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In this dissertation, numerical analysis of the statics and kinematics of icosahedron 

tensegrity cells are developed. The developed relationships are utilized to conceive one- 
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Chapter 1: Introduction 

1.1 Overview 

Since their invention in the middle of the twentieth century, tensegrity structures as 

shown in Figure 1.1 have been thoroughly researched and their use as deployable 

structures, structural elements, and mobile robots has been explored and demonstrated. 

Compared to more conventional structures, they have the advantage of being lighter, 

foldable, reconfigurable, and easier to model and control. 

 

Figure 1.1 Icosahedron tensegrity 

In this dissertation, we propose periodic arrays conceived by tessellating a simple 

tensegrity unit cell (along one and two directions) with the aim of combining the 

aforementioned attributes with an important characteristic of periodic structures, namely 

their ability to impede the propagation of disturbances that fall within certain frequency 

bands (known as stop bands or bandgaps). A successful implementation of such periodic 

tensegrity structures would extend the usefulness of tensegrity to vibration isolation 
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problems, as well as to the synthesis of tunable acoustic and elastic wave filters, in both 

the frequency and spatial domains. 

Moreover, some of the periodic structures we consider exhibit some very 

interesting elastic properties, namely the ratio of their bulk modulus to their shear modulus 

is on the order of 1000, two orders of magnitude higher than any naturally-occurring bulk 

material, suggesting that they may be suitable candidates for the synthesis of pentamode 

metamaterials, with many potential applications in the novel areas of acoustic and elastic 

cloaking. Such unique characteristics can be seen clearly in Figure 1.2. 

 

Figure 1.2 Multi-plane, high and stable shear deformations 

of icosahedron tensegrity 

 

1.2 Scope of this Dissertation 

In this dissertation, numerical analysis of the statics and kinematics of icosahedron 

tensegrity cells are developed. The developed relationships are utilized to conceive one- 

and two-dimensional periodic arrays by appropriate stacking icosahedron tensegrity cells. 

Alternative configurations for the periodic tensegrity arrays are considered for improved 
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band gap characteristics, and some of the conceived designs are manufactured using multi-

material 3D printing, and the resulting tensegrity cells and arrays are experimentally tested 

to investigate and verify the predicted static and dynamic characteristics. 

A new design for a periodic, tensegrity-based damper/vibration isolator is 

proposed, capitalizing on the periodicity to attenuate vibrations in the stop bands. The 

proposed design is 3D-printed and static and dynamic characterization experiments are 

carried out. 

Particular emphasis is placed here on investigating and demonstrating some of the 

very interesting elastic properties of the periodic/tensegrity structures. Among these is the 

very high ratio of the bulk modulus to the shear modulus which is shown to be on the order 

of 1000, approximating the behavior of liquids. 

1.3 Organization of the Dissertation 

In chapter 2 of this dissertation, we survey the available literature on the topics of 

tensegrity and periodic structures, along with a brief historical perspective. In Chapter 3 

we perform a numerical analysis of the statics and kinematics of the tensegrity building 

block we consider in this dissertation – the icosahedron tensegrity, followed by prototyping 

and testing of the tensegrity. In Chapter 4, we conceive one- and two-dimensional periodic 

arrays by stacking icosahedron tensegrity cells together, numerically investigate their static 

and dynamic characteristics, and prototype and test a one-dimensional array. In Chapter 5, 

we propose an alternative configuration for the periodic tensegrity arrays, and numerically 

investigate their static and dynamic characteristics. In Chapter 6, we propose and test a 

novel design for a periodic, tensegrity-based damper, developing the equations of motions 
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and mathematical model, then building the prototype, perform material characterization 

and device testing. Chapter 7 summarizes the major contributions of this dissertation and 

proposes future research directions. 

1.4 Summary 

 This chapter has presented a brief overview of the scope and organization of this 

dissertation with particular emphasis on the development of the fundamentals governing 

the operation of periodic/tensegrity structures in an attempt to investigate the effect of the 

topology of these structures on their wave propagation and mechanical filtering 

characteristics.  
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Chapter 2: Literature Review 

In this chapter, we survey the existing literature on tensegrity structures and 

periodic structures. 

2.1 Tensegrity Structures 

2.1.1 Origins and Historical Perspective 

The word “Tensegrity” was coined by architect and inventor Richard Buckminster 

Fuller [1] as a contraction of the expression “Tensional Integrity” to describe a class of 

structures that combine continuous tensile elements and discontinuous compressive 

elements, and which exist in a state of stable equilibrium without any external forces. 

Figure 2.1 shows a large-scale example of tensegrity – the needle tower in Washington, 

D.C. by artist Kenneth Snelson. 

 

Figure 2.1 The Needle Tower by Kenneth Snelson in Washington, D.C. 
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The structures themselves, however, predate the term and some controversy has 

persisted over the years over who should be credited with their invention. The first 

tensegrity is now believed [2, 3] to have been created as a work of art by Latvian artist Karl 

Ioganson around 1920 and was displayed in an exhibition in Moscow in 1921, with 

photographs of the structure later reported in [4]. The structure “consists of three bars and 

seven cables and is handled by means of an eighth unstressed cable, the whole being 

deformable” [2, 5]. 

In the United States, and with no obvious connection to Ioganson’s earlier work, 

Fuller reports in the mid 1940’s [6] to have been thinking about the interplay between 

compressive and tensile elements in Nature and the potential of using this duality in man-

made structures. However it was not until 1948 that artist Kenneth Snelson, then Fuller’s 

student at Black Mountain College in North Carolina, actually created the first tensegrity 

(the “X-piece”, shown in Figure 2.2) which conformed to Fuller’s idea of Energetic-

Synergetic Geometry [1, 7].  

 
Figure 2.2 The X-piece tensegrity by Kenneth Snelson [7] 
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In the years that followed, both Snelson and Fuller proceeded to design and create 

their own tensegrity structures, Snelson primarily focusing on their artistic value [8] and 

Fuller exploring their potential use as structural building blocks [9]. An exhibition at the 

New York Museum of Modern Arts in 1959 showcased Fuller’s 36-foot high Tensegrity 

Mast and other works, and dedicated a (much smaller) display for Snelson to display his 

own tensegrity designs. The museum credited the latter with discovering the principle on 

which Fuller’s Mast was based, while also acknowledging the role of Fuller’s theories in 

leading to this discovery [10]. While Fuller himself initially recognized Snelson as the 

inventor of the first tensegrity [1, 11], he later dropped any mention to Snelson from his 

works and maintained that all his own earlier works dating back to 1927 were in fact 

tensegrity structures [10]. 

In the late 1950’s and early 1960’s, several patent applications about tensegrity 

structures were filed almost simultaneously by Fuller [12], David Emmerich in France [13], 

and Snelson [14]. Each of these first three patents described the same basic structure built 

from three compressive elements and nine tensile elements, and all emphasized the 

continuity of tensile elements and discontinuity of compressive elements. Despite the 

similarity between the patents, it is worth mentioning that Emmerich – who was influenced 

by Ioganson’s earlier work [2, 15] – is perhaps the most explicit in his patent about the 

self-tensioning property of the structure’s elements as a condition for its equilibrium.  

Authorship controversy aside, many researchers today [5, 16] agree that all three 

men contributed greatly to the discovery and development of tensegrity. And if lines must 

be drawn, Fuller may be credited with being a visionary and a promoter of the concept of 

tensegrity, Snelson with bringing Fuller’s theories and ideas to life with his original 
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creations, and Emmerich of being a pioneer in his own right and the first experimentalist 

in this area. 

2.1.2 Tensegrity Definition 

While Fuller did not formally define what a tensegrity is, his writings and patent 

refer to structures with discontinuous compression and continuous tension, or “islands of 

compression in a sea of tension”. The first widely accepted definition of a tensegrity was 

thus given by Pugh in 1978 [17] to describe Fuller’s structures: “A Tensegrity system is 

established when a set of discontinuous compressive components interacts with a set of 

continuous tensile components to define a stable volume in space”. 

After rigorous analysis of Fuller’s tensegrity structures, Calladine [18], Tarnai [19], 

Pellegrino [20], and Hanaor [21] observed that they were a class of pre-stressable structures 

that were statically and kinematically indeterminate. The kinematic indeterminacy 

manifests itself in the form of ‘infinitesimal mechanisms’ – mechanisms that cause small 

changes in the lengths of the members, which are on second or higher order of the nodal 

displacements – which get stiffened as a result of the pre-stress. 

Motro in 1992 [15] synthesized a new definition which emphasized self-stress as a 

condition for stiffness, while doing away with the discontinuity of compression elements: 

“Tensegrity systems are systems whose rigidity is the result of a state of selfstressed 

equilibrium between cables under tension and compression elements and independent of 

all fields of action”. However, in a new definition in 2003 [5], he re-affirms the 

discontinuity of compression elements and does not require pre-stress as a condition for 

stiffness: “A tensegrity system is a system in a stable self-equilibrated state comprising a 



9 

 

discontinuous set of compressed components inside a continuum of tensioned 

components”. 

Meanwhile, Skelton and his collaborators (e.g., [16, 22, 23]) have generally viewed 

tensegrities as pre-stressed stable connections of compression and tension elements, where 

the tension elements are necessary to stabilize the structure. Their work has expanded the 

definition of a tensegrity in two ways: first, they include structures that do not feature any 

mechanisms, e.g., [16, 23]. These are statically indeterminate but kinematically 

determinate structures, which were also considered by [24-26]. Second, they define a Class 

k tensegrity as a tensegrity that has at most k compression elements connected at each node. 

Therefore class 1 tensegrities would include the structures conceived by Fuller and others 

where the compression elements are discontinuous within a continuum of tensile elements, 

while tensegrities of class 2 or higher would allow at least some degree of continuity of the 

compression elements. 

Based on the differing views presented above, we can see that there are some 

aspects of the definition of a tensegrity on which there is a consensus, namely that they are 

reticulated structures where elements are uniquely loaded in tension or in compression. 

Tension elements cannot sustain compression, while compression elements can sustain 

both tension and compression but are only loaded in compression. The structures possess 

one or more states of self-stress, and they exist in a state of stable equilibrium in the absence 

of external forces. In our view, requiring the discontinuity of compression elements or the 

presence of infinitesimal mechanisms that get stiffened by pre-stress is unnecessarily 

restrictive. 
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2.1.3 Tensegrity Literature Survey 

For the first thirty years of their existence, tensegrity structures were viewed as 

works of art and objects of mechanical and structural curiosity. It was Calladine in 1978 

[18] who performed the first rigorous analysis of their kinematics and statics. He analyzed 

Fuller’s 6-bar, 18-tendon tensegrity in light of Maxwell’s rule for the stiffness of structures 

[27], and noted that while the tensegrity had fewer elements than necessary for stiffness 

according to Maxwell, expecting it to be “loose” due to the presence of mechanisms; it was 

nonetheless a stable structure. He showed that the tensegrity fits under an exception to the 

rule – which Maxwell himself had predicted – wherein the geometry and the configuration 

of the structure ensure that the resulting mechanisms (six in this case) are infinitesimal and 

that at least one state of self-stress (static indeterminacy) exists which endows the structure 

with a first-order stiffness (a stiffness on the order of the pre-stress). 

Probing further, Tarnai [19] investigated the nature of the structures’ mechanisms 

and the conditions under which the pre-stress will stiffen a structure. Pellegrino and 

Calladine [20, 28] then followed by developing a matrix approach to analyze a general pin-

jointed structure from a kinematic and static determinacy viewpoint, enumerating the 

mechanisms and states of self-stress that it may possess, and – using a ‘product-force 

vector’ method – determine whether the state(s) of self-stress would impart stiffness to the 

mechanism(s) and therefore result in a stable structure. 

Oppenheim and Williams [29] derived the nonlinear force-displacement 

relationship arising from geometric stiffening in a tensegrity subject to pre-stress. They 

concluded that the pre-stressed structures are quite soft in the vicinity of their equilibrium 

configurations, with the stiffness increasing dramatically with finite, small displacements. 
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Guest [30, 31] and Skelton [16] studied the stiffness of tensegrity using the a stress matrix 

formulation to derive the tangent stiffness matrix of tensegrity, which decomposes into two 

components: a linear stiffness matrix derived from small deformations of the elements, and 

a geometrical stiffness matrix induced by the pre-stress. 

 A significant body of literature has been devoted to the problem of form-finding 

for tensegrity structures, i.e., finding an equilibrium configuration and the corresponding 

member forces for a given set of elements, or conversely, coming up with design 

requirements that satisfy some desired equilibrium configuration. Tibert and Pellegrino 

[32], and later Juan and Mirats-Tur [33], provide detailed surveys of previous form-finding 

methods and classify them into two categories: kinematical methods, e.g., [34-36], and 

statical methods, e.g., [37-39]. More recently, several new approaches have been developed 

to tackle the form-finding problem, e.g., using finite element [40], Monte Carlo method 

[41], and genetic algorithms [42, 43]. 

With the aim of designing efficient structures, de Jager and Skelton [23] optimize 

the stiffness and stiffness-to-mass ratio of planar tensegrity truss structures by varying the 

topology, geometry, and material distribution of the structure, using symbolic expressions 

for the stiffness that they derived in [44]. Masic et al. [45] follow a numerical approach to 

tackle the same optimization problem, while imposing shape, boundary conditions, 

strength and buckling constraints. 

The investigation of tensegrity dynamics began with Motro et al. [46] who derived 

a static and dynamic linear analytical model for the “simplex” tensegrity (three struts and 

nine cables) and built an experimental setup to test their model. Tests showed very good 

agreement between theory and experiments. Furuya [47] performed a finite element 
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analysis of the vibration characteristics of tensegrity masts and studied the effect of initial 

tension on the natural frequencies of the structures. 

In a two-part paper, Murakami [26, 48] derived the nonlinear equations of motion 

for tensegrity structures. He linearized the equations around a pre-stressed equilibrium 

configuration in order to perform a finite element harmonic modal analysis and to 

investigate the equilibrium and stiffness of the pre-stressed structures. Independently, 

Oppenheim and Williams [49, 50] derived the nonlinear equations of motion for a simple 

tensegrity structure incorporating damping along the cables and conducted vibration 

experiments and numerical simulations. Concerned with damping, they observed that the 

decay of vibration amplitude occurs at a much slower rate than would be expected with 

linear damping, which would make the structures unsuitable for applications. However, 

they also noted that by introducing linear damping at the joints, the equations of motion 

became linearly damped and vibrations decayed exponentially with time. 

Sultan [39] and Sultan et al. [51] developed nonlinear dynamic models for multi-

layer tensegrity structures, then proceeded to linearize the equations of motion around 

equilibrium configurations to obtain linear models and investigated the resulting mass, 

stiffness, and damping matrices. Skelton et al. [52] developed a nonlinear dynamic model 

for a large tensegrity shell structure, and later in [53], Skelton generalized the work to any 

tensegrity and used  matrix differential equations to express the dynamics of the problem. 

In a series of paper, Arsenault and Gosselin [54-56] analyzed the kinematics, 

statics, and dynamics of planar tensegrity modules with one, two and three degrees of 

freedom, respectively, and made the observation that under certain configurations the 

overall stiffness of the tensegrity becomes negative. 
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In the area of control, Djouadi et al. [25] simulated an optimal control algorithm to 

control the oscillations of a cantilever tensegrity structure by altering the pre-tension in the 

cables. Sultan and Skelton [57] integrate the control system design problem with the 

structural design of the tensegrity by simultaneously considering the static design, 

linearized dynamic equations, actuator locations and required control effort. They 

concluded that this approach resulted in a better system performance than if the sequential 

approach was followed. 

Chan et al. [58] experimentally used feedback control to control the vibration of a 

three-stage tensegrity structure using piezoelectric transducers. The experiments showed 

significant damping for the first two bending modes. De Jager and Skelton [59] developed 

an algorithm for the efficient placement of actuators and sensors for a planar tensegrity to 

achieve a desired level of performance. Bel Hadj Ali and Smith [60], building on [61, 62], 

conducted active vibration control simulations and experiments on a large tensegrity 

structure. They successfully used a multi-objective control strategy to move the structure’s 

natural frequencies away from the excitation frequency by altering the pre-stress in the 

structure. 

Even though tensegrity structures saw their debut in the worlds of art and 

architecture, it wasn’t long before the engineering community started paying attention to 

their attractive attributes: they are lightweight compared to similar truss and frame 

structures, feature a large stiffness-to-mass ratio, and have the added advantage of being 

foldable and easy to deploy. Moreover, while a tensegrity can support bending, its 

individual elements are only loaded in tension or compression, which results in simpler 

and more precise mathematical models. Finally their components can simultaneously act 
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as load-bearing elements and as sensors/actuators, enabling engineers to monitor and 

control the structure’s configuration and dynamics. 

Capitalizing on these characteristics, the use of tensegrities as deployable space 

structures, such as antennae, masts and satellite reflectors, has been analyzed and 

demonstrated, e.g., in [47, 63-66]. Tensegrity-based morphing wings [67], fins [68] and 

airfoils [69] have also been investigated, and tensegrity robots, able to crawl or slide by 

changing the tensions in the tendons, have been designed and built [70-74]. 

With regards to fabricating the structures, steel cables, wires and fishing line were 

among the materials used for the flexible tendons, while metallic or wooden bars and pipes 

have been used as the compression elements, with the assembly usually put together by 

hand. Amendola et al. [75] were the first to use additive manufacturing to partially build 

tensegrity prisms and columns, and more recently, Liu et al. [76] demonstrated active 

deployable tensegrity structures that are 3D-printed from thermally responsive shape-

memory polymers. 

In the area of biomechanics, tensegrity structures have been suggested as valid 

models for the study of viruses [77], the cell cytoskeleton [78], the spine [79] and the bone-

muscle structure of humans and animals [80, 81]. In nanotechnology, a tensegrity 

architecture has been successfully used for assembling and building DNA molecules [82-

84], with many potential applications in the areas of diagnostics, drug delivery and bio-

sensing. 
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2.2 Periodic Structures 

A periodic structure is an array of identical elements connected together in an 

identical manner. The periodicity may be linear or circular, and may occur along one, two, 

or three axes. Periodic structures are abundant in nature (e.g., the molecular structure of 

crystalline solids, honeycombs) and in engineering applications (e.g., railway tracks, skin-

stringer structures in aircraft fuselage, and cellular structures). Engineered periodic 

structures are easier to manufacture and assemble than uniform structures and are typically 

characterized by a high strength-to-weight ratio and high impact and temperature resistance 

[85], as well as favorable dynamic characteristics making them good candidates as 

vibration isolators and waveguides [86]. 

In an excellent historical account, Brillouin [87] traces the study of the dynamics 

of periodic structures back to Newton and his attempt to derive a formula for the speed of 

sound in air, in which he modeled sound as an elastic wave propagating along a one-

dimensional lattice of equally-spaced point masses connected by springs. Towards the end 

of the nineteenth century, Lord Kelvin, building on the work of Newton, Cauchy, and 

Baden-Powell, derived the dispersion curves of a two-particle lattice which exhibited the 

behavior of a band-pass filter. A physical model of the lattice was later constructed by 

Vincent [88], and his experimental results matched Kelvin’s analysis. Electric analogues 

of the mechanical periodic arrays were investigated by Heaviside and Vaschy and were 

successfully realized by Pupin in 1900 and by Campbell in 1906, leading to the invention 

of electric filters and the telephone loading coil [87, 89-91]. 

During the first half of the twentieth century, a renewed interest in the problem 

emerged, albeit from the field of solid-state physics, to investigate the behavior of electrons 
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and the propagation of electromagnetic waves in crystals (e.g., Born and von Karman [92], 

Bloch  [93], and Wigner and Seitz [94]). The theorem developed by Bloch stated that for a 

wave propagating in an infinite lattice of identical cells, the change in the complex wave 

amplitude from one cell to the next does not depend on the cell’s location within the 

medium. The theorem was based on an earlier theorem by Floquet to solve Mathieu’s 

equation, and effectively reduced the problem of analyzing the dynamics of an infinite 

periodic structure to the study of the repeating unit cell. Brillouin [87] used Bloch’s 

theorem to investigate the propagation of waves in several mechanical and electrical 

periodic systems, and provided detailed physical and mathematical insights of these 

systems. 

Cremer and Leilich [95] were the first to adopt the wave approach to investigate 

the bending vibrations of periodic beams and were the first to show that waves can 

propagate without decay only in certain frequency bands, known as propagation bands or 

pass bands, which alternated with other frequency bands – attenuation bands or stop bands 

– where wave propagation was prohibited as the wave decayed as it spread. The term 

bandgap is also often used, especially in the solid state physics literature [96], to refer to 

the stop bands. 

Miles [97] used a difference equation formulation to investigate the normal modes 

of vibration of a continuous beam supported on many supports. Lin [98] followed the same 

approach to investigate the vibration of continuous skin-stringer panels, typical of aircraft 

fuselage panels. They observed that the structures behaved like band-pass filters and that 

the natural frequencies fall within the frequency pass bands. Lin and McDaniel [99] later 

used the Transfer Matrix method to determine the frequency response of an Euler-Bernoulli 
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beam of finite length resting on many elastic supports, with and without external damping 

units. 

Heckl [100] performed a theoretical analysis of the propagation of bending and 

torsional (or longitudinal) waves in beams with periodic discontinuities and in grillages. 

He considered successive reflections and transmissions at the discontinuities, as well as the 

conversion between bending and torsional (or longitudinal) waves. He concluded that the 

vibration patterns in all periodic sections are similar and that existed a “propagation 

constant” which relates the wave amplitude in one periodic cell to that in the next cell, and 

which does not depend on the cell’s location. He derived approximate expressions for the 

propagation constants in terms of the reflection and transmission coefficients, and observed 

that, for each type of waves, there existed frequency bands with high attenuations and 

others with no attenuation. 

Significant contributions to this field were made by Professor Denys Mead and his 

students and collaborators [101]. Sen Gupta [102, 103] studied the free and forced vibration 

of beams, plates, and skin-rib structures by extending the wave propagation technique – 

originally due to Brillouin’s work – to the fourth-order differential equations governing 

beams and plates. He also presented methods of finding the natural frequencies of finite, 

supported beam structures, from the characteristic propagation constant. 

In 1973, Mead [104] developed a general method based on Bloch’s theorem to 

investigate harmonic wave propagation in one-and two-dimensional periodic structures, 

with and without damping. Orris and Petyt [105] combined Mead’s method with the finite 

element method to obtain the propagation constants for a multi-supported beam and for a 
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skin-rib structure, typical of an aircraft tailplane. The numerical results of both problems 

converged rapidly to the exact solutions available. 

