyaline, smooth, branched, ampulliform, long, slender, $(15-)17-22(-26) \times 1.5-2.5 \mu m$. Paraphyses absent. Alpha conidia abundant in culture and on alfalfa twigs, aseptate, hyaline, smooth, ellipsoidal to ovoid, biguttulate or multi-gutulate, base subtruncate, $(5-)5.6-6.7(-7) \times (2-)2.3-3 \mu m (x \pm SD = 6.1 \pm 0.4 \times 2.4 \pm 0.3, n = 40)$. Beta conidia not seen.

Additional specimens examined: Peru: Tocache, living culture TC239.

Habitat and distribution: Endophyte from *Hevea pauciflora* seedling stem. Known from Peru.

Notes: This species represents two isolates including one collected from cultivated *Hevea brasiliensis* and one from wild *Hevea pauciflora* in Allpahuayo-Mishana National Reserve, Peru. It is closely related to *Diaporthe ancardii* a fungal pathogen on cashew, *Anacardium occidentale*, and originally reported from South Africa.

Diaporthe napoensis D. Skaltsas, P. Chaverri & Castl., sp. nov. (Fig. 2.3)

Mycobank TBD.

Etymology: Named after the river "Napo" in Peru located near the collection site Pycnidia on alfalfa twigs on WA, globose, ostiolate, scattered, 140–160 µm diam., embedded in tissue, erumpent at maturity, with an elongated, black branched or unbranched necks 100–130 mm high, conidial cirrus extruding from ostiole. Conidiophores hyaline, smooth, unbranched, ampulliform, short and cylindrical, wider at the base (11–)12–19(–22) × 1.5–2.5 µm. Paraphyses absent. Alpha conidia abundant in culture and on alfalfa twigs, aseptate, hyaline, smooth, globose, aguttulate, base subtruncate, (3–)3.3–4(–4.7) × (2–)1.5–2.0 µm (x ± SD = $3.7 \pm 0.4 \times 1.7 \pm 0.2$, n = 30). Beta conidia not seen.

Holotype: Peru: ACTS Biological Station, endophyte from *Micrandra spruceana* seedling stem, D. Skaltsas, July 2012 (ex-type culture GXB11-4b2 = CBS TBD). *Additional specimens examined:* Peru: ACTS Biological Station, living culture GPB13-9a. Habitat and distribution: Endophyte from Micrandra spruceana and Hevea guianensis seedling stems. Known from Peru.

Notes: Diaporthe napoensis is closely related to *D. batatas* within the *D. sojae* species complex (sensu Udayanga et al. 2014). This species was recovered solely in ACTS Biological Station from both *Micrandra spruceana* and *Hevea guianensis* seedlings.

Diaporthe neotropica D. Skaltsas, P. Chaverri & Castl., sp. nov. (Fig. 2.5)

Mycobank TBD.

Holotype: Peru: Jenaro Herrera Research Center, endophyte from *Micrandra spruceana* seedling stem, D. Skaltsas, July 2013 (ex-type culture JMGB04-6b = CBS TBD).

Etymology: Named after the geographic location of the collection sites. Pycnidia on alfalfa twigs on WA, globose, ostiolate, scattered, 40–70 µm diam., embedded in tissue, erumpent at maturity, with a slightly elongated, black neck 30–50 µm high, often with a yellowish, conidial cirrus extruding from ostiole. Conidiophores hyaline, smooth, unbranched, ampulliform (14–)16–21 (–28) × 1.5–3 µm. Paraphyses absent. Alpha conidia abundant in culture and on alfalfa twigs, aseptate, hyaline, smooth, ellipsoidal, biguttulate, base subtruncate 6–8 × (2–) 2–3 µm (x ± SD = $7.2 \pm 0.4 \times 2.4 \pm 0.2$, n = 30). Beta conidia not seen. *Additional specimens examined:* Peru: Jenaro Herrera Research Center, living cultures JHGB04-7a, JHGB20-5a, JMGB10-2b2, JMGB13-9b. Habitat and distribution: Endophyte from Micrandra spruceana seedling stem. Known from Peru.

Notes: This is the sister species for *D. amazonica*, also known to occur as endophytic species on *Hevea* from the same region. However, it is phylogenetically distinct with all four genes analyzed. *Diaporthe neotropica* has larger conidial measurements on alfalfa twigs in WA ($6-8 \times (2-)2-3 \mu m$) compared to *D. amazonica*.

Diaporthe peruviensis D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov. (Fig. 2.6) Mycobank TBD.

Etymology: Named after the country (Peru) from which the species was originally isolated as an endophyte from *Micrandra spruceana*.

Pycnidia on alfalfa twigs on WA, globose, ostiolate, scattered, 100–110 μ m diam., embedded in tissue, erumpent at maturity, with slightly elongated black neck 80–140 μ m high, often with a yellowish, conidial cirrus extruding from ostiole. Conidiophores hyaline, smooth, unbranched, cylindrical, short (3–)7–12 (–13) × 1.5–2.5(–3.7) μ m. Paraphyses, smooth, unbranched, cylindrical, long, slender, arranged within conidiophores (24)37– 44 (–60) × 1.5–2.5 μ m μ m (x ± SD = 41± 9× 2.4 ± 0.3, n = 20). Alpha conidia abundant in culture and on alfalfa twigs, aseptate, hyaline, smooth, ellipsoidal, biguttulate, base subtruncate, 6–8 × (2–)2.2–3.3 μ m (x ± SD = 7± 0.6 × 2.8 ± 0.2, n = 30). Beta conidia not seen.

Holotype: Peru: Jenaro Herrera Research Center, endophyte from *Micrandra spruceana* seedling stem, D. Skaltsas, July 2013 (ex-type culture JMGB13-6a = CBS TBD).

Additional specimens examined: Peru: ACTS Biological Station, living cultures GPB06-8b, GXB18-7. Peru: Jenaro Herrera Research Center, living culture JHGB21-5a.

Habitat and distribution: Endophyte from Micrandra spruceana seedling stem. Known from Peru.

Notes: Few species of *Diaporthe* have been reported bearing paraphyses among conidiophores such as *Diaporthe ceratozamiae*, *D. longiparaphysata*, *D. siamensis* and *D. theae* (Uecker 1989, Udayanga et al. 2011, Udayanga et al. 2012a, Udayanga et al. 2012b, Crous et al. 2011).

Diaporthe ubiqueta D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov. (Fig 2.7) Mycobank TBD.

Holotype: Peru: Allpahuayo-Mishana National Reserve, endophyte from *Micrandra spruceana* seedling stem, D. Skaltsas, July 2013 (ex-type culture AHGB7-9a1 = CBS TBD).

Etymology: Refers to its abundance (refer to notes).

Culture sterile. Culture characteristics on PDA after 7 days at 25°C, white with patches of iron grey, reverse pale olivaceous grey with patches of iron grey to olivaceous grey, abundant aerial mycelium, irregular form with filiform margins and raised elevation.

Additional specimens examined: Peru: Allpahuayo-Mishana National Reserve, living cultures AMGB15-1a, AHGB2-3a. Peru: Jenaro Herrera Research Center, living culture JHGB10-6a.

Habitat and distribution: Endophyte from Micrandra spruceana seedling stem. Known from Peru.

Notes: This is the dominant species among endophytic isolates obtained from sapwood and seedling stems of *Hevea* and *Micrandra* in this study, which represents 41% of total *Diaporthe*. All isolates examined remained sterile in culture. May represent an exclusively endophytic species. *Diaporthe ubiqueta* is not closely related to any known species presently in GenBank.

Diaporthe umbrina D. Skaltsas, R. Gazis, P. Chaverri & Castl., sp. nov. (Fig 2.8) Mycobank TBD.

Holotype: Peru: Jenaro Herrera Research Center endophyte from *Micrandra spruceana* seedling stem, D. Skaltsas, July 2013 (ex-type culture JHGB2-8a = CBS TBD).

Etymology: Refers to the umber (dark reddish brown) appearance of the culture. Culture sterile. Culture characteristics on PDA after 7 days at 25°C, white with patches of umber, reverse umber with patches of white and sepia, moderate aerial mycelium, circular form with undulate margins and crateriform elevation. *Additional specimens examined:* Peru: ACTS Biological Station, living culture IQ286. Peru: Jenaro Herrera Research Center, living cultures JMGB10-5b1, JMGB11-3a. Peru: Tocache, living culture TC78. Habitat and distribution: Endophyte from Micrandra spruceana seedling stem. Known from Peru.

Notes: Falls in the *Diaporthe sojae* complex. The closest relatives are *D. schini*, *D. terebinthifolii* and *D. tecomae*, three endophytes from medicinal plants in Brazil.

Discussion

The overall purpose of this study was to identify and determine the *Diaporthe* species associated with *Hevea* and *Micrandra* trees in Peru, as opposed to a phylogenetic treatment of the entire genus *Diaporthe*. Another objective was to evaluate the utility of commonly used fungal markers in diversity estimation of common tropical endophytes. Molecular analysis strongly supports 21 distinct lineages, 15 of which are novel, seven of which are described here. Eight potential new species were left undescribed until additional data is gathered to better understand their phylogenetic placement. Recently, there have been isolated reports of endophytic *Diaporthe* recovered from *H. brasiliensis* (Rocha et al. 2011, Gomes et al. 2013), but little is currently known about the distribution of *Diaporthe* spp. on *Hevea*. Reports of *Diaporthe* spp. in Peru are lacking in a number of databases, including EPPO (European and Mediterranean Plant Protection Organization), USDA (United States Department of Agriculture), CBS-KNAW Fungal Biodiversity Centre (Utrecht, Netherlands), APS (American Phytopathological Society), MINAG (Ministry of Agriculture and Irrigation of Peru, http://www.minag.gob.pe/portal/) and UNALM (Universidad Nacional Agraria La Molina,

http://www.lamolina.edu.pe/portada/). This study expands the host and geographical

range of known-and potentially pathogenic- *Diaporthe* species and introduce novel species associated to leaf and sapwood tissue of two Amazonian hardwood genera.

In South America, only a few studies on fungal endophytes have been published (Gazis & Chaverri 2010, Gazis et al. 2012, Smith et al. 2008, Unterscher et al. 2013), with Brazil being the most prolific (Rodrigues & Samuels 1999, Hilarino et al. 2011, Abreu et al. 2012, Garcia et al. 2012, Vieira et al. 2014, dos Santos Reis et al. 2015). More commonly, but still sparse, are reports of pathogenic *Diaporthe* species. *Diaporthe* species have been associated with diseases on multiple crops in South America such as D. australafricana on Vaccinium spp., D. ambigua on Actinidia spp. and D. caulivora on *Glycine max*, (Auger et al. 2013, Grijalba & Ridao 2012, Elfar et al. 2013, Díaz et al. 2014, Latorre et al. 2013). Outside of these agronomic important instances, *Diaporthe* species are not well documented. In this study, we placed isolates recovered as endophytes from Hevea and Micrandra into a phylogenetic context, using known and well characterized pathogenic and non-pathogenic *Diaporthe* species as reference. In both the phylogenetic trees and MOTHUR clustering analysis, isolates from Peru clustered with many endophytic species from Brazil, but surprisingly many clustered with other, more distant geographical locations and with isolates with various ecological roles. Of the 970 isolates examined, 97 isolates formed a monophyletic group with D. ueckerae Udayanga & Castl., 2014 USA, a muskmelon pathogen from Oklahoma, USA. 51 isolates grouped with D. hongkongensis R.R. Gomes, C. Glienke & Crous, 2013, a strain originally recovered from symptomatic fruit of Dichroa febrifuga (Hydrangeaceae) in Hong Kong and 43 grouped with D. pterocarpi (S. Hughes) Udayanga, X.Z. Liu & K.D. Hyde, 2012 an isolate recovered from Pterocarpus indicus (Fabaceae) in Thailand.

Wild *Hevea* spp. were targeted for comparisons with previous studies on plantation-grown trees (Gazis & Chaverri 2010, Gazis & Chaverri 2015) due to their economic significance in natural rubber production, and *Micrandra* spp. were sampled as the closest known relative of *Hevea*. The sample sizes here are significantly larger than in prior studies, such that any conclusions drawn from comparisons with plantation trees are tentative. Pathogenic and endophytic *Diaporthe* species have been reported on *H. brasiliensis* previously. *Diaporthe heveae* was first observed in Sri Lanka by Petch (1905) on stems of *H. brasiliensis*. Since then there have been reports of severe dieback in seedlings caused by *D. heveae* in rubber producing regions (Singh & Mathur, 2004).

Gazis & Chaverri (2015) found that rubber plantation trees harbored fewer of the beneficial endophytes that can protect them from infection by pathogenic microbiota. All 17 *Diaporthe* isolates collected from the rubber plantation in Tocache, Peru, formed monophyletic groups with Brazilian and Peruvian endophytes. Of the eight isolates collected from the rubber plantations in Tabasco, Mexico, half formed monophyletic groups with endophytes, while the other half formed a monophyletic group with *D. pseudomangiferae*, a species associated with mild mango diseases in Mexico, Dominican Republic and Puerto Rico (Gomes et al. 2013, Serrato-Diaz et al. 2014). One of the isolates collected from the rubber plantation in Cameroon was sister species to *D. ueckerae*, while the other was sister species to *Diaporthe* cf. *hevea* 2. The *Diaporthe* isolated from the plantations were no more or less potentially pathogenic than the ones obtained from the wild. However, most isolates in this study were recovered from wild seedling rather than adult tissues and the endophytic fungal community of seedlings were mainly comprised of potentially pathogenic genera.

Plant hosts in the tropics generally obtain their endophytes horizontally, meaning from the surrounding environment (e.g., soil, rain, air, other plants) (Clay 1993). Seedlings may be more susceptible to colonization by pathogenic fungi or there may be forces such as Negative Density Dependence (NDD) due to higher inoculation levels of *Diaporthe* surrounding the parent trees (Bagchi et al. 2014, Connell 1971, Janzen 1970), or a combination of those. Observed host preference of *Diaporthe* on seedlings may also be due to insufficient time for the diversity of fungi to accumulate, as are seen on adults (Guo et al. 2008). Adult trees had almost no *Diaporthe*, and other species that were found in adult trees were not found in seedlings, indicates that at some point during the maturation of the trees *Diaporthe* species were replaced by other fungal endophytes.

This study evaluated the utility of commonly used fungal markers in diversity estimation of common tropical endophytes by comparing the resulting number of species estimated through clustering analyses to the that of species delimited through multilocus phylogenetic analyses

Four or more loci are commonly used to identify *Diaporthe* to species, however in many diversity studies the cost and time to amplify and sequence multiple loci for all isolates is not feasible, as the case was in this study. This study evaluated the utility of commonly used fungal markers in assigning sequences to a known taxon through a cluster algorithm; the resulting number of species estimated through clustering analyses were compared to those species delimited through multilocus phylogenetic analyses using known and well-characterized pathogenic and non-pathogenic *Diaporthe* species. The results of this study suggest that using ITS to cluster *Diaporthe* into OTUs is problematic. When applying the 1% dissimilarity criterion ITS tended to split individuals from the

same species into separate OTUs (putative species) while also grouping together sister species or species from neighboring clades into a single OTU. Although the OTUs generated with HIS were more concordant to the number of species inferred through multilocus analysis, successful amplification and sequencing proved to be inconsistent. TEF1 was the only locus that did not incorrectly group sister species or sister clades into a single OTU, thus insuring that any potentially new species are not overlooked for further study. Coupled with the ease of amplification and sequencing, TEF1 proved to be the best choice of barcode when amplification of several markers is not feasible. Since most endophyte studies begin with amplifying ITS, another approach would be to choose representative isolates from the OTUs generated using the UNIQUE criteria, in which all the OTUs are comprised of identical sequences.

The choice of barcode locus has major implications for ecological hypotheses since the number of OTUs affects diversity estimates (Gotelli & Colwell 2001, Agapow et al. 2004, Magurran 2008, Gazis et al. 2011). This is especially problematic for endophyte studies where *Diaporthe* is common. Initially clustering with TEF1 or HIS would reduce the number of sequence efforts in large scale ecological studies, and assure that any potential species are not incorrectly grouped and underestimate the diversity.

The results of this study suggest that using ITS to cluster *Diaporthe* into OTUs is problematic. When applying the 1% dissimilarity criterion ITS tended to split individuals from the same species into separate OTUs (putative species) while also grouping together sister species or species from neighboring clades into a single OTU. Although the OTUs generated with HIS were more concordant to the number of species inferred through multilocus analysis, successful amplification and sequencing proved to be inconsistent. TEF1 was the only locus that did not incorrectly group sister species or sister clades into a single OTU, thus insuring that any potentially new species are not overlooked for further study. Coupled with the ease of amplification and sequencing, TEF1 proved to be the best choice of barcode when amplification of several markers is not feasible. Since most endophyte studies begin with amplifying ITS, another approach would be to choose representative isolates from the OTUs generated using the UNIQUE criteria, in which all the OTUs are comprised of identical sequences.

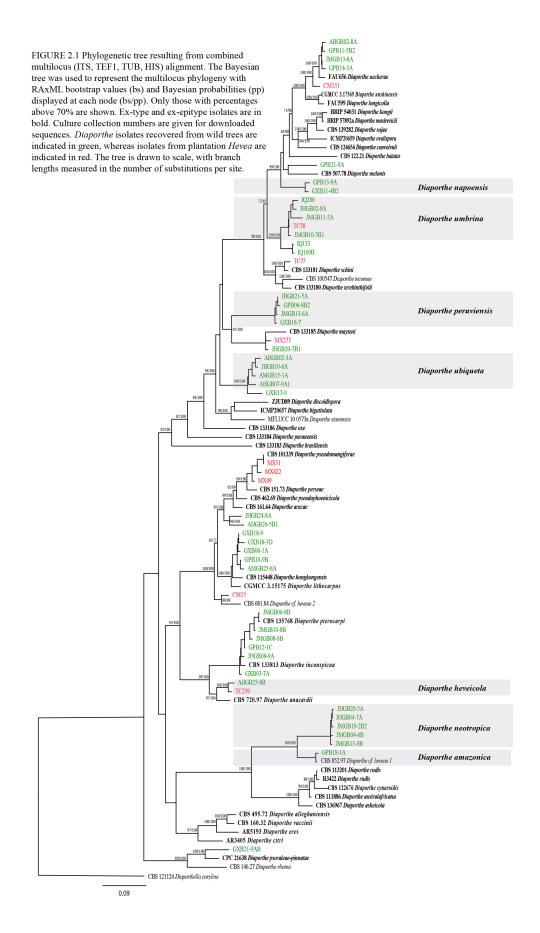
The choice of barcode locus has major implications for ecological hypotheses since the number of OTUs affects diversity estimates (Gotelli & Colwell 2001, Agapow et al. 2004, Magurran 2008, Gazis et al. 2011). This is especially problematic for endophyte studies where *Diaporthe* is common. Initially clustering with TEF1 or HIS would reduce the number of sequence efforts in large scale ecological studies, and assure that any potential species are not incorrectly grouped and underestimate the diversity. TABLE 2.1. Summary of the locations, habitat, number of trees and tissues sampled, and number of recovered *Diaporthe* isolates for each location.

Locality	Country	Habitat	No. of Trees Sampled	Total number of subsamples (Sapwood/Leaves/Seedling Stems)	No. of <i>Diaporthe</i> Isolates (Sapwood/Leaves/Seedling Stems)
Ekonna	Cameroon	Plantation	15	270 (135/135/NA)	2 (1/1/NA)
Tabasco	Mexico	Plantation	53	585 (135/450/NA)	9 (9/0/NA)
Tocache	Peru	Plantation	15	270 (135/135/NA)	18 (0/18/NA)
Los Amigos	Peru	WIld	16	270 (135/135/NA)	2 (0/2/NA)
Madre Selva	Peru	WIld	50	585 (135/450/NA)	5 (0/5/NA)
ACTS	Peru	Wild	68	1,116 (603/135/378)	388 (5/20/363)
Allpahuayo	Peru	Wild	59	963 (531/0/432)	322 (1/0/321)
Jenaro Hererra	Peru	Wild	41	729 (369/0/360)	224 (1/0/223)
Totals			317	4788 (2178/1440/1170)	970 (17/46/907)

TABLE 2.2. Species and sequences used in this study, including GenBank accession number, isolation source, substrate and country of isolation.

Species name	Strain	ITS	TEF1	TUB	HIS	Country	Substr ate	Host species
D. alleghaniensis	CBS 495.72	KC343007	KC343733	KC34397	KC343491	Canada	Branch	Betula alleghaniensis
D. amazonica	pending, GPB18-1a	pending	pending	pending	pending	Peru	Stem	Hevea guanensis
D. anacardii	CBS 720.97	KC343024	KC343750	KC343992	KC343508	Africa	-	Anacardium occidentale
D. arecae	CBS 161.64	KC343032	KC343758	KC344000	KC343516	India	Fruit	Areca catechu
D. asheicola	CBS 136967	KJ160562	KJ160594	KJ160518	-	Chile	-	Vaccinium ashei
D. australafricana	CBS 111886	KC343038	KC343764	KC344006	KC343522	Australia	-	Vitis vinifera
D. batatas	CBS 122.21	KC343040	KC343766	KC344008	KC343524	USA	-	Ipomoea batatas
D. biguttulata	ICMP20657	KJ490582	KJ490461	KJ490403	KJ490524	China	Branch	Citrus limon
D. brasiliensis	CBS 133183	KC343042	KC343768	KC344010	KC343526	Brazil	Leaf	Aspidosperma tomentosum
D. cf. heveae 1	CBS 852.97	KC343116	KC343842	KC344084	KC343600	Brazil	-	Hevea brasiliensis
D. cf. heveae 2	CBS 681.84	KC343117	KC343843	KC344085	KC343601	India	Leaf	Hevea brasiliensis
D. citri	AR3405	KC843311	KC843071	KC843187	-	USA	Stem	Citrus sp.

Species name	Strain	ITS	TEF1	TUB	HIS	Country	Substr ate	Host species
D. convolvuli	CBS 124654	KC343054	KC343780	KC344022	KC343538	Turkey	Leaf	Convolvulus arvensis
D. cynaroidis	CBS 122676	NR_111846	KC343784	KC344026	KC343542	South Africa	L. litter	Protea cynaroides
D. discoidispora	ZJUD89	KJ490624	KJ490503	KJ490445	KJ490566	China	-	Citrus unshiu
D. eres	AR5193	KJ210529	KJ210550	KJ420799	KJ420850	Germany	Twig	Ulmus sp.
D. heveicola	AHGB25-8b TC239	pending pending	pending pending	pending pending	pending pending	Peru Peru	Stem Leaf	Hevea pauciflora Hevea brasiliensis
D. hongkongensis	CBS 115448	KC343119	KC343845	KC344087	KC343603	Hong Kong	Fruit	Dichroa febrifuga
D. inconspicua	CBS 133813	KC343123	KC343849	KC344091	KC343607	Brazil	Petiole	Maytenus ilicifolia
D. kongii	BRIP 54031	JF431301	JN645797	KJ197272	-	Australia	-	Helianthus annuus
D. lithocarpus	CGMCC 3.15175	KC153104	KC153095	-	-	China	Leaf	Lithocarpus glabra
D. longicolla	FAU599	KJ590728	KJ590767	KJ610883	KJ659188	USA	-	Glycine max
D. masirevicii	BRIP 57892a	KJ197276	KJ197239	KJ197257	-	Australia	-	Helianthus annuus
D. mayteni	CBS 133185	KC343139	KC343865	KC344107	KC343623	Brazil	Petiole	Maytenus ilicifolia
D. melonis	CBS 507.78	KC343142	KC343868	KC344110	KC343626	USA	-	Cucumis melo
D. napoensis	pending, GXB11-4b2	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana


Species name	Strain	ITS TEF1 TU		TUB	HIS Country		Substr ate	Host species
	GPB13-9a	pending	pending	pending	pending	Peru	Stem	Hevea guanensis
D. neotropica	pending, JMGB04-6b	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	JHGB04-7a	pending	pending	pending	pending	Peru	Stem	Hevea brasiliensis
	JHGB20-5a	pending	pending	pending	pending	Peru	Stem	Hevea nitida
	JMGB10-2b2	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	JMGB13-9b	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
D. ovalispora	ICMP20659	KJ490628	KJ490507	KJ490449	KJ490570	China	Twig	Citrus limon
D. oxe	CBS 133186	KC343164	KC343890	KC344132	KC343648	Brazil	Petiole	Maytenus ilicifolia
D. paranensis	CBS 133184	KC343171	KC343897	KC344139	KC343655	Brazil	Petiole	Maytenus ilicifolia
D. perseae	CBS 151.73	KC343173	KC343899	KC344141	KC343657	Netherlands	Fruit	Persea americana
D. peruviensis	pending, JMGB13-6a	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	GPB06-8b	pending	pending	pending	pending	Peru	Stem	Hevea guanensis
	GXB18-7	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	JHGB21-5a	pending	pending	pending	pending	Peru	Stem	Hevea nitida
D. pseudomangiferae	CBS 101339	KC343181	KC343907	KC344149	KC343665	Dominican Republic	-	Mangifera indica
D. pseudophoenicicola	CBS 462.69	KC343184	KC343910	KC344152	KC343668	Spain	Leaf	Phoenix dactylifera
D. psoraleae-pinnatae	CPC 21638	KF777159	-	KF777252	-	South Africa	Stem	Psoralea pinnata

Species name	Strain	ITS	TEF1	TUB	HIS	Country	Substr ate	Host species
D. pterocarpi	CBS 135768	JQ619899	JX275416	JX275460	-	Thailand	-	Pterocarpus brenanii
D. rhoina	CBS 146.27	KC343189	KC343915	KC344157	KC343673	-	-	Toxicodendron pubescens
D. rudis	CBS 113201	KC343234	KC343960	KC344202	KC343718	Portugal	-	Vitis vinifera
	AR3422	KC843331	KC843090	KC843177	-	Austria	Stem	Laburnum anagyroides
D. schini	CBS 133181	KC343191	KC343917	KC344159	KC343675	Brazil	Leaf	Schinus terebinthifolius
D. siamensis	MFLUCC 10 0573a	JQ619879	JX275393	JX275429	-	Thailand	-	Pterocarpus brenanii
D. sojae	CBS 139282	KJ590719	KJ590762	KJ610875	KJ659208	USA	-	Glycine max
D. tecomae	CBS 100547	KC343215	KC343941	KC344183	KC343699	Brail	-	Tabebuia sp.
D. terebinthifolii	CBS 133180	KC343216	KC343942	KC344184	KC343700	Brail	Leaf	Schinus terebinthifolius
D. ubiqueta	pending, AHGB7-9a1	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	AMGB15-1a	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	AHGB2-3a,	pending	pending	pending	pending	Peru	Stem	Hevea pauciflora
	JHGB10-6a	pending	pending	pending	pending	Peru	Stem	Hevea nitida
D. ueckerae	FAU656	KJ590726	KJ590747	KJ610881	KJ659215	USA	-	Cucumis melo
D. umbrina	pending, JHGB2-8a	pending	pending	pending	pending	Peru	Stem	Hevea brasiliensis
	IQ286	pending	pending	pending	pending	Peru	Leaf	Hevea brasiliensis
	JMGB10-5b1	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana

Species name	Strain	ITS	TEF1	TUB	HIS	Country	Substr ate	Host species
	JMGB11-3	pending	pending	pending	pending	Peru	Stem	Micrandra spruceana
	TC78	pending	pending	pending	pending	Peru	Leaf	Hevea brasiliensis
D. unshiuensis	CGMCC 3.17569	KJ490587	KJ490466	KJ490408	KJ490529	China	Fruit	Citrus unshiu
D. vaccinii	CBS 160.32	KC343228	KC343954	KC344196	KC343712	USA	-	Oxycoccus macrocarpos
Diaporthella corylina	CBS 121124	KC343004	KC343730	KC343972	KC343488	China	Stem	Corylus sp.

TABLE 2.3. MOTHUR results. Operational taxonomic units (OTUs) were generated using the furthest neighbor method in MOTHUR with a 1% dissimilarity criterion. No. OTUs w/split sp = Members of the same species split into different OTUs, No. OTUs w/grouped Spp = Members of different species grouped into an OTU.

Locus	No. Species in analysis	No. OTUs (MOTHUR)	Difference	% Problematic OTU's	No. OTUs w/split species	No. OTUs w/grouped Spp	% Total OTUs w/ grouping	No. OTUs w/ both split & group
HIS	110	117	7	18.80%	21	1	0.008%	0
TUB	110	129	19	26.40%	32	1	0.007%	0
TEF1	110	128	18	26.60%	34	0	0.00%	0
ITS Entire	110	131	21	35.90%	41	6	4.60%	6
ITS1	110	133	23	35.30%	44	8	6.00%	3
ITS2	110	107	-3	40.20%	28	15	14.00%	10

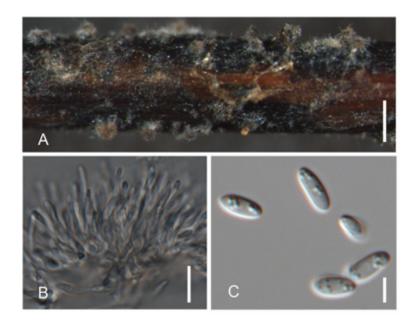


FIGURE 2.2. *Diaporthe amazonica* (GPB18-1a). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, $C = 5 \mu m$.

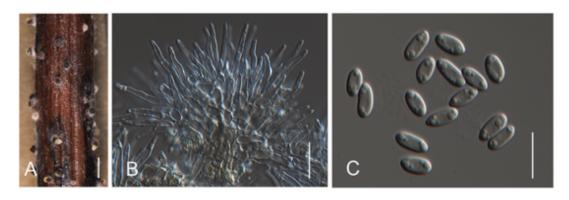


FIGURE 2.3. *Diaporthe heveicola* (AHGB25-8b). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 20 \mu m$, $C = 10 \mu m$.

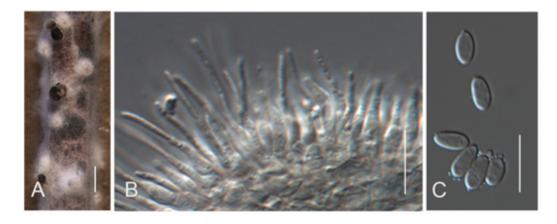


FIGURE 2.4. *Diaporthe napoensis* (GXB11-4b2). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$.

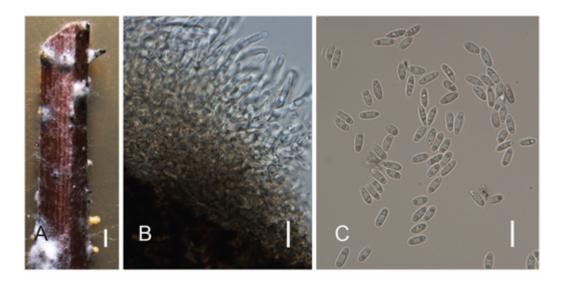


FIGURE 2.5. *Diaporthe neotropica* (JMGB04-6b). A) Sporulation on alfalfa stem in Wag, B) conidiophores, C) alpha conidia. — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$.

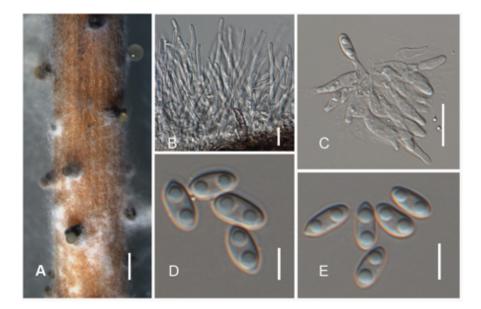


FIGURE 2.6. *Diaporthe peruviensis* (JMGB13-6a). A) Sporulation on alfalfa stem in Wag, B) pycnidial wall lined with paraphyses, C) conidiophores, D) alpha conidia, E) alpha conidia — Scale bars: $A = 2,000 \mu m$, $B = 10 \mu m$, $C = 20 \mu m$, D) $5 \mu m$, E) $5 \mu m$.

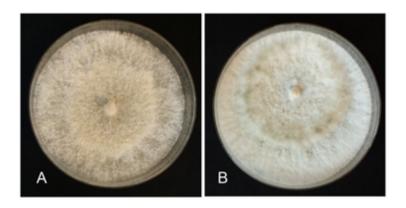


FIGURE 2.7. A) *Diaporthe ubiqueta* (AHGB7-9a1), and B) *Diaporthe umbrina* (JHGB2-8a) on potato-dextrose-agar (PDA) after seven days incubation at room temperature.

Chapter 3: Impact of manual and automated OTU curation of metabarcoding datasets

<u>Abstract</u>

Metabarcoding has become an important tool for exploring fungal communities across multiple systems ranging from plants and animals to water, soil and even the atmosphere. Unfortunately, there are several inherent issues with next generation sequencing that may lead to incorrect inferences. In this study, four different methods were used to classify OTUs in a sample dataset of endophytes collected from rubber trees in three locations in Peru. The effect of those different methods on endophyte distribution, endophyte diversity estimates, and endophyte ecological function roles were examined. When partitioning the data at the genus level, three of the four datasets had the same ranking for the four most dominant genera, but rankings from five and beyond were inconsistent across datasets, especially when partitioned by location. The number of core species detected by the different classification methods varied. A higher proportion of Basidiomycota and Chytridiomycota were retained using the manually curated datasets. One of the manually curated datasets (CLU REP) had two unique core species, while one of the automated datasets (PIPE OTU) was missing a common core species. When the distribution of fungal function guilds was analyzed using both OTU incidence frequency and number of OTU sequence reads across locations and tree hosts, the results varied between methods. One of the more interesting results was the difference between OTU incidence frequency results and sequence reads

abundance results, regardless of classification method. The two manually curated datasets were less error prone; however, automated classification methods were less time consuming to perform. For that reason, automated methods will likely remain the dominant for OTU classification; however, algorithm adjustments will be needed to reduce errors.

Keywords: Ascomycota, Basidiomycota, chimeras, endophytes, *Hevea*, *Micrandra*, Next Generation Sequencing (NGS), Operational Taxonomic Units (OTUs).

Introduction

Metabarcoding has become an important tool for exploring microbial communities across multiple systems ranging from plants and animals to water, soil and even the atmosphere (Gao et al. 2008, Bellemain et al. 2013, Cox et al. 2016, Miller et al. 2016, Núñez et al. 2016, Durand et al. 2017). Unfortunately, there are many inherent errors when using next generation sequencing that may lead to incorrect inferences regarding community composition and diversity, beginning with the initial amplicon library preparation. Protocols for preparing amplicon libraries for metabarcoding environmental samples vary but always involve polymerase chain reaction (PCR). Perfect amplification would mean that every DNA molecule would be fully replicated during each cycle but due to stochastic events, perfect amplification does not occur. Kebschull and Zador (2015) observed this phenomenon while investigating the effects of PCR bias on a pool of DNA amplicons they designed. The authors found that even though each DNA sequence was present only once before amplification, the abundances after amplification were greatly uneven. Additionally, they found that stochastic events during the first few cycles of PCR greatly skewed sequence abundances, especially when amplifying low copy number sequences.

Another error that occurs when building amplicon libraries for metabarcoding is DNA template switching during PCR and sequencing. Template switching occurs in the presence of highly conserved regions within the barcode marker region, or if the marker is GC rich (Dighton and White 2017). In such conserved or GC environments, an incomplete amplicon can act as a primer and, as a consequence, chimeric sequences (sequences composed of DNA fragments from multiple taxa) are synthesized and amplified (Nilsson et al. 2010). Template switching is exacerbated in high diversity of the communities (Fonseca et al. 2012, Bjørnsgaard Aas et al. 2017). The universal barcode for fungi is the nuclear ribosomal internal transcribed spacer region (ITS1, 5.8S, ITS2) (Schoch et al. 2012). For sequencing fungi directly from environmental samples, only a portion of ITS is targeted, either ITS1 or ITS2. The 5.8S ribosomal RNA gene situated between ITS1 and ITS2 is highly conserved and prone to template switching when ITS is targeted in its entirety (Nilsson et al. 2015). Although ITS1 and ITS2 are highly variable regions, they are not immune to template switching. Discovery and exclusion of chimeric reads is necessary, otherwise diversity estimates are inflated (Jumpponen 2007, Fonseca et al. 2012, Dighton and White 2017). A common practice to avoid inadvertently inflating diversity through the inclusion of chimeric sequences is to remove operational taxonomic units (OTUs) that are

rare or with less than five sequences, since they are most likely PCR artifacts (Brown et al. 2015). Algorithms such as UCHIME (Edgar et al. 2011) have been developed for chimera detection. Additionally, reference databases for algorithms to align sequences against such as UNITE and MaarJAM are utilized (Kõljalg et al. 2005, Öpik et al. 2010, Nilsson et al. 2015). However, these tools are not infallible and it is possible for chimeric sequences to pass through a bioinformatics pipeline undetected (Bjørnsgaard Aas et al. 2017).

Other sources of errors occur during clustering and classifying sequences (Gazis et al. 2011, Nguyen et al. 2015, Yahr et al. 2016, Raja et al. 2017a). The clustering algorithm one uses may have great impact on diversity estimates, since different clustering algorithms can generate different number of OTUs (Schloss et al. 2011, Nguyen et al. 2015). Furthermore, there is no universal similarity percentage that delimits fungal species or any species in any group. For instance, clustering ITS (entire) sequences at 99% is insufficient to delimit species within the *Colletotrichum gloeosporioides* species complex (most of which are common endophytes), due to low variability within the ITS region (Crouch et al. 2009, Gazis et al. 2011). Nevertheless, for the purpose of making comparisons across studies, many researchers opt for a 98% similarity cutoff based on Nilsson et al. (2008) findings that the Ascomycota interspecific variation averages 1.96%. One way to minimize clustering errors is to sequence a defined mock community to calibrate both the clustering algorithms and the percent similarity (Nguyen et al. 2015).

There is a wide-range of strategies employed by researchers to classify fungal OTUs obtained from environmental samples. Some researchers choose a single percent similarity cutoff to assign species level names, generally 97% or 98% (Eusemann et al. 2016, Vaz et al. 2017), while others select a range of percentages to assign an identity to OTUs at different taxonomic ranks (Milberg et al. 2015, Ottosson et al. 2015). For example, if the percent similarity of a BLAST match is between 90% to 97%, then the OTU is assigned a generic name such as Trichoderma species 3. If the closest BLAST match is between 89% to 80% similarity, then the OTU is assigned to an order level such as *Hypocreales* species 3; and so on. There are also researchers who choose to manually curate their OTUs and/or implement phylogenetic approaches (Bonito et al. 2016). More recently fungal metabarcoding studies have begun using the RdP classifier (Dawkins and Esiobu 2017, Khomich et al. 2017, Zhang et al. 2017). The Rdp classifier was initially developed to help classify bacterial rRNA deposited in the Ribosomal Database (RDP), but training sets were later developed for both fungal large-subunit rRNA (LSU) and ITS (Kõljalg et al. 2013, Porras-Alfaro et al. 2014, Deshpande et al. 2016). The classifier does not use a phylogenetic approach, but instead uses naïve Bayesian probabilities to compare "words" of a given length. The words are the query sequences compared against a "training set" (composed of reference sequences, along with their taxonomical hierarchy) (Werner et al. 2012). Some of the advantages to using the RdP classifier are that it is fast, does not require long sequences for accuracy, and does not need to align sequences. The latter feature is important when working with fungal ITS as it does not align

well across the fungal kingdom (Wang et al. 2007, Bjørnsgaard Aas et al. 2017). More importantly it provides confidence estimates for each taxonomic assignment from domain to species level (Wang et al. 2007, Deshpande et al. 2016). Despite all the advantages of the RdP classifier, it is only as reliable as the training set used, which in turn requires well-curated reference sequences.

Accurate OTU classification is needed for making ecological inferences about the sampled endophytic community and requires well-curated reference sequences (i.e., sequences from published studies, with voucher/culture collection numbers, with minimal ambiguities and covering the entire ITS region) against which to compare (Nagy et al. 2011, Kõljalg et al. 2013, Yahr et al. 2016). UNITE (Kõljalg et al. 2005) and The National Center for Biotechnology Information (NCBI, RefSeq) have made great strides in creating and maintaining databases with well-curated reference sequences (Pruitt et al. 2006, Kõljalg et al. 2013, O'Leary et al. 2015), but many obstacles still hinder proper identification of environmental sequences. For instance, many type specimens do not have DNA sequences in a repository and, due to the age of some of the samples, it may not be possible to extract quality DNA, thereby necessitating the epitypification of names (Hibbett et al. 2011, Nagy et al. 2011). On the other hand, many deposited sequences are either lacking species names or are misidentified (Smith et al. 2016, Jargalmaa et al. 2017, Raja et al. 2017b). Even with well-curated reference sequences, there still remains the issue of no universal similarity percentages for fungal species delimitation.

In this study, four different methods were used to classify OTUs in a sample dataset of endophytes collected from multiple hosts in multiple locations: 1) Pipeline automated NCBI BLASTn, 2) RdP classifier with Warcup Fungal training set, 3) Manual BLAST and Percent Based, and 4) Manual clustering with GenBank Representatives. The effect of these methods on endophyte distribution, endophyte diversity estimates, and endophyte ecological function roles were examined.

Materials and Methods

Collection sites and study system

Samples were collected from three Amazon localities within the Loreto Region of Peru: Amazon Conservatory for Tropical Studies (ACTS) Biological Station (NAPO; 3°14'57.20"S, 72°54'33.60"W), Allpahuayo-Mishana National Reserve (ALPE; 3°58'1.16"S, 73°25'8.11"W), and Jenaro Herrera Research Center (JEHE; 4°53'54.29"S, 73°38'59.80"W). Diversity and distribution of tropical fungal endophytes of wild individuals of *Hevea* and its sister genus *Micrandra* were investigated as part of a larger study. *Hevea brasiliensis* is the primary species for tapped natural rubber and plantation grown trees suffer from a variety of diseases that reduce production or destroy entire plantation areas.

Sample collection

The number of individual trees sampled, per species and site, varied due to their low abundance and scattered distribution (Table 3.1). Sapwood samples were

collected from 136 adult trees. Four species of *Hevea* (*H. brasiliensis*, *H. guianensis*, *H. nitida*, *H. pauciflora*) and two species of *Micrandra* (*M. elata*, *M. spruceana*) were opportunistically sampled. Geographical coordinates were recorded for each sample using a handheld GPS unit (GPSmap 62sc, Garmin Inc. Schaffhausen, Switzerland). Trunk diameter (dbh) was measured at 1.4 meters above the ground (*Hevea* spp.) or 1.4 meters above the swell of buttressed roots (*Micrandra* spp.) and dbh 23–100 cm were targeted. Inner bark tissue (wood containing functioning vascular tissue) samples were collected by shaving the outer tree bark and exposing a 10-cm² area. Using a smaller flame-sterilized knife, three pieces of wood (~4x5 mm) were excised and then transferred into a single cryovial containing 500 µL of MoBio Bead Solution Buffer (MoBio Laboratories, Carlsbad, California, USA). Each adult tree had this procedure replicated three times, yielding a total of three cryovials (each containing 3 sapwood pieces) for direct sequencing of a total of 408 samples.

DNA extraction, PCR and sequencing

Excised plant tissues were placed into tubes prefilled with 500 µm garnet beads and a 6-mm zirconium grinding satellite bead (OPS Diagnostics LLC, New Jersey, USA). The tubes were homogenized using a FastPrep® instrument (Zymo Research, Irvine, California, USA). Each tube was treated to three rounds of homogenization (speed: 5.0 m/s time: 43 seconds) or until no visually recognizable fragments remained. Total DNA was extracted using the Qiagen® DNeasy Plant Mini Kit according to manufacturer's instructions (Qiagen, Hilden, Germany). Fungal ITS 2 was amplified with fITS7 (Ihrmark et al. 2012) and ITS4 (White et al. 1990) primers containing a unique additional 6-bp barcode to tag each PCR sample according to the individual tree sample. PCR amplification was performed using HotStarTaq Plus Master Mix Kit (Qiagen®, Hilden, Germany). PCR products were then pooled together in equal proportions based on molecular weight and concentration and purified using AMPure® XP beads (Agencourt Bioscience, Massachusetts, USA). Sequencing was performed on the Illumina MiSeq platform at MR DNA (www.mrdnalab.com, Shallowater, TX, USA).

Forward and reverse sequences of each sample were merged into contigs with VSEARCH. For quality control and optimization of downstream analyses, sequences with length smaller than 300 bp were removed and sequences larger than 300 bp were truncated to 300 bp (Puente-Sánchez et al. 2015). Sequences with less than 90% of quality score (Q) 30 were removed (Cox et al. 2010). Singletons, sequences with abundance equal to one, were removed from the dataset and UCHIME and the UCHIME database were used to retrieve and remove chimeras from the dataset (Edgar et al. 2011). The sequences were clustered with VSEARCH, using a threshold of 98% of similarity. Centroid sequences from each pipeline generated cluster were subsequently classified taxonomically using four methods: Pipeline automated NCBI BLASTn (PIPE OTU), RdP classifier with Warcup Fungal training set (RDP WAR), Manual BLAST and Percent Based (MAN PER), 4) Manual cluster with GenBank Representatives (CLU REP). Pipeline automated NCBI BLASTn OTU dataset (PIPE OTU)

Centroid sequences were classified via a bioinformatics pipeline implementing the NCBI database BLASTn program option NCBI using 80% similarity and 90% coverage cutoffs, any OTUs below the cutoff were removed from the dataset. OTUs classified as "unassigned" or "leaf litter" were removed. Hereafter, OTUs will be considered as the species level. For analyses at the generic level all noninformative names (uncultured, fungal, fungi, fungus, isolate, *aceae, *ales, *mycota, *mycetidae) were excluded and OTUs were assigned corresponding generic names (Vaz et al. 2017).

RdP classifier dataset with Warcup Fungal training set (RDP WAR) The taxonomy of each centroid sequence was assigned using UNITE with a cutoff similarity of 97% and a minimum cover of 90% (Millberg et al. 2015). For OTUs below the 97% similarity threshold, or that were not assigned a genus level name, the RdP classifier (Wang et al. 2007) was used against the Warcup Fungal ITS training set with a confidence threshold of 95% (Deshpande et al. 2016). OTUs with phylum confidences below 90% were removed from the dataset. Hereafter, OTUs will be considered as the species level. For analyses at the generic level all non-informative names (uncultured, fungal, fungi, fungus, isolate, *aceae, *ales, *mycota, *mycetidae) were excluded and OTUs were assigned corresponding generic names.

Manual BLAST and Percent-Based OTU dataset (MAN PER) A comparative sequence analysis was conducted manually through BLAST (Madden 2002) using the nucleotide database

(https://www.ncbi.nlm.nih.gov/nucleotide) excluding uncultured/environmental sample sequences. Classification was based according to the consensus taxonomic rank of top 10 BLAST matches. In this method, the taxonomic rank of the sequences with the highest percent similarity values were favored. Criteria for OTU classification were based on identity percentages: 1) 100-97% species; 2) 95-100% genus; 3) 90-94% family; 4) 85-89% order; 5) 80-84% class; and 6) <80% phylum.

Clustered GenBank Representatives OTU dataset (CLU REP) To deal with the challenge of no universal similarity percentage that delimits fungal species when assigning OTUs, the following was performed: 1) preliminary BLAST search and collected representative sequences of the matched taxa, when possible, well-curated sequences (sequences from published studies, with voucher/culture collection numbers) were included ; 2) compiled a database that contained 1,400 species (not including sequences from this study); 3) aligned sequences from this study with representative database using the MAFFT aligner with the default parameters (Katoh and Toh 2008) in CIPRES (Miller et al. 2015); 4) clustered sequences into OTUs using the furthest neighbor method in MOTHUR (Schloss et al. 2009). The percent similarity at which all the GenBank representative sequences outside of the desired taxonomic level were clustered with them, was considered the taxonomic limit for the OTU.

Ecological analyses

Proportional read abundance is customarily correlated to the proportional abundance of an organism within a sample, however this assumption is often incorrect due to variation of gene copy number among fungal taxa, PCR biases, and/or stochastic PCR amplification (Amend et al. 2010, Kebschull and Zador 2015). Therefore, both sequence reads (number of reads per OTU) and species incidence frequency (number of samples from which an OTU was captured) were analyzed.

The distribution of fungal OTUs for each dataset was visualized as a Venn diagram using the VIB-UGENT Venn Diagram Tool (http://bioinformatics.psb.ugent.be/webtools/Venn/) (Chen and Boutros 2011). Fungal taxa were considered core (abundant) species if they occurred in more than 50% of the individuals within a tree genus within a site (Unterscher et al. 2011). Fungus genus level abundances were ranked for each site and tree genus using the *Rankabundance* function in BiodiversityR package version 2.8-0.

Richness and diversity were examined at the fungus species level using full datasets, as well as reduced datasets in which OTUs with non-informative names were excluded (fungal, fungi, fungus, isolate, *aceae, *ales, *mycota, *mycetidae). Customarily, OTUs with non-informative names have been excluded from datasets to reduce uncertainty in OTU classification. Three orders of Hill numbers (HN) were used to interpolate and extrapolate species richness and diversity at tree host level within each locality (species richness, q=0), common species (Shannon's entropy, q=1) and dominant species (inverse Simpson's, q=2), decreasingly sensitive to rare species (Jost 2006, Chao et al. 2014). Chao2 was calculated to extrapolate asymptotic richness using iNext package version 2.0.14. Hill numbers are expressed as the number of equally abundant species that would be needed to return the same value given by a diversity measure (Jost 2016, Chao et al. 2014). Accumulation and diversity curves were built using iNext package version 2.0.14. A 95 % confidence interval was obtained by applying 1,000 bootstrap iterations. Non-overlapping confidence intervals denote a significant difference between samples.

OTUs were parsed into six ecological guilds using the FunGuild database (Nguyen et al. 2016): entomopathogenic (parasitic or causes disease in insects), fungicolous (parasitic or grows on other fungi), plant pathogen (causes disease in plants), saprotroph (rots plant litter), wood decay (rots wood). OTUs with genera with no known ecological guild, or OTUs with non-informative names were categorized as "undetermined." Rankings were assigned to each guild according to incidence frequencies, with RANK 1 assigned to the guild with the highest incidence frequency and RANK 6 assigned to the guild with the least incidence frequency. Sankings were assigned per tree host genus within each location. Similar ranking method was applied using sequence reads with RANK 1 assigned to the guild with the least abundant sequence reads and RANK 6 assigned to the guild with the least abundant sequence reads.

<u>Results</u>

OTU delimitation and classification

Initial pipeline clustering and classification generated 1,075 species level OTUs (4,329,064 sequence reads). After curation, the four methods generated different number of OTUs with 651 centroid sequences shared among the datasets (Fig. 3.1, Table 3.2).

