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The design, analysis, and control of bio-systems remain an engineering chal-

lenge. This is mainly due to the material heterogeneity, boundary irregularity, and

nonlinear dynamics associated with these systems. The recent developments in

imaging techniques and stochastic upscaling methods provides a window of oppor-

tunity to more accurately assess these bio-systems than ever before. However, the

use of image data directly in upscaled stochastic framework can only be realized by

the development of certain intermediate steps. The goal of the research presented

in this dissertation is to develop a texture-segmentation method and a unstructured

mesh generation for heterogeneous image data.

The following two new techniques are described and evaluated in this disser-

tation.

1. A new texture-based segmentation method, using the stochastic continuum

concepts and wavelet multi-resolution analysis, is developed for characteriza-

tion of heterogeneous materials in image data. The feature descriptors are



developed to efficiently capture the micro-scale heterogeneity of macro-scale

entities. The materials are then segmented at a representative elementary

scale at which the statistics of the feature descriptor stabilize.

2. A new unstructured mesh generation technique for image data is developed

using a hierarchical data structure. This representation allows for generating

quality guaranteed finite element meshes.

The framework for both the methods presented in this dissertation, as such,

allows them for extending to higher dimensions. The experimental results using

these methods conclude them to be promising tools for unifying data processing

concepts within the upscaled stochastic framework across biological systems. These

are targeted for inclusion in decision support systems where biological image data,

simulation techniques and artificial intelligence will be used conjunctively and uni-

formly to assess bio-system quality and design effective and appropriate treatments

that restore system health.
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Chapter 1: Introduction

1.1 Motivation

The design, analysis, and control of bio-systems remain an engineering challenge

mainly because of their heterogeneity, boundary irregularity, and nonlinear dynam-

ics associated. A classical approach to addressing this problem has been to break

down these (bio)systems hierarchically into functional sub-systems, units, sub-units,

and finer and finer sub-components and analyzing them separately at each scale/level

in order to better understand the system. For example, an organism (system) has

various organs (sub-systems) which are made from specific tissue (units) and tis-

sues in turn are made from aggregation of specific cells (sub-units). Similarly, a

geographic region (system) can be divided into a group of watersheds (sub-systems)

which can have several categories of soils (units) and each soil type is composed

of the aggregation of different soil-layers (sub-units). Each of these components at

different hierarchical levels (scales) are characterized by specific structure, behavior,

function, and role affecting the overall dynamics of the system (organism or geo-

graphic region). In order to accurately assess the dynamics of these (bio)systems,

it is important from a numerical modeling perspective to take into account the per-

tinent information from different scales (units and sub-units). In practice, however,

the analysis usually stops at a pre-selected coarser scale (e.g. unit) and the sub-

scale heterogeneity is either considered implicitly (as uncertainty) or not at all (pure

determinism). The prime reasons for this are two fold: (1) the non-availability of
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heterogeneous material properties for the finest scale, and (2) even when such infor-

mation is available, considering the heterogeneity explicitly down to the finest scales

is usually prohibitive from a computational standpoint.

Developments in imaging sensors and techniques, such as, magnetic resonance

(MR), computed tomography (CT), ultrasound (US), positron emission tomogra-

phy (PET), infra-red (IR), confocal laser microscopy, scanning electron microscopy

(SEM), satellite/air-borne imagery, and ground penetrating radar (GPR), with their

improved spatial and spectral resolutions are now able to provide highly detailed

measures of internal structure and various critical biological, physical, and chemi-

cal properties of different materials within these bio-systems (Leggett et al., 1996;

McKinlay et al., 2004). The information captured by the image sensors is helpful for

the scientific community to non-invasively analyze these heterogeneous bio-systems

for better diagnosis, treatment strategies, and prognosis more safely and effectively

than ever before. The concurrent developments in up-scaled stochastic numerical

analysis suggest that it may now be possible to efficiently incorporate sub-scale

heterogeneity into the stochastic framework (Bastian et al., 2000; E. and Engquist,

2003; Montas et al., 2000b). Results ensuing from such analysis promise to more

accurately reflect the non-linear dynamics of bio-systems than the approaches based

on classical continuum mechanics (pure determinism). By providing the mathe-

matical framework to directly incorporate the up-scaled material properties at a

coarser scale, the computational requirements are significantly reduced. Yet, the

stochastic results are more representative than produced by conventional numerical

techniques. The coarser scale at which the up-scaled stochastic continuum tech-
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niques work is commonly known in the literature as representative elementary scale

(RES) (Bear, 1972; Pachepsky et al., 2004; Woods et al., 1995). More specifically,

in two and three-dimensions it is known as representative elementary area (REA)

and representative elementary volume (REV), respectively.

The impetus for of this research was the realization that the inputs required

for simulating the dynamics of bio-systems using up-scaled numerical techniques can

be derived from the images of the material properties. The corresponding approach

for analyzing heterogenous bio-systems consists of four main steps: (i) information

acquired from the sensors in the form of images; (ii) identify the boundaries of

different heterogeneous materials within which the properties of these materials be-

come homogeneous; (iii) generate a finite element mesh of the coarser scale material

boundaries; and (iv) apply up-scaled numerical methods to simulate the dynamics.

Figure 1.1 shows the flow diagram of such an integrated system. Its development

will help the scientific community to non-invasively analyze these heterogeneous

bio-systems for better diagnosis, treatment strategies, and prognosis more safely

and effectively.

The motivation for carrying out this dissertation was further strengthened

while studying two applications of numerical modeling: (a) effects of chemotherapy

on glioma growth dynamics (Tracqui et al., 1995) and (b) nutrient movement in wa-

tershed using GIS-based models (Montas et al., 2000a). Tracqui et al. (1995) used

numerical simulation of a simple mathematical model for describing the prolifera-

tion and infiltration of glioma anaplastic astrocytoma based in part on quantitative

image analysis of histological sections of human brain, especially the cross-sectional
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Upscaled Numerical Methods

Heterogeneity Adaptive
Mesh Generation

Segmentation of
Heterogeneous Materials

Material Properties 
from Image Sensors

Figure 1.1: The flow diagram describing the various steps of a integrated model analysis

strategy for simulating the dynamics in heterogeneous bio-systems using image data.

area/volume measurements of serial CT images. They modeled the spatial and the

temporal tumor growth dynamics of two types of cancerous cells when the patient

was undergoing two treatments of chemotherapy and neutron irradiation. The first

course of chemotherapy treatment consisted of 5 cycles of 6 drugs (UW protocol)

and the second treatment consisted of cis-platinum dosage. Two types of cells were

considered, the first type being sensitive to both chemotherapy agents, whereas the

second were assumed to be resistant to the first course of chemotherapy, but possibly

4



sensitive to the second course. In order to account for the effect of brain geometry

and its natural barriers, they segmented the slice of MR scan into homogeneous

brain material and estimated the diffusivity parameter. This information was then

used in a finite difference framework to model the two-cell population dynamics.

Montas et al. (2000a) used a GIS-integrated, physically-based, distributed pa-

rameter model for simulating subsurface flow and transport of nitrate-N in a water-

shed. The model used discretized mass balance equations (control volume scheme)

to simulate steady-state, two-dimensional flow and transport using material prop-

erties from the region’s GIS data. The predictions from this integrated model were

used to demonstrate that the conjunction of soil and land use variability can cause

complex nitrate transport patterns which can locally saturate or bypass riparian

buffers and prevent them from achieving their full filtration potential. Such an

analysis can be useful in evaluating the impacts of riparian buffers on water quality

and for identifying zones where restoration or implantation of new buffers may be

needed.

The shortcomings of the first application are two-fold: (1) the model does

not account for the heterogeneity of brain tissues; and (2) the uniform gird used in

the finite difference schemes makes it computationally expensive, especially while

simulating the tumor dynamics in three-dimensions. The latter is also true for the

control volume method used for evaluating the fate of non-point source pollutants

in watershed. These problems can be alleviated by using the integrated model

analysis strategy outlined in Figure 1.1. However, in order to successfully apply

this approach, there is a need for development of appropriate quantitative image

5



analysis and domain decomposition methods adapted specifically to heterogeneous

image data. Among the research areas that compose the field of image analysis

lies texture segmentation, which studies the recognition and isolation of textural

patterns found in images. Similarly, unstructured mesh generation is a sub-topic in

computational geometry that deals with domain decomposition. It is in these area

where the contributions reported in this dissertation fall. The following sub-sections

briefly describe the current state of knowledge available in these two areas and the

driving problems within them.

1.1.1 Image Segmentation

Image segmentation is a sub-category of study under a much broader area known

as pattern recognition (Vapnik, 1998). In general, a pattern recognition system

involves two main steps: (a) identification and extraction of pattern descriptors,

called features ; and (b) supervised or unsupervised classification of the patterns

using the features. These patterns can be a set of recurring objects of any nature,

like, faces of people in a crowd, mosaic of bricks in a wall, and fluctuations of financial

markets. The features can either be an abstract or quantitative measurement that

describes the patterns. For example, if the objective is to analyze the patterns of

faces in a crowd, abstract descriptors like ”roundness” and ”sharpness” can be used.

Similarly, for identifying different types of bricks in a mosaic their geometry can be

one of the useful descriptors for discrimination.

Within the realm of image segmentation, texture is one of the most important

cues used for segmentation of objects. Research on the human visual cortex has
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shown the relevance of texture in identifying different patterns observed by the eye

(Rosenfeld and Kak, 1982). Although texture is an intuitive concept, many attempts

to formally define the term have been evasive (Bovik et al., 1990; Cross and Jain,

1983; Haralick et al., 1973; Jain and Karu, 1996). In spite of this, all researchers

agree on two counts. Firstly, there is significant variation in the intensity levels

(greyness) between nearby image elements, i.e., at the limit of resolution there is

non-homogeneity. Secondly, texture is a homogeneous property (statistically) at

some spatial scale larger than the resolution of the image. The latter resonates with

the RES concept used in the up-scaled stochastic continuum theory. Hence, it is

one of the main components of this dissertation to use texture-based segmentation

for characterizing heterogeneous materials in image data. It is notable that, the

use of material texture in image segmentation requires that the spatial resolution

of imaged material properties data be fine enough that small scale heterogeneity is

accurately represented (so that its statistics can be computed).

According to the reviews by Pal and Pal (1993) and Reed and du Buf (1993),

texture segmentation methods can be categorized into: structural-based, statistics-

based, model-based and transform-based methods. Structural-based methods uses

the concept of primitives or texels to describe textural objects (Haralick, 1979;

Levine, 1985). The advantage of the structural approach is that it provides a good

symbolic description of the texture objects in an image; however, this feature is

more useful for synthesis than analysis tasks. Statistics-based methods, instead,

represents the texture indirectly by the non-deterministic properties that govern

the distributions and relationships between the grey levels of an image. The most
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popular second-order statistical features for texture analysis are derived from the

well-known co-occurrence matrix (Haralick, 1979). Methods based on the features

from co-occurrence matrix have been shown to achieve higher discrimination rates

than the structural methods (Weszka et al., 1976). A major limitation with these

methods is that they operate on the statistics computed from a single scale. The

model-based methods uses fractal and stochastic models for interpreting an image

texture (Chellappa and Chatterjee, 1985; Manjunath and Chellappa, 1991; Zhang

et al., 2001). The fractal model has been shown to be useful for modelling some

natural textures. However, the computational complexity associated with the esti-

mation of model parameters is major drawback with these methods.

Although the above methods can be successful for specific applications, they

suffer from localization issues commonly associated with textures. This is chiefly due

to their analysis of texture objects at a single scale. Transform-based methods over-

come this weakness by transforming the image into a new space whose co-ordinate

system has an interpretation that is closely related to the characteristics of a tex-

ture, such as frequency or size. This approach is analogous to the manner in which

the human visual system functions (Daugman, 1990). In particular, methods such

as Fourier transforms (Zhu et al., 1993), Gabor transforms (Bovik et al., 1990), and

wavelet transforms (Mallat, 1989) have shown promising results for texture analy-

sis because of their capability to represent the image in the transformed space at

multiple scales. Among these methods, Gabor and wavelet transforms have been

the most widely studied methods in the past fifteen years. Gabor decomposition

provides better spatial localization than Fourier transform, but it only solves the
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problem of localization partially. The wavelet transforms, in contrast, offers better

variable spatial resolution and a wide range of wavelet functions to use for tex-

ture analysis. These properties make the wavelet transform attractive for texture

segmentation and has now became a de facto standard.

In the past decade, several authors have used a wide variety of wavelet func-

tions, wavelet decomposition schemes, and classification methods for texture analy-

sis of both artificial and natural textures (Chang and Kuo, 1993; Fatemi-Ghomi

et al., 1996; Laine and Fan, 1993; Lu et al., 1997; Unser, 1995; Zhu and Yang, 1998).

However, in spite of the vast literature available on these methods, specific per-

formance results for heterogeneous biological image data are sparse. Furthermore,

all these methods use feature descriptors (like entropy, energy and mean-deviation)

from multiple scales simultaneously which do not convey quantitatively the hetero-

geneity within different samples. These methods, thus far, have not been successful

at identifying the optimal scale for texture characterization. Most of the studies,

use feature descriptors estimated from 3 to 4 scales, without any quantitative justi-

fication.

An alternative approach to achieve image segmentation, instead of defining

features and then classifying them, is to isolate the desired patterns using some local

operations (like, gradient) and then build a mathematical or geometrical model of

the evolving boundary. This is of particular interest in bio-medical applications

(e.g., surgical planning). In this context, algorithms based on curve and surface

evolution methods, such as snakes (Kass et al., 1987; Liang et al., 1999) and level-

set (Malladi and Sethain, 1996a,b,c; Sethian, 1999) have shown impressive potential
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for bio-medical image data. However, these methods do not perform well when

applied to texture-predominant images because they work on local operations.

1.1.2 Unstructured Mesh Generation

A mesh is a discretization of a geometric domain Ω in R2 or R3 into small simple

shapes or simplices, typically triangles or quadrilaterals in R2 and tetrahedra or

hexahedra in R3. Meshes composed of these simple shapes are used in many appli-

cations, such as computer graphics, numerical interpolation, surveying, geographic

information systems, and terrain modelling. Their most significant application is in

the numerical simulation of process dynamics using domain-based numerical tech-

niques. For this purpose, the mesh should satisfy the following conditions: (a) it

must conform to the boundary of the domain, which may have more than one con-

nected component; (b) it must be fine enough to produce an acceptable approxima-

tion to the original problem (parts of the domain where the solution is complicated

or changes rapidly may require much smaller elements than others); (c) the number

of elements in the mesh should be small (optimal), because large number of elements

could increase the complexity of solving the problem; and (d) individual elements

must be well-shaped and round.

Three basic types of meshes are used in practice: (a) structured mesh, (b)

unstructured mesh and (c) hybrid or block-structured mesh. Structured meshes of-

fer simplicity and easy data access while unstructured meshes offer better elemental

adaptivity, refinement and de-refinement capability, and geometric conformity to

complicated domains. High-quality hybrid meshes enjoy the advantages of both ap-
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proaches, but hybrid meshing is not yet fully automatic. Because of their advantages,

unstructured meshes have received wider acceptance for numerical simulations.