Aside from the periodic structures’ characteristic pas and stop bands, Hodges [106] 

investigated the effect that disruptions to the perfect periodicity of the lattice would have 

on its wave transmission characteristics in the pass bands. He concluded that introducing 

disorder has a confining effect, preventing the propagation of vibrations at large distances 

from the source. This phenomenon is known as “localization” and had been predicted by 

Anderson [107] in the context of solid-state physics. Experiments and further quantitative 

analyses of the localization factor were subsequently carried out, e.g., in [108-110]. Gei 

[111] investigated the effect of quasi-periodicity on the propagation of axial and flexural 

waves in rods and beams. 

Sigalas and Economou [112] and Kushwaha et al. [113] applied Bloch’s theorem 

to investigate the propagation of acoustic and elastic waves through a periodic medium 

consisting of identical inclusions (spheres or cylinders) placed periodically in a 

homogeneous material, and demonstrated the existence of frequency band gaps and their 

dependence on the volume fraction and material properties of the two phases. They named 

such composites “phononic crystals” and saw their potential as acoustic and elastic wave 

filters. 

Langley [114] showed that two-dimensional periodic media, in addition to 

exhibiting the frequency pass and stop bands characteristic of one-dimensional periodic 

media, also exhibit directional filtering behavior: the presence and width of pass and stop 

bands will depend on the considered direction of wave propagation on the structure’s 

surface. 
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Baz and coworkers [115-117] introduced active periodic structures, conceived by 

adding either piezoelectric actuators or shape memory inserts periodically along otherwise 

homogeneous rods. The inserts are actively controlled (electrically or thermally) in order 

to tune the location and width of the stop bands of the now periodic structure. The authors 

also utilized the localization phenomenon to confine vibration to a specific region of the 

structure by selectively tuning its components, thus creating both spectral and spatial 

filtering effects in one-dimensional structures. 

Ruzzene et al. [118] used Bloch’s theorem to investigate out-of-plane vibration of 

two-dimensional honeycomb grids and the effect of changing the cells’ geometry on the 

directional characteristics of the waves. They verified their findings numerically and 

concluded that the geometry can be tuned to yield a desired spatial filtering effect, making 

such cellular grids attractive for vibration attenuation and isolation applications. Phani et 

al. [119] followed the same approach to investigate the propagation of plane waves in two-

dimensional periodic lattices with different cellular topologies. Spadoni et al. [120] 

extended the analysis to hexagonal honeycomb lattices in a chiral configuration. 

Hutchinson and Fleck [121] investigated the structural mechanics (namely, states 

of self-stress and collapse mechanisms) of infinite periodic trusses by applying Bloch’s 

theorem to the equilibrium and compatibility equations, extending the matrix methods 

developed by Pellegrino and Calladine [20] to the periodic case. 

Hussein [122] and Hussein and Frazier [123] developed the “Bloch modal analysis” 

framework to analyze periodic materials incorporating viscous damping and investigated 

the effect of damping on the frequency band structure. Meanwhile, Farzbod and Leamy 

[86, 124] conducted a rigorous analysis of Bloch’s method and its applicability to the study 
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of wave propagation in periodic structures. In [125], they extended the method to the study 

of periodic structures with general damping and investigated the resulting dispersion curves 

and band structures. 

A different mechanism for impeding wave propagation in structures involves the 

introduction of locally-resonant structural units within the larger structure. The resonators 

are tuned to specific frequencies and act as vibration isolators at those frequencies, 

preventing wave propagation through the main structure. Liu et al. [126] realized a sonic 

crystal that utilized this concept and featured stop bands at wavelengths two orders of 

magnitude higher than would be possible using periodicity alone. The material also 

exhibited negative elastic constants at certain frequencies. 

Several authors have since explored the use of local resonance as a mechanism to 

create and control stop bands, e.g., in beams [127-129], plates [130, 131], solid media with 

rubber or vacuum cylindrical inclusions [132], or in a fluid with embedded hollow spheres 

or cylinders [133]. Gonella et al. [134] used small piezoelectric beams as the local 

resonators in a hexagonal honeycomb lattice, combining wave filtering with energy 

harvesting. The investigation of the nature of the stop bands occurring due to local 

resonators and how they differ from those occurring due to the more conventional Bragg 

scattering phenomenon of periodic structures, as well as the necessary conditions to 

transition from one type to the other, were investigated, e.g., in [135-137]. 

From a design perspective, many authors have followed an optimization approach 

with the goal of maximizing the width of a particular stop band, e.g., by finding the 

optimum topology of the periodic inserts [138] or the optimum magnitude and placement 

of locally-resonant masses [139], or by using genetic algorithms to find the optimal 
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geometry and mechanical properties of the periodic inclusions [140]. Hussein et al. [141, 

142] also used genetic algorithms to maximize the number and total width of stop bands 

within a certain frequency range, for one- and two-dimensional periodic phononic crystals. 

Research into tunable periodic and locally resonant structures has also emerged, 

with the goal of controlling the widths and/or center frequency of stop bands to 

accommodate different applications or excitation frequencies. Techniques used include the 

application of an electric field to change the size of periodic cylindrical inclusions [143], 

the use of a magentostrictive material and applying an external magnetic field [144], 

mechanically rotating periodic inclusions [145], controlling the pre-stress applied to the 

structure [111, 146], and using piezoelectric materials as local resonators whose properties 

can be controlled with shunted electrical circuits [147, 148]. 

The pass and stop band phenomenon characteristic of periodic and locally resonant 

structures, combined with their directional filtering characteristics, have enabled their use 

as spectral and spatial filters for sonic [126, 149, 150], ultrasonic [151], and elastic [152] 

waves, as well as sonic waveguides [153]. Their use has also been demonstrated for 

vibration reduction [154] and isolation [155] in machine elements and in buildings [156, 

157]. 

Locally resonant structures, which have also been found to exhibit negative elastic 

moduli in some frequency ranges, have been utilized to synthesize phononic metamaterials 

– materials which exhibit unconventional properties, such as negative effective density, 

elastic modulus, and/or index of refraction [158-161] – with applications in the novel realm 

of acoustic and elastic invisibility cloaks [162]. 
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Phononic metamaterials built with periodic and locally-resonant structures have 

also been used to design lenses for acoustic [163, 164] and elastic [165] waves, capable of 

imaging with resolutions below the diffraction limit [166, 167] and of focusing high energy 

acoustic pulses which could be used as nonintrusive scalpels [168]. Olsson and El-Kady 

[169] report on microfabricated phononic crystals with applications in RF 

communications, medical imaging, and nondestructive testing. 

2.3 Summary 

This chapter has presented a brief survey of the existing literature on tensegrity 

structures and periodic structures.  In the presented survey, emphasis is placed on the 

individual basic dynamic and wave propagation characteristics of each of the tensegrity 

and periodic structures.  Integration of these characteristics by treating assemblies of 

tensegrity unit cells as periodic structures is the main objective of this dissertation in order 

to demonstrate their unique wave propagation and mechanical filtering characteristics. 
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Chapter 3: Static and Kinematic Analysis 

 of Icosahedron Tensegrity 

3.1 Introduction 

In this chapter we investigate the icosahedron tensegrity, first proposed by 

Buckminster Fuller [170, 171]. We describe the structure then analyze its static and 

kinematic determinacy and what qualifies it as a tensegrity; we then determine the elastic 

coefficients of the tensegrity. 

3.2 Unit Cell Description and Material Properties 

 The tensegrity is shown in Figure 3.1, along with its three orthographic projections. 

It consists of six identical compression elements (bars or struts) and twenty-four identical 

tension elements (tendons or strings). The bars are arranged in three pairs where each pair 

of parallel bars defines a plane that is orthogonal to the planes created by the other two 

pairs. The resulting shape has twelve vertices and twenty triangular faces (hence the prefix 

icosa-, from the Greek word for twenty). 

The compression elements are chosen to be cylindrical bars of length 𝑙𝑏, cross-

section radius 𝑟𝑏, density 𝜌𝑏 and modulus of elasticity 𝐸𝑏. The flexible tensile elements are 

massless strings with cross-section radius 𝑟𝑠 and stiffness 𝐾𝑠. The working length of any 

string element is calculated to be 𝑙𝑠 = √3 8⁄ 𝑙𝑏, and pre-stress can be introduced to the 

structure by choosing shorter strings and pre-tensioning them. Table 3.1 lists the 

dimensions and material properties of the bars and strings. Table 3.2 lists the Cartesian 

coordinates of each vertex, assuming the origin of the coordinate system lies at the centroid 
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of the tensegrity, and Table 3.3 provides a numbering system for the bars and strings, which 

will be useful in the finite element formulation of the problem. 

 

 

Figure 3.1 Icosahedron tensegrity 

𝑙𝑏 13 𝑐𝑚 𝑙𝑠 √3 8⁄ 𝑙𝑏 

𝑟𝑏 5 𝑚𝑚 𝑟𝑠 2.5 𝑚𝑚 

𝜌𝑏 500 𝑘𝑔/𝑚3   

𝐸𝑏 109 𝑁/𝑚2 𝐾𝑠 5000 𝑁/𝑚 

Table 3.1 Geometric and material properties of tensegrity elements 



25 

 

 

Vertex number X Y Z 

1 −𝑙𝑏/2 −𝑙𝑏/4 0 

2 −𝑙𝑏/2 𝑙𝑏/4 0 

3 𝑙𝑏/2 −𝑙𝑏/4 0 

4 𝑙𝑏/2 𝑙𝑏/4 0 

5 0 −𝑙𝑏/2 −𝑙𝑏/4 

6 0 −𝑙𝑏/2 𝑙𝑏/4 

7 0 𝑙𝑏/2 −𝑙𝑏/4 

8 0 𝑙𝑏/2 𝑙𝑏/4 

9 −𝑙𝑏/4 0 −𝑙𝑏/2 

10 𝑙𝑏/4 0 −𝑙𝑏/2 

11 −𝑙𝑏/4 0 𝑙𝑏/2 

12 𝑙𝑏/4 0 𝑙𝑏/2 

Table 3.2 Coordinates of tensegrity vertices 

BARS STRINGS 

Member 

number 

Start –

end 

Member 

number 

Start – 

end 

Member 

number 

Start – 

end 

Member 

number 

Start – 

end 

Member 

number 

Start – 

end 

1 1 – 3 7 1 – 5  13 2 – 11  19 4 – 8  25 6 – 11  

2 2 – 4 8 1 – 6  14 2 – 8  20 4 – 7  26 6 – 12  

3 5 – 7 9 1 – 11  15 3 – 5  21 4 – 10  27 7 – 9  

4 6 – 8 10 1 – 9  16 3 – 6  22 4 – 12  28 7 – 10  

5 9 – 11 11 2 – 7  17 3 – 10  23 5 – 9  29 8 – 11  

6 10 – 12 12 2 – 9  18 3 – 12  24 5 – 10  30 8 – 12  

Table 3.3 Numbering scheme for tensegrity elements 

3.3 Static and Kinematic Analysis of the Unit Cell 

3.3.1 Overview of the Procedure 

Given a proposed tensegrity configuration, we follow the procedure developed by 

Calladine and Pellegrino [18, 20, 28] to identify the mechanisms and states of self-stress 

that it may possess and investigate its stability. 

The first step is the construction of the structure’s equilibrium matrix, 𝐴, which 

relates the forces in the members to the applied nodal forces, according to the matrix 

equation 
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where 𝐭 and 𝐅 are the vector of member force densities (in units of force per length) and 

the vector of nodal forces, respectively.  

Alternatively, one may choose  to construct the structure’s kinematic matrix, 𝐇, 

which is the transpose of the equilibrium matrix [18] and which relates small nodal 

displacements to elongations in the members, as shown by the kinematic equation 

 𝐇 ∙ 𝐪 = 𝐞 (3.2) 

where 𝐪 and 𝐞 are the vector of nodal displacements and the vector of the members’ 

elongation coefficients (defined as the product: elongation × length), respectively.  

We compute the rank of the equilibrium matrix, and determine its left and right null 

spaces. Every right null vector represents a state of self-stress – a configuration of member 

loading that is in equilibrium under no external forces; the presence of which renders the 

structure statically indeterminate. Every left null vector (or, equivalently, every right null 

vector of the kinematic matrix) represents an inextensional mechanism – a set of nodal 

displacements that involve no changes in members’ lengths, to first order approximation; 

the presence of which renders the structure kinematically indeterminate. 

Any mechanisms identified in the previous step will fall into one of three 

categories: 

i. Finite (large displacement) mechanisms involving absolutely no changes in 

members’ lengths. 

 𝐀 ∙ 𝐭 = 𝐅 (3.1) 
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ii. Infinitesimal mechanisms involving small changes in members’ lengths that 

are of second order in terms of nodal displacements. 

iii. Infinitesimal mechanisms involving small changes in members’ lengths that 

are of third or higher order in terms of nodal displacements. 

Tarnai [19] and Pellegrino and Calladine [20] show that given a statically and 

kinematically indeterminate structure whose mechanisms fall exclusively into the second 

category, pre-stressing the structure in accordance with its state(s) of self-stress will impart 

stiffness to those mechanisms and stabilize the entire structure. The stiffness of the 

structure will be on the order of the pre-stress, and they refer to such mechanisms as “first-

order inextensional mechanisms”. Pre-stressing the structure will, however, have no effect 

on any finite mechanisms, or any mechanisms that involve deformations that are of third 

or higher order in the nodal displacements. 

In order to identify which category the mechanisms belong to, Pellegrino and 

Calladine developed the “Product-Force vector” method, which, conceptually, activates 

one mechanism at a time, loops through the states of self-stress, and checks to see whether 

this new configuration (mechanism + state of self-stress) will be able to support a new set 

of nodal forces that was previously “forbidden” on account of the mechanism. If this is the 

case for all mechanisms, then the mechanisms were indeed of second order in the 

displacements and the pre-stressed structure will be stable. If, additionally, all members are 

‘properly loaded’, i.e., the struts are loaded in compression and the tendons in tension, then 

the structure can be classified as a tensegrity. 

An alternative method for determining whether the mechanisms can be stiffened by 

the self-stress – which is the approach we follow in this chapter – is the calculation of the 
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stiffness matrix of the structure, under the various self-stress cases. If the pre-stressed 

stiffness matrix is positive-definite, this means that all the mechanisms have been stiffened 

and the entire structure is stable. Conversely, any zero eigenvalue of the stiffness matrix 

will correspond to an eigenvector representing a finite mechanism or an infinitesimal 

mechanism of third or higher order in the displacements and which could not be stiffened 

by the applied state of self-stress. 

3.3.2 Analysis of the Icosahedron Tensegrity 

  The unconstrained icosahedron has 𝑗 = 12  nodes and 𝑚 = 30  members, yielding 

a nodal force vector 𝐅 with 3𝑗 (= 36) elements, and a vector 𝑡 with 𝑚 elements. The 

equilibrium matrix (of size 3𝑗 × 𝑚 = 36 × 30) is obtained by analyzing the external nodal 

forces along the members. The equilibrium matrix and the two vectors are given in 

Appendix A. 

Using MATLAB, we compute the rank and null spaces of the equilibrium matrix. 

We find that the rank is 29, meaning that the structure is statically and kinematically 

indeterminate with seven mechanisms (left null vectors) and one state of self-stress (right 

null vector). Six of the mechanisms are the rigid body modes and can be eliminated by 

applying the appropriate boundary conditions, leaving one mechanism, 𝐌𝟏, that needs to 

be analyzed. After scaling the vector, 𝐌𝟏 is given by 

𝐌𝟏 = 
[0 −1 0 0 1 0 0 −1 0 0 1 0 0 0 −1 0 0 1 0 0 −1 0 0 1 −1 0 0 1 0 0 −1 0 0 1 0 0]𝑇 

(3.3) 
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The mechanism 𝐌𝟏 corresponds to the symmetric expansion of the icosahedron by 

moving every two parallel struts symmetrically away from each other in their plane. 

Therefore it is not a finite mechanism, but it remains to be seen whether it is a first-order 

inextensional mechanism. 

The state of self-stress, 𝐒𝟏, is given below and consists of equal compressive forces 

in the six struts and equal tensile forces in the twenty-four tendons: 

𝐒𝟏 = [−1 −1 −1 −1 −1 −1
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(3.4) 

We will now verify that, in the absence of pre-stress, the structure is not stiff: using 

the Finite Element Method, we assemble the structure’s global stiffness matrix from the 

element stiffness matrices for each element, treating each member (strut or cable) as a 

single “bar” element subject to uni-axial loading and a general case of pre-stress. The 

element stiffness matrix for the three-dimensional case is given in Appendix B. In matrix 

form, the nodal forces and displacements of the structure are related by the equation 

 𝐅 = 𝐊 ∙ q (3.5) 

where 𝐅 is the vector of external nodal forces, defined in Appendix A, 𝐊 is the global 

stiffness matrix, and q is the vector of degrees of freedom, defined as follows: 

 q =  [𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 ⋯   ] 𝑇 (3.6) 

The following six boundary conditions were chosen to serve the dual purpose of 

eliminating the rigid body modes while not interfering with the mechanism 𝐌𝟏 (this can 

be verified by re-calculating the null space of the constrained equilibrium matrix): 
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 𝑥5 = 𝑥7 = 0 

𝑦9 = 𝑦11 = 0 

𝑧9 = 𝑧10  = 0 

(3.7) 

 

Having computed the stiffness matrix, we set the pre-stress to zero and compute the 

eigenvalues of the matrix. We find that the matrix is positive semi-definite on the account 

of one eigenvalue equal to zero. 

We then apply a pre-stress the structure that is a positive multiple of the state of 

self-stress 𝐒𝟏, by subjecting every string element to an arbitrary initial extension, Δ0. The 

corresponding pre-load force density in the string, 𝑓𝑠, is thus 

 
𝑓𝑠 =

𝐾𝑠Δ0

𝑙𝑠
 (3.8) 

where 𝐾𝑠 and 𝑙𝑠 are the string’s stiffness and length, respectively. The pre-load force 

density in the bars, 𝑓𝑏, is obtained from 𝐒𝟏 to be 

 
𝑓𝑏 = −

3

2
𝑓𝑠 (3.9) 

Re-calculating the stiffness matrix, we observe that matrix becomes positive 

definite with its lowest eigenvalue proportional to the level of pre-stress. The pre-stress has 

effectively stabilized the structure by imparting ‘first-order stiffness’ to the mechanism. 

Therefore the stable pre-stressed structure can be classified as a tensegrity, even by the 

most stringent of definitions (a pin-jointed structure with rectilinear elements, 

discontinuous compression elements, continuous tensile elements, and an infinitesimal 

mechanism that gets stiffened by the state of self-stress). Figure 3.2 shows the change in 

the smallest two eigenvalues of the stiffness matrix against the level of pre-stress. 
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Figure 3.2 Stiffening effect of pre-stress  

 

3.4 Mechanical Properties of the Unit Cell 

In this section we use finite element analysis to determine the effective elastic 

modulus, 𝐸, shear modulus, 𝐺, and bulk modulus, 𝐵, of the icosahedron tensegrity, and 

investigate the effect of the pre-stress on the moduli. It will be useful to visualize six square 

end-plates surrounding the tensegrity – one at each end of every pair of parallel struts and 

normal to the struts – through which the forces and displacements are applied. This is done 

in order to simplify the problem of determining the areas acted upon by the forces and the 

volume occupied by the structure. The end-plates will not, however, be included in the 

finite element analysis. The entire structure can thus be visualized as a cube, albeit with 

disjointed faces, with the icosahedron tensegrity as its backbone. Figure 3.3 shows the 

structure with its “back”, “right” and “bottom” end-plates. 
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Figure 3.3 Unit cell with three end-plates 

In order to determine the elastic modulus 𝐸, we apply – through the right end-plate 

– a force on nodes 3 and 4 pointing in the direction of the positive X axis (𝐹3𝑥 = 𝐹4𝑥 = 1), 

while constraining the left nodes (1 and 2) from moving along the X axis (𝑥1 = 𝑥2 = 0). 

Additional boundary conditions are imposed (𝑦5 = 𝑦6 = 𝑦7 = 𝑦8 = 𝑧9 = 𝑧10 = 𝑧11 =

𝑧12 = 0) to eliminate rigid body motion and approximate real testing conditions. 

After eliminating the equations and degrees of freedom corresponding to the 

constrained boundary conditions from the global force-displacement equation, we use 

MATLAB to solve for the unknown displacements: 

 𝑥𝑅 = 𝐾𝑅
−1𝐹𝑅 (3.10) 
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where the subscript ( )𝑅 represents the reduced vectors and matrices. We note that in the 

absence of pre-stress the global stiffness matrix is still singular, which is why the no pre-

stress case is not considered. 

The elastic modulus is computed from the equation 

 
𝐸 = 

𝐹𝑛 ∙ 𝑙𝑥
Δ𝑛 ∙ 𝐴𝑛

 (3.11) 

where 𝐹𝑛 is the total applied force (𝐹𝑛 = 𝐹3𝑥 + 𝐹4𝑥), 𝑙𝑥 is the length of the unit cell along 

the X axis, which is equal to the length of the bar, 𝑙𝑏, 𝐴𝑛 is the area of the end-plate on 

which the force is acting and equals 𝑙𝑏
2
, and Δ𝑛 is the displacement along the X axis of the 

loaded nodes (Δ𝑛 = 𝑥3 = 𝑥4). 

In order to determine the shear modulus, a known shear displacement, Δ𝑠ℎ, is 

imposed on the top nodes (11 and 12) in the direction of the positive X axis (𝑥11 = 𝑥12 =

Δ𝑠ℎ), while nodes 9 and 10 are completely constrained (𝑥9 = 𝑦9 = 𝑧9 = 𝑥10 = 𝑦10 =

𝑧10 = 0). An additional boundary condition (𝑦5 = 0) is introduced to prevent rigid body 

motion. The resulting nodal forces are computed and the shear modulus Gzx, is obtained 

from the equation   

 
𝐺𝑍𝑋 = 

𝐹𝑠ℎ ∙ 𝑙𝑧
 Δ𝑠ℎ ∙ 𝐴𝑠ℎ

 (3.12) 

where 𝐹𝑠ℎ is the total shear force (𝐹𝑠ℎ = 𝐹𝑥11
+ 𝐹𝑥12

) resulting from the imposed 

deformation, 𝑙𝑧 is the height of the unit cell along the Z axis, which is equal to the length 

of the bar, 𝑙𝑏, and 𝐴𝑠ℎ is the area on which the force is applied, which is the area of the top 

end-plate, also equal to 𝑙𝑏
2
.  
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Finally, in order to determine the bulk modulus, we impose symmetry boundary 

conditions and apply a hydrostatic pressure on the structure, which translates into nodal 

forces that push inwards on every node, and calculate the resulting compression in the bars 

and the corresponding change in volume of the cube enclosed by the six end-plates. The 

bulk modulus is calculated from the equation 

 
𝐵 = −𝑉

ΔP

ΔV
 (3.13) 

where  𝑉, ΔV, and ΔP are the cube’s initial volume, the change in volume, and the applied 

pressure, respectively. 