PIPE OTU method generated 733 OTU (3,222,923 sequence reads), and retained 55 chimeric OTUs (8%) after curation (Supplementary Table 3.1). This method resulted in 227 OTUs unresolved at the genus level (31% of total OTUs), which was the smallest number of unresolved OTUs among the methods. Of the 333 OTUs excluded for not meeting the 80% BLAST similarity cutoff, 103 OTUs (104,103 sequence reads) were verified as fungal (63% were Basidiomycota), 18 OTUs (8,093 sequence reads) were bacterial, 27 OTUs (3,879 sequence reads) were chimeric, and 180 OTUs (696,356 sequence reads) were plant sequences (Table 3.3.A, Table 3.3.B). A common practice to avoid inadvertently inflating diversity through the inclusion of chimeric sequences is to remove OTUs that are rare or with less than five sequences, since they are most likely PCR artifacts (Brown et al. 2015). Excluding OTUs with five or less sequence reads would have eliminated only half of the chimeras in this dataset (Table 3.4). The majority of OTUs that had five or less sequences were real (85%) and comprised 30% of the total dataset, while the chimeric OTUs with five or less sequences were 5% of the total dataset.

RDP WAR method generated 765 OTUs (6,888,097), and retained the most non-fungal centroid sequences (71 chimeric OTUs, 1 plant OTU) (Supplementary Table 3.2). The RdP classifier assigned all of the plant and bacterial sequences, with 100% confidence, to the fungal kingdom. RDP WAR had the highest number of OTUs unresolved at the genus level (364 OTUs, 48% of total OTUs) (Table 3.5). Of the 301 OTUs excluded for falling below the 95% phylum confidence level, 88 OTUs (36,139 sequence reads) were fungal (68% were Basidiomycota), 18 OTUs (8,093 sequence reads) were bacterial, 11 OTUs (3,879 sequence reads) were chimeric, and 179 OTUs (692,727 sequence reads) were plant sequences (Table 3.3.A, Table 3.3.B). Excluding OTUs with five or less sequence reads would have eliminated half of the chimeras in the RDP WAR datasets, similar to PIPE OTU (Table 3.4). The majority of OTUs that had five or less sequences were real 89% and comprised 29% of the total dataset, while the chimeric OTUs with five or less sequences were 4% of the total dataset.

The two manually curated methods (CLU REP, MAN PER) retained the same number of centroid sequences (782) and sequence reads (3,326,685); however, the number of OTUs generated differed between the two methods. After CLU REP curation, some centroid sequences clustered with species representatives at 97% similarity and were grouped into a single OTU (Supplementary Table 3.3). Thus, the CLU REP method generated the fewest OTUs (700 OTUs, 3,326,685 sequence reads), whereas the MAN PER method generated the most OTUs, as it was unable to infer relationships (782 OTUs, 3,326,685 sequence reads) (Supplementary Table 3.4) (. In the CLU REP dataset, 33% of the OTUs (231 OTUs) were not resolved at the genus level, and in the MAN PER dataset 43% of the OTUs (338 OTUs) were not resolved at the genus level. In the CLU REP dataset, 33% of the OTUs (231 OTUs) were not resolved at the genus level, and in the MAN PER dataset 43% of the OTUs (338 OTUs) were not resolved at the genus level. All of the 401 non-fungal OTUs that passed through the bioinformatics pipeline were detected using the two manually curated methods (CLU REP and MAN PER) and were excluded from those datasets (28 bacterial, 100 chimeric, 266 plant, 7 other).

Sampling effort and diversity

Species accumulation curves increased steeply and did not reach asymptote for tree fungal communities regardless of dataset or location (Fig. 3.2). For host fungal endophyte communities, Simpson diversity curves reached or neared asymptote at all three locations. Shannon diversity curves, however, did not reach or near asymptote at any location, despite the slopes being less steep than the species accumulation curves.

Based on projected diversity, some samples were nearly complete while others were insufficiently recovered (Table 3.6). For all datasets, the difference between the estimated number of species (Chao and Jost 2015) and observed richness suggests a large number of species still missing from NAPO, and the smallest number of species still missing from ALPE. While the four classification methods returned different estimates of missing species for each diversity measure, location, and host genus, there was no discernable pattern. No method consistently estimated greater or lower estimates for number of missing species.

Richness and diversity (estimated using Shannon and Simpson indices) for endophytic communities of *Hevea* and *Micrandra* trees were significantly different within each location regardless of dataset used (Table 3.6). In ALPE, richness and diversity of fungal communities from *Micrandra* hosts were greater than those from *Hevea* hosts for all datasets. In NAPO, the opposite was observed; richness and diversity of fungal communities from *Hevea* hosts were greater than those from *Micrandra* hosts for all datasets. In JEHE, richness and diversity of fungal communities from *Micrandra* hosts and *Hevea* hosts were not significantly different for CLU REP and MAN PER datasets; however, richness and diversity of fungal communities from *Hevea* hosts were greater than those from *Micrandra* hosts for both PIPE OTU and RDP WAR datasets (Table 3.6).

These analyses, thus far, have considered the 'full' dataset, which included those OTUs with non-informative names. To compare the effect of 'full' and 'reduced' datasets on diversity measures, OTUs with non-informative names were removed from the 'full' CLU REP, MAN PER, PIPE OTU and MAN WAR datasets to create the 'reduced' dataset. Generally, a significant amount of fungal diversity and richness was lost in the reduced datasets compared to the full datasets. For fungal communities from ALPE hosts in the CLU REP dataset, and from JEHE *Micrandra* hosts in the PIPE OTU dataset, richness and diversity were not significantly less than the full datasets (Table 3.7). Despite the loss of richness and diversity, the reduced datasets came to the same inferences as the full datasets in both ALPE and NAPO. In ALPE, the fungal community from *Micrandra* hosts

had a greater richness and diversity than that of *Hevea* hosts, and in NAPO the fungal community from *Hevea* hosts had greater richness and diversity than that of *Micrandra* hosts.

Inferences drawn for JEHE using the reduced datasets were different than those from the full datasets. Using the entire CLU REP and MAN PER datasets, the fungal community from *Hevea* hosts in JEHE had greater richness than that of *Micrandra* hosts, but were not significantly different. Using the entire PIPE OTU and RDP WAR datasets, fungal communities from *Hevea* hosts had greater richness and diversity than those from *Micrandra* hosts in JEHE. In the reduced datasets, endophytes captured from *Hevea* hosts had greater richness and diversity than those captured from *Micrandra* for both CLU REP and MAN PER datasets while there were no significant differences in richness and diversity for either PIPE OTU or RDP WAR.

Distribution of taxa

Ascomycota was the dominant phylum for all four datasets (Fig. 3.3). A higher proportion of Basidiomycota were detected using CLU REP and MAN PER methods (206 OTUs, 16% incidence frequency, 6% sequence reads) than PIPE OTU (123 OTUs, 10% incidence frequency, 2% sequence reads), and RDP WAR (146 OTUs, 11% incidence frequency, 2% sequence reads) methods (Table 3.8). Likewise, CLU REP and MAN PER datasets had more Chytridiomycota (7 OTUs) than PIPE OTU (2 OTUs) or RDP WAR (1 OTU). All methods detected the presence of a single OTU belonging to the Zoopagomycotina. PIPE OTU method generated 132 OTUs that were unresolved at the phylum level and were classified as "fungus". These "fungus" OTUs were classified as Basidiomycota (14 OTUs), Ascomycota (103 OTUs), and chimeric (15 OTUs) using the CLU REP and MAN PER methods.

When partitioning the data by location and tree host, there were differences in frequency and abundance across the datasets. Generally, PIPE OTU and RDP WAR datasets had lower incidence of Basidiomycota OTUs than CLU REP or MAN PER datasets (Table 3.9). There were also within dataset differences when comparing incidence frequency to sequence reads abundance. In JEHE, the proportion of Basidiomycota sequence reads ranged between 1% (PIPE OTU, RDP WAR) and 12% (CLU REP, MAN PER), but Basidiomycota accounted for 24% (RDP WAR) to 32% (CLU REP) of incidence frequencies.

Fungal genera abundances were dataset and location dependent. For all datasets, except PIPE OTU, *Sarocladium* was the most abundant genus, followed by *Tolypocladium*, *Debaryomyces*, and *Acremonium*. The PIPE OTU method ranked *Sarocladium* first, *Debaryomyces* second, *Tolypocladium* third, *Pochonia* fourth, and *Acremonium* 15th. Across all three locations, three OTUs within the top ten most abundant genera were unique to the CLU REP dataset (Hypocreales 3, Clavicipitaceae 1.1 and Clavicipitaceae 1) (Table 3.10).

CLU REP and MAN PER datasets had similar top ten fungal genera rankings across all three locations, while the PIPE OTU dataset was the most disparate (Table 3.11). For tree hosts in ALPE, the ten most abundant fungal genera for the CLU REP dataset also ranked among the top ten genera in the MAN PER dataset and in the RDP WAR dataset, except for Hypocreales 3 and *Penicillium. Acremonium*, the third most abundant genus for the CLU REP dataset, ranked 19th using the PIPE OTU method.

For tree hosts in JEHE, seven of the ten most abundant fungal genera for the CLU REP dataset were also among the top ten genera in the MAN PER dataset and the RDP WAR dataset. Three genera were unique to the CLU REP dataset (Hypocreales 3, Clavicipitaceae 1 and Clavicipitaceae 1). Only four of the ten most abundant fungal genera for the CLU REP dataset were ranked as part of the top ten for the PIPE OTU. The third, sixth and ninth ranked genera in CLU REP (*Tolypocladium, Acremonium, Peniophora*) were ranked 13th, 21st, and 30th using the PIPE OTU method.

For tree hosts in NAPO, seven of ten most abundant fungal genera for the CLU REP genera also ranked among the top ten genera in the MAN PER dataset. Two genera were unique to the CLU REP dataset (Hypocreales 3 and Clavicipitaceae 1). *Fuscicola* ranked eighth for the CLU REP dataset; using the MAN PER method, these sequences were classified as *Fusarium*, Hypocreales sp. and Nectriaceae sp.), while the PIPE OTU method classified them as two different taxa (*Fusarium* and *Gliocephalotrichum*). *Fusarium* was ranked twelfth for CLU REP, fifth for MAN PER and forth for PIPE OTU datasets, while *Gliocephalotrichum* was unique to PIPE OTU dataset and ranked 52nd.

Distribution of core species varied across locations, tree hosts and datasets (Table 3.12). Nine core species were shared across all four datasets, however, all four datasets had a different number of total core species (CLU REP 10, MAN

PER 11, PIPE OTU 12, RDP WAR 13). The CLU REP dataset had fewer core species due to multiple centroid sequences clustering into two species after CLU REP curation (*Tolypocladium* sp. 2 and *Acremonium* sp. 3). The RDP WAR and PIPE OTU datasets each had two core species that were chimeric OTUs. OTU 7 was a core species for all datasets except for PIPE OTU because it did not meet the 80% BLAST similarity and was therefore excluded from the dataset.

Ecological function guilds

When analyzing OTUs, rankings were similar for all four methods with one exception, although the number of OTUs differed, For the CLU REP dataset, the guild with the most members was the saprophyte guild (Fig. 3.4). For MAN PER, PIPE OTU, and RDP WAR datasets, the undetermined guild (OTUs with unknown functions) had the most members followed by the saprophyte guild. The entomopathogenic guild had the third most members for all datasets, followed by the plant pathogen guild, the wood decay guild, and fungicolous guild. The exception was RDP WAR, which had more fungicolous members than plant pathogenic and wood decay. CLU REP had the smallest proportion of OTUs with unknown functions (26%), while RDP WAR had the largest (45%) (Table 3.13).

When analyzing incidence frequencies and sequence reads across locations and tree hosts, the distribution of fungal function guilds varied between datasets (Table 3.14). Rankings of CLU REP and MAN PER datasets were the most similar (64% similarity of incidence frequency, 89% similarity of sequence read), while CLU REP and PIPE OTU rankings were most dissimilar (42% similarity of incidence frequency, 47% similarity of sequence read). PIPE OTU and RDP WAR were most similar to each other (67% similarity of incidence frequency, 58% similarity of sequence reads). PIPE OTU was the only dataset that found no members in the fungicolous guild from *Micrandra* hosts in NAPO and ALPE (Table 3.15).

Additionally, rankings for a particular location and host were different within datasets when comparing incidence frequency to sequence reads abundance (Table 3.16). CLU REP, MAN PER and RDP WAR methods had the same average, 44% congruence, between incidence frequency and sequence read rankings and similar median congruence (between 33% and 50%). There are several location-host-dataset combinations that were notably different from the average congruence. For fungal endophytes captured from *Hevea* hosts in NAPO, CLU REP resulted in 83% congruence between incidence frequency and sequence read rankings. For endophytes taken from *Micranda* hosts in NAPO, PIPE OTU resulted in 67% congruence. For fungal endophytes obtained from *Hevea* hosts in all three locations, PIPE OTU resulted in 17% congruence.

Discussion

Methods for classifying OTUs differ based on cutoff criteria, which then determine which OTUs are excluded or retained. Cutoff criteria are derived from various methods of gauging similarity between samples. Before the advent of next generation sequencing technologies, classifying OTUs was historically done manually on small data sets, but more recently bioinformatics pipelines utilizing algorithms that reduce analysis time have been developed. The resulting downstream effect of these different cutoff criteria and methods varies, which is exactly what this study found.

Distribution of taxa

In this study, a higher proportion of Basidiomycota and Chytridiomycota were retained using the CLU REP and MAN PER method. Of the fungal centroid sequences that did not meet the criteria for RDP WAR and PIPE OTU, 68% were members of Basidiomycota. Exclusion of Basidiomycota OTUs due to no close matches in the UNITE or NCBI databases exemplifies the dependence of environmental metabarcoding on well-curated databases (Hibbett et al. 2011, Nagy et al. 2011).

When partitioning the data by location and tree hosts, JEHE had a much higher proportion of endophytes in the phylum Basidiomycota from both host genera when using CLU REP and MAN PER datasets. This was not reflected for *Micrandra* hosts when PIPE OTU and RDP WAR were used; proportion of Basidiomycota endophytes were at a similar level to what was found in *Micrandra* hosts from ALPE. A change in the proportion of Ascomycota and Basidiomycota OTUs can indicate host decline, as many Basidiomycota are pioneer wood decay pathogens (Ochimaru and Fukuda 2007, Parfitt et al. 2010, Robles et al. 2015). The differing results in this study regarding the shift of phylum proportions highlight the importance of understanding how data preprocessing filters can alter conclusions drawn from a given study. When examining OTUs at the genus level, three of the four datasets had the same ranking for the four most dominant fungal genera, but rankings from five and beyond were inconsistent across datasets, especially when the data were partitioned by location. In some instances, the rankings were extremely different, as was the case with *Peniophora*, one of the ten most abundant genera in JEHE using the CLU REP and MAN PER methods. For the PIPE OTU dataset, *Peniophora* was ranked 30th in JEHE. *Peniophora* contains many plant pathogenic members, and some are parasitized by other fungi (Cannon and Kirk 2007, Overall 2017). *Peniophora* was abundant in JEHE only, and of the three locations, JEHE had the most anthropogenic pressures. Increase in abundance of *Peniophora* may be an indicator of forest health, as it was not found in high abundances in the other two locations. Presence of this key genus may have been overlooked if the analysis relied on PIPE OTU or RDP WAR method.

Differences in ranked abundances among the four methods were mainly due to the inclusion of chimeric reads, exclusion of real fungal sequences, and inability to infer relationships among OTUs using the MAN PER, PIPE OTU, and RDP WAR methods. By clustering OTUs in the CLU REP method using representative sequences, more biologically relevant species and genus limits were used to delimit OTUs. Using the CLU REP method of classification, three unique endophytes, Hypocreales 3, Clavicipitaceae 1.1 and Clavicipitaceae 1, were detected. Clavicipitaceae 1 representative sequence was a rare and novel endophyte isolated from *Hevea* and *Micrandra* cultures. Using next generation sequencing, we were able to see that this member of the entomopathogenic guild occurs more frequently in *Hevea* and *Micrandra* and perhaps should be investigated further.

Likewise, with core species, the CLU REP dataset had two unique core species (*Acremonium* species 3 and *Tolypocladium* species 2) owing to clustering with representative sequences and customizing taxonomic limits. *Acremonium* members belong to various function guilds, including fungicolous, wood decay and plant pathogenic guilds, while *Tolypocladium* members largely belong to the entomopathogenic guild. PIPE OTU and RDP WAR had more core species; however, two of their core species were chimeric OTUs. While problematic, one would most likely perform a manual blast on core species, and subsequently extract it once the chimeric sequence is discovered. More problematic was the absence of a core species (OTU 7, Agaricales 15.2)

Diversity estimates

For endophyte diversity estimates, bias in the classification methods influenced diversity measures. For example, in JEHE, there was no significant difference between endophytic communities from different tree hosts when using CLU REP and MAN PER methods, but there was a significant difference when using the PIPE OTU and RDP method.

When reduced datasets (exclusion of OTUs with non-informative names) were compared to full datasets, generally, a significant amount of fungal diversity and richness was lost, but the reduced datasets came to the same inferences as the full datasets in both ALPE and NAPO. In the third location JEHE, the direction of the results remained the same with *Hevea* hosts showing greater diversity than *Micrandra* hosts. However, the results of the significance testing between the full and reduced datasets were reversed. CLU REP and MAN PER datasets resulted in no significant differences in diversity for the full dataset while significant differences were found using the reduced dataset. PIPE OTU and MAN WAR were reversed: significant differences in diversity were found using the full dataset, but there were no significant differences in the reduced dataset.

Ecological function guilds

Determining the most dominant function guilds in a fungal community is vital when drawing conclusions regarding fungal-plant interactions. It helps to answer questions about community composition and interaction with the environment. For example, entomopathogenic fungi may help protect against herbivory (Ownley et al. 2004, Toledo et al. 2017), opportunistic pathogens can be informative about environmental conditions (Ochimaru and Fukuda 2007), or fungicolous species can indicate a level of host protection against other pathogenic organisms (Rocha et al. 2017).

Method of classifying OTUs did influence the ranking of guilds from most abundant members to least, but rankings were similar. When the distribution of fungal function guilds was analyzed using incidence frequencies and sequence reads across locations and tree hosts, the results varied among datasets. CLU REP was most similar to MAN PER while most dissimilar to PIPE OTU. The only notable distinction between methods was that PIPE OTU found no members in the fungicolous guild in two host-location combinations, while all other datasets had members in that guild.

One of the more interesting results was the difference between incidence frequency results and sequence reads abundance results, regardless of dataset. The most abundant guild using sequence reads was the entomopathogenic guild; however, it was the second (CLU REP, MAN PER) and third most abundant guild (PIPE OTU, RDP WAR) when using incidence frequency. It is a common practice to use sequence reads to analyze abundance; however, this study adds to the growing body of evidence that relying solely on sequence reads can be misleading (Kebschull and Zador 2015, Taylor et al. 2016). A more prudent approach would be to use both types of data, incidence frequency and sequence reads for ecological inferences from environmental samples.

RDP WAR

One unexpected outcome of using the RDP WAR method was that the engine's classifier placed all non-fungal DNA as fungal with 100% confidence. To circumvent this problem, a filter can be set to remove OTUs that do not have a 95% confidence level at the phylum level. However, this can leave chimeras in the dataset. One method to remove the chimeras is to remove OTUs which have 5-sequence reads or less. When performed on RDP WAR or PIPE OTU this dataset, 85% or more of those OTUs were fungal sequences and only half of the chimeric reads were eliminated. This highlights the importance of exercising

caution when relying solely on pipeline methods to classify OTUs (Brown et al. 2015, Nguyen et al. 2015).

<u>Conclusions</u>

For studies examining community diversity with metabarcoding data, data preprocessing has important downstream effects on inferences and conclusions. When analyzing OTUs globally, differences between methods appeared less significant. However, when the data were parsed by location and host, the results from each method of OTU classification differed greatly at times. The distribution of OTUs, not just number of OTUs, is important for drawing conclusions about community composition.

Newly developed methods that streamline data processing (i.e., RDP WAR and PIPE OTU) had the advantage of saving time, and thus cost; however, even with filter adjustments, were more error prone than methods that employ some level of manual curation (i.e., CLU REP and MAN PER). CLU REP was the least error prone as it was highly curated, manually blasted, and OTUs were assigned by clustering centroid pipeline sequences with GenBank representative sequences. Constructing CLU REP was onerous, but resulted in the most robust analysis of community composition and diversity with the least bias.

This study examined four different methods of OTU classification in the context of endophyte diversity in a wild rubber tree system utilizing metabarcoding data. Metabarcoding has become an important tool for exploring fungal communities across multiple systems ranging from plants and animals, to water, soil and even the atmosphere. While data preprocessing and analysis pipelines are gaining in popularity due to scalability, time-savings and ease of use, caution needs to be exercised when applying classification tools and filtering. For the case of fungal studies, automated pipelines could be improved by incorporating a clustering algorithm that set cutoff limits wherever representative sequences converge exclusively, meaning no other representative sequences from the desired taxonomic level were clustered with them, to define the taxonomic limit for the OTU.

TABLE 3.1. Number of trees sampled for endophytes per host tree species from Amazon Conservatory for Tropical Studies Biological Station (NAPO; 3°14'57.20"S, 72°54'33.60"W), Allpahuayo-Mishana National Reserve (ALPE; 3°58'1.16"S, 73°25'8.11"W), and Jenaro Herrera Research Center (JEHE; 4°53'54.29"S, 73°38'59.80"W).

Tues species	No	. trees samp	led
Tree species	NAPO	ALPE	JEHE
Hevea brasiliensis	-	-	12
Hevea guianensis	21	14	-
Hevea nitida	11	1	8
Hevea pauciflora	-	16	-
Micrandra elata	-	15	-
Micrandra spruceana	18	8	13
Total trees (136)	49	54	33

TABLE 3.2. Number of sequence reads that remained after curation, number of operational taxonomic units (OTUs) and number and percentage of non-fungal sequences remaining within each dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

Defend	No. Sequence	N. OTU	No. Non	-Fungal	% Non-	Fungal
Dataset	reads	No. OTUs	OTUs	Reads	OTUs	Reads
CLU REP	3,326,685	700	0	0	0	0
MAN PER	3,326,685	782	0	0	0	0
PIPE OTU	3,222,923	733	55	23,865	8%	0.70%
RDP WAR	6,888,097	765	72	23,983	9%	0.30%

TABLE 3.3.A. Number and percent of fungal operational taxonomic units (OTUs) that fell below classification criteria. For Pipeline BLASTn OTUs method (PIPE OTU), 80% BLAST similarity was the classification criteria cutoff. For RdP classifier with Warcup Fungal training set (RDP WAR) a 95% phylum confidence level was the classification criteria cutoff.

	No. fungal O'	TUs excluded	% fungal O	ГUs excluded	No. fungal re	eads excluded	%fungal re	ads excluded
Phylum	RDP WAR PIPE OTU		RDP WAR	PIPE OTU	RDP WAR	PIPE OTU	RDP WAR	PIPE OTU
Ascomycota	21	30	23.9%	29.1%	72,315	1,218	66.0%	1.2%
Basidiomycota	60	65	68.2%	63.1%	36,139	101,382	33.0%	97.4%
Chytridiomycota	6	5	6.8%	4.9%	1,027	1,024	0.9%	1.0%
Fungus	0	1	0.0%	1.0%	0	24	0.0%	0.0%
Mucoromycota	1	2	1.1%	1.9%	50	455	0.0%	0.4%
Fungal Totals	88	103			109,531	104,103		

TABLE 3.3.B. Number and percent of non-fungal OTUs that fell below classification criteria. For Pipeline BLASTn OTUs method (PIPE OTU), 80% BLAST similarity was the classification criteria cutoff. For RdP classifier with Warcup Fungal training set (RDP WAR), a 95% phylum confidence level was the classification criteria cutoff.

Organism		ngal OTUs uded		ngal OTUs uded	No. non-fu exclu	0	% non-fun exclu	-
	RAD WAR	PIPE OTU	RAD WAR	PIPE OTU	RAD WAR	PIPE OTU	RAD WAR	PIPE OTU
Bacteria	18	18	8.5%	7.8%	8,093	8,093	1.1%	1.1%
Chimera	11	27	5.2%	11.7%	3,767	3,879	0.5%	0.5%
Other	5	5	2.3%	2.2%	16,960	16,960	2.4%	2.3%
Planta	179	180	84.0%	78.3%	692,727	696,356	96.0%	96.0%
Non-Fungal Totals	213	230			721,547	725,288		

TABLE 3.4. Number and proportion of real and chimeric OTUs that had five sequence reads or less in the RdP classifier with Warcup Fungal training set (RDP WAR) and the Pipeline BLASTn OTUs datasets.

No. of sequence reads	Dataset	No. OTUs	Sequence type	No. of OTUs	% of OTUs with 5 or less reads	% of Total OTUs
	RDP WAR	161	Real	132	82%	17%
2 1	KDF WAK	101	Chimeric	29	18%	4%
2 reads	PIPE OTU	145	Real	126	87%	17%
		145	Chimeric	19	13%	3%
	RDP WAR	34	Real	29	85%	4%
2 1	KDP WAK	54	Chimeric	5	15%	1%
3 reads	PIPE OTU	32	Real	28	88%	4%
	PIPE OIU	32	Chimeric	4	13%	1%
	RDP WAR	45	Real	40	89%	5%
4 1	KDP WAK	45	Chimeric	5	11%	1%
4 reads	PIPE OTU	41	Real	38	93%	5%
	PIPE OIU	41	Chimeric	3	7%	0%
		26	Real	25	96%	3%
5 1	RDP WAR	26	Chimeric	1	4%	0%
5 reads	PIPE OTU	24	Real	24	10%	3%
	FIFEOIU	24	Chimeric	0	0%	0%
	RDP WAR	266	Real	226	85%	30%
Totals		200	Chimeric	40	15%	5%
Totals	PIPE OTU	242	Real	216	89%	29%
		242	Chimeric	26	11%	4%

TABLE 3.5. Number and percent of operational taxonomic units (OTUs) unresolved at the genus level partitioned by phylum level and dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs, and the RdP classifier with Warcup Fungal training set (RDP WAR).

	CLU	REP	MAN	PER	PIPE	ΟΤυ	RDP	WAR
Phylum unresolved at the Genus level	No. Unres. OTUs	% Unres. OTUs	No. OTUs	% Unres. OTUs	No. Unres. OTUs	% Unres. OTUs	No. OTUs	% Unres. OTUs
Ascomycota	143	67%	226	67%	73	32%	320	88%
Basidiomycota	82	30%	103	30%	23	10%	44	12%
Chytridiomycota	6	2%	6	2%	0	0%	0	0%
Mucoromycota	0	1%	3	1%	0	0%	0	0%
Fungus	0	0%	0	0%	131	58%	0	0%
Total unresolved OTUs	231	100%	338	100%	227	100%	364	100%
% of Total dataset OTUs	33	%	43	5%	31	%	48	%

TABLE 3.6. Observed and estimated richness (SR) and diversity (Shannon Hill numbers [SHAN] and Simpson Hill numbers [SIM]), including upper (UCL) and lower (LCL) confidence intervals, of species level operational taxonomic units (OTUs) per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree genera, and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). LCL and UCL are highlighted in green. Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

ALPE	Tree	Deterat		Obser	ved Ri	chness a	and Div	ersity				Estin	nated Ricl	nness an	d Divers	sity		
Site	species	Dataset	SR	SHAN	LCL	UCL	SIM	LCL	UCL	SR	LCL	UCL	SHAN	LCL	UCL	SIM	LCL	UCL
		CLU REP	77	38	33	44	22	18	26	173	119	300	53	41	64	24	22	29
		MAN PER	85	43	37	50	24	18	29	181	128	296	60	49	71	26	24	31
	Hevea	PIPE OTU	90	47	40	53	27	22	31	169	126	261	62	51	72	29	27	35
		RDP WAR	94	48	42	54	27	23	31	180	135	277	65	53	76	29	27	35
ALPE		CLU REP	154	98	81	115	55	44	65	452	323	678	195	151	239	67	55	84
		MAN PER	165	108	94	121	61	47	75	491	353	730	222	177	267	76	61	95
	Micrandra	PIPE OTU	144	91	79	104	54	42	65	406	289	619	171	137	205	65	54	82
		RDP WAR	146	93	79	107	54	44	65	400	287	603	174	140	208	66	54	83

JEHE _	Tree			Obser	ved Ri	chness a	and Div	ersity				Estin	nated Ricl	nness an	d Divers	sity		
	species	Dataset	SR	SHAN	LCL	UCL	SIM	LCL	UCL	SR	LCL	UCL	SHAN	LCL	UCL	SIM	LCL	UCL
		CLU REP	139	83	72	94	49	40	58	478	319	776	163	124	201	58	49	72
JEHE	Hevea	MAN PER	149	92	80	103	55	44	66	478	329	752	176	141	211	66	55	82
	neveu	PIPE OTU	145	88	74	103	52	42	63	511	341	830	175	137	213	63	52	79
JEHE		RDP WAR	152	92	79	106	55	46	63	569	377	926	190	149	230	66	55	79
		CLU REP	93	63	52	74	42	35	49	364	213	705	134	93	176	55	42	71
	Micrandra	MAN PER	101	70	58	83	49	39	58	406	237	785	150	107	194	63	49	79
	Micranara	PIPE OTU	87	60	50	71	42	32	52	289	174	554	114	84	144	54	42	68
		RDP WAR	91	63	52	73	43	36	51	364	207	735	130	91	168	56	43	70
		CLU REP	386	241	221	262	130	110	150	1105	884	1424	467	405	529	156	130	183
	11	MAN PER	444	287	261	312	161	141	181	1277	1034	1619	560	494	625	196	161	232
	Hevea	PIPE OTU	454	292	271	313	165	146	184	1325	1072	1680	571	499	642	201	171	232
		RDP WAR	459	296	270	323	166	144	188	1407	1131	1795	596	528	664	203	167	238
NAPO		CLU REP	121	71	61	82	42	35	50	384	256	632	131	103	159	50	42	61
		MAN PER	143	86	74	99	52	42	61	495	331	804	168	127	209	62	52	75
	Micrandra	PIPE OTU	131	79	68	91	48	39	58	363	255	566	139	111	167	58	48	70
		RDP WAR	140	84	74	94	51	41	60	422	292	660	153	120	186	60	51	73

TABLE 3.7. Observed and estimated richness (SR) and diversity (Shannon Hill numbers [SHAN] and Simpson Hill numbers [SIM]), including upper (UCL) and lower (LCL) confidence intervals, of species level operational taxonomic units (OTUs) for reduced datasets (non-informative names excluded). These are presented per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), tree genera, and reduced dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). LCL and UCL are highlighted in green. Partially overlapping confidence levels do not guarantee non-significance (Chao et al. 2014).

Site	Tree	Reduced		Obs	erved R	ichness a	and Dive	ersity				Estima	ted Richn	ess and	Diversity	7		
Site	species	Dataset	SR	SHAN	LCL	UCL	SIM	LCL	UCL	SR	LCL	UCL	SHAN	LCL	UCL	SIM	LCL	UCL
		CLU REP	69	35	28	42	20	15	25	149	102	264	47	38	57	22	20	26
		MAN PER	67	35	29	41	20	15	24	116	87	188	46	37	54	21	20	27
	Hevea	PIPE OTU	67	34	29	39	20	16	24	125	90	209	44	36	52	21	20	26
		RDP WAR	60	31	26	35	18	15	22	107	78	181	38	32	45	20	18	24
ALPE		CLU REP	97	59	50	68	34	24	44	224	161	352	100	79	121	40	34	52
	Micrandra	MAN PER	101	64	54	73	36	29	44	250	176	399	111	88	135	43	36	57
	Micranara	PIPE OTU	102	63	55	71	36	27	46	271	186	442	112	86	139	43	36	56
		RDP WAR	91	56	47	66	33	24	43	206	146	331	91	73	110	39	33	50

Site	Tree	Reduced		Obs	erved Ri	ichness a	and Dive	ersity				Estima	ted Richn	ess and	Diversity	7		
Site	species	Dataset	SR	SHAN	LCL	UCL	SIM	LCL	UCL	SR	LCL	UCL	SHAN	LCL	UCL	SIM	LCL	UCL
		CLU REP	108	64	50	77	36	27	46	360	233	619	123	91	156	43	36	54
		MAN PER	104	63	52	73	37	30	44	339	217	593	116	86	146	44	37	55
	Hevea	PIPE OTU	97	58	48	69	33	25	41	384	229	720	124	89	158	39	33	50
		RDP WAR	96	57	47	67	33	27	40	352	213	656	110	77	142	39	33	50
JEHE		CLU REP	54	37	31	43	26	20	31	136	85	268	63	43	84	32	26	42
	Micrandra	MAN PER	59	42	34	50	31	23	38	131	87	242	69	49	88	39	31	50
		PIPE OTU	64	44	35	54	30	21	38	207	122	419	91	56	126	39	30	52
		RDP WAR	57	41	32	49	29	20	38	193	106	436	80	52	108	38	29	52
		CLU REP	289	177	160	194	98	83	113	789	615	1055	318	271	365	116	98	136
	Hevea	MAN PER	257	160	143	178	96	82	111	590	468	781	256	225	287	114	96	132
	neveu	PIPE OTU	301	193	173	214	107	87	128	885	683	1193	373	323	423	130	107	156
NADO		RDP WAR	232	143	127	160	84	70	98	561	435	767	233	202	264	99	84	116
NAPO		CLU REP	79	47	38	55	28	21	34	224	144	402	82	61	102	32	28	41
	Micrandra	MAN PER	83	50	41	58	31	25	37	256	160	474	87	64	110	36	31	45
	mici unul u	PIPE OTU	77	46	38	54	27	21	34	199	133	346	79	58	99	32	27	41
		RDP WAR	79	46	38	54	28	22	33	252	156	470	82	57	108	32	28	40

TABLE 3.8. Distribution of phyla for each dataset generated using one of four OTU classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), and Pipeline BLASTn OTUs (PIPE OTU), RdP classifier with Warcup Fungal training set (RDP WAR).

	1	Numbe	r of OT	TUs		Percent	of OTUs		1	ncidence	Frequenc	у	Perc	cent of Se	equence R	Reads
Phylum	CLU REP	MAN PER	PIPE OTU	RDP WAR												
Ascomycota	482	562	470	612	68.86%	71.87%	64.12%	80.00 %	83.00%	83.00%	69.30%	89.00%	94.00%	93.00%	88.00%	98.10%
Basidiomycota	204	206	123	146	29.14%	26.34%	16.78%	19.08 %	16.00%	16.00%	9.72%	11.00%	5.00%	6.00%	1.80%	1.90%
Chytridiomycota	7	7	2	1	1.00%	0.90%	0.27%	0.13%	0.003%	0.003%	0.09%	0.04%	0.03%	0.03%	0.00%	0.00%
Mucoromycotina	6	6	5	5	0.86%	0.77%	0.68%	0.65%	0.40%	0.40%	0.35%	0.30%	0.01%	0.01%	0.01%	0.00%
Zoopagomycotina	1	1	1	1	0.14%	0.13%	0.14%	0.13%	0.04%	0.04%	0.04%	0.04%	0.00%	0.00%	0.00%	0.00%
Fungus	0	0	132	0	0.00%	0.00%	18.01%	0.00%	0.04%	0.04%	20.51%	0.00%	0.04%	0.04%	10.01%	0.00%
Total	700	782	733	765												

TABLE 3.9. Distribution of phyla presented by incidence frequency and sequence reads, partitioned by tree genus, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). Phyla were abbreviated as follows: Ascomycota (Asco), Basidiomycota (Basidio), Chytridiomycota (Chytridio), Mucoromycotina (Mucoro), and Zoopagomycotina (Zoopago).

Site	Tree	Dataset		In	cidence Freq	luency			Se	quence Reads		
Site	species	Dataset	Asco	Basidio	Chytridio	Mucoro	Zoopago	Asco.	Basidio	Chytridio	Mucoro	Zoopago
		CLU REP	93.7%	6%	0.0%	0.4%	0.0%	98.6%	1%	0.0%	0.0%	0.0%
		MAN PER	93.8%	6%	0.0%	0.4%	0.0%	98.6%	1%	0.0%	0.0%	0.0%
	Hevea	PIPE OTU	94.1%	6%	0.0%	0.4%	0.0%	98.6%	1%	0.0%	0.0%	0.0%
ALPE		RDP WAR	94.9%	5%	0.0%	0.3%	0.0%	98.6%	1%	0.0%	0.0%	0.0%
		CLU REP	70.0%	27%	1.7%	1.0%	0.0%	95.8%	4%	0.1%	0.0%	0.0%
		MAN PER	71.1%	26%	1.6%	1.0%	0.0%	95.8%	4%	0.1%	0.0%	0.0%
	Micrandra	PIPE OTU	78.2%	20%	0.4%	1.2%	0.0%	96.5%	4%	0.0%	0.0%	0.0%
		RDP WAR	78.7%	21%	0.0%	0.7%	0.0%	96.2%	4%	0.0%	0.0%	0.0%

Site	Tree	Defeed		In	cidence Freq	uency			S	equence Reads		
Site	species	Dataset	Asco	Basidio	Chytridio	Mucoro	Zoopago	Asco.	Basidio	Chytridio	Mucoro	Zoopago
		CLU REP	61.5%	39%	0.0%	0.0%	0.0%	94.0%	6%	0.0%	0.0%	0.0%
	Hevea	MAN PER	63.4%	37%	0.0%	0.0%	0.0%	94.0%	6%	0.0%	0.0%	0.0%
	Heveu	PIPE OTU	64.9%	35%	0.0%	0.0%	0.0%	93.2%	7%	0.0%	0.0%	0.0%
JEHE		RDP WAR	67.5%	33%	0.0%	0.0%	0.0%	94.1%	6%	0.0%	0.0%	0.0%
JEILE		CLU REP	68%	32%	0.0%	0.0%	0.0%	88.5%	12%	0.0%	0.0%	0.0%
	Micrandra	MAN PER	70%	30%	0.0%	0.0%	0.0%	88.5%	12%	0.0%	0.0%	0.0%
	micranara	PIPE OTU	73%	27%	0.0%	0.0%	0.0%	97.5%	1%	1.6%	0.0%	0.0%
		RDP WAR	76%	24%	0.0%	0.0%	0.0%	99.0%	1%	0.0%	0.0%	0.0%
		CLU REP	92.6%	7%	0.1%	0.5%	0.0%	99.5%	1%	0.0%	0.0%	0.0%
	Hevea	MAN PER	93.5%	6%	0.1%	0.5%	0.0%	99.5%	1%	0.0%	0.0%	0.0%
	neveu	PIPE OTU	96.8%	3%	0.0%	0.6%	0.0%	99.8%	0%	0.0%	0.0%	0.0%
NAPO		RDP WAR	96.9%	3%	0.1%	0.4%	0.0%	99.8%	0%	0.0%	0.0%	0.0%
		CLU REP	83.2%	15%	0.7%	0.4%	0.4%	75.5%	24%	0.0%	0.0%	0.0%
		MAN PER	85.2%	14%	0.6%	0.3%	0.0%	75.5%	24%	0.0%	0.0%	0.0%
	Micrandra	PIPE OTU	91.5%	8%	0.5%	0.0%	0.0%	98.4%	2%	0.0%	0.0%	0.0%
		RDP WAR	90.2%	9%	0.3%	0.3%	0.0%	73.2%	27%	0.0%	0.0%	0.0%

TABLE 3.10. The five most abundant fungal genera, their incidence frequencies, number of sequence reads, and number of host trees each genus was captured from per dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), and Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

Dataset	Genus	Incidence Freq.	No. Trees	No. Reads	% Incidence Freq.	% Trees	% Reads
	Sarocladium	336	129	1,839,185	15%	95%	55%
	Tolypocladium	272	91	182,201	12%	67%	5%
CLU REP	Debaryomyces	169	79	296,325	8%	58%	9%
	Acremonium	156	59	208,583	7%	43%	6%
	Hypocreales 3	105	73	128,685	5%	54%	4%
	Sarocladium	315	128	1,829,984	19%	94%	63%
	Tolypocladium	304	89	181,809	18%	65%	6%
MAN PER	Debaryomyces	165	79	296,305	10%	58%	10%
1 211	Acremonium	136	59	207,728	8%	43%	7%
	Metapochonia	84	46	70,393	5%	34%	2%
	Sarocladium	392	129	1,839,381	17%	95%	57%
	Debaryomyces	173	66	297,045	7%	49%	9%
PIPE OTU	Tolypocladium	112	79	37,221	5%	58%	1%
	Pochonia	104	48	135,719	4%	35%	4%
	Metapochonia	86	46	70,279	4%	34%	2%
	Sarocladium	611	129	1,828,353	26%	95%	56%
	Tolypocladium	341	93	201,037	15%	68%	6%
RDP WAR	Debaryomyces	171	79	296,329	7%	58%	9%
	Acremonium	91	37	58,265	4%	27%	2%
	Malassezia	55	38	38,647	2%	28%	1%

TABLE 3.11. The ten most abundant genera per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]) using the Clustered GenBank Representatives (CLU REP) operational taxonomic unit (OTU) classification method, and the corresponding rankings for each genus when using Manual BLAST and Percent (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR) OTU classification methods. Incidence frequencies and number of sequence reads are provided. The number of host trees the genera was captured from is also listed. Cells labeled with "-", denotes datasets with no corresponding genera.

			C	CLU REP			M	AN PER			PIP	E OTU			RE	OP WAR	
Site	Genera	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees
	Sarocladium	1	207	1,715,773	54	1	197	1,715,664	53	1	262	1,716,078	54	1	237	1,715,418	54
	Tolypocladium	2	43	4,898	29	2	56	4,898	28	3	24	261	17	2	55	4,922	30
	Hypocreales 3	3	28	2,378	28	-	-	-	-	-	-	-	-	-	-	-	-
	Acremonium	4	23	10,302	15	3	24	10,302	15	19	2	4	2	7	9	3,248	8
ALPE	Debaryomyces	5	21	142	17	4	21	142	17	4	22	6,36	17	3	21	142	17
	Malassezia	6	19	23,911	14	7	17	20,665	12	9	7	1,715	7	4	19	23,911	14
	Metapochonia	7	17	46	17	5	18	46	17	5	18	46	17	-	-	-	-
	Penicillium	8	17	4,169	10	-	-	-	-	6	17	4,169	10	5	16	4,167	10
	Nectria	9	17	21,862	13	6	17	21,862	12	3	23	21,874	17	6	14	21,853	13

			C	CLU REP			MA	AN PER			PIP	E OTU			RD	P WAR	
Site	Genera	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees
	Metarhizium	10	7	30	7	9	7	30	7	10	7	30	7	9	7	30	7
	Sarocladium	1	47	112,321	28	2	44	112,304	28	1	50	112,328	28	3	42	110,919	28
	Debaryomyces	2	43	174,439	27	3	42	174,437	27	2	45	174,663	27	2	43	174,439	27
	Tolypocladium	3	30	50,153	23	1	63	50,153	23	13	5	14	5	1	75	57,029	24
	Malassezia	4	24	14,617	12	4	22	14,447	12	6	13	4,945	9	4	23	14,478	12
JEHE	Clavicipitaceae 1	5	23	82,191	20	-	-	-	-	-	-	-	-	-	-	-	-
JEILE	Acremonium	6	21	35,567	19	5	21	35,567	19	21	2	65	2	7	11	8,334	7
	Metarhizium	7	17	62,630	16	7	16	62,625	16	5	17	62,630	16	5	16	62,625	16
	Hypocreales 3	8	17	115	16	-	-	-	-	-	-	-	-	-	-	-	-
	Peniophora	9	15	289	9	8	15	289	10	30	2	16	2	6	16	472	10
	Clavicipitaceae 1	10	14	43,102	14	-	-	-	-	-	-	-	-	-	-	-	-
	Tolypocladium	1	199	127,150	39	1	185	126,758	38	2	83	36,946	22	1	209	1,39,086	39
	Acremonium	2	112	162,714	25	3	91	161,859	25	13	18	26,844	12	4	71	46,683	22
NAPO	Debaryomyces	3	105	121,744	35	2	102	121,726	35	1	106	121,746	35	2	107	121,748	35
	Sarocladium	4	82	11,091	47	4	74	2,016	47	3	80	10,975	47	3	74	2,016	47
	Hypocreales 3	5	60	126,192	29	-	-	-	-	-	-	-	-	-	-	-	-
	Metapochonia	6	53	70,552	15	6	49	70,304	15	5	51	70,190	15	-	-	-	-

			C	CLU REP			MA	AN PER			PIP	E OTU			RE	OP WAR	
Site	Genera	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees	Rank	Inci Freq.	No. Seq. Reads	No. Trees
	Clonostachys	7	39	2,961	14	9	25	1,395	11	6	44	2,992	14	5	37	1,452	12
		8	37	1,673	15	-	-	-	-	7	41	1,685	15	8	17	1,410	11
	Gliomastix	9	31	21,346	12	8	28	21,277	12	10	29	21,344	12	23	5	95	3
		10	30	5,767	17	-	-	-	-	-	-	-	-	-	-	-	-

TABLE 3.12. Distribution of core species partitioned by tree genus, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and RdP classifier with Warcup Fungal training set [RDP WAR]). Columns denote a core species and a blue "X" indicates that the endophyte species was identified as a core species within a particular location, dataset and tree host. A red "X" indicates a chimeric centroid sequence, and a red "*" indicates a centroid sequence that clustered with multiple centroid sequences after CLU REP curation. Core species OTU identifiers were used from CLU REP analysis: otu_2: *Debaryomyces* species 6, otu_3: *Sarocladium* species 1, otu_5: *Clavicipitaceae* species 3, otu_12: *Tolypocladium* species 6, otu_38: *Chimera*, otu_40: *Tolypocladium* species 2, otu_77: *Sarocladium* species 2.

Location	Dataset	Tree genus	otu_3	otu_10	otu_2	otu_5	otu_77	otu_434	otu_6	otu_7	otu_8	otu_12	otu_40	otu_38	otu_584	multi OTUs 1	multi OTUs 2
	CLU	Hevea	x	x	-	-	X	X	-	-	*	*	*	-	-	-	-
	REP	Micrandra	x	x	-	-	x	-	-	-	*	*	*	-	-	-	x
ALPE	MAN	Hevea	x	X	-	-	X	x	-	-	-	-	-	-	-	-	-
	PER	Micrandra	x	X	-	-	X	-	-	-	-	-	-	-	-	-	-

Location	Dataset	Tree genus	otu_3	otu_10	otu_2	otu_5	otu_77	otu_434	otu_6	otu_7	otu_8	otu_12	otu_40	otu_38	otu_584	multi OTUs 1	multi OTUs 2
	PIPE	Hevea	x	X	-	-	X	x	-	-	-	-	-	-	x		
	OTU	Micrandra	x	X	-	-	X	-	-	-	-	-	-	-	-		
	RDP	Hevea	x	X	-	-	X	X	-	-	-	-	-	-	X	-	-
	WAR	Micrandra	x	X	_	-	X	-	_	-	-	-	-	-	-	-	-
	CLU	Hevea	x	-	X	x	-	-	X	-	*	*	*	-	-	X	X
	REP	Micrandra	x	X	X	x	-	-	-	-	*	*	*	-	-	x	x
	MAN	Hevea	x	-	X	x	-	-	X	-	x	X	-	-	-	-	-
	PER	Micrandra	x	X	x	x	-	-	-	-	x	x	-	-	-	_	-
JEHE	PIPE	Hevea	x	-	X	x	-	-	X	-	x	x	-	-	-		
	OTU	Micrandra	x	X	X	x	-	-	-	-	x	x	-	-	-		
	RDP	Hevea	x	-	X	x	-	-	X	-	x	x	-	-	-	-	-
	WAR	Micrandra	x	X	X	x	-	-	-	-	x	x	_	-	-	_	_
	CLU	Hevea	x	x	x	-	-	-	-	-	*	*	*	-	-	-	x
NAPO	REP	Micrandra	x	X	X	x	-	-	_	x	*	*	*	-	-	x	x
		Hevea	x	x	x	-	-	-	-	-	-	-	-	-	-	-	-

Location	Dataset	Tree genus	otu_3	otu_10	otu_2	otu_5	otu_77	otu_434	otu_6	otu_7	otu_8	otu_12	otu_40	otu_38	otu_584	multi OTUs 1	multi OTUs 2
	MAN PER	Micrandra	X	x	x	x	-	-	-	X	x	x	x	-	-	-	-
	PIPE	Hevea	x	x	x	-	-	-	-	-	-	-	-	-	-		
	OTU	Micrandra	х	x	x	x	-	-	_	-	x	x	x	x	-		
	RDP	Hevea	x	x	X	-	-	-	-	-	-	-	-	-	-	-	-
	RDP WAR	Micrandra	x	x	x	x	-	-	-	x	x	x	x	x	-	-	_

TABLE 3.13. Number of operational taxonomic units (OTU)s and proportion of OTUs assigned to each function guild for each OTU classification method: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

		No. of	OTUs			Proportion	of OTUs	
Function Guild	CLU REP	MAN PER	PIPE OTU	RDP WAR	CLU REP	MAN PER	PIPE OTU	RDP WAR
Fungicolous	46	29	13	64	6%	4%	2%	8%
Wood decay	56	48	62	45	7%	6%	8%	6%
Plant pathogen	80	77	101	49	10%	10%	14%	6%
Entomopathogenic	154	156	114	71	20%	20%	16%	9%
Saprotroph	229	169	193	174	29%	22%	26%	23%
Undetermined	204	297	249	348	26%	38%	34%	45%

TABLE 3.14. Percent similarity of function guild rankings between datasets based on incidence frequencies and sequence reads generated using four operational taxonomic unit (OTU) classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn OTUs (PIPE OTU), and RdP classifier with Warcup Fungal training set (RDP WAR).

		Incidence	Frequency			Sequen	ce reads	
Dataset	CLU REP	MAN PER	PIPE OTU	RDP WAR	CLU REP	MAN PER	PIPE OTU	RDP WAR
CLU REP	100%	64%	42%	61%	100%	89%	50%	47%
MAN PER	64%	100%	42%	64%	89%	100%	53%	47%
PIPE OTU	42%	42%	100%	67%	50%	53%	100%	58%
RDP WAR	61%	64%	67%	100%	47%	47%	58%	100%

TABLE 3.15. Function guild rankings based on incidence frequency and sequence read abundances per tree host endophytic communities, location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU] and Rdp classifier with Warcup Fungal training set (RDP WAR). Function guilds were abbreviated as follows: Entomopathogenic (Ento), Fungicolous (Fung), Plant pathogen (Path), Saprotroph (Sapro), Wood decay (Decay), and Undetermined (Undet).

