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IceCube is a 1 km3 neutrino telescope nearing completion in the South Pole

Ice. Designed to detect astrophysical neutrinos from 100 GeV to about an EeV, it

will contribute to the fields of high energy astrophysics, particle physics, and neu-

trino physics. This analysis looks at the flux of atmospheric neutrinos detected by

IceCube while it operated in a partially-completed, 40-string configuration, from

April 2008 to May 2009. From this data set, a sample of about 20,000 up-going

atmospheric muon neutrino events with negligible background was extracted using

Boosted Decision Trees. A discrete Fourier transform method was used to constrain

a directional asymmetry in right ascension. Constraints on certain interaction co-

efficients from the Standard Model Extension were improved by three orders of

magnitude, relative to prior experiments. The event sample was also used to unfold

the atmospheric neutrino spectrum at its point of origin, and seasonal and system-

atic variations in the atmospheric muon neutrino flux were studied. A likelihood

method was developed to constrain perturbations to the energy and zenith angle



dependence of the atmospheric muon neutrino flux that could be due to Lorentz-

violating oscillations or decoherence of neutrino flavor. Such deviations could be

a signature of quantum gravity in the neutrino sector. The impact of systematic

uncertainties in the neutrino flux and in the detector response on such a likelihood

analysis were examined. Systematic uncertainties that need to be reduced in order

to use a two-dimensional likelihood analysis to constrain phenomenological models

for Lorentz or CPT violating neutrino oscillations were identified.
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Chapter 1

Introduction

1.1 Neutrinos and Quantum Gravity Phenomenology

Neutrinos have been in the spot-light since they provided the first indica-

tion of physics beyond the Standard Model (SM) of particle physics when neu-

trino oscillations were confirmed. Neutrinos are now playing a key role in sorting

out a variety of mysteries, including grand unification, extensions to the SM, CP

(Charge-conjugation and Parity transformation), and CPT (Charge-conjugation,

Parity transformation, and Time reversal) violating processes, supersymmetry, elec-

troweak symmetry breaking, and searches for signatures of extra dimensions. Neu-

trinos may help explain the matter/antimatter asymmetry in the universe through

“leptogenesis”, and may play a role in understanding dark energy.

Quantum Field Theory (QFT) and General Relativity (GR) are the theoretical

and mathematical foundations of modern physics. Lorentz invariance (LI) and CPT

symmetry are built into these theories. Also, the equivalence principle (EP) provides

the foundational basis for GR. To date, no experimental evidence for a violation of

any of these symmetries has been found. Despite the overwhelming theoretical and

experimental support for these symmetries, it remains worthwhile to continue to

test them in as many ways and in as many particle sectors as possible, at higher

energy scales or with improved precision. Observation of a violation of one of these

1



symmetries would be an indication of new physics.

Lorentz invariance means that a property or process remains invariant under

a Lorentz transformation. That is, it is independent of the coordinate system and

independent of the location or motion of the observer, and the location or motion

of the system. Lorentz invariant properties or processes are not changed by boosts,

rotations, or translations. Characteristic signals of violation of Lorentz invariance

(VLI) in the neutrino sector [1] include unconventional energy dependencies for

oscillation lengths and mixing angles, L−E conflicts manifesting as experiments

probing the same L/E phase space having conflicting results, compass asymmetries

or periodic variations due to rotation symmetry breaking, and ν ↔ ν̄ mixing.

The EP is the idea that the effects of acceleration are indistinguishable from

the effects of a uniform gravitational field. The EP requires that gravitational and

inertial mass are equivalent, that a particle’s coupling to a gravitational field is

proportional to its inertial mass. In some neutrino oscillation models, violation of

the equivalence principle (VEP) is phenomenologically equivalent to VLI.

The operation of charge conjugation, represented by C, is the swapping of a

particle for its antiparticle in an interaction. Parity reversal, P , is the reversal of the

coordinates used to describe a system, x → −x, y → −y, and z → −z, equivalent

to a mirror image, or changing the sign of the momentum for the particles involved

in an interaction. Time reversal symmetry, T , is the invariance of a physical process

when all motions are reversed, that is, incoming and outgoing states are swapped

and the direction of motion is reversed. CP is the combined operation of charge

conjugation and parity reversal. Most particle interactions are invariant to each of
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these operations. However, there are a few isolated examples of particle interactions

that violate C, P , CP , or T symmetries. No cases of CPT violation (CPTV) are

known and CPT symmetry is currently held to be an exact symmetry of the universe.

A violation of CPT in the neutrino sector would manifest itself as a flavor-changing

process in which

Pνα→νβ 6= Pν̄β→ν̄α . (1.1)

Physicists have so far been unable to reconcile the two paradigms of modern

physics, QFT and GR, and produce a coherent theory of quantum gravity (QG).

The theory must be able to predict the outcome of situations where both quantum

effects and strong-field gravity are important. Such a theory is required in order to

understand problems involving the combination of very high energy and very small

dimensions of space, such as black hole singularities, the origin of the universe, or the

unification of gravity with the other three fundamental forces. An understanding of

quantum gravity may also be necessary to explain dark energy.

Much of the difficulty in meshing GR and QFT at all energy scales comes

from the different assumptions that these theories make concerning how the uni-

verse works. QFT depends on particle fields embedded in the flat spacetime of

special relativity. GR models gravity as a curvature within spacetime that changes

as a gravitational mass moves. The most straight-forward ways of combining the

two theories are non-renormalizable. This problem is related to the fact that all

particles attract each other gravitationally, and energy as well as mass causes space-

time curvature. New, infinite terms in a calculation proliferate at each order in
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perturbation theory. Attempts at a workable theory of quantum gravity include

string theory [2, 3], loop quantum gravity [4], and noncommutative geometry [5].

Common to many philosophical or phenomenological approaches to QG is the

possibility that LI and CPT symmetry may not hold at extremely small distance

scales (high energy scales), due to a discrete structure of spacetime. Addition-

ally, interactions with a spacetime foam or virtual black holes may induce quantum

decoherence in which pure quantum states evolve into mixed states [6]. Lorentz

invariance and/or unitarity may not hold in highly curved spacetimes with bound-

aries, such as in the vicinity of a microscopic black hole or the cosmological horizon

of an inflationary universe [7, 8]. If different neutrino eigenstates interact differently

with a spacetime foam or with a gravitational potential, the EP may be violated.

Moreover, there are various arguments that imply there may be detectable sig-

natures below the Planck scale related to breaking of these symmetries. Arguments

for seeing these effects at the TeV scale, which is the center-of-mass energies for the

neutrinos in this analysis, are similar to arguments for seeing black hole production

at the Large Hadron Collider (LHC). For example, warped extra dimensions can

lead to gravity becoming important at the TeV scale [9]. Although QG provides the

philosophical motivation for suspecting that LI and CPT symmetry may not hold

in a final theory, the phenomenological models discussed here can be considered to

be a generic search for VLI or CPTV, independent of the origin of the new physics.

Neutrinos, lacking any gauge interactions other than weak and having extremely

high Lorentz factors, are sensitive probes of these effects.
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1.2 Neutrinos and the IceCube Neutrino Observatory

Neutrinos have played a fascinating role in the quest to understand matter

and energy throughout the past century. By 1914, an inescapable paradox had

arisen with regard to radioactive β decays. With only two particles in the final

state, the resultant nucleus and the electron, conservation of energy and momentum

demanded that the electron have a monochromatic energy spectrum. However,

what was observed was that the electron had a continuous energy spectrum. It

wasn’t until 1930 that an idea was proposed to explain this without abandoning the

principle of the conservation of energy. Wolfgang Pauli proposed a “desperate way

out” by postulating a new particle. This hypothetical particle was initially called

the neutron, but later renamed the neutrino. Neutrinos were first detected in 1958,

in a reactor neutrino experiment performed by Fred Reines and Clyde Cowan [10].

Atmospheric neutrinos were first detected in the 1960’s, in underground ex-

periments that were only sensitive to horizontal muons [11, 12]. And in 1968, mea-

surements of the solar νe flux found an anomalous deficit, sparking a debate over

whether the problem was with neutrinos, the solar model, or with the experiment.

This debate lasted for three decades. In the 1970’s and 1980’s, several detectors

were built to search for proton decay to test grand unified theories that predicted

finite lifetimes for protons. These detectors were either water Cherenkov detectors

or iron calorimeters, and atmospheric neutrinos were a background for the exper-

iments. Primarily, these detectors measured the ratio of νµ to νe in the flux of

atmospheric neutrinos, since the prediction of this quantity was better constrained
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than an absolute flux level. Some of the experiments found that the ratio was lower

than expected. Whether this was due to a deficit of νµ, an excess of νe, or systematic

errors in the detector(s), was far from clear.

Finally, in 1998, oscillations of atmospheric neutrinos were confirmed by Super-

Kamiokande [13] (water Cherenkov) by observing an up-down asymmetry to the

deficit, with strong support by results from Soudan2 [14] and MACRO [15] (both

iron calorimeters). Oscillations were later confirmed by K2K and NuMI. In 2002,

oscillations of solar neutrinos were confirmed by SNO and KamLAND.

Neutrinos are abundantly produced in stars as part of the fusion process that

sustains them, as well as during supernova explosions. A handful of neutrinos from

SN1987a, a supernova in the Large Magellanic Cloud, were detected by Kamiokande-

II, IMB, and Baksan. Neutrinos were also produced as relics of the big bang. They

are produced in nuclear reactors, particle accelerators, and in cosmic ray interactions

in the Earth’s atmosphere. Long baseline and reactor neutrino oscillation experi-

ments, now underway or in development, such as NUMI/MINOS, K2K, NoVa, T2K,

and Double Chooz, will play a key role in validating and clarifying neutrino physics

with new and more precise measurements.

Atmospheric neutrinos are produced in the decay chains of particles created by

the interaction of cosmic rays with the Earth’s atmosphere [16, 17]. The most likely

explanation to-date for the apparent disappearance of νµ in the flux of atmospheric

neutrinos is that they are oscillating into ντ , as described in Chapter 2 and Eqn. 2.10.

According to the prevailing model, the oscillations are due to coherent combinations

of mass eigenstates that compose the flavor eigenstates. However, several other
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mechanisms have been proposed that could lead to νµ → ντ flavor transitions. Such

mechanisms include VLI [18, 19, 20] and/or violation of CPT symmetry [21, 22, 23],

VEP [24, 25, 26, 27], and decoherence of neutrino flavor states [6]. Signals of Lorentz

and CPT violating physics are expected to be suppressed by some power of the

Planck mass, MP ∼ 1019 GeV.

The IceCube neutrino telescope [28], currently under construction in the glacial

ice at the South Pole, detects the Cherenkov radiation emitted by charged particles

produced by neutrino interactions in the ice or rock. IceCube is capable of de-

tecting neutrino interactions of all three flavors (electron, muon, and tau neutrinos)

from atmospheric and astrophysical sources. Determining the origin and production

mechanisms for cosmic rays is a primary goal of IceCube and lead to the design and

scale of the detector [29]. IceCube will open up an unexplored realm of neutrino

astrophysics with unprecedented energies, from TeV to PeV scales [30]. IceCube can

also be used for a wide range of particle physics analyses, such as indirect searches for

dark matter, tests of TeV scale gravity and supersymmetry, and monopole searches.

Over its lifetime, IceCube will provide a significant increase in the energy

coverage and event statistics for atmospheric neutrinos. Gonzalez-Garcia, et al.,

[31], estimate that IceCube will be able to accumulate more than 700 thousand at-

mospheric neutrino events with energies above 100 GeV over its ten-year lifetime.

With this large data set, it may be possible to detect deviations from the assump-

tion that the mass-induced oscillations model fully explains flavor transitions [31].

Additionally, the energy spectrum, zenith angle dependence, and flavor distribution

of atmospheric neutrinos have been extensively studied, and will help calibrate Ice-
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Cube in the energy range 100 GeV to several hundred TeV, and can be used to

study systematic uncertainties in IceCube.

The deep glacial ice at the South Pole is optically transparent, making it

an ideal medium for a large volume Cherenkov detector. Also, deep in the ice,

particles such as cosmic ray muons that are an undesirable background for most

analyses planned for IceCube are attenuated. Upward moving particles will have

had to result from particles that penetrated the Earth and can readily be identified

as due to neutrino interactions. Even with a cubic-kilometer detector, and with

the exception of atmospheric neutrinos, event rates on the order of a few to a

few hundred per year are all that is expected by the most optimistic predictions for

many of the astrophysical phenomena for which IceCube is being built. For the more

speculative physics issues, such as dark matter, quantum gravity, and topological

defects, IceCube is expected to significantly improve constraints on various models

even if it does not make a discovery.

IceCube has already collected a large sample of atmospheric muon neutrinos

while operating in a partially completed 40-string configuration from 17 April, 2008,

to 20 May, 2009. This data was used to unfold the spectrum of atmospheric neutrinos

at their point of origin in the atmosphere, over the neutrino energy range 100 GeV

to 400 TeV. Boosted decision trees were used to obtain an event sample of up-going

atmospheric muon neutrinos with negligible background contamination from mis-

reconstructed atmospheric muons. Seasonal variations in the atmospheric neutrino

flux were also studied.

The Standard Model Extension (SME) provides a phenomenological frame-
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work for studying possible low energy signatures of Lorentz and CPT violation [32].

Using a discrete Fourier transform method, constraints were placed on certain coeffi-

cients contained within the SME, in the context of a neutrino oscillation model that

violates rotational invariance. The limits from other experiments were improved by

more than three orders of magnitude. A likelihood analysis method was developed,

with events binned in energy and direction, to analyze a variety of VLI, CPTV,

and decoherence models. The impact of systematic uncertainties in theoretical pre-

dictions for the neutrino flux, as well as in the detector response, simulation, and

reconstruction, on the two-dimensional likelihood analysis were studied. Areas in

which the systematic uncertainties need to be reduced were identified.
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Chapter 2

Neutrino Particle Physics and Astrophysics

2.1 Neutrinos In and Beyond the Standard Model

The SM is based on the strong and electroweak gauge groups

GSM = SU (3)C × SU (2)L × U (1)Y . (2.1)

The symmetry properties of the three gauge groups on the right hand side explain

the behavior of the strong, weak, and electromagnetic forces, and the interactions

of particles subject to these forces. The three neutrino flavor states, νe, νµ, and ντ ,

are paired with their charged lepton counterparts, e, µ, and τ . The lepton doublets

in the SM are  e−

νe

 ,
 µ−

νµ

 , and

 τ−

ντ

 .
The gauge structure of the SM, and the representations of the physical states ob-

served in nature, leads to lepton flavor symmetries. The number of each of the three

flavors of leptons are individually conserved in any SM interaction. Anti-neutrinos

have opposite signed lepton numbers. Neutrino mixing and CP violation in the

lepton sector are not accounted for in the SM.

Neutrinos undergo only weak and gravitational interactions. In charged cur-

rent (CC) weak interactions, they exchange a W± boson with a nucleon and trans-

form into a charged lepton. The charged lepton is the same lepton flavor as the
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original neutrino, i.e. an electron, a muon, or a tau. In neutral current (NC) weak

interactions, they exchange a Z0 boson with a nucleon and remain a neutrino. Ac-

cording to the SM and vector-axial (V-A) theory, only left-handed neutrinos and

right-handed anti-neutrinos are active, and both are massless. The SM contains a

Higgs boson doublet. The vacuum expectation value (vev) of the Higgs is respon-

sible for breaking the gauge symmetry, giving us the three massive vector bosons

which are responsible for the short range of the weak force.

Fermion masses are generated by terms that include Yukawa couplings, a right-

handed fermion, its left-handed doublet, and the Higgs boson. Since the SM does

not include right-handed neutrinos (left-handed antineutrinos), neutrinos can not

acquire mass in this same way. Nor can they acquire mass through loop corrections

in the SM without violating the conservation of lepton number inherent in the model.

Although experimental and astrophysical constraints indicate that neutrino masses

are very small, their masses have not yet been directly measured. The discovery of

neutrino oscillations, however, implies that neutrinos do have mass [33, 34, 35]. As

a result, the helicity of a neutrino is not Lorentz invariant.

2.1.1 Neutrino Oscillations

The theory of mass-induced oscillations requires that neutrino flavor states

exist as linear combinations (coherent sums) of three mass eigenstates

|να〉 =
n∑
i=1

U∗αi |νi〉 , (2.2)
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where the να are the flavor eigenstates, νi are the mass eigenstates, and U∗αi are the

elements of an n × n mixing matrix. n is the number of active neutrino species

(i.e. light enough to play a role in the oscillations and sharing a common eigenstate

basis). For the general 3× 3 case, the mixing matrix can be parametrized by three

mixing angles, θ12, θ23, and θ13, as well as a CP violating phase δ. A convenient

factorization is

U =



1 0 0

0 c23 s23

0 −s23 c23





c13 0 s13e
−iδ

0 1 0

−s13e
+iδ 0 c13





c12 s12 0

−s12 c12 0

0 0 1


, (2.3)

where cjk = cos (θjk) and sjk = sin (θjk) . In this factorization, the first matrix

on the right-hand side leads to atmospheric and accelerator neutrino oscillation

experiments, the second describes reactor experiments and the CP violating phase,

and the third describes solar neutrino oscillations.

Fig. 2.1, from [36], shows the two pictures of neutrino interactions and propa-

gation, based on the flavor and mass eigenstates. The time evolution of a neutrino

flavor eigenstate as a neutrino propagates is given by

|να (t)〉 =
n∑
i=1

U∗αi |νi (t)〉 . (2.4)

When detected in a CC interaction, the probability that a neutrino produced in

flavor state α will be detected in flavor state β is given by

Pαβ = |〈νβ| να (t)〉|2 =

∣∣∣∣∣∣
n∑
i=1

n∑
j=1

U∗αiUβj 〈νj| νi (t)〉

∣∣∣∣∣∣
2

. (2.5)

Technically, to calculate the effects of neutrino mixing requires quantum field theory

and an accounting of individual, overlapping wave packets for each mass eigenstate
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[37]. However, the standard method is to treat the mass eigenstates as plane waves

|νi (t)〉 = e−iEit |νi (0)〉 , (2.6)

and use an approximation for the dispersion equation

Ei =
√
p2
i +m2

i ' p+
m2
i

E
. (2.7)

These approximations greatly simplify the calculations and, after accounting for

smearing of the energy and detection time (or location), and the energy and mo-

mentum uncertainty, the more rigorous methods give the same results. Further-

more, neutrino production and detection via CC interactions depends on flavor

state; experiments are not sensitive to the different contributions of different mass

eigenstates. Energy and momentum uncertainty in the detection processes are large

enough to make a determination of the mass of the incident neutrino impossible.

From the above equations, the oscillation probability is a function of neutrino

energy and propagation distance, mass-squared differences of the mass eigenstates,

and the elements of the neutrino mixing matrix [38]:

Pαβ = δαβ − 4
n∑
i<j

Re
[
UαiU

∗
βiU

∗
αjUβj

]
sin2Xij + 2

n∑
i<j

Im
[
UαiU

∗
βiU

∗
αjUβj

]
sin 2Xij,

(2.8)

where

Xij =

(
m2
i −m2

j

)
L

4E
= 1.27

∆m2
ij

eV2

L/E

km/GeV
. (2.9)

L is the propagation distance, from production to detection. For relativistic neu-

trinos, L (≈ t), and E have the same behavior under Lorentz transformations and
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Figure 2.1: Schematic of neutrino production, propagation, and detec-
tion. Two pictures, based on flavor eigenstates (top) and on mass eigen-
states (bottom). From [36].

the ratio L/E remains Lorentz invariant. Since there are three neutrino mass eigen-

states, we can define two independent mass-squared differences, ∆m2
12 and ∆m2

23.

Current experimental results indicate that ∆m2
12 ≈ 10−4eV2 and ∆m2

23 ≈ 10−3eV2.

Oscillation experiments are sensitive to the difference of the squares of the

masses for the different mass eigenstates, but they do not offer a determination of

the absolute mass scale and hierarchy. The mass hierarchy refers to the ordering

of the masses; normal ordering assumes they follow the ordering of masses in the

quark families, as opposed to an inverted hierarchy (see Fig. 2.2). Ongoing attempts

to directly measure the absolute mass scale include high-resolution analysis of the

tail end of the electron energy spectrum in beta decay and searches for neutrino-less

double beta decay. Neutrino-less double beta decay would also be direct evidence
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Figure 2.2: Possible mass spectra for neutrino mass and flavor eigen-
states. Normal (assumed to be analogous to quark mass ordering) and
inverted. From [39].

for whether B-L (baryon number − lepton number) is a fundamental symmetry of

nature and whether neutrinos are Majorana or Dirac particles, i.e., whether they

are their own antiparticles or they have distinct antiparticles [40, 41].

Atmospheric neutrino oscillations are dominated by transitions between just

two neutrino flavors, νµ and ντ . The data from various experiments are not con-

sistent with appearance of νe. Additionally, the appearance of ντ is supported by

Super-K data [42]. An excellent approximation for atmospheric neutrino oscillations

is a 2× 2 mixing matrix that depends on just one mixing angle, θ23, (θ below), and

just one mass-squared difference, ∆m2
23, (∆m2 below). The oscillation probability

is then

Pνµ→ντ = sin2 2θ sin2

(
1.27

∆m2L

E

)
. (2.10)
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The νµ survival probability is

Pνµ→νµ = 1− sin2 2θ sin2

(
1.27

∆m2L

E

)
. (2.11)

The following values are used for the parameters for mass-induced oscillation of

atmospheric muon neutrinos [43]:

∆m2 = 2.39× 10−3 eV2,

sin2 2θ = 0.9954.

(2.12)

Fig. 2.3 shows the νµ survival probability as a function of neutrino energy and zenith

angle for these mass-induced oscillations. Mass-induced oscillations of atmospheric

neutrinos, with a wavelength proportional to energy, are negligible above 100 GeV.

The phenomenological models discussed in Chapter 3 will include oscillations that

become important at higher energies.