In the past two decades, several automatic, quality guaranteed unstructured

mesh generation techniques for polygonal and polyhedral domains have been pro-

posed. The two most notable algorithms are: (i) the quadtree-based mesh generation

due to Bern et al. (1990), and (ii) the constrained Delaunay triangulation method

by Ruppert (1993). The current state of research in computational geometry can

generate quality meshes on a wide variety of two and three dimensional domains.

However, most of these methods are targeted towards for polygonal/polyhedral do-

mains and not image data.

Although methods for discretizing image data, for FEA, are rare in the lit-

erature, the need for unstructured mesh generation techniques for image data is

receiving increased attention. This is mostly, due to the non-invasive property asso-

ciated with image sensors. The current methods available for meshing image data

can be grouped into two categories: (a) interval volume decomposition methods and

(b) integrated image-analysis methods. The first category of methods works with the

polygonal/polyhedral surfaces bounding the interval image data (Bajaj et al., 1999;

Frey et al., 1994; Fujishiro et al., 1996; Nielson and Sung, 1997; Wang et al., 2004;

Zhang et al., 2003). Though these methods preserve the topology of the domain

in the image data, they come with no theoretical guarantees on elemental qual-

ity. Moreover, these methods need an extra image-processing step to generate the

polygonal/polyhedral surfaces bounding the interval volume. On the other hand,

the integrated image-analysis based techniques (Hale, 2001; Langer et al., 2001),
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work directly on the input image and generate the finite element mesh by aligning

elemental edges with domain boundaries in the image data. These methods mini-

mize an objective function for alignment of the mesh with the boundaries. Image

segmentation is an indirect outcome of these methods. Both methods are compu-

tationally expensive because they require repeated computations(like Monte Carlo

simulations) for minimizing the objective function and its partial derivatives. Addi-

tionally, these methods manipulate the input image information such that original

material boundaries cannot be recovered from the meshes.

1.2 Thesis Objectives

The main goal of this study is to develop necessary quantitative tools that can be

used for analyzing the dynamics of heterogeneous bio-systems. The specific research

objectives addressed in this dissertation are:

Objective 1: Develop a supervised texture-based segmentation technique that can

quantitatively characterize the heterogeneity of a material at a coarser scale

by accounting for the heterogeneity from sub-scales.

Objective 2: Evaluate the developed technique for segmenting heterogeneous ma-

terials in biological image data.

Objective 3: Develop and implement a quality guaranteed unstructured simplicial

mesh generation technique for (segmented) image data.

Objective 4: Analyze the developed unstructured simplicial mesh generation tech-

nique for elemental quality and output size.
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These specific objectives correspond to steps 2 and 3 of the bio-system analysis

strategy presented earlier in Figure 1.1.

1.3 Contribution to Knowledge

The following are the key contributions made by this dissertation in the fields of

texture-based image segmentation and unstructured mesh generation of heteroge-

neous biological image data.

1. Multiresolution analysis, using Haar wavelets, can be used to efficiently iden-

tify the representative elementary scale of the materials in a heterogeneous

biological image.

2. Spatial moments of pixel intensities, computed at a pre-identified represen-

tative elementary scale, form efficient feature vectors for the segmentation of

heterogeneous biological images in 2-D.

3. The combination of RES identification by Haar MRA with spatial moments

as feature vectors produces a segmentation method (named SWA) that can

efficiently and accurately classify heterogeneous biological images in 3-D.

4. The 2-D meshing algorithm of (Bern et al., 1990) can be extended to pro-

duce efficient heterogeneity adaptive, boundary preserving multi-dimensional

meshes on segmented bio-image data. (This novel method is named IMesh).

5. The developed multi-dimensional unstructured mesh generation technique,

IMesh, is guaranteed to produce quality elements in both 2-D and 3-D.
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1.4 Overview of Chapters

The remainder of this dissertation is organized into three chapters:

Chapter 2 is focused on texture segmentation of heterogeneous image data.

It starts with a literature review on pattern recognition with emphasis on multi-

resolution based texture analysis. Then, it describes the framework of the novel

texture segmentation method for heterogeneous bio-materials developed in this dis-

sertation, analyzes the role of texture descriptors using two-dimensional real and

synthetic textures, and evaluates the new method using three-dimensional real and

simulated bio-medical data.

Chapter 3 is focused on unstructured mesh generation. It presents a review of

the literature on this topic. It then describes the algorithm for generating unstruc-

tured meshes in arbitrary dimensions developed in this dissertation and analyzes

the developed method for elemental quality.

Chapter 4 summarizes the contributions made in this thesis and highlights

the future research work that remains to be done in order to combine the research

accomplishments reported in this dissertation into an unified cohesive framework

for the analysis of heterogeneous biological systems.
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Chapter 2: Texture-Based Image Segmentation

In this chapter, a new supervised texture-based segmentation technique, stochastic-

wavelet-analysis (SWA), for characterizing heterogeneous materials in biological im-

age data is developed. The SWA method uses multi-scale stochastic texture de-

scriptors estimated from wavelet analysis for characterizing heterogeneous materi-

als. A rigorous analysis of the developed method on both natural and synthetic

two-dimensional texture-predominant images is performed to identify the optimal

combination of feature descriptors and classification scheme. The novel texture seg-

mentation method is evaluated on three biological image data sets from different

imaging modalities. The improved accuracy of the segmentation results produced

by the proposed method, relative to contemporary techniques, demonstrates the

strength of its conceptual underpinnings. The main contributions of the work de-

scribed in this chapter are as follows: (1) the necessary mathematical framework to

directly estimate the multi-scale stochastic texture descriptors from Haar wavelet

coefficients for arbitrary dimensions is presented and (2) a quantitative approach for

identifying the characteristic length (RES length) at which heterogeneous materials

(textures) become continua is also provided.

2.1 Introduction

In the past three decades, identifying texture segmentation techniques has been one

of the main focus of the pattern recognition and image processing community. Im-
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provements in the texture descriptors, texture extraction techniques, and classifier

designs led to the development of various image segmentation techniques. These

improved techniques provided results, which had far reaching impacts in several

areas such as signal compression, scene analysis, object identification and retrieval,

and character and speech recognition. In spite of such advancements, a common

denominator missing from these systems is that they fail to identify the charac-

teristic length at which the definition of texture starts to emerge. Hence, if the

heterogeneous image data is to be used in up-scaled transport models, it is neces-

sary to develop an appropriate quantitative image processing tool that can address

this issue.

The main aim of the research described in this chapter is to develop a quan-

titative image segmentation framework rooted in up-scaled stochastic continuum

framework for identifying the representative elementary scale (RES) support in het-

erogenous image data. This is achieved, first, by developing appropriate statistical

texture descriptors that quantify the sub-scale heterogeneity of a material at coarser

scale and then, by developing a technique for simultaneously calculating these de-

scriptors and identifying the scale at which they stabilize. The availability of such

descriptors and RES identification strategy can then be used in a conventional pat-

tern recognition framework to segment the heterogeneous materials in biological

image data.

The remaining part of this chapter is organized as follows. Section §2.2 reviews

the research literature on pattern recognition with a focus on texture-based segmen-

tation. Following a careful review on the shortcomings of existing techniques, the
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main research objectives are proposed in Section §2.3. The materials and methods

needed for achieving these objectives are presented in Section §2.4. The main re-

sults of the research are then presented and discussed in Section §2.5. Section §2.6

concludes by highlighting the important contributions and the future directions of

the research described in this chapter.

2.2 Literature Review

The domain of image segmentation encompasses several key concepts from pattern

recognition. According to Vapnik (1998), a pattern recognition system is:

A person (the instructor) observes occurring situations/events and de-

termines to which of c classes each one of them belong. It is required to

construct a device (the classifier) which, after observing the instructors

procedure, will carry out the classification approximately in the same

manner as the instructor.

The pattern recognition process, generally, consists of the following eight stages

(Webb, 2002):

• Problem formulation: gaining a clear understanding of the aim of the investi-

gation and planning the remaining stages.

• Data collection: making measurements on appropriate variables and recording

details of the data collection procedure (ground truth).

• Initial examination of the data: checking the data, calculating summary sta-

tistics and plotting the data in order to get a feel of the structure underlying
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the data.

• Feature selection or feature extraction: selecting variables from the measured

set that are appropriate for the task. These new variables may be obtained by

a linear or nonlinear transformation of the original data (feature extraction).

• Pattern classification or clustering: This may be viewed as exploratory data

analysis and it may provide a successful conclusion to a study. On the other

hand, it may be a means of pre-processing the data for a supervised classifica-

tion. To some extent, there is a thin line demarcating the feature extraction

and classification process.

• Designing classifier: applying discrimination or regression procedures, as ap-

propriate to, design a classifier using a training set of exemplar patterns.

• Assessment of results: may involve applying the trained classifier to an in-

dependent test set of labelled patterns to independently estimate classifier

accuracy.

• Interpretation: analyzing the results to see if the desired objectives are at-

tained.

Note that not all the stages described earlier may be present in all pattern

recognition processes. Some steps be merged together so that the distinction be-

tween two operations may not be clear even if both are carried out. There may

also be some application specific data processing that may be regarded as one of the

stages listed. The application of these steps can be an iterative process: the analysis
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of the results may generate new hypotheses that require further data collection; the

cycle may be terminated at different stages if the question posed is answered by an

initial examination of the data or it may be discovered that the data cannot answer

the problem and hence must be reformulated.

However, irrespective of these variations, the stages described above are fairly

typical in a pattern recognition process. When the data to be studied by a pat-

tern recognition system comes from digital images, the topic of pattern recognition

converges with the concepts of image processing and analysis. Furthermore, when

the ”patterns” studied in digital image data match the definition of a texture, the

investigation becomes texture-based image segmentation. Figure 2.1 illustrates the

schematic of a generic pattern recognition process.

FeaturesInput Signal SegmentationClassification

Figure 2.1: The main steps involved in a generic pattern recognition process

An image is a spatial (sometimes also temporal) measurement of a parameter

that depends on the type of imaging modality and the type of imaging sensors

used. For instance, these measurements can be: (a) radiation absorption in X-ray

imaging, (b) acoustic pressure in ultrasound, (c) range or depth image in laser scans,

(d) radio frequency signal amplitude in MR, (e) temperature in IR imaging, and/or

(f) light reflectance in satellite imagery. Of these, light intensity images are the most

common type of images. A generic multi-dimensional, multi-channel analog image
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can be described mathematically as,

f ′(x′1, . . . , x
′
d, y1, . . . , yn) (2.1)

where x′1, . . . , x
′
d denote the real-valued spatial coordinates in Rd and y1, . . . , yn

denotes the parameter measured in n channels and f
′

is the image function that

associates measurements yi to spatial coordinates x
′
i. For instance, hyper-spectral

imaging measures electromagnetic intensity in different spectral bands, thematic im-

ages from LANDSAT satellites and color photography captures this measurement at

multiple locations in the color spectrum, and MRI is capable of measuring proton

density (PD) and relaxation times of the protons both in parallel (T1-weighted)

and perpendicular (T2-weighted) directions with respect to the original magnetic

field. When the image sensor measures the parameter in just one spectral band

(single channel) it results in a monochrome, multi-dimensional image and equation

2.1 reduces to f ′(x′1, . . . , x
′
d), where f

′
now represents the magnitude of the measure

entity. The digital version of the monochrome multi-dimensional image is a discrete

approximation of the both spatial coordinates and magnitude of measured parame-

ter in Rd and is represented mathematically by the function, f(x1, . . . , xd). The

coordinates x1, . . . , xd frequently form a uniform gird and the image element (value

of f) at any such location is known as a pixel or voxel in two and three dimensions,

respectively. For further discussions, it is assumed that image data is monochrome

multi-dimensional digital image data.
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2.2.1 Patterns, Features, and Feature Space

Much of the information that surrounds us manifests itself in the form of patterns.

The ease with which humans classify and describe patterns often leads to the incor-

rect assumption that this capability is easy to automate. Sometimes the similarity

between two patterns is immediately apparent, whereas in other instances it is not.

Recognizing characters and faces is an example of the former; economic forecasting

based on trends in the stock market illustrates the latter.

Pattern recognition, naturally, is based on patterns. A pattern can be as

basic as a set of measurements or observations, perhaps represented mathematically

in a vector or a matrix notation. These measurements could be entities such as

blood pressure, tumor diffusion rates, or soil permeability. These measurements can

also be represented in many forms, for instance, two or three dimensional images,

drawings, waveforms, set of measurements, temporal or spatial sequence of events.

Furthermore, patterns may be converted from one representation to another for

easier identification or better understandability. This is one of the main applications

of signal transforms like Fourier transform and wavelet analysis.

The important step, after data acquisition from sensors, is to identify a set

of descriptors known as features (denoted by Fi, that can best be used to identify

and characterize the different patterns in the data. Broadly speaking, features are

any extractable measurements that are characteristics of a pattern. An example of

low-level feature is the raw intensity value of individual pixels in a digital image.

An example of higher-level feature is a statistic calculated over several neighboring
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pixels. Each feature can be numerically continuous, discrete, or even binary. Binary

features are used to represent the presence or absence of a particular feature in

a pattern or object. For ease of analysis, the set of features, Fi, to be used for

segmentation are arranged as a d-dimensional feature vector, denoted by:

−→
F = {F1, F2, . . . , Fd} (2.2)

which defines a multi-dimensional measurement space or feature space,
−→
F ∈ Rd.

The descriptors of each pattern to be extracted from an image is expected to cor-

respond to a different point (or neighborhood) in the feature space. It is common

in practice to associate a set of feature vectors to describe a pattern (class), i.e.,

−→
F n =

{−→
F 1, . . . ,

−→
F n

}
and if a signal has c classes, denoted by wi, . . . , wc, then a set

of feature vectors for each class, wi, is expressed as
−→
F ni,wi

. In order to effectively

segment the different classes in the signal, the feature descriptors should be charac-

teristic of their corresponding patterns, i.e., they should have enough discriminatory

information for identifying the pattern.

Texture is one of the important concepts used in image processing for de-

scribing patterns in image data. Although there is no strict definition of the image

texture, it is easily perceived by humans and is believed to be a rich source of vi-

sual information about the nature and three-dimensional shape of physical objects.

Generally speaking, textures are complex visual patterns composed of entities, or

sub-patterns, that have characteristic brightness, color, slope, or size. Thus, texture

can be regarded as a similarity grouping in an image (Rosenfeld and Kak, 1982). The

local subpattern properties give rise to the perceived lightness, uniformity, density,
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roughness, regularity, linearity, frequency, phase, directionality, coarseness, random-

ness, fineness, smoothness, and/or granulation, of the texture as a whole (Levine,

1985). In the past three decades, several diverse approaches for extracting texture

properties have been proposed in the pattern recognition literature. These feature

descriptors used for texture segmentation can be categorized into: (a) structural; (b)

statistically-based; (c) model-based; and (d) spatial/spatial-frequency descriptors.