~	Tree				Incidenc	e Frequenc	:y				Sequ	ence reads			Ranking
Site	genus	Dataset	Ento	Fung	Path	Sapro	Decay	Undet	Ento	Fung	Path	Sapro	Decay	Undet	1
		CLU REP	36	13	17	171	1	26	351	1,933	21,860	1,091,022	8	2,407	2
	Hevea	MAN PER	40	14	18	161	1	40	351	1,933	21,862	1,090,897	8	2,571	3
	печеа	PIPE OTU	29	2	21	201	1	60	271	4	21,879	1,075,358	8	20,379	4
ALPE		RDP WAR	25	8	16	191	1	67	219	67	21,866	1,090,606	8	5,130	5
ALFE		CLU REP	49	11	15	134	19	72	5,754	8,377	4,436	657,264	5,476	8,721	6
	Micrandra	MAN PER	53	11	14	126	19	88	4,697	8,377	4,041	653,989	5,469	13,455	
	Micranara	PIPE OTU	40	0	15	146	16	82	263	0	3,894	650,891	5,261	24,777	
		RDP WAR	38	5	14	142	19	83	4,770	3,225	4,080	657,222	5,492	11,132	
JEHE	Hevea	CLU REP	56	13	14	132	37	48	49,016	35,561	1,501	244,648	1,216	1,449	

	Tree				Incidenc	e Frequenc	ey		Sequence reads				Ranking		
Site	genus	Dataset	Ento	Fung	Path	Sapro	Decay	Undet	Ento	Fung	Path	Sapro	Decay	Undet	1
		MAN PER	69	12	13	117	32	77	48,985	35,538	1,501	241,554	947	4,901	2
		PIPE OTU	41	2	16	111	29	111	178	84	1,555	235,159	1,512	98,860	3
		RDP WAR	55	8	12	111	30	104	52,898	40	487	239,085	1,710	43,515	4
		CLU REP	48	10	4	58	19	48	189,760	52	31	72,162	398	32,604	5
	Micrandra	MAN PER	57	10	4	56	18	58	146,689	52	31	72,018	396	75,821	6
		PIPE OTU	41	2	3	58	18	66	188,459	27	6	71,908	322	5,120	
		RDP WAR	28	14	2	53	20	73	65,600	9,501	27	63,727	543	127,204	
		CLU REP	144	86	85	307	8	129	174,009	91,223	19,993	210,898	398	98,087	
	11	MAN PER	238	74	99	257	6	204	171,342	90,385	21,411	198,213	109	140,084	
	Hevea	PIPE OTU	160	18	124	280	11	311	124,184	26,845	21,610	232,669	771	223,914	
NARO		RDP WAR	127	112	50	259	3	326	128,082	55,932	19,397	181,463	345	176,403	
NAPO		CLU REP	88	19	15	86	5	58	83,965	71,493	2,519	5,226	54	105,584	
	Micrandra	MAN PER	111	18	16	81	5	80	83,933	71,476	2,519	5,196	54	105,891	
	witerundra	PIPE OTU	65	0	14	87	10	125	40,999	0	1,471	6,482	73	161,750	
		RDP WAR	69	26	12	77	2	126	50,384	987	1,467	6,166	6	184,318	

TABLE 3.16. Percent congruence of function guild assignment between incidence frequency and sequence reads per location (Amazon Conservatory for Tropical Studies Biological Station [NAPO], Allpahuayo-Mishana National Reserve [ALPE], and Jenaro Herrera Research Center [JEHE]), and dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU] and RdP classifier with Warcup Fungal training set [RDP WAR]).

Dataset		.PE % gruence	JEHE % Congruence		NAI Cong	Overall	
	Hevea	Micrandra	Hevea	Micrandra	Hevea	Micrandra	Congruence
CLU REP	50%	33%	33%	33%	83%	33%	44%
MAN PER	50%	50%	33%	50%	50%	33%	44%
PIPE OTU	17%	50%	17%	33%	17%	67%	33%
RDP WAR	33%	67%	50%	33%	50%	33%	44%

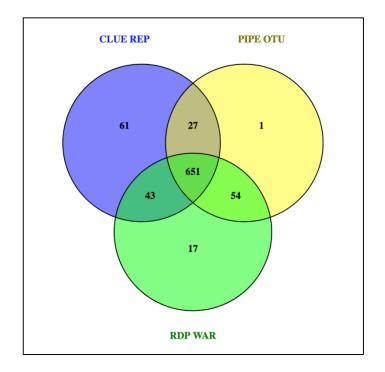


FIGURE 3.1. Venn diagram showing overlap of fungal centroid sequences among datasets curated using three different methods (CLU REP: Clustered GenBank Representatives method, PIPE OTU: Pipeline BLASTn method, RDP WAR: RdP classifier with Warcup Fungal training set method). MAN PER (Manual BLAST Percent Based method), not pictured, had the same centroid sequences as CLU REP.

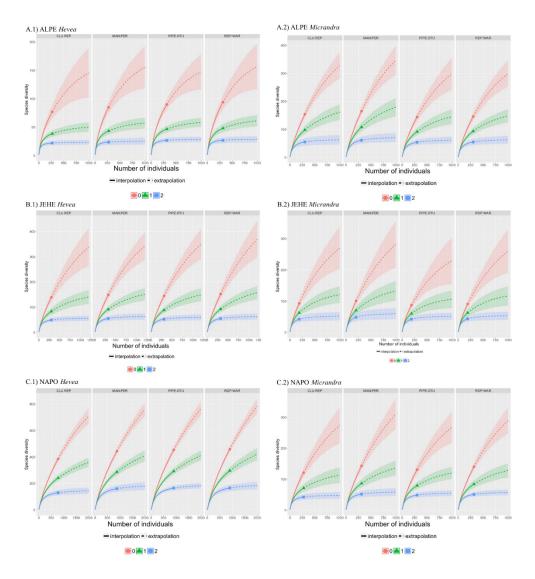


FIGURE 3.2. Species accumulation and diversity curves for fungal communities partitioned by dataset (Clustered GenBank Representatives [CLU REP], Manual BLAST Percent Based [MAN PER], Pipeline BLASTn OTUs [PIPE OTU], and the RdP classifier with Warcup Fungal training set [RDP WAR]) within location (A. Allpahuayo-Mishana National Reserve [ALPE], B. The Jenaro Herrera Research Center [JEHE], and C. the Amazon Conservatory for Tropical Studies Biological Station [NAPO], and host tree genus (1. *Hevea* and 2. *Micrandra*). Species accumulation metrics include richness (q=0), Shannon (q=1), Simpson's (q=2).

FIGURE 3.3. Distribution of operational taxonomic units (OTUs) at the phylum level for each dataset generated using one of the four OTU classification methods: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

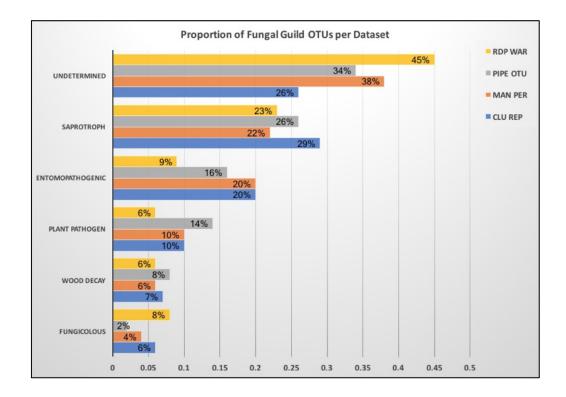


FIGURE 3.4. Proportion of operational taxonomic units (OTUs) assigned to each function guild per dataset: Clustered GenBank Representatives (CLU REP), Manual BLAST Percent Based (MAN PER), Pipeline BLASTn (PIPE OTU), and the RdP classifier with Warcup Fungal training set (RDP WAR).

Appendices

SUPPLEMENTARY TABLE 1.1. Representative isolates obtained in this study, with their corresponding GenBank accession numbers and function guild assignment.

Absidia species 2PNB13_7C1pendingSaprotrophAbundisporus species 1AMB17_3ApendingWood decayAcaromyces species 1GPB23_8BpendingEntomopathogenicAcremoniopsis species 1PNB22_1ApendingSaprotrophAcremonium species 1PNB07_7A3pendingFungicolousAcremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcroalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB2_4ApendingUndeterminedAlbonectria species 1PXB17_6BpendingSaprotrophAllernaria species 1AHB25_4ApendingSaprotrophAnnulohypoxylon species 1AHB05_1BpendingWood decayAscomycota species 2JMB08_7A1pendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotroph	Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Abundisporus species 1AMB17_3ApendingWood decayAcaromyces species 1GPB23_8BpendingEntomopathogenicAcremoniopsis species 1PNB22_1ApendingSaprotrophAcremonium species 1PNB07_7A3pendingFungicolousAcremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcremonium species 1AHGB04_6BpendingFungicolousAcroalymma species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingVindeterminedAlbonectria species 1PXB17_6BpendingPlant pathogenAllernaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAscomycota species 2JMB06_5A1pendingUndeterminedAscomycota species 3PXB2_6BpendingUndeterminedAspergillus species 3PXB2_6BpendingUndeterminedAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Absidia species 1	PNB02_2A	pending	Saprotroph
Acaromyces species 1GPB23_8BpendingEntomopathogenicAcremoniopsis species 1PNB22_1ApendingSaprotrophAcremonium species 1PNB07_7A3pendingFungicolousAcremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingPlant pathogenAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AHB25_4ApendingSaprotrophAlternaria species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingUndeterminedAscomycota species 3PXB2_6BpendingUndeterminedAscomycota species 1AHB20_9BpendingUndeterminedAspergillus species 2JMB06_5A1pendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 4JHB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB1_2AApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB1_2AApendingSaprotroph <td>Absidia species 2</td> <td>PNB13_7C1</td> <td>pending</td> <td>Saprotroph</td>	Absidia species 2	PNB13_7C1	pending	Saprotroph
Acremoniopsis species IPNB22_1ApendingSaprotrophAcremonium species IPNB07_7A3pendingFungicolousAcremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingSaprotrophAllernaria species 1AHB25_4ApendingPlant pathogenAnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph <td>Abundisporus species 1</td> <td>AMB17_3A</td> <td>pending</td> <td>Wood decay</td>	Abundisporus species 1	AMB17_3A	pending	Wood decay
Acremonium species 1PNB07_7A3pendingFungicolousAcremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingPlant pathogenAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingPlant pathogenAlternaria species 1AHB05_1BpendingWood decayAnnulohypoxylon species 1JMB08_7A1pendingWood decayAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotrophAspergillus species 7AHB2_3ApendingSaprotroph	Acaromyces species 1	GPB23_8B	pending	Entomopathogenic
Acremonium species 2JMB07_1A1pendingFungicolousAcremonium species 3PXB21_6BpendingFungicolousAcrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingPlant pathogenAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingPlant pathogenAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acremoniopsis species 1	PNB22_1A	pending	Saprotroph
Acremonium species 3PXB21_6BpendingFungicolousAcrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingUndeterminedAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AHB2_8ApendingPlant pathogenAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingUndeterminedAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB2_6BpendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acremonium species 1	PNB07_7A3	pending	Fungicolous
Acrocalymma species 1AHGB04_6BpendingFungicolousAcrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingUndeterminedAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingPlant pathogenAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acremonium species 2	JMB07_1A1	pending	Fungicolous
Acrodictys species 1AHGB14_8BpendingSaprotrophAgaricomycetes species 1PNB22_4ApendingUndeterminedAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingPlant pathogenAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acremonium species 3	PXB21_6B	pending	Fungicolous
Agaricomycetes species 1PNB22_4ApendingUndeterminedAlbonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingPlant pathogenAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAspergillus species 3PXB20_6BpendingUndeterminedAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acrocalymma species 1	AHGB04_6B	pending	Fungicolous
Albonectria species 1PXB17_6BpendingPlant pathogenAlloconiothyrium species 1AMB12_8ApendingSaprotrophAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAspergillus species 3PXB20_6BpendingSaprotrophAspergillus species 3AHB20_9BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Acrodictys species 1	AHGB14_8B	pending	Saprotroph
Alloconiothyrium species 1AMB12_8ApendingSaprotrophAlternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Agaricomycetes species 1	PNB22_4A	pending	Undetermined
Alternaria species 1AHB25_4ApendingPlant pathogenAnnulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Albonectria species 1	PXB17_6B	pending	Plant pathogen
Annulohypoxylon species 1AHB05_1BpendingWood decayAnnulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Alloconiothyrium species 1	AMB12_8A	pending	Saprotroph
Annulohypoxylon species 2JMB08_7A1pendingWood decayAscomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Alternaria species 1	AHB25_4A	pending	Plant pathogen
Ascomycota species 1JMGB06_5A1pendingUndeterminedAscomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Annulohypoxylon species 1	AHB05_1B	pending	Wood decay
Ascomycota species 2PXB02_1BpendingUndeterminedAscomycota species 3PXB20_6BpendingUndeterminedAspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Annulohypoxylon species 2	JMB08_7A1	pending	Wood decay
Ascomycota species 2PXB20_6BpendingUndeterminedAspergillus species 3PXB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Ascomycota species 1	JMGB06_5A1	pending	Undetermined
Aspergillus species 1AHB20_9BpendingSaprotrophAspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Ascomycota species 2	PXB02_1B	pending	Undetermined
Aspergillus species 2JHB13_8CpendingSaprotrophAspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Ascomycota species 3	PXB20_6B	pending	Undetermined
Aspergillus species 3AHB20_4BpendingSaprotrophAspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Aspergillus species 1	AHB20_9B	pending	Saprotroph
Aspergillus species 4JMB13_2BCpendingSaprotrophAspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Aspergillus species 2	JHB13_8C	pending	Saprotroph
Aspergillus species 5JHB08_1ApendingSaprotrophAspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Aspergillus species 3	AHB20_4B	pending	Saprotroph
Aspergillus species 6PXB15_2ApendingSaprotrophAspergillus species 7AHB20_3ApendingSaprotroph	Aspergillus species 4	JMB13_2BC	pending	Saprotroph
Aspergillus species 7 AHB20_3A pending Saprotroph	Aspergillus species 5	JHB08_1A	pending	Saprotroph
	Aspergillus species 6	PXB15_2A	pending	Saprotroph
Aspergillus species 8 PXB18_7A pending Saprotroph	Aspergillus species 7	AHB20_3A	pending	Saprotroph
	Aspergillus species 8	PXB18_7A	pending	Saprotroph

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Aspergillus species 9	AHB10_3A	pending	Saprotroph
Beltrania species 1	GPB03_3B	pending	Saprotroph
Beltraniella species 1	AHGB21_9A1	pending	Saprotroph
Beltraniella species 2	JHGB09_6A	pending	Saprotroph
Biatriospora species 2	PXB15_7A	pending	Fungicolous
Bionectriaceae species 1	AHB01_5B	pending	Undetermined
Bionectriaceae species 2	PXB07_1A	pending	Undetermined
Bjerkander species 1	PXB08_5B	pending	Wood decay
Boliniales species 2	AMB21_6A	pending	Undetermined
Botryosphaeriales species 1	JHGB09_1A	pending	Undetermined
Calonectria species 1	JMGB02_4A	pending	Plant pathogen
Castanediella species 1	JHGB10_4A	pending	Saprotroph
Castanediella species 2	JHGB24_6A	pending	Saprotroph
Ceriporia species 1	JHB23_4C1	pending	Wood decay
Ceriporia species 2	AHB01_4A	pending	Wood decay
Chaetosphaeriaceae 1	AHGB16_2A	pending	Undetermined
Chloridium species 1	PXB03_2A	pending	Wood decay
Chrysoporthe species 1	JHGB18_6A	pending	Plant pathogen
Cladosporium species 1	JHB02_4D	pending	Plant pathogen
Cladosporium species 2	JHGB02_6B1A1	pending	Plant pathogen
Cladosporium species 3	JHGB21_1A	pending	Plant pathogen
Cladosporium species 4	AHB17_5A	pending	Plant pathogen
Clavicipitaceae species 1	PNB11_6A	pending	Entomopathogenic
Clonostachys species 1	JMGB02_4B	pending	Saprotroph
Clonostachys species 2	GPB10_3B	pending	Saprotroph
Clonostachys species 3	AHB27_2B	pending	Saprotroph
Clonostachys species 4	PNB12_2A	pending	Saprotroph
Colletotrichum species 1	AMGB14_1B	pending	Plant pathogen
Colletotrichum species 10	AHGB10_3A	pending	Plant pathogen
Colletotrichum species 11	GPB14_2B	pending	Plant pathogen
Colletotrichum species 12	GPB23_1A	pending	Plant pathogen
Colletotrichum species 13	AMGB09_6B	pending	Plant pathogen
Colletotrichum species 14	AHGB15_8A	pending	Plant pathogen
Colletotrichum species 15	AHGB04_2B	pending	Plant pathogen
Colletotrichum species 16	AHGB04_8C	pending	Plant pathogen
Colletotrichum species 17	PNB12_3C2	pending	Plant pathogen

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Colletotrichum species 2	AMGB17_5A1	pending	Plant pathogen
Colletotrichum species 3	AHGB10_8A	pending	Plant pathogen
Colletotrichum species 4	AMGB19_6A	pending	Plant pathogen
Colletotrichum species 5	AHGB02_7A	pending	Plant pathogen
Colletotrichum species 6	AHGB10_5A	pending	Plant pathogen
Colletotrichum species 7	AHGB19_4B	pending	Plant pathogen
Colletotrichum species 8	AHGB10_5C	pending	Plant pathogen
Colletotrichum species 9	AHGB03_5A	pending	Plant pathogen
Conferticium species 1	AMB14_7B	pending	Wood decay
Conoideocrella species 1	AHB21_4B2	pending	Entomopathogenic
Cophinforma species 1	JHGB09_5A	pending	Saprotroph
Coprinellus species 1	PXB01_5B	pending	Saprotroph
Cordyceps species 1	AHB01_1A	pending	Entomopathogenic
Coriolopsis species 1	AHB04_2A	pending	Saprotroph
Corticiales species 1	JHGB12_7B	pending	Undetermined
Corynespora species 1	AHGB22_6A2	pending	Plant pathogen
Cosmospora species 1	AMB03_3A	pending	Fungicolous
Cryphonectriaceae species	JHGB17_5B	pending	Plant pathogen
Curvularia species 1	GPB32_9B	pending	Plant pathogen
Cylindrium species 1	PNB29_2B	pending	Saprotroph
Cyphellophora species 1	AHGB32_3B	pending	Saprotroph
Daedalea species 1	JHGB24_6B	pending	Plant pathogen
Daldinia species 1	PXB05_4A	pending	Saprotroph
Debaryomyces species 1	AHB19_9A	pending	Saprotroph
Dentocorticium species 1	JHGB17_2A	pending	Saprotroph
Diaporthales species 1	PXB20_7A	pending	Undetermined
Diaporthales species 2	JHGB13_7A	pending	Undetermined
Diaporthe species 1	JMGB10_5B1	pending	Plant pathogen
Diaporthe species 10	AHGB26_4A	pending	Plant pathogen
Diaporthe species 11	AHGB02_2A	pending	Plant pathogen
Diaporthe species 12	AHGB02_1A	pending	Plant pathogen
Diaporthe species 13	AHGB25_8B	pending	Plant pathogen
Diaporthe species 14	AHGB04_3A	pending	Plant pathogen
Diaporthe species 15	AHB22_6B	pending	Plant pathogen
Diaporthe species 16	AHGB05_1B	pending	Plant pathogen
Diaporthe species 17	GXB18_7A	pending	Plant pathogen

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Diaporthe species 18	JHGB06_5A1	pending	Plant pathogen
Diaporthe species 2	GXB11_4A	pending	Plant pathogen
Diaporthe species 3	GPB21_9A	pending	Plant pathogen
Diaporthe species 4	AHGB01_1B	pending	Plant pathogen
Diaporthe species 5	JMGB13_6A	pending	Plant pathogen
Diaporthe species 6	GXB21_9A	pending	Plant pathogen
Diaporthe species 7	JMGB14_3A2	pending	Plant pathogen
Diaporthe species 8	GPB18_1A	pending	Plant pathogen
Diaporthe species 9	JMGB04_6B	pending	Plant pathogen
Dothideomycetes species 1	AHGB13_8A	pending	Undetermined
Dothideomycetes species 2	AHB03_4A	pending	Undetermined
Dothideomycetes species 3	JMB08_8A	pending	Undetermined
Dothideomycetes species 4	PNB05_9B	pending	Undetermined
Dothideomycetes species 5	AMB12_5B	pending	Undetermined
Dothideomycetes species 6	AMB23_9B	pending	Undetermined
Dothideomycetes species 7	JHGB05_3A	pending	Undetermined
Dothideomycetes species 8	AHGB03_6B	pending	Undetermined
Endomelanconiopsis	PXB02_3B	pending	Saprotroph
Endomelanconiopsis	JHGB09_1B	pending	Saprotroph
Endomelanconiopsis	AMB09_5A	pending	Saprotroph
Engyodontium species 1	AMB04_2B2	pending	Entomopathogenic
Entonaema species 1	AHB18_5B	pending	Saprotroph
Entonaema species 2	JHGB08_1A	pending	Saprotroph
Eucasphaeria species 1	AHB04_5B	pending	Saprotroph
Eutypella species 1	AHGB29_3B	pending	Plant pathogen
Eutypella species 2	JHGB22_6A2	pending	Plant pathogen
Eutypella species 3	PNB18_5A	pending	Plant pathogen
Exophiala species 1	JHB07_7C	pending	Saprotroph
Fellomyces species 1	PNB12_6A	pending	Fungicolous
Fusarium species 2	GPB13_6A2	pending	Plant pathogen
Fusarium species 3	PNB33_2B	pending	Plant pathogen
Fusarium species 4	JMGB04_3A	pending	Plant pathogen
Fusarium species 5	JMGB14_7B	pending	Plant pathogen
Fusarium species 6	GPB25_1B	pending	Plant pathogen
Fusarium species 7	AMB05_2A	pending	Plant pathogen
Fusicolla species 1	PNB01_2A	pending	Saprotroph

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Ganoderma species 1	PNB15_5B1	pending	Plant pathogen
Ganoderma species 2	PNB22_7	pending	Plant pathogen
Gliomastix species 1	PXB15_8A	pending	Saprotroph
Gliomastix species 2	AMB07_3A	pending	Saprotroph
Gliomastix species 3	AHB04_1B	pending	Saprotroph
Gloeophyllum species 1	AHGB09_1B1	pending	Wood decay
Gongronella species 1	AMB06_6A	pending	Saprotroph
Graphium species 1	PNB14_9B	pending	Saprotroph
Graphium species 2	AHB20_2A	pending	Saprotroph
Gymnopilus species 1	JHGB16_6A	pending	Wood decay
Helotiales species 1	AHGB12_4B2	pending	Undetermined
Helotiales species 2	JMB06_2C	pending	Undetermined
Helotiales species 3	JMB02_5B	pending	Undetermined
Helotiales species 4	PXB21_8A	pending	Undetermined
Herpotrichiellaceae species	AMB17_2A	pending	Undetermined
Herpotrichiellaceae species	JHB02_9B2	pending	Saprotroph
Hortaea species 1	AHB01_2A3	pending	Undetermined
Hyalocladosporiella	AMB23_2A	pending	Plant pathogen
Hyaloscypha species 1	JHB05_5B	pending	Wood decay
Hymenochaete species 1	PXB08_5A	pending	Wood decay
Hyphodontia species 1	PNB27_5A	pending	Wood decay
Hypocreaceae species 1	AMB03_4A	pending	Undetermined
Hypocreales species 1	PXB10_3B	pending	Undetermined
Hypocreales species 2	JHB13_6B	pending	Undetermined
Hypocreales species 4	AHB02_1A	pending	Undetermined
Hypocreales species 5	PXB19_7B	pending	Undetermined
Hypoxylon species 1	PNB11_8C	pending	Saprotroph
Infundibulomyces species 1	JHGB24_7A	pending	Saprotroph
Irpex species 1	JMGB02_5A	pending	Wood decay
Isaria species 1	PXB03_9A	pending	Entomopathogenic
Jattaea species 1	AMB05_9A2A	pending	Wood decay
Kirschsteiniothelia species	AHGB13_8B	pending	Saprotroph
Kirschsteiniothelia species	PNB24_8B	pending	Saprotroph
Kretzschmaria species 1	PNB08_9C1	pending	Wood decay
Lachnum species 1	JHB02_3A2	pending	Saprotroph
Lasiodiplodia species 1	PXB05_3A	pending	Plant pathogen

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Lasiodiplodia species 2	AMB14_1A	pending	Plant pathogen
Lecanicillium species 1	JMB06_8B	pending	Entomopathogenic
Leptodiscella species 1	PNB23_8C	pending	Saprotroph
Letendraea species 1	PNB05_3A	pending	Saprotroph
Lophiostoma species 1	PNB31_2A	pending	Saprotroph
Lophiostoma species 2	PXB22_4C2	pending	Saprotroph
Magnaporthaceae species 1	AHGB19_4BC	pending	Undetermined
Magnaporthaceae species 2	AHGB25_2A	pending	Undetermined
Marasmiellus species 1	JHGB06_2A	pending	Plant pathogen
Metapochonia species 1	JHB10_4A	pending	Entomopathogenic
Metapochonia species 2	AHB21_6A	pending	Entomopathogenic
Mucorales species 1	PXB11_6A	pending	Undetermined
Mucorales species 2	PNB07_6A	pending	Undetermined
Muscodor species 1	JMGB05_7B	pending	Fungicolous
Muscodor species 2	AMGB23_6A	pending	Fungicolous
Muscodor species 3	AHGB10_2B	pending	Fungicolous
Mycena species 1	AHB15_9A1	pending	Saprotroph
Mycoleptodiscus species 1	JHGB12_8A	pending	Plant pathogen
Myrothecium species 1	AHGB03_4A	pending	Plant pathogen
Nectria species 1	AHB02_4A	pending	Plant pathogen
Nectriaceae species 1	AHB12_1C	pending	Undetermined
Nemania species 1	PXB16_9B	pending	Saprotroph
Nemania species 2	JHGB07_5B	pending	Saprotroph
Nemania species 3	JMGB03_2A	pending	Saprotroph
Nemania species 5	AMGB24_8A	pending	Saprotroph
Nemania species 6	AHGB23_4A	pending	Saprotroph
Neocosmospora species 1	AMB09_3B	pending	Fungicolous
Neopestalotiopsis species 1	PNB24_5A	pending	Plant pathogen
Neopestalotiopsis species 2	JHB09_8A	pending	Plant pathogen
Neopestalotiopsis species 3	AHB12_8B	pending	Plant pathogen
Oidiodendron species 1	JMB08_5A	pending	Saprotroph
Oxydothis species 1	JHGB17_3A	pending	Saprotroph
Paecilomyces species 1	PNB19_2A1	pending	Entomopathogenic
Paraconiothyrium species 1	PXB09_4A	pending	Fungicolous
Paraconiothyrium species 2	JMB01_2B	pending	Fungicolous
Paraconiothyrium species 3	PNB10_6A	pending	Fungicolous

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Paraconiothyrium species 4	PNB15_1B1	pending	Fungicolous
Paramyrothecium species 1	AHGB09_6A1	pending	Plant pathogen
Paraphaeosphaeria species	AHB05_2A	pending	Saprotroph
Penicillium species 1	PNB11_7A	pending	Saprotroph
Penicillium species 10	AMB16_2A	pending	Saprotroph
Penicillium species 11	AHB02_6B	pending	Saprotroph
Penicillium species 12	JHB22_8A	pending	Saprotroph
Penicillium species 13	PNB19_6A1	pending	Saprotroph
Penicillium species 14	PNB05_1B	pending	Saprotroph
Penicillium species 15	PNB11_5B	pending	Saprotroph
Penicillium species 16	JHB06_3D1	pending	Saprotroph
Penicillium species 17	PNB13_9A	pending	Saprotroph
Penicillium species 18	PNB01_1B	pending	Saprotroph
Penicillium species 2	PNB18_6A1	pending	Saprotroph
Penicillium species 3	PNB11_4A	pending	Saprotroph
Penicillium species 4	PNB24_1B	pending	Saprotroph
Penicillium species 5	AMB04_1A	pending	Saprotroph
Penicillium species 6	PXB17_9B	pending	Saprotroph
Penicillium species 7	AHB27_1AB	pending	Saprotroph
Penicillium species 8	PXB06_8A	pending	Saprotroph
Penicillium species 9	PXB13_3A	pending	Saprotroph
Peniophora species 1	AMB03_1A	pending	Wood decay
Peniophora species 2	GPB11_7D	pending	Wood decay
Pestalotiopsis species 1	JMB08_3B2	pending	Plant pathogen
Pezicula species 1	PXB14_1B	pending	Plant pathogen
Pezicula species 2	AHGB23_2A2	pending	Plant pathogen
Pezicula species 3	AMGB06_5B	pending	Plant pathogen
Phaeoacremonium species	AMB18_8B2	pending	Plant pathogen
Phaeoacremonium species	AHB24_3A	pending	Plant pathogen
Phaeophlebiopsis species 1	JHGB25_4A	pending	Saprotroph
Phanerochaete species 1	PXB08_9B	pending	Wood decay
Phanerochaete species 2	AMB21_5A	pending	Wood decay
Phialea species 1	AMB18_3A	pending	Saprotroph
Phialemoniopsis species 1	PNB33_3A	pending	Saprotroph
Phialemoniopsis species 2	PXB05_5A	pending	Saprotroph
Phialocephala species 1	AHB14_9A1A	pending	Saprotroph

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Phialocephala species 2	AMB14_7A	pending	Saprotroph
Phlebia species 1	AMB20_4A	pending	Wood decay
Phlebiopsis species 1	JHGB12_6B	pending	Saprotroph
Phlebiopsis species 2	JHB09_6B	pending	Saprotroph
Phyllosticta species 1	AHGB01_6A	pending	Plant pathogen
Phyllosticta species 2	AHGB12_5A	pending	Plant pathogen
Phyllosticta species 3	JHGB13_8A	pending	Plant pathogen
Physisporinus species 1	AHB01_7B	pending	Wood decay
Pleosporales species 1	JMGB08_3A1	pending	Undetermined
Pleosporales species 2	JMB15_9B	pending	Undetermined
Pleosporales species 3	AMB08_2B	pending	Undetermined
Pleosporales species 4	AHB18_9B	pending	Undetermined
Pleosporales species 5	AHB11_2A1A	pending	Undetermined
Pleurostoma species 1	AMB01_6A	pending	Saprotroph
Polyporales species 1	PXB17_2A	pending	Undetermined
Polyporales species 2	PNB28_5A	pending	Undetermined
Pseudallescheria species 1	JMB10_5B	pending	Saprotroph
Pseudofusicoccum species	AHGB12_2B	pending	Plant pathogen
Pseudopestalotiopsis	GPB03_6B	pending	Plant pathogen
Psilocybe species 1	AHB13_3A1	pending	Saprotroph
Purpureocillium species 1	PXB04_1B	pending	Entomopathogenic
Purpureocillium species 2	AHB10_9A	pending	Entomopathogenic
Pyrenochaetopsis species 1	AHB10_7A	pending	Saprotroph
Rigidoporus species 1	AHGB17_3B	pending	Wood decay
Roussoella species 1	PNB08_6A	pending	Saprotroph
Thyridariaceae species 1	PNB16_5A1	pending	Saprotroph
Thyridariaceae species 2	PXB15_4B	pending	Saprotroph
Thyridariaceae species 3	AHB24_2B	pending	Saprotroph
Sarocladium species 1	AHB01_8B	pending	Saprotroph
Schizophyllum species 1	AHGB05_6A	pending	Wood decay
Scopuloides species 1	PNB08_8A2	pending	Wood decay
Scytalidium species 1	PXB08_9A	pending	Fungicolous
Scytalidium species 2	AMB15_1A	pending	Fungicolous
Scytalidium species 3	JHB14_8A	pending	Fungicolous
Scytalidium species 4	PNB27_4C_1	pending	Fungicolous
Septobasidium species 1	PNB30_8B	pending	Entomopathogenic

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Sistotrema species 1	AHGB05_5B	pending	Mycorrhizal
Sistotrema species 2	PNB21_8	pending	Mycorrhizal
Sistotremastrum species 1	AHB20_7A2	pending	Saprotroph
Sordariales species 1	JHGB25_5B	pending	Undetermined
Sordariales species 2	JMGB03_6B1	pending	Undetermined
Sordariomycetes species 1	JHGB15_7B	pending	Undetermined
Sordariomycetes species 10	JHB04_2A	pending	Undetermined
Sordariomycetes species 2	JHGB16_1A	pending	Undetermined
Sordariomycetes species 3	JHGB02_5B	pending	Undetermined
Sordariomycetes species 5	JHGB10_2A	pending	Undetermined
Sordariomycetes species 6	JHGB06_3B	pending	Undetermined
Sphaeronaemella species 1	PXB04_2B	pending	Saprotroph
Stachybotryaceae species 1	AHB27_4F	pending	Undetermined
Stereum species 1	AMB05_6B	pending	Saprotroph
Stereum species 2	JHGB02_3A	pending	Saprotroph
Talaromyces species 1	PNB11_5A1	pending	Saprotroph
Talaromyces species 2	PNB17_5A2	pending	Saprotroph
Talaromyces species 3	PXB20_3A	pending	Saprotroph
Talaromyces species 4	AHB30_8A	pending	Saprotroph
Talaromyces species 5	JHB10_8A	pending	Saprotroph
Talaromyces species 6	PXB08_8A	pending	Saprotroph
Talaromyces species 7	AHB27_4G	pending	Saprotroph
Thozetella species 1	JMGB15_5A	pending	Saprotroph
Thozetella species 2	JMGB06_7A1	pending	Saprotroph
Tinctoporellus species 1	PNB27_6A	pending	Wood decay
Tinctoporellus species 2	JHGB01_1A	pending	Wood decay
Tolypocladium species 1	PNB01_1A1	pending	Entomopathogenic
Tolypocladium species 2	AHB21_5B	pending	Entomopathogenic
Tolypocladium species 3	PNB17_7A1	pending	Entomopathogenic
Tolypocladium species 4	AHB13_7A	pending	Entomopathogenic
Tolypocladium species 5	JHB08_3B	pending	Entomopathogenic
Trametes species 1	AHB23_1A	pending	Wood decay
Trematosphaeriaceae	AHGB26_2B	pending	Undetermined
Tremellales species 1	PNB09_9A	pending	Undetermined
Trichocomaceae species 1	PNB28_4A	pending	Saprotroph
Trichoderma species 1	AMB08_8B	pending	Fungicolous

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Trichoderma species 10	PXB02_8B	pending	Fungicolous
Trichoderma species 11	AHB02_2A	pending	Fungicolous
Trichoderma species 12	AHB14_3B	pending	Fungicolous
Trichoderma species 13	PNB09_5A	pending	Fungicolous
Trichoderma species 15	PXB01_8B	pending	Fungicolous
Trichoderma species 16	PNB03_2A	pending	Fungicolous
Trichoderma species 17	PXB09_9B	pending	Fungicolous
Trichoderma species 18	AMB08_2A	pending	Fungicolous
Trichoderma species 19	PNB14_8A	pending	Fungicolous
Trichoderma species 2	AHB15_1A	pending	Fungicolous
Trichoderma species 20	AMB22_3A1A	pending	Fungicolous
Trichoderma species 21	AHB03_3A	pending	Fungicolous
Trichoderma species 22	PXB06_1A	pending	Fungicolous
Trichoderma species 23	AHB05_3B2	pending	Fungicolous
Trichoderma species 24	AMB11_7A	pending	Fungicolous
Trichoderma species 3	PNB10_7A2	pending	Fungicolous
Trichoderma species 4	PNB15_6B	pending	Fungicolous
Trichoderma species 5	JHB08_2A	pending	Fungicolous
Trichoderma species 6	PNB12_1A1	pending	Fungicolous
Trichoderma species 7	AMB17_6A	pending	Fungicolous
Trichoderma species 8	JMB03_8B	pending	Fungicolous
Trichoderma species 9	AHB24_4B	pending	Fungicolous
Umbelopsis species 1	AHB27_3F2	pending	Saprotroph
Verticillium species 1	PXB21_4A	pending	Nematicidal
Virgaria species 1	PNB13_4A1	pending	Saprotroph
Wardomyces species 1	AHB16_5A	pending	Saprotroph
Xenoacremonium species 1	AHB27_3B	pending	Saprotroph
Xylaria species 1	JMGB05_9B	pending	Saprotroph
Xylaria species 4	GPB18_4A	pending	Saprotroph
Xylaria species 5	PXB08_4A	pending	Saprotroph
Xylaria species 6	JHGB20_9	pending	Saprotroph
Xylaria species 7	AHGB04_1A	pending	Saprotroph
Xylaria species 8	GPB06_4C	pending	Saprotroph
Xylariaceae species 1	PXB19_5A	pending	Saprotroph
Anungitea species 1	JHGB05_3B	pending	Undetermined
Xylariales species 2	PNB02_6D	pending	Undetermined

Taxonomic assignment	Representative isolate	GenBank no.	Function guild assignment
Sordariomycetes species 4	PNB10_2A	pending	Undetermined
Sordariomycetes species 7	JHGB23_7B	pending	Undetermined
Xylomelasma species 1	AMB02_6A	pending	Undetermined
Xylona species 1	PNB16_8B	pending	Undetermined
Zasmidium species 1	AHB32_8A	pending	Saprotroph

SUPPLEMENTARY TABLE 2.1. The number of characters per locus, as well as the nucleotide substation models used in this study.

Alignment properties such as percent gaps, number of missing data, number of conserved or variable characters, number of parsimony informative or singleton characters, are also provided.

Genes/loci	ITS	TEF	TUB	HIS
Characters included in analysis (with gaps)	507	396	538	526
Conserved characters	303	79	183	279
Variable characters	193	300	196	209
Parsimony informative (PI)	142	252	166	168
Singleton (non PI)	51	42	30	39
Percent gaps in analysis	13%	29%	12%	19%
Number of missing data	0	1	2	15
Nucleotide substitution models	GTR+G+I	HKY+I+G	HKY+I+G	HKY+I+G

SUPPLEMENTARY TABLE 3.1. Operational taxonomic unit (OTU) taxonomic and function guild assignments using Pipeline BLASTn OTUs (PIPE OTU) method.

OTU	PIPE OTU Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment	Chimeric sequence (x) or real (-)
otu_389	Absidia	1	50	Saprotroph	-
otu_248	Acremonium antarcticum	3	95	Fungicolous	-
otu_27	Acremonium antarcticum	8	26649	Fungicolous	-
otu_468	Acremonium citrinum	1	15	Fungicolous	-
otu_384	Acremonium persicinum	1	18	Fungicolous	-
otu_607	Acremonium persicinum	2	17	Fungicolous	-
otu_204	Acremonium polychromum	2	4	Saprotroph	-
otu_284	Acremonium polychromum	1	61	Fungicolous	-
otu_447	Acremonium polychromum	1	16	Fungicolous	-
otu_716	Acremonium psammosporum	1	4	Fungicolous	-
otu_722	Acremonium variecolor	1	32	Fungicolous	-
otu_431	Agaricales species 1	1	37	Undetermined	-
otu_640	Agrocybe erebia	1	8	Saprotroph	-
otu_789	Alternaria alternata	1	5	Plant pathogen	-
otu_484	Antrodia alpina	1	15	Wood decay	-
otu_337	Ascomycota species 1	1	52	Undetermined	-
otu_695	Ascomycota species 2	1	8	Undetermined	-
otu_853	Ascomycota species 3	1	5	Undetermined	-
otu_340	Aspergillus penicillioides	1	29	Saprotroph	-
otu_211	Athelia decipiens	1	94	Plant pathogen	-
otu_305	Basidiobolus species 1	1	91	Saprotroph	-
otu_167	Basidiomycete species 1	8	445	Undetermined	-
otu_1028	Basidiomycota species 1	3	14	Undetermined	-
otu_329	Basidiomycota species 2	9	243	Undetermined	-
otu_130	Basidiomycota species 3	1	582	Undetermined	-
otu_400	Beltrania species 1	1	23	Saprotroph	-
otu_809	Beltrania pseudorhombica	1	5	Saprotroph	-
otu_540	Betamyces species	1	13	Plant pathogen	-
otu_726	Blastobotrys nivea	1	13	Saprotroph	-
otu_61	Buckleyzyma armeniaca	1	1136	Undetermined	-
otu_453	Bullera alba	1	18	Saprotroph	-
otu_1122	Campylocarpon fasciculare	1	2	Plant pathogen	-

otu_429	Campylocarpon fasciculare	1	12	Plant pathogen	-
otu_57	Campylocarpon fasciculare	4	1744	Plant pathogen	-
otu_671	Campylocarpon fasciculare	1	8	Plant pathogen	-
otu_1206	Candida ascalaphidarum	1	2	Saprotroph	X
otu_1079	Candida mucifera	1	2	Saprotroph	-
otu_44	Candida mucifera	1	2366	Saprotroph	-
otu_436	Candida oceani	1	13	Saprotroph	-
otu_4	Candida temnochilae	20	106	Saprotroph	-
otu_693	Candida zeylanoides	1	6	Saprotroph	-
otu_596	Ceriporia species 1	1	10	Wood decay	-
otu_302	Ceriporia spissa	4	66	Wood decay	-
otu_467	Chaetothyriales species 1	1	20	Undetermined	-
otu_966	Chaetothyriales species 2	1	2	Undetermined	-
otu_703	Cladophialophora species 1	1	4	Saprotroph	-
otu_704	Cladophialophora species 2	1	4	Saprotroph	-
otu_54	Clonostachys species 1	3	1507	Saprotroph	-
otu_1101	Clonostachys byssicola	1	2	Saprotroph	-
otu_111	Clonostachys byssicola	9	1480	Saprotroph	-
otu_1159	Clonostachys byssicola	1	4	Saprotroph	-
otu_561	Clonostachys byssicola	2	24	Saprotroph	-
otu_672	Clonostachys byssicola	1	7	Saprotroph	-
otu_891	Clonostachys byssicola	1	11	Saprotroph	-
otu_301	Clonostachys divergens	2	50	Saprotroph	-
otu_1160	Clonostachys phyllophila	1	2	Saprotroph	-
otu_1171	Clonostachys phyllophila	1	2	Saprotroph	-
otu_1158	Clonostachys pityrodes	1	8	Saprotroph	-
otu_1233	Clonostachys pityrodes	1	2	Saprotroph	-
otu_1234	Clonostachys pityrodes	1	2	Saprotroph	-
otu_581	Clonostachys pityrodes	1	22	Saprotroph	-
otu_1199	Clonostachys rosea	1	2	Saprotroph	-
otu_1200	Clonostachys rosea	1	2	Saprotroph	x
otu_1204	Clonostachys rosea	1	2	Saprotroph	-
otu_1207	Clonostachys rosea	1	2	Saprotroph	X
otu_1208	Clonostachys rosea	1	2	Saprotroph	-
otu_129	Clonostachys rosea	2	658	Saprotroph	-
otu_432	Clonostachys rosea	1	21	Saprotroph	-
otu_567	Clonostachys rosea	1	12	Saprotroph	X
otu_617	Clonostachys rosea	2	15	Saprotroph	-
otu_621	Clonostachys rosea	5	19	Saprotroph	-

otu_887	Clonostachys rosea	1	3	Saprotroph	-
otu_894	Clonostachys rosea	1	3	Saprotroph	X
otu_895	Clonostachys rosea	1	6	Saprotroph	-
otu_913	Clonostachys rosea	4	40	Saprotroph	Х
otu_1244	Coralloidiomyces digitatus	1	2	Undetermined	-
otu_735	Corallomycetella repens	1	9	Plant pathogen	-
otu_1149	Cordyceps pseudomilitaris	1	2	Entomopathogenic	-
otu_877	Cordyceps pseudomilitaris	1	6	Entomopathogenic	_
otu_1245	Crepidotus epibryus	1	2	Wood decay	-
otu_404	Cylindrobasidium laeve	1	17	Undetermined	_
otu_788	Cyphellophora europaea	1	10	Saprotroph	_
otu_702	Cyphellophora olivacea	1	7	Undetermined	_
otu_1198	Debaryomyces species 1	1	18	Saprotroph	_
otu_208	Debaryomyces species 2	4	235	Saprotroph	_
otu_160	Debaryomyces species 3	2	224	Saprotroph	_
otu_108	Debaryomyces hansenii	1	494	Saprotroph	_
otu_1118	Debaryomyces hansenii	1	4	Saprotroph	_
otu_120	Debaryomyces hansenii	10	1662	Saprotroph	-
otu_1212	Debaryomyces hansenii	1	2	Saprotroph	-
otu_2	Debaryomyces hansenii	72	255672	Saprotroph	-
otu_405	Debaryomyces hansenii	5	111	Saprotroph	-
otu_530	Debaryomyces hansenii	3	60	Saprotroph	_
otu_659	Debaryomyces hansenii	2	11	Saprotroph	-
otu_669	Debaryomyces hansenii	3	16	Saprotroph	-
otu_751	Debaryomyces hansenii	1	11	Saprotroph	-
otu_18	Debaryomyces nepalensis	28	36255	Saprotroph	-
otu_668	Debaryomyces nepalensis	6	113	Saprotroph	-
otu_862	Debaryomyces nepalensis	30	2147	Saprotroph	-
otu_905	Debaryomyces nepalensis	3	10	Saprotroph	-
otu_715	Deconica species 1	1	6	Saprotroph	-
otu_154	Dendrophora albobadia	2	196	Saprotroph	-
otu_970	Dothideomycetes species 1	1	2	Undetermined	Х
otu_485	Endophytic basidiomycete	1	23	Undetermined	-
otu_308	Entomocorticium species 1	1	46	Entomopathogenic	-
otu_175	Exophiala species 1	3	215	Saprotroph	-
	Fibroporia gossypium	1	2	Wood decay	-
	Filobasidium magnum	1	296	Saprotroph	-
 otu_910	Fomitiporia species 1	1	3	Plant pathogen	-
otu_1036	Fungal species 1	1	2	Undetermined	_