Neutrino propagation length, L, is calculated using the equation [44]:

L =
√

(R⊕ + h)2 − (R⊕ − d)2 sin2 (θZ)− (R⊕ − d) cos (θZ) . (2.13)

R⊕ is the radius of the Earth, h is the height in the atmosphere that the neutrino

was produced, d is the depth at which the neutrino interacted in the detector, and

θZ is the zenith angle of the neutrino. We assume the Earth is spherical and also

neglect the direction and energy dependence of mean production height. Average

values of R⊕ = 6371 km and h = 20 km are assumed [45, 46]. The depth of the

center of the detector (2 km) is used for d. These approximations are only used for

calculating the neutrino propagation length when estimating muon neutrino survival

probability under various phenomenological models for oscillation or decoherence.
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Figure 2.3: Atmospheric muon neutrino survival probability for mass-
induced oscillations (Eqn. 2.11). The color scale represents the oscillation
survival probability.

They are not used in the detailed numerical simulation of neutrino production in

the atmosphere, propagation and interaction through the Earth, and interaction in

or near the detector, as discussed in Chapter 6.

Attempts have been made to explain neutrino flavor appearance and disap-

pearance data with non-standard interactions or new oscillation mechanisms, CPT

violating processes or quantum gravity-induced decoherence, neutrino decay, mixing

with sterile neutrinos that have no gauge interactions, or ultra-heavy right-handed

neutrinos [40, 47, 48], or some combination of the above. Some of these scenarios

have been excluded, others still remain plausible.
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2.1.2 Standard Model Extension

To date, no evidence for VLI or CPTV has been seen and the symmetries of

GR and the SM are holding firm against a wide variety of experimental investiga-

tions. However, as previously mentioned, there is some motivation to expect that

these symmetries may not hold at all scales, and to look for signs of departure from

them. The SM is believed to be the low-energy limit of a more fundamental theory.

This more fundamental theory is typically assumed to unite quantum field theory

and general relativity at the Planck scale. To look for signatures of quantum gravity

at energies reachable in current experiments without a formal theory, a phenomeno-

logical description of low-energy effects is necessary. The Standard Model Extension

(SME) is an effective-field-theory framework that fills this gap [49, 50].

The SME contains the SM and GR as limiting cases. It adds to the SM La-

grangian terms that can be constructed with SM and gravitational fields, but that

may also violate Lorentz symmetry. The coefficients for these interactions have

Lorentz indices and represent background tensor fields. Physically observable phe-

nomena depend on contractions between these tensorial coefficients and the particle

momentum. A subset of the SME, known as the “minimal” SME [51], includes

all observer-independent, renormalizable (i.e. operators with mass dimension 4),

Lorentz and CPT violating interactions. Energy and momentum are still conserved,

spin-statistics and gauge invariance are maintained. Right-handed neutrinos are

still assumed to decouple and remain undetectable. Neutrino masses are handled

the same way as in the SM.
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The SME has served as the phenomenological guide for numerous experimen-

tal searches for signatures of Lorentz and CPT violation [52], including protons,

neutrons, electrons, photons, mesons, and gravity. The SME also provides the

basis for searching for a variety or Lorentz and CPT violating signals in the neu-

trino sector, signals that include oscillations with unique energy dependencies and

direction-dependent oscillations [1]. The effective Hamiltonian for the propagation

of free neutrinos, with Lorentz-violating terms, is [51]

(heff )ab = Eδab +
(m2)ab

2E
+

1

E
[(aL)µ pµ − (cL)µν pµpν ]ab , (2.14)

where E is the neutrino energy and pµ is the neutrino four-momentum. The indices

a and b range over the three generations of leptons, e, µ, and τ. The second term

on the right leads to mass-induced oscillations, the third term leads to Lorentz and

CPT violating oscillations. Coefficents (aL)µab have mass dimension one and lead to

LI and CPT violating interactions. For antineutrinos, the sign of aL is reversed.

Coefficients (cL)µνab are dimensionless and lead to interactions that violate LI, but

not CPT symmetry. The SME includes mixing between neutrinos and antineutrinos,

ν ↔ ν̄, but that will not be considered here because IceCube can not distinquish

between neutrinos and antineutrinos.

2.2 Cosmic Rays

Cosmic rays are high energy particles, mostly protons and helium nuclei, but

also heavier ionized nuclei, that are accelerated in various astrophysical phenomena.

The origin of cosmic rays is still an area of very active research. Included in the
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Figure 2.4: Energy dependence and composition of flux of cosmic ray
primaries. From [53].

primary cosmic rays are electrons, protons, helium, carbon, oxygen, iron, and other

nuclei synthesized in stars [53]. Fig. 2.4 shows the composition of the cosmic ray

flux. Particles produced in the interactions of cosmic ray primaries with the inter-

stellar medium are known as secondaries. Lithium, beryllium and boron, as well

as positrons and antiprotons, are mostly secondaries [53]. Low energy cosmic rays

are modulated by the solar wind and deflected by the Earth’s geomagnetic field.

However, these effects are negligible for the energy range of this analysis. Higher

energy cosmic rays arrive isotropically, with deviations on the order of a very small

fraction of a percent [54].
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There are only a few known production sites for cosmic rays. Possible origins

(depending on energy scale and flux level) include AGN, GRB, supernova explosions,

evaporating black holes, topological defects, and decay products of exotic particles.

Most cosmic rays originate from within the galaxy, likely from supernova shock

acceleration. Charged particles can diffuse across the plasma shock boundary many

times, gaining energy each time in a process known as Fermi acceleration. The

highest energy cosmic rays would not be confined by the galactic magnetic field,

however, and are believed to be from extragalactic sources [55].

If cosmic rays are produced in hadronic interactions, neutrinos should be pro-

duced in conjunction with them. Hadrons accelerated at these sources should inter-

act with matter and/or radiation fields, producing charged pions and kaons. These

mesons will then decay, producing neutrinos as part of their decay products, anal-

ogous to the production of atmospheric neutrinos by cosmic rays. IceCube will be

able to detect these neutrinos, and after several years of data collection, it should be

possible to correlate neutrino point sources with the sources of high energy gamma

rays [56]. Detecting neutrinos from objects that are believed to be the source of at

least some of the cosmic rays would narrow down the production and acceleration

mechanism, by verifying associated production of neutrinos in hadronic processes.

The energy spectrum of cosmic rays is rather steep, dN/dE ∝ E−2.7, and

steepens to dN/dE ∝ E−3 above the “knee”, or about 106 GeV [57]. This steepening

could be related to a turnover between galactic origins (below the knee) to extra-

galactic origins above a second knee. This second knee is a steepening to about E−3.2

above about 5×108 GeV, which could be associated with a rigidity-dependent cutoff.
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Figure 2.5: All-particle spectrum from air shower measurements. From [53].

Higher energy cosmic rays diffuse out of the galaxy [58]. Fig. 2.5 shows the cosmic

ray spectrum. Both knees and the ankle are identified in the figure.

Hadronic interactions between cosmic rays and particles in the atmosphere

produce large numbers of mesons, primarily pions and kaons. In fact, hundreds

or even thousands of these mesons can be produced in the shower that ensues the

interaction of a single high energy cosmic ray. Neutrinos are produced in the leptonic

or semi-leptonic decays of charged pions or kaons, as well as in the subsequent decays
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of the muons:

π+(K+)→ µ+ + νµ,

π−(K−)→ µ− + ν̄µ,

µ+ → ν̄µ + e+ + νe,

µ− → νµ + e− + ν̄e.

(2.15)

Fig. 2.6, from [59], shows the particle production from a cosmic ray air shower.

νe are produced in the muon decays, but νµ are created in the meson decays

as well as the muon decays. Additionally, many muons range out before they have

a chance to decay. Hence, the ratio of νµ to νe is a function of direction and energy

[60]. For this analysis, νe events are not included in the final event sample. Event

selection cuts used to isolate track-like events (from the muons resulting from νµ CC

interactions) eliminate localized events from the electromagnetic showers induced by

νe CC interactions. Production of ντ by cosmic ray interactions is negligible.

Fig. 2.7 shows the seasonal variation of the down-going flux of atmospheric

muons in IceCube [61]. Teff is a weighted average of the temperature of the South

Pole atmosphere, from the surface to the top of the atmosphere. The yearly seasonal

temperature variation in the upper atmosphere is highly correlated with the high

energy muon rate observed deep in the ice, leading to a 10% seasonal variation in

the muon event rate. This is due to the kinematics of meson propagation in a less

dense, or more dense, atmosphere and the likelihood of producing a muon through

decay before collision. The seasonal variation of the rate of up-going atmospheric

neutrinos in IceCube is a function of the latitude of their origin, and is expected to

be about 3.5% for neutrinos originating from high latitudes, and less than 0.5% for
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Figure 2.6: Particle production in cosmic ray air shower. From [59].
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Figure 2.7: Seasonal variation in atmospheric muon flux for IceCube
22-string configuration [61].

neutrinos originating from low latitudes [62].

The dominant parent particles for atmospheric neutrinos depends on the en-

ergy and is related to the critical energy, Ecrit, of the parent particle. Ecrit is the

energy of the parent particle for which decay and interaction lengths are equal.

Above Ecrit, energy loss through collisions is likely prior to decay. Below Ecrit, the

particle is more likely to decay before interacting. Ecrit is a function of the lifetime

of the parent particle as well as the density profile of the atmosphere. The critical

energies for various parent particles are listed in Table 2.1.

The zenith angle dependence of atmospheric neutrinos is more complicated

than cosmic rays. Mesons in inclined showers spend more time in the tenuous

atmosphere where they are more likely to decay rather than interact. For this reason

the spectra of highly inclined neutrinos are flatter than those of almost vertical

neutrinos. Additionally, neutrino absorption in the Earth is a function of energy

and zenith angle. Fig. 2.8 shows the attenuation of the atmospheric neutrino flux in

the Earth. Above about 100 TeV, neutrinos have a high probability of interacting

as they transit the diameter of the Earth.
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Table 2.1: Critical energies for various parent particles that contribute to the at-
mospheric neutrino flux. From [63] and based on an isothermal atmosphere with a
scale height of 6.4 km.

Particle Elementary Contents mc2 (MeV) cτ Ecrit (GeV)

D+, D− cd̄, c̄d 1870 317 µm 3.8× 107

D0, D̄0 cū, c̄u 1865 124 µm 9.6× 107

D+
s , D

−
s cs̄, c̄s 1969 149 µm 8.5× 107

Λ+
c udc 2285 62 µm 2.4× 108

µ+, µ− lepton 106 659 m 1.0
π+, π− ud̄, ūd 140 7.8 m 115
K+, K− us̄, ūs 494 3.7 m 855

Λ0 uds 1116 7.9 cm 9.0× 104

2.2.1 Conventional Atmospheric Neutrino Flux

The conventional atmospheric neutrino flux [16, 17] consists of νµ and νe pro-

duced in the decays of pions and kaons. Pions and kaons that decay in-flight, often

after loosing some of their energy in collisions, are the dominant source of atmo-

spheric neutrinos up to about 10 TeV. The loss of energy in the collisions of the

parent particle leads to lower energy neutrinos among the daughter products, and

the spectral slope of conventional atmospheric neutrinos is about −3.7, as compared

to −2.7 for cosmic rays. Some of the muons produced in the decay of these mesons

also decay in-flight in the atmosphere, producing additional neutrinos, while others

reach the ground and range out before decaying. Charged pions decay mostly into

muons, so the flux of νµ from these air showers is much larger than the flux of νe.

The ratio π/K (ratio of pion production to kaon production) can have an

affect on the zenith angle distribution of conventional atmospheric neutrinos. The

impact that this ratio has depends on propagation lengths in the atmosphere, pion
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Figure 2.8: Zenith angle and energy dependence of survival probability
as neutrinos propagate through the Earth. From [64].

and kaon lifetimes, kinematics of decay, and energy loss due to scatterings before

decay [65]. Uncertainty in kaon production dominates the uncertainty in this ratio.

Fig. 2.9 shows the conventional atmospheric muon neutrino flux, including the sum

of νµ and ν̄µ.

2.2.2 Prompt Atmospheric Neutrino Flux

Charmed mesons and baryons can play an important role when sufficient en-

ergy is available. The prompt atmospheric neutrino flux [66, 67, 68] is made up

of neutrinos produced in the decays of charmed D mesons and Λc hyperons [63]

produced in the atmosphere:

D → K + µ+ ν and Λc → Λ0 + µ+ ν, (2.16)
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Figure 2.9: Energy and zenith dependence of conventional atmospheric
muon neutrino flux. Based on the model of [17].

but is not expected to become important until above a few tens of TeV. Charmed

mesons and baryons decay almost immediately, before losing energy in collisions.

Hence, the spectrum for the prompt flux is about one power harder than the con-

ventional flux and, with a spectral index of about −2.7, more closely follows the

cosmic ray spectrum. Since charmed mesons are equally likely to decay into elec-

trons or muons, the prompt neutrino flux for muon neutrinos and anti-neutrinos is

the same as that for electron neutrinos and anti-neutrinos. The prompt flux is also

independent of zenith angle.

The production of charmed mesons at cosmic ray energies is not well-measured

by accelerators. Uncertainties associated with the prompt flux, due to charm pro-

duction cross sections and fragmentation functions, etc., are much larger than for the
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Figure 2.10: Theoretical predictions for the prompt atmospheric muon
neutrino flux. From IceCube Yellow Book.

conventional component. There is a significant amount of uncertainty concerning

the exact turnover energy between conventional and prompt sources of atmospheric

neutrinos, estimates vary from about 10 TeV to 1 PeV. Enberg et al. [66] find that,

for the vertical flux of atmospheric muon neutrinos, the prompt component begins

to dominate over the conventional component between about 105 GeV and 105.5

GeV, just above the energy reach of this analysis.

Fig. 2.10 shows theoretical predictions for the prompt flux in relation to pre-

dictions for the conventional flux. The predictions for the prompt flux can be seen in

Fig. 2.11, as well as the estimated overlap between the atmospheric neutrino flux and

an anticipated diffuse flux of astrophysical neutrinos. A diffuse flux of astrophysical

neutrinos is ignored in this analysis.
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Figure 2.11: Components of the muon neutrino flux in IceCube. The
uncertainty in charm production models, (light green) as well as the
diffuse background (yellow). From [69].

Fig. 2.12 shows the combined atmospheric neutrino flux, including conven-

tional and prompt components. The prompt component is only visible at the highest

energies in Fig. 2.12 (compare to Fig. 2.9).

30



Figure 2.12: Energy and zenith dependence of atmospheric muon neu-
trino flux, including prompt and conventional components. Based on
the models of [17] and [66].

31



Chapter 3

Phenomenology

Mass-induced oscillations are suppressed at the energy scale of this analysis,

which is about 100 GeV to several tens of TeV, since the oscillation wavelength

is proportional to energy. On the contrary, certain VLI and decoherence models

contain neutrino flavor oscillations with wavelengths that are inversely proportional

to energy, or some power thereof. Additionally, some models contain oscillations

that depend on the direction of the neutrino momentum. The high energy and high

statistics reach of IceCube, for atmospheric neutrinos, provides unique sensitivity

to these unconventional models.

3.1 Violation of Lorentz Invariance

We can arrive at an equation for Lorentz-violating oscillations of atmospheric

neutrinos a variety of different ways. Instead of the usual dispersion relationship

that leads to the derivation of the mass-induced neutrino oscillation equation, we

can start with a modified dispersion equation:

E2 = m2 + p2 + f
(
p2, E,m

)
. (3.1)

f is some function, suppressed by the Planck mass, MP , that may be flavor-

dependent. Depending on the nature of f and the physics behind it, this may

lead to a deformed Lorentz symmetry. The Lorentz transformation may be changed
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but Lorentz invariance and observer-independence could still hold. If Eqn. 3.1 takes

a form such as [70]

E2 ≈ m2 + p2 − η
(
E

MP

)n
p, (3.2)

where η is assumed to be order one, then Lorentz symmetry is broken. The neutrino

oscillation equation derived using Eqn. 3.2, instead of the usual dispersion relation

(Eqn. 2.7), violates Lorentz invariance.

Alternatively, we can use the SME. If we restrict ourselves to rotationally-

invariant interactions in a Sun-centered frame, with the only non-zero components

of the tensorial interaction coefficients being the time components, we have a class

of models known as “fried-chicken” models [1]. We also make the simplification of a

two neutrino system, with νµ ↔ ντ oscillations, borrowing from the precedence set

by mass-induced oscillations. There is no a priori reason why this would have to be

the case, but we are looking for a disappearance of νµ. If a deficit of muon neutrinos

with energy and zenith angle dependence consistent with this model were found, it

would still be necessary to test the prediction that they were oscillating to ντ . The

result of these assumptions is a 2× 2 matrix cTTL . Physically, the eigenvalues of this

matrix can be interpreted as a new set of eigenstates, each state with a different

limiting velocity that is slightly less than the speed of light in vacuum. These new

eigenstates are referred to as Maximum Attainable Velocity (MAV) eigenstates.

Another approach [22, 31] is to use a Lorentz-violating Hamiltonian with ar-

33



bitrary energy-dependence for some new physics:

H± =
∆m2

4E
Uθ

 −1 0

0 1

U †θ +
∑
n

σ±n
∆δnE

n

2
Uξn,±ηn

 −1 0

0 1

U †ξn,±ηn . (3.3)

The first term on the right-hand side is the familiar mass-induced mixing, the second

term is the Lorentz, and possibly also CPT violating, mixing. σ±n allows for a possible

sign difference (CPT violating effect) between neutrinos (+1) and anti-neutrinos (-

1), and ∆δn is the strength of the new physics terms. The mixing matrix for the

new physics is

Uξn,±ηn =

 cos ξne
−iηn sin ξne

±iηn

− sin ξne
∓iηn cos ξne

−iηn

 . (3.4)

If the new physics interaction (parameterized by the ∆δn) is constant along

the neutrino path, the equation for oscillation survival probability becomes [22, 31]

Pνµ→νµ = 1− sin2 2Θ sin2

(
∆m2L

4E
<
)
, (3.5)

where

< =
√

1 +R2
n + 2Rn (cos 2θ cos 2ξn + sin 2θ sin 2ξn cos ηn), (3.6)

sin2 2Θ =
1

<2

(
sin2 2θ +R2

n sin2 2ξn + 2Rn sin 2θ sin 2ξn cos ηn
)
, (3.7)

and

Rn = σ±n
∆δnE

n

2

4E

∆m2
. (3.8)

Rn is the ratio of the new physics oscillation length to the standard oscillation

length. < is the ratio of the effective oscillation length to the standard oscillation

length.
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If the new oscillations are caused by neutrino eigenstates with different MAV,

then the notation used for the physics parameters is ∆δ1 = δc/c, (the fractional

difference in these MAVs relative to the speed of light), and a mixing angle ξ1 = θc.

In this case, the ratio between VLI and mass-induced oscillation wavelengths is

R =
δc

c

E

2

4E

∆m2
. (3.9)

If we assume that mass-induced and VLI oscillations are maximal (i.e. θc = θ =

π/4), then Eqn. 3.5 becomes

Pνµ→νµ = 1− sin2

(
∆m2L

4E
+
δc

c

LE

2

)
. (3.10)

We will use Eqn. 3.5 for the likelihood analysis, with physics parameters θc and

δc/c. The phase η is assumed to be zero. Since mass-induced oscillations are sup-

pressed at the energy scale of this analysis, interference between mass-induced and

VLI oscillations is negligible. Fig. 3.1 shows the νµ survival probability as a function

of neutrino energy and zenith angle for the case δc/c = 10−27 and sin2 (2θc) = 1.

In addition to the n = 1 case just discussed, we can generalize this model to

arbitrary integral powers of the neutrino energy. The notation (and energy depen-

dence) is then

δc

c
→ ∆δn, and E → En. (3.11)

The units of ∆δn are GeV
−n+1

. An n = 2 energy dependence has, for example,

been proposed in phenomenological models based on loop quantum gravity [71], or

non-renormalizable VLI effects induced by a spacetime foam [72].

If there is non-universal coupling of neutrino eigenstates to a gravitational

potential ϕ, i.e. γ1 6= γ2, where γi is the gravitational coupling for eigenstate i, then
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Figure 3.1: Atmospheric muon neutrino survival probability for n =
1 VLI model with δc/c = 10−27 and sin2 (2θc) = 1. The color scale
represents the oscillation survival probability. Oscillations visible below
about 100 GeV are due to mass-induced oscillations.

the EP is violated [24]. If the gravitational potential is constant along the neutrino

path, then this VEP model is phenomenologically equivalent to VLI [19, 73], with the

transformation δc/c→ 2 |ϕ| δγ. Models with n = 1 and n = 3 energy dependencies

have been associated with VEP [24, 26, 27].

Fig. 3.2 shows the sensitivity of 40-string IceCube to the n = 1 VLI model,

for the live time of this analysis. This sensitivity estimate, as well as similar plots

to follow, is based on a χ2 analysis with no accounting for systematic uncertainties.

The method is similar to that used in [31] to estimate the sensitivity of the 80-

string configuration, but different binning is used here. Events are binned in ten

cos θZ bins from −1 to 0, and ten dE/dX bins from −2 to 1 (dE/dX is an energy

dependent observable that will be discussed later). For comparison, Fig. 3.3 shows
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Figure 3.2: Predicted sensitivity of 40-string detector to n = 1 VLI oscillations.

the sensitivity after a cut at θZ > 97◦. The reason for this cut will be discussed

in Chapter 8. Fig. 3.4 shows the sensitivity for the n = 2 VLI model and Fig. 3.5

shows the sensitivity for the n = 3 VLI model, (both plots based on the full 90 to

180 zenith coverage).

MACRO [74], Super-K [75], K2K, and AMANDA-II have set upper limits on

this type of VLI model for neutrino oscillations with n = 1. For sin2 (2θc) = 1,

a combined analysis of Super-K and K2K data [76] set an upper limit of δc/c <

2.0×10−27 at the 90% confidence level (CL). An upper limit of δc/c < 2.8×10−27 at

the 90% CL was set with data from the AMANDA-II detector [77]. The AMANDA-

II analysis was also used to set upper limits for the n = 2 and n = 3 models:

∆δ < 2.7 × 10−31 and ∆δ < 1.9 × 10−35 respectively. Fig. 3.6 shows the 90% CL
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Figure 3.3: Predicted sensitivity of 40-string detector to n = 1 VLI
oscillations after an additional cut at cos θZ < −0.12.