Figure 3.4 shows the elastic, shear, and bulk moduli against the level of pre-stress 

(represented by the initial elastic strain in the strings) against the level of pre-stress. We 

notice that 𝐸 ≈ 3𝐵, and that the elastic and bulk moduli are not affected by the pre-stress 

since they primarily depend on the stiffness of the rigid compressive elements. The shear 

modulus initially increases with the pre-stress until it reaches a maximum at a strain value 

of 0.4, after which it decreases with added pre-stress. 

Comparing the bulk modulus of the tensegrity to its shear modulus, we notice that 

the ratio 𝐵/𝐺 is around 5000, as shown in Figure 3.5. This means that it is much easier to 

change the shape of the structure while keeping its volume constant than it is to change its 

volume while keeping its shape constant. Such elastic properties approximate those of 

liquids, and are being sought after for the development of pentamode metamaterials, e.g., 

for elastodynamic cloaking applications [172, 173]. 

This result is significant because it suggests the possibility of using the icosahedron 

tensegrity as a building block in the synthesis of pentamode metamaterials. The first 
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experimental pentamode metamaterial was fabricated in 2012 by Kadic et al. using laser 

lithography and featuring a 𝐵/𝐺 ratio of about 1000 [173, 174]. The same ratio for gold – 

one of the largest among naturally-occurring bulk materials – is about 13. 

 

Figure 3.4 Elastic coefficients of icosahedron tensegrity 

  

 

Figure 3.5 Bulk-to-shear ratio of icosahedron tensegrity 
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3.5 Tensegrity Prototype 

Figure 3.6 shows a 3D-printed prototype of the icosahedron tensegrity, created from 

a CAD (SolidWorks) solid model using an Objet 500® Connex3™ 3D printer by Stratasys, 

which has the capability of printing rigid and rubber-like materials. The material chosen 

for the rigid links is known by the name “VeroWhite Plus” and has a reported density of 

1175 𝑘𝑔/𝑚3 [175], and the elastic modulus was experimentally found to be  912 𝑀𝑃𝑎.  

The rubber-like material chosen for the flexible links has the name “FLX 9870-DM” for 

the strings and has a reported modulus of elasticity in the range of 3.5 − 5 𝑀𝑃𝑎 [176] and 

its density was measured to be 1143 𝑘𝑔/𝑚3. 

The rigid bars are cylinders 32 mm in length and 2.5 mm in diameters, while the 

flexible links have a square cross-section of side 1.80 mm. The bars have spherical 

terminations, 3mm in radius, in order to provide a large enough gripping surface for the 

flexible links, while allowing the links to pivot easily on any surface, e.g., when undergoing 

shear deformation. The dimensions of the cell were chosen for it to fit inside, or flush 

against, the acoustic impedance tube setup. 

  

Figure 3.6 3D-printed icosahedron tensegrity 
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3.6 Experimental Determination of Cell’s Constants 

3.6.1 Shear Modulus 

Figure 3.7 shows the icosahedron tensegrity undergoing a dynamic shear test. The 

cell rests on a bottom plate that is fully constrained to the foundation and which 

incorporates small indentations to seat the spherical bar ends, constraining their translation 

while allowing them to rotate. A similar plate fits on the top of the array and is attached, 

via a connecting link and an end-plate, to an electromagnetic shaker (LDS V408), the signal 

to which is generated using a signal generator/analyzer (Stanford Research SRS-780) and 

amplified using the LDS PA100E amplifier. A Force sensor (PCB Piezotronics, Model 

208M511) fits between the shaker and the face plate and measures the force applied by the 

shaker, while a laser sensor (Matsushita NAIS LM200 ANL2534A2) measures the position 

of the top plate. Both signals are acquired using an oscilloscope (Tektronix TDS 3014) and 

subsequently analyzed.  

 

Figure 3.7 Shear testing of tensegrity cell 

                                                 
1 S/N: 16128 – Sensitivity: 2.54 𝑚𝑉/𝑁 
2 Sensitivity: 0.5 𝑉/𝑚𝑚 
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Figure 3.8 shows the sensors’ output signals for a sinusoidal input to the shaker at 

2 𝐻𝑧, which after proper conversions3, result in the force-displacement plot of Figure 3.9. 

The hysteresis loop indicates energy dissipation in the viscoelastic, rubber-like elements. 

The general slope of the curve yields the stiffness of the cell to shear deformation, found 

to be approximately 62 𝑁/𝑚, and which corresponds to an equivalent shear modulus, 𝐺𝑧𝑥, 

of 1600 𝑁/𝑚2. The maximum deformation that was achieved during testing was 3.4 𝑚𝑚, 

corresponding to a shear strain of 0.1, and the original shape was fully recovered upon load 

removal/reversal. 

 

Figure 3.8 Sensors’ output – unit cell in shear 

                                                 
3 The force sensor signal is multiplied by a 10X gain 
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Figure 3.9 Experimental force-displacement (cell in shear) 

 

3.6.2 Elastic Modulus 

Figure 3.10 shows the setup used in the determination of the elastic modulus of the 

cell. The same equipment of the previous section was used, with the exception that all the 

surfaces in contact with the tensegrity were rigid, polished surfaces, allowing the bar ends 

to slide in their plane. The cell is dynamically loaded in compression between a plate 

attached to shaker (on the left in the figure) and a second, fixed plate (on the right). Before 

starting the experiment, the cell is manually pre-loaded in compression using the right plate 

to ensure that the shaker plate will not lose contact when it retracts, therefore the cell 

remains in compression at all times. 
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Figure 3.10 Compression testing of tensegrity cell 

 

The outputs of the two sensors are shown in Figure 3.11 for a sinusoidal input signal 

at 2 𝐻𝑧 which, after the appropriate conversions4, yields the force-displacement curve of 

Figure 3.12. The axial stiffness of the cell is given by the slope of the curve, which is found 

to be 120 𝑘𝑁/𝑚, with a corresponding elastic modulus, 𝐸𝑥𝑥, of 3.3 × 106  𝑁/𝑚2. While 

direct measurement of the bulk modulus, B, was not possible, by using the observation 

made in Section 3.4 that 𝐸 ≈ 3𝐵, we can estimate the bulk modulus of the unit cell to be 

approximately 1.1 × 106  𝑁/𝑚2, which we observe to be 500 times higher than the shear 

modulus. 

                                                 
4 The force sensor signal is multiplied by a 10X gain 



41 

 

 

Figure 3.11 Sensors’ output –unit cell in compression 

 

 

Figure 3.12 Experimental force-displacement (cell in compression) 
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3.6.3 Analysis and Discussion 

With regards to shear loading, the numerical simulations, performed in the manner 

detailed in Section 3.4 using the material constants and dimensions given in section 3.5 

and assuming an initial strain of 0.01, yield a stiffness in shear of 72 𝑁/𝑚, or 17% higher 

than the experimental value. We make the following observations regarding the 

comparison between the experimental results and the numerical model: 

 There was no mechanism to introduce or measure pre-stress/initial strain in 

the 3D-printed prototype. While a cell without pre-stress should not be 

stable (as per Section 3.3.2), the prototype was observed to be indeed stable 

with regards to its infinitesimal mechanism. This may suggest that the 3D-

printing process and the following post-processing of the part may have 

caused the flexible links to shrink slightly compared to the design values, 

thereby generating pre-stress. Noting that the pre-stress has a strong 

influence on the shear modulus (as per Section 3.4), further investigations 

into the material properties of the elastomeric link, as well as the printing 

process itself, are needed in order to be able to fully characterize the 

prototype and ensure the validity of the model. 

 The shear stiffness and, consequently, the shear modulus vary linearly with 

the elastic modulus of the flexible elements. An accurate material 

characterization, including viscoelastic effects, is therefore necessary for a 

representative numerical model. 

With regards to the elastic modulus determination using the dynamic compression 

test, numerical simulations yield an equivalent stiffness of 236 𝑘𝑁/𝑚 for the cell and a 
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corresponding elastic modulus of 6.2 × 106  𝑁/𝑚2, approximately twice the 

experimentally-determined values. We believe that this discrepancy is primarily due to 

misalignment of one or both of the rigid links relative to the cell’s axis, which we 

investigate further below. Another source of discrepancy lies in the fact that the stiffness 

of the spherical bar joints and their interaction with the longitudinal bars were not 

accounted for in the numerical model. 

With regards to the misalignment, given that the rigid element length is 38 mm 

(including the spherical endings), an angular misalignment of merely 2 degrees between 

the rigid links and the horizontal axis along which the force is applied and displacement is 

measured, will lead to a perceived deformation of 0.023 mm, or more than half the total 

displacement measured in the experiment. 

Such a deviation could occur due to rotation of the links during testing, since the 

bar ends are free to move in the planes of their constraining end plates. A workaround 

would involve designing and using end plates that constrain the sliding motion of the bar 

ends, replacing the sliding boundary conditions with wither fixed or rotating boundary 

conditions. Another option would be testing of the cell in tension. 

Another root cause of this misalignment could be slight variations in the elements’ 

dimensions and stresses, brought on either by the 3D printing process, e.g., with either 

material being anisotropic, or during the post-processing the part in order to remove the 

support material, which is done manually and using a sonication bath and which could 

introduce some defects or residual stresses. Investigations of the material properties in 

relation to the orientation of the printed part being may shed some light on whether this is 

happening. 
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3.7 Summary 

In this chapter, we investigated the kinematic and static characteristics of the 

icosahedron tensegrity, confirming that it satisfies the most rigorous conditions to qualify 

as a tensegrity structure, and numerically computing its elastic coefficients, showing that 

it exhibits a very high bulk-to-shear ratio suggesting the possibility of using the tensegrity 

in the creation of pentamode metamaterials. 

We designed and built a prototype of the tensegrity using bi-material 3D printing 

and conducted tests to determine its elastic and shear moduli, showing very good 

agreement with the numerical model for the shear modulus, and some discrepancy with the 

model for the elastic modulus. We provided some insight as to the possible root causes of 

this discrepancy and suggested some workarounds. The bulk modulus estimated from the 

experiments is still between two and three orders of magnitude higher than the measured 

shear modulus. 
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Chapter 4: Static and Dynamic Analysis of 

Periodic Icosahedron Tensegrity Structures 

4.1 Introduction 

Following the determination of the static properties of the icosahedron tensegrity 

in the previous chapter, we investigate in this chapter the static and dynamic properties of 

periodic structures obtained by tessellating the icosahedron tensegrity unit cell along one 

or more axes. 

4.2 One-dimensional Periodic Arrays 

4.2.1 Configuration of the Periodic Array 

Figure 4.1 shows a solid model of a one-dimensional (1D) array assembled from 

five unit cells stacked end-to-end along the X axis. Each cell is identical to the one 

described in Chapter 3 and every two adjacent cells have two vertices in common, where 

at each common vertex two bars and eight strings intersect. Consequently, the resulting 

structure, if deemed stable, would constitute a Class-2 tensegrity according to Skelton’s 

definition, since some vertices join two compression elements. 
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Figure 4.1 1D, class-2 array of identical icosahedron tensegrity cells 

 

4.2.2 Mechanisms and States of Self-stress 

Analysis of the equilibrium matrix 𝐀 of a one-dimensional array of 𝑁 identical 

tensegrity unit cells assembled end-to-end reveals that the matrix has an 𝑁-dimensional 

null space, indicating 𝑁 states of self-stress for the structure 

 𝑛𝑠𝑠 = 𝑁 (4.1) 

A basis for the null space of 𝐴 could be found in terms of the state of self-stress of 

the individual cell, 𝐒𝟏, given in eq. (3.4), where each zero element is in fact a vector of 

thirty zeros elements: 
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The general state of self-stress can thus be thought of as a linear combination of 

individual cells’ state of self-stress 𝐒𝟏. This observation is important because pre-stressing 

the structure by loading each of its cells according to a positive multiple of 𝐒𝟏 ensures that 

all members of the structure are “properly” loaded, i.e., compression elements in 

compression and tension elements in tension, which is a necessary condition in the 

definition of a tensegrity. 

The unconstrained structure possesses (6 + 𝑁) mechanisms which, upon 

investigation, can be broken down into three sets: 

 Six rigid body motions, 

 one infinitesimal mechanism corresponding to the simultaneous expansion of 

every cell in the structure according to 𝐌𝟏 of eq. (3.3), and 

 (𝑁 − 1) finite (large displacement) mechanisms corresponding to the rotation 

of the second and subsequent cells about the Y axis by using their leftmost 

nodes as pivots. 

The rigid body motions are constrained by applying the same boundary conditions of the 

single cell (eq. (3.7)), while the finite mechanisms are constrained by preventing the Z-

displacement of either bottom node in each unit (e.g., in Figure 6: 𝑧19 = 𝑧29 = 𝑧39  = 0). 

Next, the global stiffness matrix for the structure is assembled and its eigenvalues are 

computed using MATLAB. We find that without pre-stress, the stiffness matrix has one 

eigenvalue equal to zero, confirming that the unstressed structure is not stiff due to the 

infinitesimal mechanism. By applying a pre-stress obtained from any linear combination 

of the states of self-stress, the mechanism gets stiffened and the structure becomes stable. 
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In conclusion, since the constrained structure admits an infinitesimal mechanism 

that gets stiffened under the effect of pre-stress, and since all members of the structure are 

properly loaded, we thus consider the resulting constrained structure to be a Class-2 

tensegrity structure. 

4.3 Static Analysis 

We follow the same procedures described in Section 3.4 to compute the elastic 

moduli of the one-dimensional tensegrity arrays. The geometric and material properties are 

the same as in Table 3.1 and all cells are identically pre-stressed according to a positive 

multiple of 𝐒𝟏. The same boundary conditions are used and we assume that the forces and 

displacements are applied to the structure through end plates, one on each of its six faces 

(top, bottom, left, right, front, back). 

Figures 4.2-4.5 show the elastic modulus 𝐸, the shear modulus 𝐺𝑧𝑥, the bulk 

modulus 𝐵 and the ratio 𝐵/𝐺𝑧𝑥 , respectively, for one-dimensional periodic arrays with 

different numbers of unit cells against the initial elastic strain in the strings. Figure 4.2 

shows that the elastic modulus is the same as that of the individual tensegrity unit cell, 

which is expected since adding more units reduces the equivalent stiffness and increases 

the overall length by the same ratio, and that the effect of the pre-stress is negligible (less 

than 0.1% over the range). 

Figure 4.3 shows that increasing the number of cells leads to a higher shear 

resistance, as evidenced by the increased shear modulus.  In order to understand the effect 

of pre-stress on the shear modulus we compare Figure 4.3 to Figure 3.4, and note that for 

𝑁 =  2 cells, the plot follows a similar pattern: 𝐺𝑧𝑥 increases for elastic strain values from 
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0.01 to 0.04, reaches a peak at 0.04 and decrease for higher strain. For 𝑁 >  2 cells, the 

shear modulus decreases monotonically, suggesting that the initial strain value 

corresponding to the peak shear modulus is negative. 

Figure 4.4 shows that the bulk modulus is not affected by the number of cells or the 

pre-stress, as the resistance to compression is essentially due to the stiffness of the central 

bars, and we can also note that 𝐸 ≈ 3𝐵. Figure 4.5 shows that the bulk-to-shear ratio has 

decreased compared to that of a single cell due to the increase in shear modulus, but is still 

very large (around 1500) compared to naturally-occurring materials. 

 

Figure 4.2 Elastic modulus of 1D, class-2 tensegrity array of repeating cells 

(all five lines are super-imposed) 
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Figure 4.3 Shear modulus of 1D, class-2 tensegrity array of repeating cells 

 

Figure 4.4 Bulk modulus of 1D, class-2 tensegrity array of repeating cells 

(all five lines are super-imposed) 
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Figure 4.5 Bulk-to-shear ratio of 1D, class-2 tensegrity array of repeating cells 
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repeating icosahedron tensegrity cells. 

4.4.1 Overview of Bloch’s Theorem 

Bloch’s Theorem as applied to periodic structure, e.g., by [86, 87, 104], stipulates 

that a wave propagating through an infinite lattice of repeating unit cells will incur a change 
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wave propagation in the lattice by considering the dynamic response of only one cell with 

the appropriate boundary conditions, which will be explained below. 

Without loss of generality, we assume a beam of infinite length with periodic 

changes in its geometry, material properties, or both. A cross-section along the length of a 

portion of the beam is shown in Figure 4.6(a), where the change in size is representative of 

the periodicity. The repeating unit cell is shown in Figure 4.6(b). 

 

 

Figure 4.6 (a) Lengthwise section of periodic beam and (b) unit cell 

Assuming a local coordinate 𝜂 within each cell, then according to Bloch’s theorem, 

a wave propagating along the beam will satisfy the relationship 

 𝑊(𝜂,𝑁1, 𝜔, 𝑡) = 𝑊(𝜂, 𝜔, 𝑡) 𝑒𝑁1𝜇 (4.2) 

where 𝑊(𝜂,𝜔, 𝑡) is the wave amplitude in an arbitrarily-chosen reference unit cell, 

𝑊(𝜂,𝑁1, 𝜔, 𝑡) is the wave amplitude in a different cell that is offset by 𝑁1 cells from the 

reference cell, and 𝜇 is the propagation constant which determines the relative change in 

wave amplitude from one cell to the next. The propagation constant is, in general, a 

complex number, i.e., 

P 1 𝜂 2 
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 𝜇 = 𝛼 + 𝑖𝛽 (4.3) 

where 𝛼 is the attenuation constant, while 𝛽 is the phase constant. When the attenuation 

constant is zero, any incident wave on the beam will be transmitted from one cell to the 

next without attenuation, only undergoing a phase change (in the spatial domain). A wave 

with this attribute is said to lie in the pass band of the structure. When, on the other hand, 

the attenuation constant is nonzero, the amplitude of the wave will decay as it propagates. 

Such a wave is said to lie in the stop band of the structure, where waves are unable to 

propagate freely. 

In order to investigate the dynamics of the beam, we begin by analyzing the unit 

cell. Using the finite element method, we discretize the unit cell into (𝑃 − 1) two-node 

beam elements, resulting in 𝑃 nodes. Each nodes admits two degrees of freedom: 

translation along the vertical axis, 𝑤𝑖, and rotation about the out-of-plane axis, 𝜃𝑖. After 

assembling the mass and stiffness matrices, we can write the equation of motion of the unit 

cell in matrix form: 

 𝐌𝐪̈ + 𝐊𝐪 = 𝐅 (4.4) 

where 𝐅 is the vector of nodal forces and moments, 𝐪 is the vector of nodal degrees of 

freedom of the cell, and 𝐪̈ is the second derivative, with respect to time, of 𝐪. 

 𝐪 = [𝐪𝟏 𝐪𝟐 ⋯ 𝐪𝐏]𝑇 (4.5) 

where each 𝐪𝐢 is the vector of degrees of freedom of the 𝑖𝑡ℎ node, which, in the case of the 

two-dimensional beam, is given by 

 𝐪𝐢 = [𝑤𝑖 𝜃𝑖]
𝑇 (4.6) 
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Assuming a harmonic wave propagating through the beam with angular velocity 𝜔, 

𝐪̈ can be replaced by −𝜔2𝐪, and the equations of motion can be re-written as 

 (𝐊 − 𝜔2𝐌)𝐪 = 𝐅 (4.7) 

Since the rightmost node (𝑃) of the cell is also the leftmost node of the following 

cell, Bloch’s theorem requires that as the wave travels between nodes 1 and 𝑃 (two similar 

nodes in two consecutive cells), its magnitude will undergo a change dictated by the 

propagation constant and can be expressed by the equation 

 𝐪𝐏 = 𝐪𝟏𝑒
𝜇 = 𝐪𝟏𝑒

𝛼+𝑖𝛽 (4.8) 

Equation (4.8) is known as the Floquet boundary condition [87] and flows from 

direct substitution in eq. (4.2) with 𝜂 = 0 and 𝑁1 = 1, and with the time-dependent term 

simplified from the equation. 

We can thus define a vector of reduced degrees of freedom, 𝐪𝐑, 

 𝐪𝐑 = [𝐪𝟏 𝐪𝟐 ⋯ 𝐪𝐏−𝟏]𝑇 (4.9) 

which is related to 𝐪 by the equation 

 𝐪 = 𝐓 𝐪𝐑 (4.10) 

where 𝐓 is a transformation matrix parametrized by 𝜇. Substituting back into the equation 

of motion, we get: 

 𝐌𝐓𝐪𝐑̈ + 𝐊𝐓𝐪𝐑 = 𝐅 (4.11) 

Pre-multiplying both sides of the equation by 𝐓𝐇 (the conjugate transpose of 𝐓) yields 



55 

 

 𝐓𝐇𝐌𝐓𝐪𝐑̈ + 𝐓𝐇𝐊𝐓𝐪𝐑 = 𝐓𝐇𝐅 (4.12) 

It was shown [124] that the product on the right hand side of the equation reduces 

to zero, which allows the equation of motion to be re-written as 

 (𝐊̃ − 𝜔2𝐌̃)𝐪𝐑 = 𝟎 (4.13) 

where 𝐊̃ and 𝐌̃ are both functions of the propagation constant 𝜇, and are given by 

 𝐊̃ = 𝐓𝐇𝐊𝐓 

𝐌̃ = 𝐓𝐇𝐌𝐓 
(4.14) 

Equation (4.13) takes the form of an eigenvalue problem parametrized by the 

propagation constant. A common approach in the search for stop and pass bands is to set 

the attenuation constant to zero, resulting in 𝜇 = 𝑖𝛽, and solve the eigenvalue problem for 

different values of the phase constant within the range 0 ≤ 𝛽 ≤ 2𝜋. This results in the 

angular velocities 𝜔 of the waves that would be able to propagate without attenuation for 

every possible propagation constant. The results are graphically presented in the form of 

dispersion curves: a plot of the wave frequency against the propagation constant or the 

phase constant. Stop bands are the frequency ranges not associated with any purely 

imaginary propagation constant, and will appear as empty regions on the dispersion 

diagram. 