	Fungal species 2	1	4	Undetermined	-
	Fungal species 3	1	2	Undetermined	-
otu_1120	Fungal species 4	1	2	Undetermined	-
otu_1126	Fungal species 5	1	4	Undetermined	-
otu_1167	Fungal species 6	1	4	Undetermined	-
otu_1228	Fungal species 7	1	4	Undetermined	-
otu_168	Fungal species 8	1	351	Undetermined	-
otu_178	Fungal species 9	1	345	Undetermined	-
otu_195	Fungal species 10	1	112	Undetermined	-
otu_23	Fungal species 11	12	22585	Undetermined	-
otu_288	Fungal species 12	1	13	Undetermined	-
otu_410	Fungal species 13	2	74	Undetermined	-
otu_534	Fungal species 14	1	27	Undetermined	-
otu_604	Fungal species 15	1	9	Undetermined	-
otu_657	Fungal species 16	1	21	Undetermined	-
otu_661	Fungal species 17	1	10	Undetermined	Х
otu_72	Fungal species 18	2	208	Undetermined	-
otu_731	Fungal species 19	2	204	Undetermined	-
otu_733	Fungal species 20	2	25	Undetermined	-
otu_906	Fungal species 21	1	5	Undetermined	-
otu_742	Fungal endophyte species 1	1	14	Undetermined	-
otu_258	Fusarium species 1	4	205	Plant pathogen	-
otu_748	Fusarium ambrosium	1	9	Plant pathogen	-
otu_417	Fusarium species 2	1	28	Plant pathogen	-
otu_1128	Fusarium decemcellulare	1	2	Plant pathogen	-
otu_1143	Fusarium decemcellulare	1	2	Plant pathogen	-
otu_1121	Fusarium nematophilum	1	2	Plant pathogen	_
otu_864	Fusarium nematophilum	1	7	Plant pathogen	-
otu_1057	Fusarium solani	1	2	Plant pathogen	-
otu_1097	Fusarium solani	1	2	Plant pathogen	_
otu_1102	Fusarium solani	1	2	Plant pathogen	-
otu_1178	Fusarium solani	1	8	Plant pathogen	-
otu_1194	Fusarium solani	1	4	Plant pathogen	-
otu_188	Fusarium solani	3	151	Plant pathogen	-
otu_26	Fusarium solani	12	9913	Plant pathogen	-
otu_359	Fusarium solani	1	23	Plant pathogen	-
otu_523	Fusarium solani	1	10	Plant pathogen	-
otu_564	Fusarium solani	1	9	Plant pathogen	-
 otu_886	Fusarium solani	1	3	Plant pathogen	-

otu 908	Fuscoporia species 1	1	5	Saprotroph	-
otu 294	Fuscoporia ferruginosa	1	49	Saprotroph	_
otu 320	Fuscoporia gilva	1	44	Saprotroph	_
	Fusicolla acetilerea	3	6	Plant pathogen	X
	Fusicolla acetilerea	1	2	Plant pathogen	_
	Fusicolla acetilerea	1	2	Plant pathogen	<u> </u>
	Fusicolla acetilerea	1	2	Plant pathogen	_
	Fusicolla acetilerea	1	4	Plant pathogen	_
otu_1101 otu 213	Fusicolla acetilerea	3	79	Plant pathogen	_
otu_215	Fusicolla acetilerea	5	78	Plant pathogen	_
otu_500	Fusicolla acetilerea	4	112	Plant pathogen	_
otu_111 otu_522	Fusicolla acetilerea	5	38	Plant pathogen	
otu_522	Fusicolla acetilerea	1	13	Plant pathogen	
otu_011	Fusicolla acetilerea	11	1325	Plant pathogen	
otu_07	Fusicolla acetilerea	1	6	Plant pathogen	_
otu_757	Fusicolla acetilerea	2	9	Plant pathogen	
otu_855	Fusicolla acetilerea	1	6	Plant pathogen	
otu_855	Fusicolla acetilerea	1	3	Plant pathogen	-
otu_939	Fusicolla acetilerea	1	2	Plant pathogen	-
otu 944	Ganoderma applanatum	1	2	Plant pathogen	-
otu 269	Gelatoporia pannocincta	1	62	Wood decay	
otu 1076	Geosmithia species 1	1	2	Saprotroph	-
otu_1070		1	2	Saprotroph	-
otu_1189	Geosmithia species 2 Geosmithia species 3	4		Saprotroph	-
		4	18 2	Saprotroph	-
otu_1148					-
otu_670	Gliomastix murorum	1	7	Saprotroph	-
otu_965	Gliomastix murorum	1	2	Saprotroph	-
	Gliomastix polychroma	2	22	Saprotroph	-
otu_153	Gliomastix polychroma	6	3216	Saprotroph	-
otu_212	Gliomastix polychroma	4	134	Saprotroph	-
otu_214	Gliomastix polychroma	1	193	Saprotroph	-
otu_226	Gliomastix polychroma	1	96	Saprotroph	-
otu_28	Gliomastix polychroma	20	26018	Saprotroph	-
otu_300	Gliomastix polychroma	1	50	Saprotroph	-
otu_562	Gliomastix polychroma	1	12	Saprotroph	-
otu_713	Gliomastix polychroma	2	12	Saprotroph	-
otu_734	Gliomastix polychroma	1	7	Saprotroph	-
otu_850	Gliomastix polychroma	1	7	Saprotroph	-
otu_872	Gliomastix polychroma	1	3	Saprotroph	-

otu 907	Gliomastix polychroma	1	3	Saprotroph	-
 otu 1139		1	2	Saprotroph	_
 otu_1141		1	2	Saprotroph	-
	Gloeotinia temulenta	1	2	Saprotroph	-
 otu 118	Gloeotinia temulenta	2	775	Saprotroph	-
	Gloeotinia temulenta	1	2	Saprotroph	-
 otu 31	Gloeotinia temulenta	11	25806	Saprotroph	-
 otu 498	Gloeotinia temulenta	1	37	Saprotroph	-
 otu 740	Gloeotinia temulenta	1	6	Saprotroph	-
 otu 367	Gongronella butleri	3	100	Saprotroph	-
 otu 975	Gongronella butleri	1	2	Saprotroph	-
 otu 705	Grandinia species 1	2	9	Plant Pathogen	-
 otu_375	Granulobasidium vellereum	1	19	Wood decay	-
otu 1080	Graphium penicillioides	1	4	Saprotroph	-
 otu 1082	Graphium penicillioides	1	2	Saprotroph	-
	Graphium penicillioides	2	133	Saprotroph	_
	Graphium penicillioides	2	49	Saprotroph	-
 otu 614	Graphium penicillioides	1	6	Saprotroph	-
 otu_552	Gymnopilus species 1	2	15	Wood decay	-
 otu_310	Gymnopilus picreus	1	42	Wood decay	-
 otu 964	Gymnopus species 1	1	2	Saprotroph	-
 otu 943	Gymnopus dichrous	1	2	Saprotroph	-
 otu 927	Gymnopus melanopus	1	2	Saprotroph	-
 otu_312	Hirsutella species 1	1	48	Entomopathogenic	-
 otu_786	Hirsutella species 2	1	3	Entomopathogenic	-
otu_712	Hymenochaete corrugata	1	7	Wood decay	-
		1	2	Wood decay	-
otu_268	Hyphodermella rosae	3	82	Saprotroph	-
otu_666	Hyphodontia crustosa	1	12	Saprotroph	-
otu_278	Hyphodontia flavipora	5	87	Saprotroph	-
	Hyphodontia nespori	5	253	Saprotroph	-
 otu_590	Hyphodontia rimosissima	1	9	Saprotroph	-
otu_1010	Hypholoma capnoides	1	4	Wood decay	-
otu_1022	Hypocreales species 1	3	20	Undetermined	Х
		1	2	Undetermined	_
_	Hypocreales species 3	2	4	Undetermined	-
	Hypocreales species 4	1	2	Undetermined	-
	Hypocreales species 5	1	2	Undetermined	_
 otu_116	Hypocreales species 6	9	3752	Undetermined	-

otu 1163	Hypocreales species 7	1	2	Undetermined	_
	Hypocreales species 8	1	2	Undetermined	
	Hypocreales species 9	1	2	Undetermined	
	Hypocreales species 10	1	4	Undetermined	X
	Hypocreales species 11	2	8	Undetermined	X
otu 128	Hypocreales species 12	3	542	Undetermined	-
otu_120	Hypocreales species 12 Hypocreales species 13	4	296	Undetermined	
otu_100	Hypocreales species 14	1	127	Undetermined	
otu 236	Hypocreales species 15	9	632	Undetermined	
otu_200	Hypocreales species 16	1	74	Undetermined	
otu_301	Hypocreales species 17	9	164	Undetermined	
otu_571	Hypocreales species 18	3	1936	Undetermined	
otu_50	Hypocreales species 19 Hypocreales species 19	1	8	Undetermined	
otu_529	Hypocreales species 20	3	19	Undetermined	_
otu_578	Hypocreales species 20 Hypocreales species 21	3	19	Undetermined	-
	Hypocreales species 21 Hypocreales species 22	1	10	Undetermined	-
otu_665		1		Undetermined	-
otu_675	Hypocreales species 23		17		-
otu_682	Hypocreales species 24	4	31	Undetermined	Х
otu_725	Hypocreales species 25	1	6	Undetermined	Х
otu_744	Hypocreales species 26	1	17	Undetermined	-
otu_750	Hypocreales species 27	2	20	Undetermined	Х
otu_755	Hypocreales species 28	1	8	Undetermined	-
otu_8	Hypocreales species 29	51	150142	Undetermined	-
otu_837	Hypocreales species 30	1	3	Undetermined	-
otu_896	Hypocreales species 31	2	13	Undetermined	-
otu_976	Hypocreales species 32	1	2	Undetermined	-
otu_183	Irpex lacteus	2	166	Wood decay	-
otu_629	Jattaea prunicola	1	11	Wood decay	-
otu_972	Junghuhnia nitida	1	2	Wood decay	-
otu_1218	Lasiodiplodia theobromae	1	2	Plant pathogen	-
otu_971	Lecanicillium Hypocreales	1	2	Entomopathogenic	-
otu_554	Lecanicillium kalimantanense	1	9	Entomopathogenic	-
otu_97	Lecanicillium kalimantanense	2	631	Entomopathogenic	-
otu_206	Lentinellus castoreus	1	92	Saprotroph	-
otu_41	Lenzites betulinus	2	3309	Wood decay	-
otu_1017	Leptosphaeria microscopica	1	2	Plant pathogen	Х
otu_808	Malassezia globosa	4	43	Saprotroph	-
otu_92	Malassezia japonica	10	878	Saprotroph	-
otu_53	Malassezia restricta	18	5987	Saprotroph	-

otu_585	Marasmiellus species 1	1	13	Plant pathogen	-
otu_24	Marasmiellus candidus	3	3507	Plant pathogen	-
otu_94	Marasmius rotula	1	1046	Saprotroph	-
otu_532	Memnoniella echinata	1	13	Wood decay	-
otu_6	Metarhizium anisopliae	32	62691	Entomopathogenic	-
otu_820	Metarhizium anisopliae	1	5	Entomopathogenic	-
otu_158	Metschnikowia species 1	3	252	Undetermined	-
otu_1236	Meyerozyma guilliermondii	1	2	Saprotroph	-
otu_277	Mycena species 1	1	51	Saprotroph	-
otu_574	Myxarium nucleatum	1	18	Wood decay	-
	Myxospora musae	1	2	Undetermined	-
otu_1177	Myxospora musae	2	4	Undetermined	-
otu_239	Myxospora musae	1	125	Undetermined	-
otu_286	Myxospora musae	1	63	Undetermined	-
otu 35	Myxospora musae	7	7925	Undetermined	-
	Myxospora musae	1	25	Undetermined	-
 otu 746	Myxospora musae	1	8	Undetermined	-
otu 882	Myxospora musae	1	3	Undetermined	-
otu 32	Naganishia albida	2	8	Undetermined	-
otu 935	Nectria species 1	1	2	Plant pathogen	-
 otu 961	Nectria bactridioides	1	2	Plant pathogen	-
 otu 1165	Nectria pseudotrichia	1	2	Plant pathogen	-
	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1188	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1190	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1192	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1195	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1196	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_1219	Nectria pseudotrichia	1	2	Plant pathogen	-
otu_13	Nectria pseudotrichia	25	25796	Plant pathogen	-
otu_197	Nectria pseudotrichia	1	107	Plant pathogen	-
otu_289	Nectria pseudotrichia	2	69	Plant pathogen	-
otu_324	Nectria pseudotrichia	1	51	Plant pathogen	-
 otu_37	Nectria pseudotrichia	1	3703	Plant pathogen	-
 otu_571	Nectria pseudotrichia	1	12	Plant pathogen	-
 otu_749	Nectria pseudotrichia	1	13	Plant pathogen	-
 otu_766	Nectria pseudotrichia	1	5	Plant pathogen	-
 otu_829	Nectria pseudotrichia	1	2	Plant pathogen	_
 otu_884	Nectria pseudotrichia	1	3	Plant pathogen	_

otu 901	Nectria pseudotrichia	1	6	Plant pathogen	
	_	1	2	Plant pathogen	-
otu_933	Nectria pseudotrichia	1	5	Lichenized	-
otu_781	Ocellularia perforata				-
otu_470	Ophiocordyceps species 1	1	14	Entomopathogenic	-
otu_174	Ophiocordyceps arbuscula	1	233	Entomopathogenic	-
otu_133	Ophiostoma flexuosum	2	323	Plant pathogen	-
otu_296	Ophiostoma perfectum	1	30	Plant pathogen	-
otu_822	Panus species 1	1	5	Undetermined	-
otu_477	Paracremonium inflatum	1	12	Undetermined	-
otu_576	Penicillium citrinum	2	17	Saprotroph	-
otu_977	Penicillium lineolatum	1	2	Saprotroph	-
otu_1117	Penicillium meleagrinum	2	8	Saprotroph	-
otu_1210	Penicillium meleagrinum	1	2	Saprotroph	-
otu_15	Penicillium meleagrinum	19	53002	Saprotroph	-
otu_200	Penicillium meleagrinum	4	365	Saprotroph	-
otu_393	Penicillium meleagrinum	3	26	Saprotroph	-
otu_433	Penicillium meleagrinum	12	1038	Saprotroph	-
otu_754	Penicillium meleagrinum	1	6	Saprotroph	-
otu_974	Penicillium meleagrinum	1	4	Saprotroph	-
otu_1172	Penicillium roseopurpureum	1	2	Saprotroph	_
otu_146	Penicillium steckii	1	292	Saprotroph	-
otu_550	Peniophora species 1	1	13	Wood decay	-
otu_627	Peniophora species 1	2	11	Wood decay	-
otu_223	Peniophorella guttuliferum	1	119	Saprotroph	-
otu_1231	Perenniporia species 1	1	2	Wood decay	-
otu_339	Perenniporia corticola	1	40	Wood decay	-
otu_597	Perenniporia vanhullii	1	6	Wood decay	-
otu_1191	Phaeoacremonium parasiticum	1	4	Plant pathogen	-
otu_969	Phaeoacremonium viticola	1	2	Plant pathogen	-
otu 219	Phanerochaete sordida	1	23	Wood decay	_
otu 1182	Phialemoniopsis curvata	1	2	Saprotroph	_
 otu_171	Phialemoniopsis curvata	4	327	Saprotroph	-
 otu_496	Phialemoniopsis curvata	1	14	Saprotroph	-
 otu 662	Phialemoniopsis curvata	1	5	Saprotroph	-
	Phialemonium dimorphosporum	1	34	Saprotroph	-
otu_1187	Phialophora geniculata	1	2	Undetermined	-
otu_392	Phlebia acanthocystis	2	39	Wood decay	-
otu_441	Phlebia acerina	1	16	Wood decay	-

otu 806	Phlebia chrysocreas	1	3	Wood decay	-
 otu 514	Phlebia tremellosa	1	12	Wood decay	-
 otu 812	Phlebia uda	1	3	Wood decay	-
 otu_978	Pholiota species 1	1	2	Saprotroph	-
 otu_979	Physisporinus vitreus	1	4	Wood decay	-
 otu 711	Plectosphaerella species 1	1	26	Plant pathogen	-
otu 33	Plectosphaerella citrullae	8	1114	Plant pathogen	-
 otu 646	Plectosphaerella citrullae	2	22	Plant pathogen	-
 otu 1125	Plectosphaerella cucumerina	1	2	Plant pathogen	-
 otu 124	Plectosphaerella cucumerina	1	270	Plant pathogen	-
 otu 647	Plectosphaerella cucumerina	1	8	Plant pathogen	-
 otu 680	Plectosphaerellaceae species 1	1	12	Undetermined	-
 otu 1085	Plectosporium alismatis	1	2	Plant Pathogen	Х
 otu 1068	-	1	2	Undetermined	-
 otu 1069		1	2	Undetermined	-
 otu 143	Pleosporales species 3	2	442	Undetermined	-
 otu 492	Pleosporales species 4	1	82	Undetermined	-
 otu 557	Pleosporales species 5	1	23	Undetermined	-
 otu_603	Pleosporales species 6	1	13	Undetermined	-
 otu 723	Pleosporales species 7	1	4	Undetermined	-
 otu 842	Pleosporales species 8	1	23	Undetermined	-
 otu 262	Pluteus variabilicolor	1	67	Wood decay	-
 otu 1140		1	8	Entomopathogenic	-
 otu 224	Pochonia species 2	3	148	Entomopathogenic	-
otu 58	Pochonia bulbillosa	1	1630	Entomopathogenic	-
 otu 580	Pochonia bulbillosa	1	19	Entomopathogenic	-
	Pochonia chlamydosporia	1	2	Entomopathogenic	-
otu_1033	Pochonia chlamydosporia	1	2	Entomopathogenic	-
	Pochonia chlamydosporia	30	47429	Entomopathogenic	-
otu_1119	Pochonia chlamydosporia	1	4	Entomopathogenic	-
		1	2	Entomopathogenic	-
		1	2	Entomopathogenic	-
	Pochonia chlamydosporia	1	2	Entomopathogenic	-
	Pochonia chlamydosporia	2	6	Entomopathogenic	-
	Pochonia chlamydosporia	1	2	Entomopathogenic	-
 otu_140	Pochonia chlamydosporia	2	288	Entomopathogenic	-
	Pochonia chlamydosporia	2	142	Entomopathogenic	-
	Pochonia chlamydosporia	1	30	Entomopathogenic	-
otu 451	Pochonia chlamydosporia	1	42	Entomopathogenic	-

otu_488	Pochonia chlamydosporia	1	13	Entomopathogenic	-
otu_5	Pochonia chlamydosporia	41	87459	Entomopathogenic	-
otu_525	Pochonia chlamydosporia	1	16	Entomopathogenic	-
otu_565	Pochonia chlamydosporia	4	45	Entomopathogenic	-
otu_577	Pochonia chlamydosporia	2	17	Entomopathogenic	-
otu_608	Pochonia chlamydosporia	1	13	Entomopathogenic	-
otu_667	Pochonia chlamydosporia	1	25	Entomopathogenic	-
otu_863	Pochonia chlamydosporia	1	5	Entomopathogenic	-
otu_865	Pochonia chlamydosporia	1	7	Entomopathogenic	-
otu_866	Pochonia chlamydosporia	1	3	Entomopathogenic	-
otu_911	Pochonia chlamydosporia	1	7	Entomopathogenic	-
otu_1131	Pochonia rubescens	2	4	Entomopathogenic	-
otu_1152	Pochonia rubescens	1	2	Entomopathogenic	-
	Pochonia rubescens	21	1783	Entomopathogenic	-
otu_1224	Pochonia rubescens	1	2	Entomopathogenic	-
otu_14	Pochonia rubescens	35	65889	Entomopathogenic	-
otu_207	Pochonia rubescens	2	272	Entomopathogenic	-
otu_273	Pochonia rubescens	1	118	Entomopathogenic	-
otu_299	Pochonia rubescens	2	34	Entomopathogenic	-
otu_334	Pochonia rubescens	6	385	Entomopathogenic	-
otu_414	Pochonia rubescens	2	29	Entomopathogenic	-
otu_495	Pochonia rubescens	1	23	Entomopathogenic	-
otu_533	Pochonia rubescens	1	16	Entomopathogenic	-
otu_610	Pochonia rubescens	2	23	Entomopathogenic	-
otu_612	Pochonia rubescens	2	10	Entomopathogenic	-
otu_729	Pochonia rubescens	1	10	Entomopathogenic	-
otu_868	Pochonia rubescens	1	5	Entomopathogenic	-
otu_869	Pochonia rubescens	1	11	Entomopathogenic	-
otu_870	Pochonia rubescens	1	5	Entomopathogenic	-
otu_902	Pochonia rubescens	1	9	Entomopathogenic	-
otu_136	Polyporales species 1	1	310	Undetermined	-
otu_265	Polyporales species 2	5	144	Undetermined	-
otu_440	Polyporales species 3	2	26	Undetermined	-
otu_1030	Polypore species 1	1	6	Wood decay	-
otu_271	Postia fragilis	1	74	Wood decay	-
otu_548	Postia stiptica	1	13	Wood decay	-
otu_137	Puccinia coronata	1	260	Plant pathogen	-
otu_841	Purpureocillium species 1	1	8	Entomopathogenic	-
otu_1070	Purpureocillium lavendulum	1	2	Entomopathogenic	-

otu 1084	Purpureocillium lavendulum	1	4	Entomopathogenic	Х
otu 519	Purpureocillium lavendulum	1	19	Entomopathogenic	-
otu_519	Purpureocillium lavendulum	1	28	Entomopathogenic	_
otu_920	Purpureocillium lavendulum	1	5	Entomopathogenic	<u> </u>
otu_020	Purpureocillium lavendulum	1	13	Entomopathogenic	Х
otu_90	Purpureocillium lavendulum	7	1844	Entomopathogenic	X
otu_555	Purpureocillium lilacinum	1	2	Entomopathogenic	-
otu 382	Resupinatus species 1	1	26	Wood decay	
otu_502	Resupinatus alboniger	2	838	Wood decay	
otu_93	Rhizoctonia bataticola	1	123	-	-
		1		Plant pathogen Saprotroph	-
otu_493	Rhizomucor variabilis		12		-
otu_263	Rigidoporus crocatus	1	76	Wood decay	-
otu_210	Rigidoporus vinctus	1	96	Wood decay	-
otu_1023	Roussoellaceae species 1	2	4	Undetermined	-
otu_1024	-	1	2	Undetermined	-
	Roussoellaceae species 3	1	4	Undetermined	-
otu_235	Roussoellaceae species 4	1	481	Undetermined	-
otu_843	Roussoellaceae species 5	1	5	Undetermined	-
otu_138	Saccharomyces cerevisiae	1	460	Wood decay	Х
otu_458	Sakaguchia dacryoidea	1	17	Undetermined	-
otu_45	Sampaiozyma ingeniosa	1	2020	Undetermined	-
otu_1098	*	1	2	Saprotroph	-
otu_295	Sarcopodium araliae	2	60	Saprotroph	-
otu_155	Sarocladium gamsii	1	198	Saprotroph	-
otu_20	Sarocladium gamsii	4	10	Saprotroph	-
otu_232	Sarocladium gamsii	1	210	Saprotroph	-
otu_34	Sarocladium gamsii	3	8534	Saprotroph	-
otu_736	Sarocladium gamsii	1	11	Saprotroph	-
otu_1124	Sarocladium hominis	1	2	Saprotroph	-
otu_1136	Sarocladium strictum	1	8	Saprotroph	-
otu_114	Sarocladium strictum	4	463	Saprotroph	-
otu_250	Sarocladium strictum	32	656	Saprotroph	-
otu_3	Sarocladium strictum	129	1823481	Saprotroph	-
otu_306	Sarocladium strictum	9	121	Saprotroph	Х
otu_319	Sarocladium strictum	3	93	Saprotroph	-
otu_388	Sarocladium strictum	2	84	Saprotroph	-
otu_391	Sarocladium strictum	6	39	Saprotroph	-
otu_418	Sarocladium strictum	4	74	Saprotroph	-
otu_419	Sarocladium strictum	2	36	Saprotroph	-

4. 42.4	G 1 1	21	204	0 1	
otu_434	Sarocladium strictum	31	284	Saprotroph	-
otu_435	Sarocladium strictum	8	107	Saprotroph	-
otu_452	Sarocladium strictum	1	22	Saprotroph	-
otu_475	Sarocladium strictum	6	34	Saprotroph	-
otu_510	Sarocladium strictum	2	25	Saprotroph	-
otu_56	Sarocladium strictum	5	1372	Saprotroph	-
otu_584	Sarocladium strictum	28	113	Saprotroph	Х
otu_622	Sarocladium strictum	3	17	Saprotroph	-
otu_641	Sarocladium strictum	2	14	Saprotroph	-
otu_764	Sarocladium strictum	3	31	Saprotroph	X
otu_765	Sarocladium strictum	19	50	Saprotroph	Х
otu_767	Sarocladium strictum	11	42	Saprotroph	-
otu_77	Sarocladium strictum	42	3103	Saprotroph	-
otu_776	Sarocladium strictum	16	121	Saprotroph	-
otu_924	Sarocladium strictum	5	10	Saprotroph	-
otu_928	Sarocladium strictum	3	8	Saprotroph	-
otu_940	Sarocladium strictum	1	2	Saprotroph	-
otu_953	Sarocladium strictum	1	2	Saprotroph	Х
otu_957	Sarocladium strictum	1	2	Saprotroph	-
otu_958	Sarocladium strictum	1	2	Saprotroph	-
otu_228	Schizophyllum commune	1	84	Wood decay	-
otu_448	Schizopora radula	1	66	Wood decay	-
otu_1209	Simplicillium species 1	1	2	Entomopathogenic	-
otu_335	Simplicillium species 2	1	52	Entomopathogenic	-
otu_454	Simplicillium species 3	1	17	Entomopathogenic	-
otu_753	Simplicillium species 4	1	13	Entomopathogenic	-
otu_9	Simplicillium species 5	9	42624	Entomopathogenic	-
otu_1238	Simplicillium cylindrosporum	1	2	Entomopathogenic	-
otu_42	Simplicillium minatense	1	2811	Entomopathogenic	-
otu_649	Sistotremastrum guttuliferum	1	8	Saprotroph	-
otu_1203	Sordariomycetes species 1	1	2	Undetermined	Х
otu_1205	Sordariomycetes species 2	2	148	Undetermined	-
	Sordariomycetes species 3	6	1905	Undetermined	_
	Sordariomycetes species 4	2	245	Undetermined	_
 otu_358	Sordariomycetes species 5	2	89	Undetermined	_
 otu_752	Sordariomycetes species 6	1	8	Undetermined	-
 otu_846	Sordariomycetes species 7	4	86	Undetermined	_
 otu_847	Sordariomycetes species 8	1	3	Undetermined	_
 otu 890	Sordariomycetes species 9	1	3	Undetermined	_

otu_390	Sporobolomyces species 10	1	23	Fungicolous	-
otu_30	Stachybotrys species 1	8	17	Wood decay	-
otu_663	Stachybotrys longispora	1	5	Wood decay	-
otu_79	Stachybotrys longispora	2	643	Wood decay	-
otu_1183	Stachybotrys parvispora	1	8	Wood decay	-
otu_1186	Stachybotrys parvispora	1	4	Wood decay	-
otu_1193	Stachybotrys parvispora	1	4	Wood decay	-
otu_499	Stachybotrys parvispora	1	33	Wood decay	-
otu_885	Stachybotrys parvispora	1	3	Wood decay	-
otu_889	Stachybotrys parvispora	1	3	Wood decay	-
otu_346	Steccherinum ochraceum	1	33	Saprotroph	-
otu_272	Stephanonectria species 1	4	57	Saprotroph	-
otu_63	Stephanonectria species 2	1	1071	Saprotroph	-
otu_732	Stephanonectria species 3	2	10	Saprotroph	-
otu_459	Stephanonectria keithii	1	22	Saprotroph	-
otu_743	Stephanonectria keithii	1	4	Saprotroph	-
otu_676	Stereum species 1	1	5	Saprotroph	-
otu_923	Talaromyces atricola	1	2	Saprotroph	-
otu_267	Thanatephorus cucumeris	1	47	Plant pathogen	-
otu_1086	Tolypocladium species 1	1	4	Entomopathogenic	-
otu_1088	Tolypocladium species 2	1	2	Entomopathogenic	-
otu_1104	Tolypocladium species 3	1	2	Entomopathogenic	Х
otu_1107	Tolypocladium species 4	1	2	Entomopathogenic	Х
otu_1108	Tolypocladium species 5	1	4	Entomopathogenic	-
otu_1109	Tolypocladium species 6	1	2	Entomopathogenic	Х
otu_1110	Tolypocladium species 7	1	4	Entomopathogenic	-
otu_1135	Tolypocladium species 8	1	2	Entomopathogenic	-
otu_1155	Tolypocladium species 9	1	2	Entomopathogenic	-
otu_1211	Tolypocladium species 10	1	2	Entomopathogenic	Х
otu_201	Tolypocladium species 11	5	139	Entomopathogenic	-
otu_21	Tolypocladium species 12	23	35337	Entomopathogenic	-
otu_257	Tolypocladium species 13	6	157	Entomopathogenic	-
otu_348	Tolypocladium species 14	1	41	Entomopathogenic	X
otu_387	Tolypocladium species 15	2	38	Entomopathogenic	-
otu_528	Tolypocladium species 16	1	17	Entomopathogenic	-
 otu_559	Tolypocladium species 17	3	16	Entomopathogenic	Х
	Tolypocladium species 18	2	15	Entomopathogenic	Х
otu_606	Tolypocladium species 19	2	8	Entomopathogenic	-
	Tolypocladium species 20	2	9	Entomopathogenic	X

otu_688	Tolypocladium species 21	24	994	Entomopathogenic	-
otu 720	Tolypocladium species 22	1	2	Entomopathogenic	-
otu_730	Tolypocladium species 23	1	10	Entomopathogenic	-
otu_777	Tolypocladium species 24	2	8	Entomopathogenic	-
otu_858	Tolypocladium species 25	1	3	Entomopathogenic	-
otu_859	Tolypocladium species 26	1	3	Entomopathogenic	x
otu_941	Tolypocladium species 27	3	8	Entomopathogenic	-
otu 1154	Tolypocladium album	3	8	Entomopathogenic	-
 otu 266	Tolypocladium album	2	109	Entomopathogenic	-
 otu 413	Tolypocladium album	1	46	Entomopathogenic	-
 otu 428	Tolypocladium album	1	41	Entomopathogenic	-
 otu 449	Tolypocladium album	6	89	Entomopathogenic	-
 otu_857	Tolypocladium album	1	7	Entomopathogenic	-
 otu 950	Tolypocladium album	1	2	Entomopathogenic	X
	Tolypocladium inegoensis	1	6	Entomopathogenic	x
 otu_502	Tolypocladium inegoensis	1	35	Entomopathogenic	X
 otu 526	Tolypocladium pustulatum	3	36	Entomopathogenic	-
 otu 527	Tolypocladium pustulatum	1	8	Entomopathogenic	_
 otu_892	Tolypocladium pustulatum	1	3	Fungicolous	x
 otu_314	Trametes species 1	1	56	Wood decay	_
 otu 544	Trametes gibbosa	1	13	Wood decay	_
 otu 182	Trechispora regularis	2	164	Wood decay	_
 otu 242	Trechispora regularis	1	63	Wood decay	_
 otu_407	Trechispora regularis	1	24	Wood decay	-
 otu 121	Trichaptum abietinum	5	942	Wood decay	-
 otu 462	Trichoderma koningiopsis	2	25	Fungicolous	-
 otu 460	Tyromyces species 1	1	25	Wood decay	-
 otu 253	Tyromyces chioneus	1	60	Wood decay	-
	Tyromyces fissilis	2	79	Wood decay	-
 otu 372	Umbelopsis isabellina	2	34	Saprotroph	-
 otu 921	Uncultured acremonium	1	2	Fungicolous	_
 otu 521	Uncultured ascomycota	1	13	Undetermined	-
 otu_558	Uncultured ascomycota	1	9	Undetermined	_
 otu 658	Uncultured ascomycota	1	7	Undetermined	-
 otu 839	Uncultured ascomycota	1	7	Undetermined	_
 otu 86	Uncultured ascomycota	1	728	Undetermined	-
 otu_956	Uncultured ascomycota	1	2	Undetermined	X
	-	1	2	Basidiomycete	-
		1	2	Undetermined	-

otu_135	Uncultured basidiomycete	3	16	Undetermined	-
otu_152	Uncultured basidiomycete	1	224	Undetermined	-
otu_25	Uncultured basidiomycete	12	28413	Undetermined	-
otu_43	Uncultured basidiomycete	3	3277	Undetermined	-
otu_504	Uncultured basidiomycete	3	28	Undetermined	-
otu_785	Uncultured basidiomycete	1	3	Undetermined	-
otu_871	Uncultured basidiomycete	1	5	Undetermined	-
otu_967	Uncultured basidiomycete	1	2	Undetermined	-
otu_1007	Uncultured basidiomycota	1	4	Undetermined	-
otu_246	Uncultured basidiomycota	1	108	Undetermined	-
otu_632	Uncultured basidiomycota	1	7	Undetermined	-
otu_354	Uncultured calyptella	1	22	Saprotroph	-
otu_1004	Uncultured chaetothyriales	1	2	Undetermined	-
otu_461	Uncultured corticiaceae	1	31	Undetermined	-
otu_59	Uncultured eurotiales	5	1627	Undetermined	-
otu_760	Uncultured eurotiales	1	6	Undetermined	-
otu_10	Uncultured fungus	73	128406	Undetermined	-
otu_1000	Uncultured fungus	9	20	Undetermined	-
otu_1011	Uncultured fungus	1	2	Undetermined	-
otu_1015	Uncultured fungus	1	4	Undetermined	-
otu_106	Uncultured fungus	13	1403	Undetermined	-
otu_1073	Uncultured fungus	1	4	Undetermined	Х
otu_1077	Uncultured fungus	1	2	Undetermined	-
otu_1078	Uncultured fungus	1	2	Undetermined	X
otu_1093	Uncultured fungus	1	2	Undetermined	Х
otu_1106	Uncultured fungus	1	2	Undetermined	-
otu_1112	Uncultured fungus	1	2	Undetermined	-
otu_1113	Uncultured fungus	1	4	Undetermined	-
otu_1114	Uncultured fungus	1	2	Undetermined	-
otu_1115	Uncultured fungus	1	2	Undetermined	Х
otu_1134	Uncultured fungus	1	2	Undetermined	-
otu_1137	Uncultured fungus	1	6	Undetermined	-
otu_1147	Uncultured fungus	1	2	Undetermined	X
otu_1150	Uncultured fungus	1	2	Undetermined	-
	Uncultured fungus	3	12	Undetermined	-
otu_1157	Uncultured fungus	1	2	Undetermined	-
otu_1166	Uncultured fungus	3	18	Undetermined	-
otu_1173	Uncultured fungus	1	2	Undetermined	-
	Uncultured fungus	1	2	Undetermined	-

otu_1185	Uncultured fungus	2	4	Undetermined	-
otu 12	Uncultured fungus	52	78889	Undetermined	-
otu_1213	Uncultured fungus	1	2	Undetermined	-
otu_1214	Uncultured fungus	1	2	Undetermined	-
otu_1215	Uncultured fungus	1	24	Undetermined	-
otu_1220	Uncultured fungus	1	8	Undetermined	-
otu_1223	Uncultured fungus	1	4	Undetermined	-
otu_1226	Uncultured fungus	1	4	Undetermined	-
otu_1241	Uncultured fungus	1	2	Undetermined	X
otu_148	Uncultured fungus	7	1477	Undetermined	-
otu_151	Uncultured fungus	5	150	Undetermined	-
otu_157	Uncultured fungus	1	456	Undetermined	-
otu_165	Uncultured fungus	1	339	Undetermined	-
otu_17	Uncultured fungus	23	27062	Undetermined	-
otu_189	Uncultured fungus	3	288	Undetermined	-
otu_198	Uncultured fungus	1	209	Undetermined	-
otu_22	Uncultured fungus	19	24464	Undetermined	-
otu_221	Uncultured fungus	1	175	Undetermined	-
otu_238	Uncultured fungus	1	107	Undetermined	-
otu_251	Uncultured fungus	1	65	Undetermined	-
otu_280	Uncultured fungus	1	267	Undetermined	-
otu_281	Uncultured fungus	5	104	Undetermined	-
otu_292	Uncultured fungus	1	45	Undetermined	-
otu_328	Uncultured fungus	3	130	Undetermined	-
otu_350	Uncultured fungus	1	29	Undetermined	-
otu_353	Uncultured fungus	2	53	Undetermined	-
otu_364	Uncultured fungus	1	35	Undetermined	-
otu_366	Uncultured fungus	1	25	Undetermined	-
otu_38	Uncultured fungus	38	19402	Undetermined	X
otu_381	Uncultured fungus	4	110	Undetermined	X
otu_396	Uncultured fungus	2	16	Undetermined	-
otu_40	Uncultured fungus	31	10597	Undetermined	-
otu_408	Uncultured fungus	7	102	Undetermined	-
otu_415	Uncultured fungus	3	42	Undetermined	-
otu_416	Uncultured fungus	1	20	Undetermined	-
otu_425	Uncultured fungus	3	33	Undetermined	-
otu_427	Uncultured fungus	1	14	Undetermined	-
otu_430	Uncultured fungus	2	39	Undetermined	-
otu_443	Uncultured fungus	2	42	Undetermined	Х

otu_444	Uncultured fungus	1	20	Undetermined	-
otu 450	Uncultured fungus	6	119	Undetermined	-
	Uncultured fungus	12	1288	Undetermined	X
otu_469	Uncultured fungus	2	52	Undetermined	-
otu_472	Uncultured fungus	1	2	Undetermined	-
otu_48	Uncultured fungus	2	2494	Undetermined	-
otu_501	Uncultured fungus	1	13	Undetermined	Х
otu_505	Uncultured fungus	1	46	Undetermined	-
otu_524	Uncultured fungus	1	18	Undetermined	-
otu_531	Uncultured fungus	1	17	Undetermined	-
otu_536	Uncultured fungus	3	43	Undetermined	-
otu_549	Uncultured fungus	2	15	Undetermined	-
otu_563	Uncultured fungus	1	13	Undetermined	-
otu_568	Uncultured fungus	2	17	Undetermined	-
otu_572	Uncultured fungus	1	15	Undetermined	-
otu_609	Uncultured fungus	1	14	Undetermined	-
otu_616	Uncultured fungus	2	25	Undetermined	-
otu_619	Uncultured fungus	2	17	Undetermined	-
otu_620	Uncultured fungus	2	13	Undetermined	-
otu_653	Uncultured fungus	3	7	Undetermined	-
otu_673	Uncultured fungus	1	8	Undetermined	-
otu_679	Uncultured fungus	6	20	Undetermined	-
otu_697	Uncultured fungus	1	18	Undetermined	-
otu_710	Uncultured fungus	3	15	Undetermined	-
otu_738	Uncultured fungus	1	8	Undetermined	-
otu_739	Uncultured fungus	1	6	Undetermined	-
otu_74	Uncultured fungus	1	1036	Undetermined	-
otu_741	Uncultured fungus	1	11	Undetermined	-
otu_745	Uncultured fungus	2	868	Undetermined	-
otu_747	Uncultured fungus	1	10	Undetermined	-
otu_769	Uncultured fungus	1	3	Undetermined	-
otu_774	Uncultured fungus	1	5	Undetermined	-
otu_775	Uncultured fungus	1	3	Undetermined	-
otu_778	Uncultured fungus	1	5	Undetermined	-
otu_817	Uncultured fungus	1	3	Undetermined	Х
otu_821	Uncultured fungus	1	33	Undetermined	Х
otu_823	Uncultured fungus	1	3	Undetermined	-
otu_852	Uncultured fungus	1	3	Undetermined	-
otu_856	Uncultured fungus	1	3	Undetermined	-

otu 875	Uncultured fungus	1	3	Undetermined	
otu 880	Uncultured fungus	1	11	Undetermined	
otu 883	Uncultured fungus	1	3	Undetermined	
otu 888	Uncultured fungus	1	3	Undetermined	_
otu 893	Uncultured fungus	2	11	Undetermined	_
otu_093	Uncultured fungus	2	8	Undetermined	X
otu 963	Uncultured fungus	1	2	Undetermined	-
otu 973	Uncultured fungus	2	4	Undetermined	
otu 2773	Uncultured helotiales	1	3	Undetermined	
otu_879	Uncultured helotiales	1	2	Undetermined	
otu 385	Uncultured marasmiaceae	2	66	Undetermined	-
		2	2859		-
otu_47	Uncultured <i>mycena</i>	1		Saprotroph Undetermined	-
otu_343	Uncultured <i>tilletiopsis</i>		37		-
otu_1096		1	2	Entomopathogenic	-
otu_1100	Volutella species 1	1	2	Plant pathogen	-
otu_1103	Volutella species 2	1	2	Plant pathogen	-
otu_1138	1	3	22	Plant pathogen	-
otu_1168	Volutella species 4	1	2	Plant pathogen	-
otu_147	Volutella species 5	2	252	Plant pathogen	-
otu_227	Volutella species 6	4	301	Plant pathogen	-
otu_287	Volutella species 7	2	66	Plant pathogen	-
otu_327	Volutella species 8	1	96	Plant pathogen	-
otu_370	Volutella species 9	3	98	Plant pathogen	-
otu_494	Volutella species 10	1	11	Plant pathogen	-
otu_570	Volutella species 11	2	21	Plant pathogen	-
otu_692	Volutella species 12	1	4	Plant pathogen	-
otu_873	Volutella species 13	1	5	Plant pathogen	-
otu_881	Volutella species 14	1	5	Plant pathogen	-
otu_660	Volutella consors	1	5	Plant pathogen	-
otu_844	Volutella consors	1	7	Plant pathogen	-
otu_115	Wallemia mellicola	1	416	Saprotroph	-
otu_46	Wallemia mellicola	3	3303	Saprotroph	-
otu_849	Wallrothiella subiculosa	1	5	Undetermined	-
otu_547	Wolfiporia dilatohypha	1	10	Wood decay	-
otu_455	Xenasmatella aff	1	20	Wood decay	-
otu_573	Xenasmatella aff	1	28	Wood decay	-
	Xylariales species 1	2	30	Undetermined	-
	<i>Xylobolus frustulatus</i>	1	41	Saprotroph	-
	Yuchengia narymica	1	56	Saprotroph	-

SUPPLEMENTARY TABLE 3.2. Operational taxonomic unit (OTU) taxonomic and function guild assignments using RdP classifier with Warcup Fungal training set (RDP WAR) method.

OTU	RDP WAR Taxonomic assignment	Incidence frequency	No. Sequence reads	Function guild assignment	Chimeric seq (x) or real (-)
otu_558	Acremonium	1	9	Fungicolous	-
otu_86	Acremonium	1	728	Fungicolous	-
otu_1067	Acremonium asperulatum	1	4	Fungicolous	-
otu_168	Acremonium asperulatum	1	351	Fungicolous	-
otu_657	Acremonium asperulatum	1	21	Fungicolous	-
otu_722	Acremonium asperulatum	1	32	Fungicolous	-
otu_1120	Acremonium furcatum	1	2	Fungicolous	-
otu_23	Acremonium furcatum	12	22585	Fungicolous	-
otu_410	Acremonium furcatum	2	74	Fungicolous	-
otu_661	Acremonium furcatum	1	10	Fungicolous	X
otu_731	Acremonium furcatum	2	204	Fungicolous	-
otu_733	Acremonium furcatum	2	25	Fungicolous	-
otu_214	Acremonium polychromum	1	193	Fungicolous	-
otu_562	Acremonium polychromum	1	12	Fungicolous	-
otu_713	Acremonium polychromum	2	12	Fungicolous	-
otu_848	Acremonium polychromum	1	5	Fungicolous	-
otu_872	Acremonium polychromum	1	3	Fungicolous	-
otu_907	Acremonium polychromum	1	3	Fungicolous	-
otu_1071	Acremonium stromaticum	1	2	Fungicolous	-
otu_116	Acremonium stromaticum	9	3752	Fungicolous	-
otu_128	Acremonium stromaticum	3	542	Fungicolous	-
otu_304	Acremonium stromaticum	1	74	Fungicolous	-
otu_725	Acremonium stromaticum	1	6	Fungicolous	X
otu_607	Acremonium persicinum	2	17	Fungicolous	-
otu_1027	Acremonium polychromum	2	22	Fungicolous	-
otu_153	Acremonium polychromum	6	3216	Fungicolous	-
otu_204	Acremonium polychromum	2	4	Fungicolous	-
otu_226	Acremonium polychromum	1	96	Fungicolous	-
otu_28	Acremonium polychromum	20	26018	Fungicolous	-
otu_447	Acremonium polychromum	1	16	Fungicolous	-

otu_850	Acremonium polychromum	1	7	Fungicolous	-
otu_186	Acremonium species 1	1	127	Fungicolous	-
otu_837	Acremonium species 2	1	3	Fungicolous	-
otu_846	Acremonium species 3	4	86	Fungicolous	-
otu_1087	Acremonium species 4	2	4	Fungicolous	-
otu_7	Agaricales species 1	24	63494	Undetermined	-
otu_139	Agaricales species 2	2	303	Undetermined	-
otu_310	Agaricales species 3	1	42	Undetermined	-
otu_431	Agaricales species 4	1	37	Undetermined	-
otu_385	Agaricales species 5	2	66	Undetermined	-
otu_666	Agaricomycetes species 10	1	12	Undetermined	-
otu_392	Agaricomycetes species 11	2	39	Undetermined	-
otu_1021	Agaricomycetes species 12	1	2	Undetermined	-
otu_509	Agaricomycetes species 13	2	17	Undetermined	-
 otu_448	Agaricomycetes species 14	1	66	Undetermined	-
otu_598	Agaricomycetes species 2	1	10	Undetermined	-
otu_302	Agaricomycetes species 3	4	66	Undetermined	-
otu_223	Agaricomycetes species 4	1	119	Undetermined	-
otu 1231	Agaricomycetes species 5	1	2	Undetermined	-
otu_1245	Agaricomycetes species 6	1	2	Undetermined	-
otu_136	Agaricomycetes species 7	1	310	Undetermined	-
otu_710	Agaricomycetes species 8	3	15	Undetermined	-
otu_944	Agaricomycetes species 9	1	2	Undetermined	-
otu_640	Agrocybe erebia	1	8	Saprotroph	-
otu_789	Alternaria alternata	1	5	Plant pathogen	-
otu_484	Amyloporia xantha	1	15	Saprotroph	-
otu_485	Amyloxenasma	1	23	Saprotroph	-
otu_486	Ascomycota species 10	1	13	Undetermined	-
otu_240	Ascomycota species 11	1	82	Undetermined	-
otu_1004	Ascomycota species 12	1	2	Undetermined	-
otu_1112	Ascomycota species 13	1	2	Undetermined	-
	Ascomycota species 14	1	432	Undetermined	-
otu_1079	Ascomycota species 15	1	2	Undetermined	-
otu_235	Ascomycota species 16	1	481	Undetermined	-
otu_575	Ascomycota species 17	1	11	Undetermined	-
otu_695	Ascomycota species 18	1	8	Undetermined	-
otu_1023	Ascomycota species 19	2	4	Undetermined	-
otu_1228	Ascomycota species 20	1	4	Undetermined	-
otu 557	Ascomycota species 21	1	23	Undetermined	-

otu_906	Ascomycota species 22	1	5	Undetermined	-
otu 59	Ascomycota species 23	5	1627	Undetermined	-
otu 524	Ascomycota species 24	1	18	Undetermined	-
otu 865	Ascomycota species 25	1	7	Undetermined	_
otu_760	Ascomycota species 26	1	6	Undetermined	-
otu_1066	Ascomycota species 27	1	4	Undetermined	-
otu_1165	Ascomycota species 28	1	2	Undetermined	-
otu_966	Ascomycota species 29	1	2	Undetermined	-
	Ascomycota species 30	1	2	Undetermined	-
 otu 1069	Ascomycota species 31	1	2	Undetermined	_
otu 681	Ascomycota species 32	1	8	Undetermined	-
otu 522	Ascomycota species 33	5	38	Undetermined	_
	Ascomycota species 34	1	34	Undetermined	X
	Ascomycota species 35	1	4	Undetermined	-
otu 939	Ascomycota species 36	1	2	Undetermined	-
 otu 173	Ascomycota species 37	1	158	Undetermined	-
 otu 368	Ascomycota species 38	5	78	Undetermined	-
otu 1083	Ascomycota species 39	1	2	Undetermined	_
 otu 970	Ascomycota species 4	1	2	Undetermined	x
 otu_411	Ascomycota species 40	4	112	Undetermined	-
 otu 1156	Ascomycota species 41	1	2	Undetermined	-
otu 737	Ascomycota species 42	1	6	Undetermined	-
 otu_874	Ascomycota species 43	1	3	Undetermined	-
otu_611	Ascomycota species 44	1	13	Undetermined	-
otu_1148	Ascomycota species 45	1	2	Undetermined	-
otu_502	Ascomycota species 46	1	35	Undetermined	X
otu_1094	Ascomycota species 47	1	2	Undetermined	-
otu_1068	Ascomycota species 48	1	2	Undetermined	-
otu_1024	Ascomycota species 49	1	2	Undetermined	-
otu_819	Ascomycota species 5	1	6	Undetermined	-
otu_898	Ascomycota species 50	1	3	Undetermined	-
otu_723	Ascomycota species 51	1	4	Undetermined	-
otu_1130	Ascomycota species 52	1	2	Undetermined	x
otu_609	Ascomycota species 53	1	14	Undetermined	-
otu_854	Ascomycota species 54	2	9	Undetermined	-
otu_714	Ascomycota species 55	1	8	Undetermined	-
otu_855	Ascomycota species 56	1	6	Undetermined	-
otu_647	Ascomycota species 57	1	8	Undetermined	-
otu_703	Ascomycota species 58	1	4	Undetermined	-

otu 1096	Ascomycota species 59	1	2	Undetermined	-
 otu 853	Ascomycota species 6	1	5	Undetermined	_
 otu 413	Ascomycota species 60	1	46	Undetermined	_
 otu_459	Ascomycota species 61	1	22	Undetermined	_
	Ascomycota species 62	1	2	Undetermined	_
 otu 744	Ascomycota species 63	1	17	Undetermined	_
	Ascomycota species 64	1	2	Undetermined	_
 otu 338	Ascomycota species 65	1	34	Undetermined	_
 otu 174	Ascomycota species 66	1	233	Undetermined	_
 otu 519	Ascomycota species 67	1	19	Undetermined	_
otu 730	Ascomycota species 68	1	10	Undetermined	_
otu 841	Ascomycota species 69	1	8	Undetermined	_
otu_011	Ascomycota species 7	1	4	Undetermined	_
otu761	Ascomycota species 70	1	3	Undetermined	_
otu_670	Ascomycota species 70	2	17	Undetermined	_
otu_308	Ascomycota species 72	3	33	Undetermined	-
otu_423	Ascomycota species 72	1	345	Undetermined	-
	Ascomycota species 74	1	11	Undetermined	-
otu_494		1	11	Undetermined	-
otu_736	Ascomycota species 75	1	44	Undetermined	-
otu_373	Ascomycota species 76				-
otu_957	Ascomycota species 77	1	2	Undetermined	-
otu_836	Ascomycota species 78	1	5	Undetermined	-
otu_274	Ascomycota species 79	1	68	Undetermined	-
otu_631	Ascomycota species 8	3	12	Undetermined	-
otu_842	Ascomycota species 80	1	23	Undetermined	-
otu_954	Ascomycota species 9	1	2	Undetermined	-
otu_340	Aspergillus penicillioides	1	29	Saprotroph	-
otu_211	Athelia decipiens	1	94	Plant pathogen	-
otu_198	Auriculariales Incertae sedis	1	209	Undetermined	-
otu_305	Basidiobolus ranarum	1	91	Saprotroph	-
otu_127	Basidiomycota speccies 1	1	325	Undetermined	-
otu_503	Basidiomycota speccies 2	1	4	Undetermined	-
otu_455	Basidiomycota speccies 3	1	20	Undetermined	-
otu_76	Basidiomycota speccies 4	2	1483	Undetermined	-
otu_618	Basidiomycota speccies 5	1	8	Undetermined	-
otu_573	Basidiomycota speccies 6	1	28	Undetermined	-
otu_152	Basidiomycota speccies 7	1	224	Undetermined	-
otu_260	Basidiomycota speccies 8	1	85	Undetermined	-
otu_809	Beltrania rhombica	1	5	Saprotroph	-

otu_20	Bionectriaceae species 1	4	10	Saprotroph	-
otu 1199	Bionectriaceae species 2	1	2	Saprotroph	-
otu_1158	Bionectriaceae species 3	1	8	Saprotroph	-
otu_432	Bionectriaceae species 4	1	21	Saprotroph	-
otu_267	Bjerkandera species 1	1	47	Saprotroph	-
otu_726	Blastobotrys nivea	1	13	Saprotroph	-
otu_453	Bullera alba	1	18	Saprotroph	-
otu 354	Calyptella capula	1	22	Saprotroph	-
		1	2	Plant pathogen	-
	Campylocarpon fasciculare	1	8	Plant pathogen	-
 otu 224	Campylocarpon fasciculare	3	148	Plant pathogen	-
otu 57	Campylocarpon fasciculare	4	1744	Plant pathogen	-
 otu_671	Campylocarpon species 1	1	8	Plant pathogen	-
 otu_429	Campylocarpon species 2	1	12	Plant pathogen	-
 otu 922	Candida duobushaemulonii	1	2	Saprotroph	X
 otu 108	Candida glaebosa	1	494	Saprotroph	-
	Candida pseudohaemulonii	1	2	Saprotroph	X
 otu_436	Candida oceani	1	13	Saprotroph	-
 otu_693	Candida santamariae	1	6	Saprotroph	-
 otu_623	Candida species 3	1	40	Saprotroph	X
 otu_4	Candida temnochilae	20	106	Saprotroph	-
otu_467	Chaetothyriales species 1	1	20	Undetermined	-
otu_702	Chaetothyriales species 2	1	7	Undetermined	-
otu_788	Chaetothyriales species 3	1	10	Undetermined	-
otu_72	Clavicipitaceae species 1	2	208	Entomopathogenic	-
otu_869	Clavicipitaceae species 3	1	11	Entomopathogenic	-
otu_451	Clavicipitaceae species 4	1	42	Entomopathogenic	-
otu_870	Clavicipitaceae species 5	1	5	Entomopathogenic	-
otu_288	Clavicipitaceae species 6	1	13	Entomopathogenic	-
otu_902	Clavicipitaceae species 7	1	9	Entomopathogenic	-
otu_820	Clavicipitaceae species 8	1	5	Entomopathogenic	-
otu_1233	Clonostachys pityrodes	1	2	Saprotroph	-
otu_1234	Clonostachys pityrodes	1	2	Saprotroph	-
otu_301	Clonostachys divergens	2	50	Saprotroph	-
otu_1171	Clonostachys phyllophila	1	2	Saprotroph	-
otu_1077	Clonostachys rosea	1	2	Saprotroph	-
 otu_111	Clonostachys rosea	9	1480	Saprotroph	-
otu_1200	Clonostachys rosea	1	2	Saprotroph	x
otu 1207	Clonostachys rosea	1	2	Saprotroph	х