2.2.1.1 Structural-Based Texture Descriptors

Structural-based descriptors represent texture by well defined primitives (microtex-

ture) and a hierarchy of spatial arrangements (macrotexture) of those primitives

(Haralick, 1979; Levine, 1985). To describe the texture, the primitives (texels) are

defined along with syntactic rules for their placement (Fu, 1982). The choice of

a primitive (from a set of primitives) and the probability of the chosen primitive

to be placed at a particular location depends on the location and the neighboring

primitives near the location.

The advantage of the structural approach is that it provides a good symbolic

description of the image; however, this feature is more useful for synthesis than

analysis tasks. The abstract descriptions can be ill defined for natural textures be-

cause of the variability of both micro and macrostructure and no clear distinction

between them. A powerful tool for structural texture analysis is provided by math-

ematical morphology (Dougherty et al., 1992; Serra, 1982) and has been useful for

bone image analysis, e.g. for the detection of changes in bone microstructure.
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2.2.1.2 Statistics-Based Texture Descriptors

In contrast to structural methods, statistical approaches do not attempt to under-

stand explicitly the hierarchical structure of the texture. Instead, they represent

the texture indirectly by the non-deterministic properties that govern the distrib-

utions and relationships between the grey levels of an image. Methods based on

second-order statistics (i.e. statistics given by pairs of pixels) have been shown to

achieve higher discrimination rates than the power spectrum (transform-based) and

structural methods (Weszka et al., 1976). Human texture discrimination in terms of

texture statistical properties was first investigated by Julesz (1975), who suggested

that textures in grey-level images are discriminated spontaneously only if they differ

in second order moments. Equal second-order moments, but different third-order

moments require deliberate cognitive effort. This may be an indication that also

for automatic processing, statistics up to the second order may be most important

(Niemann, 1990). The most popular second-order statistical features for texture

analysis are derived from the well-known co-occurrence matrix (Haralick, 1979).

They were demonstrated to feature a potential for effective texture discrimination

in bio-medical images (Freeborough and Fox, 1998; Lerski et al., 1993).

2.2.1.3 Model-Based Texture Descriptors

Model based texture segmentation methods commonly use stochastic models (Chel-

lappa and Chatterjee, 1985; Chellappa et al., 1992; Kervrann and Heitz, 1995; Man-

junath and Chellappa, 1991) and fractal models (Chaudhuri and Sarkar, 1995a;
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Kaplan, 1999; Kasparis et al., 2001) for interpreting the textures within an image

data. Chellappa with his collaborators (Chellappa and Chatterjee, 1985; Chellappa

et al., 1992; Manjunath and Chellappa, 1991) used second-order Gauss Markov ran-

dom field (GMRF) for modeling the conditional probability density of the grey-level

intensity of a given texture in an image data. The parameters of the GMRF model

of the textures are estimated using a least-square estimates within non-overlapping

tiles. A clustering method, based on a heuristic parameter, is then used to merge

these regions to get a coarser segmentation. Finally, the parameters of the model

estimated from the clustered segments are then used in two different schemes, one

being an approximation to the maximum a posteriori estimate of the labels and the

other minimizing the percentage misclassification error. Manjunath and Chellappa

(1991) tested their approach on, both hand drawn images and texture mosaics con-

taining a combinations of Grass, Raffia, Leather, and Wood materials. In all their

experiments, the sub-image size was chosen to be 32×32. The value of the clustering

parameter was chosen to be inversely proportional to the approximate number of

classes within the test image. By modeling the textures using GMRF models, they

were able to achieve an average of 97% segmentation for most of their test images.

Kervrann and Heitz (1995) presented an unsupervised texture extraction tech-

nique that does not require knowledge about the different texture regions, their

parameters, or the number of available texture classes. Their proposed algorithm

relies on the analysis of local and global second and higher order spatial statistics

of the original images. The segmentation map is modeled using an augmented-state

Markov random field, including an outlier class that enables dynamic creation of
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new regions during the optimization process. A Bayesian estimate of this map is

computed using a deterministic relaxation algorithm.

In practice, the computational complexity arising in the estimation of stochas-

tic model parameters is the primary problem. The fractal model has been shown

to be useful for modeling some natural textures. It can be used also for texture

analysis and discrimination (Chaudhuri and Sarkar, 1995b; Kaplan and Kuo, 1995).

However, it lacks orientation selectivity and is not suitable for describing local image

structures.

2.2.1.4 Spatial/Spatial-Frequency Texture Descriptors

The texture descriptors discussed so far are either structural, statistics-based or

model-based in nature. Approaches used for textured feature extraction can also

be grouped loosely into those based on statistical methods and those using spatial-

frequency or spatial/spatial-frequency methods. The statistics-based methods dis-

cussed earlier have in the past proven superior to the traditional frequency domain

techniques, like Fourier transform. This was largely due to lack of locality in in these

early frequency-based texture analysis methods. This problem caught the attention

of both mathematicians and the signal processing community and led to the devel-

opments of transform-based method (Bovik et al., 1990; Burt and Adelson, 1983;

Greenspan et al., 1994; Jain and Karu, 1996; Mallat, 1989; Unser and Eden, 1989).

Especially, the multi-channel and multi-resolution analysis signal processing tools,

like: (pseudo) Wigner distributions (Reed and Wechsler, 1990, 1991; Zhu et al.,

1993), STFT or Gabor transform (Chen and Chen., 1996; Daugman, 1985; Dunn
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and Higgins, 1995; Fogel and Sagi, 1989; Haley and Manjunath, 1995; J. Bigün and

J. M. H. du Buf, 1994; Jain and Farrokhnia, 1991; Lee, 1996; Manjunath et al.,

1996; Teuner et al., 1995), wavelet and wavelet packet transforms (Chang and Kuo,

1993; Fatemi-Ghomi et al., 1996; Laine and Fan, 1993; Lu et al., 1997; Unser, 1995;

Zhu and Yang, 1998), have been promising additions for texture analysis. Joint

spatial/spatial-frequency methods are inherently local in nature, and have charac-

teristics that compare favorably with those of statistics-based methods.

The spatial/spatial-frequency methods are based on image representation that

indicate the frequency content in spatially localized regions and closely relates to the

characteristics of a texture. Additionally, these methods also achieve high resolution

in both the spatial and spatial-frequency domains and are consistent with the recent

theories on human vision–the visual cortex can be modeled as a set of independent

channels, each with a particular orientation and spatial frequency tuning (Beck

et al., 1987; Daugman, 1990; Farrokhnia, 1990; Lee, 1996).

The Wigner distribution (WD) is a spatial/spatial-frequency representation

which was first introduced (in its 1-D form) in quantum mechanics, to characterize

the positions and momenta of particles. The two-dimensional pseudo-Wigner dis-

tribution (PWD), a discrete approximation of the continuous WD, was first used

for texture segmentation by Reed and Wechsler (1990, 1991). Their approach was

to determine the high energy frequency components in the PWD of the image to

be segmented and to select a small set of those components (”frequency planes”) as

features. The segmentation results of PWD-based features for texture characteriza-

tion were qualitatively superior to other spatial/spatial-frequency representations,
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namely Gabor transform, spectrogram (Fourier transform), and Difference of Gaus-

sians (DOGs). The experiments were based on textured image data from four differ-

ent sources: synthetic textures constructed from products of complex exponentials;

Beck-type textures (Beck et al., 1987); Brodatz textures (Brodatz, 1966).

Gabor filters produce space-frequency decompositions that achieve the theo-

retical lower bound of the uncertainty principle and attain minimum possible joint

resolution in space and frequency. This is highly significant in the process of texture

extraction in which the conflicting objectives of accuracy in texture representation

and texture spatial localization are both important. A more practical way to gain

in the trade-off between space and frequency resolution without using Gabor func-

tions is with a dyadic or wavelet filter bank. The wavelet filter bank produces

octave bandwidth segmentations in space-frequency (s-f). It allows simultaneously

for high spatial resolution at high s-f’s and high s-f resolution at low s-f’s. A two-

band quadrature mirror (QMF) filter bank utilizes orthogonal analysis filters to

decompose data into low-pass and high-pass frequency bands. When filtering is

recursively applied to the low-pass frequency bands the QMF filter bank produces

a octave band split or wavelet decomposition. Separable QMF filters reduce the

computational complexity of the filter banks and make them very attractive for

implementation. Entropy (H), energy or variance (E), and mean deviation (md)

of the sub-band filtered signals are the most commonly used feature descriptors. If

Y (x1, . . . , xd) denotes the output from the sub-band filters then these above three
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texture descriptors are estimated mathematically using the following relations:

H = − 1

#

∑
x1

. . .
∑
xd

|Y (x1, . . . , xd)| log [|Y (x1, . . . , xd)|] (2.3)

E =
1

#

∑
x1

. . .
∑
xd

(Y (x1, . . . , xd))
2 (2.4)

md =
1

#

∑
x1

. . .
∑
xd

|Y (x1, . . . , xd)| (2.5)

Chang and Kuo (1993) approached the problem of supervised texture-image

classification by considering tree-structure wavelet transform for constructing the

energy maps. Their experimental studies produced classification errors less than 5%

on texture images from the Brodatz album (Brodatz, 1966). Fatemi-Ghomi et al.

(1996) used the similar feature descriptors as Chang and Kuo (1993) but performed

a larger number of experiments (some 800 in total) using ten different wavelet filters

(Haar, Daubechies, and Coiflets). Their testing bed also comprised of a variety of

composite image taken from the Brodatz database.

Laine and Fan (1993) exhibited the reliability of using texture signatures ob-

tained from both energy and entropy metrics based on wavelet packets analysis.

Their study used features computed from from Daubechies wavelets. Their exper-

imental results showed that energy signatures computed from redundant wavelet

packet representation produces more classification error than standard wavelet de-

composition. And between energy-based and entropy-based texture signatures, the

segmentation results from the former performed were slightly better when tested on

Brodatz textures.

Unser (1995) described a new approach for characterization of texture prop-

erties at multiple scales using the overcomplete wavelet frame transform that was
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translation invariant. Unser showed that this wavelet representation constitutes a

tight frame in L2 and also proposed a fast iterative algorithm for computing the

transform. He used the channel variance (energy) from various orthogonal wavelets

(Battle-Lemariè functions) and bi-orthogonal wavelet (B-spline and D-spline func-

tions) for textural characterization. Additionally, Unser also studied the effect of

energy features from different scales (1, 2, and 3) on the segmentation. The ex-

perimental results on twelve images from Brodatz database showed that choice of

wavelet functions had little impact on the overall performance. However, there was

considerable improvement in the classification accuracy by including energy infor-

mation from more number of scales: approximately, 93.88%, 98.7%, and 99.22% for

scales 1, 2, and 3, respectively.

Lu et al. (1997) proposed a texture segmentation method based on wavelet-

based approach using a set of high-frequency channel energy function as features and

a multi-level thresholding technique. The experimental results showed that accurate

results can be obtained from within two to four scales of wavelet decompositions for

the images. The number of texture classes from Brodatz texture album and digital

aerial photographs were correctly estimated with error rates as low as 5%.

Zhu and Yang (1998) performed texture classification at multiple scales us-

ing different mother wavelet functions, wavelet decomposition models and different

levels of wavelet decomposition. They showed that the accuracy was dependent on

the choice of wavelet filter length used for classification for a specific number of

features in the images. The test images for all this method were also chosen from

the Brodatz texture album (Brodatz, 1966).
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2.2.2 Classification Schemes

The next stage in image segmentation is the classification step. Given a feature

vector
−→
Fi of a pattern or an object, the desired goal is to assign the

−→
Fi to one of

the possible classes, wi. A decision rule partitions the feature space into regions Si

belonging to c number of classes, {1, 2, . . . , c}. There are two main divisions of classi-

fication: supervised classification (or discrimination) and unsupervised classification

(sometimes referred in the statistics literature simply as classification or clustering).

The first category assumes that the class label of each texture is known (i.e. an

”instructor” is available). This information is readily used as exemplars during the

classifier design. But in some practical applications like identifying different soil

horizons from a satellite remotely without human interaction, the different classes

might not be available. This is addressed by the second category of techniques. In

unsupervised techniques, the data are not labelled and the goal is to find groups in

the data and the features descriptors that distinguish one group from another.

There are two main categories for supervised classification. First category

deals with supervised classification via Bayes’ rule and estimation of the class-

conditional densities. The second category take a discriminant function approach to

supervised classification. The former can be further divided into two subcategories.

First, namely, parametric methods, assumes a knowledge of the underlying class-

conditional probability density function, i.e., the probability density functions of the

feature vectors for a given class. In many applications these will usually be unknown

and must be estimated from a set of correctly classified samples termed the design or
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training set. The second, namely, non-parametric methods, develops decision rules

that use the data estimate the decision boundaries directly, without the explicit

calculation of the probability density functions. A detailed review on all types of

classification schemes is beyond the scope of this research. Most of commonly used

methods are well documented in several pattern recognition textbooks (Duda et al.,

2001; Fu, 1982; Jain and Dubes, 1988; Kendall and Stuart, 1977; Lillesand and

Kiefer, 1987; Pitas, 2000; Schalkoff, 1992; Vapnik, 1998; Webb, 2002).

Chang and Kuo (1993) approached the problem of supervised texture-image

classification by considering tree-structure wavelet transform and constructing the

energy maps. They illustrated the efficiency of their technique by comparing differ-

ent types of minimum-distance classifiers, viz. Euclidean, Mahalanobis and Bayes

decision rule. Their experimental studies using the three classifiers gave an classi-

fication accuracy of 95.3%, 99.7%, and 99.6%, respectively, on texture images from

the Brodatz album (Brodatz, 1966).

Laine and Fan (1993) exhibited the reliability of using texture signatures ob-

tained from both energy and entropy metrics based on wavelet packets analysis.

Their study used features computed from from Daubechies wavelets and the classi-

fication was done using two-layer neural network classifier (ANNs) and minimum-

distance (MD) classifier. Their experimental results showed that energy signatures

computed from redundant wavelet packet representation gave more classification er-

ror than standard wavelet decomposition. And between energy-based and entropy-

based texture signatures, the segmentation results from the former performed were

slightly better when tested on Brodatz textures.
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Unser (1995) proposed an overcomplete wavelet transform representation and

studied the effect of energy features computed from various orthogonal (Battle-

Lemariè) and bi-orthogonal wavelet (B-spline and D-spline) functions for textural

characterization based on minimum-distance Bayes’ classifier. Additionally, he also

studied the effect of energy features from different scales (1, 2, and 3) on the segmen-

tation. The experimental results on twelve images from Brodatz database showed

that choice of wavelet functions had little impact on the overall performance. How-

ever, there was considerable improvement in the classification accuracy by including

energy information from more number of scales: approximately, 93.88%, 98.7%, and

99.22% for scales 1, 2, and 3, respectively.