In the case of two-dimensional lattices obtained from the translation of a reference 

unit cell along two linearly independent (but not necessarily orthogonal) axes, the analysis 

is essentially the same, with the caveat that a propagating wave will have two independent 

propagation constants (e.g., 𝜇1 and 𝜇2), resulting in dispersion surfaces and pass and stop 

bands that are a function of the propagation direction of the wave. 
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4.4.2 Pass and Stop Bands of 1D Tensegrity Lattice 

We now apply Bloch’s theorem to the analysis of a one-dimensional array of 

repeating icosahedron tensegrity unit cells. A portion of the infinite array is shown in 

Figure 4.1, while the reference unit cell is the same one shown in Figure 3.1. All the cell 

properties are as described in Table 3.1 and all the strings are pre-stressed with an initial 

elastic strain of 0.05. After assembling the mass and stiffness matrices of the unit cell (each 

matrix has 36 rows and 36 columns), we apply the Floquet boundary conditions obtained 

from the periodicity of the array: 

 𝐪𝟑 = 𝐪𝟏𝑒
𝜇 = 𝐪𝟏𝑒

𝛼+𝑖𝛽 

𝐪𝟒 = 𝐪𝟐𝑒
𝜇 = 𝐪𝟐𝑒

𝛼+𝑖𝛽 

(4.15) 

where 𝐪𝐢 is the vector of degrees of freedom at node 𝑖, given by 𝐪𝐢 = [𝑥𝑖 𝑦𝑖 𝑧𝑖]𝑇. The 

reduced set of degrees of freedom, 𝐪𝐑, thus consists of 30 elements. 

Setting the attenuation constant 𝛼 equal to zero, and solving the eigenvalue problem 

(eq. (4.13)) for the angular velocities 𝜔 corresponding to phase constants in the range 0 −

2𝜋 yields the dispersion curves of the structure, the first six of which are shown in 

Figure 4.7. From the plot we can see that for any given frequency, there correspond waves 

with purely imaginary propagation constants which will propagate at that frequency 

without attenuation. There are no stop bands – frequency ranges that are not associated 

with waves. Intuitively, this is to be expected, due to the continuity and uniformity of the 

center two struts along the array, which seem to provide a continuous medium for a 

disturbance of any given frequency to propagate unimpeded along the structure. 
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Figure 4.7 Dispersion curves of 1D, class-2 tensegrity array of repeating cells 

 

4.5 Experimental Verification 

4.5.1 Prototype Description 

Figure 4.8 shows a 3D-printed prototype of the 1D array consisting of four 

icosahedron tensegrity cells stacked end-to-end. The structure was built as one part from a 

solid model file on the same 3D printer and using the same materials (VeroWhite Plus and 

FLX 9870-DM) and dimensions as the unit cell in Section 3.5. 

 

Figure 4.8 Icosahedon 1D array 
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4.5.2 Determination of Shear Modulus 

Figure 4.9 depicts the experimental setup used in the determination of the shear 

modulus. The array rests on a bottom plate that is fully constrained to the foundation and 

which incorporates small indentations to seat the spherical bar ends, constraining their 

translation while allowing them to rotate. A similar plate fits on the top of the array and is 

attached, via a connecting link and an end-plate, to an electromagnetic shaker (LDS V408), 

the signal to which is generated using  signal generator/analyzer (Stanford Research SRS-

780) and amplified using the LDS PA100E amplifier A Force sensor (PCB Piezotronics, 

Model 208M515) fits between the shaker and the face plate and measures the force applied 

by the shaker, while a laser sensor (Matsushita NAIS LM200 ANL2534A6) measures the 

position of the top plate. 

 

Figure 4.9 Array shear test setup 

                                                 
5 S/N: 16128 – Sensitivity: 2.54 𝑚𝑉/𝑁 
6 Sensitivity: 0.5 𝑉/𝑚𝑚 
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In order to determine the shear modulus, we apply a shear displacement and 

measure the shear force. To that end, a sinusoidal input signal is supplied to the shaker, 

rocking the top plate back and forth and causing shearing of the tensegrity array. 

Figure 4.10 shows the measured force against the displacement of the top plate, indicating 

a shear stiffness of approximately 1,040 𝑁/𝑚, consequently, and with knowledge of the 

area the force is acting on and the initial length of the array, we can compute the shear 

modulus to be 8,145 𝑁/𝑚2. The hysteresis is representative of the energy dissipated as a 

result of the viscoelastic nature of the flexible, rubber-like material. A finite element model 

of the array predicts a shear stiffness of 993 𝑁/𝑚 and a corresponding shear modulus of 

7,773 𝑁/𝑚2, which suggests a very good agreement (within 5%) between the model and 

the experiment. 

 

Figure 4.10 Shear force against displacement – 1D array 

 



60 

 

4.5.3 Determination of Elastic Modulus 

The elastic modulus is determined by means of a compression test carried out using 

the experimental setup shown in Figure 4.11. The array is located on a base plate secured 

to the foundation and rests from the left against an end-plate attached to the shaker. A 

stationary end-plate on the right side constrains the axial translation of the structure. All 

plates are made by Newport Corporation, and additional plates (not shown) are added on 

the top, front and back of the array to constrain lateral deformation of the structure. Each 

plate prevents “outward” motion normal to its plane, while allowing rotation and in-plane 

translation. 

 

Figure 4.11 Array compression test setup. Front and top views 
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As the shaker and the end-plate attached to it compress the structure, the force 

sensor, located between the shaker and the end-plate, measures the force exerted on it while 

the laser sensor measures the position of the moving end-plate. Figure 4.12 shows the raw 

output of both sensors showing a peak in the force as the structure is compressed (a higher 

voltage signifies higher compression for the force sensor and the shaker moving away from 

the structure for the position sensor). As the shaker moves away from and loses contact 

with the structure, the force drops to its baseline value.  

 

Figure 4.12 Compression test – sensors’ output 

Figure 4.13 shows the compressive force against the position of the end-plate, from 

which we can extract the equivalent stiffness of the structure as the slope of the curve (of 

the right portion, corresponding to the half-cycles where the shaker is compressing with 

the structure), which we calculate to be approximately 60,000 𝑁/𝑚 and which 

corresponds to an elastic modulus of 𝐸𝑥𝑥 = 7.5 𝑀𝑃𝑎. The curve does not show any 

hysteresis, which is expected since the stiffness is primarily due to the longitudinal rigid 
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bars and not the viscoelastic flexible elements. The corresponding finite element model 

predicts a stiffness of 66,000 𝑁/𝑚, indicating good agreement with the experimental 

result. Deviations between the modelled and experimental results – as discussed in 

Section 3.6.3 – may be due to misalignment or rotation of the long bars during loading, 

and/or production imperfections. 

 

Figure 4.13 Compression test – Force against deformation 

 

4.5.4 Impedance Tube Testing 

The interaction of the tensegrity array with incident sound waves is investigated 

using the acoustic transfer matrix method [177] using the ACUPRO Measurement System 

from Spectronics, Inc. which consists of an impedance tube coupled to a transmission loss 

tube, with the attached speaker and microphones, shown schematically in Figure 4.14 (the 

numbers indicate microphone placements). 
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Figure 4.14 Schematic drawing of acoustic test setup 

With the test sample mounted in the sample holder (Figure 4.15), a sound wave is 

generated at one end of the dense, rigid tube using the speaker (JBL 2126J), while two 

microphones (Larson Davis PRM908) measure – interchangeably – the sound levels at four 

locations along the tube, two on each side of the sample. A MATLAB program was created 

to calculate the acoustic transfer matrix from the measured signals and transfer functions 

according to the ASTM E2611standard procedure [178], from which the transmission 

coefficient, transmission loss, and other acoustic properties of the sample may be extracted. 

 

Figure 4.15 Tensegrity array in impedance tube 

Figure 4.16 shows the calculated transmission coefficient, t, defined as the ratio of 

the sound pressure level transmitted by the specimen to that incident on it, comparing the 

one for the array to that of an empty portion of the tube. It can be seen that the two plots 
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are very similar, indicating that the structure does not play any role in attenuating the sound 

waves incident on it, which was expected from the Bloch analysis yielding no frequency 

stop bands. 

 

Figure 4.16 Transmission coefficient of tensegrity array 
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4.6 Icosahedron Tensegrity Beams 

A potential application for one-dimensional tensegrity arrays is their use as beams 

to support bending loads. For the simplest configuration examined in the previous section, 

this would be impossible due to the finite mechanisms that had to be constrained. However, 

by providing additional connecting elements, it may be possible to eliminate the 

mechanisms and for the array to withstand transverse loading. 

4.6.1 Description 

The beam is created by joining the tensegrity cells end-to-end and using two 

additional massless strings – one at the top and the other at the bottom – to connect every 

two adjacent cells, thus providing the bending stiffness. The connecting strings have a 

length 𝑙𝑐 (=
𝑙𝑏

2
) and a stiffness 𝐾𝑐. Figure 4.17 shows an array of four tensegrity cells, with 

only the bars and the connecting strings drawn. 

 
Figure 4.17 Inter-cell connectivity strings of tensegrity beam 
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4.6.2 Mechanisms and States of Self-stress 

Analyzing the rank and nullspaces of the equilibrium matrix of the resulting 

structures, we find that a one-dimensional array of 𝑁 cells has six mechanisms, namely the 

rigid body motions, and (2𝑁 − 2) independent states of self-stress. 𝑁 of those states 

correspond to each cell being loaded according to 𝐒𝟏 with the connecting strings unloaded. 

While pre-stressing the structure according to any of the 𝑁 states of self-stress will increase 

its stiffness, we note that the structure is always stable (with or without pre-stress). This 

class of kinematically determinate and statically indeterminate structures were named 

redundant structures by Murakami and Nishimura [48], and were classified as tensegrity 

structures by Motro (e.g., [25]) and  Skelton (e.g., [23]). Therefore, we classify the structure 

as a Class-2 tensegrity. 

4.6.3 Bending Stiffness of the Beam 

We conceive cantilever tensegrity beams of different lengths by connecting the 

cells as described above along the X-axis, fixing all but the two rightmost nodes of the first 

(leftmost) cell and apply a downward force 𝐹𝑏 on the top-right node of the rightmost cell. 

The downward deflection Δ𝑏 of the same node is calculated numerically using MATLAB 

and the bending stiffness 𝐾𝑏 is computed from 

 
𝐾𝑏 =

𝐹𝑏

Δ𝑏
 (4.16) 

We investigate the effect of the number of cells, the stiffness of the connecting 

strings and the pre-tension in the internal strings of the tensegrity on the bending stiffness. 

The results are shown in Figure 4.18 for Kc = 5,000 N/m, and Figure 4.19 for Kc = 20,000 

N/m. 
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Figure 4.18 Bending stiffness of tensegrity beam (Kc = 5,000 N/m) 

 

Figure 4.19 Bending stiffness of tensegrity beam (Kc = 20,000 N/m) 
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4.7 Two-dimensional Icosahedron Tensegrity Arrays 

4.7.1 Configuration and Description 

We assume a two-dimensional array created by tessellating the icosahedron 

tensegrity unit cell along the global X and Y axes. The array consists of  𝑁𝑋 cells along the 

X-axis and 𝑁𝑌 cells along the Y-axis. All the cells are identical and as described in Chapter 

3 (Table 3.1). 

4.7.2 Mechanisms and States of Self-stress 

Investigating the rank and null spaces of the equilibrium matrix 𝐴 of the two-

dimensional periodic array reveals that, similar to the one-dimensional array, the structure 

has (6 + 𝑁𝑋) mechanisms, classified as follows: 

 Six rigid body motions, 

 one infinitesimal mechanism corresponding to the simultaneous expansion of 

every cell in the structure according to 𝑀1 (eq. (3.3)), and 

 (𝑁𝑋 − 1) finite (large displacement) mechanisms corresponding to the rotation 

of the second and subsequent columns of cells about the Y axis by using their 

leftmost nodes as pivots. 

The number of states of self-stress, 𝑛𝑠𝑠, is found to satisfy the empirical relationship 

 𝑛𝑠𝑠 = 6𝑁𝑋𝑁𝑌 − 5𝑁𝑋 − 6𝑁𝑌 + 6 (4.17) 

where 𝑁𝑋 , 𝑁𝑌 ≥ 1. Of those 𝑛𝑠𝑠 states, 𝑁𝑋𝑁𝑌 states correspond to each cell being stressed 

in accordance with state 𝑆1, with the bars in equal compression and the strings in equal 

tension. 
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Assembling the global stiffness matrix of a two-dimensional array reveals that the 

unstressed structure is not stiff (one eigenvalue is zero). However, while applying any 

linear combination of the aforementioned 𝑁𝑋𝑁𝑌 states of self-stress leads to a stiff 

structure. We hence conclude that the array is a Type-2 tensegrity structure. 

4.7.3 Static Analysis 

 We proceed to analyze the elastic moduli for the two-dimensional array following 

the same procedure outlined in the previous chapter. For all simulations, the geometric and 

material constants are as given in Table 3.1. The structure is pre-stressed such that all 

strings have the same initial tension (𝑇0 = 𝑓𝑠𝑙𝑆 = 𝐾𝑠𝜀0𝑙𝑠) and, according to the state of 

self-stress 𝐒𝟏, all bars have the same initial compression −
3

2
𝑇0. The initial strain in the 

string is varied to investigate its effect on the elastic moduli. 

4.7.3.1 Modulus of Elasticity 

The modulus of elasticity is calculated by applying uni-axial tensile loading 

conditions along the corresponding axis and calculating the resulting elongation of the 

structure using Finite Element analysis, followed by calculating the modulus using 

equation (3.11). The moduli are computed for different array sizes and pre-tension values 

of the internal strings. The first observation we make is that for a given pre-stress value, all 

three moduli of elasticity (𝐸𝑥𝑥, 𝐸𝑦𝑦, 𝐸𝑧𝑧) are equal. Figure 4.20 additionally shows that the 

stiffening effect of the initial pre-stress is very small, which is to be expected since the 

stiffness is primarily due to the rigidity of the bars. Moreover, the modulus of elasticity 

does not change with the array size, and its value of approximately 9.3 × 107𝑁/𝑚2 is in 

fact very close to those of the single cell and the one-dimensional array. 
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Figure 4.20 Elastic moduli of 2D, class-2 tensegrity array of repeating cells  

 

4.7.3.2 Shear Moduli Gzx and Gzy 

The shear moduli are calculated in the same way as in Section 3.4: imposing a 

prescribed displacement on the top nodes (along the X-axis and the Y-axis, respectively), 

and calculating the resulting forces and the corresponding shear modulus. Figure 4.21 

Figure 4.22 show Gzx and Gzy, respectively, for different array sizes and pre-tension 

values. It can be seen that the shear modulus increases as the number of units along the 

shearing direction increases. Moreover, increasing the pre-stress reduces the shear moduli, 

which is generally consistent with the results of the one-dimensional arrays. Both shear 

moduli are on the order of 104 𝑁/𝑚2. The figures also demonstrate the anisotropy of the 

two-dimensional arrays. 
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Figure 4.21 Shear modulus, Gzx, of 2D, class-2 tensegrity array of repeating cells 

 

 

Figure 4.22 Shear modulus, Gzy, of 2D, class-2 tensegrity array of repeating cells 
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4.7.3.3 The Bulk Modulus (B) 

The bulk modulus is calculated in the same way as in Section 3.4: applying a 

hydrostatic pressure on all faces of the two-dimensional array and numerically calculating 

the resulting change in volume of the structure and the corresponding bulk modulus. The 

bulk modulus was found to be independent of both the array size and the pre-stress 

multiplier, with an approximate value of 3.1 × 107𝑁/𝑚2. 

Finally, we observe that the bulk-to-shear ratio is on the order of 103, similar to 

that of the individual tensegrity, which seems promising for the potential use of two-

dimensional structures as pentamode metamaterials. 

4.8 Dynamic Analysis 

In this section we apply Bloch’s theorem to investigate the propagation of waves 

through infinite two-dimensional tensegrity arrays and determine the location and width of 

stop bands, if they exist. 

The unit cell is the same one shown in Figure 3.1. The array is obtained by 

tessellating the unit cell by a distance 𝑙𝑏 along the X and Y axes. The origin of the 

coordinate system is assumed to lie at the centroid of an arbitrarily chosen reference cell. 

Therefore, the position vector of any point in the lattice, 𝐑⃗⃗ , can be expressed as: 

 𝐑⃗⃗ = 𝐫 + 𝑁1𝐞𝟏⃗⃗⃗⃗ + 𝑁2𝐞𝟐⃗⃗⃗⃗  (4.18) 

where 𝐫  is the position vector of the equivalent point in the reference unit cell, 𝐞𝟏⃗⃗⃗⃗  and 𝐞𝟐⃗⃗⃗⃗  

are the (direct) lattice vectors (which, in this case, are: 𝐞𝟏⃗⃗⃗⃗ = 𝑙𝑏𝐞̂𝐗 and 𝑒2⃗⃗  ⃗ = 𝑙𝑏𝐞̂𝐘), and 𝑁1 
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and 𝑁2 are the offset (in number of cells) between the reference cell and the cell in question 

along 𝐞𝟏⃗⃗⃗⃗  and 𝐞𝟐⃗⃗⃗⃗ , respectively. 

According to Bloch’s theorem, a disturbance will propagate through the structure 

in the form of a plane wave with a two-dimensional wave vector 𝐤 = 𝑘1𝐞𝟏⃗⃗⃗⃗ 
∗
+ 𝑘2𝐞𝟐⃗⃗⃗⃗ 

∗
, 

where 𝐞𝟏⃗⃗⃗⃗ 
∗
 and 𝐞𝟐⃗⃗⃗⃗ 

∗
 are the basis vectors of the reciprocal lattice, which are related to the 

direct lattice vectors by the identity [87]: 

 𝐞𝐢⃗⃗  ⃗ ∙ 𝐞𝐣⃗⃗⃗  
∗
= 𝛿𝑖𝑗 (4.19) 

where 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗, 0 otherwise. The plane wave vector is given by: 

 

 𝑊(𝐑⃗⃗ , 𝑡) = 𝑊0 𝑒
𝑖𝜔𝑡 𝑒𝑖𝐤 ∙𝐑⃗⃗  

=  𝑊0 𝑒
𝑖𝜔𝑡 𝑒𝑖𝐤 ∙(𝐫 +𝑁1𝐞𝟏⃗⃗ ⃗⃗ +𝑁2𝐞𝟐⃗⃗ ⃗⃗ ) 

= 𝑊0 𝑒
𝑖𝜔𝑡 𝑒𝑖𝐤 ∙𝐫  𝑒𝑁1𝜇1+𝑁2𝜇2 

= 𝑊(𝐫 , 𝑡)  𝑒𝑁1𝜇1+𝑁2𝜇2 

(4.20) 

where the propagation constants are 𝜇1 = 𝑖𝑘1 and 𝜇2 = 𝑖𝑘2, each of which consisting of 

an attenuation constant and a phase constant. The Floquet boundary conditions are thus 

given by: 

 𝐪𝟑 = 𝐪𝟏𝑒
𝜇1 = 𝐪𝟏𝑒

𝛼1+𝑖𝛽1 

𝐪𝟒 = 𝐪𝟐𝑒
𝜇1 = 𝐪𝟐𝑒

𝛼1+𝑖𝛽1 

𝐪𝟕 = 𝐪𝟓𝑒
𝜇2 = 𝐪𝟓𝑒

𝛼2+𝑖𝛽2 

𝐪𝟖 = 𝐪𝟔𝑒
𝜇2 = 𝐪𝟔𝑒

𝛼2+𝑖𝛽2 

(4.21) 

 

While the unit cell had twelve nodes with a total of thirty-six degrees of freedom, 

equations (4.21) show that the vector of reduced degrees of freedom, 𝐪𝐑, will consist of 
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only twenty-four elements. Using the appropriate transformation matrix, 𝐓, which will be 

a function of (𝛼1, 𝛽1, 𝛼2, 𝛽2), the reduced equations of motion for the unit cell can be cast 

in the form of the parametrized eigenvalue problem of equation (4.13). 

By setting the attenuation constants to zero (𝛼1 = 𝛼2 = 0) and varying each of the 

phase constants 𝛽1 and 𝛽2 between 0 and 2𝜋, the excitation frequencies corresponding to 

each (𝛽1, 𝛽2) pair can be computed by solving equation (4.13). Figure 4.23 shows the first 

twelve dispersion surfaces, demonstrating that the two-dimensional lattice does not exhibit 

any stop bands, i.e., an incident excitation of any frequency will propagate through the 

structure without attenuation. 

  

Figure 4.23 Dispersion surfaces of 2D, class-2 tensegrity array of repeating cells 
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4.9 Alternating Tensegrity Array 

With the goal of combining the very high elastic modulus and bulk-to-shear ratio 

already observed for tensegrity arrays with the wave filtering characteristics of periodic 

structures, we modify the previous array design by introducing an impedance mismatch at 

the cell boundaries in the form of alternating material properties from one cell to the next. 

Specifically, for every other cell in the structure, we use bars with an elastic modulus equal 

to one half that in Table 3.1. When performing Bloch analysis of the new array, the 

repeating unit cell thus becomes the set of two individual cells with different bar modulus. 

Figure 4.24 shows a portion of the alternating one-dimensional array, while Figure 4.25 

shows the top view of a portion of the two-dimensional one. Different bar colors signify 

different elastic moduli. 

 

Figure 4.24 1D, class-2 tensegrity array of alternating cells 
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Figure 4.25 Top view of 2D, class-2 tensegrity array of alternating cells 

Figure 4.26 shows the dispersion surfaces for the two-dimensional alternating 

array, clearly showing a wide stop band extending from 6,500 Hz to 9,500 Hz and a second 

one from 16,500 Hz to 19,000 Hz. The dispersion curves of the one-dimensional case (not 

shown) feature similar stop bands. 

 

Figure 4.26 Dispersion surfaces of 2D, class-2 tensegrity array of alternating cells 
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4.10 Summary 

In this chapter, we conceived one- and two-dimensional arrays of repeating 

icosahedron tensegrity units, and numerically investigated their kinematic and static 

characteristics. The resulting structures were found to be Class-2 tensegrity structures, and 

had a very high bulk-to-shear ratio, again suggesting the possibility of using these 

structures as pentamode metamaterials. The designs were subsequently manufactured by 

3D printing and the resulting structures were tested for their elastic moduli and acoustic 

wave propagation characteristics, which were found to be in line with the numerical 

simulations. 

While the individual tensegrity elements (bars and strings) cannot withstand 

bending loads, icosahedron tensegrity cells were arranged to create a cantilever beam able 

to withstand bending. The bending stiffness of such beams, however, was on the lower end 

(on the order 100 N/m), which may not be very useful for practical applications. 

We also investigated the wave propagation characteristics in the structures using 

Bloch’s theorem and noted that the structures created using identical tensegrity units do 

not feature any stop bands. By introducing a periodicity in the material properties of the 

constitutive units, stop bands do appear. This may open the door to using periodic 

tensegrity lattices for vibration isolation applications. 
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Chapter 5: Alternative Design for Periodic 

 Icosahedron Tensegrity Arrays 

5.1 Introduction 

The previous chapter has demonstrated that while the periodic arrays assembled 

from identical icosahedron tensegrity unit cells have very good static characteristics, Bloch 

analysis of their dynamic properties revealed that they do not exhibit any stop bands. In 

this chapter we explore alternative configurations of assembling the same tensegrity unit 

cells into periodic arrays that would achieve wave filtering characteristics. 