Figure 3.4: Predicted sensitivity of 40-string detector to n = 2 VLI oscillations.

38



Figure 3.5: Predicted sensitivity of 40-string detector to n = 3 VLI oscillations.

limits set by AMANDA-II [77], and the combined Super-K + K2K analysis [76].

Also shown in Fig. 3.6 is a sensitivity estimate for 80-string IceCube [31].

3.2 Decoherence

Quantum fluctuations of spacetime can lead to a foam-like structure [78]. In-

teractions with this spacetime foam can also be thought of as interactions with

virtual black holes [79], in which the virtual black holes pop in and out of existence

on timescales allowed by the uncertainty principle. In scattering interactions with

these virtual black holes, energy, angular momentum, and local or gauged quantum

numbers (such as electric or color charge) would be conserved. Global quantum

numbers may not be conserved. A neutrino would emerge from a scattering inter-

39



Figure 3.6: 90% CL limits for n = 1 VLI oscillations from AMANDA-II
[77], and a combined Super-Kamiokande + K2K analysis [76]. Predicted
sensitivity for 80-string IceCube from [31].

action with a virtual black hole as a neutrino, but lepton flavor may be different.

Interactions with these virtual black holes could thus lead to randomization of neu-

trino flavor eigenstates.

These scattering processes are characterized by non-unitary scattering matri-

ces and are not reversible in time. Pure quantum states evolve into mixed quantum

states in irreversible processes that violate CPT symmetry. Transformations de-

scribing the time evolution of such open quantum systems are given by operators

of Lindblad quantum dynamical semi-groups [80]. This approach does not require

detailed knowledge of the environment, but it does maintain energy conservation,

entropy increase, and complete positivity of the density matrix. The time evolution
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of the density matrix is [81]

∂ρ

∂t
= −i [Heff , ρ] +D [ρ] , (3.12)

where the decoherence term is given by

D [ρ] = −1

2

∑
j

([
bj, ρb

†
j

]
+
[
bjρ, b

†
j

])
. (3.13)

The operators bj represent the interaction with the environment. The Lindblad part

can not be written as a commutator; any environmental interactions that can be

written in commutator form are part of Heff .

Introducing a set of self-adjoint environmental operators Aj, the time evolution

of the density matrix becomes [82]

∂ρ

∂t
= −i [Heff , ρ] +

1

2

∑
j

([Aj, ρAj] + [Ajρ,Aj]). (3.14)

The dissipative term can be expanded in the Gell-Mann basis Fµ, µ ∈ [0, 8] [82],

1

2

∑
j

([Aj, ρAj] + [Ajρ,Aj]) =
∑
µ,ν

LµνρµFν . (3.15)

For the decoherence model, we use a three-flavor model. The signatures of a

two- or a three-neutrino flavor model are very similar, but there is no heuristic reason

to assume that neutrinos would not decohere into all three flavors equally. Assuming

the weak coupling limit in which Lµν is diagonal, with L00 = 0 and Lii = −γi,

and neglecting mass-induced oscillations other than νµ ↔ ντ mixing, leads to the

probability for νµ survival (as a function of neutrino energy and propagation length)
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[82, 83]

Pνµ→νµ = 1
3

+ 1
2

{
e−γ3L cos4 θ23 + 1

12
e−γ8L (1− 3 cos 2θ23)2

+4e
−(γ6+γ7)L

2 cos2 θ23 sin2 θ23

[
cos

(
L
2

√
m′
)

+ sin
(
L
2

√
m′
)

(γ6 − γ7)
/√

m′
]}
,

(3.16)

where

m′ ≡
∣∣∣∣(γ6 − γ7)2 −

(
∆m2

23

/
E
)2
∣∣∣∣ . (3.17)

The γi are characteristic length scales over which the decoherence occurs.

The intrinsic irreversibility of the decoherence process implies CPT violation

[8]. Also, in general, the decoherence parameters for neutrinos could be different

than for antineutrinos. We will assume they are the same. Further, we will set

γ6 = γ7 and γ3 = γ8 to reduce the likelihood analysis to a two-parameter model.

The survival probability then becomes

Pνµ→νµ = 1
3

+ 1
2

{
e−γ3L cos4 θ23 + 1

12
e−γ3L (1− 3 cos 2θ23)2

+4e−γ6L cos2 θ23 sin2 θ23 cos (∆m2
23L/2E)

}
.

(3.18)

Fig. 3.7 shows the νµ survival probability as a function of neutrino energy and

zenith angle for the case γ3 = γ6 = γ7 = γ8 = 10−31 and n = 2. Note the 1/3

survival probability for the highest energies, since neutrino flavor has become fully

randomized. To compare the relative contributions of the first and second terms

on the right-hand side of Eqn. 3.18, Fig. 3.8 shows the νµ survival probability for

γ3 = γ8 = 10−31 with γ6 = γ7 = 0, and Fig. 3.9 shows the νµ survival probability

for γ3 = γ8 = 0 and γ6 = γ7 = 10−31.

The energy dependence of the decoherence terms can be generalized to integral
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Figure 3.7: Atmospheric muon neutrino survival probability for n = 2
decoherence model with γ3 = γ6 = γ7 = γ8 = 10−31. The color scale rep-
resents the decoherence survival probability. Oscillations below about
100 GeV are due to mass-induced oscillations. Note the 1/3 probabil-
ity for the highest energies, where the flavor eigenstates are completely
randomized.
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Figure 3.8: Atmospheric muon neutrino survival probability for n = 2
decoherence model for the 40-string detector. γ3 = γ8 = 10−31 and γ6 =
γ7 = 0. The color scale represents the decoherence survival probability.
Oscillations below about 100 GeV are due to mass-induced oscillations.

Figure 3.9: Atmospheric muon neutrino survival probability for n = 2
decoherence model for the 40-string detector. γ3 = γ8 = 0 and γ6 = γ7 =
10−31. The color scale represents the decoherence survival probability.
Oscillations below about 100 GeV are due to mass-induced oscillations.
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powers of the neutrino energy:

γi = γ∗iE
n
ν , n ∈ [1, 3] , (3.19)

where the units of the γ∗i are GeV−n+1. The n=2 case, for example, arises in non-

critical string theories [84, 85].

Fig. 3.10 shows the sensitivity of 40-string IceCube to the decoherence model

with n = 2. For comparison, Fig. 3.11 shows the sensitivity after an additional cut at

θZ > 97◦. Fig. 3.12 shows the sensitivity for the n = 1 decoherence model. Fig. 3.13

shows the sensitivity for the n = 3 decoherence model. From the AMANDA-II

analysis [77], upper limits were set for γ∗3 = γ∗8 = γ∗6 = γ∗7 of 1.2×10−27, 1.3×10−31,

and 6.3 × 10−36, for n = 1, 2, and 3, respectively. Using a two-flavor decoherence

model, an upper limit of γ∗ < 9.0× 10−28GeV
−1

for n = 2, was set by Super-K [86].

3.3 Violation of Rotational Invariance

For this model, we start with the effective Hamiltonian for neutrino interac-

tions in the SME (Eqn. 2.14). After some approximations applicable to the energies

and propagation lengths for atmospheric neutrinos, a subset model known as the

“vector model” can be derived [50]. This model is useful for looking for sidereal

variations in the atmospheric neutrino flux. Under this model, the only non-zero

coefficients are the real components of (aL)Xµτ , (aL)Yµτ , (cL)TXµτ , and (cL)TYµτ . These

assumptions are made in a Sun-centered frame for experimental convenience. Cor-

rections due to the motion of the Earth around the sun (β ≈ 10−4), or relative to

the cosmic microwave background (β ≈ 10−3), are ignored.
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Figure 3.10: Predicted sensitivity for 40-string IceCube for the n = 2
decoherence model.

Figure 3.11: Predicted sensitivity for 40-string IceCube for the n = 2
decoherence model after an additional cut at cos θZ < −0.12.
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Figure 3.12: Predicted sensitivity for 40-string IceCube for the n = 1
decoherence model.

Figure 3.13: Predicted sensitivity for 40-string IceCube for the n = 3
decoherence model.
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Under the vector model, the νµ survival probability is

Pνµ→νµ = 1− sin2
(
L
[
(As)µτ sin (RA+ ϕ0) + (Ac)µτ cos (RA+ ϕ0)

])
, (3.20)

where RA is the right ascension. Dropping the flavor subscripts,

As = N̂Y
(
aXL − 2EcTXL

)
− N̂X

(
aYL − 2EcTYL

)
, (3.21)

and

Ac = −N̂X
(
aXL − 2EcTXL

)
− N̂Y

(
aYL − 2EcTYL

)
. (3.22)

The N̂X(Y ) are unit propagation vectors for the neutrino:

N̂X = sin (θ) cos (ϕ) ,

N̂Y = sin (θ) sin (ϕ) ,

where θ = π/2 + δ and ϕ = π + α. δ is the declination of the incident neutrino and

α its right ascension. The oscillation strength depends intrinsically on the direction

that the neutrino propagates through space, violating rotational invariance. The

survival probability for antineutrinos, Pν̄µ→ν̄µ , is given by changing the sign of the

aL coefficients.

Fig. 3.14 shows the νµ survival probability as a function of neutrino energy and

RA for the case aXL = 10−23 and cTXL = 0. Fig. 3.15 shows the νµ survival probability

as a function of neutrino energy and RA for the case aXL = 0 and cTXL = 10−27. In

both figures, you can see the periodic structure of the survival probability, with

power in the n = 4 mode of a Fourier transform. In Fig. 3.15, the oscillations don’t

kick in until higher energies, but then have a greater magnitude.

A Sun-centered celestial coordinate system, with z-axis aligned with the Earth’s

rotational axis and x-axis pointing towards the vernal equinox, is used. Given the
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Figure 3.14: Atmospheric muon neutrino survival probability for the
vector model with aXL = 10−23 and cTXL = 0. The color scale represents
the oscillation survival probability. Oscillations below about 100 GeV
are mostly due to mass-induced oscillations.

Figure 3.15: Atmospheric muon neutrino survival probability for the
vector model with aXL = 0 and cTXL = 10−27. The color scale represents
the oscillation survival probability. Oscillations below about 100 GeV
are due to mass-induced oscillations.
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location of IceCube, zenith and azimuth are easily converted to declination and

right ascension. An arbitrary offset (phase angle in right ascension) is allowed for

the preferred direction, (the ϕ0 in Eqn. 3.20).

Data from the LSND experiment was analyzed using a likelihood method [87].

No statistically significant modulation in sidereal time was found, but the allowed

parameter range included values on the order of 10−19 GeV for aL and for E×cL. A

MINOS analysis [88] placed limits on the real components of aXL and aYL < 3×10−20

GeV, as well as the real components of cTXL and cTYL < 9× 10−23.

3.4 Additional Models

Two additional models of recent interest, testable with a likelihood analysis

and atmospheric neutrinos, are discussed here. However, constraining these models

does not necessarily benefit from the high energy reach of IceCube. Interesting

results may be possible with the full IceCube detector, and DeepCore (see Chapter

4), which will extend the energy reach to lower values.

3.4.1 CPT Violating Oscillation of Antineutrinos

The possibility of CPTV oscillations of antineutrinos is motivated by some of

the recent oscillation experiments (LSND, MiniBoone) [89]. Global fits of oscilla-

tion data imply there could be a unique mass-squared difference and mixing angle
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Figure 3.16: Atmospheric muon neutrino survival probability for CPTV
oscillations of antineutrinos. The color scale represents the oscillation
survival probability.

associated with muon antineutrino disappearance:

∆m2
CPTV ∼ 0.91eV2,

sin2(2θCPTV ) ∼ 0.35.

(3.23)

Fig. 3.16 shows the νµ survival probability as a function of neutrino energy and

zenith angle for the case ∆m2
CPTV ∼ 0.91eV2 and sin2(2θCPTV ) ∼ 0.35. Below

about 100 GeV, mass-induced oscillations of νµ and ν̄µ are visible. Above about 100

GeV, only (CPTV) oscillations of ν̄µ are occurring.

IceCube can not distinguish between neutrino and antineutrino events. We

can, however, look for a net zenith and energy dependent deficit of events that

could be the result of antineutrino disappearance. Fig. 3.17 shows the sensitivity of

40-string IceCube to this CPTV model, for the live time of this analysis. This plot

is also based on the χ2 calculation, with no accounting for systematic uncertainties.
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Figure 3.17: Predicted sensitivity to CPTV oscillations of antineutrinos.
The purple diamond is the fit from [89].

40-string IceCube can not cover the best-fit values for the CPTV mixing parameters.

3.4.2 Bicycle Model

The bicycle model is another subset of the SME. This model attempts to

reproduce the observed features of neutrino oscillations, but with massless neutrinos

[1]. The non-zero elements of the relevant, tensorial interaction coefficients are

4
3

(cL)TTee ≡ 2̊c > 0 and (aL)Zeµ = (aL)Zeτ ≡
^
a
/√

2. These assumptions are once again

made in a Sun-centered frame.

With these assumptions, the νµ (and ν̄µ) survival probability is [1, 90]

Pνµ→νµ = 1− sin2 θ sin2 (∆21L/2)

− sin2 θ cos2 θ sin2 (∆31L/2)− cos2 θ sin2 (∆32L/2) ,

(3.24)
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where

∆21 =

√
(̊cE)2 +

(
^
a cos Θ

)2
+ c̊E,

∆31 = 2

√
(̊cE)2 +

(
^
a cos Θ

)2
,

∆32 =

√
(̊cE)2 +

(
^
a cos Θ

)2
− c̊E,

(3.25)

and

sin2 θ =
1

2

[
1− c̊E

/√
(̊cE)2 +

(
^
a cos Θ

)2
]
. (3.26)

Θ is the angle between the celestial north pole and the neutrino direction. It is

also possible to generalize Θ, to be the angle between the neutrino’s direction and

some other preferred axis. It is convenient to define a critical energy E0 =
∣∣∣^a∣∣∣/̊c.

For E � E0, the oscillations reduce to νµ ↔ ντ mixing, controlled by a direction-

dependent pseudomass ∆m2
Θ =

^
a

2
cos2 Θ

/̊
c.

Fig. 3.18 shows the νµ survival probability as a function of neutrino energy

and zenith angle for the case
^
a = 10−23 and c̊ = 10−26. Fig. 3.19 shows the νµ

survival probability as a function of neutrino energy and zenith angle for the case

^
a = 10−22 and c̊ = 10−25. Fig. 3.20 shows the sensitivity of 40-string IceCube for

the bicycle model. An analysis of Super-K data [91] in the context of the bicycle

model [49, 51] constrained E0 to be less than 5 GeV at the 90% CL.

3.5 Constraining Quantum Gravity With Astrophysical Neutrinos

Just as cosmic rays and photons have intrinsic properties that can be exploited

(i.e. charge and mass numbers for cosmic rays and polarization for photons), neu-

trinos have flavor. It may be possible to use neutrino flavor and flavor oscillations

as specialized probes of spacetime, quantum gravity, and astrophysical objects.
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Figure 3.18: Atmospheric muon neutrino survival probability for the
bicycle model, with physics parameters

^
a = 10−23 and c̊ = 10−26. The

color scale represents the oscillation survival probability.

Figure 3.19: Atmospheric muon neutrino survival probability for the
bicycle model, with physics parameters

^
a = 10−23 and c̊ = 10−26. The

color scale represents the oscillation survival probability.
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Figure 3.20: Predicted sensitivity to bicycle model for 40-string IceCube.

Flavor ratios for astrophysical neutrinos at their point of origin in cosmolog-

ical sources should be 1:2:0 (νe : νµ : ντ ), due to the nature of their production via

charged meson production and decay chains. Direct manufacture of tau neutrinos

can occur in the decay chain of charmed mesons that are produced in the same

hadronic interactions, but these quantities are significantly suppressed. If the prop-

agation distance is large compared to the oscillation length, by the time neutrinos

reach the Earth their flavor ratio will be modified to 1:1:1. Constraints could be

placed on a Lorentz-violating model if a ratio other than 1:1:1 were detected from

a distant astrophysical source. Anchordoqui, et al., [92], estimate that IceCube

will be sensitive to quantum gravity-induced decoherence effects well below current

experimental limits, as much as 17 orders of magnitude in some scenarios.

Anchordoqui, et al. [92], also suggest the use of the Cygnus spiral arm as a

55



source for which the initial neutrino flavor content and standard oscillation effects

can be calculated. Some observations indicate that the Cygnus OB2 region may be

a source of antineutrinos. In that case, they would not mix to a ratio of 1:1:1 in the

standard oscillation model alone, over the distance of propagation. Observing a 1:1:1

ratio from this source may be an indication of some new oscillation or decoherence

mechanism.

J. Christian [93] explored the predictions of various approaches to quantum

gravity and the deviations from standard oscillation wavelengths that result from

a modified dispersion relation. Effects that are suppressed by the square of the

Planck mass may be observable through detection of ultra-high energy neutrinos

that originate at cosmological distances [93].

Due to the temporal variability of some of the very distant and very energetic

sources, such as AGN and GRB, detection of neutrinos from a known astrophysical

source may enable precision tests of Lorentz invariance (i.e. different asymptotic

values for the limiting speeds of different neutrino flavors) and the weak equivalence

principle (i.e. different gravitational interactions for different neutrino flavors). This

could be done by analyzing whether different flavors of neutrinos each have the same

limiting speed and whether each experiences the same time delay passing through

galactic gravitational fields. Due to increased energy coverage and event statistics,

IceCube should be able to improve limits on violations of Lorentz invariance or the

equivalence principle by two orders of magnitude using this method [94].
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Chapter 4

The IceCube Neutrino Observatory

The IceCube Neutrino Observatory is actually three detectors working to-

gether. The design is a balance between energy resolution, angular resolution, energy

range, and cost. A large detector is required due to extremely small cross-sections

for neutrino interactions, as well as the low flux rates for astrophysical neutrinos.

IceCube is optimized for the energy range 1011 to 1018 eV but will be sensitive to

energies up to 1020 eV. IceCube is a cubic-kilometer of instrumented ice, deep in the

South Pole glacial ice. DeepCore consists of six specialized, closely spaced strings of

sensors at the center of IceCube, and IceTop is a surface array spanning the square

kilometer over IceCube. The AMANDA neutrino telescope [95], operational from

1996 to 2009, was the predecessor and prototype for IceCube. AMANDA consisted

of 677 optical modules on 19 strings, deployed between 1500 and 2000 m depth. In

addition to being almost two orders of magnitude larger than AMANDA, IceCube

uses improved photomultiplier tubes (PMT), improved time-stamping, and digiti-

zation of the waveforms. Fig. 4.1 shows the IceCube observatory and its component

arrays.

IceCube will consist of eighty-six strings (counting the six DeepCore strings)

of PMTs. Each string is one kilometer long and includes 60 digital optical modules

(DOM). A DOM is a single PMT and associated electronics enclosed in a glass
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Figure 4.1: IceCube Neutrino Observatory and its component arrays.
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pressure sphere. Vertical DOM spacing is 17 m for the eighty IceCube strings.

Horizontally, the strings are 125 m apart and spread out in a hexagonal pattern over

a square kilometer, so that the entire instrumented volume will be 1 km3 of ice when

construction is completed in 2011. The instrumented part of the array is between

1450 m and 2450 m below the surface of the ice. The bedrock is at a depth of 2800

m. The ice serves multiple roles: a stable platform for the DOMs, the propagation

and detection medium for Cherenkov photons, and an overburden for attenuation

of down-going atmospheric muons. At present, 79 strings are operational. This

analysis is based on one year of data taken in the 40-string configuration.

The six DeepCore strings are closely spaced around the center IceCube string.

These strings (and the seven around them) will contain high quantum efficiency

DOMs optimized for low energy neutrino detection to push the detection threshold

down to about 20 GeV. The DOMs on the DeepCore strings are more densely spaced

below the dust layer (below about 2100 m). Surrounding strings will provide an

active veto to allow 4π coverage for low energy neutrinos. The physics capabilities of

DeepCore include lower neutrino energy reach for indirect searches for dark matter

(including solar, galactic, and Earth core origins), studies of neutrino oscillation

phenomenology, and searches for supersymmetric particles.

IceTop is a surface air shower detector covering 1 km2 directly above IceCube.

When complete, it will consist of 160 tanks, two near the location of each IceCube

string (except for the DeepCore strings). Each 2.7 m2 tank contains two DOMs

frozen in ice to act as Cherenkov detectors. Two DOMs per tank provide redun-

dancy and improved dynamic range. The two tanks are separated from each other

59



by 10 m, and offset from the in-ice hole by 25 m. IceTop will assist in the calibration

of IceCube. Additionally, correlations with signals in IceTop can be used to reject

background events. Cosmic ray physics with IceTop includes air shower measure-

ments, measurements of the energy and mass of cosmic rays up to and beyond the

knee, and measurements of the seasonal and directional variation of cosmic rays.

4.1 Construction

Construction of IceCube began in the 2004-2005 austral summer. Due to

conditions at the South Pole, construction can only occur during a few months each

year. In that first season, one IceCube string was deployed. Eight more strings were

deployed in the 2005-2006 season, thirteen more during the 2006-2007 season, and

eighteen during the 2007-2008 season. The strings became operational shortly after

deployment, so data collection with a partially completed detector has been ongoing.

A total of forty strings were available for collection of the data used in this analysis.

An additional nineteen strings were deployed in the 2008-2009 season, and twenty

more strings during the recently completed 2009-2010 season. Construction of the

full detector should be completed by the end of the 2010-2011 season. Construction

of the IceTop array has been ongoing in parallel with IceCube construction.

A firn drill is used to penetrate the snow layer. Then a hot water drill, called

the “Enhanced Hot Water Drill”, is used to drill a 60 cm diameter hole through the

ice, down to a depth of 2.4 km. A string of DOMs is then deployed into the hole

and the DOMs freeze in place. In a small number of holes, a dust logger is deployed
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and recovered prior to deploying the string of DOMs. The dust logger is a device

for measuring the optical properties of the ice in the vicinity of the hole. Drilling

takes about two days, and string deployment about 12 hours. Due to the natural

thermocline in the ice, modules freeze-in from the top of the string down, and the

process can take on the order of weeks before the last DOM is completely frozen in.