otu 129	Clonostachys rosea	2	658	Saprotroph	-
 otu 561	Clonostachys rosea	2	24	Saprotroph	_
 otu 567	Clonostachys rosea	1	12	Saprotroph	X
 otu_894	Clonostachys rosea	1	3	Saprotroph	X
 otu_913	Clonostachys rosea	4	40	Saprotroph	X
	Clonostachys species 1	1	2	Saprotroph	-
otu_581	Clonostachys species 10	1	22	Saprotroph	-
otu 887	Clonostachys species 11	1	3	Saprotroph	-
 otu_891	Clonostachys species 2	1	11	Saprotroph	-
 otu 617	Clonostachys species 3	2	15	Saprotroph	-
	Clonostachys species 4	1	2	Saprotroph	-
 otu 621	Clonostachys species 5	5	19	Saprotroph	-
	Clonostachys species 6	1	4	Saprotroph	-
 otu 895	Clonostachys species 7	1	6	Saprotroph	-
 otu 935	Clonostachys species 8	1	2	Saprotroph	-
 otu_672	Clonostachys species 9	1	7	Saprotroph	-
 otu_871	Cutaneotrichosporon jirovecii	1	5	Saprotroph	-
 otu 404	Cylindrobasidium evolvens	1	17	Undetermined	-
	Cyphellaceae species 1	1	19	Undetermined	-
 otu_251	Cystofilobasidium macerans	1	65	Saprotroph	-
 otu 811	Dacryobolus sudans	1	5	Plant pathogen	-
otu 1198	Debaryomyces nepalensis	1	18	Saprotroph	-
otu 18	Debaryomyces nepalensis	28	36255	Saprotroph	-
otu_862	Debaryomyces nepalensis	30	2147	Saprotroph	-
otu_1212	Debaryomyces species 1	1	2	Saprotroph	-
otu 751	Debaryomyces species 2	1	11	Saprotroph	-
otu 1206	Debaryomyces species 3	1	2	Saprotroph	X
otu_669	Debaryomyces species 4	3	16	Saprotroph	-
otu_530	Debaryomyces species 5	3	60	Saprotroph	-
otu 208	Debaryomyces species 6	4	235	Saprotroph	-
otu_1118	Debaryomyces species 7	1	4	Saprotroph	-
	Debaryomyces vindobonensis	10	1662	Saprotroph	-
 otu_2	Debaryomyces vindobonensis	72	255672	Saprotroph	-
 otu_405	Debaryomyces vindobonensis	5	111	Saprotroph	-
 otu_659	Debaryomyces vindobonensis	2	11	Saprotroph	-
 otu_668	Debaryomyces vindobonensis	6	113	Saprotroph	-
 otu_905	Debaryomyces vindobonensis	3	10	Saprotroph	-
otu_1030	Erythromyces crocicreas	1	6	Saprotroph	-
	Exophiala equina	3	215	Saprotroph	-

otu 161	Filobasidium magnum	1	296	Saprotroph	-
 otu 910	Fomitiporia	1	3	Plant pathogen	_
	Fusarium keratoplasticum	1	8	Plant pathogen	-
	Fusarium keratoplasticum	4	205	Plant pathogen	-
otu 26	Fusarium neocosmosporiellum	12	9913	Plant pathogen	-
otu 523	Fusarium neocosmosporiellum	1	10	Plant pathogen	-
 otu_748	Fusarium neocosmosporiellum	1	9	Plant pathogen	-
 otu 359	Fusarium solani	1	23	Plant pathogen	-
 otu_417	Fusarium solani	1	28	Plant pathogen	-
 otu 908	Fuscoporia	1	5	Saprotroph	_
	Fuscoporia gilva	1	44	Wood decay	-
 otu 294	Fuscoporia ferruginosa	1	49	Saprotroph	-
	Fusicolla acetilerea	3	6	Saprotroph	X
 otu 213	Fusicolla acetilerea	3	79	Saprotroph	_
otu 67	Fusicolla acetilerea	11	1325	Saprotroph	_
 otu_734	Gliomastix species 1	1	7	Saprotroph	_
 otu 300	Gliomastix species 2	1	50	Saprotroph	-
 otu 212	Gliomastix species 3	4	134	Saprotroph	_
 otu_269	Gloeoporus pannocinctus	1	62	Wood decay	-
	Golubevia pallescens	1	37	Undetermined	-
 otu 367	Gongronella butleri	3	100	Saprotroph	-
 otu_975	Gongronella butleri	1	2	Saprotroph	-
 otu 192	Graphium jumulu	2	133	Saprotroph	-
 otu_614	Graphium jumulu	1	6	Saprotroph	-
otu_1082	Graphium species 1	1	2	Saprotroph	-
	Graphium species 2	1	4	Saprotroph	-
	Graphium species 3	2	49	Saprotroph	-
otu_552	Gymnopilus	2	15	Wood decay	-
otu_927	Gymnopus melanopus	1	2	Saprotroph	-
otu_497	Halomyces littoreus	1	12	Plant Pathogen	-
	Halosphaeriaceae species 1	2	245	Undetermined	-
		1	2	Undetermined	-
otu_712	Hymenochaetopsis rigidula	1	7	Saprotroph	-
otu_268	Hyphodermella rosae	3	82	Saprotroph	-
otu_278	Hyphodontia flavipora	5	87	Wood decay	-
otu_705	Hyphodontia arguta	2	9	Saprotroph	-
otu_442	Hyphodontia microspora	1	16	Saprotroph	-
otu_1010	Hypholoma capnoides	1	4	Wood decay	-
otu_926	Hypocreales Incertae sedis	1	2	Undetermined	x

otu_976	Hypocreales species 1	1	2	Undetermined	-
otu_1182	Hypocreales species 10	1	2	Undetermined	-
otu_11	Hypocreales species 100	30	47429	Undetermined	-
otu_475	Hypocreales species 101	6	34	Undetermined	-
otu_821	Hypocreales species 102	1	33	Undetermined	x
otu_608	Hypocreales species 103	1	13	Undetermined	-
otu_727	Hypocreales species 104	1	4	Undetermined	-
otu_1205	Hypocreales species 105	2	148	Undetermined	-
otu_675	Hypocreales species 106	1	17	Undetermined	-
otu_1246	Hypocreales species 107	1	2	Undetermined	x
otu_858	Hypocreales species 108	1	3	Undetermined	-
otu_774	Hypocreales species 109	1	5	Undetermined	-
otu_466	Hypocreales species 11	12	1288	Undetermined	x
otu_1111	Hypocreales species 110	1	2	Undetermined	-
otu_114	Hypocreales species 111	4	463	Undetermined	-
otu_1126	Hypocreales species 112	1	4	Undetermined	-
otu_358	Hypocreales species 113	2	89	Undetermined	-
otu_890	Hypocreales species 114	1	3	Undetermined	-
otu_884	Hypocreales species 115	1	3	Undetermined	-
otu_414	Hypocreales species 116	2	29	Undetermined	-
otu_1194	Hypocreales species 117	1	4	Undetermined	-
otu_679	Hypocreales species 118	6	20	Undetermined	-
otu_468	Hypocreales species 119	1	15	Undetermined	-
otu_845	Hypocreales species 12	1	3	Undetermined	X
otu_201	Hypocreales species 120	5	139	Undetermined	-
otu_327	Hypocreales species 121	1	96	Undetermined	-
otu_750	Hypocreales species 122	2	20	Undetermined	X
otu_1227	Hypocreales species 123	1	2	Undetermined	X
otu_775	Hypocreales species 124	1	3	Undetermined	-
otu_54	Hypocreales species 125	3	1507	Undetermined	-
otu_873	Hypocreales species 126	1	5	Undetermined	-
otu_653	Hypocreales species 127	3	7	Undetermined	-
otu_1151	Hypocreales species 128	1	2	Undetermined	-
otu_1155	Hypocreales species 129	1	2	Undetermined	-
otu_729	Hypocreales species 13	1	10	Undetermined	-
otu_1203	Hypocreales species 130	1	2	Undetermined	x
otu_150	Hypocreales species 131	4	296	Undetermined	-
otu_520	Hypocreales species 132	1	28	Undetermined	-
otu_1224	Hypocreales species 133	1	2	Undetermined	-

otu_1091	Hypocreales species 134	1	4	Undetermined	x
otu_122	Hypocreales species 136	21	1783	Undetermined	-
	Hypocreales species 137	1	118	Undetermined	-
otu_856	Hypocreales species 138	1	3	Undetermined	-
otu_868	Hypocreales species 139	1	5	Undetermined	-
otu_1179	Hypocreales species 14	1	2	Undetermined	-
otu_207	Hypocreales species 140	2	272	Undetermined	-
otu 610	Hypocreales species 141	2	23	Undetermined	-
 otu 570	Hypocreales species 15	2	21	Undetermined	_
 otu 395	Hypocreales species 16	1	25	Undetermined	-
 otu 353	Hypocreales species 17	2	53	Undetermined	-
 otu 189	Hypocreales species 18	3	288	Undetermined	-
otu 1116	Hypocreales species 19	1	2	Undetermined	x
 otu 1187	Hypocreales species 2	1	2	Undetermined	-
 otu 881	Hypocreales species 20	1	5	Undetermined	_
 otu 866	Hypocreales species 21	1	3	Undetermined	-
 otu 921	Hypocreales species 22	1	2	Undetermined	-
	Hypocreales species 23	1	8	Undetermined	_
 otu 371	Hypocreales species 24	9	164	Undetermined	_
	Hypocreales species 25	1	4	Undetermined	-
otu 34	Hypocreales species 26	3	8534	Undetermined	-
	Hypocreales species 27	1	4	Undetermined	-
 otu 384	Hypocreales species 28	1	18	Undetermined	-
otu 1127	Hypocreales species 29	1	2	Undetermined	_
 otu 786	Hypocreales species 3	1	3	Undetermined	_
otu 1152	Hypocreales species 30	1	2	Undetermined	-
	Hypocreales species 31	1	2	Undetermined	X
 otu 334	Hypocreales species 32	6	385	Undetermined	_
otu 56	Hypocreales species 33	5	1372	Undetermined	_
otu 97	Hypocreales species 34	2	631	Undetermined	_
 otu 554	Hypocreales species 35	1	9	Undetermined	_
 otu_155	Hypocreales species 36	1	198	Undetermined	-
 otu_50	Hypocreales species 37	3	1936	Undetermined	-
 otu 670	Hypocreales species 38	1	7	Undetermined	-
 otu 889	Hypocreales species 39	1	3	Undetermined	-
	Hypocreales species 4	1	48	Undetermined	-
	Hypocreales species 40	1	4	Undetermined	-
 otu 885	Hypocreales species 41	1	3	Undetermined	-
otu 606	Hypocreales species 42	2	8	Undetermined	-

otu 257	Hypocreales species 43	6	157	Undetermined	_
	Hypocreales species 44	1	2	Undetermined	_
otu 559	Hypocreales species 45	3	16	Undetermined	x
otu_622	Hypocreales species 46	3	17	Undetermined	-
otu 839	Hypocreales species 47	1	7	Undetermined	_
otu 488	Hypocreales species 48	1	13	Undetermined	_
-	Hypocreales species 49	1	2	Undetermined	x
otu 529	Hypocreales species 5	1	8	Undetermined	_
otu 667	Hypocreales species 50	1	25	Undetermined	_
	Hypocreales species 51	1	2	Undetermined	_
otu_1115 otu 743	Hypocreales species 52	1	4	Undetermined	_
	Hypocreales species 52 Hypocreales species 53	1	2	Undetermined	x
otu_1115 otu_941	Hypocreales species 55 Hypocreales species 54	3	8	Undetermined	-
	Hypocreales species 55	1	2	Undetermined	_
otu 965	Hypocreales species 55 Hypocreales species 56	1	2	Undetermined	
	Hypocreales species 56 Hypocreales species 57	1	4	Undetermined	-
	Hypocreales species 57 Hypocreales species 58	1	2	Undetermined	-
					-
otu_510	Hypocreales species 59	2	25	Undetermined	-
	Hypocreales species 6	1	2	Undetermined	-
	Hypocreales species 60	1	2	Undetermined	-
otu_735	Hypocreales species 61	1	9	Undetermined	-
otu_641	Hypocreales species 62	2	14	Undetermined	-
	Hypocreales species 63	1	2	Undetermined	-
	Hypocreales species 64	1	4	Undetermined	-
otu_572	Hypocreales species 65	1	15	Undetermined	-
	Hypocreales species 66	1	8	Undetermined	-
	Hypocreales species 67	1	2	Undetermined	-
	Hypocreales species 68	1	2	Undetermined	-
	Hypocreales species 69	1	2	Undetermined	X
otu_604	Hypocreales species 7	1	9	Undetermined	-
otu_1022	Hypocreales species 70	3	20	Undetermined	x
	Hypocreales species 71	1	4	Undetermined	x
otu_1033	Hypocreales species 72	1	2	Undetermined	-
otu_1201	Hypocreales species 73	2	8	Undetermined	х
otu_682	Hypocreales species 74	4	31	Undetermined	х
otu_8	Hypocreales species 75	50	150140	Undetermined	-
otu_289	Hypocreales species 76	2	69	Undetermined	-
otu_1102	Hypocreales species 77	1	2	Undetermined	-
otu_1076	Hypocreales species 78	1	2	Undetermined	-

otu 419	Hypocreales species 79	2	36	Undetermined	_
otu_41) otu 911	Hypocreales species 8	1	7	Undetermined	
otu_911	Hypocreales species 8 Hypocreales species 80	1	2	Undetermined	-
otu_971	Hypocreales species 80 Hypocreales species 81	1	13	Undetermined	-
		2	13	Undetermined	-
otu_620	Hypocreales species 82				-
otu_525	Hypocreales species 83	1	16	Undetermined	-
otu_844	Hypocreales species 84	1	7	Undetermined	-
	Hypocreales species 85	1	2	Undetermined	-
otu_549	Hypocreales species 86	2	15	Undetermined	-
otu_387	Hypocreales species 87	2	38	Undetermined	-
	Hypocreales species 88	2	4	Undetermined	-
otu_928	Hypocreales species 89	3	8	Undetermined	-
otu_284	Hypocreales species 9	1	61	Undetermined	-
otu_940	Hypocreales species 90	1	2	Undetermined	-
otu_1176	Hypocreales species 91	1	2	Undetermined	-
otu_528	Hypocreales species 92	1	17	Undetermined	-
otu_720	Hypocreales species 93	1	2	Undetermined	-
otu_196	Hypocreales species 94	2	142	Undetermined	-
otu_1123	Hypocreales species 95	1	2	Undetermined	-
otu_777	Hypocreales species 96	2	8	Undetermined	-
otu_1119	Hypocreales species 97	1	4	Undetermined	-
otu_749	Hypocreales species 98	1	13	Undetermined	-
otu_5	Hypocreales species 99	41	87459	Undetermined	-
otu_183	Irpex lacteus	2	166	Wood decay	-
otu_590	Isodon ramosissimus	1	9	Saprotroph	-
otu_629	Jattaea prunicola	1	11	Wood decay	-
otu_972	Junghuhnia nitida	1	2	Wood decay	-
otu_1218	Lasiodiplodia theobromae	1	2	Plant pathogen	-
otu_222	Lasiodiplodia theobromae	1	123	Plant pathogen	-
otu_206	Lentinellus castoreus	1	92	Saprotroph	-
otu_41	Lenzites betulina	2	3309	Wood decay	-
otu_1017	Leptosphaeria	1	2	Plant pathogen	x
otu_569	Leptosporomyces	1	17	Saprotroph	-
otu_1026	Lyomyces erastii	1	2	Saprotroph	-
otu_1029	Malassezia globosa	1	2	Saprotroph	-
	Malassezia globosa	3	16	Saprotroph	-
 otu_25	Malassezia globosa	12	28413	Saprotroph	-
 otu_504	Malassezia globosa	3	28	Saprotroph	-
 otu_53	Malassezia globosa	18	5987	Saprotroph	-

otu_785	Malassezia globosa	1	3	Saprotroph	-
otu_808	Malassezia globosa	4	43	Saprotroph	-
otu_92	Malassezia globosa	10	878	Saprotroph	-
otu_43	Malassezia species 1	3	3277	Saprotroph	-
otu_943	Marasmiaceae species 1	1	2	Plant pathogen	-
otu_585	Marasmiaceae species 2	1	13	Plant pathogen	-
otu_1014	Marasmiaceae species 3	1	2	Plant pathogen	-
otu_24	Marasmiaceae species 4	3	3507	Plant pathogen	-
otu_964	Marasmiaceae species 5	1	2	Plant pathogen	-
otu_1217	Marasmiaceae species 6	1	2	Plant pathogen	-
otu_94	Marasmius species 1	1	1046	Saprotroph	-
otu_596	Meruliaceae species 1	1	10	Undetermined	-
otu_6	Metarhizium species 1	32	62691	Entomopathogenic	-
otu_1236	Meyerozyma caribbica	1	2	Saprotroph	-
otu_1232	Mortierella species 1	1	2	Saprotroph	-
otu_493	Mucor	1	12	Saprotroph	-
otu_632	Mycena galericulata	1	7	Saprotroph	-
otu 277	Mycena species 1	1	51	Saprotroph	-
 otu_47	Mycenaceae species 1	2	2859	Undetermined	-
otu_440	Mycoacia fuscoatra	2	26	Saprotroph	-
otu_812	Mycoacia uda	1	3	Saprotroph	-
otu_35	Myrothecium species 1	7	7925	Saprotroph	_
otu_1170	Myrothecium species 2	1	2	Saprotroph	-
otu_32	Naganishia diffluens	2	8	Undetermined	-
otu_13	Nectria pseudotrichia	25	25796	Plant pathogen	-
otu_37	Nectria pseudotrichia	1	3703	Plant pathogen	-
otu_766	Nectria pseudotrichia	1	5	Plant pathogen	-
otu_901	Nectria pseudotrichia	1	6	Plant pathogen	-
otu_1121	Nectria setofusarii	1	2	Plant pathogen	-
otu_1180	Nectriaceae species 1	1	2	Undetermined	-
otu_1143	Nectriaceae species 2	1	2	Undetermined	-
otu_1128	Nectriaceae species 3	1	2	Undetermined	-
otu_886	Nectriaceae species 4	1	3	Undetermined	-
otu_1097	Nectriaceae species 5	1	2	Undetermined	-
otu_564	Nectriaceae species 6	1	9	Undetermined	-
otu_864	Nectriaceae species 7	1	7	Undetermined	-
otu_1073	Ophiocordycipitaceae species 1	1	4	Entomopathogenic	х
otu_1134	Ophiocordycipitaceae species 2	1	2	Entomopathogenic	-
otu_852	Ophiocordycipitaceae species 3	1	3	Entomopathogenic	-

otu_1092	Ophiocordycipitaceae species 4	1	2	Entomopathogenic	X
otu_888	Ophiocordycipitaceae species 5	1	3	Entomopathogenic	-
otu_1239	Ophiocordycipitaceae species 6	1	6	Entomopathogenic	Х
otu_296	Ophiostoma perfectum	1	30	Plant pathogen	-
otu_133	Ophiostoma rachisporum	2	323	Plant pathogen	-
otu_576	Penicillium citrinum	2	17	Saprotroph	-
otu_1172	Penicillium copticola	1	2	Saprotroph	-
otu_1105	Penicillium daleae	1	2	Saprotroph	-
otu_754	Penicillium species 1	1	6	Saprotroph	-
otu_974	Penicillium species 2	1	4	Saprotroph	_
otu_393	Penicillium species 3	3	26	Saprotroph	_
otu_200	Penicillium species 4	4	365	Saprotroph	-
otu_146	Penicillium steckii	1	292	Saprotroph	-
otu_1117	Penicillium sumatraense	2	8	Saprotroph	-
otu 1210	Penicillium sumatraense	1	2	Saprotroph	-
otu 15	Penicillium sumatraense	19	53002	Saprotroph	_
	Penicillium sumatraense	12	1038	Saprotroph	_
otu 308	Peniophora	1	46	Wood decay	_
otu 154	Peniophora albobadia	2	196	Wood decay	-
otu_265	Peniophora laxitexta	5	144	Wood decay	-
otu_329	Peniophora species 1	9	243	Wood decay	-
otu 1028	Peniophora species 2	3	14	Wood decay	-
otu_627	Peniophora species 3	2	11	Wood decay	_
otu_550	Peniophoraceae species 1	1	13	Undetermined	-
otu_339	Perenniporia vanhullii	1	40	Wood decay	-
otu_969	Phaeoacremonium	1	2	Plant pathogen	_
otu_1162	Phaeophlebiopsis caribbeana	1	2	Saprotroph	-
otu_219	Phanerochaete sordida	1	23	Wood decay	-
otu_806	Phlebia chrysocreas	1	3	Wood decay	-
otu_441	Phlebia rufa	1	16	Wood decay	-
otu_514	Phlebia tremellosa	1	12	Wood decay	-
otu_978	Pholiota adiposa	1	2	Saprotroph	-
 otu_979	Physisporinus vitreus	1	4	Wood decay	-
 otu_124	Plectosphaerella cucumerina	1	270	Plant pathogen	-
 otu_711	Plectosphaerella cucumerina	1	26	Plant pathogen	-
 otu_783	Plectosphaerella species 1	1	5	Plant pathogen	-
 otu_603	Pleosporales species 1	1	13	Undetermined	-
otu_143	Pleosporales species 3	2	442	Undetermined	-
 otu_531	Pleurotus pulmonarius	1	17	Entomopathogenic	-

otu_262	Pluteus leoninus	1	67	Wood decay	-
otu 195	Pochonia bulbillosa	1	112	Entomopathogenic	-
 otu_534	Pochonia bulbillosa	1	27	Entomopathogenic	-
otu 58	Pochonia bulbillosa	1	1630	Entomopathogenic	-
otu_580	Pochonia bulbillosa	1	19	Entomopathogenic	-
otu_612	Pochonia species 1	2	10	Entomopathogenic	-
otu_533	Pochonia species 2	1	16	Entomopathogenic	-
otu 822	Polyporaceae species 1	1	5	Undetermined	-
 otu 597	Polyporales species 1	1	6	Undetermined	-
otu 130	Polyporales species 2	1	582	Undetermined	-
 otu 271	Postia species 1	1	74	Wood decay	-
otu 548	Postia stiptica	1	13	Wood decay	-
 otu_715	Psilocybe	1	6	Saprotroph	-
 otu 137	Puccinia coronata	1	260	Plant pathogen	-
 otu 1045	Purpureocillium lilacinum	1	2	Entomopathogenic	-
	Purpureocillium lilacinum	1	4	Entomopathogenic	X
 otu 555	Purpureocillium lilacinum	1	2	Entomopathogenic	-
 otu 840	Purpureocillium lilacinum	1	13	Entomopathogenic	X
otu 90	Purpureocillium lilacinum	7	1844	Entomopathogenic	X
	Resinicium furfuraceum	1	4	Saprotroph	-
otu 382	Resupinatus	1	26	Wood decay	-
otu 95	Resupinatus alboniger	2	838	Wood decay	-
	Rigidoporus	1	96	Wood decay	-
 otu 263	Rigidoporus crocatus	1	76	Wood decay	-
 otu_337	Roussoella solani	1	52	Saprotroph	-
otu 324	Rubrinectria species 1	1	51	Saprotroph	-
otu 1195	Rubrinectria species 2	1	2	Saprotroph	-
otu 933	Rubrinectria species 3	1	2	Saprotroph	-
otu_571	Rubrinectria species 4	1	12	Saprotroph	-
otu 829	Rubrinectria species 5	1	2	Saprotroph	-
otu 1219	Rubrinectria species 6	1	2	Saprotroph	-
 otu 197	Rubrinectria species 7	1	107	Saprotroph	-
 otu_1196	Rubrinectria species 8	1	2	Saprotroph	-
 otu_1192	-	1	2	Saprotroph	-
 otu_323	Russulales species 1	1	41	Undetermined	-
	Saccharomyces species 1	1	4	Wood decay	-
	Saccharomyces species 2	1	460	Wood decay	х
 otu_458	Sakaguchia dacryoidea	1	17	Undetermined	-
otu 45	Sampaiozyma ingeniosa	1	2020	Undetermined	_

otu_1098	Sarcopodium araliae	1	2	Saprotroph	-
otu_295	Sarcopodium araliae	2	60	Saprotroph	-
 otu_920	Sarocladium oryzae	1	2	Saprotroph	X
otu_1124	Sarocladium hominis	1	2	Saprotroph	-
otu_950	Sarocladium species 3	1	2	Saprotroph	х
otu_768	Sarocladium species 4	2	5	Saprotroph	X
otu_250	Sarocladium strictum	32	656	Saprotroph	-
otu_3	Sarocladium strictum	129	1823481	Saprotroph	-
otu_3	Sarocladium strictum	129	1823481	Saprotroph	-
otu_3	Sarocladium strictum	129	1823481	Saprotroph	-
otu_306	Sarocladium strictum	9	121	Saprotroph	х
otu_388	Sarocladium strictum	2	84	Saprotroph	-
otu_391	Sarocladium strictum	6	39	Saprotroph	-
otu_418	Sarocladium strictum	4	74	Saprotroph	-
otu_434	Sarocladium strictum	31	284	Saprotroph	-
otu_435	Sarocladium strictum	8	107	Saprotroph	-
otu_452	Sarocladium strictum	1	22	Saprotroph	-
otu_584	Sarocladium strictum	28	113	Saprotroph	х
otu_764	Sarocladium strictum	3	31	Saprotroph	х
otu_765	Sarocladium strictum	19	50	Saprotroph	х
otu_767	Sarocladium strictum	11	42	Saprotroph	-
otu_77	Sarocladium strictum	42	3103	Saprotroph	-
otu_776	Sarocladium strictum	16	121	Saprotroph	-
otu_924	Sarocladium strictum	5	10	Saprotroph	-
otu_953	Sarocladium strictum	1	2	Saprotroph	х
otu_958	Sarocladium strictum	1	2	Saprotroph	-
otu_228	Schizophyllum commune	1	84	Wood decay	-
otu_160	Schwanniomyces vanrijiae	2	224	Undetermined	-
otu_1209	Simplicillium	1	2	Entomopathogenic	-
otu_335	Simplicillium	1	52	Entomopathogenic	-
otu_753	Simplicillium	1	13	Entomopathogenic	-
otu_9	Simplicillium	9	42624	Entomopathogenic	-
otu_42	Simplicillium minatense	1	2811	Entomopathogenic	-
otu_1238	Simplicillium species 2	1	2	Entomopathogenic	-
otu_649	Sistotremastrum guttuliferum	1	8	Saprotroph	-
otu_460	Skeletocutis odora	1	25	Wood decay	-
otu_245	Sordariomycetes species 1	1	72	Undetermined	-
otu_1173	Sordariomycetes species 10	1	2	Undetermined	-
otu_1191	Sordariomycetes species 11	1	4	Undetermined	_

otu_63	Sordariomycetes species 12	1	1071	Undetermined	-
otu_496	Sordariomycetes species 13	1	14	Undetermined	-
otu_30	Sordariomycetes species 14	8	17	Undetermined	-
otu_1189	Sordariomycetes species 15	1	2	Undetermined	-
otu_79	Sordariomycetes species 16	2	643	Undetermined	-
otu_1237	Sordariomycetes species 17	1	2	Undetermined	-
otu_281	Sordariomycetes species 18	5	104	Undetermined	-
otu_10	Sordariomycetes species 19	73	128406	Undetermined	-
otu_536	Sordariomycetes species 2	3	43	Undetermined	-
otu_1223	Sordariomycetes species 20	1	4	Undetermined	-
otu_823	Sordariomycetes species 21	1	3	Undetermined	-
otu_716	Sordariomycetes species 22	1	4	Undetermined	-
otu_663	Sordariomycetes species 23	1	5	Undetermined	-
otu_1225	Sordariomycetes species 24	2	6	Undetermined	-
otu_1204	Sordariomycetes species 25	1	2	Undetermined	-
otu_532	Sordariomycetes species 26	1	13	Undetermined	-
otu_248	Sordariomycetes species 27	3	95	Undetermined	-
otu_758	Sordariomycetes species 28	4	18	Undetermined	-
otu_961	Sordariomycetes species 29	1	2	Undetermined	-
otu_399	Sordariomycetes species 3	2	25	Undetermined	-
otu_1160	Sordariomycetes species 30	1	2	Undetermined	-
otu_877	Sordariomycetes species 31	1	6	Undetermined	-
otu_140	Sordariomycetes species 32	2	288	Undetermined	-
otu_232	Sordariomycetes species 33	1	210	Undetermined	-
otu_658	Sordariomycetes species 34	1	7	Undetermined	-
otu_521	Sordariomycetes species 35	1	13	Undetermined	-
otu_1114	Sordariomycetes species 36	1	2	Undetermined	-
otu_662	Sordariomycetes species 37	1	5	Undetermined	-
otu_1125	Sordariomycetes species 38	1	2	Undetermined	-
otu_578	Sordariomycetes species 39	3	19	Undetermined	-
otu_1009	Sordariomycetes species 4	1	2	Undetermined	-
otu_645	Sordariomycetes species 40	3	11	Undetermined	-
otu_1190	Sordariomycetes species 41	1	2	Undetermined	-
otu_454	Sordariomycetes species 42	1	17	Undetermined	-
otu_646	Sordariomycetes species 43	2	22	Undetermined	-
otu_577	Sordariomycetes species 44	2	17	Undetermined	-
otu_680	Sordariomycetes species 45	1	12	Undetermined	-
otu_477	Sordariomycetes species 46	1	12	Undetermined	-
	Sordariomycetes species 47	1	2	Undetermined	-

otu_752	Sordariomycetes species 48	1	8	Undetermined	_
 otu 847	Sordariomycetes species 49	1	3	Undetermined	_
 otu 286	Sordariomycetes species 5	1	63	Undetermined	_
 otu 171	Sordariomycetes species 50	4	327	Undetermined	_
 otu 896	Sordariomycetes species 51	2	13	Undetermined	_
 otu 1169		1	2	Undetermined	_
 otu 1108	· ·	1	4	Undetermined	_
 otu 236	Sordariomycetes species 54	9	632	Undetermined	_
 otu 142	Sordariomycetes species 55	6	1905	Undetermined	-
 otu 863	Sordariomycetes species 56	1	5	Undetermined	-
otu 33	Sordariomycetes species 57	8	1114	Undetermined	-
otu 27	Sordariomycetes species 58	8	26649	Undetermined	_
 otu 755	Sordariomycetes species 59	1	8	Undetermined	-
 otu 319	Sordariomycetes species 6	3	93	Undetermined	_
 otu 427	Sordariomycetes species 60	1	14	Undetermined	-
 otu 366	Sordariomycetes species 61	1	25	Undetermined	_
	Sordariomycetes species 62	1	107	Undetermined	_
 otu 665	Sordariomycetes species 7	1	10	Undetermined	_
 otu 1113	7 1	1	4	Undetermined	-
 otu 778	Sordariomycetes species 9	1	5	Undetermined	-
otu 61	Sporidiobolales Incertae sedis	1	1136	Undetermined	-
otu 390	Sporobolomyces phaffii	1	23	Fungicolous	-
otu 882	Stachybotryaceae species 1	1	3	Undetermined	-
	Stachybotryaceae species 2	1	4	Undetermined	-
 otu 746	Stachybotryaceae species 3	1	8	Undetermined	-
otu 239	Stachybotryaceae species 4	1	125	Undetermined	-
 otu 1177	Stachybotryaceae species 5	2	4	Undetermined	-
otu 499	Stachybotryaceae species 6	1	33	Undetermined	-
otu_346	Steccherinum ochraceum	1	33	Saprotroph	-
otu 272	Stephanonectria keithii	4	57	Saprotroph	-
otu 732	Stephanonectria keithii	2	10	Saprotroph	-
 otu_676	Stereum	1	5	Saprotroph	_
otu_167	Stereum sanguinolentum	8	445	Saprotroph	-
 otu_923	Talaromyces	1	2	Saprotroph	_
otu_1104	Tolypocladium	1	2	Entomopathogenic	х
	Tolypocladium	1	2	Entomopathogenic	х
	Tolypocladium	1	2	Entomopathogenic	х
 otu_1157		1	2	Entomopathogenic	_
	Tolypocladium	1	2	Entomopathogenic	x

otu_1213	Tolypocladium	1	2	Entomopathogenic	-
otu_21	Tolypocladium	23	35337	Entomopathogenic	-
otu_38	Tolypocladium	38	19402	Entomopathogenic	х
otu_526	Tolypocladium	3	36	Entomopathogenic	-
otu_686	Tolypocladium	2	9	Entomopathogenic	х
otu_688	Tolypocladium	24	994	Entomopathogenic	-
otu_859	Tolypocladium	1	3	Entomopathogenic	х
otu_501	Tolypocladium	1	13	Fungicolous	х
otu_1093	Tolypocladium album	1	2	Fungicolous	х
otu 1164	Tolypocladium album	1	4	Fungicolous	х
 otu 1174	Tolypocladium album	1	2	Fungicolous	х
otu 1226	Tolypocladium album	1	4	Fungicolous	-
otu_266	Tolypocladium album	2	109	Fungicolous	-
otu 328	Tolypocladium album	3	130	Fungicolous	-
otu 40	Tolypocladium album	31	10597	Fungicolous	-
 otu_408	Tolypocladium album	7	102	Fungicolous	-
 otu 415	Tolypocladium album	3	42	Fungicolous	-
 otu 428	Tolypocladium album	1	41	Fungicolous	-
 otu 449	Tolypocladium album	6	89	Fungicolous	-
 otu_469	Tolypocladium album	2	52	Fungicolous	-
otu 472	Tolypocladium album	1	2	Fungicolous	-
otu 527	Tolypocladium album	1	8	Fungicolous	-
otu_616	Tolypocladium album	2	25	Fungicolous	-
otu_619	Tolypocladium album	2	17	Fungicolous	-
otu_738	Tolypocladium album	1	8	Fungicolous	-
otu_739	Tolypocladium album	1	6	Fungicolous	-
otu_769	Tolypocladium album	1	3	Fungicolous	-
otu_857	Tolypocladium album	1	7	Fungicolous	-
otu_892	Tolypocladium album	1	3	Fungicolous	Х
otu_893	Tolypocladium album	2	11	Fungicolous	-
otu_912	Tolypocladium album	2	8	Fungicolous	Х
otu_912	Tolypocladium album	2	8	Fungicolous	х
otu_1000	Tolypocladium album	9	20	Entomopathogenic	-
otu_106	Tolypocladium album	13	1403	Entomopathogenic	-
otu_1137	Tolypocladium album	1	6	Entomopathogenic	-
otu_1147	Tolypocladium album	1	2	Entomopathogenic	х
otu_1150	Tolypocladium album	1	2	Entomopathogenic	-
otu_1153	Tolypocladium album	3	12	Entomopathogenic	-
otu_1154	Tolypocladium album	3	8	Entomopathogenic	-

otu_1166	Tolypocladium album	3	18	Entomopathogenic	-
otu_1185	Tolypocladium album	2	4	Entomopathogenic	_
otu_12	Tolypocladium album	52	78889	Entomopathogenic	-
otu_1215	Tolypocladium album	1	24	Entomopathogenic	-
otu_1220	Tolypocladium album	1	8	Entomopathogenic	-
otu_1241	Tolypocladium album	1	2	Entomopathogenic	X
otu_148	Tolypocladium album	7	1477	Entomopathogenic	-
otu 151	Tolypocladium album	5	150	Entomopathogenic	-
	Tolypocladium album	23	27062	Entomopathogenic	-
otu 22	Tolypocladium album	19	24464	Entomopathogenic	-
	Tolypocladium album	4	110	Entomopathogenic	X
otu_396	Tolypocladium album	2	16	Entomopathogenic	-
otu_443	Tolypocladium album	2	42	Entomopathogenic	X
otu_450	Tolypocladium album	6	119	Entomopathogenic	-
otu 505	Tolypocladium album	1	46	Entomopathogenic	_
 otu_560	Tolypocladium album	2	15	Entomopathogenic	X
 otu_741	Tolypocladium album	1	11	Entomopathogenic	_
otu 817	Tolypocladium album	1	3	Entomopathogenic	x
otu_963	Tolypocladium album	1	2	Entomopathogenic	_
otu_348	Tolypocladium paradoxum	1	41	Entomopathogenic	х
otu_875	Tolypocladium species 1	1	3	Fungicolous	-
otu_544	Trametes gibbosa	1	13	Wood decay	_
otu_314	Trametes hirsuta	1	56	Wood decay	-
otu_165	Trechispora	1	339	Wood decay	-
otu_407	Trechispora species 1	1	24	Wood decay	-
otu_182	Trechispora species 2	2	164	Wood decay	_
otu_242	Trechispora species 3	1	63	Wood decay	-
otu_246	Trechispora species 4	1	108	Wood decay	-
otu_1184	Trechispora species 5	1	2	Wood decay	-
otu_350	Trechispora species 6	1	29	Wood decay	-
otu_967	Tremellales species 1	1	2	Undetermined	-
otu_121	Trichaptum biforme	5	942	Wood decay	-
otu_977	Trichocomaceae species 1	1	2	Undetermined	-
otu_188	Trichoderma	3	151	Fungicolous	-
otu_462	Trichoderma koningiopsis	2	25	Fungicolous	-
otu_253	Tyromyces chioneus	1	60	Wood decay	-
otu_316	Tyromyces fissilis	2	79	Wood decay	-
otu_372	Umbelopsis isabellina	2	34	Saprotroph	-
otu_158	Ustilago	3	252	Plant pathogen	-

otu 430	Verticillium leptobactrum	2	39	Nematicidal	-
 otu 879	Verticillium leptobactrum	1	3	Nematicidal	-
	Verticillium leptobactrum	1	2	Nematicidal	-
otu_221	Verticillium leptobactrum	1	175	Nematicidal	-
otu_280	Verticillium leptobactrum	1	267	Nematicidal	-
otu_31	Verticillium leptobactrum	11	25806	Nematicidal	-
otu_673	Verticillium leptobactrum	1	8	Nematicidal	-
otu_740	Verticillium leptobactrum	1	6	Nematicidal	-
otu_742	Verticillium leptobactrum	1	14	Nematicidal	-
otu_745	Verticillium leptobactrum	2	868	Nematicidal	-
otu_880	Verticillium leptobactrum	1	11	Nematicidal	-
otu_1175	Verticillium species 1	1	2	Nematicidal	-
otu_498	Verticillium species 2	1	37	Nematicidal	-
otu_118	Verticillium species 3	2	775	Nematicidal	-
otu_1141	Verticillium species 4	1	2	Nematicidal	-
otu_747	Verticillium species 5	1	10	Nematicidal	-
otu_1139	Verticillium species 6	1	2	Nematicidal	-
otu_1100	Volutella	1	2	Plant pathogen	-
otu_1103	Volutella	1	2	Plant pathogen	-
otu_1138	Volutella	3	22	Plant pathogen	-
otu_227	Volutella	4	301	Plant pathogen	-
otu_287	Volutella	2	66	Plant pathogen	-
otu_370	Volutella	3	98	Plant pathogen	-
otu_692	Volutella consors	1	4	Plant pathogen	-
otu_660	Volutella consors	1	5	Plant pathogen	-
otu_147	Volutella species 1	2	252	Plant pathogen	-
otu_291	Volvariella bombycina	1	47	Saprotroph	-
otu_46	Wallemia canadensis	3	3303	Saprotroph	-
otu_115	Wallemia mellicola	1	416	Saprotroph	-
otu_849	Wallrothiella subiculosa	1	5	Undetermined	-
otu_547	Wolfiporia dilatohypha	1	10	Wood decay	-
otu_365	Xylariales species 1	2	30	Undetermined	-
otu_400	Xylariales species 2	1	23	Undetermined	-
otu_706	Xylariales species 3	1	8	Undetermined	-
otu_163	Xylodon nespori	5	253	Saprotroph	-
otu_303	Yuchengia narymica	1	56	Saprotroph	-

SUPPLEMENTARY TABLE 3.3. Operational taxonomic unit (OTU) taxonomic and function guild assignments using Clustered GenBank Representatives (CLU REP) method.

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_389	Absidia species 1	1	50	Saprotroph
otu_168	Acremonium species 1	1	351	Fungicolous
otu_521	Acremonium species 1.1	1	13	Fungicolous
otu_755	Acremonium species 10	1	8	Fungicolous
otu_837	Acremonium species 12	1	3	Fungicolous
otu_846	Acremonium species 13	4	86	Fungicolous
otu_847	Acremonium species 14	1	3	Fungicolous
otu_890	Acremonium species 15	1	3	Fungicolous
otu_896	Acremonium species 16	2	13	Fungicolous
otu_1071	Acremonium species 17	1	2	Fungicolous
otu_1087	Acremonium species 18	2	4	Fungicolous
otu_558	Acremonium species 2.1	1	9	Fungicolous
otu_1151	Acremonium species 20	1	2	Fungicolous
otu_1169	Acremonium species 22	1	2	Fungicolous
otu_1176	Acremonium species 23	1	2	Fungicolous
otu_1205	Acremonium species 24	2	148	Fungicolous
otu_128	Acremonium species 25	3	542	Fungicolous
otu_142	Acremonium species 26	6	1905	Fungicolous
otu_186	Acremonium species 27	1	127	Fungicolous
otu_23	Acremonium species 28	12	22585	Fungicolous
otu_236	Acremonium species 29	9	632	Fungicolous
otu_116	Acremonium species 3	9	3752	Fungicolous
otu_8	Acremonium species 3	50	150140	Fungicolous
otu_658	Acremonium species 3.1	1	7	Fungicolous
otu_248	Acremonium species 30	3	95	Fungicolous
otu_27	Acremonium species 31	8	26649	Fungicolous
otu_304	Acremonium species 32	1	74	Fungicolous
otu_358	Acremonium species 33	2	89	Fungicolous
otu_371	Acremonium species 34	9	164	Fungicolous
otu_410	Acremonium species 35	2	74	Fungicolous
otu_578	Acremonium species 36	3	19	Fungicolous
otu_604	Acremonium species 37	1	9	Fungicolous

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_675	Acremonium species 38	1	17	Fungicolous
otu_1067	Acremonium species 39	1	4	Fungicolous
otu_727	Acremonium species 4	1	4	Fungicolous
otu_657	Acremonium species 40	1	21	Fungicolous
otu_722	Acremonium species 41	1	32	Fungicolous
otu_607	Acremonium species 43	2	17	Fungicolous
otu_839	Acremonium species 5	1	7	Fungicolous
otu_86	Acremonium species 6	1	728	Fungicolous
otu_731	Acremonium species 7	2	204	Fungicolous
otu_1120	Acremonium species 8	1	2	Fungicolous
otu_733	Acremonium species 8	2	25	Fungicolous
otu_752	Acremonium species 9	1	8	Fungicolous
otu_1163	Acrostalagmus species 1	1	2	Saprotroph
otu_50	Acrostalagmus species 2	3	1936	Saprotroph
otu_744	Acrostalagmus species 3	1	17	Saprotroph
otu_139	Agaricales species 14.1	2	303	Undetermined
otu_1229	Agaricales species 15.1	1	2	Undetermined
otu_1202	Agaricales species 16.1	1	4	Undetermined
otu_431	Agaricales species 6.1	1	37	Undetermined
otu_598	Agaricales species 7	1	10	Undetermined
otu_7	Agaricales species ecies 15.2	24	63494	Undetermined
otu_694	Agaricomycetes species 10.1	1	4	Undetermined
otu_960	Agaricomycetes species 10.2	1	2	Undetermined
otu_76	Agaricomycetes species 12	2	1483	Undetermined
otu_962	Agaricomycetes species 14	1	2	Undetermined
otu_16	Agaricomycetes species 15.1	12	30634	Undetermined
otu_900	Agaricomycetes species 16.1	1	9	Undetermined
otu_1243	Agaricomycetes species 17.1	1	2	Undetermined
otu_485	Agaricomycetes species 18	1	23	Undetermined
otu_553	Agaricomycetes species 2	1	12	Undetermined
otu_260	Agaricomycetes species 20	1	85	Undetermined
otu_666	Agaricomycetes species 21.1	1	12	Undetermined
otu_185	Agaricomycetes species 23	1	151	Undetermined
otu_461	Agaricomycetes species 25	1	31	Undetermined
otu_375	Agaricomycetes species 28	1	19	Undetermined
otu_198	Agaricomycetes species 29	1	209	Undetermined
otu_509	Agaricomycetes species 3	2	17	Undetermined

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_407	Agaricomycetes species 30	1	24	Undetermined
otu_246	Agaricomycetes species 31	1	108	Undetermined
otu_182	Agaricomycetes species 32	2	164	Undetermined
otu_104	Agaricomycetes species 5.1	3	766	Undetermined
otu_1075	Agaricomycetes species 5.2	3	8	Undetermined
otu_952	Agaricomycetes species 5.3	4	10	Undetermined
otu_98	Agaricomycetes species 5.4	3	860	Undetermined
otu_252	Agaricomycetes species 6	1	75	Undetermined
otu_959	Agaricomycetes species 7	1	4	Undetermined
otu_903	Agaricomycetes species 8.1	1	7	Undetermined
otu_640	Agrocybe species 1	1	8	Saprotroph
otu_789	Alternaria species 1	1	5	Plant pathogen
otu_365	Amphispecies haeriaceae species	2	30	Saprotroph
otu_706	Amphispecies haeriaceae species	1	8	Saprotroph
otu_484	Amyloporia species 1	1	15	Saprotroph
otu_254	Ascomycota species 17	1	69	Undetermined
otu_647	Ascomycota species 23	1	8	Undetermined
otu_644	Ascomycota species 6	1	5	Undetermined
otu_340	Aspecies ergillus species 1	1	29	Saprotroph
otu_211	Athelia species 1	1	94	Plant pathogen
otu_316	Aurantiporus species 1	2	79	Wood decay
otu_157	Auriculariales species 1.1	1	456	Undetermined
otu_364	Auriculariales species 1.2	1	35	Undetermined
otu_416	Auriculariales species 1.3	1	20	Undetermined
otu_615	Auriculariales species 1.4	1	16	Undetermined
otu_883	Auriculariales species 1.5	1	3	Undetermined
otu_643	Auriculariales species 2	1	7	Undetermined
otu_305	Basidiobolus species 1	1	91	Saprotroph
otu_1011	Basidiodendron species 1	1	2	Saprotroph
otu_362	Basidiodendron species 3	1	28	Saprotroph
otu_1142	Basidiomycota species 1.1	1	2	Undetermined
otu_625	Basidiomycota species 1.2	2	25	Undetermined
	Basidiomycota species 10.1	1	8	Undetermined
 otu_824	Basidiomycota species 10.2	1	5	Undetermined
	Basidiomycota species 13.2	1	4	Undetermined
	Basidiomycota species 14.1	1	20	Undetermined
otu_1106	Basidiomycota species 14.2	1	2	Undetermined

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_311	Basidiomycota species 17	1	47	Undetermined
otu_199	Basidiomycota species 19.1	2	275	Undetermined
otu_66	Basidiomycota species 19.2	5	1788	Undetermined
otu_1099	Basidiomycota species 22.1	1	2	Undetermined
otu_386	Basidiomycota species 22.2	1	30	Undetermined
otu_566	Basidiomycota species 22.3	1	19	Undetermined
otu_677	Basidiomycota species 23.1	1	5	Undetermined
otu_202	Basidiomycota species 23.2	1	105	Undetermined
otu_867	Basidiomycota species 26.1	1	3	Undetermined
otu_1006	Basidiomycota species 28.1	1	2	Undetermined
otu_968	Basidiomycota species 28.2	1	2	Undetermined
otu_225	Basidiomycota species 35	3	127	Undetermined
otu_878	Basidiomycota species 36.1	1	5	Undetermined
otu_318	Basidiomycota species 38.1	1	48	Undetermined
otu_369	Basidiomycota species 38.2	1	35	Undetermined
otu_321	Basidiomycota species 39	1	43	Undetermined
otu_678	Basidiomycota species 4.1	1	8	Undetermined
otu_383	Basidiomycota species 5.1	1	61	Undetermined
otu_650	Basidiomycota species 6	1	5	Undetermined
otu_809	Beltrania species 1	1	5	Saprotroph
otu_540	Betamyces species 1	1	13	Plant pathogen
otu_695	Biatriospecies ora species 1	1	8	Fungicolous
otu_670	Bionectriaceae species 2.1	1	7	Saprotroph
otu_267	Bjerkander species 1	1	47	Wood decay
otu_726	Blastobotrys species 1.1	1	13	Saprotroph
otu_500	Brevicellicium species 2	1	16	Saprotroph
otu_613	Brevicellicium species 5	1	11	Saprotroph
otu_61	Buckleyzyma species 2	1	1136	Undetermined
otu_453	Bullera species 1	1	18	Saprotroph
otu_354	Calyptella species 1	1	22	Saprotroph
	Campylocarpon species 1	1	2	Plant pathogen
	Campylocarpon species 2	1	8	Plant pathogen
	Campylocarpon species 3	3	148	Plant pathogen
	Campylocarpon species 4	1	12	Plant pathogen
 otu_57	Campylocarpon species 5	4	1744	Plant pathogen
	Campylocarpon species 6	1	8	Plant pathogen
	Candida species 1	1	2	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_44	Candida species 1	1	2366	Saprotroph
otu_436	Candida species 1	1	13	Saprotroph
otu_108	Candida species 1	1	494	Saprotroph
otu_4	Candida species 1	20	106	Saprotroph
otu_693	Candida species 1	1	6	Saprotroph
otu_302	Ceriporia species 2	4	66	Wood decay
otu_1021	Ceriporiopsis species 1	1	2	Wood decay
otu_966	Chaetothyriales species 13	1	2	Undetermined
otu_788	Chaetothyriales species 14	1	10	Undetermined
otu_1187	Chaetothyriales species 15.1	1	2	Undetermined
otu_680	Chaetothyriales species 15.2	1	12	Undetermined
otu_467	Chaetothyriales species 17.1	1	20	Undetermined
otu_702	Chaetothyriales species 25	1	7	Undetermined
otu_703	Chaetothyriales species 4	1	4	Undetermined
otu_497	Chytridiomycota species 10.1	1	12	Undetermined
otu_1242	Chytridiomycota species 2.1	1	2	Undetermined
otu_184	Chytridiomycota species 2.2	2	159	Undetermined
otu_307	Chytridiomycota species 4	1	42	Undetermined
otu_84	Chytridiomycota species 5	1	809	Undetermined
otu_11	Clavicipitaceae species 1.1	30	47429	Entomopathogenic
otu_1237	Clavicipitaceae species 1.10	1	2	Entomopathogenic
otu_140	Clavicipitaceae species 1.11	2	288	Entomopathogenic
otu_5	Clavicipitaceae species 1.12	41	87459	Entomopathogenic
otu_866	Clavicipitaceae species 1.13	1	3	Entomopathogenic
otu_1127	Clavicipitaceae species 1.2	1	2	Entomopathogenic
otu_863	Clavicipitaceae species 1.3	1	5	Entomopathogenic
otu_1119	Clavicipitaceae species 1.4	1	4	Entomopathogenic
otu_1129	Clavicipitaceae species 1.5	1	2	Entomopathogenic
otu_196	Clavicipitaceae species 1.6	2	142	Entomopathogenic
otu_565	Clavicipitaceae species 1.7	4	45	Entomopathogenic
otu_667	Clavicipitaceae species 1.8	1	25	Entomopathogenic
otu_1225	Clavicipitaceae species 1.9	2	6	Entomopathogenic
otu_1033	Clavicipitaceae species 3.1	1	2	Entomopathogenic
otu_525	Clavicipitaceae species 3.1	1	16	Entomopathogenic
	Clavicipitaceae species 3.1	1	7	Entomopathogenic
otu_470	Clavicipitaceae species 4.1	1	14	Entomopathogenic
otu_451	Clavicipitaceae species 4.2	1	42	Entomopathogenic