The proposed configuration is first described, and the resulting structure is statically 

and kinematically analyzed to demonstrate its stability, then Bloch’s theorem is applied to 

investigate the presence (and width and location, if applicable) of stop bands in their 

dispersion diagrams. 

5.2 Description of the Unit Cell and Periodic Array 

Starting with the same icosahedron tensegrity described in Chapter 3, periodic 

arrays in one and two dimensions are conceived by rotating every other cell by ninety 

degrees about its own X, Y or Z axis, resulting in a structure with two alternating cell 

configurations (we will call them A and B). Under this configuration, neighboring cells 

will not have any vertices in common, and therefore additional members will be required 

to connect the units and provide stiffness to the assembly. 

The simplest way to connect two adjacent cells is using four strings, e.g., 

connecting each of the two right-most nodes of one cell to each of the two left-most nodes 
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of another cell. However, if neighboring cells are “touching”, i.e., one cell ends exactly 

where the next cell begins, this leads to the four connecting strings being coplanar (forming 

the sides of a square). To first order approximation, this assembly will have no stiffness in 

the direction normal to the plane of connecting strings. Therefore, further consideration is 

necessary to the manner in which cells are connected to their neighbors. 

We begin by introducing an offset, which may be positive or negative, between 

adjacent cells so that the strings can provide first order stiffness against tension along any 

of the three axes. Additionally, since the strings can only resist tension, then for the 

structure to be stable we would need to provide an additional set of strings that becomes 

“active” when the first set is not, and vice versa. Therefore, by setting the offset to be 

negative causing the cells to have a small overlap, and one set of four strings will be able 

resist compressive loading (tending to close the cells together), while the other set of four 

strings (which will be named “mast” strings) will be able to resist tensile loading 

(attempting to separate the cells from one another). Figure 5.1 shows only the bars and the 

8 strings that connect every two neighboring cells, for an array of three tensegrity cells 

having a negative offset of 1 cm. In the Figure, the strings connecting nodes 3-13, 3-14, 4-

13, and 4-14 can resist compressive loading on the cells (along the X axis), while the strings 

connecting nodes 3-21, 4-23, 10-14, and 12-13 can resist tensile loading on the cells (along 

the X axis). 
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Figure 5.1 Inter-cell connectivity for 1D, class-1 tensegrity array 

 

5.3 One-dimensional Array of Alternating Cells 

5.3.1 Geometry and Material Properties 

A one-dimensional array of three tensegrity units is shown in Figure 5.1. Each cell 

is identical to the one described in Chapter 3. The inter-cell offset, Δ𝑒, is negative, leading 

to a small overlap between adjacent cells. The overlap must be less than 
𝑙𝑏

4⁄  to avoid 

collision of the struts of neighboring cells. Adjacent cells are connected by eight massless 

strings: the four ‘side’ strings (e.g., the strings connecting nodes 3-13, 3-14, 4-13, and 4-

14) of stiffness 𝐾𝑐1, cross-section radius 𝑟𝑐1, and length 𝑙𝑐1; and four ‘mast’ strings  (e.g., 

the strings connecting nodes 3-21, 4-23, 10-14, and 12-13) of stiffness 𝐾𝑐2, cross-section 
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radius 𝑟𝑐2, and length 𝑙𝑐2. The working lengths of the connecting strings will depend on the 

value of the offset. The parameter values for the baseline simulations are given in Table 5.1. 

𝑙𝑏 13 𝑐𝑚 𝑙𝑠 √3 8⁄ 𝑙𝑏 𝑙𝑐1 √
𝑙𝑏
8

2

+ 𝑒2 𝑙𝑐2 √
𝑙𝑏
16

2

+ 𝑒2 

𝑟𝑏 5 𝑚𝑚 𝑟𝑠 2.5 𝑚𝑚 𝑟𝑐1 5 𝑚𝑚 𝑟𝑐2 5 𝑚𝑚 

𝜌𝑏 500 𝑘𝑔/𝑚3       

𝐸𝑏 109 𝑁/𝑚2 𝐾𝑠 5,000 𝑁/𝑚 𝐾𝑐1 5,000 𝑁/𝑚 𝐾𝑐2 5,000 𝑁/𝑚 

Table 5.1 Geometric and material properties for class-1 tensegrity array 

 

5.3.2 Mechanisms and Stats of Self-stress 

By computing the nullspaces of the equilibrium matrix of a one-dimensional array 

of 𝑁 cells (𝑁 ≥ 2), it is revealed that the structure has 𝑛𝑠𝑠 = 2𝑁 − 2 possible states of 

self-stress, of which 𝑁 states correspond to each cell being loaded according to  

𝐒𝟏 with the connecting strings unloaded. The array has only six mechanisms – the rigid 

body modes – which, once constrained, leave the structure kinematically determinate. 

While pre-stressing the structure according to any of the 𝑁 states of self-stress will increase 

its stiffness, we note that the structure is always stable (with or without pre-stress). This 

class of kinematically determinate and statically indeterminate structures were named 

redundant structures by Murakami and Nishimura [48], and were classified as tensegrity 

structures by Motro (e.g., [25]) and  Skelton (e.g., [23]). Since no two bars ever meet, and 

all the compression elements are loaded in compression, and the tension elements loaded 

in tension, we classify the structure as a Class-1 tensegrity. 
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5.3.3 Static Analysis 

The elastic, shear and bulk moduli for arrays of different lengths and configurations 

were numerically calculated in the same way as in Chapter 4. Figures 5.2-5.5 show, 

respectively, the modulus of elasticity 𝐸𝑥𝑥, the modulus of rigidity 𝐺𝑧𝑥, the bulk modulus 

𝐵, and the ratio 𝐵/𝐺𝑧𝑥 against the level of pre-stress, for five array lengths. We first note 

that the elastic modulus of a 2-unit array (four cells in total) is approximately four orders 

of magnitude smaller than that of the single icosahedron tensegrity. This is to be expected 

since the overall stiffness of the array will now be determined by the stiffness of its weakest 

link: the connecting strings, which is much lower than that of the bars. We can also see that 

the pre-stress has a significant effect on the elastic modulus: increasing the pre-stress leads 

to a parabolic increase in the elastic modulus. Finally, increasing the number of cells leads 

to a decrease in the elastic modulus, which can be approximated by the expected outcome 

of adding springs in series. 

The shear modulus, on the other hand, increases as the number of cells increases, 

and tends to stabilize for large numbers of cells. The pre-stress has the same effect observed 

in Section 4.3: initially the shear modulus increases with the pre-stress, but beyond a certain 

threshold, the modulus starts to decrease. The initial pre-stress corresponding to the peak 

shear modulus decreases as the number of units increases. 

The bulk modulus decreased significantly compared to the single cell and to the 

one-dimensional array in Section 4.3, and in fact approximates the elastic modulus. This is 

due to the lower stiffness along the axis of the array relative to its transverse axes. The 

bulk-to-shear ratio has similarly dropped to around unity. 
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Figure 5.2 Elastic modulus of 1D, class-1 tensegrity array 

 

 

Figure 5.3 Shear modulus of 1D, class-1 tensegrity array 

0

10,000

20,000

30,000

40,000

50,000

60,000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

E
la

st
ic

 M
o

d
u
lu

s

(N
/m

2
)

Elastic Strain in the Strings

N = 2 N = 4 N = 8 N = 16 N = 32

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

S
h
ea

r 
M

o
d

u
lu

s,
 G

zx

(N
/m

2
)

Elastic Strain in the Strings

N = 2 N = 4 N = 8 N = 16 N = 32



84 

 

 

Figure 5.4 Bulk modulus of 1D, class-1 tensegrity array 

  

 

Figure 5.5 Bulk-to-shear ratio of 1D, class-1 tensegrity array 
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5.4 Dynamic Analysis 

Following the procedure outlined in Chapter 4, we use Bloch’s theorem to 

investigate the wave propagation and band structure of the infinite one-dimensional array. 

The unit cell chosen for the analysis is shown in Figure 5.6. It consists of two connected 

tensegrity cells in addition to the eight inter-cell connecting strings on the right hand side. 

The basis vector of the lattice is 𝐞⃗ = 2(𝑙𝑏 − Δ𝑒)𝐞̂𝐗 and the Floquet boundary conditions 

are: 

 𝐪𝟐𝟓 = 𝐪𝟏𝑒
𝜇 = 𝐪𝟏𝑒

𝛼+𝑖𝛽 

𝐪𝟐𝟔 = 𝐪𝟐𝑒
𝜇 = 𝐪𝟐𝑒

𝛼+𝑖𝛽 

𝐪𝟐𝟕 = 𝐪𝟗𝑒
𝜇 = 𝐪𝟗𝑒

𝛼+𝑖𝛽 

𝐪𝟐𝟖 = 𝐪𝟏𝟏𝑒
𝜇 = 𝐪𝟏𝟏𝑒

𝛼+𝑖𝛽 

(5.1) 

 

 

Figure 5.6 Unit cell for Bloch analysis of 1D, class-1 tensegrity array 
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Figure 5.7 shows the first 15 dispersion curves for the array. We can see that there 

are two frequency stop bands: a small one (2-Hz wide) around 101 Hz, and a larger one 

(11-Hz wide) around 190 Hz. Figure 5.8 shows the frequency-response plot obtained from 

a finite element model created in MATLAB for an array of forty cells excited harmonically 

from one end and the response calculated at one of the nodes on the opposite end. The 

simulation results are in agreement with the dispersion curves, showing very large 

attenuation (over 60 dB) in the frequency ranges corresponding to the stop bands. 

 

Figure 5.7 Dispersion curves for 1D, class-1 tensegrity array (Kc = 5000 N/m) 
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Figure 5.8 Frequency response of 1D, class-1 tensegrity array (Kc = 5000 N/m) 

 

5.4.1 The Effect of Pre-stress 

We investigate the effect of the magnitude of pre-stress, represented by the initial 

strain in the strings, on the presence and width of stop bands. Figure 5.9 shows the pass 
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0 20 40 60 80 100 120 140 160 180 200
-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

Frequency [Hz]

M
a
g
n
it
u
d
e
 [

d
B

]

First 

stop 

band 

Second 

stop 

band 



88 

 

 

Figure 5.9 Effect of pre-stress on stop bands (Kc = 5000 N/m) 

 

5.4.2 The Effect of Connecting Strings’ Stiffness 

We reduce the stiffness of the eight connecting strings to 1000 N/m while keeping 

everything else constant. We observe that the stop bands, shown in Figure 5.10, have 

widened significantly. Figure 5.11 shows the frequency-response plot obtained from 

numerical simulation of a one-dimensional array of forty tensegrity units subject to 

harmonic excitation. The attenuation zones are in agreement with the stop bands visible in 

Figure 5.10. 
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Figure 5.10 Dispersion curves for 1D, class-1 tensegrity array (Kc = 1000 N/m) 

 

Figure 5.11 Frequqncy response for 1D, class-1 tensegrity array (Kc = 1000 N/m) 
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5.5 Two-Dimensional Arrays 

5.5.1 Description 

We assume a two-dimensional array of tensegrity cells aligned with the global X 

and Y axes. The array consists of 𝑁𝑋 ‘columns’ along the X axis and 𝑁𝑌 ‘rows’ along the 

Y axis. The center of the first cell lies at the origin of the coordinate system and has its 

local axes aligned with the global axes, satisfying cell configuration A. Each subsequent 

cell that has a neighbor with this configuration will assume configuration B, and vice versa. 

Figure 5.12 shows the top view of a portion of such an array. 

 

Figure 5.12 Top view of 2D, class-1 tensegrity array 
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5.5.2 Mechanisms and States of Self-stress 

Investigation of the equilibrium matrix of two-dimensional arrays reveals that the 

number of states of self-stress (the nullity of the matrix) satisfies the empirical relationship 

 𝑛𝑠𝑠 = 10 𝑁𝑋𝑁𝑌 − 8𝑁𝑋 − 8𝑁𝑌 + 6 (5.2) 

where 𝑁𝑋 , 𝑁𝑌 ≥ 1. The basis for this null space includes 𝑁𝑋𝑁𝑌 vectors, each corresponding 

to an individual cell of the array being stressed in accordance with 𝐒𝟏, while all other cells 

and connecting strings unstressed. 

The number of mechanisms (the nullity of the kinematic matrix) is always six for 

an unconstrained array, corresponding to the rigid body modes which are then eliminated 

with appropriate boundary conditions. 

Similar to the one-dimensional case, investigation of the stiffness matrix shows that 

the constrained, unstressed structure is stable (all the eigenvalues are positive), and that 

introducing a pre-stress in each cell equal to a positive multiple of 𝑺𝟏 increases the overall 

stiffness of the array and ensures that all members are properly loaded. Therefore, we 

conclude that such pre-stressed structures are Class-1 tensegrity structures. 

5.5.3 Static Analysis 

We perform the numerical simulations to determine the array’s elastic moduli, for 

different array sizes and magnitudes of pre-stress. All other properties are as given in 

Table 5.1 Geometric and material properties for class-1 tensegrity arrayTable 5.1, and the 

overlap between adjacent cells is 10 𝑚𝑚 (Δ𝑒 = −10𝑚𝑚). 
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5.5.3.1 The Modulus of Elasticity  

 Boundary Conditions 

To calculate 𝐸𝑥𝑥, the two leftmost nodes of every cell of the leftmost column of 

cells are constrained from moving along the X-axis. Additionally, all the top and bottom 

nodes of the same set of cells are completely constrained, simulating the effect of the grip 

of a universal testing machine clamping down on that first column of cells. A prescribed 

displacement along the positive X-direction is applied to the rightmost nodes of the 

rightmost column. All the other degrees of freedom are unconstrained. 

To calculate 𝐸𝑦𝑦, all the front nodes (smallest Y coordinate) of the first row of cells 

are constrained from moving along the Y-axis, and all the top and bottom nodes of the 

same row of cells are completely constrained. A prescribed displacement along the positive 

Y-direction is applied on the back nodes (largest Y coordinate) of the last row of cells.  

 The Moduli 

Figure 5.13 and Figure 5.14 show 𝐸𝑥𝑥 and 𝐸𝑦𝑦, respectively. They indicate that 

the modulus of elasticity increases with the initial strain and decreases when the number of 

cells along the direction of the force increases. Both moduli are on the order of 104 𝑁/𝑚2. 
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Figure 5.13 Elastic modulus Exx of 2D, class-1 tensegrity array 

 

Figure 5.14 Elastic modulus Eyy of 2D, class-1 tensegrity array 
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5.5.3.2 The Shear Moduli 

We investigate the shear moduli 𝐺𝑧𝑥 and 𝐺𝑧𝑦 by imposing a known displacement 

on the top nodes of the array, along the X and Y axes, respectively, and compute the 

resulting nodal forces and the moduli. Figure 5.15 and Figure 5.16 show 𝐺𝑧𝑥 and 𝐺𝑧𝑦, 

respectively. They indicate that both shear moduli are on the order of 104𝑁/𝑚2 and 

increase as the number of cells increase. The effect of varying the pre-stress is consistent 

with previously-observed behavior: the shear modulus increases as the initial strain 

increases from 0 to 0.2 then decreases as the initial strain is increased further. 

 

Figure 5.15 Shear modulus 𝐺𝑧𝑥 of 2D, class-1 tensegrity array 
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Figure 5.16 Shear modulus 𝐺𝑧𝑦 of 2D, class-1 tensegrity array 

 

5.5.3.3 The Bulk Modulus 

Figure 5.17 shows the bulk modulus for different array sizes and initial strain 

magnitudes. The bulk modulus is on the order of 104𝑁/𝑚2, and decreases slightly as the 

array size increases but tends to stabilize for large arrays. The effect of the initial strain is 

evident: higher initial strain (hence, pre-stress) results in a higher bulk modulus. 

The bulk-to-shear ratio is on the order of unity, similar to that of existing naturally-

occurring materials, and suggesting that this configuration may not be suitable for the 

synthesis of pentamode metamaterials. 
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Figure 5.17 Bulk modulus of 2D, class-1 tensegrity array 
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5.5.4 Dynamic Analysis of 2D Array 

We analyze the wave propagation characteristics of an infinite two-dimensional 

array using Bloch’s theorem to identify the frequency band structure of the arrays. 

The unit cell is shown in Figure 5.18. It consists of two individual cells, one of Type 

A and the other of Type B, along with their eight inter-cell connecting strings, the eight 

strings connecting them to their neighbor in the positive X direction, and the sixteen strings 

connecting each of the two cells to their respective neighbors in the positive Y direction. 

The unit cell therefore includes thirty-six nodes, each admitting three degrees of freedom. 

Figure 5.19 shows a schematic top view of the array, as obtained by tessellating the unit 

cell with its two constitutive cells: A (shown in gray) and B (shown in white) along the 

axes 𝑋1 and 𝑋2. The basis vectors of the direct lattice are 

 𝑒1⃗⃗  ⃗ = 2(𝑙𝑏 − Δ𝑒)𝑒̂𝑋 

𝑒2⃗⃗  ⃗ = (𝑙𝑏 − Δ𝑒)𝑒̂𝑋 + (𝑙𝑏 − Δ𝑒)𝑒̂𝑌 

(5.3) 

Each cell is associated with two integer indices (𝑛1, 𝑛2) representing the number 

of translations along 𝑒1⃗⃗  ⃗ and 𝑒2⃗⃗  ⃗, respectively, necessary to reach the cell from the reference 

cell at the origin. According to Bloch’s theorem, a planar wave propagating through the 

structure will be associated with two independent propagation constants, 𝜇1 and 𝜇2, such 

that: 

 𝑊(𝐑⃗⃗ , 𝑡) = 𝑊(𝐫 , 𝑡)  𝑒𝑁1𝜇1+𝑁2𝜇2 (5.4) 

where 𝜇1 = 𝛼1 + 𝑖𝛽1 and 𝜇2 = 𝛼2 + 𝑖𝛽2. 
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Figure 5.18 Unit cell for Bloch analysis of 2D class-1 tensegrity array 

 

Figure 5.19 Layout of the 2D array 

From the periodicity of the array, the Floquet boundary conditions are: 

𝐪𝟐𝟓 = 𝐪𝟏𝑒
𝜇1 𝐪𝟑𝟑 = 𝐪𝟏𝑒

𝜇2 𝐪𝟐𝟗 = 𝐪𝟏𝟕𝑒
(𝜇2−𝜇1) 

𝐪𝟐𝟔 = 𝐪𝟐𝑒
𝜇1 𝐪𝟑𝟒 = 𝐪𝟑𝑒

𝜇2 𝐪𝟑𝟎 = 𝐪𝟏𝟗𝑒
(𝜇2−𝜇1) 

𝐪𝟐𝟕 = 𝐪𝟗𝑒
𝜇1 𝐪𝟑𝟓 = 𝐪𝟓𝑒

𝜇2 𝐪𝟑𝟏 = 𝐪𝟐𝟏𝑒
(𝜇2−𝜇1) 

𝐪𝟐𝟖 = 𝐪𝟏𝟏𝑒
𝜇1 𝐪𝟑𝟔 = 𝐪𝟔𝑒

𝜇2 𝐪𝟑𝟐 = 𝐪𝟐𝟐𝑒
(𝜇2−𝜇1) 

 

𝑋, 𝑋1 

𝑋2 
𝑌 

(1,0) 

(−1,1) (0,1) 

(−1,2) (0,2) 

(1,1) 

(1,2) 

(2,0) (0,0) 
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Once the equations of motion have been cast in the form of eq. (4.13), we set the 

attenuation constants to zero ��� � �� � 0�, and allow the phase constants �� and �� to 

scan the range �0,2��. Solving the reduced equations of motion thus yields the frequencies 

of oscillation that can propagate unimpeded for each pair of phase constants, and the 

dispersion surfaces of the system can be plotted. Figure 5.20 shows the dispersion surfaces 

(up to 500 Hz) of an array with the properties shown in Table 5.1 and an initial strain of 

0.05 in the internal strings. Three complete stop bands can be seen (between 300 and 362 

Hz) where no oscillations can propagate. Several partial bandgaps (limited to specific 

directions of propagation) may exist at other frequencies. Figure 5.21 shows the effect of 

the initial strain on the location and width of the stop bands (shown for Kc = 2000 N/m and 

� � �10��), suggesting that adjusting the pre-stress may be used as a tuning parameter 

to adjust the location or width of the stop bands, e.g., to encompass a specific excitation 

frequency. 

 

Figure 5.20 Dispersion surfaces of 2D, class-1 tensegrity array 
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Figure 5.21 Effect of pre-stress on pass and stop bands 

 

The pass and stop bands obtained from the Bloch analysis were verified 

numerically using MATLAB by simulating a 30 � 30 rectangular tensegrity lattice with 

the same characteristics listed above, subjecting it to a uni-axial sinusoidal excitation from 

one side, and calculating the resulting displacement on the opposite side. Figure 5.22 shows 

the frequency-response plots for two cases: initial strain values of 0.1 and 0.3, for excitation 

along the X-axis. The plots show very high attenuation in the frequency ranges 

corresponding to the stop bands predicted by Bloch’s theorem. We note that, in the case of 

�� � 0.3, the response features two additional attenuation bands (in the 380-480 Hz range) 

which may be due to partial stop bands. The results for excitation along the Y-axis (not 

shown) are very similar. 
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Figure 5.22 Frequency response of 2D, class-1 tensegrity array 

for initial strain 0.1 (top) and 0.3 (bottom) 
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5.6 Summary 

In this chapter we conceived an alternative configuration for one- and two-

dimensional periodic arrays of icosahedron tensegrity units. The array is found to be a 

Class-1 tensegrity structure. Bloch analysis of wave propagation characteristics of the 

structure showed the presence of frequency pass and stop bands, where the location and 

width of the bands depended on the parameters of the cell (e.g., pre-stress and material 

properties), which could then be used to tune the bands. 

Investigation of the elastic coefficients and the bulk-to-shear ratio of the structures 

revealed that they dropped drastically compared to the structures of the previous chapter, 

possibly undermining their use as structural elements or pentamode metamaterials. 
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Chapter 6: Design and Testing of Tensegrity Damper 

6.1 Introduction 

In this chapter we propose, build, and test a tensegrity-based damper, able to 

attenuate vibration amplitudes – within certain frequency bands – by virtue of its 

periodicity. We first present the concept and develop the mathematical model of its 

constitutive unit cell, which is then generalized to the periodic array using Floquet-Bloch 

analysis to identify the frequency pass and stop bands. We build a prototype using 3D 

printing, perform material characterization on it and carry out testing and experimental 

validation of the static and dynamic predictions. 

6.2 Description 

The damper is shown schematically in Figure 6.1. It consists of repeating tensegrity 

cells where each cell consists of four flexible links forming the sides of a rhombus and one 

rigid link constituting one of the diagonals. Another rigid link, orthogonal to the first, 

connects each two consecutive cells. 