Due to the age and pressure of the ice, the ice below 1 km is essentially free

of bubbles. Unfortunately, it does have some layers of dust and volcanic ash that

lead to scattering of Cherenkov photons. Residual bubbles created in the drilling

process and the interface between the original and refrozen ice can also change the

optical properties around the DOM, causing scattering.

4.2 Digital Optical Modules

At the heart of each DOM is a 10 inch (25 cm) Hamamatsu PMT. The PMT

is sensitive from 300 nm to 600 nm, with peak sensitivity around 420 nm. Associ-

ated electronics for operation and control, as well as local amplification, filtering,

calibration and testing, are located on round circuit boards that are supported by

the neck of the PMT. All this is housed inside a 35.6 cm glass pressure housing.

The PMT has a spherical photocathode that rests in a silicone gel, which provides

optical coupling to the glass pressure housing. The PMT also has ten dynodes and

operates in the voltage range 1200 to 1400 V, for a gain of about 107. A mu-metal

wire cage around the photocathode provides magnetic shielding. The Hamamatsu

PMT has a peak quantum efficiency of 0.25 at 390 nm and was chosen for its low
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dark noise rate and good timing and charge resolution for single photons.

DOMs are designed to operate over a wide dynamic range, from a single pho-

ton to several thousand photons arriving within a few microseconds. The DOMs

have been designed and tested to withstand the enormous forces and extremes of

temperature experienced once deployed in the ice and have a fifteen year design life.

So far, the survival rate for DOMs has been 98%. They are rigorously tested before

shipping to the South Pole. All subsystem components are tested, and performance

tests of fully assembled DOMs are performed. These performance tests subject the

DOMs to the pressure and temperature variations they will see in the field, as well

as the range of operations and signals they will need to process in the field.

Fig. 4.2 shows the PMT inside an assembled DOM. In addition to a mainboard

(MB), each DOM contains a flasher board. The flasher boards contain twelve LEDs

pointing radially outward. Six of the LEDs are horizontal and six point upwards

at a 48◦ angle. These flashers are used to send light pulses between DOMs on

the same string or on different strings, for timing and geometry calibration, energy

reconstruction calibration, and for measuring the optical properties of the ice.

A DOM cable connects to a surface junction box located between the two

associated IceTop tanks. Cables from the IceTop DOMs also connect to this junction

box. Cabling between each of the surface junction boxes relays data to the central

counting house, as well as provides power, timing, configuration and control signals

back to the DOMs. ±48VDC is provided to the DOMs via these cables.
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Figure 4.2: Digital Optical Module (DOM).

4.3 Electronics and Data Acquisition

Two methods are used for digitization of signals from the PMTs, to provide

the desired resolution as well as time coverage and dynamic range [96]. An Ana-

log Transient Waveform Digitizer (ATWD) records precise timing information of

photons. It captures the same signal in three channels using three different gains.

Each of the three channels includes 128 bins, with sampling at 300 MHz. The three

ATWD channels, with gains differing by successive factors of eight, (0.25x, 2x, and

16x), cover a dynamic range up to 400 PE/15 ns. A fourth ATWD channel is used

for calibration and monitoring. Two identical ATWDs are used alternately to elim-

inate dead time during readout. Longer duration signals are sampled at 40 MHz by

a fast Analog to Digital Converter (fADC). 256 samples allows signals up to 6.4 µs

to be digitized.
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4.4 Calibration and Verification

4.4.1 Timing

The Reciprocal Active Pulsing (RAPCal) procedure periodically synchronizes

the surface time (based on a master, GPS-controlled oscillator) to the local DOM

time (based on a local 20 MHz oscillator). These calibrations are done automatically

every two seconds. First, the DOM Readout (DOR) card sends a short pulse to

the DOM. By the time the waveform is received at the DOM, it has dispersed to

microsecond length and the waveform can be sampled at the relatively slow 20 MHz

communications rate. The DOM digitizes this pulse and records the arrival time.

The DOM then waits a known amount of time and transmits an identical pulse,

and the digitized pulse and arrival time, to the DOR card. The DOR card then

digitizes and time-stamps the waveforms it receives. By comparing global and local

timestamps for the two pulses, the timing offset can be determined. The ratio of the

time interval between successive pulses transmitted by the DOR card to the time

interval of successive pulses transmitted by the DOM gives the ratio of the frequency

of the local oscillator to the frequency of the master oscillator. Improved precision

is achieved by exploiting the reciprocity in the DOR-to-DOM and DOM-to-DOR

transmission paths.

4.4.2 Digital Optical Modules

DOM-specific calibrations of the ATWD sampling frequency and voltage scale

have to be performed, as well as measurements of the gains of the three ATWD
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channels. The PMT gain response to anode-photocathode voltage is different for

each DOM. This has to be measured and the proper voltage setting to achieve the

desired gain has to be determined. These functions are accomplished periodically

with a program called DOM-Cal that runs on the embedded DOM CPU.

DOM-Cal varies the ATWD bias voltage and determines the unique slope

(V/ADC counts) and intercept for each ATWD bin [97]. The amplifier gains for

each ATWD channel are determined in a two-step process. First, the high-gain

channel is calibrated by using an artificial, single photoelectron (SPE)-like pulse of

a known amplitude. This pulse (charge stored on a capacitor) is injected into the

PMT cable connector on the DOM MB. The peak amplitude of the ATWD output

is compared to the known pulse level. For the medium and lowest gain channels,

light pulses from LEDs on the DOM MB generate the PMT signals. ATWD data

is acquired for the channel to be calibrated as well as for the next higher-gain

channel that has already been calibrated. The medium and lowest gain channels are

thus calibrated in a boot-strap method, which is necessary so that an LED pulse

amplitude can be chosen that will not saturate the higher gain channel yet provide

sufficient amplitude in the lower gain channel.

To determine the PMT response to single photoelectrons as a function of high

voltage setting, measurements are performed at high voltage settings from 1200 V

to 1900 V in 100 V increments. At each setting, several thousand waveforms are

captured, integrated, and converted to total charge. The gain is determined by

fitting the charge spectrum to a Gaussian plus exponential function. Noise in the

DOMs results from thermal background of the photocathode and radioactive decay
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of contaminants in the glass pressure sphere. The exponential function describes

this noise while the Gaussian describes the SPE response. The appropriate PMT

voltage to achieve the desired gain is determined from calculations of the gains at

each high voltage setting.

4.4.3 Geometry

The objective of geometry calibration is to determine the relative positions of

all DOMs to within one meter. Geometry calibration is done in three stages: Stage 1

uses deployment data and surveys for a preliminary geometry released before station

closing; Stage 2 involves fitting relative depths between strings using flasher data;

Stage 3 (muon tomography) uses down-going muon data to track global changes

in the relative geometry over time. The end product is a set of 3-dimensional

coordinates for all DOMs (in-ice and IceTop) in the IceCube coordinate system.

The Stage 1 geometry uses data collected during string deployment and a pre-

deployment survey of the drill tower. Deployment data includes pressure readings

converted to water depth, distance from tower floor to water surface measured man-

ually with a laser ranger, and DOM spacing measured manually with a laser ranger

for every DOM pair. Pre-deployment survey data includes coordinates of the drill

tower corners and coordinates for the center of the hole. Horizontal drift of the hole

is reconstructed from inclinometer data from the drill head.

The Stage 2 geometry calibration uses inter-string flasher data to determine

relative depth offsets between the strings. The offsets are relative to the Stage 1
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geometry. The source (a flashing DOM) and the receiver DOMs are on different

strings. Typically, data are taken for a few flashers on every string, and for every

run all adjacent strings (up to six) are read out.

The Stage 3 geometry calibration uses muon tomography to track deforma-

tions of the array over time due to ice shear. The advantage over inter-string flasher

measurements (the Stage 2 geometry calibration) is that DOMs can be tracked indi-

vidually with muons whereas the inter-string fits typically assume straight strings.

The disadvantage is that it relies on track reconstruction and is therefore subject to

reconstruction systematics.

4.5 Ice Properties

The ice sheet is 2820 m thick and was created over a period of roughly 165,000

years [98]. The firn is the top 100 m of loosely packed snow. Optical properties

of the ice are discussed in [99, 100, 101]. Scattering in the glacial ice is dominated

by sub-millimeter air bubbles and micron-sized dust grains. Absorption is due to

the intrinsic absorption properties of pure ice as well as absorption on dust grains.

Variations with depth are due to the periodic build up of dust that resulted from the

prevailing atmospheric conditions and climatological events that occured while the

layers of ice were being formed. There are layers of cleaner and dirtier ice, including

a significant dust layer at 2050 m.

Shallower than about 1400 m, air bubbles trapped in the ice dominate the

scattering. The mean free path for scattering on bubbles increases with depth as
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bubbles are compressed with increasing pressure. Below 1400 m, a phase transition

occurs and air bubbles become a solid air hydrate phase in which the gas molecules

are trapped within the crystalline ice. The refractive index of these is approximately

the same as the ice and the scattering they cause becomes negligible. Hence, below

1400 m scattering is dominated by the dust.

Absorption length λa is the distance over which photon survival probability

drops by a factor of e. Scattering length λs is the average distance a photon travels

between scatterings. The average mean angular change after multiple scattering

interactions is denoted 〈cos θ〉. For Mie scattering, where the photon wavelength is

comparable to the particle size, the scattering is peaked in the forward direction and

〈cos θ〉 ≈ 0.94 [99]. The effective scattering length, λe, is the distance after which

a photon has its direction randomized. After n scatters, the effective displacement

along the original direction is given by

λe = λs
n∑
i=0

〈cos θ〉i. (4.1)

For large n, this is

λe =
λs

1− 〈cos θ〉
. (4.2)

Fig. 4.3, shows the depth and wavelength dependence of scattering and ab-

sorption as measured in the ice around the AMANDA detector. a = 1/λa is the

absorptivity, and be = 1/λe is the scattering coefficient. Fig. 4.4, shows the depth

dependence of scattering and absorption for photons with wavelength of 400 nm,

a representative wavelength for Cherenkov photons detected by the DOMs. Ice

properties were extrapolated to lower depths using ice core measurements taken at
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Figure 4.3: Optical properties of deep South Pole ice. Left: effective
scattering coefficient as a function of depth and wavelength. Right: ab-
sorptivity as a function of depth and wavelength. From [99].

Vostok Station and Dome Fuji in Antarctica, and scaled to the location of IceCube

using an age vs. depth relation [98]. The effective scattering length in IceCube

varies from about 10 to 50 m. The absorption length is typically around 100 m.

The depth dependence of scattering has also been measured with a dust logger

deployed down a small number of IceCube holes prior to deploying the strings of

DOMs [102]. A dust logger is a compact and recoverable instrument used to measure

ice properties in the vicinity of the hole. A collimated light source is located at one

end and a PMT at the other. The PMT measures light that is back-scattered into

the hole. Studies are on-going that use the flashers on each DOM to directly measure

ice properties and improve the ice model.
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Figure 4.4: Scattering coefficients (top) and absorption (bottom) as func-
tion of depth, for light with wavelength of 400 nm. Extension of ice
properties to greater depths using ice core data (right hand side).
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Chapter 5

Neutrino Detection with IceCube

5.1 Neutrino-Nucleon Cross Sections

Neutrinos are detected, identified, and measured by their CC and NC inter-

actions with nuclei in the ice. As mentioned in Chapter 2, CC interactions are

mediated by the exchange of a W± boson, NC interactions are mediated by the

exchange of a Z0 boson. CC and NC interactions on nucleons occur in the ratio

of about 3 to 1 in the energy range of this analysis. A CC interaction between a

neutrino and a valence or sea quark (q) contained within a nucleus in the ice is

described by

νl (ν̄l) + q → l−(+) + q′. (5.1)

If the incident neutrino is a muon neutrino, the resultant lepton is a muon. Examples

of CC and NC neutrino-nucleon interactions can be seen in Fig. 5.1.

The type of scattering interaction most relevant for the energy range of this

analysis is deep-inelastic scattering (DIS). The neutrino has enough energy to scatter

from quarks or gluons, breaking up the nucleon. The quark gets an energy much

greater than its binding energy in the nucleus it inhabits. Typically, it picks up a
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Figure 5.1: CC and NC neutrino-nucleon interactions. From IceCube
Yellow Book.

qq̄ pair from the vacuum and the resultant interaction can be

νl (ν̄l) + p→ l−(+) + n+ π0,

νl (ν̄l) + p→ l−(+) + p+ π+(−),

(5.2)

or similar interactions with a neutron in the initial state.

The CC DIS, neutrino-nucleon cross section is [103]

d2σ

dxdy
=

2G2
FMEν
π

1

(1 +Q2/M2
W )

2

[
xq
(
x,Q2

)
+ xq̄

(
x,Q2

)
(1− y)2

]
, (5.3)

where GF is the Fermi constant, 1.16632x10−5 GeV−2, and M is the nucleon mass. q

and q̄ are the parton distribution functions (PDF) for quarks and antiquarks. These

PDFs are linear combinations of the valence and sea quark distributions for each

type of quark. For the NC cross section, the W-boson mass MW is replaced by the

Z-boson mass MZ , and a different linear combination of quark distributions is used.

Q2 is the negative magnitude of the four-momentum transfer. The Bjorken variable

x is the fraction of the nucleon momentum carried by the struck quark. The Bjorken

variable y is the relative energy transfer from the incoming neutrino to the nucleon

(via boson exchange).
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Figure 5.2: CC and NC cross sections, for neutrinos and antineutrinos.
Computed with CTEQ5 PDFs [104]. The Glashow resonance at 6.3 PeV
is at too high of an energy to be relevant for this analysis.

NC and CC cross sections, for neutrinos and antineutrinos, can be seen in

Fig. 5.2 [104]. At low energies (less than about 450 GeV), the cross sections grow

linearly with energy. That is because at low Q2, the W (Z)-boson propagator and

the PDFs are nearly independent of Q. At higher energies, the PDFs increase with

Q2, but the boson propagator limits the value of Q2 to roughly Q2 ∼ M2
W (Z) ∼

104GeV−2, limiting the overall cross section [105, 106]. Above a PeV, interactions

with sea quarks dominate, and SM cross sections are the same for neutrinos and

antineutrinos. Neutrino-electron interactions are negligible (except for the Glashow

resonance at 6.3 PeV, which is not relevant for this analysis).
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5.2 Cherenkov Radiation

High energy charged particles in IceCube are detected by the Cherenkov ra-

diation that they emit. If the velocity of a charged particle in a particular dielec-

tric medium exceeds the phase velocity of light in that medium, then it will emit

Cherenkov radiation in a direction relative to the particle’s track given by

cos θC =
1

nβ
. (5.4)

β = v/c, where v is the particle’s velocity and c the speed of light in vacuum. n is

the index of refraction which depends on frequency. For simulation in IceCube, we

use values for the group and phase indices of refraction for the frequency of 400 nm.

For np ≈ 1.32, the Cherenkov angle is about 40.7◦. Fig. 5.3 is a rendering of the

Cherenkov light produced by a muon transiting through the detector.

The amount of Cherenkov light emitted by a particle along its path is given

by the Frank-Tamm formula [107]

d2N

dxdλ
=

2παz2

λ2

(
1− 1

β2n (λ)2

)
, (5.5)

where z is the particle’s charge in units of the electron charge (= 1 for muons),

and α is the fine structure constant. A muon traveling through ice with β ≈ 1

emits around 330 Cherenkov photons per cm in the wavelength range accessible to

IceCube.
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Figure 5.3: Artist’s rendition of Cherenkov light in the IceCube detector.

5.3 Muon Propagation and Energy Loss

The energy loss during propagation of a charged lepton, in this case a muon,

is given by [53]

−
〈
dE

dX

〉
= α(E) + β(E)E, (5.6)

where E is the muon energy, α is the ionization energy loss per unit propagation

length, and β is the radiative energy loss through bremsstrahlung, pair production,

and photonuclear scattering. Technically, α and β are functions of energy, but for

ice, their values are approximately α ' 0.2417 GeV m−1 and β ' 3.325× 10−4 m−1.

The particles created in these stochastic processes can also exceed the speed of

light in the ice. Hence, if charged, they also emit Cherenkov radiation and enhance

the Cherenkov cone of the muon. In fact, above about 1 TeV, these stochastic
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Figure 5.4: Energy loss mechanisms for muons in water (left) and rock
(right). From IceCube Yellow Book.

processes dominate the light production. Fig. 5.4 shows the various mechanisms for

energy loss as the muon propagates. An estimation of dE/dX is used as a proxy for

energy in the analyses presented in Chapter 7.

The detection rate for high energy νµ is aided by the fact that the CC inter-

action cross section as well as the range of the resultant muon are proportional to

the neutrino energy. The muon can have a track length from several tens of meters

up to several kilometers, and can reach the detector even if produced outside of

the detector, increasing the detectors effective volume. The track length, before the

muon energy falls below a detection threshold Eth
µ , is given by

xµ =
1

β
ln

[
α + βEµ
α + βEth

µ

]
. (5.7)

Here, Eµ is the initial muon energy (= a fraction, 1 − y, of the incident neutrino

energy), and Eth
µ is the detection threshold, roughly 100 GeV. The mean scattering
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angle between the incident neutrino and the resultant muon is a function of energy,

and is on the order of a degree:

〈θ〉 ≈ 0.7◦

(Eν/TeV)0.7
. (5.8)

5.4 Event Signatures

For all three flavors, NC interactions lead to hadronic showers at the point of

interaction. CC interactions have some unique signatures, allowing flavor-tagging of

the incident neutrino. A CC interaction between a νe and a target nucleus results

in an electron and fragmentation of the target nucleus. Rather than propagate

a significant distance like a muon, the electron initiates an electromagnetic (EM)

shower and the target nucleus initiates a hadronic shower. Since this shower and

the accompanying Cherenkov light does not have a nice conical shape, but rather

a spherical shape elongated in the electron’s direction, directional reconstruction is

not as good as it is for νµ events. However, essentially all of the shower energy

is deposited in the detector. Thus energy resolution is better for showers than

for tracks. For showers, energy resolution will be roughly 10 to 20% and angular

resolution may be on the order of 10◦ for the highest energy events.

Muons created in CC interactions in the ice surrounding or within the detector

carry about 75% of the νµ’s energy [108]. Angular resolution is aided by the conical

Cherenkov cone emitted along the muon’s path and is typically between 0.5◦ and

1◦, depending on the angle of incidence and the muon energy. Energy resolution for

muons is hindered by the fact that their path length typically exceeds the size of
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Figure 5.5: Up-going muon neutrino event in IceCube.

the detector as well as the fact that the angle and intensity of the Cherenkov cone

is essentially constant due to the relativistic nature of the muons. Showers from

bremsstrahlung radiation make it possible to estimate muon energy to an accuracy

of about 0.3 on a logarithmic scale. Figs. 5.5 and 5.6 show the signatures of an

up-going νµ event and a horizontal νµ event, from 40-string IceCube in IceCube’s

event viewer. The colors of the marked DOMs represent the hit times, and the size

of the marks represent the amount of charge, or light, at each DOM.

Tau neutrinos are unique in that they can essentially regenerate, even after

CC interactions, as they propagate through the Earth. That is because the tau

lepton produced in the neutrino’s CC interaction will decay before ranging out. A

new ντ is produced in this decay, although at a reduced energy. The signature of ντ

events in or near the detector can be unique, as well. A hadronic cascade is created
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Figure 5.6: Horizontal muon neutrino event in IceCube.

at the initial interaction point, followed by a faint track due to the tau. A second

cascade is created when the tau decays. The details of the appearance of a ντ event

depend upon whether one, or both, of these cascades are contained in the detector.

The separation between the two cascades depends on the energy of the tau.

5.5 Triggering

DOM MB electronics apply a threshold trigger, set to 0.25 photoelectrons

(PE), to the PMT analog signals before waveforms are captured and time-stamped.

Local coincidence checks between adjacent DOMs on a string reduce false triggers

due to dark noise before waveforms are digitized and sent to the surface. To imple-

ment local coincidence checks, a DOM sends a pulse to its nearest or next-to-nearest
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neighbors whenever its discriminator fires. A DOM will only send its data to the

surface if it receives a local coincidence pulse from a nearby DOM within 1000 ns

of triggering. DOMs fire at a rate of about 540 Hz due to dark noise. These local

coincidence checks reduce the false trigger rate to less than a Hz.

The simple majority trigger (SMT) for in-ice events for 2008 was set at eight hit

channels within a 5000 ns trigger window. Readouts included a 5000 ns pre-window

and a 5000 ns post-window. Local coincidence requirements were set to next-to-

nearest-neighbor. Triggered events with overlapping time windows were combined

into a single event. Time window cleaning, discussed shortly, was used to extract

the highest energy event, as well as reject hits that were likely noise.

5.6 Filtering

The data rate from the DAQ far exceeds the amount of data that can be

transmitted via satellite. Hence, a significant reduction in the trigger-level data must

be accomplished. Various software filters are running at the South Pole. These filters

either reject events that are obviously uninteresting background events, or extract

particular classes of events.

The Processing and Filtering (PnF) system accomplishes the software-level

filtering. Events from the DAQ enter a buffer for subsequent processing by the

PnF system. A cluster of processors in the counting house perform a variety of fast

reconstructions on the data, and apply the output to multiple filters. Events are sent

to a buffer if they pass one or more of the filters. The transfer of data from this buffer
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over the communications satellite is handled by the South Pole Archival and Data

Exchange (SPADE) system. During the data run with the 40-string configuration,

the daily satellite bandwidth was about 35 GB/day. All triggered events are written

to tape, regardless of whether they pass a filter. However, the goal is to ensure that

events of interest pass the initial filtering not only so that they are readily available

in the north, but to minimize the need for time-consuming data recovery from tapes.

5.7 Event Reconstruction

Simple and fast reconstructions are performed in real-time at the South Pole.

These initial reconstructions are less accurate than ones performed later, at insti-

tutions in the north. However, they can be accomplished within the time and CPU

constraints at the South Pole while keeping up with the trigger rate. Higher level

reconstructions performed at institutions in the north include improved likelihood

fits for better angular resolution and background rejection, as well as reconstruc-

tion of additional parameters, such as energy. Fits to additional track hypotheses

are also performed. Some higher level reconstructions incorporate the detailed ice

model.