Fatemi-Ghomi et al. (1996) performed large number of experiments (some 800

in total) using ten different wavelet filters (Haar, Daubechies, and Coiflets) on a

variety of composite image taken from the Brodatz database. The test images were

segmented using a c-means fuzzy classifier based on energy features computed from

the sub-band filtered images. They also introduced a two-point correlation function

for measuring the performance of the segmentation results and showed that it can

quantify performance in a way that correlates well with ground truth measures.

Most of the texture mosaics were segmented with less than 2% error, irrespective of

the wavelet filter, suggesting that the choice of wavelet filter plays an insignificant

role for texture analysis.

Lu et al. (1997) proposed an unsupervised texture segmentation using wavelet-

based approach using a set of high-frequency channel energy function as features and

a multi-level thresholding technique. The experimental results showed that accurate
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results can be obtained from within two to four scales of wavelet decompositions for

the images. The number of texture classes from Brodatz texture album and digital

aerial photographs were correctly estimated with error rates as low as 5%.

(Kervrann and Heitz, 1995) proposed an algorithm for unsupervised texture

segmentation technique that does not require knowledge about the different texture

regions, their parameters, or the number of available texture classes. Their method

relies on analysis of local and global second and higher order spatial statistics of the

original images and the Bayesian estimate of segmentation map is modeled using

an augmented-state Markov random field and is computed using a deterministic

relaxation algorithm.

2.2.3 Summary

The vast majority of research on texture segmentation has been targeted towards

development of features for textural characterization which can be divided into four

categories. Structural descriptors can provides a good symbolic description of the

image useful for certain applications, like detection of changes in bone microstruc-

ture. However, these texture features are more useful for synthesis than analysis

tasks.

Statistics-based texture descriptors are the most widely used descriptors be-

cause they represent the texture indirectly by the non-deterministic properties that

govern the distributions and relationships between the grey levels of an image. Com-

monly used statistics-based features for texture analysis are derived from the first-

order central moments and co-occurrence matrix. However, the problem with these
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descriptors is that they are derived from pixels within tiles at a single scale.

Model-based texture descriptors attempt to interpret an image texture by

using fractals and stochastic models. Both these methods have been shown to be

useful for modeling some natural textures. However, in practice, the computational

complexity arising in the estimation of stochastic model parameters is the primary

problem. Similarly, the lack of the orientation selectivity and incapability to describe

local image structures limits the application of fractal-based descriptors.

Space-frequency based features derived from Fourier analysis based descrip-

tors, like power spectrum performs poorly in practice due to its lack of spatial

localization. In contrast, the pseudo-Wigner distribution (PWD) allows feature de-

scriptors to have superior joint spatial/spatial-frequency resolution and also encodes

the phase information. These properties, especially the latter, makes PWD-based

descriptors useful for textures that differ only in phase. However, PWD-based fea-

tures perform poorly when used for characterization of complex textures due to

aliasing. Furthermore, the PWD yields a set of potential texture features of very

large dimensionality (¿30). Feature descriptors computed from Gabor filters provide

better spatial localization than Fourier transforms. However, these descriptors have

practical limitations because there is usually no single filter resolution at which the

spatial structure in natural textures can localized. In comparisons to the feature

descriptors estimated from Gabor filters, the wavelet analysis allows for varying the

spatial resolution to represent textures at the most suitable scale. It also provides a

wide range of wavelet functions tailored for specific texture analysis of image data.

These properties make the wavelet transform attractive for texture segmentation.
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The main shortcomings of the texture segmentation methods reviewed earlier

are as follows. Although, image segmentation techniques using texture signatures

from multiple scales have shown promising results for texture-predominant image

from sources like Brodatz album and synthesized textured images, the performance

of these methods on heterogeneous biological image data is sparse. Hence, there is

a need to develop a texture segmentation method that can perform equally well for

characterization of heterogeneous materials in multi-dimensional images obtained

from different imaging sensors.

Additionally, most of the multi-scale and multi-channel methods only uses few

descriptors, like entropy, energy and mean-deviation, for texture characterization.

Although, these features have shown great potential to discriminate textured pat-

terns in images they are insufficient to quantitatively represent the heterogeneity

within the materials in image data sets. In this context, statistics-based features

offer a wide range of texture measures estimated from pixels within a tile. However,

these descriptors have limited application as they primarily estimated from tiles

tiles at only one scale. Extending these single-scale statistical feature descriptors

into multi-scale texture analysis framework will therefore expand the repository of

the available descriptors for texture characterization.

Lastly, the features descriptors from single and multiple scales uses an arbi-

trary tile size and pre-determined number of scales, respectively, for characterization

of textures without any quantitative justification. For instance, the single scale sta-

tistical measures are computed from a sufficiently large sample material. Similarly,

most of the multi-resolution texture analysis methods use features estimated from
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sub-band filtered images up to 3 or 4 scales. This clearly demonstrates the need for

developing a quantitative strategy for identification of the optimal tile size.

2.3 Objectives

The overall goal of this chapter is to develop a texture-based segmentation technique

for characterization of heterogeneous bio-materials in image data. The specific ob-

jectives of the research addressed in this chapter are:

Objective 1: Develop a supervised texture-based segmentation technique that can

quantitatively characterize the heterogeneity of a material at a coarser scale

by accounting for the heterogeneity from sub-scales.

Objective 2: Evaluate the developed technique for segmenting heterogeneous ma-

terials in biological image data.

The texture-based segmentation technique should be able to identify the character-

istic length (representative elementary scale) at which the properties of the hetero-

geneous materials become homogeneous. It should be able to identify the optimal

feature descriptors and classifier combination that can be used for segmenting real

biological image data. The feature descriptors should also be the parameters that

can used directly in stochastic up-scaling numerical techniques. It should be easily

extendable to image data in arbitrary dimensions and applicable to different imag-

ing modalities so that it accommodates both 2-D images (e.g., air photos) and 3-D

images (MR and CT scans).
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2.4 Materials and Methods

In this section, the materials and methods required for accomplishing the main

objectives of the research are described. Section §2.4.1 provides the discussion on

methods required for the developing the supervised segmentation strategy with em-

phasis on different components, like feature descriptors and classification methods,

for successful characterization and identification of heterogeneous materials in image

data. Additionally, the two test suites needed for analyzing the various aspects of

the developed segmentation strategy are also described. Section §2.4.2 describes the

biological image data sets from different imaging modalities and the methods used

for evaluating the developed segmentation.

2.4.1 Development

The approach used in this work to develop the segmentation procedure consists of

modifying the appropriate steps of existing multi-resolution based texture segmenta-

tion methods, such that: (1) it can characterize macroscopic entities by accounting

for their heterogeneity from sub-scales; (2) it can identify the support scale at which

heterogeneous materials can be treated as continua; and (3) it can be applied without

any modifications to multi-dimensional image data acquired from different modal-

ities. The strategy of multi-resolution analysis (MRA) for texture segmentation is

used as a starting point because the definition of texture used in image segmentation

literature is conceptually similar to the definition of representative elementary scale

(RES) used in continuum mechanics. Moreover, research on human visual system
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for textural characterization indicates a strong resemblance with multi-channel and

multi-scale approaches. Specifically, the developed method will use Haar wavelet

multi-resolution analysis (MRA) due to the computational simplicity that it offers

because of its orthogonal and symmetric properties.

According to the literature review, most, if not all, of the multi-resolution

based texture segmentation methods can be broken down into three main steps:

(1) extract or select feature descriptors that characterizes different materials (for

example, multi-channel entropy, mean deviation, and energy); (2) use classification

method to segment the materials; and (3) error assessment of the segmentation re-

sults. The modifications used to adapt these steps for accurate characterization of

heterogeneous materials in multi-dimensional images from different modalities will

require: (1) development and analysis of additional feature descriptors (besides en-

tropy) that are based on up-scaled stochastic continuum concept; (2) development of

a strategy for identifying the representative elementary scale at which the heteroge-

neous materials becomes continua; and (3) selection of the most optimal combination

of feature descriptors and classification method based on rigorous analysis.

The first modification is needed to capture micro-scale heterogeneity properties

of macro-scale entities if such image data is to be used in up-scaled transport models.

In this context, conventionally used measures (like entropy and energy), although

useful, are not sufficient to successfully characterize heterogeneous materials. This

shortcoming is overcome by developing and analyzing the potential of three types

of feature descriptors for textural characterization: first-order central moments,
−→
M ,

entropy computed from multiple scales,
−→
H , and directional correlation lengths,

−→
Z .
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The first order central moments and directional correlation lengths are included

because they can be directly used as input parameters in up-scaled transport models,

whereas the inclusion of entropy is based on its ability cited in literature for analyzing

texture predominant signals. The feature descriptors will be calculated either by

using existing formulae or by extending them using Haar wavelet multi-resolution

analysis (explained below).

The second modification is required to ensure that the macro-scale material

signatures, to be identified, is based on a quantitative or objective procedure rather

than intuitive or subjective selection procedure. For example, the multi-resolution

methods used for texture segmentation method uses arbitrary number of scales for

textural characterization without any quantitative justification. In this study, a

strategy will be developed to identify the characteristic length of a textured mate-

rial (representative elementary scale, RES) using stochastic continuum mechanics

concept.

The third modification is necessary because the developed method when ap-

plied for analyzing heterogeneous bio-images should be optimal both in terms of

computational efficiency and accuracy. This will be accomplished by selecting an op-

timal combination of feature descriptors (developed in step 2) and three classification

methods (explained below), namely, Gaussian maximum likelihood classifier (LVQ),

minimum distance classifier (MD), and learning vector quantization (LVQ) classi-

fiers, using two test suites: (1) three real 2-D images–T-1 and (2) twelve synthetic

texture predominant mosaics–T-2; will be used to analysis. The latter, specifically,

is selected owing to its extensive use in comparative studies of several texture seg-
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mentation methods (Mäenpää et al., 2000; Randen and Husøy, 1999). The analysis

experiments will study the effects of combinations of feature descriptors and clas-

sification methods on these test suites using a modified leave-one-out-error which

accounts for size of feature vector in the segmentation results.

With the modifications listed above the segmentation method developed in

this chapter will consist of the following steps:

1. pre-processing the input data and extracting samples for each material in the

image;

2. calculating spatial-statistics from wavelet MRA and identifying characteristic

length of texture (RES);

3. calculating the material signatures (features) at the identified RES support;

and

4. classifying the heterogeneous materials in the image at RES support and eval-

uating the segmentation results.

The remaining part of this section is organized as follows. Section §2.4.1.1

describes the method(s) used for pre-processing the input multi-dimensional image

data for further analysis and also describes the technique to be used for sample selec-

tion. Section §2.4.1.2 introduces Haar wavelet multi-resolution analysis and various

feature descriptors that will be used and developed for segmenting heterogeneous

materials in images. Section §2.4.1.3 describes the method that will used to identify

the representative elementary scale using stochastic continuum concept. Section
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§2.4.1.4 explains the classification schemes that will be analyzed for incorporating

into the developed segmentation method along with the performance index that

will be used for evaluating the segmentation results. Sections §2.4.1.5 and §2.4.1.6,

describe the two-dimensional test suites that will be used for rigorous analysis of

the developed texture segmentation technique prior to applying the method on real

heterogeneous bio-images.

2.4.1.1 Pre-Processing and Sample Selection

Let the input data for the segmentation method be a d-dimensional image, such

that

f (x1, x2, . . . , xd | xi ∈ [0, 2n − 1]) , ∀ n ∈ Z+ (2.6)

The pre-processing step in the developed segmentation technique will (mostly) in-

volve checking the input data for the dyadic requirement needed for Haar wavelet

analysis. Additionally, it can also include conventional image processing steps, like,

smoothing for noise removal and re-sampling anisotropic data.

The second step of the developed supervised segmentation method consists

of selecting samples corresponding to the each of the different textured materials

present in the image data. In most instances, the allowable size of the sample

materials will be dependent on the input image data. For example, images with

low resolution can prevent selecting sufficiently large samples for further analysis.

Caution should be practiced during supervised selection of representative samples

because of two reasons: (1) they should truly reflect the material being characterized,

hence, should not be selected from two or more materials; (2) they should also be of
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sufficient size to enable the estimation of the RES support. This supervised selection

method can be automated when ground truth data is available by computing the

2d-tree representation of the d-dimensional ground truth data (see Section §3.4.1)

and then selecting samples for each material present from the corresponding location

in the raw input data.

2.4.1.2 Feature Descriptors

The three feature descriptors: (1) moments-based feature vector (
−→
M); (2) entropy-

based feature vector(
−→
H ); and (c) correlation lengths estimated from the direc-

tional autocorrelation functions (
−→
Z ), used and developed in this study should cap-

ture micro-scale heterogeneity characteristics of a macro-scale entity. That is, if

τj(x1, x2, . . . , xd) represents a non-overlapping tile at scale j, such that,

f =
{
τj(x1, x2, . . . , xd) | xi ∈ [0, 2n−j − 1]

}
, (2.7)

then the goal is to be able to describe heterogeneity of the material within τj,i (at lo-

cation xi) using feature descriptors calculated over tiles at lower scales, τj−1,i, . . . , τ1,i.

For example, in Figure 2.2 the goal is identify the feature descriptors of tile τ2(0, 0) at

scale 2 in terms of τ1(0 . . . 1, 0 . . . 1) at scale 1. This multi-scale representation with

non-overlapping tiles given by equation 2.7 and the multi-resolution Haar wavelet

decomposition are two closely related. Figure 2.2 illustrates the equivalence between

both the representations for a two-dimensional case. Hence, any analysis that needs

to be done on tiles can now be performed directly in wavelet space.

In one dimension, Haar wavelet analysis involves convolution of the input
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{{τ2(x1, x2) | x1 ∈ [0, 1]}}
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1
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1
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1

D3

1
D2

1

{{τ1(x1, x2) | x1 ∈ [0, 3]}}f(x1, x2) = {{τ0(x1, x2) | x1 ∈ [0, 7]}}
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D2

2
D3

2

L1 D1

2

Figure 2.2: Illustration of the equivalence between the multi-scale representation and

wavelet transform. The tiles in the multi-scale representation at different scales and their

corresponding wavelet coefficients in all the sub-band filter outputs are shown with same

pattern.
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signal, f(x1), with a low-pass filter (smoothing function, h(x1) = 1√
2
[1 1]) and a

high-pass filter (detail function, g(x1) = 1√
2
[1 − 1]). This process is recursively

applied on the low-pass filter output from previous scale, k − 1, such that, the

wavelet representation of the input signal at scale k follows the relation

f(x1) =
∑

n

lk(n)h(x1) +
k∑

j=1

∑
n

dj(n)g(x) (2.8)

The coefficients of first term in this expansion represents low resolution approximate

signal, Lk = {lk(n)}, whereas the coefficients Dj = {dj(n)} constitute the detail

signal at scale j. The complete set of wavelet coefficients,
{

Lk, {Dj}1≤j≤k

}
, is

called the wavelet representation of the signal f at depth k.