 

Figure 6.1 Schematic of periodic tensegrity damper 

(solid black lines are rigid links, dashed green lines are flexible links) 
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6.3 Derivation of Equations of Motion 

 

Figure 6.2 Tensegrity damper unit cell 

We begin by deriving the equations of motion of one tensegrity unit cell, shown in 

Figure 6.2, under the following assumptions: 

 All degrees of freedom in the horizontal (X-) direction are constrained 

 The effect of gravity is ignored – the structure lies in a plane parallel to the 

ground 

 Rigid elements are perfectly rigid while flexible elements could be elastic 

or viscoelastic 

We note that by assuming a perfectly rigid link 𝐵𝐷 constrained to move only in the 

vertical (Y-) direction, then the following must be true: 

We can therefore derive the equations of motion of the unit cell using Lagrangian 

mechanics, using the three generalized coordinates (y𝐴, y𝐵 , y𝐶) which represent the 

positions of nodes (𝐴, 𝐵, 𝐶), respectively, along the Y-axis with respect to the inertial frame 

of reference. Each coordinate consists of an equilibrium position term (y𝐴0, y𝐵0, y𝐶0) and a 

displacement term (w𝐴, w𝐵, w𝐶). 

 y𝐵 = y𝐷 (6.1) 

A 

B D 

C 

X 

Y 
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In order to derive the kinetic and potential energies of the flexible elements, we 

consider a general constrained one in Figure 6.3. 𝑤𝑀 and 𝑤𝑁 are the end-nodes’ vertical 

displacements from their equilibrium positions, respectively. The undeformed and 

deformed element lengths are 𝑙0 and 𝑙, respectively, and the element has mass 𝑚𝑖, moment 

of inertia 𝐼, and stiffness 𝐾𝑖. 

 

Figure 6.3 Representative flexible element 

The acute angle, 𝛼, that the element makes with the horizontal can be defined using: 

the derivative of which with respect to time is: 

 y𝐴 = y𝐴0 + 𝑤𝐴 

y𝐵 = y𝐵0 + 𝑤𝐵 

y𝐶 = y𝐶0 + 𝑤𝐶 

(6.2) 

 tan𝛼 =
𝑦𝑁 − 𝑦𝑀

𝑎
 

(6.3) 

X 

Y 

𝑀 

𝑁 

𝑂 

𝛼 

𝑤𝑁 

𝑤𝑀 

𝑎 
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From the geometry, we can substitute: cos 𝛼 =
𝑎

𝑙
 , which results in:  

 
𝛼̇ =

ẏ𝑁 − ẏ𝑀

𝑎
 (

𝑎

𝑙
)
2

 (6.5) 

Finally, we note that the length of the element is: 

 𝑙 = √(𝑦𝑁 − 𝑦𝑀)2 + 𝑎2 (6.6) 

Therefore, the kinetic and potential energies of the constrained flexible element i can be 

given by equations (6.7) and (6.8), respectively: 

 
𝑇𝑖 =

1

2
𝑚𝑖v𝑀

2 +
1

2
𝜔 ⋅ 𝐼 ⋅ 𝜔 + 𝑚𝑖v𝑀 ⋅ 𝜌̇𝑂𝑀 

=
1

2
𝑚𝑖ẏ𝑀

2 +
1

2
(
1

3
𝑚𝑖  𝑙

2) 𝛼̇2 + 𝑚𝑖𝑦̇𝑀 (
ẏ𝑁 − ẏ𝑀

2
) 

=
1

2
𝑚𝑖ẏ𝑀ẏ𝑁 +

1

6
𝑚𝑖 (

𝑎

𝑙
)
2

(ẏ𝑁 − ẏ𝑀)2 

(6.7) 

 
𝑉𝑖 =

1

2
𝐾𝑖(𝑙 − 𝑙0)

2 =
1

2

𝐸𝐴𝑖

𝑙0
(𝑙 − 𝑙0)

2 (6.8) 

where 𝐴𝑖 is the cross-section area of the element and 𝐸 is the elastic modulus in the case 

of an elastic material or the complex modulus in the case of a viscoelastic material. 

For a rigid, constrained element 𝑗 of mass 𝑚𝑗, every point on the element will move 

with the same vertical velocity ẏ𝑗, yielding the kinetic and potential energies: 

 
𝑇𝑗 =

1

2
𝑚𝑗(ẏ𝑗)

2
 (6.9) 

 𝑉𝑗 = 0 (6.10) 

 1

(cos 𝛼)2
 𝛼̇ =

ẏ𝑁 − ẏ𝑀

𝑎
 

(6.4) 
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The kinetic and potential energies of each of the unit cell’s members are therefore 

given by: 

 
𝑇𝐴𝐵 =

1

2
𝑚1ẏ𝐴ẏ𝐵 +

1

6
𝑚1 (

𝑎

𝑙1
)
2
(ẏ𝐵 − ẏ𝐴)2 𝑉𝐴𝐵 =

1

2
𝐾1(l1 − l0)

2 

𝑇𝐴𝐷 =
1

2
𝑚2ẏ𝐴ẏ𝐵 +

1

6
𝑚2 (

𝑎

𝑙2
)
2
(ẏ𝐵 − ẏ𝐴)2 𝑉𝐴𝐷 =

1

2
𝐾2(l2 − l0)

2 

𝑇𝐵𝐶 =
1

2
𝑚3ẏ𝐵ẏ𝐶 +

1

6
𝑚3 (

𝑎

𝑙3
)
2
(ẏ𝐶 − ẏ𝐵)2 𝑉𝐵𝐶 =

1

2
𝐾3(l3 − l0)

2 

𝑇𝐶𝐷 =
1

2
𝑚4ẏ𝐵ẏ𝐶 +

1

6
𝑚4 (

𝑎

𝑙4
)
2
(ẏ𝐶 − ẏ𝐵)2 𝑉𝐶𝐷 =

1

2
𝐾4(l4 − l0)

2 

𝑇𝐵𝐷 =
1

2
𝑚5ẏ𝐵

2 𝑉𝐵𝐷 = 0 

𝑇𝐶𝐸 =
1

2
𝑚6ẏ𝐶

2 𝑉𝐶𝐸 = 0 

(6.11) 

We also note that, due to the constraints, 𝑙1 = 𝑙2 and 𝑙3 = 𝑙4. The Lagrangian of the unit 

cell is given by 

 ℒ = Σ𝑇 − Σ𝑉 (6.12) 

which is then substituted into Lagrange’s equation 

 𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇
) −

𝜕ℒ

𝜕𝑞
= 𝐹 (6.13) 

and derivations are carried out for each of the three generalized coordinates (y𝐴, y𝐵, y𝐶). 

The detailed derivations and substitutions can be found in Appendix C and result in the 

three nonlinear equations of motion: 
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 1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
2 𝑦̈𝐴 + (𝑚1 + 𝑚2) (

1

2
−

1

3

𝑎2

𝑙1
2) 𝑦̈𝐵

+
1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

− (𝐾1 + 𝐾2)
𝑙1 − 𝑙0

𝑙1
(𝑦𝐵 − 𝑦𝐴) = 𝐹𝐴 

(𝑚1 + 𝑚2) (
1

2
−

1

3

𝑎2

𝑙1
2) 𝑦̈𝐴

+ [
1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
2 +

1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
2 + 𝑚5] 𝑦̈𝐵

+ (𝑚3 + 𝑚4) (
1

2
−

1

3

𝑎2

𝑙3
2) 𝑦̈𝐶

−
1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

+
1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2

+ (𝐾1 + 𝐾2)
𝑙1 − 𝑙0

𝑙1
(𝑦𝐵 − 𝑦𝐴)

− (𝐾3 + 𝐾4)
𝑙3 − 𝑙0

𝑙3
(𝑦𝐶 − 𝑦𝐵) = 𝐹𝐵 + 𝐹𝐷 

(𝑚3 + 𝑚4) (
1

2
−

1

3

𝑎2

𝑙3
2) 𝑦̈𝐵 +

1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
2 𝑦̈𝐶

−
1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2

+ (𝐾3 + 𝐾4)
𝑙3 − 𝑙0

𝑙3
(𝑦𝐶 − 𝑦𝐵) = 𝐹𝐶 

(6.14) 

The nonlinear equations of motion above are then linearized for small deviations 

(w𝐴, w𝐵 , w𝐶) from the equilibrium position (y𝐴0, y𝐵0, y𝐶0) using Taylor series expansion 

of the nonlinear terms followed by truncation of second and higher order terms. The 

detailed work can also be found in Appendix C, with the resulting linearized equations of 

motion expressed in the following matrix form: 
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 𝐌𝐖̈ + 𝐊𝐖 = 𝐅 (6.15) 

where  𝐖 = [𝑤𝐴 𝑤𝐵 𝑤𝐶]𝑇, 𝐅 = [𝐹𝐴 𝐹𝐵 + 𝐹𝐷 𝐹𝐶]𝑇, 

𝐌

=

[
 
 
 
 
 
 
 

1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙0
2

(𝑚1 + 𝑚2) (
1

2
−

1

3

𝑎2

𝑙0
2) 0

(𝑚1 + 𝑚2) (
1

2
−

1

3

𝑎2

𝑙0
2)

1

3
(𝑚1 + 𝑚2 + 𝑚3 + 𝑚4)

𝑎2

𝑙0
2 + 𝑚5 (𝑚3 + 𝑚4) (

1

2
−

1

3

𝑎2

𝑙0
2)

0 (𝑚3 + 𝑚4) (
1

2
−

1

3

𝑎2

𝑙0
2)

1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙0
2 + 𝑚6

]
 
 
 
 
 
 
 

≡ [
𝑀𝐴𝐴 𝑀𝐴𝐵 0
𝑀𝐵𝐴 𝑀𝐵𝐵 𝑀𝐵𝐶

0 𝑀𝐶𝐵 𝑀𝐶𝐶

]  , and 

 

𝐊 = (sin 𝛼0)
2 [

𝐾1 + 𝐾2 −(𝐾1 + 𝐾2) 0

−(𝐾1 + 𝐾2) 𝐾1 + 𝐾2 + 𝐾3 + 𝐾4 −(𝐾3 + 𝐾4)

0 −(𝐾3 + 𝐾4) 𝐾3 + 𝐾4

]

≡ 𝐸 [
𝛾 −𝛾 0

−𝛾 𝛾 + 𝛿 −𝛿
0 −𝛿 𝛿

] 

where 𝛾 =
𝐴1 + 𝐴2

𝑙0
(sin 𝛼0)

2 and 𝛿 =
𝐴3 + 𝐴4

𝑙0
(sin 𝛼0)

2. 

We note that both the stiffness and mass matrices are symmetric and positive semi-

definite, and that by constraining any of the degrees of freedom to eliminate the rigid body 

mode, the stiffness matrix becomes positive definite signifying that the structure is stable. 

6.4 Comparison of Linear and Nonlinear Equations of Motion 

In order to validate our linearization and identify the limitations of the linear model, 

Figure 6.4 compares the responses obtained using the nonlinear and linear models, 

respectively, for a representative unit cell constrained at its top node (C) and subjected to 
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a vertical sinusoidal force at its bottom node (A). Assuming all flexible links have the same 

dimensions and material properties, we investigate the vertical deviation of node A from 

equilibrium (𝑤𝐴), which is obtained in the nonlinear case by numerical integration of the 

equations of motion (6.14) using MATLAB, while in the linear case it is obtained by 

assuming a harmonic response with a constant amplitude for (6.15), thus resulting in the 

following algebraic matrix equation (6.16), which can then be solved. 

 𝐖 = (𝐊 − 𝜔2𝐌)−1𝐅 (6.16) 

 

Figure 6.4 Linear vs nonlinear forced response of tensegrity damper unit cell 

As would be expected, the linearized model’s response is also sinusoidal and 

follows the input, while the nonlinear response diverges in the vicinity of the extrema. 

Noting that a negative value for 𝑤𝐴 corresponds to the cell being extended, this deviation 

can be explained by the geometry effect: while the stiffness matrix of the linear system is 

evaluated once at the static equilibrium position (where 𝛼 = 𝛼0), the flexible element’s 

stiffness in the nonlinear model is in fact changing as the cell deforms. As the cell 

elongates, 𝛼 increases and so does the stiffness, thereby limiting the extension; and as the 
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cell is compressed, 𝛼 decreases and so does the stiffness leading to a larger deformation 

than predicted with the linear model. 

From this observation, we can identify the limit value for the external compressive 

force that the cell can withstand, beyond which the combined stiffnesses of the flexible 

elements will not be able to balance the external force, leading to the collapse of the cell. 

For the given configuration, and assuming the same material properties for all flexible 

elements, the restoring force in the springs is given by 

 
𝐾

𝑙1 − 𝑙0
𝑙1

 𝑦𝐴 = 𝐹 (6.17) 

The maximum value of which is found by finding its derivative with respect to 𝑦𝐴, 

setting it equal to zero, and finding the corresponding 𝑦𝐴 as a function of the cell 

parameters: 

 

𝑦𝐴𝐶𝑅
= 2(√𝑎4𝑙0

23

− 𝑎2)

1
2⁄

 
(6.18) 

which results in the following critical load: 

 
𝐹𝐶𝑅 =  𝐾

√𝑎2𝑙0
3

− 𝑙0

√𝑎2𝑙0
3

 𝑦𝐴𝐶𝑅
 (6.19) 

Therefore, for stable operation of the tensegrity cell in the assumed configuration, 

one must ensure that the applied compressive force will not exceed the critical load 

calculated above. As long as this condition is satisfied, the linearized model may be 

considered a reasonable approximation for the physical system. 
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6.5 Modeling Viscoelastic Flexible Elements 

Viscoelastic materials are characterized by complex material moduli, e.g., for the 

elastic modulus: 

𝐸 = 𝐸′ + 𝑖 𝐸′′ = 𝐸′(1 + 𝑖𝜂) 

where the real part, 𝐸′, is the storage modulus and represents the elastic energy stored upon 

deformation, while the imaginary part, 𝐸′′, is the loss modulus and represents the energy 

dissipated as heat. 𝜂 is the loss factor, equal to the ratio of the loss modulus to the storage 

modulus, which provides a measure of the damping in the material. It is often expressed as 

the tangent of the phase angle, 𝛿, between the loss and storage moduli: 

𝜂 = 𝑡𝑎𝑛 𝛿 =
𝐸′′

𝐸′
 

The GHM model of viscoelasticity, introduced by Golla and Hughes [179] and 

McTavish and Hughes [180], describes the complex modulus of a viscoelastic material 

with a second order differential equation, expressed in the Laplace domain as 

 

𝐸 = 𝐸0 [1 + ∑𝛼𝑖

𝑠2 + 2𝜁𝑖𝜔𝑖𝑠

𝑠2 + 2𝜁𝑖𝜔𝑖𝑠 + 𝜔𝑖
2

𝑁

𝑖=1

] (6.20) 

where 𝑠 is the Laplace variable (𝑠 = 𝑖𝜔), 𝐸0 is the modulus at zero frequency, and 𝛼𝑖 , 𝜁𝑖 

and 𝜔𝑖 are parameters obtained from curve fitting the experimental data obtained for a 

given viscoelastic material at a given temperature. 

This formulation has been found to yield a dynamic mathematical model of the 

viscoelastic material analogous to that of a spring mounted in parallel with 𝑁 mini-

oscillators, each of which consisting of a mass, a spring and a damper mounted in series. 
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The number of mini-oscillators, 𝑁, determines the quality of the curve-fitting, with two 

mini-oscillators often providing a good approximation of the experimental data. Assuming 

that the chosen flexible material can indeed be modeled with two mini-oscillators, the 

modulus (6.20) will be become: 

 
𝐸 = 𝐸0 [1 + 𝛼1

𝑠2 + 2𝜁1𝜔1𝑠

𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔1
2
+ 𝛼2

𝑠2 + 2𝜁2𝜔2𝑠

𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2
] (6.21) 

For each physical degree of freedom associated with a viscoelastic element we 

define a number of internal, or dissipation, degrees of freedom equal to the number of mini-

oscillators in the model. In this case all three degrees of freedom are tethered to viscoelastic 

elements, resulting in a total of six internal degrees of freedom, defined as follows: 

 
zI = [

𝑧1

𝑧2

𝑧3

] =
𝜔1

2

𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔1
2
[

𝑤𝐴

𝑤𝐵

𝑤𝐶

] 

zII = [

𝑧4

𝑧5

𝑧6

] =
𝜔2

2

𝑠2 + 2𝜁2𝜔2𝑠 + 𝜔2
2
[

𝑤𝐴

𝑤𝐵

𝑤𝐶

] 

(6.22) 

We note that we can rewrite the first of these definitions as 

 𝑠2 + 2𝜁1𝜔1𝑠

𝑠2 + 2𝜁1𝜔1𝑠 + 𝜔1
2
𝑤𝐴 = 𝑤𝐴 − 𝑧1 (6.23) 

with similar expressions for the remaining internal degrees of freedom. Therefore, we can 

use the GHM model (6.21) to substitute for 𝐸 in the set of linearized equations of motion 

(6.19), and subsequently use (6.23) and similar expressions to substitute for the appropriate 

terms, ultimately resulting in the following three equations: 
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 𝑀𝐴𝐴𝑤̈𝐴 + 𝑀𝐴𝐵𝑤̈𝐵 + 𝐸0𝛾[(1 + 𝛼1 + 𝛼2)𝑤𝐴 − 𝛼1𝑧1 − 𝛼2𝑧4]

− 𝐸0𝛾[(1 + 𝛼1 + 𝛼2)𝑤𝐵 − 𝛼1𝑧2 − 𝛼2𝑧5] = 𝐹𝐴 

𝑀𝐵𝐴𝑤̈𝐴 + 𝑀𝐵𝐵𝑤̈𝐵 + 𝑀𝐵𝐶𝑤̈𝐶 − 𝐸0𝛾[(1 + 𝛼1 + 𝛼2)𝑤𝐴 − 𝛼1𝑧1 − 𝛼2𝑧4]

+ 𝐸0(𝛾 + 𝛿)[(1 + 𝛼1 + 𝛼2)𝑤𝐵 − 𝛼1𝑧2 − 𝛼2𝑧5]

− 𝐸0𝛿[(1 + 𝛼1 + 𝛼2)𝑤𝐶 − 𝛼1𝑧3 − 𝛼2𝑧6] = 𝐹𝐵 + 𝐹𝐷 

𝑀𝐶𝐵𝑤̈𝐵 + 𝑀𝐶𝐶𝑤̈𝐶 − 𝐸0𝛿[(1 + 𝛼1 + 𝛼2)𝑤𝐵 − 𝛼1𝑧2 − 𝛼2𝑧5]

+ 𝐸0𝛿[(1 + 𝛼1 + 𝛼2)𝑤𝐶 − 𝛼1𝑧3 − 𝛼2𝑧6] = 𝐹𝐶 

(6.24) 

This set of equations is complemented by the six equations that define the internal 

degrees of freedom (6.22), expressed in the time domain in matrix form as follows: 

 
[
𝐳̈I

𝒛̈II
] + [

2𝜁1𝜔1𝐈 𝟎
𝟎 2𝜁2𝜔2𝐈

] [
𝐳̇I

𝐳̇II
] + [

𝜔1
2𝐈 𝟎

𝟎 𝜔2
2𝐈

] [
𝐳𝐈

𝐳𝐈𝐈
]

− [
𝜔1

2𝐈 𝟎

𝟎 𝜔2
2𝐈

] [
𝐖
𝐖

] = 𝟎 

(6.25) 

The combined set of 9 differential equations in 9 unknowns represents the 

augmented system of equations of motion, which can be cast in the following block matrix 

form: 

 

[
𝐌 𝟎 𝟎
𝟎 𝐈 𝟎
𝟎 𝟎 𝐈

] [
𝑊̈
𝐳̈I

𝒛̈II

] + [
𝟎 𝟎 𝟎
𝟎 2𝜁1𝜔1𝐈 𝟎
𝟎 𝟎 2𝜁2𝜔2𝐈

] [
𝑊̇
𝐳̇I

𝐳̇II

]

+ [

𝐊(1 + 𝛼1 + 𝛼2) −𝛼1𝐊 −𝛼2𝐊

−𝜔1
2𝐈 𝜔1

2𝐈 𝟎

−𝜔2
2𝐈 𝟎 𝜔2

2𝐈

] [
𝑊
zI

zII

] = [
𝐅
0
0
] 

(6.26) 

The procedure, outlined in [180], then calls for the decomposition of the physical system’s 

stiffness matrix, 𝐊, according to: 

 𝐊 = 𝐑̅𝚲𝐑̅𝑇 (6.27) 
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where 𝚲 is the diagonal matrix of non-zero eigenvalues of the stiffness matrix, and 𝐑̅ is the 

matrix whose columns are the corresponding eigenvectors, normalized such that: 

 𝐑̅𝑇𝐑̅ = 𝐈 (6.28) 

An intermediate set of internal coordinates is also defined: 

 zA = 𝐑̅𝑇zI 

zB = 𝐑̅𝑇zII 

(6.29) 

Therefore, multiplying the second and third rows in equation (6.26) by 𝐊
𝛼1

𝜔1
2
 and 𝐊

𝛼2

𝜔2
2
, 

respectively, and substituting for K according to (6.27), we get: 

 

[
 
 
 
 
𝐌 𝟎 𝟎

𝟎
𝛼1

𝜔1
2
𝐑̅𝚲 𝟎

𝟎 𝟎
𝛼2

𝜔2
2
𝐑̅𝚲

]
 
 
 
 

[
𝑊̈
𝐳̈A

𝒛̈B

] +

[
 
 
 
 
𝟎 𝟎 𝟎

𝟎 2𝜁1
𝛼1

𝜔1
𝐑̅𝚲 𝟎

𝟎 𝟎 2𝜁2

𝛼2

𝜔2
𝐑̅𝚲

]
 
 
 
 

[
𝑊̇
𝐳̇A

𝐳̇B

]

+ [

𝐊(1 + 𝛼1 + 𝛼2) −𝛼1𝐑̅𝚲 −𝛼2𝐑̅𝚲

−𝛼1𝐑̅𝚲𝐑̅𝑇 𝛼1𝐑̅𝚲 𝟎

−𝛼2𝐑̅𝚲𝐑̅𝑇 𝟎 𝛼2𝐑̅𝚲

] [
𝑊
zA

zB

] = [
𝐅
0
0
] 

(6.30) 

Pre-multiplying the second and third rows by 𝐑̅𝑇, and defining  

 𝐑 = 𝐑̅𝚲 (6.31) 

We can write: 

 

[
 
 
 
 
𝐌 𝟎 𝟎

𝟎
𝛼1

𝜔1
2
𝚲 𝟎

𝟎 𝟎
𝛼2

𝜔2
2
𝚲
]
 
 
 
 

[
𝐖̈
𝐳̈A

𝒛̈B

] +

[
 
 
 
 
𝟎 𝟎 𝟎

𝟎 2𝜁1
𝛼1

𝜔1
𝚲 𝟎

𝟎 𝟎 2𝜁2

𝛼2

𝜔2
𝚲
]
 
 
 
 

[
𝐖̇
𝐳̇A

𝐳̇B

]

+ [

𝐊(1 + 𝛼1 + 𝛼2) −𝛼1𝐑 −𝛼2𝐑

−𝛼1𝐑
𝑇 𝛼1𝚲 𝟎

−𝛼2𝐑
𝑇 𝟎 𝛼2𝚲

] [
𝐖
zA

zB

] = [
𝐅
0
0
] 

(6.32) 
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Or, in a more compact notation: 

 

𝐌𝐚𝐮𝐠 [
𝐖̈
𝐳̈A

𝒛̈B

] + 𝐂𝐚𝐮𝐠 [
𝐖̇
𝐳̇A

𝐳̇B

] + 𝐊𝐚𝐮𝐠 [
𝐖
zA

zB

] = [
𝐅
0
0
] (6.33) 

Equations (6.33) are the equations of motion for the tensegrity cell incorporating 

viscoelastic elements and include the internal degrees of freedom zA and zB, which account 

for the frequency dependence of the material’s properties, while doing away with internal 

degrees of freedom associated with rigid body (zero stiffness) modes. The equations may 

be solved directly for a single cell, or alternatively, the augmented mass, damping and 

stiffness matrices can be computed for a given design and used as the element matrices in 

a finite element analysis. In the latter case, it is common practice to use one of the model 

reduction techniques, e.g., Guyan reduction or static condensation, to eliminate the internal 

degrees of freedom and retain the structural ones, thereby reducing the system’s order and 

improving computational efficiency [181]. However, since this is not a significant concern 

for the current study, and in order not to lose any of the dynamic information included in 

the model, we choose to keep and use the augmented system equations and ensuing element 

matrices. 