5.7.1 Waveform Calibration

Waveform calibration is also known as charge calibration. It comprises a num-

ber of steps taken to translate digital waveforms to the number of photoelectrons

(NPE), and their time-sequence, recorded by the DOMs. The NPE is the num-
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ber of photons that hit the PMT times the probability that a photon generates a

pulse above threshold (which includes the PMT quantum efficiency and other ef-

fects). Numerically, NPE= Q/q0, where q0 is the charge associated with a single

photoelectron (SPE) detected by a DOM (a DOM-specific value) and Q is the total

charge in the pulse. DOM specific calibration constants are applied. Waveforms

from the three ATWD channels are combined to create one calibrated waveform.

For each bin, the value from the lowest-gain, unsaturated readout is used.

Droop correction refers to an off-line correction of waveform shapes which have

been distorted by transformer droop. A transformer between the PMT and the high

voltage board in the DOM acts as a high-pass filter on the PMT output, causing the

tails of the waveforms to undershoot. This effect is worse at lower temperatures. The

droop correction inverts the effect, and eliminates the undershoot in the waveform

tails. The characteristic parameters for the correction are two time constants, which

are temperature dependent and vary from DOM to DOM.

5.7.2 DOM Launch Cleaning

Readouts from a predefined list of known problem DOMs are removed. For

the 40-string configuration in the 2008/09 data season, this list contained about 29

DOMs with a variety of problems such as power shorts, abnormal current draw, or

bad communications.
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Figure 5.7: Reconstruction of photoelectron pulses from the waveform
data acquired by DOMs. From [97].

5.7.3 Feature Extraction

Feature extraction is the process of extracting photon arrival times from the

calibrated waveforms. A waveform is modeled as the sum of n pulses, with each

pulse characterized by amplitude, arrival time, and width. An iterative algorithm is

used to determine the number and characteristics of the individual pulses that best

reproduces the observed waveform. Fig. 5.7 shows a typical calibrated waveform

and the resultant fit.

5.7.4 Time Window Cleaning

Due to the length of the event readout window, and the possibility that more

than one triggered event can be combined into one readout, the time difference

between the first and last hits recorded in a single event can be several tens of

µs. However, a single muon traveling at roughly the speed of light will spend at
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most three µs in the detector and photons associated with a single track should be

detected within about a four µs window. To get rid of these unwanted hits, a sliding

six µs window is adjusted to include the period with the most hits in the event. Hits

outside this window are discarded.

5.7.5 LineFit

The LineFit reconstruction is a fast, first-guess algorithm. It is based on the

assumption that the Cherenkov light from a muon propagates as a plane wave. This

assumption is incorrect but it leads to a fitting algorithm that is extremely fast,

and often does a decent job of estimating the muon track direction. LineFit and

likelihood-based reconstructions seeded with the LineFit track are used as part of

the software filtering at the South Pole. Additionally, the velocity calculated by

LineFit can be used to estimate how well the fit represents a muon track.

The algorithm for this fit is based on a χ2 fit using the equation

χ2 =
Nhit∑
i=1

(ri − r− v · ti)2, (5.9)

where r and v are the reconstructed position and velocity, and the subscript i refers

to the individual hits. The best-fit solution can be found analytically, and is given

by

r = 〈ri〉 − r · 〈ti〉 , (5.10)

and

v =
〈r · ti〉 − 〈ri〉 · 〈ti〉
〈t2i 〉 〈ti〉

2 . (5.11)

The 〈〉 notation implies an average over all hits.
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5.7.6 Maximum Likelihood Reconstructions

Photon arrival times are used in reconstruction algorithms that attempt to

account for the geometric dependence of arrival times, as well as the stochastic

variability in arrival times due to scattering. The likelihood function to be minimized

is the function [109]

L =
∏
j

p (a, thit,j), (5.12)

where a is the set of parameters characterizing the hypothesized track, i.e. vertex

and direction, and possibly energy. p (a, thit) is the probability distribution function

(PDF) for hit times. The product is over all photon hits in the event. In practice,

the maximum of the likelihood function is found by minimizing the negative of the

log of the likelihood, so the product becomes a sum. To simplify implementation, a

transformation is made and time residual, tres, is used in place of thit, where

tres ≡ thit − tgeo. (5.13)

The geometric photon arrival time, tgeo, is the expected hit time if scattering and

absorption are ignored. This is given by [110]

tgeo = t0 +
1

c

v̂ · ~r + d
ngrnph − 1√
n2
ph − 1

 , (5.14)

where ngr and nph are the group and phase refractive indices for light in ice.

The geometry of the track and hit channels is shown in Fig. 5.8. The muon

transits with velocity ~v, which exceeds the speed of light in the ice. Cherenkov

radiation is generated by the muon as well as by particles created in stochastic

interactions along the muon’s track. The muon is at position B when Cherenkov
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Figure 5.8: Geometry of the signal detection process. From [110]

photons emitted while it was at X reach the hit channel at (~rhit, thit). Point E is the

point of closest approach between the muon track and the hit channel.

To perform the minimization process, a PDF is required. We start with the

Pandel PDF [111]

p (ρ, ξ, tres) =
ρξtξ−1

res

Γ (ξ)
e−ρtres , (5.15)

where ξ is the distance traveled by a photon from emission to detection in units of

the mean scattering length, ρ is an inverse time scale, and Γ is the standard gamma

function. The Pandel PDF is an analytic estimate for the distribution of photon

arrival times for a monochromatic, isotropic source, in a medium dominated by

scattering. However, the function is not defined for negative time residuals, which

can occur due to the finite time resolution of the detector. The Pandel PDF is

86



Figure 5.9: CPandel PDF for two values of the time resolution parameter
(5 and 10 ns). The distance of closest approach d is 10 m. From [110].

therefore convolved with a Gaussian PDF. The resultant PDF is then [110]

Fσ (ρ, ξ, tres) =
∫ ∞

0

dx√
2πσ2

p (ρ, σ, x) e−(tres−x)2/2σ2

, (5.16)

which is implemented numerically. Fig. 5.9 shows sample profiles for the PDF

function.

Maximum likelihood reconstructions for IceCube are accomplished with a soft-

ware project called Gulliver. In addition to specifying the minimization algorithm

and the PDF, the user has to specify what seed track(s) to use. The minimization

algorithm used is the Minuit algorithm as implemented by the TMinuit package in

ROOT [112].
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5.7.7 Single Photoelectron Fit

SPE, or single photoelectron fits, are likelihood fits that use only the arrival

time of the first photoelectron in all hit channels, throwing out the information

associated with later hits. The Pandel function is used to estimate the likelihood of

the photon arrival time. Typically, LineFit is used as the seed for this fit. The fit

can be automatically repeated many times, with a new pseudo-random seed used

each time, to cover the direction space. This can help ensure that a local minimum

was not found on the first trial and can sometimes improve the fit by ensuring a

global minimum is found. Typically, 16 or 32 iterations are used.

In addition to track location and direction, likelihood fits, such as SPE, and

MPE to be discussed next, return several parameters that can be used to estimate

fit quality. These parameters include the log-likelihood (logl) and the reduced log-

likelihood, rlogl = logl/ndof , where ndof is the number of degrees of freedom in the

minimization, i.e. the number of hit channels minus the number of parameters to

be fit. rlogl is then independent of the number of hit channels. A similar scaled

parameter, related to rlogl, has been found to be useful at discriminating between

signal and background. This parameter is called plogl and is equal to logl/(number

of hit channels - 2.5).

5.7.8 Multiple Photoelectron Fit

The Multiple Photoelectron fit (MPE) is very similar to the SPE fit in principle

and in implementation. However, as the name implies, it uses multiple photon hit
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times from each hit DOM in the likelihood minimization. Since more information is

used, the accuracy of the fit can be improved as compared to the SPE fit. To ensure

the MPE fit does not get trapped in a local minimum, it is usually seeded with a

track thought to be reasonably near the correct direction, such as the output of the

SPE fit.

Key to the likelihood minimization process for the MPE is modifying the

PDF to account for multiple photon arrival times. The PDF described previously

accounts for the expected distribution of arrival times for the first photon to hit a

DOM. However, here we need to account for the likelihood of photon arrival times

regardless of whether they are the first photon. The PDF for the nth photon, in

terms of the PDF for the first photon, is

MPEn (tres) = n · SPEn (tres) ·
[
tres ·

∫
SPEn (t) dt

]n
. (5.17)

5.7.9 PhotoRec

PhotoRec is a reconstruction algorithm that accounts for spatially variable

ice properties [113]. It does this by incorporating light propagation tables created

by Photonics (see Chapter 6). The output of PhotoRec used in this analysis is the

estimation of dE/dX. dE/dX is the average energy loss per unit propagation length,

for the muon, that would produce the detected amount of light. It is related to the

number of photons emitted along the track and hence to the number of photons

detected. To get the proportionality right, additional factors have to be taken into

account, including the distance between the track and the hit channels, and the
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amount of scattering and absorption between generation and detection points. The

reconstruction algorithm assumes that stochastic energy losses are uniform along

the muon track.

5.7.10 Paraboloid

The Paraboloid fit [114] analyzes the value of the likelihood function around

a seed, typically an SPE fit track. After transforming the coordinate space to one

centered on the direction of the seed track, it attempts to fit a paraboloid to the

likelihood space around that track. The important result of the Paraboloid fit is the

paraboloid sigma. Calculated from the errors on the major and minor axes of the

constant likelihood paraboloid,

σ =

√
1

2
(σ2

1 + σ2
2) (5.18)

provides an estimate of the pointing error of the track.

5.7.11 Bayesian

In the Bayesian reconstruction, the regular likelihood function is multiplied by

a bias function which depends only on the event hypothesis and not on the actual

event data. The bias is used as a way to include prior knowledge of the characteristics

of the event sample, i.e. that mis-reconstructed down-going tracks dominate the

event sample. In this approach, an up-going track should only be selected if its

regular likelihood is so good that it is found by the minimizer even with a bias

term added to the down-going hypothesis. This fit uses the same seeds as the 32
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iteration SPE fit, derived from the SOBOL pseudo-random sequence. The Bayesian

likelihood ratio is the useful result from this reconstruction, loglbayes − loglSPE32.

5.7.12 Umbrella

The umbrella reconstruction simply constrains the minimizer to the hemi-

sphere opposite some seed track. The likelihood ratio between this reconstruc-

tion and the 32 iteration SPE reconstruction can then be calculated as loglumbr −

loglSPE32. Better tracks will have a much higher SPE likelihood than a fit con-

strained to the opposite hemisphere, and so they will have negative umbrella likeli-

hood ratios.

5.7.13 SplitTrack

The Split Track reconstructions begin by splitting the hit channels into two

different groups based on hit time, and also into two different groups based on ge-

ometry. LineFit and SPE fit reconstructions are performed on each of these subsets

of hits. These fits provide discrimination for poorly reconstructed tracks, as well as

for tracks that reconstruct as up-going due to the superposition of hits from two

separate down-going muons. Zenith angles, or the likelihood parameters for the split

tracks, can be used for event discrimination.
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5.7.14 Additional Cut Parameters

Photons originating from farther away from a DOM are more likely to be scat-

tered, and the distribution of arrival time probabilities is more spread out. A larger

number of direct hits, that is hits that propagate directly to the DOM with little

or no scattering, has been found to be correlated with better track reconstruction.

Hence, the number of direct hits (NDir) is a useful cut parameter. The number of

direct hits is defined as the number of DOMs that have a hit with a residual time

difference of

−15ns > tres > 75ns. (5.19)

The likelihood that a track is properly reconstructed is also correlated with the

number of hit strings, and the more strings the better. Hence, the NString variable

is useful for discriminating between signal and mis-reconstructed background.

Smoothness is a measure of how well the observed hit pattern is explained

by the hypothesis of constant light emission along the reconstructed muon track.

Mathematically, smoothness is defined as the value of Sj with the maximum absolute

value, where Sj is defined as

Sj =
j − 1

N − 1
− lj
lN
. (5.20)

lj is the distance along the track between the points of closest approach of the track

to the first and the jth hit module. N is the total number of hits. Tracks with

hits clustered at the beginning or end of the track have S approaching +1 or −1,

respectively. High quality tracks, with S close to zero, have hits equally spaced

along the track. This parameter can be calculated using all hits, or just direct hits.
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The length of the event, L, is determined by projecting each hit OM onto the

reconstructed track and taking the distance between the two outermost points at

the ends of the track. Larger values of L indicate a more reliable reconstruction of

track direction. This parameter can also be calculated using all hits or direct hits

only.

93



Chapter 6

Event Selection

Since any remaining background contamination is difficult to model with sim-

ulation, we required an essentially pure neutrino sample for this analysis. Event se-

lection and background rejection cuts were developed using simulation. Background

rejection was done in several stages, beginning with triggering and software-based

filtering at the South Pole. Then, before more CPU intensive reconstructions were

performed, the background of uninteresting or unusable events was reduced by se-

lection cuts based on zenith angle and track quality parameters, a step referred to

below as data processing cuts. Finally, analysis level cuts were applied. Analysis

level cuts included a set of “pre-selection” cuts that improved the training and per-

formance of the boosted decision trees (BDT) used for the final cut level, and the

BDT cut itself.

6.1 Backgrounds

We are interested in up-going atmospheric νµ events. The background for

this analysis is down-going atmospheric muons that are mis-reconstructed as up-

going. Locating IceCube at a depth greater than a km helps attenuate the flux

of atmospheric muons. However, a significant number of high energy atmospheric

muons still reach the detector. In fact, the ratio of down-going atmospheric muons
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to muons produced in or near the detector by neutrino interactions is roughly one

million to one [115]. Even after an initial event selection cut based on zenith angle,

the event sample is dominated, by several orders of magnitude, by mis-reconstructed

atmospheric muons. These mis-reconstructed tracks are either individual muon

tracks or coincident atmospheric muons that mimic a single up-going event.

At higher energies, a diffuse flux of astrophysical neutrinos should stand out

(recall Fig. 2.11 from Chapter 2). However, for the live time, detector size, and

effective energy coverage of this analysis, a diffuse flux of astrophysical neutrinos is

considered negligible and is not accounted for.

6.2 Simulation

Detailed simulation of atmospheric muons and neutrinos was needed for de-

termining event selection and background rejection cuts, training and testing the

BDTs, and optimizing the analysis methodologies. Simulated data sets were also

used for producing prediction histograms for the likelihood analyses, the response

matrix and the expected flux histogram for the unfolding analysis, and for deter-

mining sensitivity thresholds during the discrete Fourier transform (DFT) analysis.

Several specialized data sets were used for systematics studies and toy MC studies.

6.2.1 Atmospheric Muons

Muons from air showers are simulated with CORSIKA [116]. The primary

cosmic ray spectrum known as the Hoerandel poli-gonato model [58] was used. In
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this model, the spectrum of each component is a combination of two power laws,

with the turnover between the two power laws being a function of the nuclear charge

Z of the primary. CORSIKA propagates cosmic ray primaries to their point of

interaction with a nucleus in the atmosphere. The hadronic interaction is modeled

using an interaction model such as DPMJET [117] or SIBYLL [118]. The secondary

particles are then tracked as they propagate and interact or decay.

Single muon events, as well as events with two or three coincident muons,

are included in the simulation. Events with individual muons in the detector are

combined, and re-weighted appropriately, to account for the probably of coincident

events occurring. Muon propagation and energy loss within and around the detector

is simulated with Muon Monte Carlo (MMC) [119].

6.2.2 Atmospheric Neutrinos

Neutrino propagation (from point of origin in the atmosphere to interaction in

or near the detector) is simulated with ANIS [120]. ANIS generates neutrinos of any

flavor according to a specified flux, propagates them through the Earth, and in a

final step simulates neutrino interactions within a specified volume. For computing

efficiency, all simulated neutrinos are forced to interact, but their probability of

interacting is accounted for in the event weight assigned by ANIS.

ANIS accounts for CC and NC neutrino-nucleon interactions, as well as neu-

trino regeneration following NC interactions. Also accounted for is the offset between

neutrino propagation direction and the direction of the outgoing muon following a
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CC interaction. Cross sections based on the CTEQ5 parton distributions were used

[104]. The Preliminary Reference Earth Model [121] was used to model the density

profile in the Earth.

6.2.3 Light Propagation

Light propagation is simulated using Photonics [122]. Photonics tables are

created once for a given model of the absorption and scattering properties in the

ice. A set of tables is created where the number and arrival times of photons are

parameterized by the position of the DOM in the ice, relative position of the muon

track, the energy deposition, and the direction of the muon. The output is saved in a

table format, with parameters binned in location, time, photon emission angle, and

incidence angle. A large number of tables, for various source directions and locations,

are generated. During simulation production, or Photonics-based reconstructions,

tables are queried with the location and orientation of the source, and the location

of the detectors. Interpolation is applied between tables. Photon arrival times are

randomly drawn from the time distribution tabulated for the given coordinates.

6.2.4 Detector Hardware

Simulation of detector hardware components is provided by various software

modules that account for PMT response (i.e. the creation of a waveform from

photoelectron(s)), DOM MB response to the simulated waveform, triggering, local

coincidence, etc. Simulated data is then processed through all the same stages of
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filtering, reconstruction algorithms, and analysis level cuts as real data.

6.2.5 Neutrino Flux Weighting

Neutrino events in simulation are weighted according to their contribution to

the atmospheric neutrino flux. For this analysis, the flux predictions of Honda et

al. [17], were used for conventional atmospheric muon neutrinos, and Enberg et

al. [66], were used for prompt atmospheric muon neutrinos. The predictions for

muon neutrinos from pions and kaons were extended to higher energies by fitting a

physics-motivated analytical equation based on energy and zenith angle (see chapter

7 of Gaisser [57]) in an overlapping region with the detailed calculations of Honda

et al. [17]. Symmetry is assumed between the flux of up-going and down-going

atmospheric neutrinos [17]:

ϕν (− cos θ) = ϕν (cos θ) . (6.1)

For prompt atmospheric neutrinos, the flux of ν and ν̄ are assumed to be equal.

Solar modulation as well as affects of the Earth’s magnetic field are ignored,

reasonable assumptions at the > 100 GeV energy range of this analysis. Mass-

induced oscillations are included in the simulation chain. Event weights for toy

MC studies are adjusted for the particular oscillation or decoherence model being

tested. Event weights are also adjusted when prediction histograms are built by the

likelihood minimizer, according to the nuisance parameters discussed in the next

chapter.

Normally, we could ignore ντ -induced muons for an atmospheric neutrino anal-
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ysis. A small number of atmospheric ντ and ν̄τ are produced by the decays of Ds

mesons. This is more than an order of magnitude below the flux of prompt νµ and

ν̄µ. Additionally, the probability for ντ production from ν ′µs via mass-induced oscil-

lations is suppressed in the energy range of this analysis. However, if some of the

atmospheric νµ and ν̄µ are oscillating or decohering to ντ and ν̄τ according to the

new physics models being tested, then this flux of ντ and ν̄τ can not be neglected.

These ντ could interact near or within the detector, producing a tau lepton, which

could then decay into (among other things) a muon (branching ratio about 17%).

Detection of these muons would then dampen the signal we are looking for, i.e.

a disappearance of muon neutrinos. The magnitude of this effect is small (on the

order of 2 to 3% for the VLI model [76]), due to the steep power law spectrum and

the fact that the muon ends up with only a fraction of the tau’s energy. Nonetheless,

these events are accounted for in the simulation chain for this analysis. Simulation

of the propagation and interaction of tau neutrinos is used, but the events are

weighted as if they were produced by atmospheric muon neutrinos that oscillated

to tau neutrinos according to the particular model being evaluated.

6.3 Muon Filter

Although a variety of filters were deployed at the pole for the 2008-2009 physics

run, only events passing the muon filter were used in this analysis. The muon filter

is the primary filter for rejecting down-going, atmospheric muons, and retaining

generic muon-like events from near or below the horizon. It plays a direct role
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in many analyses, including atmospheric neutrino studies, diffuse flux studies, and

point source searches. Additionally, the output of this filter is crucial to understand-

ing the irreducible background for most other analyses.

The basic filter consists of two branches of cuts and a minimum NChannel

(number of DOMs detecting photons and contributing to the event) threshold of 10.

The two branches compliment each other, and use Zenith/NChannel pairs that are

specified in a steering file. Branch 2 extends the reach of the muon filter further

above the horizon and includes a mandatory cut on the average NHits/NChannel

(number of pulses per hit channel) in an event. Two likelihood (LLH) reconstruc-

tions are performed to provide input to the filter. One is seeded with the result of a

LineFit reconstruction, the other is seeded with the reciprocal of the LineFit track.

This approach reduces the number of mis-reconstructed events that might otherwise

pass the filter because a local minimum was found in one LLH fit, or because an

up-going track was faked. The two branches differ in that both LLH reconstructions

have to agree for an event to be accepted by branch 1, whereas an event is accepted

by branch 2 if either LLH reconstruction passes the zenith cut.

The acceptance criteria for the muon filter, for the 40-string configuration,

was that the event passes branch 1: (LLH-1 Zenith AND LLH-2 Zenith ≥ 80 AND

NChannel ≥ 10) or (LLH-1 Zenith AND LLH-2 Zenith ≥ 70 AND NChannel ≥

16); or, the event passes branch 2: NHits/NChannel ≥ 5 AND ( ( LLH-1 Zenith or

LLH-2 Zenith ≥ 50 ) AND NChannel ≥ 20 ) OR ( ( LLH-1 Zenith or LLH-2 Zenith

≥ 70 ) AND NChannel ≥ 10 ).
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6.4 Data Processing Cuts

Prior to performing the higher level, more CPU intensive reconstructions re-

quired by this and similar analyses, data reduction cuts were performed to remove

events that were clearly not going to be useful. These cuts were a zenith angle cut of

80◦, an rlogl cut of 12, and a plogl cut of 8, all based on the output of a 32-iteration

SPE fit. These cuts significantly reduced the CPU loading early on in the data

processing chain, with little loss of events that would have passed final analysis level

cuts.