In terms of matrix notation, the approximate and the detail low resolution

signals at scale k from the Haar wavelet analysis can also be computed using the

scalar product,

{lk+1(n), dk+1(n)} = 〈H2×2, {lk(2n− 1), lk(2n)}〉 (2.9)

where H2×2 is the Haar block matrix given by:

H2×2 =
1√
2

 1 1

1 −1

 (2.10)

According to filter-bank theory, the h and g filters are only the analysis part

and in order to restore the original signal, the orthogonal and symmetric properties

of the Haar wavelet function can be used to construct the synthesis filter-bank,

namely, h̃(x) and g̃(x). These filters are defined as conjugate to the h(x) and g(x),

such that

h̃(x) = h(−x) and g̃(x) = g(−x) (2.11)
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Using these synthesis part of the filter bank the signal at scale k can be reconstructed

either using,

lk(n) =
∑

n

[
lk+1(n)h̃(x1 + 2n) + dk+1(n)g̃(x1 + 2n)

]
(2.12)

or using the block matrix notation

{lk(2n− 1), lk(2n)} = 〈H2×2, {lk+1(n), dk+1(n)}〉 (2.13)

The analysis and synthesis parts for one-dimensional case are illustrated in Figure

2.3. The one-dimensional wavelet analysis takes the input signal, filters and sub-

samples the outputs from analysis filter-bank, thus producing a approximate signal

and detail signal at higher scales. This sub-sampling is necessary to maintain equal

number of coefficients in the wavelet space as that in the input signal.

∗g̃

Analysis Synthesis

Lj

∗h

∗g

Lj

↓ 2

↓ 2 Dj+1

Lj+1 Lj+1

Dj+1 ↑ 2

↑ 2 ∗h̃

1

Figure 2.3: The analysis and synthesis filter bank schemes for computation of the

wavelet coefficients using quadrature mirror filters. ∗ denotes convolution and ↑ 2 (↓ 2)

down-sampling (up-sampling) by a factor of 2.

The extension of the 1-D DWT to 2-D images, f(x1, x2), using sub-band fil-

tering scheme is achieved by taking convolution of the input signal with 2-D Haar

sub-band matrix, H4×4 (Strang and Nguyen, 1997). The 2-D Haar sub-band matrix
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is obtained by taking the tensor product1 of H2×2, that is,

H4×4 = H2×2 ⊗H2×2

=
1

2



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


(2.14)

The 2-D Haar DWT generates four low resolution (or coarse scale) images: an

approximate image, Lj and three detail images, Dj
1 , Dj

2 and Dj
3 capturing the

vertical, horizontal, and diagonal details, respectively, of the original image. Similar

to the one-dimensional case, the four sub-images at coarser scale, j, are generated

by recursively applying the analysis Haar filter-bank on the approximate (smooth)

sub-image Lj−1 and are calculated using

Lj (n1, n2)

D1
j (n1, n2)

D2
j (n1, n2)

D3
j (n1, n2)


= H4×4



Lj−1 (2n1 − 1, 2n2 − 1)

Lj−1 (2n1, 2n2 − 1)

Lj−1 (2n1 − 1, 2n2)

Lj−1 (2n1, 2n2)


(2.15)

Figure 2.4(b) illustrates the standard wavelet decomposition up to depth 3 for the

input image shown in Figure 2.4(a) and the corresponding pyramidal representation

for the decomposition is shown in Figure 2.4(c).

Similarly, for a three-dimensional image data, f(x1, x2, x3), the separable 3-D

1A tensor product has order N1N2 when the matrices have orders N1 and N2. The matrix of

order N1 appears N2 times on each block row of the tensor product, multiplied by entries from

the matrix of order N2.
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(a) (b)

f(x1, x2)

L1

L2

L3 D1

3
D2

3
D3

3

D1

2
D2

2
D3

2

D1

1
D2

1
D3

1

(c)

Figure 2.4: (a) sample 2-D image of size 128× 128 pixels; (b) typical organization of

the approximation and detail images for a 2-D standard wavelet transform up to depth 3;

and (c) the corresponding pyramidal representation of the standard wavelet decomposition
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DWT can be computed by using H8×8, which will generate eight sub-band signals

consisting of one average sub-band signal, L1, and seven detail sub-band signals,

Di
1, ∀ i ∈ [1, 7]. The subsequent coarser representations of the original signal at

scale j is obtained by recursively applying Haar filter-bank matrix on the average

sub-band signal, Lj−1 and are computed using,

Lj (n1, n2, n3)

D1
j (n1, n2, n3)

D2
j (n1, n2, n3)

D3
j (n1, n2, n3)

D4
j (n1, n2, n3)

D5
j (n1, n2, n3)

D6
j (n1, n2, n3)

D7
j (n1, n2, n3)



= H8×8



Lj−1 (2n1 − 1, 2n2 − 1, 2n3 − 1)

Lj−1 (2n1, 2n2 − 1, 2n3 − 1)

Lj−1 (2n1 − 1, 2n2, 2n3 − 1)

Lj−1 (2n1, 2n2, 2n3 − 1)

Lj−1 (2n1 − 1, 2n2 − 1, 2n3)

Lj−1 (2n1, 2n2 − 1, 2n3)

Lj−1 (2n1 − 1, 2n2, 2n3)

Lj−1 (2n1, 2n2, 2n3)



(2.16)

The moment-based features used in this study are the first-order four central

moments, viz. mean (µ̂), variance (ν̂), skewness (χ̂), and kurtosis (κ̂) and are

computed from the elements in τj,i, using the following relations:

µ̂ (τj,i) =

∑
x1

. . .
∑
xd

{τj,i}

# (τj,i)
(2.17)

ν̂ (τj,i) =

∑
x1

. . .
∑
xd

[{τj,i} − µ̂ (τj,i)]
2

# (τj,i)
(2.18)

χ̂ (τj,i) =

∑
x1

. . .
∑
xd

[{τj,i} − µ̂ (τj,i)]
3

# (τj,i) [ν̂ (τj,i)]
1.5

=
α̂ (τj,i)

[ν̂ (τj,i)]
1.5 (2.19)
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κ̂ (τj,i) =

∑
x1

. . .
∑
xd

[{τj,i} − µ̂ (τj,i)]
4

# (τj,i) [ν̂ (τj,i)]
2

=
β̂ (τj,i)

[ν̂ (τj,i)]
2.0 (2.20)

This makes the moment-based feature vector,
−→
M , a point in R4 feature space.

The mathematical framework for estimating the first order moments directly from

wavelet MRA for multi-dimensional images will be developed and presented in Sec-

tion §2.5.1.1.

In general, The entropy of any signal, Y (x1, . . . , xd), is estimated using,

H (Y (x1, . . . , xd)) = − 1

#

∑
x1

. . .
∑
xd

|Y (x1, . . . , xd)| log [|Y (x1, . . . , xd)|] (2.21)

where the absolute value of the signal is used to overcome negative wavelet coeffi-

cients. The multi-scale entropy feature vector,
−→
H , for tile τj,i is calculated from its

corresponding wavelet coefficients, using the following relation,

−→
H (τj,i) =

{
H (Lj,i) , H

(
Dn

k,i

)
| k = 1, . . . , j; n = 1, . . . , 2d − 1

}
(2.22)

This makes the entropy feature vector,
−→
H , a point in R(2d−1)j+1 feature space.

In addition to the above features, ACF-based features will also be used to

account for spectral characterization of textures within an image. The ACF-based

features,
−→
Z , to be used in this study are estimated in two steps: (1) calculating

the auto-correlation function in each principal direction; and (2) estimating the

correlation length by curve-fitting the calculated ACF to a theoretical ACF. First,

the directional auto correlation function at lag, ∆h, for the d-dimensional dyadic
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image, f(x1, . . . , xd), is computed using,

Zi (h) =
1

Zi (0) Np

2n−1∑
x1=0

. . .

2n−1∑
xi=0

. . .
2n−1∑
xd=0

f (x1, . . . , xi, . . . , xd) f (x1, . . . , xi + ∆h, . . . , xd)

(2.23)

where, Np is the total number of number of pairs at a lag distance of z, such that

0 ≤ ∆h ≤ 2n − 2. The Zi(0) in the denominator is used to normalize the ACFs

so that Zi(∆h) attains a maximum value of 1 at zero-lag. Since ACF is directly

related to the power spectral density of the signal it is instead estimated using FFTs,

which is much efficient from an implementation standpoint (Pitas, 2000). Second,

the correlation lengths, λi, are estimated by curve-fitting an theoretical exponential

ACF, exp
−∆h

λi , to the ACF computed using FFT. Hence, the ACF-based entropy

feature vector,
−→
Z = {λi}, is a point in Rd feature space.

The analysis experiments will use seven combinations of the above three fea-

ture vectors, shown in Table 2.1, for determining the optimal feature vector.

2.4.1.3 Identification of RES support

In this study, the characteristic length at which heterogeneous materials in the bio-

image data become a continua will be identified using stochastic continuum concept.

The method used for identification entails two steps: (1) calculating spatial-moments

of the materials as a function of sampling tile size (using Haar wavelet coefficient)

and (2) selecting the sample tile size at which the statistics stabilize as the represen-

tative elementary scale. Figure 2.5 illustrates the concept representative elementary

scale where the plot shows the trend in a particular material property (for example,

porosity) measured over sampling volume V , as V → 0. For large sampling vol-
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Table 2.1: Combination of feature vectors and their corresponding dimensionality at

scale j

Feature Vector Features Feature Space Size

−→
F1

{−→
M

}
4

−→
F2

{−→
H

}
3j + 1

−→
F3

{−→
Z

}
2

−→
F4

{−→
M,
−→
Z

}
6

−→
F5

{−→
H,
−→
M

}
3j + 5

−→
F6

{−→
H,
−→
Z

}
3j + 3

−→
F7

{−→
H,
−→
M,
−→
Z

}
3j + 7

umes, the curve changes smoothly but distinctly, whereas for intermediate sampling

volume, the curve becomes stable at some fairly precise value of material property

(porosity) and then becomes erratic at an even smaller V where pore-scale variations

become important. The representative elementary volume is the value of V above

which the fluctuations are negligible. It is expected that, by analyzing trends of

spatial-moments computed on different sizes of sampling tiles will be useful in RES

support identification.

2.4.1.4 Classification Schemes

The developed segmentation method in this study uses three classification schemes:

Gaussian maximum likelihood method (GM); Knn method with K = 1 (MD);
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Figure 2.5: Plot of a material property as a function of sampling volume, adapted from

Bear (1972).

and learning vector quantization (LVQ), for segmenting image data into different

classes. The first two classifiers are based on Bayes’ decision rule and belongs to

the category of parametric and non-parametric methods, respectively, whereas LVQ

classifier belongs to the category of clustering techniques.

According to the Bayes’ decision rule, if a signal has c classes, w1, w2, . . . , wc,

with known a priori probabilities p(w1), p(w2), . . . , p(wc) and no information regard-

ing an object other than the class conditional distribution then for minimizing the

probability of making an error the object is assigned to class wj if

p(wj) > p(wk) ∀k = 1, . . . , c; k 6= j (2.24)

This classifies all objects as belonging to one class. For classes with equal probabil-

ities patterns are assigned arbitrarily between those classes. However, if a feature

vector
−→
F + describing the object is available, then the decision rule based on prob-

abilities is to assign
−→
F + to class wj if the probability of class wj given the feature

vector
−→
F +, p

(
wj|
−→
F +

)
, is greatest over all the classes w1, w2, . . . , wc. That is, assign
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−→
F + to class wj if

p
(
wj|
−→
F +

)
> p

(
wk|
−→
F +

)
∀k = 1, . . . , c; k 6= j (2.25)

The a posteriori probabilities p
(
wj|
−→
F +

)
can be expressed in terms of the a priori

probabilities and the class-conditional density functions p
(−→

F +|wj

)
by using the

Bayes’ theorem,

p
(
wj|
−→
F +

)
=

p
(−→

F +|wj

)
p (wj)

p
(−→

F +
) (2.26)

and so the decision rule 2.25 can be rewritten as, assign
−→
F + to wj if

p
(−→

F +|wj

)
p (wj) > p

(−→
F +|wk

)
p (wk) ∀k = 1, . . . , c; k 6= j (2.27)

This is known as the Bayes’ rule of minimum error.

Parametric classifiers assume that the class conditional probabilities have a

known functional form and only depends on few parameters. Hence, parametric

classifiers achieve the goal of segmentation by estimating those distribution para-

meters from a design set,
−→
F ∗, where

−→
F ∗ =

{
{
−→
F n1,w1}, {

−→
F n2,w2}, . . . , {

−→
F nc,wc}

}
, ∀
−→
F ni,wi

∈ Rd,

and ni denotes the number feature vectors for class wi in the input signal. Many

parametric classifiers can be designed using different forms or mixtures of paramet-

ric distributions. Among them, classifiers using Gaussian distribution is the most

popular choice. The multi-variate Gaussian classifier assumes that class conditional

probabilities follow a normal distribution, i.e.,

p
(−→

F +|wi

)
=

1√
(2π)d |Ci|

e

�
− 1

2(
−→
F +−~µi)

T
C−1

i (
−→
F +−~µi)

�
(2.28)
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with: ~µi = E
[−→
F ni,wi

]
and Ci = E

[(−→
F ni,wi

− ~µi

) (−→
F ni,wi

− ~µi

)T
]
, where d is

the dimensionality of the feature vector and ~µi and ~Ci denote vector of means and

covariance matrix of the design set
−→
F ni,wi

wi, respectively. Classification is achieved

by assigning the new pattern
−→
F + for which the posterior probability, p

(
wj|
−→
F +

)
,

is the greatest, or equivalently ln
(
p
(
wj|
−→
F +

))
. Using Bayes’ rule and the normal

assumption for the conditional densities, the posterior probability is given by,

p
(
wi|
−→
F +

)
= −1

2

(−→
F + − ~µi

)T

C−1
i

(−→
F + − ~µi

)
− 1

2
ln (|Ci|)

− d

2
ln (2π) + ln (p (wi))− ln

(
p
(−→

F +
))

(2.29)

where the prior probability, p (wi) is estimated by ni/
c∑

i=1

ni. Since p
(−→

F +
)

is inde-

pendent of class, the quadratic discriminant rule is: assign
−→
F + to wi if gi > gj ∀j 6=

i, where

gi

(−→
F +

)
= − ln p (wi) +

1

2
ln |Ci|+

1

2

[(−→
F + − ~µi

)T

C−1
i

(−→
F + − ~µi

)]
(2.30)

The last part in the right hand side of the quadratic discriminant rule represents

the Mahalanobis distance between the
−→
F + and the feature vectors of the design set

(Webb, 2002, see page 167). Henceforth, the classifier given by equation 2.30 will be

referred to as the Gaussian maximum likelihood with Mahalanobis distance metric

(GM).