6.6 Steady-state Response to Harmonic Excitation 

We cast the equations of motion (6.33) in state-space formulation, by defining the 

state vector 𝑄: 

𝑄 = [𝐖 zA zB 𝐖̇ 𝒛̇A 𝒛̇B]
𝑇, 

which yields the matrix state equation: 
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𝑄̇ =  [

𝑂 𝐼
−𝑴𝒂𝒖𝒈

−1𝑲𝒂𝒖𝒈 −𝑴𝒂𝒖𝒈
−1𝑪𝒂𝒖𝒈

] 𝑄 + [
0

𝑴𝒂𝒖𝒈
−1𝑭] ≡ 𝐴𝑄 + 𝐵𝑓 (6.34) 

Next, we assume a harmonic force being applied at an angular velocity 𝜔, resulting 

in a harmonic displacement, i.e., 𝑓 = 𝑓0𝑒
𝑖𝜔𝑡 and 𝑄 = 𝑄0𝑒

𝑖𝜔𝑡, where 𝑄0 will be complex, 

i.e., phase-shifted with respect to the input, due to the damping matrix. Noting that 𝑄̇ =

𝑖𝜔𝑄, we can write 

(𝑖𝜔𝐼 − 𝐴)𝑄 = 𝐵𝑓 

Therefore,  

𝑄0 = (𝑖𝜔𝐼 − 𝐴)−1𝐵𝑓0 

In order to investigate the stiffness and damping of the unit cell, we apply a unit 

force at the top node (𝑓0 = [0 0 1]𝑇), constrain the bottom node to eliminate the rigid 

body mode (𝑤𝐴 = 𝑤̇𝐴 = 0) which will result in the elimination of the corresponding rows 

and vectors from the state matrix, and solve for the displacement of the top node. 

6.7 Bloch Analysis of the Periodic Structure 

Having derived the linear equations of motion of the unit cell (equations (6.33) for 

the case of viscoelastic flexible elements, or (6.19) for purely elastic ones), we can now 

investigate the dynamics of a periodic structure consisting of repeating cells along the 

vertical axis. Following Floquet-Bloch’s method, we assume a wave propagating through 

the structure with a propagation constant 𝜇 and an angular frequency 𝜔, which undergoes 

the same change in magnitude from one cell to the next. From the periodicity of the 

structure, we can write: 
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 𝑤𝐶𝑒𝑖𝜔𝑡 = 𝑤𝐴𝑒𝜇𝑒𝑖𝜔𝑡 (6.35) 

For a wave propagating without attenuation, the propagation constant can be written as  

𝜇 = 𝑖𝛽 , 𝛽 ∈ [0,2𝜋] 

where 𝛽 is the phase constant.  

Defining the vector of augmented degrees of freedom – for the viscoelastic case with 2 

mini-oscillators – as: 

 𝐩 = [𝐖 𝐳𝐀 𝐳𝐁]𝑇 (6.36) 

We can then define the vector of reduced degrees of freedom 

 𝐩𝑹 = [𝐖𝑹 𝐳𝐀 𝐳𝐁]𝑇 (6.37) 

where 𝐖𝑹 = [𝑤𝐴 𝑤𝐵]𝑇, the two vectors being related by the transformation: 

 

𝐩 =

[
 
 
 
 

1 0
0 1

𝑒𝑖𝛽 0
𝟎 𝟎

𝟎 𝐈 𝟎
𝟎 𝟎 𝐈]

 
 
 
 

𝐩𝑹 ≡ 𝑆𝐩𝑹 (6.38) 

where 𝑆 is the transformation matrix, itself a function of 𝛽. Substituting for 𝐩 in the original 

equations of motion (6.33), and pre-multiplying by 𝑆𝐻 (where 𝑆𝐻 is the conjugate transpose 

of 𝑆). Defining the augmented force vector 𝚵 as 

 𝚵 = [𝐅 𝟎 𝟎]𝑇 (6.39) 

Equations (6.33) then become: 

 𝑆𝐻𝐌𝐚𝐮𝐠𝑆𝐩̈𝑅 + 𝑆𝐻𝐂𝐚𝐮𝐠𝑆𝐩̇𝑅 + 𝑆𝐻𝐊𝐚𝐮𝐠𝑆𝐩𝑅 = 𝑆𝐻𝚵 (6.40) 

Or in a more compact notation: 
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 𝑀𝑃𝐩̈𝑅 + 𝐶𝑃𝐩̇𝑅 + 𝐾𝑃𝐩𝑅 = 𝑆𝐻𝚵 (6.41) 

The right hand side evaluates to zero, and by casting the equations in state space 

formulation: 

 𝑑

𝑑𝑡
[
𝐩𝑅

𝐩̇𝑅] = [
𝟎 I

−𝑀𝑃−1
𝐾𝑃 −𝑀𝑃−1

𝐶𝑃
] [

𝐩𝑅

𝐩̇𝑅] (6.42) 

then making the substitutions 

 𝐖̇𝑅 = 𝑖𝜔𝐖𝑅 

𝐖̈𝑅 = −𝜔2𝐖𝑅 

(6.43) 

The resulting eigenvalue problem can therefore be solved, for successive values of 𝛽, for 

the angular velocities of waves that will propagate without attenuation and, conversely, 

those that will be blocked. 

6.8 Prototyping and Testing 

6.8.1 Design and Assembly 

Figure 6.5 shows a CAD model of the tensegrity damper unit cell. Since each of 

the four cylindrical joints must connect three elements (two flexible and one rigid), having 

all elements lie in the same plane would have significantly complicated the design, 

assembly and operation of the mechanism. A design decision was therefore made to break 

down each flexible element into two identical links, to be located symmetrically about the 

center plane of the cell. Therefore, looking at the cell from the side shows a rigid link 

located at the center, surrounded on each side by a flexible link representing “one half” of 

the first flexible element. Each of these links is, in turn, flanked by an identical link 

representing “one half” of the second flexible element. Each flexible half-link has a width 

equal to one half that of the rigid element. 
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Figure 6.5 CAD model of tensegrity isolator cell 

Several design iterations were explored, varying the dimensions and material 

properties and computing the resulting load-carrying capacity and vibration attenuation 

characteristics of the periodic array, while requiring that the overall size of both the unit 

cell and the array be suitable for testing purposes and keeping an eye on the available 

manufacturing methods and availability of standard parts. Ultimately the following design 

parameters were chosen: 

 Length of rigid element = 1.5 𝑖𝑛 

 Length of flexible element = 0.866 𝑖𝑛 

 Cross section area of any element = 0.4 × 0.2 𝑖𝑛2 

 Elastic modulus of the rigid elements’ material should be approximately three 

orders of magnitude higher than that of the flexible elements’ material. 
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6.8.2 Material Characterization and Selection 

The rigid and flexible elements were 3D-printed from the CAD model on the 3D 

printer Objet 500® Connex3™ by Stratasys, which has the capability of printing rigid and 

rubber-like materials. A cylindrical rod (1/8” in diameter) was used as the joints’ pivots on 

which the rigid and flexible elements are mounted with a clearance fit. Three PTFE washers 

(McMaster-Carr, item # 95630A235) were used as spacers between each two links at every 

joint. PTFE was chosen for its very low coefficient of friction, allowing for smooth relative 

motion between the various parts. Axial displacement along the joint was constrained using 

either a retaining ring or a nut. 

6.8.2.1 Flexible members 

Stratasys provides a number of rubber-like materials with the designations (Tango 

Black, FLX 9850-DM, FLX 9860-DM, FLX 9870-DM, FLX 9885-DM, FLX 9895-DM) 

ordered from the most to least flexible. With few material properties available from the 

manufacturer [176], we performed a dynamic mechanical thermal analysis to determine 

each flexible material’s frequency dependent complex elastic modulus. 

The characterization experiments were carried out using the DMTA system by 

Polymer Laboratories. Test specimens were rectangular strips 60 × 10 × 2 𝑚𝑚3, 3D-

printed from each of the five rubber-like materials. Each specimen was clamped in a single 

cantilever mode, flexural strain was applied isothermally over a range of frequencies, 

typically between 1 and 100 Hz, and the resulting force measured. Figure 6.6 shows a test 

specimen mounted on the DMTA device. 
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Figure 6.6 Viscoelastic sample mounted in DMTA holder 

 

Samples made from the first three materials in the list above did not withstand 

testing and failed immediately. The storage modulus and loss factor of the three remaining 

materials, which we will refer to as samples C, D and E, respectively, are shown in 

Figure 6.7 and  Figure 6.8, respectively, for tests conducted at 28°C, showing the frequency 

dependence of the storage modulus and loss factor. 

Based on these results, we chose the sample C material (FLX 9870-DM) to create 

the flexible elements since it has the lowest measured storage modulus and the highest loss 

factor. The density of the material was also computed by measuring the mass and volume 

of the samples and was found to be 1143 𝑘𝑔/𝑚3. 
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Figure 6.7 Storage modulus of rubber-like materials 

 

 

 

Figure 6.8 Loss modulus of rubber-like materials 
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6.8.2.2 Rigid Members 

The rigid members were chosen to be made of the VeroWhite Plus material, which 

is reported to have a modulus of elasticity of 2500 𝑀𝑃𝑎, a flexural modulus of 2700 𝑀𝑃𝑎, 

a maximum elongation at break of 10%-25%, and a density of 1175 𝑘𝑔/𝑚3 [175]. 

We performed DMTA testing on material samples using the device and procedure 

described above, yielding the storage modulus and loss factor shown in Figure 6.9 for tests 

conducted at 28°C. We note that the storage modulus is less than half the value reported 

for the elastic modulus; this observation was corroborated with three other samples tested 

over a range of temperatures and frequencies, all yielding similar results. We hypothesize 

that this discrepancy may be due to material anisotropy and/or specific print settings. 

Noting that the rigid material’s storage modulus is almost three orders of magnitude higher 

than that of the flexible material, we are content with the “perfectly rigid” assumption made 

in the mathematical model earlier. 

 

Figure 6.9 Storage modulus of rigid material 
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6.8.3 GHM Model Parameters 

A MATLAB program was developed to select the GHM model parameters that 

would approximate the experimental results of the selected material by solving the multi-

parameter optimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹 = ∑{(
𝐸′

𝐸′𝑒𝑥𝑝
− 1)

2

+ (
𝜂

𝜂𝑒𝑥𝑝
− 1)

2

}

𝜔

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝛼𝑖, 𝜁𝑖 , 𝜔𝑖 > 0 

𝐸(𝜔 → ∞) = 𝐸0 (1 + ∑𝛼𝑖

𝑁

𝑖=1

) 

where 𝐸0 = 𝐸(𝜔 = 0) 

The optimization problem was repeatedly solved with different initial guesses and 

with an increasing number of mini-oscillators and it was found that six mini-oscillators 

provided a very good approximation with a total error for the objective function of 0.07. 

The predicted data points are shown in Figure 6.10 against the experimental data, with the 

corresponding model given by: 

𝐸 = 𝐸0 [1 + ∑𝛼𝑖

𝑠2 + 2𝜁𝑖𝜔𝑖𝑠

𝑠2 + 2𝜁𝑖𝜔𝑖𝑠 + 𝜔𝑖
2

6

𝑖=1

] 

𝛼1 = 1.770 𝜁1 = 81.4219 𝜔1 = 2939.5 𝑟𝑎𝑑/𝑠

𝛼2 = 7.282 𝜁2 = 0.67670 𝜔2 = 152.44 𝑟𝑎𝑑/𝑠

𝛼3 = 0.0092 𝜁3 = 0.00033 𝜔3 = 628.35 𝑟𝑎𝑑/𝑠

𝛼4 = 2.1646 𝜁4 = 0.00135 𝜔4 = 161.85 𝑟𝑎𝑑/𝑠

𝛼5 = 0.0241 𝜁5 = 0.00083 𝜔5 = 314.36 𝑟𝑎𝑑/𝑠

𝛼6 = 0.3813 𝜁6 = 0.00342 𝜔6 = 190.93 𝑟𝑎𝑑/𝑠
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Figure 6.10 Storage modulus and loss factor – GHM model vs experiment 

 

6.9 Unit Cell Testing and Characterization 

Figure 6.11 shows a tensegrity damper unit cell mounted on a universal testing 

machine (Interlaken Series 3300) for the purpose of investigating its mechanical properties 

(equivalent stiffness and damping) and validating the mathematical model. Lateral motion 

of the cell is constrained by means of two acrylic blocks, one inch thick, located on both 

sides of the cell and oil-lubricated to allow for smooth vertical motion. 
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Figure 6.11 Tensegrity damper prototype on UTM machine 

With the upper grip stationary, a prescribed displacement is applied on the 

specimen through the lower grip while a load cell (in the same grip) captures the force 

necessary to produce the displacement. The force-displacement plot thus obtained for a 

sinusoidal displacement function, 2 𝐻𝑧 in frequency and 0.1 𝑖𝑛𝑐ℎ in amplitude, is shown 

in Figure 6.12, overlaid on the one obtained from solving equations (6.34) for the given 

dimensions, material parameters and operating conditions, with the top node constrained 

(𝑤𝐶 = 0) and the bottom node, C, at which the displacement is sought, loaded. 
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Figure 6.12 Experimental and predicted force-deflection plot 

Looking closely at the plots, it can be seen that both curves, which appear similar, 

exhibit hysteresis which is representative of the energy dissipation that occurs in the 

viscoelastic elements. Moreover, it is possible to estimate from the experimental plot the 

equivalent stiffness and damping of the cell. The stiffness is equal to the slope of the force-

displacement plot, which we take as the slope of the major axis of the hysteresis loop, 

estimated to be 

𝐾𝑒𝑞 = 4800 𝑁/𝑚. 

The area enclosed by the hysteresis loop in the plot is the energy dissipated in one 

cycle, 𝐷, which in turn is related to the equivalent damping coefficient of the system, 𝐶, 

by the equation 

𝐷 = 𝜋𝐶𝜔𝑋0
2 
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where 𝜔 is the angular velocity and 𝑋0 is the amplitude of the response [182]. For 𝐷 ≈

55 𝑁 𝑚𝑚, 𝜔 = 2 × 2𝜋 𝑟𝑎𝑑/𝑠, and 𝑋0 = 2.5 𝑚𝑚, the equivalent damping coefficient of 

the system is estimated to be  

𝐶𝑒𝑞 = 223 𝑁𝑠/𝑚 

Comparing the experimentally-obtained stiffness and damping coefficient to those 

obtained from the numerical model, which are 4500 𝑁/𝑚 and 243 𝑁𝑠/𝑚, respectively, 

we find the errors to be 6.7% and 8.2%, respectively, which – in our opinion – indicates a 

good agreement between the linearized mathematical model and the experiment. There is, 

however, one discrepancy between the two, namely the inability of the cell to resist 

compressive loads beyond a certain limit, found from Figure 6.12 to be approximately 

−13 𝑁. This was addressed in Section 6.4 as being the result of a geometric nonlinearity 

of the structure, and of which it is important to be mindful when designing or modeling 

such a damper. 

6.10 Vibration Testing of Periodic Array 

Figure 6.13 shows a periodic array of six tensegrity damper units, interconnected 

with rigid links, the whole driven by a shaker from one end, with the opposite end fixed to 

a massive block. Two Nylon bars located on either side of the array provide the sliding 

boundary conditions for the assembly. The array is excited using the shaker over a range 

of frequencies, and accelerometers (Kistler model 8616A500 and PCB Piezotronics model 

352C68) are used to measure the acceleration at various points. The axial position of the 

massive block can be adjusted prior to the beginning of the experiment to adjust the pre-

tension of the cells’ elements. 
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Figure 6.13 Periodic tensegrity damper vibration test rig 

Defining the transmissibility of the array as the ratio of the displacement of the last 

(rightmost) rigid cross-link, 𝑤𝑜𝑢𝑡, to the displacement of the shaker plate, 𝑤𝑖𝑛, Figure 6.14 

shows a plot of the transmissibility over the frequency range, in which it is seen to undergo 

a large drop of more than 25 dB between 1700 Hz and 2200 Hz, and another, albeit smaller, 

drop between 3800 Hz and 4300 Hz. 

  

Figure 6.14 Experimental transmissibility of tensegrity damper array 
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 Figure 6.15 shows the dispersion curves obtained by Bloch analysis of an infinite 

periodic array using the equations derived in Section 6.7, featuring a stop band in the range 

(1700-2200 Hz). Meanwhile, Figure 6.16 is a plot of the transmissibility as predicted by a 

finite element simulation for an array of six cells and shows a large drop in transmissibility 

within the same range. Comparison of the experimental results with the numerical data 

reveals that the first observed stop band is accurately predicted by both models, while the 

second stop band (3800-4300 Hz) does not show up in either simulation. 

We believe that this second stop band is not the result of Bragg scattering (the 

primary mechanism responsible for the creation of stop bands in periodic structures and 

which can be predicted using Bloch’s theorem), but is rather due to localization – the 

confinement of the disturbance to locations close to the source due to the presence of some 

disorder into the array (see, e.g., [106, 116]). This deviation from perfect periodicity (which 

may be due to some cells being stretched more than others, some of the connecting links 

not being perfectly aligned, or the introduction of asymmetries during assembly, etc.) 

prevents the propagation of vibrations to the other end of the damper, resulting in the 

second observed stop band. 
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Figure 6.15 Dispersion curves for periodic tensegrity damper 

 

 

Figure 6.16 Finite element simulation  
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6.11 Summary 

In this chapter, we proposed a design for a new tensegrity-based damper that 

demonstrates favorable load carrying, damping and wave attenuation characteristics. We 

developed an analytical model for the structure and performed static and dynamic 

simulations, including wave propagation using Bloch’s method which predicted the 

presence of frequency stop bands. 

The designs were manufactured by 3D-printing from rigid and viscoelastic 

materials, which were characterized using DMTA testing with the experimentally-obtained 

parameters incorporated into the mathematical models. 

The resulting devices were tested – in tension/compression and under dynamic 

loading – and demonstrated good agreement with the numerical predictions, including the 

presence of stop bands, suggesting the promise of such devices as mechanical vibration 

isolators. 
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Chapter 7: Original Contributions and Future Work 

7.1 Overview 

 This chapter summarizes the major contributions of the dissertation in relation to 

the current state-of-the-art, as well as provides some suggestions for future work. 

7.2 Major Contributions of the Dissertation 

 This dissertation has presented the concept of periodic tensegrity structures along 

with their performance characteristics. 

The comprehensive presentation of the periodic tensegrity structures through 

mathematical modeling of the static, dynamic characteristics of these structures combined 

with experimental validation of some of these models emphasizes the following major 

contributions of the work to the current state-of-the-art of periodic structures: 

1. The concept of periodic tensegrity structures as mechanical filters for 

controlling the wave propagation is original and has not been considered at all 

in the open-literature for application to tensegrity systems. 

2. The comprehensive theoretical demonstration of the wave propagation and 

band gap characteristics of the concept of periodic/tensegrity structures is one 

of the major contributions of this dissertation. 

3. The ability of the periodic tensegrity structures in the simultaneous control of 

wave propagation in multi-directional systems is another important contribution 

of the dissertation. 
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4. Demonstration of important and very interesting elastic properties of the 

periodic/tensegrity structures. Among these properties is the ratio of the bulk 

modulus to the shear modulus which are shown to be on the order of 1000.  

These values are two orders of magnitude higher than any naturally-occurring 

bulk material, suggesting that the viable potential of the periodic/tensegrity 

structures as suitable candidates for the synthesis of practical and realizable 

“pentamode” metamaterials, with many potential applications in the novel areas 

of acoustic and elastic cloaking where the proposed periodic/tensegrity 

structures act as liquids to ensure proper impedance matching. 

5. The design, realization and testing of a tensegrity-based damper/vibration 

isolator is new; and the wave attenuation abilities which have been verified 

numerically and experimentally, show promise as mechanical filters,  in 

addition to their ease of manufacturing and assembly. 

6. Modeling of viscoelastic elements within the context of tensegrity structures 

has not been tackled before, which together with the analysis of periodic 

tensegrity structures using Bloch’s method represent an original contribution to 

the state-of-the-art. 
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7.3 Future Work 

a. The development of the homogenized properties of the periodic/tensegrity 

structures: 

Based on the work of Martinsson and co-workers [183-185], the continuum 

equivalent representation for the discrete periodic/tensegrity structure could be pursued 

with the objective of retaining information regarding the local properties of the unit cell, 

while condensing its global behavior. Following this approach, the continuum-

homogenized model involves a significantly lower number of variables than those required 

for the detailed model of the assembly, which would enable the predictions of the 

propagation of vibration and acoustic waves in a computationally efficient manner. 

 

b. An in-depth understanding of the 3D printing process and characterization 

of the materials and structures: 

As was pointed out in Section 3.6.3, the materials used to prototype the cells may 

feature anisotropic elastic moduli leading to inconsistencies with the nominal/modelled 

material properties. Moreover, printing structures with more than one material will 

probably involve different curing temperatures and thermal expansion coefficients. 