6.5 Pre-selection Cuts

Two BDTs were used in this analysis. One has better efficiency at lower en-

ergies, the other has better efficiency at middle and higher energies. Events are

accepted if they pass either BDT. The BDTs are essentially trying to distinguish

between poorly reconstructed background events, and signal events that include

some that are well reconstructed and some that are poorly reconstructed. By ap-

plying pre-selection cuts prior to BDT training, the signal event sample was cleaned

up somewhat, and the overall performance of each BDT was improved. For the

low energy BDT (BDT 1), the pre-selection cut was LineFit velocity ≥ 0.2. For

the other BDT (BDT 2), the pre-selection cut was that all Split Track fits returned

a zenith angle ≥ 80◦. The same data processing cuts and pre-selection cuts were

applied to the actual data, as were used in creating the simulated background and

signal event samples used for BDT training.
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6.6 Boosted Decision Trees

Final event selection to achieve the desired level of purity was done using

Boosted Decision Trees (BDT). Decision trees are an excellent “out of the box”

classifier [123]. They are similar to rectangular cuts. However, whereas a cut-based

analysis is able to select only one hypercube out of a multidimensional parameter

space, the decision tree is able to split the parameter space into a large number

of hypercubes, each of which is identified as either signal-like or background-like.

The theoretically best performance of a BDT, on a given problem, is generally

inferior to other techniques, such as neural networks. However, in academic examples

with complex correlations, or real life examples, BDTs often out-perform the other

techniques. This is because either there are not enough training events available

that would be needed by the other classifiers, or the optimal configuration (i.e. how

many hidden layers, which variables, etc.) for a neural network is not known and is

difficult to determine [123].

A decision tree is a binary, tree structured classifier. The nodes form what

looks like an inverted tree. A yes/no (signal like / background like) decision is made

at each node. The training algorithm chooses as the cut variable and cut value at

each node, the one that gives the best discrimination at that node. Events are split

into the nodes that make up the next layer of the tree, and the process repeated

until an end condition is reached. Typically, when a minimum number of events

in a node is reached, that node is no longer split. Variables may be used multiple

times in a tree, with different cut values each time. Other variables specified by the
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Figure 6.1: Schematic view of a decision tree, from [123]. Starting from
the root node, a sequence of binary splits are applied to the data. Each
split uses the variable that at this node gives the best separation between
signal and background. The same variable may thus be used at several
nodes, while others might not be used at all. The leaf nodes at the
bottom end of the tree are classified signal or background, depending on
the majority of events that end up in the respective nodes.

user may be used seldom, or not at all. The final nodes are classified as signal or

background, depending on the classification of the majority of training events that

end up in each node. Fig. 6.1 shows a schematic representation of a tree.

The decision tree training algorithm will ignore non-discriminating variables

and is thus insensitive to the inclusion of poorly discriminating input variables.

A decision tree does not find functional dependencies between the cut variables,

such as a properly set-up neural network would. The user can specify functional
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dependencies among the variables, however, when they are defined for a decision

tree.

A shortcoming of decision trees is their instability with respect to statistical

fluctuations in the training sample from which the tree structure is derived. For

example, if two input variables exhibit similar separation power, a fluctuation in

the training sample may cause the tree growing algorithm to decide to split on one

variable, while the other variable may have been selected had that fluctuation not

been present. In such a case the whole tree structure is altered below this node,

possibly resulting in a substantially different classifier response. The boosting of a

decision tree solves this problem. The concept of a decision tree is extended from

one tree to possibly hundreds of trees which form a forest. The additional trees are

derived from the same training ensemble by re-weighting events. After one tree is

created, events that were mis-classified in that tree have their weights increased,

and the next tree is created. This next tree will choose different variables and cut

values at each node, due to the altered weights. The final classifier uses a weighted

average of the individual decisions of all the trees.

The final classification score for an event is based on a weighted majority vote

of the individual trees:

YBDT (x̃) =
∑

i∈forest
ln(αi) · hi(x̃). (6.2)

YBDT is the BDT score for the event, normalized to fall between 0 and 1. x̃ is the

array of values for each of the variables, for the given event. αi is the fraction of

events correctly classified in tree i. hi is the decision tree result for the event in
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tree i, 1 if the event lands in a signal node, 0 if it lands in a background node. The

user chooses the value of the BDT score to use as a cut value, based on the desired

trade-offs between signal efficiency and background contamination.

6.6.1 Training, Testing, and Choice of BDT Cut Values.

Muon neutrino simulation, with an E−1 spectrum, was used for signal events

in the BDT training. Although the true signal spectrum is much steeper than

this, testing indicated this spectrum for training produced a BDT that performed

better for higher energy events, with no compromise in performance for lower energy

events. If the signal events are weighted realistically, the training algorithm gives

little weight to mis-classification of high energy events. Cosmic ray muon simulation

from CORSIKA was used for background events. Following training, the BDTs were

tested using independent signal and background event samples. It was found that a

minimum of 30,000 signal and 30,0000 background events were needed for training,

to obtain satisfactory and consistent performance. Table 6.1 lists the reconstruction

variables used in the BDTs.

As mentioned earlier, different pre-selection cuts were applied prior to the

training, and application, of each BDT. Also, the NString variable was only used by

BDT 1. One additional difference between the two BDTs is the source of the Split

Track fits used as BDT variables. For BDT 1, which is optimized for lower energies,

the LineFit reconstruction of each of the four split tracks (two split geometrically

and two split in time) were used. For BDT 2, if SPE fits were successful for the split
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Table 6.1: Reconstruction variables used in the BDTs. See Chapter 5 for definitions.

BDT Variables

Paraboloid Error on the MPE fit
RLogl and PLogl from MPE fit

NDirC and LDirC
SmoothAll

NDirC/NPulses
LoglBayes − LoglSPE32

NString∣∣∣θMPE
Z − θLineF itZ

∣∣∣
LoglUmbrella − LoglSPE32

θz, Split-Track LineFit results
θz, Split-Track SPE16 results

tracks, then those results were used, otherwise the LineFit results were used. SPE

fit results were not available for events in which there were too few hit channels to

perform a likelihood fit in one or more of the splits.

Neutrino simulation weighted to an atmospheric spectrum, as well as sin-

gle, double, and triple-coincident muon events, weighted to the cosmic ray muon

spectrum, were used for testing the BDTs. Since an event sample with negligible

background was desired, the BDT cut values were chosen at the point where the

background events were eliminated. Coincidently, the desired cut values turned out

the be the same, 0.73, for each BDT.

The effective live time of the available CORSIKA was limited and not rep-

resentative of the year of live time for the data. In fact, additional testing with

more background simulation indicated that some events were showing up, occasion-

ally, that did pass the selection cuts. We did not have enough simulation for a

reliable estimate of background contamination. Hence, comparisons between data
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and neutrino simulation were made after unblinding to verify that the BDTs were

performing as expected. The amount of background contamination is estimated to

be about 1%.

Fig. 6.2 shows the efficiency of the BDTs relative to the output of the data

processing cut level. The plots show, as a function of energy and cosine of the zenith

angle, the fraction of events passing all cuts up to and including the data processing

cuts that also pass the cuts specific to this analysis. The cuts specific to this analysis

include the pre-selection cuts and the BDT cuts. Green is the efficiency of BDT

1 alone; Red is the efficiency of BDT 2 alone; Blue is their combined efficiency.

Fig. 6.3 shows the output of the Boosted Decision Trees, for six months of data and

for neutrino simulation weighted to the same live time.

6.7 Final Event Selection

To give a sense for the impact of the BDT cut, Fig. 6.4 shows the event rate for

atmospheric muon neutrinos, in simulation, at various stages in the event selection

process. Fig. 6.5 shows the same progression of event rate for data. The rate after

applying a BDT cut value of 0.7 is shown for comparison only; the BDT cut was

applied just once, at a value of 0.73.

The choice of the final BDT score to cut on was based on simulation, but then

verified by comparing the data passing rate to the predicted rate from neutrino

simulation. Fig. 6.6 shows the ratio, data to simulation, for the number of events

passing the BDT cut, as a function of BDT cut value. On the left is BDT 1, on the
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Figure 6.2: Efficiency of the BDTs, relative to the output of data pro-
cessing cuts. The plots show, as a function of energy and cosine of the
zenith angle, the fraction of events passing all cuts up to and including
the data processing cuts, that also pass the cuts specific to this analysis.
Green is the efficiency of BDT 1 alone; Red is the efficiency of BDT 2
alone; Blue is their combined efficiency.
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Figure 6.3: Output of the BDTs, for data (blue) and for neutrino simu-
lation (green). Above the chosen cut values of 0.73 for each BDT, data
and neutrino simulation agree, indicating that the unwanted background
of cosmic ray muons has been rejected.

right is BDT 2. Note the leveling out near the chosen cut values of 0.73, indicating

background rejection has likely been optimized. Behavior of this ratio fluctuates

beyond the chosen cut value, probably due to statistical fluctuations and the low

number of events in data, and disagreements between data and simulation in the

tails of the distributions of variables used in the BDTs. Another feature to note is

that the ratio data/simulation, at the chosen cut value of 0.73, is not the same for

both BDTs. For BDT 1, the ratio is about 0.97, and for BDT 2 the ratio is about

1.01. There is a slightly larger fraction of events that pass both BDTs in data, than

in simulation.
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Figure 6.4: Progression of event rate for various cut levels for simulated
atmospheric neutrinos, scaled to the same live time as the data shown in
Fig. 6.5. Brown after data processing cuts; Red after pre-selection cuts;
Green after BDT cut with a cut value of 0.7; Blue after BDT cut with
a cut value of 0.73.
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Figure 6.5: Progression of event rate for various cut levels for data.
Brown after data processing cuts; Red after pre-selection cuts; Green
after BDT cut with a cut value of 0.7; Blue after BDT cut with a cut
value of 0.73.

Figure 6.6: Ratio, data to simulation, as a function of BDT cut value.
On the left is BDT 1, on the right is BDT 2. Derived from six months
of data.
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Figure 6.7: Effective area for up-going muon neutrinos as a function of
neutrino energy. Blue −1 < cos (θZ) < 0; Green −.33 < cos (θZ) < 0;
Red −.66 < cos (θZ) < −.33; Brown −1 < cos (θZ) < −.66.

6.7.1 Effective Area

Φ(E, θ) is the true flux of atmospheric neutrinos. It is a function of zenith

angle and neutrino energy and has units of GeV−1 s−1 sr−1 cm−2. The effective

area, Aeff , is then the function that satisfies this equation for the predicted number

of detected events:

Nevents =
∫
dt
∫
dΩ

∫
dE · Φ(E, θ) · Aeff (E, θ). (6.3)

Fig. 6.7 shows the effective area after final selection cuts, as a function of energy

and for different zenith ranges.
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Figure 6.8: Energy reach of final neutrino sample, as predicted by simulation.

6.7.2 Final Event Sample

After eliminating data runs with some strings not operating, testing in progress,

or various faults, there was a total of 359 days of live time of good data runs from 17

April 2008 to 20 May 2009. After final event selection cuts, the number of up-going

neutrino events from 40-string IceCube is 20,496, with zenith angles between 90 and

180 degrees. Based on simulation, 90% of the neutrinos in this sample are in the

energy range 180 GeV to 10.1 TeV. The energy reach of the final event sample, as

indicated by simulation, is shown in Fig. 6.8.

Fig. 6.9 shows the number of events from the final data set in each of the

dE/dX versus cos θZ bins for the likelihood analysis. Fig. 6.10 shows the dE/dX and cos θZ

distributions for data and simulation. The apparent excess in the data near the
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Figure 6.9: Number of events in the data, for each bin of the dE/dX
versus cos θZ histogram.

horizon will be discussed in Chapter 8. Fig. 6.11 shows the dE/dX and cos θZ

distributions after an additional zenith angle cut (at 97◦) and re-binning in cos θZ .
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Figure 6.10: Distributions of observables for the likelihood analysis.
dE/dX and cos θZ for data (blue) and simulation (green).

Figure 6.11: Distributions of observables for the likelihood analysis after
re-binning. dE/dX and cos θZ distributions for data (blue) and simula-
tion (green), after additional zenith angle cut at 97◦ and re-binning in
cos θZ .
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Chapter 7

Analysis Methodology

7.1 Likelihood Ratio Test

In general, a likelihood analysis is useful because it can take advantage of

the shape of a distribution, not just numbers of events or ratios of numbers of

events. Additionally, the method can simultaneously constrain the parameters of

interest (physics parameters for the model being tested) and parameters that are

not necessarily of interest but that can impact the results (nuisance parameters).

The method thus provides a straight-forward accounting of systematic uncertainties.

Since we are interested in deviations in the energy and zenith angle dependence of

the atmospheric neutrino flux, a two-dimensional likelihood analysis with events

binned in dE/dX (a proxy for energy) and cosine of the zenith angle has been

developed.

In the process of determining maximum likelihood fits or prediction histograms,

simulated muon neutrino events are re-weighted according to

w = ε
(

E
Eref

)∆γ [
1 + 2α

(
cos θZ + 1/2

)]
×{[

1 + 2αc
(
cos θZ + 1/2

)]
wc + Ap

(
E

Eref,p

)∆γp
wp

}
×

Pνµ→νµ (θr),

(7.1)

where wc and wp are the weights necessary to reproduce the conventional and prompt

neutrino (plus antineutrino) fluxes, based on the models of [17] and [66] respectively.
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These weights include a factor called OneWeight that is computed during generation

of the simulation and accounts for the survival probability through the Earth as

well as the probability of interacting in or near the detector. E is the neutrino

energy, θZ is the zenith angle, and Pνµ→ντ is the oscillation or decoherence survival

probability. θr represents the physics parameters associated with the model being

tested. The remaining variables are nuisance parameters, collectively denoted as

θs. These nuisance parameters account for the more significant theoretical and

experimental uncertainties in flux normalization, spectral index, and zenith angle

tilt.

The form of Eqn. 7.1 is due to the fact that some uncertainties affect the con-

ventional and the prompt atmospheric neutrino flux, whereas other sources affect

just one or the other. ε accounts for theoretical and experimental uncertainties in

the overall flux normalization, such as ice model uncertainties, OM sensitivity un-

certainty, interaction rate uncertainties, reconstruction errors, uncertainties in the

cosmic ray flux, etc. ∆γ accounts for the uncertainty in the primary cosmic ray

spectral slope as well as the impact of OM and ice model uncertainties on the ob-

served spectral index. α accounts for the impact of OM and ice model uncertainties

on the zenith angle tilt of the observed flux. αc accounts for theoretical uncertainty

in the zenith angle tilt of the conventional atmospheric neutrino flux, primarily due

to uncertainty in the pion to kaon ratio. Ap and ∆γp account for theoretical uncer-

tainty in the magnitude and spectral index of the prompt atmospheric neutrino flux,

primarily due to uncertainties in charm production cross sections and fragmentation

functions. The particular forms of the spectral index correction and zenith angle tilt
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factors were chosen to minimize the impact on overall normalization as the nuisance

parameters are varied, to simplify the minimization process. Eref and Eref,p are

mean energies for the affected distributions.

Events are binned in log10 (dE/dX) versus cos θZ . dE/dX, with units of

GeV/m, is a reconstructed variable that is proportional to the average energy loss

per unit propagation length of a muon that would produce the detected amount of

light, and serves as an estimator for the muon energy, which is correlated with the

neutrino energy. The energy resolution is about 0.3 on a log scale, reducing sensitiv-

ity to VLI effects by a factor of two as compared to perfect energy resolution. The

data is binned with log10 (dE/dX) and cos θZ ranging from −2.0 to 1.0 and −1.0 to

0, respectively, in 10 x 10 histograms. After an additional cut at 97◦ zenith angle is

added (see Chapter 8), binning in cos θZ is from −1.0 to −0.12.

The likelihood function is the Poisson likelihood function

L ({nij}|{µij (θr, θs)}) =
∏
i,j

µ
nij
ij

nij!
e−µij , (7.2)

where θr represents the physics parameters for the model being tested, and θs rep-

resents the nuisance parameters. n is the data, µ the prediction, and the product is

over all bins, i, j, in the two-dimensional dE/dX versus cos θZ histograms.

MINUIT2 [124] is used to perform the minimizations. The negative of the log

of the likelihood function is minimized, rather than maximizing the likelihood:

− lnL =
∑
i,j

(µi,j − ni,j lnµi,j + lnni,j!). (7.3)

The test statistic is

R = −2 ln
L0

L̂
. (7.4)
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L0 is the maximum likelihood with the physics parameters fixed and the nuisance

parameters allowed to vary. L̂ is the maximum likelihood with all parameters allowed

to vary. The ratio is essentially a measure of the extent by which particular values

of the physics parameters improve or degrade the fit. The factor of 2 scales the

likelihood ratio so that it behaves roughly as a χ2 distribution, with the number of

degrees of freedom equal to the dimensionality of θr. However, it is not precisely a

χ2 distribution, so the Feldman-Cousins ordering method [125, 126, 127] is required.

The test statistic can be written as

R = 2
(

ln L̂(θ̃r, θ̃s)− lnL0(θr,
˜̃θs)
)
. (7.5)

In terms of the observables, this becomes:

R = 2
∑
i,j

(
−µi,j(θ̃r, θ̃s) + ni,j lnµi,j(θ̃r, θ̃s) + µi,j(θr,

˜̃θs)− ni,j lnµi,j(θr,
˜̃θs)
)
. (7.6)

µi,j(θ̃r, θ̃s) is the best-fit prediction histogram built by the minimizer when physics

and nuisance parameters are allowed to vary. µi,j(θr,
˜̃θs) is the best-fit prediction

histogram built by the minimizer when physics parameters are held fixed and nui-

sance parameters are allowed to vary. ni,j is either the true data, or a toy MC

experiment.

Fig. 7.1 and Fig. 7.2 show the R-values for the n = 1 VLI model and a toy

MC experiment, with systematic uncertainties ignored and included, respectively.

The likelihood ratios are roughly distributed as a χ2 function, and so the thumb

rules associated with the level of acceptance for a χ2 distribution with two degrees

of freedom can be used to estimate the acceptance regions from these plots. For

example, a value of 4.6 corresponds to a 90% CL, 6.0 a 95% CL, and 9.2 a 99%
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Figure 7.1: R-values, under the n = 1 VLI model, for a toy MC exper-
iment and no systematic uncertainties (nuisance parameters ignored by
the minimizer).

CL. This approximation is not exact, and in particular, it breaks down in regions

of the phase space that are relatively insensitive to changes in one of the physics

parameters. Fig. 7.3 and Fig. 7.4 show the R-values for the n = 2 decoherence

model and a toy MC experiment, with systematic uncertainties ignored and included,

respectively.

To determine the confidence intervals, a large number of toy MC experiments

(up to 1000) are performed at each point in a scan of the physics parameter space.

For each toy MC experiment, a histogram is drawn from the parent distribution,

µi,j(θr, θ̄s), where θr are the physics parameters at that point and θ̄s are the nuisance
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Figure 7.2: R-values, under the n = 1 VLI model, for a toy MC experi-
ment including systematic uncertainties.
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Figure 7.3: R-values, under the n = 2 decoherence model, for a toy
MC experiment and no systematic uncertainties (nuisance parameters
ignored by the minimizer).
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Figure 7.4: R-values, under the n = 2 decoherence model, for a toy MC
experiment including systematic uncertainties.
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parameters chosen by a forward folding fit to best represent the data. A forward

folding fit involves determining the values of the nuisance parameters that reproduce

the best fit to the data when simulated events are reweighted according to Eqn. 7.1.

This is essentially just finding gross corrections to the normalization, spectral index,

and zenith angle tilt of the flux models from [17, 66].

Bin counts for each toy MC experiment are varied according to Poisson statis-

tics. The likelihood ratios are computed for each of these toy experiments and this

set of likelihood ratios is a measure of how the test statistic responds to statistical

uncertainties. A confidence interval of confidence level α is then defined by the value

of Rcrit(θr) such that a fraction α of the toy MC experiments at a point θr had a

likelihood ratio R less than Rcrit:

(∫ Rcrit

0
R

)/(∫ ∞
0

R
)

= α. (7.7)

The acceptance region is that set of points θr where Rdata(θr) < Rcrit(θr). Fig. 7.5

and Fig. 7.6 show the acceptance regions for a toy experiment, under the n = 1 VLI

and n = 2 decoherence models, after applying the ordering method of Feldman and

Cousins.

7.2 Discrete Fourier Transform Analysis

The DFT method was adapted from Ref. [88]. In that case, the MINOS

Collaboration was looking for periodic variations in neutrino oscillations in the NuMI

beam line, using the MINOS near detector. Although they were evaluating the same

coefficients from the SME, the survival probability equation in their analysis was
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Figure 7.5: Acceptance regions for a toy experiment under the n = 1
VLI model. The regions are determined by comparing the likelihood
ratios to the critical ratios determined by the Feldman-Cousins method.
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Figure 7.6: Acceptance regions for a toy experiment under the n =
2 decoherence model. The regions are determined by comparing the
likelihood ratios to the critical ratios determined by the Feldman-Cousins
method.

126



different from the one used here. The approximations used in the two experiments

are different, due to the different energy range and length scales. The DFT analysis

is much faster and simpler to use than a likelihood analysis. And, since events are

binned in RA, it is not sensitive to zenith-dependent systematic uncertainties. It

also allows for a model-independent check for a periodic signal.

This analysis is done in two stages. In the first stage, the data is checked

for consistency with the hypothesis of no sidereal signal. In the second stage, con-

straints are placed on the SME coefficients in the vector model. The muon neutrino

survival probability varies with RA with a modulation frequency of 4ω⊕, where

ω⊕ = 2π/23h56 min is the Earth’s sidereal frequency. So we want to check the

n = 4 mode of a DFT of the data, with the data binned in RA. 32 bins are used,

from 0 to 360◦, to allow measuring the n = 4 component. Only events in the

declination band 7 to 30◦ (zenith band 97 to 120◦) were used.

First, a large number of toy experiments were performed in which the RAs

of all events in the data were randomly redistributed. The power spectral densities

(PSDs) in the n = 1 to n = 4 components of a DFT were computed for each of

these noise-only toy experiments. The PSDs of the true data histogram were then

computed and compared to the range of PSDs from the toy experiments. This

indicated whether the data is consistent with the hypothesis of no sidereal signal.