Non-parametric classifiers, on the other hand, do not assume any known

parametric form for the class likelihoods distributions and estimate probabilities,

p
(−→

F + |wi

)
, using proximity rules directly from the design set. The K-nearest-

neighbor (Knn) method is one of the simplest, yet viable, method for density esti-

mation. The Knn classifier uses proximity of
−→
F ∗ to the K nearest samples from the
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design set as the main criteria for determining the class membership of
−→
F ∗. If K is

the number of samples, out of a total of n, falling within a volume V , then the Knn

approach is to fix the probability K/n (or equivalently, for a given number of design

samples n =
c∑

i=1

ni, to fix K) and to determine the d-dimensional volume V which

contains K design samples centered on the point
−→
F +. Suppose that in the first K

design samples there are Ki in class wi (so that
c∑

i=1

Ki = K). Let the total number

of samples in class wi be ni (so that
c∑

i=1

ni = n). The class-conditional probability

can be estimated based on the number of nearest neighbors that belong to class wi

by using the relation:

p
(−→

F + |wi

)
=

Ki

niV
(2.31)

and since the prior probability can also be estimated from the design set using the

relation:

p (wi) =
ni

n
(2.32)

substituting equations 2.31 and 2.32 into equation 2.27 then produces the decision

rule for the assignment of
−→
F + to wi, if

Ki ≥ Kj ∀ i, j = 1, . . . , c; i 6= j (2.33)

This leads to a very simple classification procedure: the sample
−→
F is be assigned to

the class that receives the largest vote amongst the K nearest neighbors from the

design feature set. In practice, the Euclidean distance between
−→
F + and

{−→
F ni,wi

}
is used to find the nearest neighbor(s). Since this rule is derived from the Bayesian

rule, it is optimal with respect to conditional risk. There are several ways of breaking

ties. Ties can either be broken arbitrarily or by assigning
−→
F + to a specific class out
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of all the classes with tying values of Ki that has nearest the mean vector to
−→
F +

(with the mean vector calculated over the Ki samples). Another method is to assign

−→
F + to the most compact class2. Sometimes, distance-weighted rules are also used

for class membership (Webb, 2002). When K = 1, i.e., only one nearest neighbor is

used, the Knn classifier simplifies to the minimum-distance classifier (MD).

The learning vector quantization (LVQ) belongs to the category of artificial

neural networks (ANNs) based classification schemes (Kohonen, 1990). In general,

vector quantization or clustering (in the sense of partitioning a data set, not seeking

meaningful groupings of objects) is often performed as a preprocessor for supervised

classification. However, it can also be used in a supervised way to classify the data

(Randen and Husøy, 1999). There are several ways in which vector quantizers (or

self-organizing maps: SOMs) can be used for labelling design data. One approach

that uses vector quantizers in a supervised way is to model the whole of the design

data with a single vector quantizer rather than each class separately. Each sample

from the design data is assigned to the nearest codebook vector (~v), which is then

labelled with the class of the majority of the patterns assigned to it. The codebook

entries are the prototype feature vectors for a particular class along with the class

labels, that is,

~vi =
{−→

F ni,wi
, wi

}
∀ i ∈ [1, c] (2.34)

The LVQ strategy bears a strong resemblance to the c-means algorithm (Schalkoff,

1992). The basic algorithm described in the following paragraph, iteratively (in-

2Assign
−→
F + to the one for which the distance to the Kith member is the smallest. This can be

achieved without any extra computation.
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dexed by t) uses nearest-neighbor rule on the labelled codebook entries to achieve

the classification.

1. Initialize cluster centers, z1, . . . , zc, and the cluster labels, w1, . . . , wc, for each

codebook vector ~vi.

2. For a design sample
−→
F ni,wi

find the closest codebook cluster with center zi.

3. If
−→
F ni,wi

is correctly classified, that is, it is labelled as class wi, then update

the nearest codebook cluster center, zi, according to the rule:

zi(t + 1) = zi(t) + α(t)
(−→

F +(t + 1)− zi(t)
)

.

4. If
−→
F ni,wi

is not correctly classified then update the nearest codebook cluster

center, zj, using the relation:

zi(t + 1) = zi(t)− α(t)
(−→

F +(t + 1)− zi(t)
)

.

Here α(t) is an iteration-dependent parameter used to control the convergence of

the algorithm. For stability, 0 < αt < 1, and α is constrained to decrease monoton-

ically with t. The adjustment strategy of LVQ is intuitively appealing. Correct

classifications lead to a refinement of the codebook cluster center in a direction to-

wards the design sample, where as incorrect classification (or quantization) moves

the codebook cluster center in the opposite direction. Because only the nearest

neighbor codebook entries are adjusted, this kind of learning is often referred to as

competitive learning.
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The analysis experiments in this study will use two performance metrics,

namely, average leave-one-out-error (LOOE, εl) and modified LOOE (εm), to quanti-

tatively compare the segmentation results from the above three classifiers. The first

metric is calculated by subdividing the total data samples, n, into k test samples,

while the remaining (n− k) samples to be used for classifier design and is repeated

until each available sample is exactly used once for testing by drawing new sets of

test and design samples after replacement. If k is set to 1, then the error estimation

becomes leave-one-out error, εl (Vapnik, 1998). The main drawback of this estimate

is that the classifier needs to be designed several times (n/k times for the leave-k-out

error method). In practice, the upper bound or approximate value of el is found by

training the classifier on all the n samples (Cawley and Talbot, 2003; Webb, 2002).

The second metric modifies the LOOE metric so that it can also account for

the size of feature vector used for classification and is defined as:

εm = −#(
−→
F )εl

100
(2.35)

The optimal combination of feature-vector and classifier will be selected from seven

feature vectors and three classifiers with maximum εm value.

2.4.1.5 2-D Real Images

Figure 2.6 shows the three images in first test suite, which will be used for the

analysis of the proposed segmentation method. The three-layered soil image, T-

1(a), shown in Figure 2.6(a), was obtained by digital scanning an image at 100dpi

from Fitzpatrick (1983) and storing it in TIFF image format with 256 grey-levels.
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The original digital scan resulted in a image of 117×234 pixels. This image was then

converted to a 256 × 256 pixels image: (1) by reversing and duplicating the entire

image once to the right, and (2) by reversing and duplicating a region of 21 × 21

pixels, one from the right side and the other from the bottom of the image. The

final image resulted in a pixel size corresponding to approximately 5mm of physical

resolution.

The second image in this test suite, T-1(b), is a 800× 600 pixel muscle tissues

obtained in JPEG image format from Young and Heath (1999). A 512× 512 pixels

cross-section was then: extracted, converted to monochrome, and stored as a grey-

scale TIFF resulting in a pixel size corresponding to approximately 0.5µm. The

final image used for analysis is shown in Figure 2.6(b).

The third and final image in this test suite, T-1(c), is a landscape satellite

image and is shown in Figure 2.6(c). This image is obtained from the USGS Digital

OrthoPhoto Quarter Quad (DOQQ) landcover collection of the Dorchester County

in the state of Maryland. The original three band thematic image was converted

to a monochrome image by summing the pixel intensities over the three bands and

scaling the result to lie in the interval of [0, 255]. A 1024× 1024 pixels section was

then extracted from the processed DOQQ to result in a image with pixel resolution

of approximately equal to 1m of the physical system.

The main objective of using this test suite was: (a) to analyze the performance

of SWA segmentation method as a function of feature descriptors membership in

the complete feature vector and, (b) to study impact of different classifiers on the

segmentation accuracy. To allow for quantitative assessment of the segmentation
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(a) (b) (c)

Figure 2.6: The three images in the first test suite (T-1) used for testing the SWA

approach: (a) digital scan of soils image; (b) microscope image of muscle; and (c) digital

air-photo of landscape.

accuracy, the three test images (Figures 2.6(a)–2.6(c)) were manually segmented.

These manual hand-guided segmentations (refer to Figure 2.7) will be used as ground

truth for quantitative assessment. The classification performance for this test suite

will be measured using the average leave-one-out-error, εl.

2.4.1.6 2-D Synthetic Images

The second test suite used for analyzing the proposed SWA approach has twelve

texture mosaics created from three different texture sources; the Brodatz album

Brodatz (1966), the MIT Vision Texture database Vision Textures (2004), and the

MeasTex Image Texture database MeasTex (2004). Based on the number of textures

within each mosaic and the size of these test mosaics, they can be grouped into four
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(a) (b) (c)

Figure 2.7: The ground truth images, G-1, obtained from expert hand-guided

segmentation of T-1.

categories: (1) simple two-texture mosaics of size 256×512 pixels, Figures 2.8(a)-

2.8(c); (2) ten-texture mosaics with simple borders of size 256×640 pixels, Figures

2.8(d)–2.8(e); (3) complicated five-texture mosaics of size 512×512 pixels, Figures

2.8(f)–2.8(j); and (4) mosaics of size 512×512 pixels with very complex borders and

as many as sixteen textures, Figures 2.8(k)–2.8(l).

Since the source texture images, used for creating each of these test mosaics,

were captured using different equipment and under different conditions, it renders

this test suite extremely complex. All the mosaics in this test suite are grey-scale

with 8-bits per sample, when presented to the segmentation method. In order to

make the test images nondiscriminable for the mean grey level and variance, the

source images and also the test mosaics are globally histogram equalized prior to

any analysis.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.8: Twelve texture mosaics in T-2 test suite used for analyzing the proposed

segmentation approach: (a-c) mosaics with two textures and simple boundaries; (d-e)

mosaics with ten textures and simple boundaries; (f-j) mosaics with five textures and a

complex boundaries; and (k-l) mosaics with sixteen textures and very complicated

boundaries.
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The objectives of using this test suite for analysis is identical to the previous

analysis experiment on T-1. Since the texture classes within each of the test mosaic

were known a priori, the construction of ground truth (G-2) for this test suite was

relatively straight forward. The twelve ground truth mosaics corresponding to T-

2(a)–T-2(k) are shown in Figure 2.9.

2.4.2 Evaluation

Three widely used biological test suites are selected for evaluating the proposed

texture-based segmentation method: (1) fresh CT scans of a female cadaver; (2)

simulated brain MR scans; (3) real 3-D MR brain scans. These test-suites vary

from each other with respect to: imaging modality; data source (simulated or real);

imaging artifacts, like intensity inhomogeneity (INU) and signal-to-noise ratio (SNR)

included in the data sets; and spatial resolution including anisotropic. They are

summarized in Table 2.2.

The evaluation procedure for each test suite consists of the following steps:

(1) sample selection of the different materials; (2) identification of the RES support

based on stochastic continuum concept; (3) segmentation of the materials using a

feature vector and classification scheme combination identified from analyzing dif-

ferent combinations of feature descriptors and classifiers; (4) error estimation and

comparison of the segmentation results to methods in literature, whenever applica-

ble. The nature of experiments performed on these test suites include both qualita-

tive and quantitative assessments. For notational convenience, the three test suites

will denoted by T-3, T-4, and T-5 and their corresponding ground truth data, where
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.9: The ground truth mosaics, G-2, corresponding to T-2 test suite shown in

Figure 2.8.
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Table 2.2: Summary of three test suites (T-3, T-4 and T-5) used for evaluating the new

segmentation method.

Test Suite No. T-3 T-4 T-5

Test Suite Name VWP MNI-BrainWeb IBSR

Body Part Head Brain Brain

Modality CT MR MR

Voxel Size 0.5× 0.5× 0.5mm3 1× 1× 1mm3 1× 1× 3mm3

Soft tissue

Skin with Fat CSF CSF

Classes

Hard tissue Grey-matter Grey-matter

Noise White-matter White-matter

Background

No. of Data sets 1 10 11

Variables – SNR, INU SNR, INU

Ground Truth – yes yes

Dice Tanimoto st

Performance Index – coefficient, sd coefficient, st

Methods Compared – 1 5
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ever applicable, will be referred as G-i, for all i ∈ [3, 5].

2.4.2.1 3-D Real CT Head Data

The first test suite, T-3, used for evaluating the segmentation technique is a three-

dimensional bio-medical image data from the Visible Woman Project (VWP), per-

formed under the aegis of the National Library of Medicine, National Institute of

Health (National Library of Medicine, 2002). The data is public domain and users

can acquire it by signing a license agreement with the National Library of Medicine.

The VWP provides data sets which consists of CT scans of both fresh and frozen

cadaver, MR scans of fresh cadaver, and high resolution digital 24-bit photographs

of cross-sections. The test data for qualitative assessment uses the fresh cadaver

CT-scans. The fresh CT data was selected for the evaluation purposes because CT

scans give a better contrast between soft tissues, hard tissues and air boundaries.

Additionally, among the different modalities, the fresh CT data had the smallest

slice spacing producing nearly isotropic voxels.

The fresh CT data set is made of axial scans taken over the entire body while

the cadaver was fresh and warm. These scans were acquired using GE Genesis

System (General Electric, Milwaukee, WI). The CT acquired the axial scans with

varying in-slice resolution and a uniform axial slice spacing of 1mm. The data is

stored one slice per file and the files are available in UNIX compressed format. A

total of 1734 slices were available under the fresh CT data set using approximately

480 megabytes of disk storage (compressed). Uncompressed, each slice was a 16-bit

image of 512×512 pixels with a 3416-bytes of header information. The format of the
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header for General Electric Genesis is described in the Medical Image Format FAQ

Clunie (2002). The image header contains, among other things, the table position

and Field of View (FOV). Such header information is vital when working with CT

data, because various parameters (for instance, the spacing between the slices and

the pixel size) vary throughout the data set.

The fresh CT slices from the VWP are named c vfxxxx.fre, where xxxx rep-

resents the slicing location expressed in millimeters in the direction of head-to-toe.

The data set was broken into seven sections, based on at least one of three follow-

ing criteria: (a) change in FOV; (b) change in slice spacing; and (c) gap in data

acquisition. Sections are summarized in Table 2.3.

Table 2.3: Fresh CT slices from VWP categorized into different sections.

Section Slice Range No. of Slices FOV Pixel Size Aspect Anatomical

(mm) Ratio Part

0 1001–1209 209 250 0.48828 2.0480 Head

1 1210–1227 18 370 0.72266 1.3838 Chin

2 1228–1249 22 440 0.85937 1.1636 Neck

3 1250–2106 857 480 0.93750 1.0677 Torso

4 2107–2110 4 370 0.72266 1.3838 Thighs-1

5 2111–2117 7 480 0.93750 1.0677 Thighs-2

6 2118–2734 617 370 0.72266 1.3838 Lower Limbs
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The objective of using this test data is to qualitatively evaluate the perfor-

mance of segmenting the CT data from VWP into five different materials (classes):

(1) soft tissues, (2) outer skin with fat, (3) hard tissue, like bones and skull, (4) noise

embedded in the data, and (5) background and air boundaries. Section-0, capturing

the head portion of the female cadaver will be used in the evaluation of the devel-

oped segmentation procedure. The head section of the female cadaver comprises of

209 CT slices at 1mm axial spacing and approximately 0.5mm in slice resolution.

Since no ground truth data is available for comparisons, the segmentation results

from this evaluation experiment will be assessed qualitatively by visually inspecting

the surfaces and the cut-sections corresponding to each segmented material.