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_911	Clavicipitaceae species 4.3	1	7	Entomopathogenic
otu_577	Clavicipitaceae species 4.4	2	17	Entomopathogenic
otu_1032	Clavicipitaceae species 4.5	1	2	Entomopathogenic
otu_412	Clavicipitaceae species 5.1	1	30	Entomopathogenic
otu_729	Clavicipitaceae species 5.2	1	10	Entomopathogenic
otu_488	Clavicipitaceae species 6	1	13	Entomopathogenic
otu_608	Clavicipitaceae species 7.1	1	13	Entomopathogenic
otu_864	Clavicipitaceae species 7.2	1	7	Entomopathogenic
otu_1123	Clavicipitaceae species 7.3	1	2	Entomopathogenic
otu_697	Clavicipitaceae species 9.1	1	18	Entomopathogenic
otu_74	Clavicipitaceae species 9.2	1	1036	Entomopathogenic
otu_973	Clavicipitaceae species 9.3	2	4	Entomopathogenic
otu_1112	Clavicipitaceae species 9.4	1	2	Entomopathogenic
otu_48	Clavicipitaceae species 9.5	2	2494	Entomopathogenic
otu_524	Clavicipitaceae species 9.6	1	18	Entomopathogenic
otu_1077	Clonostachys species 1	1	2	Saprotroph
otu_129	Clonostachys species 10	2	658	Saprotroph
otu_301	Clonostachys species 11	2	50	Saprotroph
otu_432	Clonostachys species 12	1	21	Saprotroph
otu_581	Clonostachys species 13	1	22	Saprotroph
otu_617	Clonostachys species 14	2	15	Saprotroph
otu_621	Clonostachys species 15	5	19	Saprotroph
otu_672	Clonostachys species 16	1	7	Saprotroph
otu_887	Clonostachys species 17	1	3	Saprotroph
otu_891	Clonostachys species 18	1	11	Saprotroph
otu_895	Clonostachys species 19	1	6	Saprotroph
otu_1158	Clonostachys species 2	1	8	Saprotroph
otu_935	Clonostachys species 20	1	2	Saprotroph
otu_1171	Clonostachys species 21	1	2	Saprotroph
otu_1160	Clonostachys species 22	1	2	Saprotroph
otu_459	Clonostachys species 24	1	22	Saprotroph
otu_54	Clonostachys species 25	3	1507	Saprotroph
otu_63	Clonostachys species 26	1	1071	Saprotroph
otu_743	Clonostachys species 27	1	4	Saprotroph
otu_111	Clonostachys species 28	9	1480	Saprotroph
otu_1101	Clonostachys species 29	1	2	Saprotroph
otu_561	Clonostachys species 3	2	24	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_1159	Clonostachys species 3	1	4	Saprotroph
otu_1199	Clonostachys species 4	1	2	Saprotroph
otu_1204	Clonostachys species 5	1	2	Saprotroph
otu_1208	Clonostachys species 6	1	2	Saprotroph
otu_1233	Clonostachys species 7	1	2	Saprotroph
otu_1234	Clonostachys species 8	1	2	Saprotroph
otu_1149	Cordycipitaceae species 1.1	1	2	Entomopathogenic
otu_877	Cordycipitaceae species 1.2	1	6	Entomopathogenic
otu_454	Cordycipitaceae species 5	1	17	Entomopathogenic
otu_944	Corticiales species 1	1	2	Undetermined
otu_223	Corticiales species 1.2	1	119	Undetermined
otu_1245	Crepidotus species 1	1	2	Wood decay
otu_251	Cryptococcus species 1	1	65	Saprotroph
otu_871	Cutaneotrichospecies oron	1	5	Saprotroph
otu_404	Cylindrobasidium species 1	1	17	Undetermined
otu_811	Dacryobolus species 1	1	5	Plant pathogen
otu_18	Debaryomyces species 1	28	36255	Saprotroph
otu_659	Debaryomyces species 10	2	11	Saprotroph
otu_668	Debaryomyces species 11	6	113	Saprotroph
otu_669	Debaryomyces species 12	3	16	Saprotroph
otu_751	Debaryomyces species 13	1	11	Saprotroph
otu_862	Debaryomyces species 14	30	2147	Saprotroph
otu_905	Debaryomyces species 15	3	10	Saprotroph
otu_1118	Debaryomyces species 2	1	4	Saprotroph
otu_1198	Debaryomyces species 3	1	18	Saprotroph
otu_120	Debaryomyces species 4	10	1662	Saprotroph
otu_2	Debaryomyces species 6	72	255672	Saprotroph
otu_208	Debaryomyces species 7	4	235	Saprotroph
otu_405	Debaryomyces species 8	5	111	Saprotroph
otu 530	Debaryomyces species 9	3	60	Saprotroph
otu 1083		1	2	Undetermined
 otu 575	Dothideomycetes species 1.1	1	11	Undetermined
 otu_954	Eurotiomycetes species 2	1	2	Undetermined
 otu 127	Exobasidiomycetes species 2.1	1	325	Undetermined
 otu 175	Exophiala species 1	3	215	Saprotroph
 otu_161	Filobasidium species 1	1	296	Saprotroph
 otu_910	Fomitiporia species 1	1	3	Plant pathogen

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_26	Fusarium species 1	12	9913	Plant pathogen
otu_1194	Fusarium species 10	1	4	Plant pathogen
otu_188	Fusarium species 11	3	151	Plant pathogen
otu_359	Fusarium species 15	1	23	Plant pathogen
otu_417	Fusarium species 16	1	28	Plant pathogen
otu_1057	Fusarium species 2	1	2	Plant pathogen
otu_258	Fusarium species 2	4	205	Plant pathogen
otu_523	Fusarium species 20	1	10	Plant pathogen
otu_564	Fusarium species 22	1	9	Plant pathogen
otu_748	Fusarium species 23	1	9	Plant pathogen
otu_886	Fusarium species 25	1	3	Plant pathogen
otu_855	Fusarium species 26	1	6	Plant pathogen
otu_1081	Fusarium species 27	1	2	Plant pathogen
otu_1097	Fusarium species 4.1	1	2	Plant pathogen
otu_1102	Fusarium species 5.1	1	2	Plant pathogen
otu_1121	Fusarium species 6.1	1	2	Plant pathogen
otu_1128	Fusarium species 7.1	1	2	Plant pathogen
otu_1143	Fusarium species 8	1	2	Plant pathogen
otu_1178	Fusarium species 9	1	8	Plant pathogen
otu_294	Fuscoporia species 1	1	49	Saprotroph
otu_320	Fuscoporia species 2	1	44	Saprotroph
otu_908	Fuscoporia species 2	1	5	Saprotroph
otu_1148	Fusicolla species 1	1	2	Saprotroph
otu_213	Fusicolla species 1	3	79	Saprotroph
otu_67	Fusicolla species 1	11	1325	Saprotroph
otu_611	Fusicolla species 10	1	13	Saprotroph
otu_737	Fusicolla species 11	1	6	Saprotroph
otu_854	Fusicolla species 12	2	9	Saprotroph
otu_874	Fusicolla species 13	1	3	Saprotroph
otu_939	Fusicolla species 14	1	2	Saprotroph
otu_1094	Fusicolla species 2	1	2	Saprotroph
otu_1156	Fusicolla species 4	1	2	Saprotroph
 otu_1181	-	1	4	Saprotroph
	Fusicolla species 7	5	78	Saprotroph
 otu_411	Fusicolla species 8	4	112	Saprotroph
 otu_522	Fusicolla species 9	5	38	Saprotroph
otu_28	Gliomastix species 1	20	26018	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_204	Gliomastix species 1.1	2	4	Saprotroph
otu_848	Gliomastix species 10	1	5	Saprotroph
otu_850	Gliomastix species 11	1	7	Saprotroph
otu_872	Gliomastix species 12	1	3	Saprotroph
otu_907	Gliomastix species 13	1	3	Saprotroph
otu_212	Gliomastix species 2.1	4	134	Saprotroph
otu_1027	Gliomastix species 3	2	22	Saprotroph
otu_153	Gliomastix species 3	6	3216	Saprotroph
otu_214	Gliomastix species 3.1	1	193	Saprotroph
otu_226	Gliomastix species 4	1	96	Saprotroph
otu_300	Gliomastix species 5	1	50	Saprotroph
otu_562	Gliomastix species 7	1	12	Saprotroph
otu_713	Gliomastix species 8	2	12	Saprotroph
otu_734	Gliomastix species 9	1	7	Saprotroph
otu_269	Gloeoporus species 1	1	62	Wood decay
otu_596	Gloeoporus species 2	1	10	Wood decay
otu_367	Gongronella species 1	3	100	Saprotroph
otu_975	Gongronella species 2	1	2	Saprotroph
otu_274	Graphidaceae species 1.1	1	68	Undetermined
otu_876	Graphidaceae species 1.2	1	3	Undetermined
otu_255	Graphidaceae species 3	1	64	Undetermined
otu_591	Graphidaceae species 7	2	12	Undetermined
otu_781	Graphidaceae species 8	1	5	Undetermined
otu_298	Graphidaceae species 9	2	67	Undetermined
otu_1080	Graphium species 1.1	1	4	Saprotroph
otu_326	Graphium species 2	2	49	Saprotroph
otu_1082	Graphium species 2.1	1	2	Saprotroph
otu_192	Graphium species 3	2	133	Saprotroph
otu_614	Graphium species 5	1	6	Saprotroph
otu_310	Gymnopilus species 1	1	42	Wood decay
otu_552	Gymnopilus species 2	2	15	Wood decay
otu_1014	Gymnopus species 1	1	2	Saprotroph
otu_964	Gymnopus species 2	1	2	Saprotroph
otu_385	Gymnopus species 4	2	66	Saprotroph
otu_585	Gymnopus species 5	1	13	Saprotroph
otu_927	Gymnopus species 6	1	2	Saprotroph
otu_943	Gymnopus species 7	1	2	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_1217	Gymnopus species 9	1	2	Saprotroph
otu_1247	Helicogloea species 1	1	2	Saprotroph
otu_704	Herpotrichiellaceae species 1	1	4	Saprotroph
otu_231	Hydnodontaceae species 11	1	65	Undetermined
otu_242	Hydnodontaceae species 8	1	63	Undetermined
otu_1184	Hydnodontaceae species 9.1	1	2	Undetermined
otu_331	Hymenochaetales species 2.1	1	38	Undetermined
otu_1031	Hymenochaete species 1	1	2	Wood decay
otu_268	Hyphodermella species 1	3	82	Saprotroph
otu_442	Hyphodontia species 1	1	16	Saprotroph
otu_705	Hyphodontia species 2.1	2	9	Saprotroph
otu_1010	Hypholoma species 1	1	4	Wood decay
otu_536	Hypocreales Incertae sedis	3	43	Undetermined
otu_774	Hypocreales Incertae sedis	1	5	Undetermined
otu_1113	Hypocreales incertae sedis	1	4	Undetermined
otu_775	Hypocreales Incertae sedis	1	3	Undetermined
otu_778	Hypocreales Incertae sedis	1	5	Undetermined
otu_1096	Hypocreales incertae sedis	1	2	Undetermined
otu_1076	Hypocreales incertae sedis	1	2	Undetermined
otu_965	Hypocreales Incertae sedis	1	2	Undetermined
otu_384	Hypocreales incertae sedis	1	18	Undetermined
otu_477	Hypocreales species 1	1	12	Undetermined
otu_1086	Hypocreales species 1.1	1	4	Undetermined
otu_663	Hypocreales species 1.2	1	5	Undetermined
otu_79	Hypocreales species 1.3	2	643	Undetermined
otu_173	Hypocreales species 10.1	1	158	Undetermined
otu_961	Hypocreales species 11	1	2	Undetermined
otu_486	Hypocreales species 18	1	13	Undetermined
otu_30	Hypocreales species 2.3	8	17	Undetermined
otu_1135	Hypocreales species 21.1	1	2	Undetermined
otu_1223	Hypocreales species 3	1	4	Undetermined
otu_10	Hypocreales species 3	73	128406	Undetermined
 otu_653	Hypocreales species 3.1	3	7	Undetermined
	Hypocreales species 3.1	1	2	Undetermined
 otu_425	Hypocreales species 3.10	3	33	Undetermined
 otu_427	Hypocreales species 3.11	1	14	Undetermined
	Hypocreales species 3.12	1	15	Undetermined

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_568	Hypocreales species 3.13	2	17	Undetermined
otu_609	Hypocreales species 3.14	1	14	Undetermined
otu_679	Hypocreales species 3.2	6	20	Undetermined
otu_150	Hypocreales species 3.2	4	296	Undetermined
otu_312	Hypocreales species 3.3	1	48	Undetermined
otu_758	Hypocreales species 3.3	4	18	Undetermined
otu_1114	Hypocreales species 3.4	1	2	Undetermined
otu_665	Hypocreales species 3.4	1	10	Undetermined
otu_1173	Hypocreales species 3.5	1	2	Undetermined
otu_786	Hypocreales species 3.5	1	3	Undetermined
otu_1179	Hypocreales species 3.6	1	2	Undetermined
otu_856	Hypocreales species 3.6	1	3	Undetermined
otu_1189	Hypocreales species 3.7	1	2	Undetermined
otu_976	Hypocreales species 3.7	1	2	Undetermined
otu_281	Hypocreales species 3.8	5	104	Undetermined
otu_366	Hypocreales species 3.9	1	25	Undetermined
 otu_716	Hypocreales species 5	1	4	Undetermined
otu 1036	Hypocreales species 5.1	1	2	Undetermined
otu 532	Hypocreales species 7.1	1	13	Undetermined
otu_249	Hypocreales species 7.2	2	245	Undetermined
otu_971	Hypocreales species 8	1	2	Undetermined
otu_183	Irpex species 1	2	166	Wood decay
otu_629	Jattaea species 1	1	11	Wood decay
otu_972	Junghuhnia species 1	1	2	Wood decay
otu_278	Kneiffiella species 1	5	87	Wood decay
otu 178	Knufia species 1	1	345	Plant pathogen
otu 1218	Lasiodiplodia species 2	1	2	Plant pathogen
	Lasiodiplodia species 2	1	123	Plant pathogen
otu 554	Lecanicillium species 1	1	9	Entomopathogenic
otu 97	Lecanicillium species 2	2	631	Entomopathogenic
 otu_819	Lecanoromycetes species 2.1	1	6	Undetermined
 otu_206	Lentinellus species 1	1	92	Saprotroph
 otu_41	Lenzites species 1	2	3309	Wood decay
 otu_569	Leptospecies oromyces species 1	1	17	Saprotroph
	Malassezia species 1	1	2	Saprotroph
 otu_135	Malassezia species 2	3	16	Saprotroph
	Malassezia species 3	2	141	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_25	Malassezia species 4	12	28413	Saprotroph
otu_43	Malassezia species 5	3	3277	Saprotroph
otu_504	Malassezia species 6	3	28	Saprotroph
otu_53	Malassezia species 7	18	5987	Saprotroph
otu_785	Malassezia species 8	1	3	Saprotroph
otu_808	Malassezia species 8	4	43	Saprotroph
otu_92	Malassezia species 9	10	878	Saprotroph
otu_94	Marasmiaceae species 1.1	1	1046	Plant pathogen
otu_24	Marasmiellus species 3	3	3507	Plant pathogen
otu_195	Metapochonia species 1	1	112	Entomopathogenic
otu_58	Metapochonia species 1	1	1630	Entomopathogenic
otu_273	Metapochonia species 10	1	118	Entomopathogenic
otu_299	Metapochonia species 11	2	34	Entomopathogenic
otu_414	Metapochonia species 13	2	29	Entomopathogenic
otu_495	Metapochonia species 15	1	23	Entomopathogenic
otu_533	Metapochonia species 16	1	16	Entomopathogenic
otu_534	Metapochonia species 17	1	27	Entomopathogenic
otu_580	Metapochonia species 18	1	19	Entomopathogenic
otu_610	Metapochonia species 19	2	23	Entomopathogenic
otu_122	Metapochonia species 2	21	1783	Entomopathogenic
otu_14	Metapochonia species 2	35	65889	Entomopathogenic
otu_174	Metapochonia species 2	1	233	Entomopathogenic
otu_334	Metapochonia species 2	6	385	Entomopathogenic
otu_612	Metapochonia species 20	2	10	Entomopathogenic
otu_868	Metapochonia species 22	1	5	Entomopathogenic
otu_869	Metapochonia species 23	1	11	Entomopathogenic
otu_870	Metapochonia species 24	1	5	Entomopathogenic
otu_902	Metapochonia species 25	1	9	Entomopathogenic
otu_1131	Metapochonia species 3	2	4	Entomopathogenic
otu_1152	Metapochonia species 4	1	2	Entomopathogenic
otu_1224	Metapochonia species 5	1	2	Entomopathogenic
otu_207	Metapochonia species 9	2	272	Entomopathogenic
 otu_760	Metarhizium species 10	1	6	Entomopathogenic
 otu_820	Metarhizium species 11	1	5	Entomopathogenic
 otu_906	Metarhizium species 12	1	5	Entomopathogenic
	Metarhizium species 2	1	4	Entomopathogenic
otu_59	Metarhizium species 5	5	1627	Entomopathogenic

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_6	Metarhizium species 6	32	62691	Entomopathogenic
otu_1236	Meyerozyma species 1	1	2	Saprotroph
otu_1232	Mortierellales species 1.1	1	2	Undetermined
otu_493	Mucor species 1	1	12	Saprotroph
otu_47	Mycena species 2	2	2859	Saprotroph
otu_277	Mycena species 7	1	51	Saprotroph
otu_632	Mycena species 8	1	7	Saprotroph
otu_574	Myxarium species 1	1	18	Wood decay
otu_746	Myxospecies ora species 1	1	8	Undetermined
otu_1167	Myxospecies ora species 2	1	4	Undetermined
otu_1170	Myxospecies ora species 3	1	2	Undetermined
otu_1177	Myxospecies ora species 4	2	4	Undetermined
otu_239	Myxospecies ora species 5	1	125	Undetermined
otu_35	Myxospecies ora species 6	7	7925	Undetermined
otu_286	Myxospecies ora species 7	1	63	Undetermined
otu_882	Myxospecies ora species 8	1	3	Undetermined
otu_32	Naganishia species 1	2	8	Undetermined
otu_13	Nectria species 1	25	25796	Plant pathogen
otu_1219	Nectria species 10	1	2	Plant pathogen
otu_197	Nectria species 11	1	107	Plant pathogen
otu_289	Nectria species 12	2	69	Plant pathogen
otu_324	Nectria species 13	1	51	Plant pathogen
otu_37	Nectria species 14	1	3703	Plant pathogen
otu_571	Nectria species 15	1	12	Plant pathogen
otu_749	Nectria species 16	1	13	Plant pathogen
otu_766	Nectria species 17	1	5	Plant pathogen
otu_829	Nectria species 18	1	2	Plant pathogen
otu_884	Nectria species 19	1	3	Plant pathogen
otu_901	Nectria species 20	1	6	Plant pathogen
otu_933	Nectria species 21	1	2	Plant pathogen
otu_1165	Nectria species 3	1	2	Plant pathogen
otu_1180	Nectria species 4	1	2	Plant pathogen
	Nectria species 5	1	2	Plant pathogen
	Nectria species 6	1	2	Plant pathogen
	Nectria species 7	1	2	Plant pathogen
	Nectria species 8	1	2	Plant pathogen
otu_1196	Nectria species 9	1	2	Plant pathogen

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_447	Nectriaceae species 1.1	1	16	Undetermined
otu_284	Nectriaceae species 1.2	1	61	Undetermined
otu_494	Nectriaceae species 5.1	1	11	Undetermined
otu_563	Ophiocordycipitaceae species 1.1	1	13	Entomopathogenic
otu_572	Ophiocordycipitaceae species 2.1	1	15	Entomopathogenic
otu_133	Ophiostoma species 1	2	323	Plant pathogen
otu_296	Ophiostoma species 2	1	30	Plant pathogen
otu_292	Orbiliales species 1.1	1	45	Undetermined
otu_822	Panus species 1	1	5	Undetermined
otu_1105	Penicillium species 1.1	1	2	Saprotroph
otu_754	Penicillium species 10.1	1	6	Saprotroph
otu_974	Penicillium species 11	1	4	Saprotroph
otu_977	Penicillium species 12	1	2	Saprotroph
otu_15	Penicillium species 13.1	19	53002	Saprotroph
otu_1172	Penicillium species 2.1	1	2	Saprotroph
otu_146	Penicillium species 4	1	292	Saprotroph
otu_576	Penicillium species 5	2	17	Saprotroph
otu_200	Penicillium species 5.1	4	365	Saprotroph
otu_433	Penicillium species 6	12	1038	Saprotroph
otu_1210	Penicillium species 6	1	2	Saprotroph
otu_1117	Penicillium species 6	2	8	Saprotroph
otu_393	Penicillium species 6.1	3	26	Saprotroph
otu_1028	Peniophora species 1	3	14	Wood decay
otu_154	Peniophora species 2	2	196	Wood decay
otu_265	Peniophora species 3	5	144	Wood decay
otu_308	Peniophora species 4	1	46	Wood decay
otu_329	Peniophora species 5	9	243	Wood decay
otu_550	Peniophora species 6	1	13	Wood decay
otu_627	Peniophora species 8	2	11	Wood decay
otu_339	Perenniporia species 1	1	40	Wood decay
	Phaeomoniella species 1	1	2	Saprotroph
	Phaeophlebiopsis species 1.1	1	2	Saprotroph
 otu_710	Phallaceae species 1.1	3	15	Saprotroph
	Phanerochaetaceae species 1.1	1	582	Undetermined
	Phanerochaete species 1	1	23	Wood decay
	Phlebia species 1	2	26	Wood decay
 otu_441	Phlebia species 2	1	16	Wood decay

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_514	Phlebia species 3	1	12	Wood decay
otu_806	Phlebia species 4	1	3	Wood decay
otu_812	Phlebia species 5	1	3	Wood decay
otu_978	Pholiota species 1	1	2	Saprotroph
otu_1125	Plectospecies haerella species 1	1	2	Plant pathogen
otu_646	Plectospecies haerella species 10	2	22	Plant pathogen
otu_33	Plectospecies haerella species 2	8	1114	Plant pathogen
otu_711	Plectospecies haerella species 6	1	26	Plant pathogen
otu_124	Plectospecies haerella species 7	1	270	Plant pathogen
otu_783	Plectospecies haerella species	1	5	Plant pathogen
otu_645	Plectospecies haerella species 9	3	11	Plant pathogen
otu_1126	Plectospecies haerellaceae	1	4	Undetermined
otu_498	Plectospecies haerellaceae	1	37	Undetermined
otu_118	Plectospecies haerellaceae	2	775	Undetermined
otu_747	Plectospecies haerellaceae	1	10	Undetermined
otu_1141	Plectospecies haerellaceae	1	2	Undetermined
otu_1175	Plectospecies haerellaceae	1	2	Undetermined
otu_531	Pleurotus species 2	1	17	Entomopathogenic
otu_262	Pluteus species 1	1	67	Wood decay
otu_460	Polyporaceae species 2.1	1	25	Undetermined
otu_597	Polyporales species 1.1	1	6	Undetermined
otu_1231	Polyporales species 2.1	1	2	Undetermined
otu_392	Polyporales species 3.1	2	39	Undetermined
otu_136	Polyporales species 4.1	1	310	Undetermined
otu_979	Polyporales species 6.1	1	4	Undetermined
otu_271	Postia species 1	1	74	Wood decay
otu_548	Postia species 2	1	13	Wood decay
otu_712	Pseudochaete species 1	1	7	Saprotroph
otu_715	Psilocybe species 1.1	1	6	Saprotroph
otu_137	Puccinia species 1	1	260	Plant pathogen
otu_1045	Purpureocillium species 2	1	2	Entomopathogenic
otu_841	Purpureocillium species 2	1	8	Entomopathogenic
otu_520	Purpureocillium species 2.1	1	28	Entomopathogenic
otu_555	Purpureocillium species 3	1	2	Entomopathogenic
		1	2	Entomopathogenic
otu_519	Purpureocillium species 6	1	19	Entomopathogenic
	Resinicium species 1	1	4	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_382	Resupinatus species 1	1	26	Wood decay
otu_95	Resupinatus species 2	2	838	Wood decay
otu_1244	Rhizophydiales species 1.1	1	2	Undetermined
otu_210	Rigidoporus species 1	1	96	Wood decay
otu_263	Rigidoporus species 2	1	76	Wood decay
otu_1023	Roussoella species 1.1	2	4	Saprotroph
otu_557	Roussoella species 10	1	23	Saprotroph
otu_603	Roussoella species 11	1	13	Saprotroph
otu_723	Roussoella species 12	1	4	Saprotroph
otu_842	Roussoella species 15	1	23	Saprotroph
otu_843	Roussoella species 16	1	5	Saprotroph
otu_853	Roussoella species 17	1	5	Saprotroph
otu_1024	Roussoella species 2	1	2	Saprotroph
otu_1066	Roussoella species 3	1	4	Saprotroph
otu_1068	Roussoella species 4	1	2	Saprotroph
otu_1069	Roussoella species 5	1	2	Saprotroph
otu_235	Roussoella species 7	1	481	Saprotroph
otu_337	Roussoella species 8	1	52	Saprotroph
otu_492	Roussoella species 9	1	82	Saprotroph
otu_143	Roussoellaceae species 2.1	2	442	Saprotroph
otu_1240	Saccharomyces species 1	1	4	Wood decay
otu_1212	Saccharomycetales species 2.1	1	2	Undetermined
otu_458	Sakaguchia species 1	1	17	Undetermined
otu_45	Sampaiozyma species 1	1	2020	Undetermined
otu_1098	Sarcopodium species 1	1	2	Saprotroph
otu_295	Sarcopodium species 2	2	60	Saprotroph
otu_3	Sarocladium species 1	129	1823481	Saprotroph
otu_34	Sarocladium species 10	3	8534	Saprotroph
otu_388	Sarocladium species 11	2	84	Saprotroph
otu_391	Sarocladium species 12	6	39	Saprotroph
otu_418	Sarocladium species 14	4	74	Saprotroph
otu_419	Sarocladium species 15	2	36	Saprotroph
otu_435	Sarocladium species 17	8	107	Saprotroph
otu_452	Sarocladium species 18	1	22	Saprotroph
	Sarocladium species 19	6	34	Saprotroph
otu_434	Sarocladium species 2	31	284	Saprotroph
otu_510	Sarocladium species 21	2	25	Saprotroph

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_56	Sarocladium species 22	5	1372	Saprotroph
otu_622	Sarocladium species 24	3	17	Saprotroph
otu_641	Sarocladium species 25	2	14	Saprotroph
otu_1124	Sarocladium species 27	1	2	Saprotroph
otu_735	Sarocladium species 30	1	9	Saprotroph
otu_736	Sarocladium species 31	1	11	Saprotroph
otu_767	Sarocladium species 32	11	42	Saprotroph
otu_77	Sarocladium species 33	42	3103	Saprotroph
otu_776	Sarocladium species 34	16	121	Saprotroph
otu_921	Sarocladium species 35	1	2	Saprotroph
otu_924	Sarocladium species 36	5	10	Saprotroph
otu_928	Sarocladium species 37	3	8	Saprotroph
otu_1136	Sarocladium species 38	1	8	Saprotroph
otu_957	Sarocladium species 39	1	2	Saprotroph
otu_958	Sarocladium species 4	1	2	Saprotroph
otu_114	Sarocladium species 41	4	463	Saprotroph
otu_155	Sarocladium species 42	1	198	Saprotroph
otu_20	Sarocladium species 43	4	10	Saprotroph
otu_769	Sarocladium species 45	1	3	Saprotroph
otu_940	Sarocladium species 46	1	2	Saprotroph
otu_232	Sarocladium species 6	1	210	Saprotroph
otu_238	Sarocladium species 7	1	107	Saprotroph
otu_250	Sarocladium species 8	32	656	Saprotroph
otu_319	Sarocladium species 9	3	93	Saprotroph
otu_228	Schizophyllum species 1	1	84	Wood decay
otu_160	Schwanniomyces species 1	2	224	Undetermined
otu_1222	Septobasidium species 1.1	2	4	Entomopathogenic
otu_674	Septobasidium species 2	1	9	Entomopathogenic
otu_753	Simplicillium species 1	1	13	Entomopathogenic
otu_1209	Simplicillium species 1.1	1	2	Entomopathogenic
otu_1238	Simplicillium species 2	1	2	Entomopathogenic
otu_335	Simplicillium species 3	1	52	Entomopathogenic
 otu_42	Simplicillium species 4	1	2811	Entomopathogenic
otu_9	Simplicillium species 5	9	42624	Entomopathogenic
 otu_152	Sistotrema species 1	1	224	Mycorrhizal
 otu_649	Sistotremastrum species 1	1	8	Saprotroph
otu_1182	Sordariomycetes incertae sedis	1	2	Undetermined

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_171	Sordariomycetes incertae sedis	4	327	Undetermined
otu_496	Sordariomycetes incertae sedis	1	14	Undetermined
otu_529	Sordariomycetes incertae sedis	1	8	Undetermined
otu_662	Sordariomycetes incertae sedis	1	5	Undetermined
otu_399	Sordariomycetes incertae sedis	2	25	Undetermined
otu_969	Sordariomycetes species 1.1	1	2	Undetermined
otu_245	Sordariomycetes species 14	1	72	Undetermined
otu_631	Sordariomycetes species 15.1	3	12	Undetermined
otu_898	Sordariomycetes species 17.1	1	3	Undetermined
otu_240	Sordariomycetes species 5	1	82	Undetermined
otu_1216	Sordariomycetes species 7.1	1	2	Undetermined
otu_119	Sordariomycetes species 8.1	1	432	Undetermined
otu_714	Sordariomycetes species 8.2	1	8	Undetermined
otu_1191	Sordariomycetes species 9.1	1	4	Undetermined
otu_390	species orobolomyces species 1	1	23	Fungicolous
otu_327	Stachybotryaceae species 2.1	1	96	Undetermined
otu_395	Stachybotryaceae species 2.2	1	25	Undetermined
otu_1183	Stachybotrys species 1	1	8	Wood decay
otu_1186	Stachybotrys species 2	1	4	Wood decay
otu_1193	Stachybotrys species 3	1	4	Wood decay
otu_499	Stachybotrys species 4	1	33	Wood decay
otu_885	Stachybotrys species 5	1	3	Wood decay
otu_889	Stachybotrys species 6	1	3	Wood decay
otu_346	Steccherinum species 1	1	33	Saprotroph
otu_272	Stephanonectria species 2	4	57	Saprotroph
otu_732	Stephanonectria species 3	2	10	Saprotroph
otu_167	Stereum species 1	8	445	Saprotroph
otu_676	Stereum species 2.1	1	5	Saprotroph
otu_923	Talaromyces species 1	1	2	Saprotroph
otu_343	Tilletiopsis species 1	1	37	Undetermined
otu_1030	Tinctoporellus species 1	1	6	Wood decay
otu_257	Tolypocladium species 1	6	157	Entomopathogenic
	Tolypocladium species 1	5	139	Entomopathogenic
 otu_21	Tolypocladium species 1	23	35337	Entomopathogenic
 otu_720	Tolypocladium species 1	1	2	Entomopathogenic
 otu_777	Tolypocladium species 1	2	8	Entomopathogenic
	Tolypocladium species 14	1	2	Entomopathogenic

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_606	Tolypocladium species 14	2	8	Entomopathogenic
otu_941	Tolypocladium species 14	3	8	Entomopathogenic
otu_1214	Tolypocladium species 15	1	2	Entomopathogenic
otu_1226	Tolypocladium species 18	1	4	Entomopathogenic
otu_328	Tolypocladium species 18	3	130	Entomopathogenic
otu_469	Tolypocladium species 18	2	52	Entomopathogenic
otu_40	Tolypocladium species 2	31	10597	Entomopathogenic
otu_408	Tolypocladium species 2	7	102	Entomopathogenic
otu_1157	Tolypocladium species 2	1	2	Entomopathogenic
otu_12	Tolypocladium species 2	52	78889	Entomopathogenic
otu_17	Tolypocladium species 2	23	27062	Entomopathogenic
otu_22	Tolypocladium species 2	19	24464	Entomopathogenic
otu_428	Tolypocladium species 2	1	41	Entomopathogenic
otu_1000	Tolypocladium species 2	9	20	Entomopathogenic
otu_1015	Tolypocladium species 2	1	4	Entomopathogenic
otu_106	Tolypocladium species 2	13	1403	Entomopathogenic
otu_1137	Tolypocladium species 2	1	6	Entomopathogenic
otu_1150	Tolypocladium species 2	1	2	Entomopathogenic
otu_1153	Tolypocladium species 2	3	12	Entomopathogenic
otu_1154	Tolypocladium species 2	3	8	Entomopathogenic
otu_1166	Tolypocladium species 2	3	18	Entomopathogenic
otu_1185	Tolypocladium species 2	2	4	Entomopathogenic
otu_1213	Tolypocladium species 2	1	2	Entomopathogenic
otu_1215	Tolypocladium species 2	1	24	Entomopathogenic
otu_1220	Tolypocladium species 2	1	8	Entomopathogenic
otu_148	Tolypocladium species 2	7	1477	Entomopathogenic
otu_151	Tolypocladium species 2	5	150	Entomopathogenic
otu_266	Tolypocladium species 2	2	109	Entomopathogenic
otu_353	Tolypocladium species 2	2	53	Entomopathogenic
otu_396	Tolypocladium species 2	2	16	Entomopathogenic
otu_449	Tolypocladium species 2	6	89	Entomopathogenic
otu_505	Tolypocladium species 2	1	46	Entomopathogenic
otu_526	Tolypocladium species 2	3	36	Entomopathogenic
otu_527	Tolypocladium species 2	1	8	Entomopathogenic
otu_620	Tolypocladium species 2	2	13	Entomopathogenic
otu_739	Tolypocladium species 2	1	6	Entomopathogenic
otu_857	Tolypocladium species 2	1	7	Entomopathogenic

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_963	Tolypocladium species 2	1	2	Entomopathogenic
otu_189	Tolypocladium species 23	3	288	Entomopathogenic
otu_387	Tolypocladium species 28	2	38	Entomopathogenic
otu_415	Tolypocladium species 32	3	42	Entomopathogenic
otu_450	Tolypocladium species 32	6	119	Entomopathogenic
otu_893	Tolypocladium species 32	2	11	Entomopathogenic
otu_472	Tolypocladium species 37	1	2	Entomopathogenic
otu_549	Tolypocladium species 41	2	15	Entomopathogenic
otu_616	Tolypocladium species 42	2	25	Entomopathogenic
otu_875	Tolypocladium species 42	1	3	Entomopathogenic
otu_738	Tolypocladium species 46	1	8	Entomopathogenic
otu_741	Tolypocladium species 48	1	11	Entomopathogenic
otu_1088	Tolypocladium species 5.1	1	2	Entomopathogenic
otu_1134	Tolypocladium species 53	1	2	Entomopathogenic
otu_852	Tolypocladium species 53	1	3	Entomopathogenic
otu_888	Tolypocladium species 53	1	3	Entomopathogenic
otu_836	Tolypocladium species 56	1	5	Entomopathogenic
otu_688	Tolypocladium species 56	24	994	Entomopathogenic
otu_1108	Tolypocladium species 57	1	4	Entomopathogenic
otu_1110	Tolypocladium species 57	1	4	Entomopathogenic
otu_413	Tolypocladium species 57	1	46	Entomopathogenic
otu_730	Tolypocladium species 57	1	10	Entomopathogenic
otu_619	Tolypocladium species 68	2	17	Entomopathogenic
otu_528	Tolypocladium species 69	1	17	Entomopathogenic
otu_858	Tolypocladium species 72	1	3	Entomopathogenic
otu_288	Torrubiella species 3	1	13	Entomopathogenic
otu_72	Torrubiella species 5	2	208	Entomopathogenic
otu_314	Trametes species 1	1	56	Wood decay
otu_544	Trametes species 2	1	13	Wood decay
otu_165	Trechispecies ora species 2	1	339	Wood decay
otu_350	Trechispecies ora species 7	1	29	Wood decay
otu_487	Trechispecies orales species 1.1	1	21	Undetermined
otu_967	Tremellales species 3.1	1	2	Undetermined
	Trichaptum species 1	5	942	Wood decay
	Trichoderma species 11	2	25	Fungicolous
	Tubeufiales species 1.1	1	44	Undetermined
otu_756	Tubeufiales species 1.2	1	8	Undetermined

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_253	Tyromyces species 1	1	60	Wood decay
otu_372	Umbelopsis species 1	2	34	Saprotroph
otu_158	Ustilago species 1	3	252	Plant pathogen
otu_681	Verruconis species 3	1	8	Saprotroph
otu_31	Verticillium species 1	11	25806	Nematicidal
otu_1139	Verticillium species 10	1	2	Nematicidal
otu_430	Verticillium species 10	2	39	Nematicidal
otu_221	Verticillium species 11	1	175	Nematicidal
otu_879	Verticillium species 12	1	3	Nematicidal
otu_745	Verticillium species 2	2	868	Nematicidal
otu_1230	Verticillium species 3	1	2	Nematicidal
otu_280	Verticillium species 4	1	267	Nematicidal
otu_673	Verticillium species 5	1	8	Nematicidal
otu_742	Verticillium species 6	1	14	Nematicidal
otu_740	Verticillium species 7	1	6	Nematicidal
otu_880	Verticillium species 8	1	11	Nematicidal
otu_1100	Volutella species 1	1	2	Plant pathogen
otu_570	Volutella species 10	2	21	Plant pathogen
otu_660	Volutella species 11	1	5	Plant pathogen
otu_692	Volutella species 12	1	4	Plant pathogen
otu_844	Volutella species 14	1	7	Plant pathogen
otu_873	Volutella species 15	1	5	Plant pathogen
otu_881	Volutella species 16	1	5	Plant pathogen
otu_1103	Volutella species 2	1	2	Plant pathogen
otu_1138	Volutella species 3	3	22	Plant pathogen
otu_1168	Volutella species 4	1	2	Plant pathogen
otu_147	Volutella species 5	2	252	Plant pathogen
otu_227	Volutella species 6	4	301	Plant pathogen
otu_287	Volutella species 7	2	66	Plant pathogen
otu_370	Volutella species 8	3	98	Plant pathogen
otu_291	Volvariella species 1	1	47	Saprotroph
otu_115	Wallemia species 1	1	416	Saprotroph
otu_46	Wallemia species 2	3	3303	Saprotroph
otu_849	Wallrothiella species 1	1	5	Undetermined
 otu_547	Wolfiporia species 1	1	10	Wood decay
otu_455	Xenasmatella species 1	1	20	Wood decay
otu_573	Xenasmatella species 2	1	28	Wood decay

OTU	Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_1009	Xylariales species 18.1	1	2	Undetermined
otu_400	Xylariales species 18.2	1	23	Undetermined
otu_823	Xylariales species 4.1	1	3	Undetermined
otu_338	Xylariales species 8.2	1	34	Undetermined
otu_323	Xylobolus species 1	1	41	Saprotroph
otu_1026	Xylodon species 1	1	2	Saprotroph
otu_163	Xylodon species 2	5	253	Saprotroph
otu_448	Xylodon species 3	1	66	Saprotroph
otu_590	Xylodon species 4	1	9	Saprotroph
otu_303	Yuchengia species 1	1	56	Saprotroph

SUPPLEMENTARY TABLE 3.4. Operational taxonomic unit (OTU) taxonomic and function guild assignments using Manual BLAST Percent Based (MAN PER) method.

OTU	MAN PER Taxonomic assignment	Incidence frequency	No. sequence reads	Function guild assignment
otu_389	Absidia species 1	Saprotroph	1	50
otu_1067	Acremonium species 1	Fungicolous	1	4
otu_248	Acremonium species 10	Fungicolous	3	95
otu_27	Acremonium species 11	Fungicolous	8	26649
otu_358	Acremonium species 12	Fungicolous	2	89
otu_371	Acremonium species 13	Fungicolous	9	164
otu_410	Acremonium species 14	Fungicolous	2	74
otu_607	Acremonium species 15	Fungicolous	2	17
otu_657	Acremonium species 16	Fungicolous	1	21
otu_658	Acremonium species 17	Fungicolous	1	7
otu_722	Acremonium species 18	Fungicolous	1	32
otu_727	Acremonium species 19	Fungicolous	1	4
otu_1087	Acremonium species 2	Fungicolous	2	4
otu_731	Acremonium species 20	Fungicolous	2	204
otu_755	Acremonium species 21	Fungicolous	1	8
otu_8	Acremonium species 22	Fungicolous	50	150140
otu_839	Acremonium species 23	Fungicolous	1	7
otu_846	Acremonium species 24	Fungicolous	4	86
otu_847	Acremonium species 25	Fungicolous	1	3
otu_86	Acremonium species 26	Fungicolous	1	728
otu_896	Acremonium species 27	Fungicolous	2	13
otu_1126	Acremonium species 3	Fungicolous	1	4
otu_116	Acremonium species 4	Fungicolous	9	3752
otu_1205	Acremonium species 5	Fungicolous	2	148
otu_142	Acremonium species 6	Fungicolous	6	1905
otu_168	Acremonium species 7	Fungicolous	1	351
otu_23	Acremonium species 8	Fungicolous	12	22585
otu_236	Acremonium species 9	Fungicolous	9	632
otu_199	Agaricales species 11.1	Undetermined	2	275
otu_386	Agaricales species 11.2	Undetermined	1	30
otu_66	Agaricales species 11.3	Undetermined	5	1788
otu_1099	Agaricales species 11.4	Undetermined	1	2

otu_310	Agaricales species 5.1	Undetermined	1	42
otu 1229	Agaricales species 6.1	Undetermined	1	2
otu_485	Agaricomycetes species 1.1	Undetermined	1	23
otu_98	Agaricomycetes species 11.1	Undetermined	3	860
otu_952	Agaricomycetes species 11.3	Undetermined	4	10
otu_487	Agaricomycetes species 11.4	Undetermined	1	21
otu_1106	Agaricomycetes species 13.1	Undetermined	1	2
otu_615	Agaricomycetes species 13.2	Undetermined	1	16
otu_157	Agaricomycetes species 13.3	Undetermined	1	456
otu_444	Agaricomycetes species 13.4	Undetermined	1	20
 otu_16	Agaricomycetes species 13.5	Undetermined	12	30634
otu_461	Agaricomycetes species 15.1	Undetermined	1	31
otu_598	Agaricomycetes species 20.1	Undetermined	1	10
 otu_553	Agaricomycetes species 22.1	Undetermined	1	12
 otu_260	Agaricomycetes species 23.2	Undetermined	1	85
 otu_185	Agaricomycetes species 27.1	Undetermined	1	151
 otu 364	Agaricomycetes species 3.1	Undetermined	1	35
 otu 416	Agaricomycetes species 3.2	Undetermined	1	20
 otu_883	Agaricomycetes species 3.3	Undetermined	1	3
 otu_331	Agaricomycetes species 32.1	Undetermined	1	38
otu 231	Agaricomycetes species 34.1	Undetermined	1	65
otu 76	Agaricomycetes species 34.10	Undetermined	2	1483
 otu_960	Agaricomycetes species 34.11	Undetermined	1	2
otu_252	Agaricomycetes species 34.6	Undetermined	1	75
otu_903	Agaricomycetes species 34.7	Undetermined	1	7
otu 613	Agaricomycetes species 34.9	Undetermined	1	11
otu_509	Agaricomycetes species 36.1	Undetermined	2	17
otu_900	Agaricomycetes species 37.1	Undetermined	1	9
otu_1243	Agaricomycetes species 38.1	Undetermined	1	2
otu_362	Agaricomycetes species 4.1	Undetermined	1	28
otu_694	Agaricomycetes species 5.1	Undetermined	1	4
 otu_962	Agaricomycetes species 6.1	Undetermined	1	2
 otu_139	Agaricomycetes species 9.1	Undetermined	2	303
 otu_640	Agrocybe species 1	Saprotroph	1	8
 otu_789	Alternaria species 1	Plant pathogen	1	5
 otu_706	Amphisphaeriaceae species 1.2	Saprotroph	1	8
 otu_484	Amyloporia species 1	Saprotroph	1	15
 otu_178	Ascomycota incertae sedis species	Undetermined	1	345
 otu_254	Ascomycota species 17.1	Undetermined	1	69

otu_173	Ascomycota species 9.1	Undetermined	1	158
otu_340	Aspergillus species 1	Saprotroph	1	29
otu_211	Atheliaceae species 1.1	Undetermined	1	94
otu_1247	Atractiellales species 1.1	Undetermined	1	2
otu_316	Aurantiporus species 1	Wood decay	2	79
otu_643	Auriculariales species 1	Undetermined	1	7
otu_198	Auriculariales species incertae	Undetermined	1	209
otu_305	Basidiobolus species 1	Saprotroph	1	91
otu_318	Basidiomycota species 13.1	Undetermined	1	48
otu_369	Basidiomycota species 13.2	Undetermined	1	35
otu_503	Basidiomycota species 13.3	Undetermined	1	4
otu_878	Basidiomycota species 14.1	Undetermined	1	5
otu_824	Basidiomycota species 15.1	Undetermined	1	5
otu_618	Basidiomycota species 15.2	Undetermined	1	8
otu_678	Basidiomycota species 18.1	Undetermined	1	8
otu_650	Basidiomycota species 19.1	Undetermined	1	5
otu_202	Basidiomycota species 23.1	Undetermined	1	105
otu_1075	Basidiomycota species 25.13	Undetermined	3	8
otu_1184	Basidiomycota species 25.14	Undetermined	1	2
otu_104	Basidiomycota species 25.15	Undetermined	3	766
otu_500	Basidiomycota species 25.5	Undetermined	1	16
otu_959	Basidiomycota species 25.6	Undetermined	1	4
otu_566	Basidiomycota species 26.1	Undetermined	1	19
otu_867	Basidiomycota species 27.1	Undetermined	1	3
otu_677	Basidiomycota species 3.1	Undetermined	1	5
otu_1142	Basidiomycota species 4.1	Undetermined	1	2
otu_625	Basidiomycota species 4.2	Undetermined	2	25
otu_311	Basidiomycota species 5.1	Undetermined	1	47
otu_321	Basidiomycota species 6.1	Undetermined	1	43
otu_968	Basidiomycota species 7.1	Undetermined	1	2
otu_1006	Basidiomycota species 7.2	Undetermined	1	2
otu_809	Beltrania species 1	Saprotroph	1	5
otu_540	Betamyces species 1	Plant pathogen	1	13
otu_695	Biatriospora species 1	Fungicolous	1	8
otu_617	Bionectriaceae species 1.1	Saprotroph	2	15
	Bionectriaceae species 1.10	Saprotroph	1	21
	Bionectriaceae species 1.11	Saprotroph	1	2
	Bionectriaceae species 1.12	Saprotroph	1	2
 otu_63	Bionectriaceae species 1.2	Saprotroph	1	1071

otu 1160	Bionectriaceae species 1.3	Saprotroph	1	2
 otu_54	Bionectriaceae species 1.4	Saprotroph	3	1507
otu 743	Bionectriaceae species 1.5	Saprotroph	1	4
	Bionectriaceae species 1.6	Saprotroph	1	2
 otu 621	Bionectriaceae species 1.7	Saprotroph	5	19
	Bionectriaceae species 1.8	Saprotroph	1	2
otu_935	Bionectriaceae species 1.9	Saprotroph	1	2
otu 267	Bjerkandera species 2	Wood decay	1	47
otu_453	Bulleromyces species 1	Undetermined	1	18
otu 629	Calosphaeriaceae species 1.1	Undetermined	1	11
otu 354	Calyptella species 1	Saprotroph	1	22
	Campylocarpon species 1	Plant pathogen	1	2
otu_1122	Campylocarpon species 2	Plant pathogen	4	1744
otu_44	Candida species 2	Saprotroph	1	2366
otu_11	Candida species 3	Saprotroph	1	13
otu_490	Candida species 7	Saprotroph	1	6
otu_099	Candida species 8	Saprotroph	1	494
otu 4	Candida species 9	Saprotroph	20	106
otu_152	Cantharellales species 1.1	Undetermined	1	224
otu_102	Ceriporia species 4	Wood decay	4	66
otu 703	Chaetothyriales species 4.1	Undetermined	1	4
otu 704	Chaetothyriales species 5.1	Undetermined	1	4
otu 704	Chaetothyriales species 6.2	Undetermined	1	7
otu 680	Chaetothyriales species 9.2	Undetermined	1	12
otu_080	Chaetothyriales species 9.2 Chaetothyriales species 9.3	Undetermined	1	12
	Chuerolinyrules species 9.5 Chytridiomycota species 2.1	Undetermined	1	2
otu 184		Undetermined	2	159
otu 84	Chytridiomycota species 2.2	Undetermined		809
	Chytridiomycota species 3.1 Chytridiomycota species 3.3	Undetermined	1	
otu_497	Chytridiomycota species 5.5 Chytridiomycota species 7.1	Undetermined		12
otu_307	Chylriatomycola species 7.1 Clavicipitaceae species 1.1		1 2	42
otu_1225		Entomopathogenic	2	6
otu_865	Clavicipitaceae species 1.10	Entomopathogenic		-
otu_1237	Clavicipitaceae species 1.11	Entomopathogenic	1	2
otu_451	Clavicipitaceae species 1.12	Entomopathogenic	1	42
otu_866	Clavicipitaceae species 1.13	Entomopathogenic	1	3
otu_911	Clavicipitaceae species 1.14	Entomopathogenic	1	7
otu_1119	Clavicipitaceae species 1.15	Entomopathogenic	1	4
otu_1129	Clavicipitaceae species 1.16	Entomopathogenic	1	2
otu_140	Clavicipitaceae species 1.17	Entomopathogenic	2	288