To set upper limits on the SME coefficients in the vector model, a large number

of toy MC experiments were performed. In each trial, events for the toy histograms

were drawn from a distribution of simulated events that mimics the energy and

zenith distribution of atmospheric neutrinos. RA’s were randomly assigned in each
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toy experiment. The physics parameters of the vector model were then incremen-

tally increased, and the simulated events re-weighted according to their survival

probability under the vector model, until a PSD greater than the 99.87 percentile

(equivalent to a 3-sigma threshold) of the PSDs from the noise-only toy experiments

was obtained. The values found in each of these trials were averaged to find the

sensitivity of this analysis given the data and the absence of a signal. While deter-

mining the sensitivity for one coefficient in each of these trials, the other coefficients

were held at zero.

As mentioned earlier, if νµ are oscillating to ντ , then some fraction of these ντ

would lead to muon tracks in the detector and events in the final sample. This effect

was accounted for through toy MC studies using ντ simulation. It was found that,

for oscillations near the sensitivity threshold, this feedback loop leads to recovering

about 6% of the events lost due to oscillations induced by the a coefficients, and

about 9% of the events lost due to oscillations induced by the c coefficients. The

difference between the two cases is due to the fact that the mean energy of affected

events is higher in the case of the c coefficients.

7.3 Unfolding of the Atmospheric Neutrino Spectrum

Unfolding the atmospheric neutrino spectrum involves determining what the

νµ plus ν̄µ flux is at the point of origin in the atmosphere, based on the observed

detector response. For the likelihood and DFT analyses, an unfolding is not nec-

essary. Rather, the effects of the models are propagated through detector specific
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simulation, and the results compared to the measured data. However, unfolding

the spectrum at the point of origin is desirable because it simplifies comparison to

results from other experiments, as well as to various theoretical predictions. Unfold-

ing removes the need for someone trying to use the flux measurement in IceCube to

account for IceCube systematics, detector efficiency, and effective area.

In general, the measurement b is a function of the true neutrino flux x, and a

response matrix A that accounts for the modification, attenuation, limited detector

acceptance, bin-to-bin migration of events, etc., that happens due to propagation

through the earth, and interaction in and measurement by the detector:

Ax = b. (7.8)

Ideally, the matrix A could be inverted and the true distribution directly calculated

as x = A−1b. However, this is in general not possible. Since an analytical solu-

tion for the smearing matrix is not known, it must be determined from simulation.

However, only a limited live time of simulated data is available. Additionally, there

are statistical fluctuations in the measured data. These fluctuations would lead to

unphysical fluctuations in the solution.

The desired distribution x is expressed in quantities that are not directly

measured. Rather the number of events in each bin of a dE/dX histogram is used

as the observable. There is a finite resolution for this measured variable, with large

bin-to-bin migration. Simulation is used to find the response matrix, A, which maps

the distribution of events based on the observable to the distribution of true neutrino

energies.
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The SVD unfolding algorithm [128] was used for the unfolding. This algo-

rithm has been implemented in the RooUnfold package [129] for use in the ROOT

framework. The inputs to the unfolding algorithm are: the response matrix from

simulation, the predicted histogram for the observed distribution, and a histogram

for the true flux. x
MC

is a 12 bin histogram of the predicted atmospheric neutrino

flux, binned in log10(Eν) from 2 to 5.6, where Eν is the neutrino energy in GeV. b
MC

is a 12 bin histogram of the expected dE/dX distribution for events passing final

cuts, binned in log10(dE/dX) from −2.1 to 1.5. A is a 12 x 12 histogram filled with

values of (log10(dE/dX), (log10(Eν)), for all events in b
MC

.

The unfolding algorithm overcomes the problem of statistical fluctuations in

the data through regularization. The shape of the true flux is assumed to be similar

to the shape of the simulated flux. Higher frequency terms, in a Fourier-like ex-

pansion of the solution, are dominated by statistical fluctuations that get enhanced

without regularization. The curvature in the solution, i.e. how sharply it can fluc-

tuate from bin-to-bin, is regulated, preventing statistical fluctuations in the data

from being interpreted as structure in the true distribution. The amount of regu-

larization must be specified, and a smooth cutoff is applied to the higher frequency

terms. A lower cutoff biases the solution towards simulation, a higher cutoff biases

the solution towards the data.

The optimal choice of the regularization parameter depends on the number of

bins and the sample size. The proper value to use must be determined on a case-by-

case basis. Two methods for determining the optimal choice of the regularization

parameter are discussed in Ref. [128]. The first method is to examine a plot of the
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variable log |d
i
| versus i, where d is a vector computed by the unfolding algorithm.

The components of d are the coefficients of the rescaled measurement histogram, in

front of a particular set of basis functions. The di fall exponentially, with values

for low i being significant. The critical value is the i after which the di are not

significant. The other method is to use toy MC studies, based on simulation that is

systematically and statistically different from the training simulation, to determine

what value leads to the best performance. These tests indicated that the input

variable kterm should be 3 in this case. kterm is the input to the SVD unfolding

algorithm that directs what regularization parameters to use. The scaling factors

for the smooth cutoff are computed within the unfolding algorithm, based on the

specified value of kterm.
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Chapter 8

Systematic Uncertainties

8.1 Uncertainties in Atmospheric Neutrino Flux Predictions

Affecting both the conventional and prompt components of the atmospheric

neutrino flux is the uncertainty in the normalization of the cosmic ray flux, as well

as uncertainty in the spectral index of the cosmic ray flux. From Honda et al. [17],

the uncertainty in the normalization of the atmospheric neutrino flux at 1 TeV (the

mean energy of events in this analysis) is ±25%. The bulk of the nucleons in cosmic

rays are in protons (79%) and helium nuclei (15%), so we can get a reasonable

estimate of the uncertainty of the overall cosmic ray spectral index by considering

the uncertainty in these two components. From Gaisser et al. [130], the uncertainty

in the spectral index for protons is estimated to be ±0.01, and for helium ±0.07. For

the energy range of this analysis, helium nuclei make up about 30% of the flux of

nucleons as a function of kinetic energy per nucleon. Scaling the individual spectral

index uncertainties by the fraction of the total flux for that component gives an

estimate of ±0.03 for the uncertainty in the overall spectral index. Hence, affecting

the conventional and the prompt atmospheric neutrino fluxes, we have the following

theoretical uncertainties:

A 0.75 to 1.25,

∆γA ± 0.03.

(8.1)
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The major source of uncertainty affecting only the conventional atmospheric

neutrino flux is the π/K ratio at production, which can affect the zenith angle

distribution of neutrinos due to the kinematics of collisions and decay. From Honda,

et al. [17], the magnitude of the impact of this uncertainty on the zenith angle tilt

is estimated to be

αc ± 0.03. (8.2)

The major sources of uncertainty for the prompt flux are the primary spectrum

at the top of the atmosphere and the charm production cross sections and quark

fragmentation functions [66]. From Enberg, et al. [66], the uncertainties associated

with the normalization and spectral index of the prompt atmospheric neutrino flux,

for the energy range of this analysis, are estimated to be:

Ap 0.56 to 1.25,

∆γp ± 0.03.

(8.3)

8.2 Uncertainties in DOM Sensitivity and Ice Properties

The major sources of uncertainty in the detector response are the DOM sen-

sitivity and the ice properties. To estimate the impact of these uncertainties, two

specialized neutrino simulation datasets were created. In one dataset, the number

of photons striking each DOM (proportional to the number detected) was boosted

by 10%. In the other dataset, the number of photons was reduced by 10%. From

this, it was found that the ±10% change to the photon flux lead to a ±15% change

in event rate, a ±0.09 change in the apparent spectral index, and a ∓0.01 change in

the apparent zenith angle tilt. These “apparent” changes were found from forward
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folding fits that reweighted standard atmospheric neutrino simulation to reproduce

the best fit to the observed distribution of events, after final cut level, from these spe-

cialized datasets. The impact of the ±10% change in photon flux in the specialized

simulation was directly scaled to the ±8% uncertainty in DOM sensitivity.

To estimate the change in the number of photons striking an average DOM

due to changes in ice properties, a diffuse flux approximation was used. First, we

assume a mean attenuation length λp = 30 m with 10% uncertainty. Then, we

estimate the change in the photon flux at a certain distance as

N ∼ e
− d
λp ,

N ′ ∼ e
− d

(1±.1)λp ,

N ′−N
N
∼ e

±.1d
(1±.1)λp − 1,

(8.4)

where N is the number of photons at distance d for the nominal attenuation length

and N ′ is the number of photons at distance d for the perturbed attenuation length

(nominal ±10%). The third equation is the fractional change in number of photons

at distance d. The average distance d per event was estimated from simulation.

The net result of this approximation is that the photon flux reaching the DOMs

is estimated to change by ±12%, on average, due to ice property uncertainties.

The thumbrules derived from the specialized simulation, above, were scaled by this

factor to account for the impact of ice property uncertainties. Limitations in this

approximation method include the fact that changes in ice properties would change

the light propagation distances and the distribution of photon arrival times at the

hit DOMs, effects which are not accounted for here.

Adding the uncertainties in detector response due to DOM sensitivity and ice
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properties in quadrature leads to the following estimate of the associated nuisance

parameters

B 1.0± 0.22,

∆γB ± 0.13,

αB ± 0.02.

(8.5)

Note that the range on α was not very well constrained by the forward folding fits,

it was essentially at the limit of sensitivity of the forward folding to resolve it. Also,

the change in normalization is correlated with the change in spectral slope.

8.3 Other Sources of Uncertainty

From Achterberg et al. [131], a 3% uncertainty in the charged current, deep-

inelastic neutrino-nucleon scattering cross section is estimated to lead to a 3% un-

certainty in neutrino event rates. Similarly, uncertainties in muon energy loss are

estimated to lead to a 1% uncertainty in neutrino event rates. Background contam-

ination in the final event sample is estimated to be less than 1%. Reconstruction

and cut biases are estimated to introduce a 2% error in event rate. Adding these in

quadrature gives the normalization uncertainty

C 1.0± 0.04. (8.6)
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8.4 Summary of Nuisance Parameters

The nuisance parameters are summarized in Table 8.1, where ε is the overall

normalization factor,

ε = A×B × C, (8.7)

and

∆γ = ∆γA + ∆γB (8.8)

is the overall spectral index correction factor. The range of uncertainty for ε is

estimated as

σ2
ε

ε2
=
σ2
A

A2
+
σ2
B

B2
+
σ2
C

C2
. (8.9)

Since A ∼ B ∼ C ∼ 1, we can approximate the uncertainty on ε as

σ2
ε ≈ σ2

A + σ2
B + σ2

C . (8.10)

Similarly,

σ2
∆γ ≈ σ2

∆γA
+ σ2

∆γB
. (8.11)

8.5 Additional Uncertainty Evidenced by Data/Simulation Mismatch

Fig. 8.1 shows the zenith distribution of events in data and in simulation.

There is an apparent excess of events in data, or a deficit in simulation, between

90 − 97◦. Fig. 8.2 shows the statistical significance of the differences between bin

counts in data and in simulation, for bins in the dE/dX versus cos θZ histograms.

This figure is based on the intended zenith binning from 90 to 180◦. After cutting
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Table 8.1: Summary of Nuisance Parameters.

Parameter Range Definition

A 1± 0.25 Normalization uncertainty (theoretical)
B 1± 0.22 Normalization uncertainty (DOM/Ice)
C 1± 0.04 Normalization uncertainty (miscellaneous)

∆γA ±0.03 Spectral index uncertainty (theoretical)
∆γB ±0.13 Spectral index uncertainty (DOM/Ice)
Ap 0.56− 1.25 Prompt flux normalization uncertainty (theoretical)

∆γp ±0.03 Prompt flux spectral index uncertainty (theoretical)
α ±0.02 Zenith angle tilt uncertainty (DOM/Ice)
αc ±0.03 Conventional flux zenith angle tilt uncertainty (theoretical)

out events between 90 and 97◦, and re-binning to once again have 10 bins in cos θZ ,

the statistical significance of the remaining mismatch is as indicated in Fig. 8.3.

Several checks and investigations were performed to try to identify the origin of

the mismatch near the horizon. First, it can not be mimicked within the theoretical

uncertainties in the atmospheric neutrino flux model or predictions for a diffuse flux

of astrophysical neutrinos. Also, distributions of track quality parameters do not

reveal any problems. In simulation of atmospheric muons, the background shows

up first at lower BDT values and near the top of the detector. The excess in the

data does not exhibit this behavior. The fractional excess remains as the BDT cut

is increased beyond 0.73. Fig. 8.4 shows the distributions of the z-component of the

center of gravity (COG) variable for events in the zenith range 90−97◦. COG is the

location of the center of gravity of the measured charge from the DOMs contributing

to the event. For these near-horizontal events, COGZ is approximately the depth

of the event. The horizontal excess in data does not decrease with depth.
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Figure 8.1: Zenith distribution of events in data and simulation. Data is
blue, simulation is green. There is an apparent excess of events in data,
or defecit in simulation, between 90 and 97◦.
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Figure 8.2: Bin-wise data/simulation comparison. This plot shows the
statistical significance of the disagreement between data and simulation
in each of the 100 bins of the dE/dX versus cos θZ histograms. Statistical

significance is computed as
(
ndataij − µsimij

)/√
µsimij . Positive numbers are

an excess in data.
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Figure 8.3: Bin-wise data/simulation comparison after additional zenith
cut at 97◦, and re-binning in cos θZ . This plot shows the statistical sig-
nificance of the disagreement between data and simulation in each of the
100 bins of the dE/dX versus cos θZ histograms. Statistical significance

computed as
(
ndataij − µsimij

)/√
µsimij . Positive numbers are an excess in

data.
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Figure 8.4: Distributions of the z component of the COG variable for
events in the zenith range 90− 97◦. COG is the location of the center of
gravity of the measured charge from the PMTs contributing to the event.
For these near horizontal events, COGZ is approximately the depth of
the event. Data is blue, simulation is green. Note the excess in data at
each of the clean ice layers.
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The horizontal excess is not a problem specifically related to training the BDTs

and their performance near the horizon. An independent analysis that used straight

cuts and no BDT for background rejection saw a similar excess. A subset of events

were also examined in a software-based event viewer. All of these tests indicated

that the excess is consistent with horizontal, neutrino-induced muon tracks. The

problem could be related to errors in the neutrino flux calculation near the horizon,

or the impact of atmospheric variability on the energy and zenith distribution of

atmospheric neutrinos. However, since the origin of this problem could not be

verified, the region from 90 to 97◦ was excluded from each of the analyses.

To further investigate the horizontal event rate and COGZ disagreements,

neutrino simulation was generated using a modified ice model. The modified ice

model was a somewhat arbitrary modification to the standard ice model. The depth-

dependent variations in scattering and absorption in the clean layers were intensified

by doubling the variations of the coefficients for absorption and scattering from their

mean values. Where absorption and scattering are below the mean, the amount by

which they are below the mean was doubled. Different mean values were used for ice

above and below the large dust peak (above and below 2100 m). The result of this

test was a 7% increase in the overall event rate, but with little zenith-dependence to

the increase. In particular, there was no enhanced preference for horizontal events.

Binning of photon flux parameters in the Photonics tables, and subsequent

interpolation during simulation production could be smearing out the affect of the

layered ice properties. This could be related to the disagreements in the COGZ

distributions of horizontal events and the difficulty in trying to reproduce, in simu-
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lation, the event rate seen in the clean regions. Photonics based simulation is being

compared to other methods for simulating light propagation in the ice. This work

is on-going by various members of the Collaboration.

Fig. 8.5 is the same as Fig. 8.3, but with data renormalized so that the overall

number of events in data agrees with simulation and the fit parameters of the forward

folding applied to re-weighting events in simulation. The χ2 per bin is 1.8 in this

case, compared to about 2 prior to the fit, indicating that it is still not an overall

good fit. However, more troubling than the range in bin-by-bin fluctuations is the

systematic clustering of bins with excess events in data, and events with a deficit

in data. The highlighted regions in Fig. 8.6 show these troublesome areas. The

signal we are looking for in the VLI and decoherence models is a distortion of the

flux due to a deficit of up-going high energy events. The excess of up-going low

energy events and the excess of mid-energy horizontal events, as indicated in the

highlighted regions of Fig. 8.6, confuses the likelihood analysis.

8.6 Seasonal Variability in the Data

Seasonal and regional variations in atmospheric conditions are expected to lead

to variations in the atmospheric neutrino flux. Colder temperatures correspond to a

greater air density and a shallower atmosphere. Greater atmospheric density leads

to more collisions of pions and kaons prior to their decay. Hence, the production

of high energy neutrinos is reduced. The converse occurs for warmer temperatures.

The kinematics of collision and decay, and slant angle through the atmosphere,
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Figure 8.5: Bin-wise data/simulation comparison after additional zenith
cut, with data renormalized to same overall event count as simulation
and the fit parameters of the forward-folding used for re-weighting events
in simulation. The plot shows the statistical significance of the disagree-
ment between data and simulation in each of the 100 bins.
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Figure 8.6: Bin-wise data/simulation comparison after additional zenith
cut, with data renormalized to same overall event count as simulation,
and the fit parameters of the forward-folding used for re-weighting events
in simulation. This plot shows the statistical significance of the dis-
agreement between data and simulation in each of the 100 bins, just
like Fig. 8.5. Here, the systematic and problematic clustering of excess
events in the data is highlighted.
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complicate the impact of atmospheric variations on the energy and zenith angle

dependence of neutrino production.

The normalization error on the Honda conventional atmospheric neutrino flux

model due to uncertainties in the atmospheric density profile is estimated at 3%

[17, 132]. This is one component already included in the normalization uncertainty

nuisance parameter discussed earlier. However, the flux calculation uses an atmo-

spheric model (the US-standard ’76) that is a climatological average, and does not

account for regional or seasonal variations in the temperature profile. The estimate

of the error in the flux calculation is based on the error in the climatological average

atmospheric density profile. So the error estimate does not account for changes in

normalization, or in the energy and zenith distribution of atmospheric neutrinos,

due to local and temporal atmospheric variability.

A continuous twelve month period of data was used to evaluate seasonal vari-

ations. This period is 1 May 2008, to 30 April 2009. Fig. 8.7 shows the monthly

event rate over this period. The number of events in the final sample for each month

is normalized by the detector live time for that month.

The twelve months were also divided into four seasons as described in Table 8.2.

Fig. 8.8 shows the dE/dX and cos θZ distributions for each of the four seasons.

Each season has been normalized to the same average live time. The ∼ 4σ excess

in the cos θZ −0.4 to −0.5 bin for the February to April time period has not been

explained. Figs. 8.9 and 8.10 show the azimuth and RA distributions, respectively,

for this cos θZ region.

Seasonal comparisons in the following plots include the full 90 to 180◦ range.
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Figure 8.7: Monthly variability in event rate. Event rates are normalized
to events per day of live time.

Figure 8.8: dE/dX and cos θZ distributions for each of the four seasons.
Each season has been normalized to the same average live time. The
∼ 4σ excess in the fifth cos θZ bin from the right, for the February to
April time period, has not been explained.
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Figure 8.9: Azimuth distributions for each of four seasons, for the cos θZ
band −0.4 to −0.5. Each season has been normalized to the same live
time.
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Figure 8.10: RA distributions for each of four seasons, for the cos θZ
band −0.4 to −0.5. Each season has been normalized to the same live
time.
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Table 8.2: Seasonal Comparison of Data.

Season Months Events Live Time (hrs)

1 May - July 4796 2024.2
2 Aug - Oct 4942 2122.3
3 Nov - Jan 4579 1944.4
4 Feb - Apr 4445 1800.1

Fig. 8.11 shows the bin-wise comparison of data in each season to the entire year of

data. Each season and the entire year histogram have been normalized to the average

seasonal live time. Fig. 8.12 shows the statistical significance of the variability

indicated in Fig. 8.11. Fig. 8.13 shows the bin-wise comparison of data in each

season to simulation. Each season and simulation have again been normalized to

the average seasonal live time. Fig. 8.14 shows the statistical significance of the

variability indicated in Fig. 8.13.

As seen from the previous plots, seasonal variability appears to exhibit fea-

tures similar to that seen in the data/simulation comparisons. Seasonal and regional

temperature variations in the upper atmosphere could account for some part of the

data/simulation disagreement. However, statistical fluctuations are also contribut-

ing to these variations. It is not yet clear how much is due to random fluctuations

and how much can be attributed to atmospheric or detector effects. More data

from additional years of detector operation should clarify this picture. Additionally,

members of the Collaboration are using the 40-string data sample and in situ atmo-

spheric temperature measurements to quantify the relationship between neutrino

production rates and variations in atmospheric temperature profiles. This atmo-
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Figure 8.11: Bin-wise comparison of data in each season to entire year of
data. Each season and the entire year histogram have been normalized
to the average seasonal live time. Each bin shows the ratio of the number
events in that bin for the particular season to the average. Top left is
season 1; top right is season 2; bottom left is season 3; bottom right is
season 4. The color scale is clipped at 0.3 to 1.8 for ease of comparison
between each plot, creating some small errors in the red or purple bins
if this range is exceeded.
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Figure 8.12: Statistical significance for bin-wise, seasonal comparison of
data. Each bin shows the difference between the number events in that
bin for the particular season and the average, divided by the square-root
of the average. Top left is season 1; top right is season 2; bottom left is
season 3; bottom right is season 4. The color scale is clipped at −2 to 2
for ease of comparison between each plot, creating some small errors in
the red or purple bins if this range is exceeded.
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Figure 8.13: Bin-wise comparison of data in each season to simulation.
Each season and simulation have been normalized to the average seasonal
live time. The color scale is clipped at 0.2 to 2.5 for ease of comparison
between each plot, creating some small errors in the red or purple bins
if this range is exceeded.
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Figure 8.14: Statistical significance for bin-wise, seasonal comparison of
data to simulation. The color scale is clipped at −4 to 5 for ease of
comparison between each plot, creating some small errors in the red or
purple bins if this range is exceeded.
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spheric neutrino data sample will be used to compute zenith-dependent correlation

coefficients that relate corrections to the neutrino flux to deviations in the effective

temperature of the atmosphere.