Therefore, a deeper understanding of the material properties and the physics of the printing 

process will enable researchers to properly characterize the 3D-printed structures and adopt 

a robust manufacturing and design processes. 
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c. Physical realization and testing of tunable wave-blocking tensegrity 

structure: 

Capitalizing on the presented 1D and 2D tensegrity arrays which feature wave 

attenuation characteristics, e.g., in Chapters 5 and 6, further work could go into the design 

of tunable versions of these arrays, able to move their frequency stop bands to coincide 

with desired operating conditions. A recent paper [76] demonstrated the shape memory 

properties of some 3D printed polymers and their applicability to tensegrity structures, 

which could therefore be a mechanism to tune such structure. Other techniques include 

micro-actuators and pneumatic control. 
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Appendix A: Equilibrium Matrix of Icosahedron Tensegrity 

For the unconstrained icosahedron described in Section 3.3, the nodal force vector is 

defined in the following order: 

𝐹 =  [𝐹1𝑥 𝐹1𝑦 𝐹1𝑧 𝐹2𝑥 𝐹2𝑦 𝐹2𝑧 ⋯   ]
 𝑇

 

The members’ force density vector is defined in ascending order of the member number, 

with tension being positive and compression negative: 

𝑡 =  [𝑡1 𝑡2 𝑡3 ⋯   ] 𝑇 

The equilibrium matrix 𝐴 is therefore (the dots represent zero elements): 

𝑙𝑏
4

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−4 ⋅ ⋅ ⋅ ⋅ ⋅ −2 −2 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 −2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅−4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 −1 −1 −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 2 −2 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 −1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 2 −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 1 2 −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅−4 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅−4 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 −2 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1 ⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅
⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 −1
⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 −1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ 1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ −1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ −2 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅−4 ⋅ ⋅ ⋅ ⋅ −2 ⋅ −2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ 2 ⋅ ⋅ ⋅ −2 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅−4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −2 ⋅ ⋅ −1 ⋅ ⋅ ⋅ −1 ⋅ ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ −1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ −2 ⋅
⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −1 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ −2
⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1]
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Appendix B: Finite Element Formulation of  

Pre-stressed Bar and Tendon Elements 

The element stiffness matrix of a two-node, constant cross-section bar element in three 

dimensions, assuming the element is oriented along the X-axis and subject to pre-stress is 

(generalized from the two-dimensional case in [186]): 

𝐾 =  

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴

𝐿
0 0

−𝐸𝐴

𝐿
0 0

0
𝑃

𝐿
0 0

−𝑃

𝐿
0

0 0
𝑃

𝐿
0 0

−𝑃

𝐿
−𝐸𝐴

𝐿
0 0

𝐸𝐴

𝐿
0 0

0
−𝑃

𝐿
0 0

𝑃

𝐿
0

0 0
−𝑃

𝐿
0 0

𝑃

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

where 𝐸, 𝐴, and 𝐿 are the element’s Young’s modulus, cross-section area, and length, 

respectively, and 𝑃 is the pre-stress load on the element (positive for tension). 

The Mass matrix is  

𝑀 =
𝑚

6
 

[
 
 
 
 
 
2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2]

 
 
 
 
 

 

where 𝑚 is the element’s mass. 
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Appendix C: Derivation of Equations of Motion 

for Tensegrity Damper Unit Cell 

Starting with the kinetic and potential energies of each element as derived in Section 6.3: 

𝑇𝐴𝐵 =
1

2
𝑚1ẏ𝐴ẏ𝐵 +

1

6
𝑚1 (

𝑎

𝑙1
)
2
(ẏ𝐵 − ẏ𝐴)2 𝑉𝐴𝐵 =

1

2
𝐾1(l1 − l0)

2 

𝑇𝐴𝐷 =
1

2
𝑚2ẏ𝐴ẏ𝐵 +

1

6
𝑚2 (

𝑎

𝑙2
)
2
(ẏ𝐵 − ẏ𝐴)2 𝑉𝐴𝐷 =

1

2
𝐾2(l2 − l0)

2 

𝑇𝐵𝐶 =
1

2
𝑚3ẏ𝐵ẏ𝐶 +

1

6
𝑚3 (

𝑎

𝑙3
)
2
(ẏ𝐶 − ẏ𝐵)2 𝑉𝐵𝐶 =

1

2
𝐾3(l3 − l0)

2 

𝑇𝐶𝐷 =
1

2
𝑚4ẏ𝐵ẏ𝐶 +

1

6
𝑚4 (

𝑎

𝑙4
)
2
(ẏ𝐶 − ẏ𝐵)2 𝑉𝐶𝐷 =

1

2
𝐾4(l4 − l0)

2 

𝑇𝐵𝐷 =
1

2
𝑚5ẏ𝐵

2 𝑉𝐵𝐷 = 0 

𝑇𝐶𝐸 =
1

2
𝑚6ẏ𝐶

2 𝑉𝐶𝐸 = 0 

The Lagrangian of the unit cell is given by 

ℒ = Σ𝑇 − Σ𝑉 

The resulting expression is substituted into Lagrange’s equation and derivations are carried 

out for each of the three generalized coordinates (y𝐴, y𝐵 , y𝐶). 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑞̇
) −

𝜕ℒ

𝜕𝑞
= 𝐹 

Before delving into Lagrange’s equations, we first note that for the representative flexible 

element shown in Figure 6.3: 

𝑙 = √(𝑦𝑁 − 𝑦𝑀)2 + 𝑎2 

𝜕𝑙

𝜕𝑦𝑁
= −

𝜕𝑙

𝜕𝑦𝑀
=

1

2√(𝑦𝑁 − 𝑦𝑀)2 + 𝑎2
 2(𝑦𝑁 − 𝑦𝑀) =

1

𝑙
(𝑦𝑁 − 𝑦𝑀) 

𝜕𝑙

𝜕𝑦̇𝑁
=

𝜕𝑙

𝜕𝑦̇𝑀
= 0 
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𝑑𝑙

𝑑𝑡
=

1

2√(𝑦𝑁 − 𝑦𝑀)2 + 𝑎2
 2(𝑦𝑁 − 𝑦𝑀)(𝑦̇𝑁 − 𝑦̇𝑀) =

1

𝑙
(𝑦𝑁 − 𝑦𝑀)(𝑦̇𝑁 − 𝑦̇𝑀) 

1. The first equation of motion (𝒒𝟏 = 𝒚𝑨): 

𝜕ℒ

𝜕𝑦̇𝐴
=

1

2
𝑚1ẏ𝐵 −

1

3
𝑚1 (

𝑎

𝑙1
)
2

(ẏ𝐵 − ẏ𝐴) +
1

2
𝑚2ẏ𝐵 −

1

3
𝑚2 (

𝑎

𝑙2
)
2

(ẏ𝐵 − ẏ𝐴) 

𝑑

𝑑𝑡
(
𝜕ℒ

𝜕𝑦̇𝐴
) =

1

2
(𝑚1 + 𝑚2)𝑦̈𝐵 −

1

3
𝑚1 (

𝑎

𝑙1
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) −
1

3
𝑚1𝑎

2 (
−2

𝑙1
3)

𝑑𝑙1
𝑑𝑡

(ẏ𝐵 − ẏ𝐴)

−
1

3
𝑚2 (

𝑎

𝑙2
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) −
1

3
𝑚2𝑎

2 (
−2

𝑙2
3)

𝑑𝑙2
𝑑𝑡

(ẏ𝐵 − ẏ𝐴) 

=
1

2
(𝑚1 + 𝑚2)𝑦̈𝐵 −

1

3
𝑚1 (

𝑎

𝑙1
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) +
2

3
𝑚1

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

−
1

3
𝑚2 (

𝑎

𝑙2
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) +
2

3
𝑚2

𝑎2

𝑙2
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2 

𝜕ℒ

𝜕𝑦𝐴
=

1

6
𝑚1𝑎

2 (
−2

𝑙1
3)

𝜕𝑙1
𝜕𝑦𝐴

(ẏ𝐵 − ẏ𝐴)2 − 𝐾1(𝑙1 − 𝑙0)
𝜕l1
𝜕𝑦𝐴

+
1

6
𝑚2𝑎

2 (
−2

𝑙2
3)

𝜕𝑙2
𝜕𝑦𝐴

(ẏ𝐵 − ẏ𝐴)2

− 𝐾2(𝑙2 − 𝑙0)
𝜕l2
𝜕𝑦𝐴

 

=
1

3
𝑚1

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2 + 𝐾1

𝑙1 − 𝑙0
𝑙1

(𝑦𝐵 − 𝑦𝐴) +
1

3
𝑚2

𝑎2

𝑙2
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

+ 𝐾2

𝑙2 − 𝑙0
𝑙2

(𝑦𝐵 − 𝑦𝐴) 

Substituting into the first Lagrange equation, noting that 𝑙1 = 𝑙2, yields the nonlinear 

equation: 

1

2
(𝑚1 + 𝑚2)𝑦̈𝐵 −

1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
2
(𝑦̈𝐵 − 𝑦̈𝐴) +

1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

− (𝐾1 + 𝐾2)
𝑙1 − 𝑙0

𝑙1
(𝑦𝐵 − 𝑦𝐴) = 𝐹𝐴 

We expand the nonlinear terms on the left hand side using Taylor series expansion for 

small perturbations from equilibrium: 

{y𝐴 = y𝐴0 + 𝑤𝐴, y𝐵 = y𝐵0 + 𝑤𝐵, y𝐶 = y𝐶0 + 𝑤𝐶 , ẏ𝐴 = 𝑤̇𝐴, ẏ𝐵 = 𝑤̇𝐵, ẏ𝐶 = 𝑤̇𝐶 , ÿ𝐴

= 𝑤̈𝐴, ÿ𝐵 = 𝑤̈𝐵, ÿ𝐶 = 𝑤̈𝐶} 
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 (
𝑎

𝑙1
)
2
(𝑦̈𝐵 − 𝑦̈𝐴) ≈ 0 + (

𝑎

𝑙0
)
2
(𝑤̈𝐵 − 𝑤̈𝐴) + 𝐻𝑂𝑇 

 
𝑎2

𝑙1
4 (𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2 ≈ 0 + 𝐻𝑂𝑇 

 
𝑎2

𝑙1
4 (𝑦𝐵 − 𝑦𝐴)(𝑦̇𝐵 − 𝑦̇𝐴)2 ≈ 0 + 𝐻𝑂𝑇 

 
1

𝑙1
(𝑦𝐵 − 𝑦𝐴) ≈

1

𝑙0
(𝑦𝐵0 − 𝑦𝐴0) + [

1

𝑙0
−

1

𝑙0
3 (𝑦𝐵0 − 𝑦𝐴0)

2] (𝑤𝐵 − 𝑤𝐴) + 𝐻𝑂𝑇 

=
1

𝑙0
(𝑦𝐵 − 𝑦𝐴) −

1

𝑙0
(sin𝛼0)

2(𝑤𝐵 − 𝑤𝐴) + 𝐻𝑂𝑇 

The first Lagrange equation, linearized about the equilibrium, is therefore: 

1

2
(𝑚1 + 𝑚2)𝑤̈𝐵 −

1

3
(𝑚1 + 𝑚2) (

𝑎

𝑙0
)
2

(𝑤̈𝐵 − 𝑤̈𝐴) − (𝐾1 + 𝐾2)(sin 𝛼0)
2(𝑤𝐵 − 𝑤𝐴) = 𝐹𝐴  

2. The second equation of motion (𝒒𝟐 = 𝒚𝑩): 

𝜕ℒ

𝜕𝑦̇𝐵
=

1

2
(𝑚1 + 𝑚2)ẏ𝐴 +

1

2
(𝑚3 + 𝑚4)ẏ𝐶 + 𝑚5ẏ𝐵 + 

1

3
𝑚1 (

𝑎

𝑙1
)
2

(ẏ𝐵 − ẏ𝐴)

+
1

3
𝑚2 (

𝑎

𝑙2
)
2

(ẏ𝐵 − ẏ𝐴) −
1

3
𝑚3 (

𝑎

𝑙3
)
2

(ẏ𝐶 − ẏ𝐵)

−
1

3
𝑚4 (

𝑎

𝑙4
)
2

(ẏ𝐶 − ẏ𝐵) 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑦̇𝐵
) =

1

2
(𝑚1 + 𝑚2)𝑦̈𝐴 + 𝑚5𝑦̈𝐵 +

1

2
(𝑚3 + 𝑚4)𝑦̈𝐶 +

1

3
𝑚1 (

𝑎

𝑙1
)
2

(𝑦̈𝐵 − 𝑦̈𝐴)

+
1

3
𝑚2 (

𝑎

𝑙2
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) −
1

3
𝑚3 (

𝑎

𝑙4
)
2

(𝑦̈𝐶 − 𝑦̈𝐵) −
1

3
𝑚4 (

𝑎

𝑙4
)
2

(𝑦̈𝐶 − 𝑦̈𝐵)

−
2

3
𝑚1 (

𝑎2

𝑙1
3)

𝑑𝑙1
𝑑𝑡

(ẏ𝐵 − ẏ𝐴) −
2

3
𝑚2 (

𝑎2

𝑙2
3)

𝑑𝑙2
𝑑𝑡

(ẏ𝐵 − ẏ𝐴)

+
2

3
𝑚3 (

𝑎2

𝑙3
3)

𝑑𝑙3
𝑑𝑡

(ẏ𝐶 − ẏ𝐵) +
2

3
𝑚4 (

𝑎2

𝑙4
3)

𝑑𝑙4
𝑑𝑡

(ẏ𝐶 − ẏ𝐵) 

=
1

2
(𝑚1 + 𝑚2)𝑦̈𝐴 + 𝑚5𝑦̈𝐵 +

1

2
(𝑚3 + 𝑚4)𝑦̈𝐶 +

1

3
𝑚1 (

𝑎

𝑙1
)
2

(𝑦̈𝐵 − 𝑦̈𝐴)

+
1

3
𝑚2 (

𝑎

𝑙2
)
2

(𝑦̈𝐵 − 𝑦̈𝐴) −
1

3
𝑚3 (

𝑎

𝑙4
)
2

(𝑦̈𝐶 − 𝑦̈𝐵) −
1

3
𝑚4 (

𝑎

𝑙4
)
2

(𝑦̈𝐶 − 𝑦̈𝐵)

−
2

3
𝑚1

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2 −

2

3
𝑚2

𝑎2

𝑙2
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

+
2

3
𝑚3

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 +

2

3
𝑚4

𝑎2

𝑙4
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 
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𝜕ℒ

𝜕𝑦𝐵
=

1

6
𝑚1𝑎

2 (
−2

𝑙1
3)

𝜕𝑙1
𝜕𝑦𝐵

(ẏ𝐵 − ẏ𝐴)2 +
1

6
𝑚2𝑎

2 (
−2

𝑙2
3)

𝜕𝑙2
𝜕𝑦𝐵

(ẏ𝐵 − ẏ𝐴)2

+
1

6
𝑚3𝑎

2 (
−2

𝑙3
3)

𝜕𝑙3
𝜕𝑦𝐵

(ẏ𝐶 − ẏ𝐵)2 +
1

6
𝑚4𝑎

2 (
−2

𝑙4
3)

𝜕𝑙4
𝜕𝑦𝐵

(ẏ𝐶 − ẏ𝐵)2

− 𝐾1(𝑙1 − 𝑙0)
𝜕𝑙1
𝜕𝑦𝐵

− 𝐾2(𝑙2 − 𝑙0)
𝜕𝑙2
𝜕𝑦𝐵

− 𝐾3(𝑙3 − 𝑙0)
𝜕𝑙3
𝜕𝑦𝐵

− 𝐾4(𝑙4 − 𝑙0)
𝜕𝑙4
𝜕𝑦𝐵

= −
1

3
𝑚1

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2 −

1

3
𝑚2

𝑎2

𝑙2
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

+
1

3
𝑚3

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 +

1

3
𝑚4

𝑎2

𝑙4
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2

− 𝐾1

𝑙1 − 𝑙0
𝑙1

(𝑦𝐵 − 𝑦𝐴) − 𝐾2

𝑙2 − 𝑙0
𝑙2

(𝑦𝐵 − 𝑦𝐴) + 𝐾3

𝑙3 − 𝑙0
𝑙3

(𝑦𝐶 − 𝑦𝐵)

+ 𝐾4

𝑙4 − 𝑙0
𝑙4

(𝑦𝐶 − 𝑦𝐵) 

We substitute into the second Lagrange equation, noting that 𝑙1 = 𝑙2 and 𝑙3 = 𝑙4, resulting 

in the second nonlinear equation of motion: 

(𝑚1 + 𝑚2) (
1

2
−

1

3

𝑎2

𝑙1
2) 𝑦̈𝐴 + [

1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
2 +

1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
2 + 𝑚5] 𝑦̈𝐵

+ (𝑚3 + 𝑚4) (
1

2
−

1

3

𝑎2

𝑙3
2) 𝑦̈𝐶 −

1

3
(𝑚1 + 𝑚2)

𝑎2

𝑙1
4
(𝑦𝐵 − 𝑦𝐴)(ẏ𝐵 − ẏ𝐴)2

+
1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 + (𝐾1 + 𝐾2)

𝑙1 − 𝑙0
𝑙1

(𝑦𝐵 − 𝑦𝐴)

− (𝐾3 + 𝐾4)
𝑙3 − 𝑙0

𝑙3
(𝑦𝐶 − 𝑦𝐵) = 𝐹𝐵 + 𝐹𝐷 

where 𝐹𝐵 and 𝐹𝐷 are the external vertical forces applied at nodes B and D, respectively. 

Performing a Taylor series expansion of the nonlinear terms and truncating second and 

higher order terms, we obtain the second linearized equation of motion: 

1

2
(𝑚1 + 𝑚2)𝑤̈𝐴 + 𝑚5𝑤̈𝐵 +

1

2
(𝑚3 + 𝑚4)𝑤̈𝐶 +

1

3
(𝑚1 + 𝑚2) (

𝑎

𝑙0
)
2

(𝑤̈𝐵 − 𝑤̈𝐴)

−
1

3
(𝑚3 + 𝑚4) (

𝑎

𝑙0
)
2

(𝑤̈𝐶 − 𝑤̈𝐵) + (𝐾1 + 𝐾2)(sin𝛼0)
2(𝑤𝐵 − 𝑤𝐴)

− (𝐾3 + 𝐾4)(sin 𝛼0)
2(𝑤𝐶 − 𝑤𝐵) = 𝐹𝐵 + 𝐹𝐷 
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3. The third equation of motion (𝒒𝟑 = 𝒚𝑪): 

𝜕ℒ

𝜕𝑦̇𝐶
=

1

2
𝑚3ẏ𝐵 +

1

3
𝑚3 (

𝑎

𝑙3
)
2

(ẏ𝐶 − ẏ𝐵) +
1

2
𝑚4ẏ𝐵 +

1

3
𝑚4 (

𝑎

𝑙4
)

2

(ẏ𝐶 − ẏ𝐵) + 𝑚6ẏ𝐶 

𝑑

𝑑𝑡
(

𝜕ℒ

𝜕𝑦̇𝐶
) =

1

2
(𝑚3 + 𝑚4)𝑦̈𝐵 + 𝑚6𝑦̈𝐶 +

1

3
𝑚3 (

𝑎

𝑙3
)
2

(𝑦̈𝐶 − 𝑦̈𝐵)

+
1

3
𝑚3𝑎

2 (
−2

𝑙3
3)

𝑑𝑙3
𝑑𝑡

(ẏ𝐶 − ẏ𝐵) +
1

3
𝑚4 (

𝑎

𝑙4
)

2

(𝑦̈𝐶 − 𝑦̈𝐵)

+
1

3
𝑚4𝑎

2 (
−2

𝑙4
3)

𝑑𝑙4
𝑑𝑡

(ẏ𝐶 − ẏ𝐵)

=
1

2
(𝑚3 + 𝑚4)𝑦̈𝐵 + 𝑚6𝑦̈𝐶 +

1

3
𝑚3 (

𝑎

𝑙3
)
2

(𝑦̈𝐶 − 𝑦̈𝐵)

−
2

3
𝑚3

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 +

1

3
𝑚4 (

𝑎

𝑙4
)
2

(𝑦̈𝐶 − 𝑦̈𝐵)

−
2

3
𝑚4

𝑎2

𝑙4
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 

𝜕ℒ

𝜕𝑦𝐶
=

1

6
𝑚3𝑎

2 (
−2

𝑙3
3)

𝜕𝑙3
𝜕𝑦𝐶

(ẏ𝐶 − ẏ𝐵)2 − 𝐾3(𝑙3 − 𝑙0)
𝜕𝑙3
𝜕𝑦𝐶

+
1

6
𝑚4𝑎

2 (
−2

𝑙4
3)

𝜕𝑙4
𝜕𝑦𝐶

(ẏ𝐶 − ẏ𝐵)2

− 𝐾4(𝑙4 − 𝑙0)
𝜕𝑙4
𝜕𝑦𝐶

 

= −
1

3
𝑚3

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 − 𝐾3

𝑙3 − 𝑙0
𝑙3

(𝑦𝐶 − 𝑦𝐵)

−
1

3
𝑚4

𝑎2

𝑙4
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 − 𝐾4

𝑙4 − 𝑙0
𝑙4

(𝑦𝐶 − 𝑦𝐵) 

We substitute into the third Lagrange equation, noting that 𝑙3 = 𝑙4, which yields the third 

equation of motion: 

(𝑚3 + 𝑚4) (
1

2
−

1

3

𝑎2

𝑙3
2) 𝑦̈𝐵 +

1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
2 𝑦̈𝐶

−
1

3
(𝑚3 + 𝑚4)

𝑎2

𝑙3
4
(𝑦𝐶 − 𝑦𝐵)(ẏ𝐶 − ẏ𝐵)2 + (𝐾3 + 𝐾4)

𝑙3 − 𝑙0
𝑙3

(𝑦𝐶 − 𝑦𝐵)

= 𝐹𝐶  

where 𝐹𝐶 is the external force applied vertically at node C.  
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Performing a Taylor series expansion of the nonlinear terms about the state of equilibrium 

and truncating second and higher order terms, we obtain the third equation of motion, 

linearized for small displacements: 

1

2
(𝑚3 + 𝑚4)𝑤̈𝐵 + 𝑚6𝑤̈𝐶 +

1

3
(𝑚3 + 𝑚4) (

𝑎

𝑙0
)
2

(𝑤̈𝐶 − 𝑤̈𝐵)

+ (𝐾3 + 𝐾4)(sin𝛼0)
2(𝑤𝐶 − 𝑤𝐵) = 𝐹𝐶  
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