otu_196	Clavicipitaceae species 1.19	Entomopathogenic	2	142
otu_488	Clavicipitaceae species 1.2	Entomopathogenic	1	13
otu_5	Clavicipitaceae species 1.20	Entomopathogenic	41	87459
otu_667	Clavicipitaceae species 1.21	Entomopathogenic	1	25
otu_863	Clavicipitaceae species 1.22	Entomopathogenic	1	5
otu_577	Clavicipitaceae species 1.3	Entomopathogenic	2	17
otu_608	Clavicipitaceae species 1.4	Entomopathogenic	1	13
otu_1032	Clavicipitaceae species 1.5	Entomopathogenic	1	2
otu_1033	Clavicipitaceae species 1.6	Entomopathogenic	1	2
otu_1123	Clavicipitaceae species 1.7	Entomopathogenic	1	2
otu_412	Clavicipitaceae species 1.8	Entomopathogenic	1	30
otu_525	Clavicipitaceae species 1.9	Entomopathogenic	1	16
otu_1112	Clavicipitaceae species 2.1	Entomopathogenic	1	2
otu_48	Clavicipitaceae species 2.2	Entomopathogenic	2	2494
otu_524	Clavicipitaceae species 2.3	Entomopathogenic	1	18
otu_697	Clavicipitaceae species 2.4	Entomopathogenic	1	18
otu_973	Clavicipitaceae species 2.5	Entomopathogenic	2	4
otu_174	Clavicipitaceae species 2.6	Entomopathogenic	1	233
otu_612	Clavicipitaceae species 2.7	Entomopathogenic	2	10
otu_870	Clavicipitaceae species 2.8	Entomopathogenic	1	5
otu_470	Clavicipitaceae species 2.9	Entomopathogenic	1	14
otu_59	Clavicipitaceae species 3.1	Entomopathogenic	5	1627
otu_820	Clavicipitaceae species 3.2	Entomopathogenic	1	5
otu_1070	Clavicipitaceae species 4.1	Entomopathogenic	1	2
otu_561	Clonostachys species 1	Saprotroph	2	24
otu_887	Clonostachys species 10	Saprotroph	1	3
otu_1158	Clonostachys species 11	Saprotroph	1	8
otu_891	Clonostachys species 13	Saprotroph	1	11
otu_1077	Clonostachys species 14	Saprotroph	1	2
otu_1199	Clonostachys species 15	Saprotroph	1	2
otu_129	Clonostachys species 16	Saprotroph	2	658
otu_895	Clonostachys species 17	Saprotroph	1	6
otu_1159	Clonostachys species 2	Saprotroph	1	4
otu_672	Clonostachys species 3	Saprotroph	1	7
otu_111	Clonostachys species 4	Saprotroph	9	1480
otu_1101	Clonostachys species 5	Saprotroph	1	2
otu_301	Clonostachys species 6	Saprotroph	2	50
otu_1171	Clonostachys species 7	Saprotroph	1	2
otu_1234	Clonostachys species 8	Saprotroph	1	2

otu 581	Clonostachys species 9	Saprotroph	1	22
otu 1149	Cordycipitaceae species 1.1	Entomopathogenic	1	2
otu 877	Cordycipitaceae species 1.2	Entomopathogenic	1	6
otu_1175	Cordycipitaceae species 2.1	Entomopathogenic	1	2
otu_118	Cordycipitaceae species 2.2	Entomopathogenic	2	775
otu 1141	Cordycipitaceae species 2.3	Entomopathogenic	1	2
 otu_454	Cordycipitaceae species 2.4	Entomopathogenic	1	17
 otu 747	Cordycipitaceae species 2.5	Entomopathogenic	1	10
 otu 879	Cordycipitaceae species 2.6	Entomopathogenic	1	3
 otu 165	Corticiaceae species 1.1	Undetermined	1	339
	Corticiaceae species 2.1	Undetermined	1	119
 otu 944	Corticiales species 1.1	Undetermined	1	2
	Corticium species 1	Saprotroph	1	29
 otu 1245	-	Wood decay	1	2
 otu 251	Cryptococcus species 1	Saprotroph	1	65
	Cunninghamellaceae species 1.1	Undetermined	3	100
 otu_975	Cunninghamellaceae species 2.1	Undetermined	1	2
 otu 871	Cutaneotrichosporon species 1	Saprotroph	1	5
 otu_404	Cylindrobasidium species 1	Undetermined	1	17
 otu_375	Cyphellaceae species 1.1	Undetermined	1	19
otu 61	Cystobasidiomycetes species 1.2	Undetermined	1	1136
 otu 811	Dacryobolus species 1	Plant pathogen	1	5
 otu 905	Debaryomyces species 10	Saprotroph	3	10
 otu_1198	Debaryomyces species 19	Saprotroph	1	18
otu_2	Debaryomyces species 2	Saprotroph	72	255672
otu 120	Debaryomyces species 20	Saprotroph	10	1662
 otu_18	Debaryomyces species 21	Saprotroph	28	36255
otu_208	Debaryomyces species 4	Saprotroph	4	235
otu_405	Debaryomyces species 5	Saprotroph	5	111
otu_530	Debaryomyces species 6	Saprotroph	3	60
otu_659	Debaryomyces species 7	Saprotroph	2	11
 otu_668	Debaryomyces species 7	Saprotroph	6	113
otu_751	Debaryomyces species 8	Saprotroph	1	11
otu_862	Debaryomyces species 9	Saprotroph	30	2147
otu_1118	Debaryomycetaceae species 1.1	Undetermined	1	4
 otu_669	Debaryomycetaceae species 1.2	Undetermined	3	16
 otu_715	Deconica species 1	Saprotroph	1	6
otu_575	Dothideomycetes species 1.1	Undetermined	1	11
otu_1083	Dothideomycetes species 2.1	Undetermined	1	2

otu_971	Engyodontium species 1	Entomopathogenic	1	2
otu_954	Eurotiomycetes species 3.3	Undetermined	1	2
otu_1011	Exidiaceae species 1.1	Undetermined	1	2
otu_127	Exobasidiomycetes species 2.1	Undetermined	1	325
otu_175	Exophiala species 2	Saprotroph	3	215
otu_161	Filobasidium species 1	Saprotroph	1	296
otu_910	Fomitiporia species 1	Plant pathogen	1	3
otu_1128	Fusarium species 1	Plant pathogen	1	2
otu_1194	Fusarium species 10	Plant pathogen	1	4
otu_1057	Fusarium species 12	Plant pathogen	1	2
otu_748	Fusarium species 16	Plant pathogen	1	9
otu_886	Fusarium species 17	Plant pathogen	1	3
otu_258	Fusarium species 18	Plant pathogen	4	205
otu_1094	Fusarium species 19	Plant pathogen	1	2
otu_1148	Fusarium species 20	Plant pathogen	1	2
otu_1156	Fusarium species 21	Plant pathogen	1	2
otu_1181	Fusarium species 22	Plant pathogen	1	4
otu_213	Fusarium species 23	Plant pathogen	3	79
otu_368	Fusarium species 24	Plant pathogen	5	78
otu_411	Fusarium species 25	Plant pathogen	4	112
otu_494	Fusarium species 26	Plant pathogen	1	11
otu_611	Fusarium species 27	Plant pathogen	1	13
otu_67	Fusarium species 28	Plant pathogen	11	1325
otu_737	Fusarium species 29	Plant pathogen	1	6
otu_523	Fusarium species 3	Plant pathogen	1	10
otu_854	Fusarium species 30	Plant pathogen	2	9
otu_939	Fusarium species 31	Plant pathogen	1	2
otu_1121	Fusarium species 32	Plant pathogen	1	2
otu_359	Fusarium species 33	Plant pathogen	1	23
otu_417	Fusarium species 35	Plant pathogen	1	28
otu_1102	Fusarium species 36	Plant pathogen	1	2
otu_564	Fusarium species 4	Plant pathogen	1	9
otu_1097	Fusarium species 6	Plant pathogen	1	2
otu_1178	Fusarium species 7	Plant pathogen	1	8
otu_188	Fusarium species 8	Plant pathogen	3	151
otu_26	Fusarium species 9	Plant pathogen	12	9913
otu_294	Fuscoporia species 1	Saprotroph	1	49
otu_908	Fuscoporia species 2	Saprotroph	1	5
otu_212	Gliomastix species 1	Saprotroph	4	134

otu 850	Gliomastix species 10	Saprotroph	1	7
otu 872	Gliomastix species 11	Saprotroph	1	3
otu 907	Gliomastix species 12	Saprotroph	1	3
otu_153	Gliomastix species 13	Saprotroph	6	3216
otu_204	Gliomastix species 2	Saprotroph	2	4
otu 214	Gliomastix species 3	Saprotroph	1	193
otu_226	Gliomastix species 4	Saprotroph	1	96
otu 28	Gliomastix species 5	Saprotroph	20	26018
otu 713	Gliomastix species 7	Saprotroph	2	12
otu_715	Gliomastix species 8	Saprotroph	1	5
otu_010 otu 1027		Saprotroph	2	22
otu_1027 otu 269	Gloeoporus species 2	Wood decay	1	62
otu_209	Gloeoporus species 3	Wood decay	1	10
	Glomerellales species 1.1	Undetermined	1	2
otu 744	Glomerellales species 1.2	Undetermined	1	17
otu 1080	-	Saprotroph	1	4
	Graphium species 2	Saprotroph	1	2
otu_1082	Graphium species 2 Graphium species 3		2	133
	Graphium species 5 Graphium species 4	Saprotroph Saprotroph	2	49
otu_326		Saprotroph	1	6
otu_614	Graphium species 5		2	
otu_552	Gymnopilus species 4	Wood decay		15
otu_943	Gymnopus species 2	Saprotroph	1	2
otu_927	Gymnopus species 3	Saprotroph	1	2
otu_966	Helotiales species 1.1	Undetermined	1	2
otu_467	Herpotrichiellaceae species 3.1	Undetermined	1	20
otu_242	Hydnodontaceae species 1.1	Undetermined	1	63
	Hymenochaetaceae species 1.1	Undetermined	1	2
otu_448	Hymenochaetaceae species 2.1	Undetermined	1	66
otu_268	Hyphodermella species 1	Saprotroph	3	82
otu_705	Hyphodontia species 1	Saprotroph	2	9
otu_666	Hyphodontia species 3	Saprotroph	1	12
otu_442	Hyphodontia species 4	Saprotroph	1	16
otu_1010		Wood decay	1	4
otu_1173	Hypocreales Incertae sedis species	Undetermined	1	2
otu_653	Hypocreales Incertae sedis species	Undetermined	3	7
otu_774	Hypocreales Incertae sedis species	Undetermined	1	5
otu_775	Hypocreales Incertae sedis species	Undetermined	1	3
otu_1179	Hypocreales Incertae sedis species	Undetermined	1	2
otu_758	Hypocreales Incertae sedis species	Undetermined	4	18

otu 778	Hypocreales Incertae sedis species	Undetermined	1	5
	Hypocreales Incertae sedis species		1	2
otu_1109	Hypocreales Incertae sedis species		73	128406
otu_10	<i>Hypocreales Incertae sedis species</i> <i>Hypocreales Incertae sedis species</i>	Undetermined	1	7
otu_965	<i>Hypocreales Incertae sedis species</i>	Undetermined	1	2
otu_909		Undetermined	1	50
otu_562	<i>Hypocreales Incertae sedis species</i> <i>Hypocreales Incertae sedis species</i>	Undetermined	1	12
otu 734	<i>Hypocreales Incertae sedis species</i> <i>Hypocreales Incertae sedis species</i>	Undetermined	1	7
otu 641	<i>Hypocreales incertae sedis species</i>	Undetermined	2	14
otu 238	<i>Hypocreales incertae sedis species</i> <i>Hypocreales incertae sedis species</i>	Undetermined	1	107
otu_230	<i>Hypocreales incertae sedis species</i> <i>Hypocreales incertae sedis species</i>	Undetermined	1	2
otu 735	<i>Hypocreales incertae sedis species</i> <i>Hypocreales incertae sedis species</i>	Undetermined	1	9
otu_957	<i>Hypocreales incertae sedis species</i> <i>Hypocreales incertae sedis species</i>	Undetermined	1	2
otu 319	<i>Hypocreales incertae sedis species</i> <i>Hypocreales incertae sedis species</i>	Undetermined	3	93
		Undetermined		
otu_736	Hypocreales incertae sedis species		1	11
otu_20	Hypocreales incertae sedis species	Undetermined	4	10
otu_34	Hypocreales incertae sedis species	Undetermined	3	8534
_	Hypocreales incertae sedis species	Undetermined	1	8
otu_769	Hypocreales incertae sedis species	Undetermined	1	3
otu_232	Hypocreales incertae sedis species	Undetermined	1	210
otu_521	Hypocreales incertae sedis species	Undetermined	1	13
_	Hypocreales incertae sedis species	Undetermined	1	2
otu_128	Hypocreales incertae sedis species	Undetermined	3	542
otu_304	Hypocreales incertae sedis species	Undetermined	1	74
otu_558	Hypocreales incertae sedis species	Undetermined	1	9
_	Hypocreales incertae sedis species	Undetermined	1	2
otu_733	Hypocreales incertae sedis species	Undetermined	2	25
otu_890	Hypocreales incertae sedis species	Undetermined	1	3
otu_1169	Hypocreales incertae sedis species	Undetermined	1	2
otu_604	Hypocreales incertae sedis species	Undetermined	1	9
otu_578	Hypocreales incertae sedis species	Undetermined	3	19
otu_468	Hypocreales incertae sedis species	Undetermined	1	15
otu_675	Hypocreales incertae sedis species	Undetermined	1	17
otu_1176	Hypocreales incertae sedis species	Undetermined	1	2
otu_752	Hypocreales incertae sedis species	Undetermined	1	8
otu_186	Hypocreales incertae sedis species	Undetermined	1	127
otu_837	Hypocreales incertae sedis species	Undetermined	1	3
otu_384	Hypocreales incertae sedis species	Undetermined	1	18
otu_1071	Hypocreales incertae sedis species	Undetermined	1	2

	··· · · ·	TT 1 / · ·		40
	Hypocreales species 1.1	Undetermined	1	48
	Hypocreales species 10.2	Undetermined	1	12
_	Hypocreales species 12.1	Undetermined	1	10
	Hypocreales species 14.2	Undetermined	1	2
	Hypocreales species 15.2	Undetermined	1	13
_	Hypocreales species 15.3	Undetermined	1	4
	Hypocreales species 16.1	Undetermined	1	3
otu_663	Hypocreales species 16.2	Undetermined	1	5
otu_856	Hypocreales species 16.3	Undetermined	1	3
otu_976	Hypocreales species 16.4	Undetermined	1	2
otu_150	Hypocreales species 16.5	Undetermined	4	296
otu_786	Hypocreales species 16.6	Undetermined	1	3
otu_1036	Hypocreales species 17.1	Undetermined	1	2
otu_459	Hypocreales species 3.1	Undetermined	1	22
otu_11	Hypocreales species 5.1	Undetermined	30	47429
otu_281	Hypocreales species 6.1	Undetermined	5	104
otu_1113	Hypocreales species 6.10	Undetermined	1	4
otu_30	Hypocreales species 6.11	Undetermined	8	17
otu_427	Hypocreales species 6.12	Undetermined	1	14
otu_536	Hypocreales species 6.13	Undetermined	3	43
otu_679	Hypocreales species 6.2	Undetermined	6	20
otu_1114	Hypocreales species 6.3	Undetermined	1	2
otu_1223	Hypocreales species 6.4	Undetermined	1	4
otu_609	Hypocreales species 6.6	Undetermined	1	14
otu_366	Hypocreales species 6.7	Undetermined	1	25
otu_568	Hypocreales species 6.8	Undetermined	2	17
otu_425	Hypocreales species 6.9	Undetermined	3	33
otu_74	Hypocreales species 7.1	Undetermined	1	1036
	Hypocreales species 8.1	Undetermined	1	4
otu_760	Hypocreales species 8.2	Undetermined	1	6
 otu_906	Hypocreales species 8.3	Undetermined	1	5
	Hypocreales species 9.1	Undetermined	1	3
	Irpex species 2	Wood decay	2	166
	Junghuhnia species 1	Wood decay	1	2
	Kneiffiella species 3	Wood decay	5	87
_	Lasiodiplodia species 1	Plant pathogen	1	2
_	Lasiodiplodia species 2	Plant pathogen	1	123
	Lecanicillium species 1	Entomopathogenic	1	9
		1 0 .		

			1	1
otu_255	Lecanoromycetes species 2.1	Undetermined	1	64
otu_274	Lecanoromycetes species 2.3	Undetermined	1	68
otu_876	Lecanoromycetes species 2.4	Undetermined	1	3
otu_819	Lecanoromycetes species 4.1	Undetermined	1	6
otu_298	Lecanoromycetes species 5.2	Undetermined	2	67
otu_591	Lecanoromycetes species 5.3	Undetermined	2	12
otu_781	Lecanoromycetes species 5.4	Undetermined	1	5
otu_206	Lentinellus species 1	Saprotroph	1	92
otu_41	Lentinus species 2	Wood decay	2	3309
otu_31	Leptobacillium species 1	Undetermined	11	25806
otu_673	Leptobacillium species 10	Undetermined	1	8
otu_745	Leptobacillium species 11	Undetermined	2	868
otu_880	Leptobacillium species 12	Undetermined	1	11
otu_1230	Leptobacillium species 2	Undetermined	1	2
otu_740	Leptobacillium species 3	Undetermined	1	6
otu_742	Leptobacillium species 4	Undetermined	1	14
otu_1139	Leptobacillium species 5	Undetermined	1	2
otu_221	Leptobacillium species 6	Undetermined	1	175
otu_280	Leptobacillium species 7	Undetermined	1	267
otu_430	Leptobacillium species 8	Undetermined	2	39
otu_498	Leptobacillium species 9	Undetermined	1	37
otu_569	Leptosporomyces species 1	Saprotroph	1	17
otu_1029	Malassezia species 1	Saprotroph	1	2
otu_135	Malassezia species 14	Saprotroph	3	16
otu_504	Malassezia species 15	Saprotroph	3	28
otu_53	Malassezia species 16	Saprotroph	18	5987
otu_785	Malassezia species 2	Saprotroph	1	3
otu_808	Malassezia species 3	Saprotroph	4	43
otu_25	Malassezia species 4	Saprotroph	12	28413
otu_92	Malassezia species 6	Saprotroph	10	878
otu_193	Malasseziomycetes species 1.1	Undetermined	2	141
otu_43	Malasseziomycetes species 1.3	Undetermined	3	3277
otu_94	Marasmiaceae species 1.2	Plant pathogen	1	1046
otu_24	Marasmiellus species 1	Plant pathogen	3	3507
otu_1127	Metacordyceps species 1	Entomopathogenic	1	2
otu_565	Metacordyceps species 2	Entomopathogenic	4	45
otu_58	Metapochonia species 10	Entomopathogenic	1	1630
 otu_580	Metapochonia species 11	Entomopathogenic	1	19
otu 1131		Entomopathogenic	2	4

otu_207	Metapochonia species 14	Entomopathogenic	2	272
otu_273	Metapochonia species 15	Entomopathogenic	1	118
otu_299	Metapochonia species 16	Entomopathogenic	2	34
otu_334	Metapochonia species 17	Entomopathogenic	6	385
otu_1152	Metapochonia species 18	Entomopathogenic	1	2
otu_414	Metapochonia species 19	Entomopathogenic	2	29
otu_122	Metapochonia species 2	Entomopathogenic	21	1783
otu_495	Metapochonia species 21	Entomopathogenic	1	23
otu_533	Metapochonia species 22	Entomopathogenic	1	16
otu_610	Metapochonia species 23	Entomopathogenic	2	23
otu_868	Metapochonia species 3	Entomopathogenic	1	5
otu_869	Metapochonia species 4	Entomopathogenic	1	11
otu_902	Metapochonia species 5	Entomopathogenic	1	9
otu_195	Metapochonia species 6	Entomopathogenic	1	112
otu_534	Metapochonia species 7	Entomopathogenic	1	27
otu_1224	Metapochonia species 8	Entomopathogenic	1	2
otu_14	Metapochonia species 9	Entomopathogenic	35	65889
otu_6	Metarhizium species 1	Entomopathogenic	32	62691
otu_1236	Metarhizium species 3	Entomopathogenic	1	2
otu_493	Mucor species 1	Saprotroph	1	12
otu_1232	Mucoromycotina species 1.1	Undetermined	1	2
otu_277	Mycena species 1	Saprotroph	1	51
otu_632	Mycena species 2	Saprotroph	1	7
otu_47	Mycenaceae species 1.1	Undetermined	2	2859
otu_1202	Mycenaceae species 1.2	Undetermined	1	4
otu_574	Myxarium species 1	Wood decay	1	18
otu_746	Myxospora species 2	Undetermined	1	8
otu_882	Myxospora species 3	Undetermined	1	3
otu_1167	Myxospora species 4	Undetermined	1	4
otu_1170	Myxospora species 5	Undetermined	1	2
	Myxospora species 6	Undetermined	2	4
otu_239	Myxospora species 7	Undetermined	1	125
otu_286	Myxospora species 8	Undetermined	1	63
otu_35	Myxospora species 9	Undetermined	7	7925
otu_32	Naganishia species 2	Undetermined	2	8
	Nectria species 10	Plant pathogen	1	5
 otu_829	Nectria species 11	Plant pathogen	1	2
otu_884	Nectria species 12	Plant pathogen	1	3
 otu_901	Nectria species 13	Plant pathogen	1	6

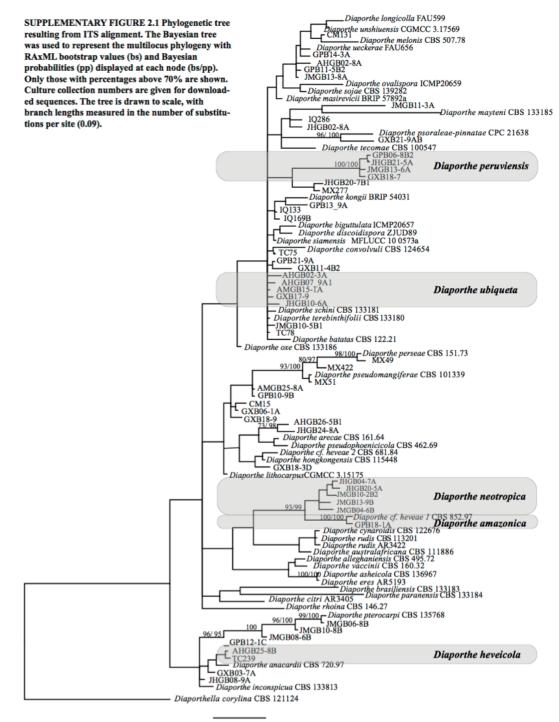
otu_933	Nectria species 14	Plant pathogen	1	2
otu_37	Nectria species 15	Plant pathogen	1	3703
otu_864	Nectria species 16	Plant pathogen	1	7
otu_1196	Nectria species 17	Plant pathogen	1	2
otu_1219	Nectria species 18	Plant pathogen	1	2
otu_13	Nectria species 19	Plant pathogen	25	25796
otu_1188	Nectria species 3	Plant pathogen	1	2
otu_197	Nectria species 4	Plant pathogen	1	107
otu_289	Nectria species 5	Plant pathogen	2	69
otu_324	Nectria species 6	Plant pathogen	1	51
otu_571	Nectria species 7	Plant pathogen	1	12
otu_1192	Nectria species 8	Plant pathogen	1	2
otu_749	Nectria species 9	Plant pathogen	1	13
otu_671	Nectriaceae species 1.1	Undetermined	1	8
otu_1140	Nectriaceae species 1.2	Undetermined	1	8
otu_224	Nectriaceae species 1.3	Undetermined	3	148
otu_429	Nectriaceae species 1.4	Undetermined	1	12
otu_1143	Nectriaceae species 2.1	Undetermined	1	2
otu_1081	Nectriaceae species 3.1	Undetermined	1	2
otu_522	Nectriaceae species 3.2	Undetermined	5	38
otu_855	Nectriaceae species 3.3	Undetermined	1	6
otu_823	Nectriaceae species 4.1	Undetermined	1	3
otu_1165	Nectriaceae species 5.2	Undetermined	1	2
otu_1190	Nectriaceae species 5.3	Undetermined	1	2
otu_1180	Nectriaceae species 5.4	Undetermined	1	2
otu_1195	Nectriaceae species 5.5	Undetermined	1	2
otu_284	Nectriaceae species 6.1	Undetermined	1	61
otu_447	Nectriaceae species 6.2	Undetermined	1	16
otu_570	Nectriaceae species 7.2	Undetermined	2	21
otu_844	Nectriaceae species 7.3	Undetermined	1	7
otu_873	Nectriaceae species 7.4	Undetermined	1	5
otu_881	Nectriaceae species 7.5	Undetermined	1	5
	Omphalotaceae species 1.1	Undetermined	1	2
otu_585	Omphalotaceae species 1.2	Undetermined	1	13
otu_385	Omphalotaceae species 1.3	Undetermined	2	66
	Omphalotaceae species 1.4	Undetermined	1	37
 otu_964	Omphalotaceae species 1.6	Undetermined	1	2
otu_7	Omphalotaceae species 1.7	Undetermined	24	63494
otu_1217	Omphalotaceae species 1.8	Undetermined	1	2

4 0.41			1	0
otu_841	Ophiocordycipitaceae species 1.1	Entomopathogenic	1	8
	Ophiocordycipitaceae species 2.1	Entomopathogenic	1	4
otu_729	Ophiocordycipitaceae species 2.10	Entomopathogenic	1	10
		Entomopathogenic	1	2
otu_1111		Entomopathogenic	1	2
otu_1226	Ophiocordycipitaceae species 2.14	Entomopathogenic	1	4
otu_563	Ophiocordycipitaceae species 2.15	Entomopathogenic	1	13
otu_852	Ophiocordycipitaceae species 2.16	Entomopathogenic	1	3
otu_79	Ophiocordycipitaceae species 2.17	Entomopathogenic	2	643
otu_1157	Ophiocordycipitaceae species 2.18	Entomopathogenic	1	2
otu_189	Ophiocordycipitaceae species 2.2	Entomopathogenic	3	288
otu_155	Ophiocordycipitaceae species 2.20	Entomopathogenic	1	198
otu_616	Ophiocordycipitaceae species 2.3	Entomopathogenic	2	25
otu_738	Ophiocordycipitaceae species 2.5	Entomopathogenic	1	8
otu_1110	Ophiocordycipitaceae species 2.6	Entomopathogenic	1	4
otu_1135	Ophiocordycipitaceae species 2.7	Entomopathogenic	1	2
otu_413	Ophiocordycipitaceae species 2.8	Entomopathogenic	1	46
otu_528	Ophiocordycipitaceae species 2.9	Entomopathogenic	1	17
otu_133	Ophiostoma species 1	Plant pathogen	2	323
otu_296	Ophiostoma species 2	Plant pathogen	1	30
otu_292	Orbiliomycetes species 1.27	Undetermined	1	45
otu_822	Panus species 1	Undetermined	1	5
otu_754	Penicillifer species 10	Saprotroph	1	6
otu_974	Penicillifer species 11	Saprotroph	1	4
otu_146	Penicillifer species 12	Saprotroph	1	292
otu_1210	Penicillifer species 13	Saprotroph	1	2
otu_1117	Penicillifer species 16	Saprotroph	2	8
otu_15	Penicillifer species 17	Saprotroph	19	53002
otu_576	Penicillifer species 2	Saprotroph	2	17
otu_200	Penicillifer species 3	Saprotroph	4	365
otu_393	Penicillifer species 4	Saprotroph	3	26
otu_1172	Penicillifer species 5	Saprotroph	1	2
otu_433	Penicillifer species 6	Saprotroph	12	1038
otu_1105	Penicillifer species 7	Saprotroph	1	2
otu_977	Penicillifer species 8	Saprotroph	1	2
otu_329	Peniophora species 1	Wood decay	9	243
otu_308	Peniophora species 10	Wood decay	1	46
otu_1028	Peniophora species 2	Wood decay	3	14
otu_627	Peniophora species 3	Wood decay	2	11

otu 265	Peniophora species 5	Wood decay	5	144
otu 550	Peniophora species 7	Wood decay	1	13
otu 154	Peniophoraceae species 1.1	Undetermined	2	196
otu 225	Peniophorella species 2	Saprotroph	3	127
otu 339	Perenniporia species 1	Wood decay	1	40
	Phaeomoniellales species 1.1	Undetermined	1	2
	Phaeophlebiopsis species 1	Saprotroph	1	2
otu 710	Phallales species 1.1	Undetermined	3	15
otu_710	Phanerochaete species 1	Wood decay	1	23
otu_219	Phellinus species 1	Plant pathogen	1	44
	Phialemoniopsis species 1	Saprotroph	1	2
otu_1102	Phialemoniopsis species 2	Saprotroph	1	8
otu_171	Phialemoniopsis species 3	Saprotroph	4	327
otu_171	Phialemoniopsis species 5	Saprotroph	1	14
		Wood decay		
otu_441	Phlebia species 1	-	1	16
otu_812	Phlebia species 3	Wood decay	1	
otu_514	Phlebia species 4	Wood decay	1	12
otu_806	Phlebia species 5	Wood decay	1	3
otu_440	Phlebia species 9	Wood decay	2	26
otu_978	Pholiota species 1	Saprotroph	1	2
	Plectosphaerella species 1	Plant pathogen	1	2
otu_33	Plectosphaerella species 3	Plant pathogen	8	1114
otu_124	Plectosphaerella species 4	Plant pathogen	1	270
otu_711	Plectosphaerella species 5	Plant pathogen	1	26
otu_783	Plectosphaerella species 6	Plant pathogen	1	5
otu_646	Plectosphaerella species 7	Plant pathogen	2	22
otu_645	Plectosphaerella species 7	Plant pathogen	3	11
otu_50	Plectosphaerellaceae species 1.2	Undetermined	3	1936
otu_1068	Pleosporales species 1.1	Undetermined	1	2
otu_1023	Pleosporales species 1.2	Undetermined	2	4
otu_531	Pleurotus species 1	Entomopathogenic	1	17
otu_262	Pluteus species 2	Wood decay	1	67
otu_597	Polyporaceae species 2.1	Undetermined	1	6
otu_130	Polyporales species 1.1	Undetermined	1	582
otu_1021	Polyporales species 2.1	Undetermined	1	2
otu_1231	Polyporales species 4.1	Undetermined	1	2
otu_392	Polyporales species 5.1	Undetermined	2	39
otu_136	Polyporales species 6.1	Undetermined	1	310
otu_460	Polyporales species 7.1	Undetermined	1	25

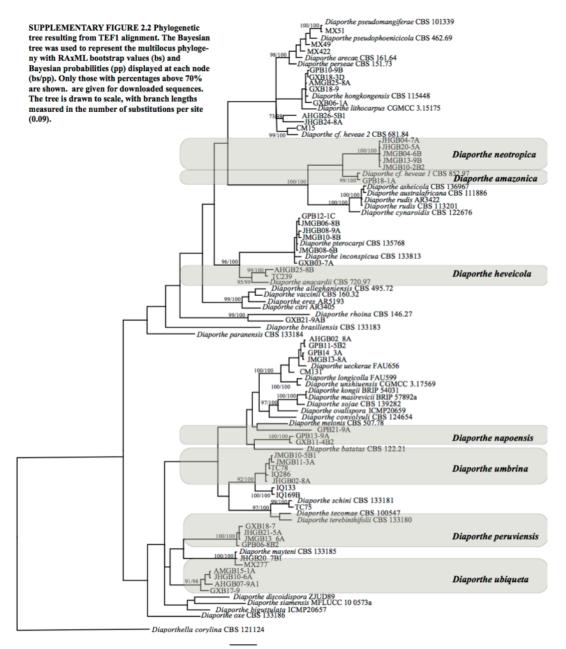
otu_271	Postia species 1	Wood decay	1	74
otu_548	Postia species 2	Wood decay	1	13
otu_712	Pseudochaete species 1	Saprotroph	1	7
otu_137	Puccinia species 1	Plant pathogen	1	260
otu_674	Pucciniomycetes species 1.1	Undetermined	1	9
otu_1045	Purpureocillium species 2	Entomopathogenic	1	2
otu_555	Purpureocillium species 3	Entomopathogenic	1	2
otu_519	Purpureocillium species 4	Entomopathogenic	1	19
otu_520	Purpureocillium species 5	Entomopathogenic	1	28
otu 836	Purpureocillium species 6	Entomopathogenic	1	5
otu 1007		Saprotroph	1	4
otu 95	Resupinatus species 1	Wood decay	2	838
	Resupinatus species 2	Wood decay	1	61
otu 382	Resupinatus species 3	Wood decay	1	26
otu 1244	Rhizophydiales species 1.1	Undetermined	1	2
	Rigidoporus species 1	Wood decay	1	76
 otu_210	Rigidoporus species 2	Wood decay	1	96
 otu 979	Rigidoporus species 4	Wood decay	1	4
 otu_337	Roussoella species 1	Saprotroph	1	52
 otu_723	Roussoellaceae species 1.1	Saprotroph	1	4
otu 1066	Roussoellaceae species 1.10	Saprotroph	1	4
 otu 557	Roussoellaceae species 1.11	Saprotroph	1	23
otu 843	Roussoellaceae species 1.12	Saprotroph	1	5
 otu_853	Roussoellaceae species 1.13	Saprotroph	1	5
	Roussoellaceae species 1.14	Saprotroph	1	481
	Roussoellaceae species 1.15	Saprotroph	1	2
otu 603	Roussoellaceae species 1.3	Saprotroph	1	13
 otu 842	Roussoellaceae species 1.5	Saprotroph	1	23
 otu_492	Roussoellaceae species 1.6	Saprotroph	1	82
otu_1024	Roussoellaceae species 1.8	Saprotroph	1	2
otu_143	Roussoellaceae species 1.9	Saprotroph	2	442
otu_1240	Saccharomyces species 1	Wood decay	1	4
otu_1079	Saccharomycetaceae species 1.1	Undetermined	1	2
	Saccharomycetales species 2.1	Undetermined	1	2
 otu_458	Sakaguchia species 1	Undetermined	1	17
 otu_45	Sampaiozyma species 1	Undetermined	1	2020
	Sarcopodium species 1	Saprotroph	1	2
	Sarcopodium species 2	Saprotroph	2	60
 otu_510	Sarocladium species 1	Saprotroph	2	25

otu 928	Sarocladium species 10	Saprotroph	3	8
otu 250	Sarocladium species 11	Saprotroph	32	656
otu 388	Sarocladium species 12	Saprotroph	2	84
otu_391	Sarocladium species 13	Saprotroph	6	39
 otu_114	Sarocladium species 14	Saprotroph	4	463
otu_418	Sarocladium species 15	Saprotroph	4	74
otu_419	Sarocladium species 16	Saprotroph	2	36
otu 622	Sarocladium species 17	Saprotroph	3	17
otu 56	Sarocladium species 18	Saprotroph	5	1372
 otu 776	Sarocladium species 2	Saprotroph	16	121
otu_434	Sarocladium species 20	Saprotroph	31	284
otu_924	Sarocladium species 21	Saprotroph	5	10
otu_921	Sarocladium species 22	Saprotroph	1	2
	Sarocladium species 23	Saprotroph	1	2
otu 3	Sarocladium species 24	Saprotroph	129	1823481
otu_767	Sarocladium species 3	Saprotroph	11	42
otu_77	Sarocladium species 4	Saprotroph	42	3103
otu 435	Sarocladium species 6	Saprotroph	8	107
otu_452	Sarocladium species 7	Saprotroph	1	22
 otu_958	Sarocladium species 8	Saprotroph	1	2
 otu_475	Sarocladium species 9	Saprotroph	6	34
otu 228	Schizophyllum species 1	Wood decay	1	84
	Schwanniomyces species 1	Undetermined	2	224
otu_1222	Septobasidiales species 1.2	Undetermined	2	4
otu_335	Simplicillium species 1	Entomopathogenic	1	52
otu_753	Simplicillium species 2	Entomopathogenic	1	13
otu_1209	Simplicillium species 3	Entomopathogenic	1	2
otu_1238	Simplicillium species 4	Entomopathogenic	1	2
otu_42	Simplicillium species 5	Entomopathogenic	1	2811
otu_9	Simplicillium species 6	Entomopathogenic	9	42624
otu_649	Sistotremastrum species 1	Saprotroph	1	8
otu_662	Sordariomycetes incertae sedis	Undetermined	1	5
otu_338	Sordariomycetes incertae sedis	Undetermined	1	34
otu_961	Sordariomycetes species 1.1	Undetermined	1	2
otu_714	Sordariomycetes species 12.10	Undetermined	1	8
otu_119	Sordariomycetes species 12.13	Undetermined	1	432
otu_631	Sordariomycetes species 12.14	Undetermined	3	12
otu_245	Sordariomycetes species 12.18	Undetermined	1	72
otu_647	Sordariomycetes species 13.1	Undetermined	1	8

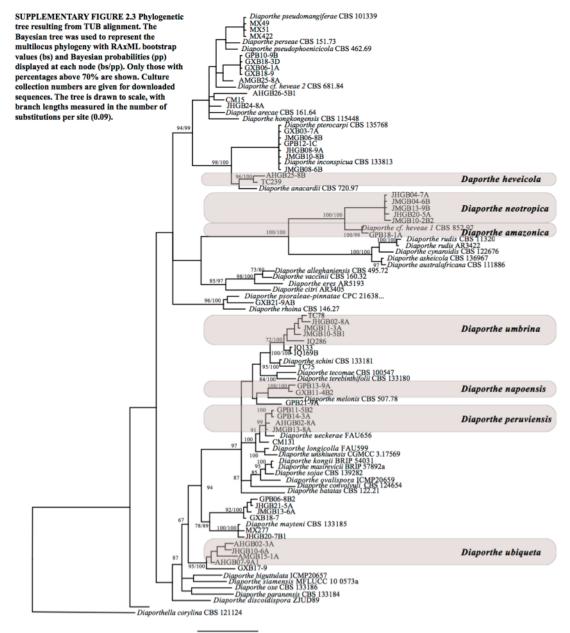

otu 1197	Soudaniamusatas apasias 12 2	Undetermined	1	2
	Sordariomycetes species 13.2	Undetermined		
	Sordariomycetes species 14.1		1	2
otu_249	Sordariomycetes species 18.2	Undetermined	2	245
otu_486	Sordariomycetes species 19.1	Undetermined	1	13
otu_399	Sordariomycetes species 6.2	Undetermined	2	25
otu_898	Sordariomycetes species 7.1	Undetermined	1	3
	Sordariomycetes species 9.1	Undetermined	1	2
otu_390	Sporidiobolus species 2	Undetermined	1	23
otu_327	Stachybotryaceae species 1.1	Undetermined	1	96
otu_395	Stachybotryaceae species 1.2	Undetermined	1	25
otu_1183	Stachybotryaceae species 2.1	Undetermined	1	8
otu_889	Stachybotryaceae species 2.2	Undetermined	1	3
otu_1186	Stachybotrys species 1	Wood decay	1	4
otu_1193	Stachybotrys species 2	Wood decay	1	4
otu_499	Stachybotrys species 3	Wood decay	1	33
otu_885	Stachybotrys species 4	Wood decay	1	3
otu_346	Steccherinum species 1	Saprotroph	1	33
otu_272	Stephanonectria species 2	Saprotroph	4	57
otu_732	Stephanonectria species 3	Saprotroph	2	10
otu_167	Stereum species 1	Saprotroph	8	445
otu_676	Stereum species 2	Saprotroph	1	5
otu_681	Sympoventuriaceae species 1.1	Undetermined	1	8
otu_923	Talaromyces species 1	Saprotroph	1	2
otu_644	Teloschistaceae species 1.1	Undetermined	1	5
otu_343	Tilletiopsis species 1	Undetermined	1	37
otu_1030	Tinctoporellus species 2	Wood decay	1	6
otu_969	Togniniales species _man 1.2	Undetermined	1	2
otu_1191	Togniniales species _man 1.3	Undetermined	1	4
otu_240	Togniniales species _man 1.7	Undetermined	1	82
otu_40	Tolypocladium species 1	Entomopathogenic	31	10597
otu_106	Tolypocladium species 10	Entomopathogenic	13	1403
otu_1086	Tolypocladium species 11	Entomopathogenic	1	4
	Tolypocladium species 12	Entomopathogenic	1	6
	Tolypocladium species 13	Entomopathogenic	1	2
 otu_1153	Tolypocladium species 14	Entomopathogenic	3	12
	Tolypocladium species 15	Entomopathogenic	3	8
	Tolypocladium species 16	Entomopathogenic	3	18
		Entomopathogenic	2	4
	Tolypocladium species 18	Entomopathogenic	1	2

otu_1215	Tolypocladium species 19	Entomopathogenic	1	24
otu_1214	Tolypocladium species 2	Entomopathogenic	1	2
otu_1220	Tolypocladium species 20	Entomopathogenic	1	8
otu_148	Tolypocladium species 21	Entomopathogenic	7	1477
otu_151	Tolypocladium species 22	Entomopathogenic	5	150
otu_266	Tolypocladium species 23	Entomopathogenic	2	109
otu_328	Tolypocladium species 24	Entomopathogenic	3	130
otu_353	Tolypocladium species 25	Entomopathogenic	2	53
otu_396	Tolypocladium species 26	Entomopathogenic	2	16
otu_415	Tolypocladium species 27	Entomopathogenic	3	42
otu_449	Tolypocladium species 28	Entomopathogenic	6	89
otu_450	Tolypocladium species 29	Entomopathogenic	6	119
otu_17	Tolypocladium species 3	Entomopathogenic	23	27062
otu_469	Tolypocladium species 30	Entomopathogenic	2	52
otu_472	Tolypocladium species 31	Entomopathogenic	1	2
otu_505	Tolypocladium species 32	Entomopathogenic	1	46
otu_526	Tolypocladium species 33	Entomopathogenic	3	36
otu_527	Tolypocladium species 34	Entomopathogenic	1	8
otu_549	Tolypocladium species 35	Entomopathogenic	2	15
otu_620	Tolypocladium species 36	Entomopathogenic	2	13
otu_739	Tolypocladium species 38	Entomopathogenic	1	6
otu_741	Tolypocladium species 39	Entomopathogenic	1	11
otu_22	Tolypocladium species 4	Entomopathogenic	19	24464
otu_857	Tolypocladium species 41	Entomopathogenic	1	7
otu_875	Tolypocladium species 42	Entomopathogenic	1	3
otu_893	Tolypocladium species 43	Entomopathogenic	2	11
otu_963	Tolypocladium species 44	Entomopathogenic	1	2
otu_257	Tolypocladium species 45	Entomopathogenic	6	157
otu_1088	Tolypocladium species 47	Entomopathogenic	1	2
otu_201	Tolypocladium species 49	Entomopathogenic	5	139
otu_428	Tolypocladium species 5	Entomopathogenic	1	41
otu_21	Tolypocladium species 50	Entomopathogenic	23	35337
otu_387	Tolypocladium species 51	Entomopathogenic	2	38
otu_606	Tolypocladium species 53	Entomopathogenic	2	8
otu_688	Tolypocladium species 54	Entomopathogenic	24	994
otu_408	Tolypocladium species 55	Entomopathogenic	7	102
otu_720	Tolypocladium species 57	Entomopathogenic	1	2
otu_730	Tolypocladium species 58	Entomopathogenic	1	10
otu_572	Tolypocladium species 6	Entomopathogenic	1	15

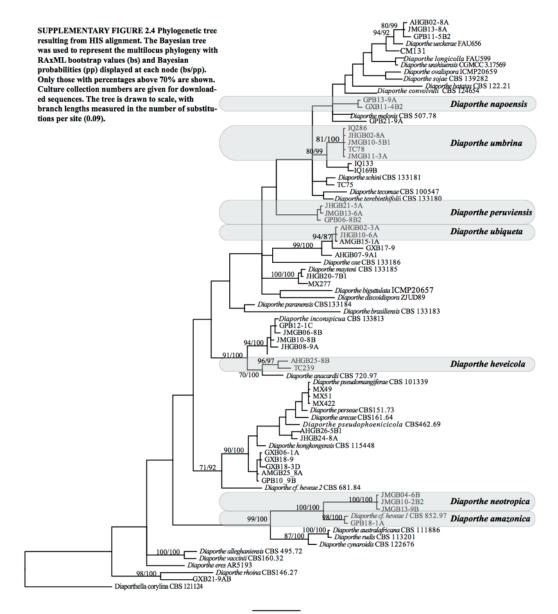
otu_777	Tolypocladium species 60	Entomopathogenic	2	8
otu_858	Tolypocladium species 62	Entomopathogenic	1	3
otu_941	Tolypocladium species 63	Entomopathogenic	3	8
otu_1155	Tolypocladium species 64	Entomopathogenic	1	2
otu_12	Tolypocladium species 65	Entomopathogenic	52	78889
otu_619	Tolypocladium species 7	Entomopathogenic	2	17
otu_1000	Tolypocladium species 8	Entomopathogenic	9	20
otu_1015	Tolypocladium species 9	Entomopathogenic	1	4
otu_288	Torrubiella species 4	Entomopathogenic	1	13
otu_72	Torrubiella species 6	Entomopathogenic	2	208
otu_544	Trametes species 2	Wood decay	1	13
otu_314	Trametes species 3	Wood decay	1	56
otu_182	Trechisporales species 1.1	Undetermined	2	164
otu_246	Trechisporales species 1.2	Undetermined	1	108
otu_407	Trechisporales species 1.3	Undetermined	1	24
otu_967	Tremellales species 1.1	Undetermined	1	2
otu_121	Trichaptum species 1	Wood decay	5	942
otu_462	Trichoderma species 1	Fungicolous	2	25
otu_726	Trichomonascaceae species 1.1	Undetermined	1	13
otu_373	Tubeufiales species 1.1	Undetermined	1	44
otu_756	Tubeufiales species 1.2	Undetermined	1	8
otu_253	Tyromyces species 1	Wood decay	1	60
otu_372	Umbelopsis species 2	Saprotroph	2	34
otu_158	Ustilago species 1	Plant pathogen	3	252
otu_1168	Volutella species 1	Plant pathogen	1	2
otu_1138	Volutella species 10	Plant pathogen	3	22
otu_227	Volutella species 2	Plant pathogen	4	301
otu_287	Volutella species 3	Plant pathogen	2	66
otu_370	Volutella species 4	Plant pathogen	3	98
otu_147	Volutella species 5	Plant pathogen	2	252
otu_660	Volutella species 6	Plant pathogen	1	5
otu_692	Volutella species 7	Plant pathogen	1	4
otu_1100	Volutella species 8	Plant pathogen	1	2
otu_1103	Volutella species 9	Plant pathogen	1	2
otu_291	Volvariella species 1	Saprotroph	1	47
otu_115	Wallemia species 1	Saprotroph	1	416
otu_46	Wallemia species 2	Saprotroph	3	3303
otu_849	Wallrothiella species 1	Undetermined	1	5
otu_547	Wolfiporia species 1	Wood decay	1	10


otu_455	Xenasmatella species 1	Wood decay	1	20
otu_573	Xenasmatella species 2	Wood decay	1	28
otu_365	Xylariales species 4.3	Undetermined	2	30
otu_400	Xylariales species 4.4	Undetermined	1	23
otu_323	Xylobolus species 1	Saprotroph	1	41
otu_163	Xylodon species 1	Saprotroph	5	253
otu_1026	Xylodon species 2	Saprotroph	1	2
otu_590	Xylodon species 3	Saprotroph	1	9
otu_303	Yuchengia species 3	Saprotroph	1	56

SUPPLEMENTARY FIGURE 2.1. Phylogenetic tree resulting from ITS alignment.


0.09

SUPPLEMENTARY FIGURE 2.2. Phylogenetic tree resulting from TEF1 alignment.


0.09

SUPPLEMENTARY FIGURE 2.3. Phylogenetic tree resulting from TUB alignment.

0.09

SUPPLEMENTARY FIGURE 2.4. Phylogenetic tree resulting from HIS alignment.

0.09

Bibliography

- Abraham, A., S. Philip, C. K. Jacob, and K. Jayachandran. 2013. Novel bacterial endophytes from *Hevea brasiliensis* as biocontrol agent against Phytophthora leaf fall disease. BioControl 58:675–684.
- Abreu, L. M., S. S. Costa, L. H. Pfenning, J. A. Takahashi, T. O. Larsen, and B. Andersen. 2012. Chemical and molecular characterization of *Phomopsis* and Cytospora-like endophytes from different host plants in Brazil. Fungal Biology 116:249–260.
- Agapow, P.M., O. R. Bininda-Emonds*, K. A. Crandall, J. L. Gittleman, G. M. Mace, J. C. Marshall, and A. Purvis. 2004. The impact of species concept on biodiversity studies. The Quarterly Review of Biology 79:161–179.
- Allen, T. R., T. Millar, S. M. Berch, and M. L. Berbee. 2003. Culturing and direct DNA extraction find different fungi from the same ericoid mycorrhizal roots. New Phytologist 160:255–272.
- Alvarez-Loayza, P., J. F. White Jr, M. S. Torres, H. Balslev, T. Kristiansen, J.C. Svenning, and N. Gil. 2011. Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree, Iriartea deltoidea. PLoS One 6:e16386.
- Amend, A. S., K. A. Seifert, and T. D. Bruns. 2010. Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology 19:5555–5565.
- Anagnostakis, S. 2007. *Diaporthe eres (Phomopsis oblonga)* as a pathogen of butternut (Juglans cinerea) in Connecticut. Plant Disease 91:1198–1198.