2.4.2.2 3-D Simulated MR Brain Data

The second bio-medical data for evaluating the proposed segmentation method con-

tains, simulated MR brain scans from the Montreal Neurological Institute, Brain-

Web database (MNI-BrainWeb). This data set was selected for the evaluation ex-

periments because of its popularity in the bio-medical image processing research

(Archibald et al., 2003; Leemput et al., 1999; Marroquin et al., 2002). The MRI

simulator (Cocosco et al., 1997; Collins et al., 1998; Kwan et al., 1999, 1996), gen-

erates synthetic brain MR volumes that are spatially normalized (coregistered) to

the colin27 brain MRI template (Collins et al., 1994). These simulated brain MR

volumes are public domain and can be downloaded in various data formats (like,

MINC, raw-byte, and compressed raw-byte) from the MNI-BrainWeb world wide

web interface. The interface also allows to select databases of varying: (a) MR
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modalities, i.e., T1-weighted, T2-weighted, or PD-weighted; (b) axial slice thickness

of 1mm, 3mm, 5mm, 7mm, and 9mm; (c) SNR of 0%, 1%, 3%, 5%, 7%, and 9%;

and (d) INU percentages of 0, 20, and 40. The simulator generates different SNR

levels for the T1 modality using white-matter tissue intensity as reference, Similarly,

for the T2 and PD modality it uses CSF tissue as the reference. The different INUs

are generated by linearly re-scaling the 20% INU field. Figure 2.10 shows the 20%

known T1-weighted bias field at different axial locations.

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Bias field of 20% intensity inhomogeneity imposed on the T1-weighted

MRI scans by the MNI-BrainWeb MRI simulator. (a)-(f): 20% INU field maps at axial

locations z=30mm, 60mm, 90mm, 120mm, 150mm, and 180mm, respectively.

For evaluation purposes, T1-weighted simulated MRI data with an isotropic

voxel size of 1mm3 will be used to study the influence of signal-to-noise ratio (SNR)

and spatial intensity inhomogeneities (INU) on the performance of the new segmen-
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tation technique. The following two cases of bias field corruption will be used in

the evaluation experiment: (a) MR images with 1%-9% noise levels and no inten-

sity inhomogeneity, T-4(a)–T-4(e); and (b) MR images with 1%-9% noise levels and

40% intensity inhomogeneity, T-4(f)–T-4(j). These ten data sets, T-4(a)–T-4(j),

were downloaded from MNI-BrainWeb in UNIX compressed raw-byte format. The

volumetric data is stored in these compressed files as contiguous blocks using ap-

proximately 6.8 megabytes of disk storage. Uncompressed, each data set was a 8-bit

volume of 181 × 217 × 181 voxels with zero offset. Figure2.11 shows an axial slice

at z = 30mm for each of the ten simulated data sets in T-4.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.11: Example axial slice at z = 30mm for the ten (10) T1-weighted simulated

MRI volumes in T-4. (a)-(e): simulated MRI scans with 1%, 3%, 5%, 7%, and 9%

signal-to-noise and 0% spatial inhomogeneity. (f)-(j): simulated MRI scans 1%, 3%, 5%,

7%, and 9% noise and 40% spatial inhomogeneity.
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In addition to the simulated brain database, MNI-BrainWeb also provides the

anatomical model used by the simulator as a set of three-dimensional fuzzy and

discrete tissue membership volumes, one for each tissue class. The voxel values

in the fuzzy volumes reflects the proportion of tissue present in that voxel, in the

range of [0, 1]. On contrary, the discrete anatomical model provides a class label

(integer) at each voxel, representing the tissue which contributes the most to that

voxel (0=Background, 1=CSF, 2=Grey Matter, 3=White Matter, 4=Fat, 5=Mus-

cle/Skin, 6=Skin, 7=Skull, 8=Glial Matter, 9=Connective). Figure 2.12 shows

the CSF, grey-matter, and white-matter brain tissues from the discrete anatomical

model at an axial plane of z = 30mm.

(a) (b) (c)

Figure 2.12: Axial ground truth slice at z = 30mm from the discrete anatomical model

from MNI-BrainWeb. (a)-(c): shows CSF, grey-matter and white-matter tissue

membership, respectively.

The main objective of using this test suite is to quantify the segmentation of

the simulated brain MR scans into: CSF, grey-matter, and white-matter tissues,

using the developed segmentation method. For quantitative assessment of the seg-

mentation results, the discrete anatomical model from the MNI-BrainWeb will be
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used as the ground truth data. The performance index used for measuring the seg-

mentation results will be the Dice coefficient, sd. This similarity index measures

the amount of overlap between classification results and ground truth and for a

particular class (material) k, and is given by:

sd(k) = 2
VS∩G(k)

VS(k) + VG(k)
(2.36)

where VS∩G(k) denotes the number of elements classified by both the proposed

method and the ground truth as class k, and VS(k) and VG(k) represents the number

of elements classified as class k individually by the proposed method and by the

ground truth, respectively. This performance metric, first described by Dice (1945)

and more recently reintroduced by Zijdenbos et al. (1994) for bio-medical image

data, attains a value of 1 if the proposed segmentation method coincides with the

ground truth and decreases as the quality of the segmentation deteriorates. A value

of 0 indicates no overlap at all. Additionally, this performance index was chosen for

this particular data set to allow meaningful comparison with the results reported in

literature (Leemput et al., 1999). The Dice coefficient, sd, is inversely proportional

to false negatives (type-I error metric) used in common statistical analysis (Desco

et al., 2001; Zeng et al., 1999).

2.4.2.3 3-D Real MR Brain Data

The third, and final, data set that will be used for evaluating the segmentation

approach consists of real brain MR volumes provided by the International Brain

Segmentation Repository (IBSR), Center for Morphometric Analysis (2004). This
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test suite, T-5, contains eleven, coronal, T1-weighted, normal brain-only MR vol-

umes available from IBSR. These MR brain volumes are skull-stripped MR scans

and have been categorized into levels of difficulty according to their degree of con-

trast and presence of spatial inhomogeneities. The brain MR data sets with their

corresponding IBSR reference scan number are given in the first column of Table

2.4, in decreasing order of difficulty. In addition to the real MR brain scans, the

repository also provides expert hand-guided segmentations of CSF, grey-matter, and

white-matter tissues. Both the normal brain scans, T-5(a)–T-5(j), and their cor-

responding segmented data files, G-5(a)–G-5(j), are 8-bit scaled MR volumes, but

vary in sizes. The number of coronal slices in each scan is shown in the third column

and fourth column for the normal and segmented data, respectively. Note that the

segmented volumes have fewer coronal slices than the T1 image data. The matching

between the two volumes can be found using the offsets given in the last column

of Table 2.4. Performance results from five automatic segmentation methods are

also available from IBSR. Thus, permitting a standardized mechanism for testing

the performance of novel segmentation methods against existing ones on the basis

of signal-to-noise ratio, intensity inhomogeneities, and shape complexity. The six

IBSR methods are: maximum a posteriori (MAP) probability, adaptive maximum a

posteriori probability (AMAP), biased maximum a posteriori probability (BMAP),

fuzzy k-means (FkMN), maximum likelihood classifier (MLC), and tree-structured

k-means (TSKM). These methods are computationally intensive, iterative, unsu-

pervised clustering algorithms. The k-means methods assume initially that voxels

can belong to multiple classes with the proportion of classes adding to one. They
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proceed to identify the best class means iteratively and then perform image segmen-

tation using these means. These methods are purely local (no voxel neighborhood

is considered). The MAP methods assume that image materials form Markovian

random fields characterized by mean class values and a class-based spatial hetero-

geneity functional computed over an 18 voxel neighborhood. The best mean class

values and heterogeneity functional parameters are determined iteratively for a given

image and then used to segment the image. A major difference with the SWA is

that MAP uses a single set of heterogeneity functional parameters for the entire

image (irrespective of materials) whereas SWA uses individual, independent, spatial

statistics computed separately on each material in the image.

The objective of evaluating the proposed segmentation method with this test

suite is to quantitatively assess the segmentation results of different brain tissues

obtained from the new segmentation method. For this test suite, the expert seg-

mented data from IBSR will be used as the ground truth. To allow for comparison

of the results from IBSR, Tanimoto or Jaccard coefficient, st will be used as the per-

formance index. This index, also used for measuring the amount of overlap between

segmentation results and ground truth, is given by the following relation (Duda

et al., 2001; Jain and Dubes, 1988):

st(k) =
VS∩G(k)

VS∪G(k)
, (2.37)

where VS∩G(k) denotes the number of elements classified correctly as class k by both

the segmentation method and the ground truth data. The denominator, VS∪G(k),

represents the number of elements classified as class k either by the proposed method
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Table 2.4: Details of the eleven coronal brain-only T1-weighted MR brain scans from

IBSR.

Test Data No. IBSR Scan No. No. of Slices No. of Segmented Offset

Slices

T-5(a) 5 8 58 55 1

T-5(b) 4 8 59 56 2

T-5(c) 6 10 61 57 0

T-5(d) 15 3 58 57 0

T-5(e) 8 4 61 65 2

T-5(f) 112 2 61 58 1

T-5(g) 202 3 61 57 3

T-5(h) 12 3 61 58 0

T-5(i) 1 24 63 56 -2

T-5(j) 205 3 61 58 2

T-5(k) 11 3 61 55 1
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or the ground truth data. This performance metric also attains a value of 1 if the

proposed segmentation method coincides with the ground truth and decreases as

the quality of the segmentation deteriorates. A value of 0 indicates no overlap

at all. It should be noted that for a given segmentation method and a ground

truth, st(k) ≤ sd(k), although both these real-valued indices vary in the range of

[0, 1]. The Tanimoto coefficient, st, is also closely related to the type-I error metric

used in common statistical analysis. Except for the type of test suite data and the

performance metric, this experiment is identical to previous experiment involving

test-suite T-4.

2.5 Results and Discussions

In this section, the results of research described in this chapter are presented. First,

the new texture-based supervised segmentation technique, referred as SWA, is pre-

sented in Section §2.5.1 along with the necessary mathematical framework for: (a)

calculating the moment-based feature descriptors and (b) identifying the represen-

tative elementary scale. This section also elaborates the results of analyzing the

SWA method on two different data sets using different combinations of feature de-

scriptors and classification schemes. The results of the evaluation experiments on

three bio-medical data sets are discussed in Section §2.5.2.

2.5.1 Development

The segmentation method (referred to as SWA in the following) was developed and

analyzed in accordance with the 4-step algorithm presented in Section §2.4.1. The
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flow diagram for segmenting heterogeneous materials in multi-dimensional image

data is shown in Figure 2.13. As discussed previously, the four main steps of the

SWA method are: (1) pre-process and select samples for each material in the image

data; (2) compute spatial-statistics (
−→
M) as a function of scale using Haar wavelet

coefficients; (3) identify the RES support using stochastic continuum concept and

extract material signatures (
−→
M ,
−→
H , and,

−→
Z ) at RES; (4) classify the input image

at RES support and assess the segmentation results.

The developed SWA method was implemented in MATLAB using its Signal

and Image Processing toolbox and WaveLab wavelet toolbox, and applied to two

test suites: (1) three real texture predominant images (test suite, T-1), and (2)

twelve texture mosaics from different sources (test suite, T-2). These test suites are

used to quantitatively analyze the effects of seven combinations of different feature

descriptors (refer to Figure 2.5) and the performance of three different classifiers:

(a) Gaussian maximum likelihood classifier with Mahalanobis distance metric (GM),

minimum-distance classifier (MD), and learning vector quantization (LVQ). The

dimensionality of the feature space corresponding to each combination is dependent

on the RES support and varies from in the range of [2, 3j + 7], with
−→
F3 and

−→
F7

being the smallest and largest dimensional feature space

The objective of both these analysis experiments is to identify the best combi-

nation of feature descriptors and classifier for segmenting heterogeneous bio-image

data. The steps used for achieving this objective are based on the concepts of the

developed SWA method: (1) selection of sample materials corresponding to each

material within the data, (2) estimation of different multi-scale feature descriptors,
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Figure 2.13: Flow diagram showing the various components of the proposed texture

segmentation method.
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Table 2.5: Combination of feature vectors and their corresponding dimensionality at

scale j

Feature Vector Features Feature Space Size

−→
F1

{−→
M

}
4

−→
F2

{−→
H

}
3j + 1

−→
F3

{−→
Z

}
2

−→
F4

{−→
M,
−→
Z

}
6

−→
F5

{−→
H,
−→
M

}
3j + 5

−→
F6

{−→
H,
−→
Z

}
3j + 3

−→
F7

{−→
H,
−→
M,
−→
Z

}
3j + 7

namely, four central moments (
−→
M), entropy (

−→
H ), and directional correlation lengths

(
−→
Z ), (3) identification of RES from the statistics of the feature descriptors, and (4)

error assessment using leave-one-out error (LOOE, εl) and modified LOOE index

(εm). Additionally, the segmentation results of the test suite T-2 (twelve texture

mosaics) will be compared to the best results reported in literature (Randen and

Husøy, 1999) based on 40-dimensional entropy feature vector, RH16d, computed

from a 16-tap FIR filter with wavelet packet decomposition up to depth 5. The fol-

lowing sub-sections describes the developmental results and the segmentation results

obtained from analyzing test suites, T-1 and T-2.

80



2.5.1.1 Feature Descriptors

The spatial-statistics (
−→
M) consisting of the first-order four central moments: mean,

µ̂; variance, ν̂; skewness, χ̂; and kurtosis, κ̂; are computed from Haar wavelet coef-

ficients as follows.

The first central moment, i.e., mean (µ̂), for a d-dimensional tile can be, given

by equation 2.17, can be rewritten in terms of mean value estimated over tiles from

lower scales,

µ̂ (τj,i) =

2d∑
k=1

µ̂ (τj−1,k)

2d
= µ̂(τj−1,i) (2.38)

where, overbar denotes the average taken over all the tiles from scale j − 1 that lie

within τj,i. Similarly, the multi-scale variance, skewness, and kurtosis for τ2 can be

expressed, using the following relations:

ν̂ (τj,i) =

2d∑
k=1

ν̂ (τj−1,k)

2d
+

2d∑
k=1

[µ̂(τj−1,k)− µ̂(τj,i)]
2

2d

= ν̂(τj−1,i) + ν(τj,i) (2.39)

α̂ (τj,i) =

2d∑
k=1

α̂ (τj−1,k)

2d
+

2d∑
k=1

[µ̂(τj−1,k)− µ̂(τj,i)]
3

2d

+ 3(2d)
2d∑

k=1




∑
x1

. . .
∑
xd

[{τj−1,k} − µ̂ (τj−1,k)]
2

2d

 {[µ̂ (τj−1,k)− µ̂ (τj,i)]}


= α̂(τj−1,i) + α(τj,i) + 3(2d)

[
{ν̂(τj−1,k)} × {∆µ̂j−1,k}

′
]

(2.40)
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β̂ (τj,i) =

2d∑
k=1

β̂ (τj−1,k)

2d
+

2d∑
k=1

[µ̂(τj−1,k)− µ̂(τj,i)]
4

2d

+ 6(2d)
2d∑

k=1




∑
x1

. . .
∑
xd

[{τj−1,k} − µ̂ (τj−1,k)]
2

2d

 {
[µ̂ (τj−1,k)− µ̂ (τj,i)]

2}
+

2d∑
k=1




∑
x1

. . .
∑
xd

[{τj−1,k} − µ̂ (τj−1,k)]
3

2d

 {[µ̂ (τj−1,k)− µ̂ (τj,i)]}


= β̂(τj−1,i) + β(τj,i) + 6(2d)

[
{ν̂(τj−1,k)} ×

{
(∆µ̂j−1,k)

2
}′]

+
[
{ν̂(τj−1,k)} × {∆α̂j−1,k}

′
]

(2.41)

Since the image elements (pixels in 2-D and voxels in 3-D images) in a tile at

scale j are related to their corresponding Haar coefficients by the following relation,

{τj,i}
′
= H−1

2d×2d



Lj,i

D1
j,i

D2
j,i

...