CORSIKA was also used to evaluate the impact of seasonal variations on the

atmospheric neutrino flux. The flux of down-going muon neutrinos produced by

cosmic ray air showers for five different atmospheres were examined. The atmo-

spheres were standard South Pole atmospheres for the months of January, March,

July, October, and December, parameterized and available within CORSIKA. This

down-going neutrino flux does not directly correspond to the up-going flux that this

analysis is based on. The simulation in this CORSIKA-based study did not include

propagation through the Earth, interaction in or near the detector, and event selec-

tion cuts. However, by looking at variations in the neutrino rate at production, and

in the energy and zenith-dependence of the rate, we can still assess the importance

of atmospheric variability.

Fig. 8.15 shows the energy and zenith distributions for the CORSIKA-generated

muon neutrino flux for each of five atmospheres. Figs. 8.16, 8.17, and 8.18 compare

the shapes of the energy and zenith distributions from each month to the average

of the five months. In these plots that show the bin-wise ratio of number of events

and the statistical significance of the differences, the total number of events in each

of the five data sets has been normalized to the same value, so that the plots are

just evaluating differences in the shapes of the distributions. Similar to the sea-

sonal data comparisons, this study indicates that atmospheric variability can play

an important role in the two-dimensional likelihood analysis.
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Figure 8.15: Eν and cos θZ distributions for each of five South Pole
atmospheres, form CORSIKA. Note that this is a flux of down-going
neutrinos.

8.7 Other Possible New Physics Effects: Neutrino Cross Sections

Possible uncertainties in neutrino cross sections beyond the 3% discussed ear-

lier were investigated. Testing showed that it is possible to arbitrarily tune the cross

sections and improve the fit to the horizontal excess. However, plausible errors in

the parton distribution functions, or new physics effects, turn on too late to make a

realistic difference at the energy levels of this data sample. Uncertainties in PDFs

would affect CC and NC cross sections, but are not expected to be significant until

well above a PeV. Various theoretical and phenomenological models of new physics

predict significant enhancements to NC cross sections [133, 134, 135], however these

are also not expected to be consequential until above about a PeV. These models

include large extra dimensions and Kaluza-Klein gravitons, TeV string resonances,

production of microscopic black holes, and electroweak instanton fields.
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Figure 8.16: Bin-wise comparison of the neutrino event rates from the
July (top) and October (bottom) CORSIKA samples, to the average.
Bin-wise ratios are on the left. Statistical significance of the difference
between the event rate for the given month and the average is on the
right. The total number of events from July and October have been
normalized to the average value, so that the plots show differences in
the shapes of the distributions. For ease of comparison between figures,
the color scale has been clipped at 0.8 to 1.3 for the ratio plots, and -4
to 4 for the significance plots.
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Figure 8.17: Bin-wise comparison of the neutrino event rates from the
March (top) and December (bottom) CORSIKA samples, to the average.
Bin-wise ratios are on the left. Statistical significance of the difference
between the event rate for the given month and the average is on the
right. The total number of events from July and October have been
normalized to the average value, so that the plots show differences in
the shapes of the distributions. For ease of comparison between figures,
the color scale has been clipped at 0.8 to 1.3 for the ratio plots, and -4
to 4 for the significance plots.
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Figure 8.18: Bin-wise comparison of the neutrino event rates from the
January CORSIKA sample, to the average. Bin-wise ratios are on the
left. Statistical significance of the difference between the event rate for
the given month and the average is on the right. The total number of
events from July and October have been normalized to the average value,
so that the plots show differences in the shapes of the distributions. For
ease of comparison between figures, the color scale has been clipped at
0.8 to 1.3 for the ratio plots, and -4 to 4 for the significance plots.
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Chapter 9

Results

9.1 Atmospheric Neutrino Flux Unfolding

Fig. 9.1 shows the distributions, comparing data to simulation, for the ob-

servable dE/dX used for the unfolding. The additional cut at zenith angle of 97◦

has been applied. The results of the atmospheric neutrino spectrum unfolding can

be seen in Fig. 9.2. The blue lines indicate the unfolded spectrum and estimated

uncertainty. The red line is the simulated spectrum that provided the basis for the

response matrix. Note that this is the zenith-averaged flux for the region 97− 180◦.

The major uncertainties in the unfolded result come from six sources. These

are the homogeneous uncertainties in DOM sensitivity and ice properties, the zenith-

dependent data/simulation mismatch, statistical uncertainties, the impact of the

regularization process, errors in the response matrix due to event weighting in sim-

ulation, and miscellaneous normalization errors. The bin-by-bin values for each of

these error sources are added in quadrature to obtain the final error estimate for

each bin of the unfolded result.

The impact of statistical fluctuations in the data, i.e. Poisson variability of

bin counts, was determined using toy MC experiments. The toy spectrum was

made systematically different from simulation by re-weighting events according to

the output of the forward folding fit, to mimic the data. The results of the forward
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Figure 9.1: Distributions of the dE/dX observable, for data (blue) and
simulation (green), for the event sample used in the unfolding.

Figure 9.2: Results of the atmospheric neutrino spectrum unfolding. The
blue lines indicate the unfolded spectrum and estimated errors. The red
line is the simulated spectrum that provided the basis for the response
matrix. This is the zenith-averaged flux for the region 97− 180◦.

161



Figure 9.3: Comparison of the result of the forward folding fit (green) to
the baseline simulation (red) and the unfolded result (blue). Not shown
is the uncertainty in the forward folding result.

folding fit were ε = 0.95, ∆γ = −0.03, α = 0.02, and Ap = 0. Fig. 9.3 compares

the result of the forward folding fit (green) to the baseline simulation (red) and

the unfolded result (blue). 1000 trials were performed with the bin counts in each

toy dE/dX distribution varied in a Poisson fashion. The errors in each bin of the

unfolded results were computed and the 90th percentile for the errors in each bin

were assigned as the errors due to statistical uncertainties. The result of this analysis

is shown in Fig. 9.4, where the errors in each bin are given as percent of the true

flux.

Recall from Chapter 8, and the discussion of systematic uncertainties due to

DOM sensitivity and ice property measurement errors, that detector uncertainties

lead to quantitative uncertainties in the apparent neutrino flux. For a given detector
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Figure 9.4: Statistical uncertainties in the unfolded result. From toy MC studies.

response, i.e. a measurement of the dE/dX distribution, the true normalization,

spectral index, and zenith angle tilt of the neutrino flux can not be constrained

better than allowed by the nuisance parameters derived for DOM sensitivity and

ice property uncertainties. Fig. 9.5 shows the resulting range of uncertainty in the

atmospheric neutrino spectrum.

In Chapter 8, we also showed that there were some apparent, systematic dif-

ferences between the data and simulation, with energy and zenith-dependence that

are not explained by the theoretical or experimental nuisance parameters. Fig. 8.6

showed a different behavior on the left side (more upgoing events) of that plot, com-

pared to the right side (more horizontal events). A zenith angle cut of 124◦ splits

that plot in half and also splits the data sample in half. So an unfolding performed

with events in the zenith range 97 − 124◦ was performed, as well as an unfolding
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Figure 9.5: Possible variability in the true flux allowed by DOM and
ice property uncertainties. Red is the predicted atmospheric neutrino
flux ([17, 66]) used to train the unfolding algorithm. Blue and green
are the maximum and minimum, respectively, of the range of variability
consistent with DOM sensitivity and ice model uncertainties.
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Figure 9.6: Comparison of unfolded spectra for different zenith regions.
Separate unfoldings were performed for the zenith range 97−124◦ (blue)
and the zenith range 124−180◦ (green). The unfolded results for each re-
gion and the predicted spectrum corresponding to each region are shown.

using the zenith range 124− 180◦. The results of these tests are shown in Fig. 9.6,

as well as the predicted spectrum corresponding to each region. Each unfolded re-

sult differs from its associated prediction, but in different ways. For the upgoing

region (green in Fig. 9.6), the unfolded result is significantly less than predicted

for middle and higher energies. For the horizontal region (blue in Fig. 9.6), the

unfolded result is slightly higher than predicted for middle energies and slightly less

than predicted at higher energies. This contrasting behavior is consistent with the

data/simulation comparison in Fig. 8.6. The relative differences between result and

prediction for the two zenith regions is taken as an estimate of the impact of the

anisotropic uncertainties.

The choice of regularization parameter fixes the amount of smoothing that is
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applied to the unfolded solution, hence, the amount of bias between the shape of

the simulated distribution and fluctuations in the data. As discussed in Chapter 7,

testing indicated that the optimal choice for this was given by a value of kterm = 3

as input to the SVD unfolding algorithm. Some systematic error due to the reg-

ularization process is already accounted for in the toy MC study used to estimate

statistical uncertainties. That is because the toy MC experiments were systemat-

ically as well as statistically different from the reference simulation. However, the

nature of the regularization process is that it can hide features in the true spectrum

that are not present in the simulated spectrum. Such features would also not be

revealed by the forward folding fit. To estimate the extent by which this could be

occurring, the unfolding was repeated for various values of kterm. Fig. 9.7 shows the

unfolded result for different values of kterm. The disagreements between the result

with kterm = 3, and the results for kterm = 2 or 4, are taken as the uncertainty.

The response matrix maps the measured muon dE/dX distribution to the dis-

tribution of neutrino energies. It is created from simulation and is therefore subject

to numerical and statistical errors in the weights assigned in simulation. If no errors

were present, due to rounding of weighting factors or a finite event sample, for ex-

ample, then dividing the final simulated distribution by the numerically computed

effective area (Fig. 6.7) should reproduce the original spectrum. However, Fig. 9.8

shows the differences between the zenith-averaged flux from [17, 66] and the result

after converting the simulated final event distribution back to the original flux us-

ing effective area. This disagreement provides an estimate of the impact of event

weighting errors.
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Figure 9.7: Unfolded result for various values of kterm. Blue is kterm =
3 (nominal result), green is kterm = 2 (less biased toward data), red is
kterm = 4 (more bias toward data).

Figure 9.8: Introduction of errors through event weighting in simulation.
Red is the zenith-averaged flux from [17] and blue is the result after
converting the simulated final event distribution back to the original
distribution using effective area.
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Figure 9.9: Uncertainties in the unfolded result. Blue is the system-
atic uncertainty implied by anisotropic errors in data/MC comparisons,
green is the statistical uncertainty from toy MC studies, and red is the
systematic uncertainty due to DOM sensitivity and ice property uncer-
tainties.

A summary of uncertainties in the unfolded result can be seen in Figs. 9.9 and

9.10. In Fig.9.9, blue is the systematic uncertainty implied by anisotropic errors in

data/MC comparisons, green is the statistical uncertainty from toy MC studies, and

red is the systematic uncertainty due to DOM sensitivity and ice property uncer-

tainties. In Fig.9.10, blue is the systematic uncertainty due to event weighting in

simulation, green is the uncertainty due to the choice of regularization parameter,

and red is the uniform uncertainty due to miscellaneous errors assumed to be inde-

pendent of energy. The miscellaneous normalization uncertainties include neutrino

cross sections, background contamination, etc., as discussed in Chapter 8.

Comparisons to various flux models are shown in Fig. 9.11, Fig. 9.12, and

Fig. 9.13. Fig. 9.11 compares the Honda and Bartol conventional flux models to the
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Figure 9.10: Uncertainties in the unfolded result. Blue is the systematic
uncertainty due to event weighting, green is the uncertainty due to the
choice of regularization parameter, and red is the uniform uncertainty
due to miscellaneous errors assumed to be independent of energy.

unfolded results. Fig. 9.12 shows the range of uncertainty in the Sarcevic model as

discussed in [66]. Fig. 9.13 looks at various prompt flux models [66, 68, 67].

In order to constrain these various models, the DOM/Ice uncertainties and

the anisotropic uncertainties will have to be reduced. Statistical uncertainties will

naturally decrease as several years of live time are accumulated for the full IceCube

detector. Studies with cosmic ray muons, and with the flashers on each DOM, are

being used to improve DOM calibrations and the ice model. Work is also on-going

to identify and correct potential problems in simulation that could be contributing

to data/simulation mismatch.
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Figure 9.11: Comparison of Honda [17] and Bartol [16] models to unfolded result.

Figure 9.12: Comparison of the minimum and maximum of the Sarcevic
[66] prompt flux to unfolded result.

170



Figure 9.13: Comparison of various prompt flux models to unfolded
result. The flux models shown are the Honda flux, plus one of Sarcevic
[66], Naumov(RQPM) [68], or Martin(GBW) [67].

9.2 DFT Analysis: Violation of Rotational Invariance

Fig. 9.14 shows the distribution in RA, for events in the final data sample used

for the vector model analysis. Fig. 9.15 shows the energy reach of this sample, as

predicted by simulation. This data sample contains 7882 events, with declination

between −7 and −30◦ (zenith angle 97 to 120◦). Using the data as the input,

10,000 toy experiments were performed to determine whether the data was consistent

with the hypotheses of no sidereal signal. For each of the 10,000 tests, the RA of

all data events were randomized and the PSDs in modes n = 1 through n = 4

were computed. The true PSDs for data were then computed and compared to

these noise-only distributions. The data was consistent with no signal in any of the

modes. In particular, the PSDs for data were less than 34% of the trials for n = 1,
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Figure 9.14: RA distribution for events used in the vector model analysis.

92% for n = 2, 31% for n = 3, and 98% for n = 4. The power in even (discrete

cosine transforms) and odd (discrete sine transforms) were also checked, with similar

results.

Next, 400 trials using simulation were performed to determine the sensitivity

to the SME coefficients of the vector model, given the number and distribution of

events in the data. The average of each of these trials provided the following limits

on the aL and cL coefficients, at the 3 sigma level:

a
X(Y )
L < 1.8× 10−23GeV,

c
TX(TY )
L < 3.7× 10−27.

(9.1)

We have been able to improve the constraints on these coefficients, by about three

and four orders of magnitude, due to the long baseline of atmospheric neutrinos
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Figure 9.15: Energy reach of the neutrino sample in the vector model
analysis, from simulation.

and the high energy reach of IceCube. The limits stated above were determined by

varying one coefficient at a time, while keeping the other three fixed at 0. If aXL

and aYL are equal, and both are contributing to the oscillations, the upper limit is

aXL = aYL < 1.3× 10−23GeV,. Similarly, if cTXL and cTYL are equal, the upper limit is

cTXL = cTYL < 2.7× 10−27.

These upper limits depend on the zenith and energy distribution of atmo-

spheric neutrinos, and are thus affected by uncertainties in these quantities. The

impact of the theoretical and experimental uncertainties in the zenith distribution

are negligible. Uncertainties in the energy distribution do not affect sensitivity to

oscillations driven by the a
X(Y )
L coefficients. Uncertainties in the spectral index for

atmospheric neutrinos, discussed in Refs. [17, 66], lead to a ±4% change to the
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sensitivity for the c
TX(TY )
L coefficients, primarily due to uncertainty in the energy

distribution of the cosmic ray flux. DOM sensitivity and ice property uncertainties

affect the energy dependence of the effective area, and hence the distribution of

neutrino energies represented in the data. The specialized simulations with ±10%

enhanced photon populations were used to estimate this uncertainty in the energy

distribution, in a manner similar to the evaluation of DOM sensitivity and ice prop-

erty uncertainties for the unfolding analysis. DOM sensitivity and ice property

uncertainties lead to a ±11% change in sensitivity to the c
TX(TY )
L coefficients. These

uncertainties were added in the quadrature, and a net 12% increase (0.4 × 10−27)

has been included in the limits for c
TX(TY )
L stated in Eqn. 9.1.

9.3 Likelihood Analyses

9.3.1 Atmospheric Neutrino Spectrum

Fig. 9.16 shows the likelihood ratios for data, for the case where the nuisance

parameters for the prompt atmospheric neutrino flux have been promoted to physics

parameters. The results of the Feldman-Cousins analysis applied to the likelihood

ratios for the prompt flux parameters is shown in Fig. 9.17. The upper limit on the

normalization factor is Ap ∼ 2 at the 90% CL, with little sensitivity to the prompt

flux spectral index correction factor. However, this result still suffers from the

anomalous systematic uncertainties (previously discussed), which are not accounted

for in the remaining nuisance parameters.
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Figure 9.16: Likelihood ratios for data, for the case where the nuisance
parameters, Ap and ∆γp, for the prompt atmospheric neutrino flux have
been promoted to physics parameters.
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Figure 9.17: The upper limit on the prompt flux normalization factor is
Ap ∼ 2 at the 90% CL, with little sensitivity to the spectral index cor-
rection factor for the prompt flux. However, this result still suffers from
the anomalous systematic uncertainties (previously discussed), which are
not accounted for in the remaining nuisance parameters.
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9.3.2 VLI Models

Fig. 9.18 shows the likelihood ratios for data under the n = 1 VLI model.

Fig. 9.19 shows the same likelihood ratios if the minimum of the prompt flux am-

plitude is assumed to be 0, rather than 0.56 as stated in Chapter 8. Just from

the values of the likelihood ratios, it is apparent that the data rules out the null

hypothesis. That is, given the nuisance parameters that have been defined, the data

rejects the region of parameter space with no oscillations (bottom and left on the

plots). This is because the VLI model improves the fit to the data. Unfortunately,

the new physics corrections are improving the fit because the fit based on the stan-

dard model and current simulation is a poor fit due to unresolved systematics issues.

We can not be certain at this time whether this is a signal of new physics or un-

accounted detector systematics. Fig. 9.20 shows the likelihood ratios for the n = 1

VLI model as determined using data from the AMANDA-II detector in the disser-

tation of John Kelley [136]. The best-fit region for the AMANDA analysis covered a

very similar part of the parameter space, indicating that it may have been affected

by similar systematic uncertainties. However, in that case the null hypothesis was

not excluded. The event sample used in the AMANDA analysis contained about

5500 events, from 1387 days of live time over a seven year period from 2000 to 2006.

Hence, atmospheric variability may have been averaged out to a greater extent.

177



Figure 9.18: Likelihood ratios for data under the n = 1 VLI model.

Figure 9.19: Likelihood ratios for data, under the n = 1 VLI model.
Minimum of the prompt flux amplitude assumed to be 0.
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Figure 9.20: Likelihood ratios for the 2000-2006 AMANDA-II data under
the n = 1 VLI model. The white cell indicates the best fit value. From
the dissertation of John Kelley [136].
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Figure 9.21: Likelihood ratios for data under the n = 2 decoherence model.

9.3.3 Decoherence Models

Fig. 9.21 shows the likelihood ratios for data under the n = 2 decoherence

model. Fig. 9.22 shows the same likelihood ratios if the minimum of the prompt

flux amplitude is assumed to be 0. Once again, the sensitivity of the likelihood ratios

to the theoretical minimum in the prompt flux can be seen. The results indicated in

these plots are also dominated by systematic uncertainties that are not accounted

for in the nuisance parameters and we are unable to conclude whether the overall

behavior is due to some new physics or unresolved systematics.
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Figure 9.22: Likelihood ratios for data, under the n = 2 decoherence
model. Minimum of the prompt flux amplitude assumed to be 0.
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Chapter 10

Conclusions and Outlook

10.1 Summary of Results

An unfolding of the atmospheric muon neutrino flux, from 100 GeV to 400

TeV, was successfully performed. Estimates of statistical and systematic errors on

the result were determined. This unfolding result is interesting due to the high-

energy reach, however uncertainties will need to be reduced before various flux

models can be constrained. Uncertainties in DOM sensitivity and ice property

measurements can be reduced using atmospheric muons and the DOM flashers.

Also, once simulation of light propagation in the ice has been improved, it should be

possible to use a more sophisticated method for estimating the impact of ice model

uncertainties, obtaining a more accurate and perhaps smaller estimate of the induced

errors. It may also be possible to account for anisotropic variations in the neutrino

flux, due to regional and temporal variations in the atmospheric temperature profile,

by rescaling simulation using energy and zenith-dependent correlation factors and

in situ meteorological data.

A DFT analysis of the RA dependence of the atmospheric neutrino flux was

performed. The results were consistent with no sidereal modulation. In the context

of the SME and the vector model, constraints on certain Lorentz and CPT-violating

coefficients were improved by about three and four orders of magnitude.
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A likelihood analysis was developed to search for small perturbations in the

energy and zenith dependence of the atmospheric neutrino flux, such as predicted

by various phenomenological models of new physics. Systematic uncertainties, and

their impact on this type of analysis, were evaluated. Important systematic disagree-

ments between data and simulation have to be resolved before the likelihood analysis

can be used to constrain these models. These disagreements include an excess of

near-horizontal events in the data, and systematic zenith and energy dependent dis-

agreements that may be due, at least in part, to local and temporal atmospheric

variability. It may be necessary to consider energy-dependent or zenith-dependent

nuisance parameters.

In addition to accounting for atmospheric variability, other changes or im-

provements to simulation are needed. In particular, the inability to reproduce the

COG dependence of horizontal events indicates that the layered ice properties may

be getting smeared out in simulation. Better simulation for light propagation in the

detector is likely needed, and a possible alternative to Photonics is being developed

and tested by various members of the Collaboration. Additionally, more accurate

modelling of the production of the horizontal flux may be necessary, as well as

closer examination of the assumption that the up-going atmospheric neutrino flux

in IceCube is a mirror of the down-going atmospheric neutrino flux.
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10.2 Future Prospects and Refinements to the Methodology

Improvements to the event selection are certainly possible. However, BDT

event selection should play a leading role in IceCube analyses, particularly atmo-

spheric neutrino and diffuse flux analyses. While quite a bit of work went in to

optimizing the cuts and the BDT configuration for this analysis, the optimal config-

uration has likely not been found yet. Also, with the addition of more strings, and

new reconstruction algorithms that are being created, refinements and improvements

to this BDT configuration are likely possible.

Once the systematic issues discussed above are resolved, the likelihood analysis

should be revisited. Several years of data from the full 86-string detector will improve

the averaging of seasonal variations, as well as reduce the statistical uncertainties for

the likelihood analysis and the unfolding analysis. It should be possible to extend the

unfolding to about 105 TeV, and reduce the uncertainties to a level where different

flux models can be constrained.
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