- Arnold, A. E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews 21:51–66.
- Arnold, A. E., and E. A. Herre. 2003. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in *Theobroma cacao* (Malvaceae). Mycologia 95:388–398.
- Auger, J., I. Perez, and M. Esterio. 2013. *Diaporthe ambigua* Associated with Post-Harvest Fruit Rot of Kiwifruit in Chile. Plant Disease 97:843–843.
- Augspurger, C. K., and C. K. Kelly. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211–217.
- Azad, K., and S. Kaminskyj. 2016. A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis 68:73–78.
- Bagchi, R., R. E. Gallery, S. Gripenberg, S. J. Gurr, L. Narayan, C. E. Addis, R. P. Freckleton, and O. T. Lewis. 2014. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88.
- Bailey, B. A., M. D. Strem, and D. Wood. 2009. *Trichoderma* species form endophytic associations within *Theobroma cacao* trichomes. Mycological Research 113:1365– 1376.
- Bailey, M. J., A. Lilley, T. Timms-Wilson, and P. Spencer-Phillips. 2006. Microbial ecology of aerial plant surfaces. CABI.

- Ballhorn, D. J., R. Lieberei, and J. U. Ganzhorn. 2005. Plant cyanogenesis of *Phaseolus lunatus* and its relevance for herbivore–plant interaction: the importance of quantitative data. Journal of Chemical Ecology 31:1445–1473.
- Barra, P. J., N. G. Inostroza, M. L. Mora, D. E. Crowley, and M. A. Jorquera. 2017. Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado (*Persea americana* Mill.) nursery. Applied Soil Ecology 111:39–47.
- Baumgartner, K., P. T. Fujiyoshi, R. Travadon, L. A. Castlebury, W. F. Wilcox, and P. E. Rolshausen. 2013. Characterization of species of *Diaporthe* from wood cankers of grape in eastern North American vineyards. Plant Disease 97:912–920.
- Bell, T., R. P. Freckleton, and O. T. Lewis. 2006. Plant pathogens drive density-dependent seedling mortality in a tropical tree. Ecology Letters 9:569–574.
- Bellemain, E., M. L. Davey, H. Kauserud, L. S. Epp, S. Boessenkool, E. Coissac, J. Geml, M. Edwards, E. Willerslev, and G. Gussarova. 2013. Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environmental Microbiology 15:1176–1189.
- Bienapfl, J., and Y. Balci. 2013. Phomopsis blight: a new disease of *Pieris japonica* caused by *Phomopsis amygdali* in the United States. Plant Disease 97:1403–1407.
- Bjørnsgaard Aas, A., M. L. Davey, and H. Kauserud. 2017. ITS all right mama: investigating the formation of chimeric sequences in the ITS2 region by DNA metabarcoding analyses of fungal mock communities of different complexities. Molecular Ecology Resources 17:730–741.

- Bonito, G., K. Hameed, R. Ventura, J. Krishnan, C. W. Schadt, and R. Vilgalys. 2016.
 Isolating a functionally relevant guild of fungi from the root microbiome of *Populus*.
 Fungal Ecology 22:35–42.
- Brown, S. P., A. M. Veach, A. R. Rigdon-Huss, K. Grond, S. K. Lickteig, K. Lothamer, A. K. Oliver, and A. Jumpponen. 2015. Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecology 13:221–225.
- Cannon, P. F., and P. M. Kirk. 2007. Fungal families of the world. Cabi.
- Cannon, P. F., and C. M. Simmons. 2002. Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220.
- Carbone, I., and L. M. Kohn. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia:553–556.
- Chao, A., N. J. Gotelli, T. Hsieh, E. L. Sander, K. Ma, R. K. Colwell, and A. M. Ellison.
 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84:45–67.
- Chee, K. H., and P. Holliday. 1986. South American leaf blight of *Hevea* rubber. South American leaf blight of Hevea rubber (13). CABI.
- Chen, H., and P. C. Boutros. 2011. VennDiagram: a package for the generation of highlycustomizable Venn and Euler diagrams in R. BMC Bioinformatics 12:35.
- Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18:117–143.

- Clay, K. 1993. The ecology and evolution of endophytes. Agriculture, Ecosystems & Environment 44:39–64.
- Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of Populations 298:312.
- Cotter, M., K. Martin, and J. Sauerborn. 2009. How do renewable products impact biodiversity and ecosystem services-The example of natural rubber in China. Journal of Agriculture and Rural Development in the Tropics and Subtropics (JARTS) 110:10–23.
- Cox, F., K. K. Newsham, R. Bol, J. A. Dungait, and C. H. Robinson. 2016. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecology Letters 19:528–536.
- Cox, M. P., D. A. Peterson, and P. J. Biggs. 2010. SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics 11:485.
- Crouch, J. A., B. B. Clarke, and B. I. Hillman. 2009. What is the value of ITS sequence data in *Colletotrichum* systematics and species diagnosis? A case study using the falcatespored graminicolous *Colletotrichum* group. Mycologia 101:648–656.
- Crous, P., B. Summerell, R. Shivas, M. Romberg, V. Mel'nik, G. Verkley, and J. Groenewald. 2011. Fungal Planet description sheets: 92–106. Persoonia-Molecular Phylogeny and Evolution of Fungi 27:130–162.
- Crous, P. W., J. Z. Groenewald, J.M. Risède, P. Simoneau, and N. L. Hywel-Jones. 2004. *Calonectria* species and their *Cylindrocladium* anamorphs: species with sphaeropedunculate vesicles. Studies in Mycology 50:415–430. 266

- Dawkins, K., and N. Esiobu. 2017. Arbuscular and Ectomycorrhizal Fungi Associated with the Invasive Brazilian Pepper Tree (*Schinus terebinthifolius*) and two Native Plants in South Florida. Frontiers in Microbiology 8:865.
- Del Olmo-Ruiz, M., and A. E. Arnold. 2017. Community structure of fern-affiliated endophytes in three neotropical forests. Journal of Tropical Ecology 33:60–73.
- Dennis, R. W. G. 1978. British Ascomycetes. J. Cramer.
- Deshpande, V., Q. Wang, P. Greenfield, M. Charleston, A. Porras-Alfaro, C. R. Kuske, J. R. Cole, D. J. Midgley, and N. Tran-Dinh. 2016. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5.
- Dettman, J. R., D. J. Jacobson, and J. W. Taylor. 2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote *Neurospora*. Evolution 57:2703–2720.
- Díaz, G., B. Latorre, S. Jara, E. Ferrada, P. Naranjo, J. Rodríguez, and J. Zoffoli. 2014. First Report of *Diaporthe novem* Causing Postharvest Rot of Kiwifruit During Controlled Atmosphere Storage in Chile. Plant Disease 98:1274–1274.
- Dighton, J., and J. F. White. 2017. The fungal community: its organization and role in the ecosystem. CRC Press.
- Diogo, E. L., J. M. Santos, and A. J. Phillips. 2010. Phylogeny, morphology and pathogenicity of *Diaporthe* and *Phomopsis* species on almond in Portugal. Fungal Diversity 44:107–115.

- Dissanayake, A. J., M. Liu, W. Zhang, Z. Chen, D. Udayanga, E. Chukeatirote, X. Li, J. Yan, and K. D. Hyde. 2015. Morphological and molecular characterisation of *Diaporthe* species associated with grapevine trunk disease in China. Fungal Biology 119:283– 294.
- dos Santos Reis, B. M., A. Silva, M. R. Alvarez, T. B. de Oliveira, and A. Rodrigues. 2015. Fungal communities in gardens of the leafcutter ant Atta cephalotes in forest and cabruca agrosystems of southern Bahia State (Brazil). Fungal Biology 119:1170– 1178.
- Dowd, Scot E, Yan Sun, Randy D Wolcott, Alexander Domingo, and Jeffery A Carroll. 2008.
 Bacterial tag–encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: Bacterial diversity in the ileum of newly weaned salmonella-infected pigs.
 Foodborne pathogens and disease 5 (4):459-472.
- Durand, A., F. Maillard, J. Foulon, H. S. Gweon, B. Valot, and M. Chalot. 2017. Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site. Microbial Ecology:1–15.
- Edgar, R. C., B. J. Haas, J. C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.
- Eglitis, M., C. J. Gould, and F. Johnson. 1966. Fungi found on Ericaceae in the Pacific coastal area. Bulletin of the Washington Agricultural Experiment Station 675.

- Elfar, K., R. Torres, G. A. Díaz, and B. A. Latorre. 2013. Characterization of *Diaporthe* australafricana and *Diaporthe* spp. associated with stem canker of blueberry in Chile. Plant Disease 97:1042–1050.
- Espinosa-Garcia, F. J., and J. H. Langenheim. 1990. The endophytic fungal community in leaves of a coastal redwood population diversity and spatial patterns. New Phytologist 116:89–97.
- Eusemann, P., M. Schnittler, R. H. Nilsson, A. Jumpponen, M. B. Dahl, D. G. Würth, A.
 Buras, M. Wilmking, and M. Unterscher. 2016. Habitat conditions and phenological tree traits overrule the influence of tree genotype in the needle mycobiome–*Picea glauca* system at an arctic treeline ecotone. New Phytologist 211:1221–1231.
- Evans, H. C., K. A. Holmes, and S. E. Thomas. 2003. Endophytes and mycoparasites associated with an indigenous forest tree, *Theobroma gileri*, in Ecuador and a preliminary assessment of their potential as biocontrol agents of cocoa diseases. Mycological Progress 2:149–160.
- Evueh, G., and N. Ogbebor. 2008. Use of phylloplane fungi as biocontrol agent against Colletotrichum leaf disease of rubber (*Hevea brasiliensis* Muell. Arg.). African Journal of Biotechnology 7:2569–2572.
- Fan, X.L., K. D. Hyde, D. Udayanga, X.Y. Wu, and C.M. Tian. 2015. *Diaporthe rostrata*, a novel ascomycete from *Juglans mandshurica* associated with walnut dieback. Mycological Progress 14:82.
- Fang, Yongjun, Hailiang Mei, Binhui Zhou, Xiaohu Xiao, Meng Yang, Yacheng Huang, Xiangyu Long, Songnian Hu, and Chaorong Tang. 2016. De novo transcriptome

analysis reveals distinct defense mechanisms by young and mature leaves of *Hevea brasiliensis* (Para Rubber Tree). Scientific reports 6:33151

- Feinstein, L. M., and C. B. Blackwood. 2012. Taxa–area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves. Environmental Microbiology 14:1488–1499.
- Fernandes, G. W., Y. Oki, A. Sanchez-Azofeifa, G. Faccion, and H. C. Amaro-Arruda. 2011. Hail impact on leaves and endophytes of the endemic threatened *Coccoloba cereifera* (Polygonaceae). Plant Ecology 212:1687–1697.
- Ferrer, A., and G. S. Gilbert. 2003. Effect of tree host species on fungal community composition in a tropical rain forest in Panama. Diversity and Distributions 9:455– 468.
- Fonseca, V., B. Nichols, D. Lallias, C. Quince, G. Carvalho, D. Power, and S. Creer. 2012. Sample richness and genetic diversity as drivers of chimera formation in nSSU metagenetic analyses. Nucleic Acids Research 40:e66–e66.
- Freckleton, R. P., and O. T. Lewis. 2006. Pathogens, density dependence and the coexistence of tropical trees. Proceedings of the Royal Society of London B: Biological Sciences 273:2909–2916.
- Fróhlich, J., K. D. Hyde, and O. Petrini. 2000. Endophytic fungi associated with palms. Mycological Research 104:1202–1212.
- Gamboa-Gaitan, M. A., S. Laureano, and P. Bayman. 2005. Endophytic *Phomopsis* strains from leaves of *Guarea guidonia* (Meliaceae). Caribbean Journal of Science 41:215– 224.

- Gao, Y., F. Liu, and L. Cai. 2016. Unravelling *Diaporthe* species associated with *Camellia*. Systematics and Biodiversity 14:102–117.
- Gao, Z., B. Li, C. Zheng, and G. Wang. 2008. Molecular detection of fungal communities in the Hawaiian marine sponges *Suberites zeteki* and *Mycale armata*. Applied and Environmental Microbiology 74:6091–6101.
- Garcia, A., S. Rhoden, J. Bernardi-Wenzel, R. Orlandelli, J. Azevedo, and J. Pamphile. 2012.
 Antimicrobial Activity of Crude Extracts of Endophytic Fungi Isolated from
 Medicinal Plant Sapindus saponaria L. Journal of Applied Pharmaceutical Science
 2:35.
- Gazis, R., and P. Chaverri. 2010. Diversity of fungal endophytes in leaves and stems of wild rubber trees (*Hevea brasiliensis*) in Peru. Fungal Ecology 3:240–254.
- Gazis, R., and P. Chaverri. 2015. Wild trees in the Amazon basin harbor a great diversity of beneficial endosymbiotic fungi: is this evidence of protective mutualism? Fungal Ecology 17:18–29.
- Gazis, R., J. Miadlikowska, F. Lutzoni, A. Arnold, and P. Chaverri. 2012. Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. Molecular Phylogenetics and Evolution 65:294–304.
- Gazis, R., S. Rehner, and P. Chaverri. 2011. Species delimitation in fungal endophyte diversity studies and its implications in ecological and biogeographic inferences. Molecular Ecology 20:3001–3013.

- Gilbert, G. 2005. Dimensions of plant disease in tropical forests. Biotic Interactions in the Tropics:141–164.
- Girish, K., S. S. Bhat, and K. Raveesha. 2012. Synergistic effect of combinations of fungicides and bacterial extracts against *Phomopsis azadirachtae* causing die–back of neem. African Journal of Microbiology Research 6:385–392.
- Glass, N. L., and G. C. Donaldson. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61:1323–1330.
- Goldmann, K., K. Schröter, R. Pena, I. Schöning, M. Schrumpf, F. Buscot, A. Polle, and T. Wubet. 2016. Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports 6: 31439.
- Gomes, R., C. Glienke, S. Videira, L. Lombard, J. Groenewald, and P. Crous. 2013. *Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia-Molecular Phylogeny and Evolution of Fungi 31:1–41.
- Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379–391.
- Grijalba, P., and A. d. C. Ridao. 2012. Survival of *Diaporthe phaseolorum* var. *caulivora* (causal agent of soybean stem canker) artificially inoculated in different crop residues. Tropical Plant Pathology 37:271–274.
- Gueidan, C., C. Roux, and F. Lutzoni. 2007. Using a multigene phylogenetic analysis to assess generic delineation and character evolution in Verrucariaceae (Verrucariales, Ascomycota). Mycological Research 111:1145–1168. 272

- Guo, L. D., G. R. Huang, and Y. Wang. 2008. Seasonal and tissue age influences on endophytic fungi of *Pinus tabulaeformis* (Pinaceae) in the Dongling Mountains, Beijing. Journal of Integrative Plant Biology 50:997–1003.
- Gure, A., and G. Birhanu. 2014. Effect of variation in land use, age of host tree, season and geographic location on the diversity of endophytic fungi in the needles of *Afrocarpus falcatus*. African Journal of Microbiology Research 8:3489–3500.
- Gure, A., K. Wahlström, and J. Stenlid. 2005. Pathogenicity of seed-associated fungi to *Podocarpus falcatus* in vitro. Forest Pathology 35:23–35.
- Hanada, R. E., A. W. V. Pomella, H. S. Costa, J. L. Bezerra, L. L. Loguercio, and J. O.
 Pereira. 2010. Endophytic fungal diversity in *Theobroma cacao* (cacao) and *T. grandiflorum* (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biology 114:901–910.
- Harman, G. E., C. R. Howell, A. Viterbo, I. Chet, and M. Lorito. 2004. *Trichoderma* species—opportunistic, avirulent plant symbionts. Nature Reviews Microbiology 2:43–56.
- Harrison, J. G., M. L. Forister, T. L. Parchman, and G. W. Koch. 2016. Vertical stratification of the foliar fungal community in the world's tallest trees. American Journal of Botany 103:2087–2095.
- Helander, M., J. Ahlholm, T. Sieber, S. Hinneri, and K. Saikkonen. 2007. Fragmented environment affects birch leaf endophytes. New Phytologist 175:547–553.

- Hermosa, R., A. Viterbo, I. Chet, and E. Monte. 2012. Plant-beneficial effects of *Trichoderma* and of its genes. Microbiology 158:17–25.
- Hernández-Agramonte, I. M., M. Semmartin, M. Omacini, M. Durante, P. E. Gundel, and J. De Battista. 2017. A fungal endophyte of a palatable grass affects preference of large herbivores. Austral Ecology doi: 10.1111/aec.12554.
- Hibbett, D. S., A. Ohman, D. Glotzer, M. Nuhn, P. Kirk, and R. H. Nilsson. 2011. Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biology Reviews 25: 38–47.
- Higgins, K. L., A. E. Arnold, J. Miadlikowska, S. D. Sarvate, and F. Lutzoni. 2007.
 Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. Molecular Phylogenetics and Evolution 42:543–555.
- Hilarino, M., F. Silveira, Y. Oki, L. Rodrigues, J. Santos, A. Junior, G. Fernandes, and C. Rosa. 2011. Distribution of the endophytic fungi community in leaves of. Bauhinia Brevipes:815–821.
- Hodgson, S., C. Cates, J. Hodgson, N. J. Morley, B. C. Sutton, and A. C. Gange. 2014. Vertical transmission of fungal endophytes is widespread in forbs. Ecology and Evolution 4:1199–1208.
- Hoffman, M. T., and A. E. Arnold. 2008. Geographic locality and host identity shape fungal endophyte communities in cupressaceous trees. Mycological Research 112:331–344.

- Hossain, Z., and S.I. Sugiyama. 2011. Geographical structure of soil microbial communities in northern Japan: effects of distance, land use type and soil properties. European Journal of Soil Biology 47:88–94.
- Huang, F., X. Hou, M. M. Dewdney, Y. Fu, G. Chen, K. D. Hyde, and H. Li. 2013.*Diaporthe* species occurring on citrus in China. Fungal Diversity 61:237–250.
- Huang, F., D. Udayanga, X. Wang, X. Hou, X. Mei, Y. Fu, K. D. Hyde, and H. Li. 2015. Endophytic *Diaporthe* associated with Citrus: A phylogenetic reassessment with seven new species from China. Fungal Biology 119:331–347.
- Huang, Z., X. Cai, C. Shao, Z. She, X. Xia, Y. Chen, J. Yang, S. Zhou, and Y. Lin. 2008. Chemistry and weak antimicrobial activities of phomopsins produced by mangrove endophytic fungus *Phomopsis* sp. ZSU-H76. Phytochemistry 69:1604–1608.
- Hubbard, M., J. Germida, and V. Vujanovic. 2014. Fungal endophytes enhance wheat heat and drought tolerance in terms of grain yield and second-generation seed viability. Journal of Applied Microbiology 116:109–122.
- Huelsenbeck, J. P., and F. Ronquist. 2001. MRBAYES: Bayesian Inference of phylogenetic trees. Bioinformatics 17:754–755.
- Ihrmark, K., I. T. Bödeker, K. Cruz-Martinez, H. Friberg, A. Kubartova, J. Schenck, Y. Strid, J. Stenlid, M. Brandström-Durling, and K. E. Clemmensen. 2012. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82:666–677.

- Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. The American Naturalist 104:501–528.
- Jargalmaa, S., J. A. Eimes, M. S. Park, J. Y. Park, S.Y. Oh, and Y. W. Lim. 2017. Taxonomic evaluation of selected *Ganoderma* species and database sequence validation. PeerJ 5:e3596.
- Jayasuriya, K., R. Wijesundera, and S. Deraniyagala. 2003. Isolation of anti-fungal phenolic compounds from petioles of two *Hevea brasiliensis* (rubber) genotypes and their effect on *Phytophthora meadii*. Annals of Applied Biology 142:63–69.
- Johnston-Monje, D., and M. N. Raizada. 2011. Conservation and diversity of seed associated endophytes in *Zea* across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396.
- Jost, L. 2006. Entropy and diversity. Oikos 113:363-375.
- Jumpponen, A. 2007. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data. Microbial Ecology 53:233–246.
- Jumpponen, A., and K. Jones. 2010. Seasonally dynamic fungal communities in the *Quercus macrocarpa* phyllosphere differ between urban and nonurban environments. New Phytologist 186:496–513.
- Kaliterna, J., T. Miličević, and B. Cvjetković. 2012. Grapevine trunk diseases associated with fungi from the Diaporthaceae family in Croatian vineyards. Arhiv za Higijenu Rada i Toksikologiju 63:471–479.

- Kato, S., Y. Fukasawa, and K. Seiwa. 2016. Canopy tree species and openness affect foliar endophytic fungal communities of understory seedlings. Ecological Research:1–6.
- Katoh, K., and H. Toh. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9:286–298.
- Kebschull, J. M., and A. M. Zador. 2015. Sources of PCR-induced distortions in highthroughput sequencing data sets. Nucleic Acids Research 43:e143–e143.
- Khomich, M., M. L. Davey, H. Kauserud, S. Rasconi, and T. Andersen. 2017. Fungal communities in Scandinavian lakes along a longitudinal gradient. Fungal Ecology 27:36–46.
- Kita, N., and T. Ohya. Biological Control of Damping of of Tomato Seedling and Cucumber Phomopsis Root Rot by *Bacillus subtilis* RB14 c. Japan Agricultural Research Quarterly, 2005 39:109–114.
- Kõljalg, U., K. H. Larsson, K. Abarenkov, R. H. Nilsson, I. J. Alexander, U. Eberhardt, S. Erland, K. Høiland, R. Kjøller, and E. Larsson. 2005. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166:1063–1068.
- Kõljalg, U., R. H. Nilsson, K. Abarenkov, L. Tedersoo, A. F. Taylor, M. Bahram, S. T. Bates, T. D. Bruns, J. Bengtsson-Palme, and T. M. Callaghan. 2013. Towards a unified paradigm for sequence-based identification of fungi. Molecular Ecology 22:5271–5277.

Krishnamurthy, Y., J. Shashikala, and B. Shankar Naik. 2009. Diversity and seasonal variation of endophytic fungal communities associated with some medicinal trees of the Western Ghats, Southern India. Sydowia 61:255–266.

Kubicek, C. P. 2012. Fungi and lignocellulosic biomass. John Wiley & Sons.

- Kumaran, R. S., and B. K. Hur. 2009. Screening of species of the endophytic fungus Phomopsis for the production of the anticancer drug taxol. Biotechnology and Applied Biochemistry 54:21–30.
- Lanfear, R., B. Calcott, S. Y. Ho, and S. Guindon. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29:1695–1701.
- Latorre, B., K. Elfar, J. Espinoza, R. Torres, and G. Díaz. 2013. First report of *Diaporthe australafricana* associated with stem canker on blueberry in Chile. Plant Disease 97:1042–1050.
- Lawrence, D. P., R. Travadon, and K. Baumgartner. 2015. Diversity of *Diaporthe* species associated with wood cankers of fruit and nut crops in northern California. Mycologia 107:926–940.
- Lee, S. K., S. K. Lee, H. Bae, S.T. Seo, and J. K. Lee. 2014. Effects of water stress on the endophytic fungal communities of *Pinus koraiensis* needles infected by *Cenangium ferruginosum*. Mycobiology 42:331–338.
- Leite, H. A. C., A. B. Silva, F. P. Gomes, K. P. Gramacho, J. C. Faria, J. T. de Souza, and L.L. Loguercio. 2013. *Bacillus subtilis* and *Enterobacter cloacae* endophytes from

healthy *Theobroma cacao* L. trees can systemically colonize seedlings and promote growth. Applied Microbiology and Biotechnology 97:2639–2651.

- Lieberei, R. 2007. South American leaf blight of the rubber tree (*Hevea* spp.): new steps in plant domestication using physiological features and molecular markers. Annals of botany 100:1125–1142.
- Lieberei, R., H. P. Fock, and B. Biehl. 1996. Cyanogenesis Inhibits Active Pathogen Defence in Plants: Inhibition by Gaseous HCN of Photosynthetic CO~ 2 Fixation and Respiration in Intact Leaves. Journal of Applied botany 70:230–238.
- Liu, K., S. Raghavan, S. Nelesen, C. R. Linder, and T. Warnow. 2009. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science 324:1561–1564.
- Lombard, L., G. C. Van Leeuwen, V. Guarnaccia, G. Polizzi, P. C. Van Rijswick, K. C.
 Rosendahl, J. Gabler, and P. W. Crous. 2014. *Diaporthe* species associated with *Vaccinium*, with specific reference to Europe. Phytopathologia Mediterranea 53:287–299.
- Madden, T. 2002. The blast sequence analysis tool. The NCBI Handbook. National Library of Medicine (US). National Center for Biotechnology Information.
- Maehara, S., A. Agusta, C. Kitamura, K. Ohashi, and H. Shibuya. 2016. Composition of the endophytic filamentous fungi associated with *Cinchona ledgeriana* seeds and production of *Cinchona* alkaloids. Journal of Natural Medicines 70:271–275.
- Magurran, A. E. 2008. Diversity over time. Folia Geobotanica 43:319–327.

- Manley, Leigh J, Duanduan Ma, and Stuart S Levine. 2016. Monitoring error rates in Illumina Sequencing. Journal of biomolecular techniques 27 (4):125.
- Martínez-Álvarez, P., R. A. Fernández-González, A. V. Sanz-Ros, V. Pando, and J. J. Diez.
 2016. Two fungal endophytes reduce the severity of pitch canker disease in *Pinus* radiata seedlings. Biological Control 94:1–10.
- Martinson, E. O., E. A. Herre, C. A. Machado, and A. E. Arnold. 2012. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (*Ficus* spp.) in Panama. Microbial Ecology 64:1073–1084.
- Mathew, F. M., K. M. Alananbeh, J. G. Jordahl, S. M. Meyer, L. A. Castlebury, T. J. Gulya, and S. G. Markell. 2015. *Phomopsis* stem canker: A reemerging threat to sunflower (*Helianthus annuus*) in the United States. Phytopathology 105:990–997.
- Matsumura, E., and K. Fukuda. 2013. A comparison of fungal endophytic community diversity in tree leaves of rural and urban temperate forests of Kanto district, eastern Japan. Fungal Biology 117:191–201.
- May, R. M. 1991. A fondness for fungi. Nature 352:475–476.
- Millberg, H., J. Boberg, and J. Stenlid. 2015. Changes in fungal community of Scots pine (*Pinus sylvestris*) needles along a latitudinal gradient in Sweden. Fungal Ecology 17:126–139.
- Miller, K. E., K. Hopkins, D. J. Inward, and A. P. Vogler. 2016. Metabarcoding of fungal communities associated with bark beetles. Ecology and Evolution 6:1590–1600.

- Miller, M. A., T. Schwartz, B. E. Pickett, S. He, E. B. Klem, R. H. Scheuermann, M. Passarotti, S. Kaufman, and M. A. O'Leary. 2015. A RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evolutionary Bioinformatics 11:43.
- Mooney, B. 2009. The second green revolution? Production of plant-based biodegradable plastics. Biochemical Journal 418:219–232.
- Mukherjee, M., P. K. Mukherjee, B. A. Horwitz, C. Zachow, G. Berg, and S. Zeilinger. 2012.
 Trichoderma-plant-pathogen interactions: advances in genetics of biological control.
 Indian Journal of Microbiology 52:522–529.
- Muntanola-Cvetkovic, M., M. Mihaljcevic, and M. Petrov. 1981. On the identity of the causative agent of a serious *Phomopsis-Diaporthe* disease in sunflower plants. Nova Hedwigia 34:417–435.
- Murali, T., T. Suryanarayanan, and R. Geeta. 2006. Endophytic Phomopsis species: host range and implications for diversity estimates. Canadian Journal of Microbiology 52:673–680.
- Nagy, L. G., T. Petkovits, G. M. Kovács, K. Voigt, C. Vágvölgyi, and T. Papp. 2011. Where is the unseen fungal diversity hidden? A study of Mortierella reveals a large contribution of reference collections to the identification of fungal environmental sequences. New Phytologist 191:789–794.
- Nascimento, T., Y. Oki, D. Lima, J. Almeida-Cortez, G. W. Fernandes, and C. Souza-Motta. 2015. Biodiversity of endophytic fungi in different leaf ages of *Calotropis procera* and their antimicrobial activity. Fungal Ecology 14:79–86.

- Navarro, D., M. Couturier, C. Olivé, S. Grisel, M. Haon, S. Taussac, C. Lechat, R. Courtecuisse, A. Favel, and P. M. Coutinho. 2012. Exploring the natural fungal biodiversity of tropical and temperate forests toward improvement of biomass conversion. AGRIS: International Information System For The Agricultural Acience and Aechnology 78: 6483–6490.
- Navarro-Torre, S., J. Barcia-Piedras, E. Mateos-Naranjo, S. Redondo-Gómez, M. Camacho,
 M. Caviedes, E. Pajuelo, and I. Rodríguez-Llorente. 2016. Assessing the role of
 endophytic bacteria in the halophyte *Arthrocnemum macrostachyum* salt tolerance.
 Plant Biology.
- Nekola, J. C., and P. S. White. 1999. The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26:867–878.
- Neubert, K., K. Mendgen, H. Brinkmann, and S. G. Wirsel. 2006. Only a few fungal species dominate highly diverse mycofloras associated with the common reed. Applied and Environmental Microbiology 72:1118–1128.
- Nguyen, N. H., D. Smith, K. Peay, and P. Kennedy. 2015. Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist 205:1389–1393.
- Nguyen, N. H., Z. Song, S. T. Bates, S. Branco, L. Tedersoo, J. Menke, J. S. Schilling, and P. G. Kennedy. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology 20:241–248.
- Nichol, W. W., and S. F. Walker. 2013. The effect of novel endophyte and insecticide seed treatment on the establishment of long rotation or perennial ryegrass plants in the

presence of adult Argentine Stem Weevil (*Listronotus bonariensis*). Proceedings of the 22nd International Grassland Congress 1627–1628.

- Nilsson, R. H., K. Abarenkov, V. Veldre, S. Nylinder, P. De Wit, S. Brosché, J. F. Alfredsson, M. Ryberg, and E. Kristiansson. 2010. An open source chimera checker for the fungal ITS region. Molecular Ecology Resources 10:1076–1081.
- Nilsson, R. H., E. Kristiansson, M. Ryberg, N. Hallenberg, and K. H. Larsson. 2008. Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evolutionary Bioinformatics 4:193–201.
- Nilsson, R. H., L. Tedersoo, M. Ryberg, E. Kristiansson, M. Hartmann, M. Unterseher, T. M. Porter, J. Bengtsson-Palme, D. M. Walker, and F. De Sousa. 2015. A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes and Environments 30:145– 150.
- Núñez, A., G. Amo de Paz, A. Rastrojo, A. M. García Ruiz, A. Alcamí, A. M. Gutiérrez-Bustillo, and D. A. Moreno Gómez. 2016. Monitoring of airborne biological particles in outdoor atmosphere. Part 2: metagenomics applied to urban environments. International Microbiology 19:69–80.
- O'Donnell, K., and E. Cigelnik. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus *Fusarium* are nonorthologous. Molecular Phylogenetics and Evolution 7:103–116.

- O'Leary, N. A., M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, R. McVeigh, B. Rajput, B. Robbertse, B. Smith-White, and D. Ako-Adjei. 2015. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Research 44:D733–D745.
- Ochimaru, T., and K. Fukuda. 2007. Changes in fungal communities in evergreen broadleaved forests across a gradient of urban to rural areas in Japan. Soil Biodiversity and Ecosystem Function. Canadian Journal of Forest Research 37:247–258.
- Oksanen, J. 2016, January 27. Local minima and number of tries in metaMDS [Blog post]. https://github.com/vegandevs/vegan/issues/154
- Onokpise, O., and C. Louime. 2012. The potential of the South American leaf blight as a biological agent. Sustainability 4:3151–3157.
- Oono, R., E. Lefèvre, A. Simha, and F. Lutzoni. 2015. A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biology 119:917–928.
- Oono, R., A. Rasmussen, and E. Lefèvre. 2017. Distance decay relationships in foliar fungal endophytes are driven by rare taxa. Environmental Microbiology 19:2794–2805.
- Öpik, M., A. Vanatoa, E. Vanatoa, M. Moora, J. Davison, J. Kalwij, Ü. Reier, and M. Zobel. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188:223–241.
- Osono, T., and A. Mori. 2004. Distribution of phyllosphere fungi within the canopy of giant dogwood. Mycoscience 45:161–168.

- Ottosson, E., A. Kubartová, M. Edman, M. Jönsson, A. Lindhe, J. Stenlid, and A. Dahlberg. 2015. Diverse ecological roles within fungal communities in decomposing logs of *Picea abies*. FEMS Microbiology Ecology 91(3):fiv0120–fiv012.
- Overall, A. 2017. Tremella aurantia & T. mesenterica, two British 'Yellow Brain Fungi'compared. Field Mycology 18:82–84.
- Ownley, B. H., R. M. Pereira, W. E. Klingeman, N. B. Quigley, and B. M. Leckie. 2004. *Beauveria bassiana*, a dual purpose biocontrol organism, with activity against insect pests and plant pathogens. Emerging Concepts in Plant Health Management. Research Signpost, India:255–269.
- Parfitt, D., J. Hunt, D. Dockrell, H. J. Rogers, and L. Boddy. 2010. Do all trees carry the seeds of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fungal Ecology 3:338–346.
- Parsa, S., A. M. García-Lemos, K. Castillo, V. Ortiz, L. A. B. López-Lavalle, J. Braun, and F.
 E. Vega. 2016. Fungal endophytes in germinated seeds of the common bean, *Phaseolus vulgaris*. Fungal Biology 120:783–790.
- Peters, H. A. 2003. Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters 6:757–765.
- Petrini, O. 1984. Endophytic fungi in British Ericaceae: a preliminary study. Transactions of the British Mycological Society 83:510–512.

- Porras-Alfaro, A., K.L. Liu, C. R. Kuske, and G. Xie. 2014. From genus to phylum: largesubunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Applied and Environmental Microbiology 80:829–840.
- Pruitt, K. D., T. Tatusova, and D. R. Maglott. 2006. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research 35:D61–D65.
- Puente-Sánchez, F., J. Aguirre, and V. Parro. 2015. A novel conceptual approach to readfiltering in high-throughput amplicon sequencing studies. Nucleic Acids Research 44:e40–e40.
- Raja, H. A., T. R. Baker, J. G. Little, and N. H. Oberlies. 2017a. DNA barcoding for identification of consumer-relevant mushrooms: A partial solution for product certification? Food Chemistry 214:383–392.
- Raja, H. A., A. N. Miller, C. J. Pearce, and N. H. Oberlies. 2017b. Fungal identification using molecular tools: a primer for the natural products research community. Journal of Natural Products 80:756–770.
- Rehner, S. A., and F. A. Uecker. 1994. Nuclear ribosomal internal transcribed spacer phylogeny and host diversity in the coelomycete *Phomopsis*. Canadian Journal of Botany 72:1666–1674.
- Rivano, F., C. R. Mattos, S. E. Cardoso, M. Martinez, V. Cevallos, V. Le Guen, and D. Garcia. 2013. Breeding *Hevea brasiliensis* for yield, growth and SALB resistance for high disease environments. Industrial Crops and Products 44:659–670.

- Robles, C. A., S. E. Lopez, P. D. McCargo, and C. C. Carmarán. 2015. Relationships between fungal endophytes and wood–rot fungi in wood of *Platanus acerifolia* in urban environments. Canadian Journal of Forest Research 45:929–936.
- Rocha, A. C., D. Garcia, A. P. Uetanabaro, R. T. Carneiro, I. S. Araújo, C. R. Mattos, and A. Góes-Neto. 2011. Foliar endophytic fungi from *Hevea brasiliensis* and their antagonism on *Microcyclus ulei*. Fungal Diversity 47:75–84.
- Rocha, S. L., H. C. Evans, V. L. Jorge, L. A. Cardoso, F. S. Pereira, F. B. Rocha, R. W. Barreto, A. G. Hart, and S. L. Elliot. 2017. Recognition of endophytic *Trichoderma* species by leaf-cutting ants and their potential in a Trojan-horse management strategy. Royal Society Open Science 4:160628.
- Rodrigues, K. F., and G. J. Samuels. 1999. Fungal endophytes of *Spondias mombin* leaves in Brazil. Journal of Basic Microbiology 39:131–135.
- Rodriguez, R., J. White Jr, A. E. Arnold, and R. Redman. 2009. Fungal endophytes: diversity and functional roles. New Phytologist 182:314–330.
- Romeralo, C., O. Santamaría, V. Pando, and J. J. Diez. 2015. Fungal endophytes reduce necrosis length produced by *Gremmeniella abietina* in *Pinus halepensis* seedlings. Biological Control 80:30–39.
- Santamaría, J., and P. Bayman. 2005. Fungal epiphytes and endophytes of coffee leaves (Coffea arabica). Microbial Ecology 50:1–8.
- Santos, J. M., K. Vrandečić, J. Ćosić, T. Duvnjak, and A. J. L. Phillips. 2011. Resolving the *Diaporthe* species occurring on soybean in Croatia. Persoonia-Molecular Phylogeny and Evolution of Fungi 27:9–19.

- Sarmiento, C., P.C. Zalamea, J. W. Dalling, A. S. Davis, S. M. Stump, J. M. U'Ren, and A.
 E. Arnold. 2017. Soilborne fungi have host affinity and host-specific effects on seed germination and survival in a lowland tropical forest. Proceedings of the National Academy of Sciences 114:11458–11463.
- Schloss, P. D., D. Gevers, and S. L. Westcott. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6:e27310.
- Schloss, P. D., S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann, E. B. Hollister, R. A. Lesniewski, B. B. Oakley, D. H. Parks, and C. J. Robinson. 2009. Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75:7537–7541.
- Schmitt, I., A. Crespo, P. Divakar, J. Fankhauser, E. Herman-Sackett, K. Kalb, M. Nelsen, N. Nelson, E. Rivas-Plata, and A. Shimp. 2009. New primers for promising single-copy genes in fungal phylogenetics and systematics. Persoonia-Molecular Phylogeny and Evolution of Fungi 23:35–40.
- Schoch, C. L., B. Robbertse, V. Robert, D. Vu, G. Cardinali, L. Irinyi, W. Meyer, R. H. Nilsson, K. Hughes, and A. N. Miller. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database 2014:bau061.
- Schoch, C. L., K. A. Seifert, S. Huhndorf, V. Robert, J. L. Spouge, C. A. Levesque, W. Chen,E. Bolchacova, K. Voigt, and P. W. Crous. 2012. Nuclear ribosomal internal

transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences 109:6241–6246.

- Schultes, R. 1978. Notes on biodynamic plants of aboriginal use in the northwestern Amazonia. Bot. Mus. Leafl., Harv. Univ 26:177–202.
- Schultes, R. E. 1945. Plantae colombianae, x: i.-de euphorbiaceis notae diversae. Caldasia;
 Vol. 3, núm. 13 (1945); 247–254 Caldasia; Vol. 3, núm. 13 (1945); 247–254 2357– 3759 0366–5232.
- Schultes, R. E. 1975. Diversas plantas comestíveis nativas do noroete da Amazonia. Acta Amazonica 7(3): 317–327
- Serrato-Diaz, L., L. Rivera-Vargas, and R. French-Monar. 2014. First report of *Diaporthe pseudomangiferae* causing inflorescence iot, rachis canker, and flower abortion of mango. Plant Disease 98:1004–1004.
- Siddique, A. B., A. M. Khokon, and M. Unterseher. 2017. What do we learn from cultures in the omics age? High-throughput sequencing and cultivation of leaf-inhabiting endophytes from beech (*Fagus sylvatica* L.) revealed complementary community composition but similar correlations with local habitat conditions. MycoKeys 20:1.
- Sieber, T. N. 2007. Endophytic fungi in forest trees: are they mutualists? Fungal Biology Reviews 21:75–89.
- Sikes, B. A., J. Paszalek, N. E. de Leon, and C. V. Hawkes. 2017. Regardless of N-substrate, multiple fungal root endophytes isolated from pastures outgrow and outcompete those isolated from undisturbed sites. Pedobiologia 63:52–58.

Singh, D., and S. Mathur. 2004. Histopathology of seed-borne infections. CRC Press.

- Smith, B. E., M. K. Johnston, and R. Lücking. 2016. From GenBank to GBIF: phylogenybased predictive niche modeling tests accuracy of taxonomic identifications in large occurrence data repositories. PLoS One 11:e0151232.
- Smith, S. A., D. C. Tank, L.A. Boulanger, C. A. Bascom-Slack, K. Eisenman, D. Kingery, B. Babbs, K. Fenn, J. S. Greene, and B. D. Hann. 2008. Bioactive endophytes warrant intensified exploration and conservation. PLoS One 3:e3052.
- Soares, M. A., H.Y. Li, K. P. Kowalski, M. Bergen, M. S. Torres, and J. F. White. 2016. Evaluation of the functional roles of fungal endophytes of *Phragmites australis* from high saline and low saline habitats. Biological Invasions 18:2689–2702.
- Soininen, J., R. McDonald, and H. Hillebrand. 2007. The distance decay of similarity in ecological communities. Ecography 30:3–12.
- Solis, M. J. L., T. E. D. Cruz, M. Schnittler, and M. Unterseher. 2016. The diverse community of leaf-inhabiting fungal endophytes from Philippine natural forests reflects phylogenetic patterns of their host plant species *Ficus benjamina*, *F. elastica* and *F. religiosa*. Mycoscience 57:96–106.
- Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.
- Stenström, E., N. E. Ndobe, M. Jonsson, J. Stenlid, and A. Menkis. 2014. Root-associated fungi of healthy-looking *Pinus sylvestris* and *Picea abies* seedlings in Swedish forest nurseries. Scandinavian Journal of Forest Research 29:12–21.

- Sudirman, L. I., A. I. Housseini, G. Le Febvre, E. Kiffer, and B. Botton. 1992. Screening of some basidiomycetes for biocontrol of *Rigidoporus lignosus*, a parasite of the rubber tree *Hevea brasiliensis*. Mycological Research 96:621–625.
- Sun, J., L. Guo, W. Zang, W. Ping, and D. Chi. 2008. Diversity and ecological distribution of endophytic fungi associated with medicinal plants. Science in China Series C: Life Sciences 51:751–759.
- Suryanarayanan, T., and J. Johnson. 2005. Fungal endophytes of tropical plants: a critical review. Microbial diversity: current perspectives and potential applications. New Delhi, India: IK International:207–224.
- Suryanarayanan, T., T. Murali, N. Thirunavukkarasu, M. G. Rajulu, G. Venkatesan, and R. Sukumar. 2011. Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodiversity and Conservation 20:913–928.
- Tan, Y., J. Edwards, K. Grice, and R. Shivas. 2013. Molecular phylogenetic analysis reveals six new species of *Diaporthe* from Australia. Fungal Diversity 61:251–260.
- Tang, A. M., K. D. Hyde, and R. T. Corlett. 2003. Diversity of fungi on wild fruits in Hong Kong. Fungal Diversity 14: 165–185.
- Taylor, D. L., W. A. Walters, N. J. Lennon, J. Bochicchio, A. Krohn, J. G. Caporaso, and T. Pennanen. 2016. Accurate estimation of fungal diversity and abundance through improved lineage-specific primers optimized for Illumina amplicon sequencing. Applied and Environmental Microbiology 82:7217–7226.

- Taylor, J. W., D. J. Jacobson, S. Kroken, T. Kasuga, D. M. Geiser, D. S. Hibbett, and M. C. Fisher. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31:21–32.
- Thomas, S. E., J. Crozier, M. C. Aime, H. C. Evans, and K. A. Holmes. 2008. Molecular characterisation of fungal endophytic morphospecies associated with the indigenous forest tree, *Theobroma gileri*, in Ecuador. Mycological Research 112:852–860.
- Thomidis, T., and T. J. Michailides. 2009. Studies on *Diaporthe eres* as a new pathogen of peach trees in Greece. Plant Disease 93:1293–1297.
- Thompson, S., Y. Tan, R. Shivas, S. Neate, L. Morin, A. Bissett, and E. Aitken. 2015. Green and brown bridges between weeds and crops reveal novel *Diaporthe* species in Australia. Persoonia: Molecular Phylogeny and Evolution of Fungi 35:39.
- Toledo, J., S. Flores, S. Campos, A. Villaseñor, W. Enkerlin, P. Liedo, Á. Valle, and P.
 Montoya. 2017. Pathogenicity of three formulations of *Beauveria bassiana* and efficacy of autoinoculation devices and sterile fruit fly males for dissemination of conidia for the control of *Ceratitis capitata*. Entomologia Experimentalis et Applicata 164:340–349.
- Udayanga, D., L. Castlebury, A. Rossman, and K. Hyde. 2014b. Species limits in *Diaporthe*:
 molecular re-assessment of *D. citri*, *D. cytosporella*, *D. foeniculina* and *D. rudis*.
 Persoonia-Molecular Phylogeny and Evolution of Fungi 32:83–101.
- Udayanga, D., L. A. Castlebury, A. Y. Rossman, E. Chukeatirote, and K. D. Hyde. 2014a. Insights into the genus *Diaporthe*: phylogenetic species delimitation in the *D. eres* species complex. Fungal Diversity 67:203–229.

- Udayanga, D., L. A. Castlebury, A. Y. Rossman, E. Chukeatirote, and K. D. Hyde. 2015. The *Diaporthe sojae* species complex: Phylogenetic re-assessment of pathogens associated with soybean, cucurbits and other field crops. Fungal Biology 119:383–407.
- Udayanga, D., X. Liu, P. W. Crous, E. H. McKenzie, E. Chukeatirote, and K. D. Hyde.
 2012a. A multi-locus phylogenetic evaluation of *Diaporthe (Phomopsis)*. Fungal Diversity 56:157–171.
- Udayanga, D., X. Liu, E. H. McKenzie, E. Chukeatirote, A. H. Bahkali, and K. D. Hyde. 2011. The genus *Phomopsis*: biology, applications, species concepts and names of common phytopathogens. Fungal Diversity 50:189.
- Udayanga, D., X. Liua, E. H. Mckenzie, E. Chukeatirote, and K. D. Hyde. 2012b. Multi– locus phylogeny reveals three new species of *Diaporthe* from Thailand. Cryptogamie Mycologie 33:295–309.
- Uecker, F. 1989. A timed sequence of development of *Diaporthe phaseolorum*(Diaporthaceae) from *Stokesia laevis*. Memoirs of the New York Botanical Garden 49:38–50.
- Unterseher, M., R. Gazis, P. Chaverri, C. F. G. Guarniz, and D. H. Z. Tenorio. 2013. Endophytic fungi from Peruvian highland and lowland habitats form distinctive and host plant-specific assemblages. Biodiversity and Conservation 22:999–1016.
- Unterseher, M., A. Jumpponen, M. Öpik, L. Tedersoo, M. Moora, C. F. Dormann, and M. Schnittler. 2011. Species abundance distributions and richness estimations in fungal

metagenomics-lessons learned from community ecology. Molecular Ecology 20:275-285.

- Unterscher, M., A. Reiher, K. Finstermeier, P. Otto, and W. Morawetz. 2007. Species richness and distribution patterns of leaf-inhabiting endophytic fungi in a temperate forest canopy. Mycological Progress 6:201-212.
- Vaz, A. B., P. L. Fonseca, L. R. Leite, F. Badotti, A. C. Salim, F. M. Araujo, S. Cuadros-Orellana, A. A. Duarte, C. A. Rosa, and G. Oliveira. 2017. Using Next-Generation Sequencing (NGS) To uncover diversit of wood-decaying fungi in neotropical Atlantic forests. Phytotaxa 295:1–21.
- Vaz, A. B., S. Fontenla, F. S. Rocha, L. R. Brandão, M. L. Vieira, V. De Garcia, A. Góes-Neto, and C. A. Rosa. 2014. Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil). Fungal Ecology 8:28–36.
- Verma, V. C., and A. C. Gange. 2014. Advances in endophytic research. Springer.
- Vieira, W. A., S. J. Michereff, M. A. de Morais, K. D. Hyde, and M. P. Câmara. 2014. Endophytic species of *Colletotrichum* associated with mango in northeastern Brazil. Fungal Diversity 67:181-202.
- Vincent, J., G. Weiblen, and G. May. 2016. Host associations and beta diversity of fungal endophyte communities in New Guinea rainforest trees. Molecular Ecology 25:825-841.
- Vrandecic, K., D. Jurkovic, J. Cosic, J. Postic, and L. Riccioni. 2011. First report of cane blight on blackberry caused by *Diaporthe eres* in Croatia. Plant Disease 95:612–612. 294

- Vujanovic, V., and J. Brisson. 2002. A comparative study of endophytic mycobiota in leaves of *Acer saccharum* in eastern North America. Mycological Progress 1:147–154.
- Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology 73:5261–5267.
- Washington, W., V. Hood, and S. Stewart-Wade. 1999. *Phomopsis castanea*, a seed-borne endophyte in chestnut trees. Australian Journal of Botany 47:77–84.
- Wehmeyer, L. E. 1933. The genus *Diaporthe* Nitschke and its segregates. University Of Michigan Press; Ann Arbon.
- Weingartner, D., and E. Klos. 1975. Etiology and symptomatology of canker and dieback diseases on highbush blueberries caused by *Godronia (Fusicoccum) cassandrae* and *Diaporthe (Phomopsis) vaccinii*. Phytopathology 65:105–110.
- Werner, J. J., O. Koren, P. Hugenholtz, T. Z. DeSantis, W. A. Walters, J. G. Caporaso, L. T. Angenent, R. Knight, and R. E. Ley. 2012. Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. The ISME Journal 6:94–103.
- White, T. J., T. Bruns, S. Lee, and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18:315–322.
- Wu, L., T. Han, W. Li, M. Jia, L. Xue, K. Rahman, and L. Qin. 2013. Geographic and tissue influences on endophytic fungal communities of *Taxus chinensis* var. *mairei* in China. Current Microbiology 66:40–48.

- Wurdack, Kenneth J, Petra Hoffmann, and Mark W Chase. 2005. Molecular phylogenetic analysis of uniovulate Euphorbiaceae (Euphorbiaceae sensu stricto) using plastid rbcL and trnL-F DNA sequences. American Journal of Botany 92 (8):1397-1420.
- Yahr, R., C. L. Schoch, and B. T. Dentinger. 2016. Scaling up discovery of hidden diversity in fungi: impacts of barcoding approaches. Philosophical Transactions of the Royal Society 371:20150336.
- Zhang, Y., J. Ni, F. Tang, L. Jiang, T. Guo, K. Pei, L. Sun, and Y. Liang. 2017. The effects of different human disturbance regimes on root fungal diversity of *Rhododendron ovatum* in subtropical forests of China. Canadian Journal of Forest Research 47:659– 666.
- Zhou, W., J. L. Starr, J. L. Krumm, and G. A. Sword. 2016. The fungal endophyte Chaetomium globosum negatively affects both above-and belowground herbivores in cotton. FEMS Microbiology Ecology 92(10): fiw158–fiw158.
- Zimmerman, N. B., and P. M. Vitousek. 2012. Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape. Proceedings of the National Academy of Sciences 109:13022–13027.