D2d−1
j,i



(2.42)

where, H2d×2d represents the Haar DWT in block matrix notation.

In 2-D, using equation 2.15, the mean statistic of the tile at scale j− 1 can be

calculated as

µ̂ (τj−1,i) = µ̂
(
H4×4 ×

{
Lj−1,i, D

1
j−1,i, D

2
j−1,i, D

3
j−1,i

}′)
=

L1(√
2
)2×1×1 (2.43)

The three indices of the denominator correspond to dimension, scale, and order of

the moment. Similarly, variance, skewness, and kurtosis for a 2-D tile τj,i using
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corresponding wavelet coefficients can be computed with the following relations,

ν̂ (τj−1,i) =

(
D1

j−1,i

)2
+

(
D2

j−1,i

)2
+

(
D3

j−1,i

)2(√
2
)2×1×2 (2.44)

α̂ (τj−1,i) =

(
D1

j−1,i

) (
D2

j−1,i

) (
D3

j−1,i

)(√
2
)2×1×3 (2.45)

β̂ (τj−1,i) =

(
D1

j−1,i

)4
+

(
D2

j−1,k

)4
+

(
D3

j−1,i

)4(√
2
)2×1×4 +

6
(
D1

j−1,i

)2 (
D2

j−1,i

)2(√
2
)2×1×4 +

6
(
D2

j−1,i

)2 (
D3

j−1,i

)2(√
2
)2×1×4 +

6
(
D1

j−1,i

)2 (
D3

j−1,i

)2(√
2
)2×1×4 (2.46)

The parameters, ν (τj,i), α (τj,i), and β (τj,i) in equations 2.38–2.41 are com-

puted from the wavelet coefficients of the sub-band filter outputs at scale j. For the

2-D example, these are given by,

ν (τj,i) =

(
D1

j,i

)2
+

(
D2

j,i

)2
+

(
D3

j,i

)2(√
2
)2×1×2 (2.47)

α (τj,i) =

(
D1

j,i

) (
D2

j,i

) (
D3

j,i

)(√
2
)2×1×3 (2.48)

β (τj,i) =

(
D1

j,i

)4
+

(
D2

j,k

)4
+

(
D3

j,i

)4(√
2
)2×1×4 +

6

[(
D1

j,i

)2 (
D2

j,i

)2
+

(
D2

j,i

)2 (
D3

j,i

)2
+

(
D1

j,i

)2 (
D3

j,i

)2
]

(√
2
)2×1×4 (2.49)

Substituting equations 2.43–2.49 into 2.38–2.41 will directly estimate the multi-scale

first-order central moments in terms of wavelet coefficients.

2.5.1.2 Identifying RES Support and Classification

The RES support is identified using the procedure described in Section §2.4.1.3.

Since the process of determining the RES support uses both the stochastic con-

tinuum concept and wavelet multi-resolution analysis, the segmentation method is
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named Stochastic-Wavelet Analysis, SWA. The identification of optimal RES sup-

port demands proper judgement. Usually, selecting either a smaller or a larger scale

than the optimal RES support should be avoided, because this could lead to spa-

tially varying material signatures. For instance, if the scale selected is larger than

the optimum RES support then the material signatures will capture properties of

more than one material. On contrary, if the appropriate optimal scale is selected

then the statistics will be independent of the sampling location and will be consistent

across the entire material.

A 2-D mosaic (refer to Figure 2.14(a)) with two synthetic textures is used to

describe the RES identification process from the spatial-statistics. First, sufficiently

large samples that are representative of the two texture are selected from the mosaic

and are shown as boxes overlaid on top of the input image. Next, the spatial-

statistics,
−→
M , are computed as a function of scale for both the samples using Haar

wavelet coefficients. This is followed by the estimation of the statistics (mean,

max-min, and ±1-standard deviation) of the four central moments for all the non-

overlapping tiles at a particular scale and are plotted as a function of scale (shown

in Figure 2.14(b)). In this plot, the first row shows the sample regions over which

the statistics of the feature descriptors are computed. The last four rows show the

distributions of µ̂, ν̂, χ̂, and κ̂ for each of the sample material as a function of

scale. In all these graphs, the solid line is the mean statistic of the corresponding

feature parameter and the shaded zone represents ±1-standard deviation interval.

The top and bottom dotted lines are the maximum and minimum of the feature

descriptor(s) calculated over all the tiles at the given scale, respectively. It is clearly
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evident that, the statistical distributions of all the texture descriptors, for both the

sample materials, stabilize at scale 4. Hence, the RES support is selected as 4, i.e.,

the sampling tiles are of size 24 × 24 pixels, for both the textures in the example

input image. (Segmentation results presented in Appendix A further supports this

process by demonstrating the decrease in SWA classification error with increasing

sample size up to the RES scale.)

2.5.1.3 2-D Real Images

The developed SWA method was applied to test suite T-1 containing three 2-D

images: (1) digital scan of a three layered soil photo; (2) microscope image of

three muscles; and (3) satellite (airphoto) of landscape and wetland. Samples of

sufficiently large sizes for each material within these images were selected manually

after carefully inspecting both the input and the ground truth data. The locations

of the samples for different materials within the three images are shown in Figure

2.15. In this figure, the top row shows the sample locations overlaid on top of the

test images, whereas the bottom row shows the sample locations overlaid on the

ground truth. The latter helps to confirm that the selected samples comes from the

corresponding material and not from multiple materials.

The selected samples were used to compute statistics of the pixel intensity

moments at successively large scale and the procedure outline in Section §2.5.1.2

was used to identify the RES support for each test image. The spatial-statistics for

the three test images in T-1 are shown in Figures 2.16, 2.17, and 2.18, and the RES

support was identified as 3, 4, and 4. This corresponds to representative elementary
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(a)

(b)

Figure 2.14: Illustration of RES support identification: (a) Sample 2-D image of size

256× 256 with two textures; (b) plot showing the statistics of the first four-central

moments as a function of scale.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: The three images in the first test suite (T-1) used for analysis of the SWA

segmentation method. The images in the top (a-c) and the bottom (d-f) are the input

and the ground truth images from manual expert segmentation, respectively. The boxes

indicate the training sample locations used for estimating the RES support and classifier

design.
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area (REA) of size 8× 8 pixels, 16× 16 pixels, and 16× 16 pixels.

Figure 2.16: Spatial statistics used for identifying RES support of horizons A, B, and C

in the soils image.

The seven combinations of feature descriptors computed at the identified RES

support were used to segment each test image using GM, MD, and LVQ classi-

fication methods. The segmentation results were compared with the ground truth

images average LOOE (εl) and modified LOOE (εm) for soils, muscle, and landscape

test images using seven feature combinations and three classifiers are summarized

numerically in Tables 2.6, 2.7, and 2.8, respectively.

For the soils image, segmentation results expressed in terms of average LOOE,

εl, vary between 8.3% and 67.4%, and when assessed in terms of modified LOOE,

εm, the segmentation results vary between -0.33 and -5.47. In general, it can be
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Figure 2.17: Spatial-statistics used for identifying the RES support of smooth, ganglia,

and outer tissues in the muscle image.
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Figure 2.18: Spatial-statistics used for identifying the RES support of water, woods,

wetland, pasture, planted and bare regions in the landscape image.
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observed that
−→
M produces highly accurate and computationally optimal results.

Furthermore, the results also indicate that adding extra feature descriptors does

not improve the classification accuracy. Based on εm metric it can be concluded

that
−→
F1-GM and

−→
F6-LVQ gives the best and the worst segmentation results.

Table 2.6: Average LOOE, εl and modified LOOE, εm expressed in percent for the soil

image in Figure 2.6(a) at RES support of 3 using GM, MD, and LVQ classifiers.

Classification Error εl (εm)

Feature Vector RES
GM MD LVQ

−→
F1 4 8.30 (-0.33) 8.90 (-0.36) 8.30 (-0.33)

−→
F2 10 26.80 (-2.68) 38.40 (-3.84) 41.60 (-4.16)

−→
F3 2 66.20 (-1.32) 67.40 (-1.35) 64.20 (-1.28)

−→
F4 6 8.40 (-0.50) 9.20 (-0.55) 10.00 (-0.60)

−→
F5 14 9.70 (-1.36) 10.60 (-1.48) 10.00 (-1.40)

−→
F6 12 28.90 (-3.47) 39.20 (-4.70) 45.60 (-5.47)

−→
F7 16 9.60 (-1.54) 10.70 (-1.71) 12.60 (-2.02)

The segmentation results for the muscle image, expressed in terms of εl, vary

between 6.0% and 88.5% and are produced by
−→
F5 feature vector when used with

GM and MD classifiers. However, based on εm,
−→
F1-GM combination produces the

best optimal segmentation results with a value of -0.40. In general, GM classifier

performs better than LVQ classifier which is better than MD classifier.
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Table 2.7: Average LOOE, εl and modified LOOE, εm for the muscle image in Figure

2.6(b) at RES support of 4 using GM, MD, and LVQ classifiers.

Classification Error εl (εm)

Feature Vector RES
GM MD LVQ

−→
F1 4 9.90 (-0.40) 23.70 (-0.95) 27.00 (-1.08)

−→
F2 13 16.00 (-2.08) 17.10 (-2.22) 20.30 (-2.64)

−→
F3 2 49.20 (-0.98) 30.80 (-0.62) 35.20 (-0.70)

−→
F4 6 15.10 (-0.91) 11.80 (-0.71) 18.80 (-1.13)

−→
F5 17 6.00 (-1.02) 88.50 (-15.05) 14.10 (-2.40)

−→
F6 15 15.70 (-2.36) 16.60 (-2.49) 19.80 (-2.97)

−→
F7 19 6.30 (-1.20) 57.30 (-10.89) 13.00 (-2.47)

Similar to the previous case,
−→
F5 feature vector with GM and MD classifiers

produces the best and the worst segmentation results with 5.9% and 97.9% of average

LOOE for the landscape image. Unlike the previous case, MD classifier performs

better than LVQ classifier, except when used with
−→
F1. Even in this case,

−→
F1-GM

gives the best optimal and
−→
F5-MD gives the worst optimal segmentation results in

terms of εm.

Overall, the SWA segmentation results for the three test images in this test

suite produced excellent classification accuracy with as few as four texture descrip-

tors (the first four central moments,
−→
M) using the GM classifier. The increase in
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Table 2.8: Average LOOE, εl and modified LOOE, εm for the landscape image in

Figure 2.6(c) at RES support of 4 using GM, MD, and LVQ classifiers.

Classification Error εl (εm)

Feature Vector RES
GM MD LVQ

−→
F1 4 8.00 (-0.32) 9.50 (-0.38) 32.90 (-1.32)

−→
F2 13 17.20 (-2.24) 19.00 (-2.47) 49.10 (-6.38)

−→
F3 2 40.80 (-0.82) 34.40 (-0.69) 61.80 (-1.24)

−→
F4 6 7.90 (-0.47) 9.50 (-0.57) 38.50 (-2.31)

−→
F5 17 5.90 (-1.00) 97.90 (-16.64) 33.70 (-5.73)

−→
F6 15 19.80 (-2.97) 19.60 (-2.94) 49.70 (-7.46)

−→
F7 19 6.30 (-1.20) 39.90 (-7.58) 38.30 (-7.28)

the feature descriptors did not have much impact on the classification accuracy.

Hence, the moment-based feature descriptors
−→
F1 with GM classifier is concluded as

the optimal feature vector and classifier combination.

2.5.1.4 2-D Synthetic Images

The developed SWA segmentation method was applied to second test suite con-

sisting four texture mosaics categories, viz. mosaics with two textures and simple

boundaries; mosaics with ten textures and simple boundaries; mosaics with five

textures and complicated boundaries; and mosaics with sixteen textures and com-
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plicated boundaries. For the sample selection step, the complete 256 × 256 pixels

source image for each texture material within each mosaic was used for estimat-

ing sample statistics. (Note that each of the texture mosaic in second data set were

created from individual 256×256 source textures corresponding to each texture ma-

terial present in the mosaic.) For example, the five training images corresponding

to textures in T-2(f) (refer to Figure 2.8(f)) are shown in Figure 2.19.

(a) (b) (c) (d) (e)

Figure 2.19: The source images of the textures present in the mosaic T-2(f). These

source images are also used as for identifying RES support as well as classifier design.

The RES support for each of these sample materials was identified, using the

procedure described in Section §2.5.1.2, as the scale at which spatial-statistics of

the feature descriptors stabilized. The RES support for the twelve texture mosaics,

presented in the top row of Tables 2.9, 2.9, 2.9, and 2.9, ranges from scales 3 to 5 that

corresponds to representative elementary area of size 8×8 pixels and 32×32 pixels.

Among the four categories, larger representative elementary areas were needed for

the last two categories, i.e., mosaics with 5 textures, T-2(f)–T-2(j), and mosaics

with 16 textures, T-2(k)–T-2(l), suggesting the need for larger sampling areas for

the corresponding textures to become homogeneous materials.

The signatures at RES support were used to segment the test mosaics using
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three classifiers (GM, MD, and LVQ) and seven feature combinations (
−→
F1 through

−→
F7). The segmentation results obtained from SWA method for were compared to

ground truth data for computing the average LOOE (εl) and the modified LOOE

(εm) metrics and are numerically summarized in Tables 2.9–2.9 along with the best

classification result obtained by Randen and Husøy (1999) using RH16d feature

vector.

The overall range of εl error metric for this test suite varied in the range of 0.2%

(for T-2(b) using
−→
F3-MD) and 90.4% (for T-2(i) using

−→
F1-MD). In terms of average

LOOE on individual mosaics, segmentation results from GM and MD classifiers

achieve better performance for 9 (75%) and 3 (25%) mosaics, respectively and the εl

varies between 0.2% (for T-2(b) using
−→
F3-MD) and 37.5% (for T-2(i) using

−→
F6-MD).

In terms of feature vectors,
−→
F5 and

−→
F7 contribute for 5 and 4 mosaics, respectively,

with the remaining three mosaics shared by
−→
F3 and

−→
F6. In general, the results

based on εl indicate that GM classifier and entropy-based feature descriptors (it is

a common descriptor in
−→
F5,
−→
F6, and

−→
F7) produces the best segmentation results.

Similarly, the overall range of εm error metric varied between 0 (for T-2(b)

using
−→
F3-MD) and -12.25% (for T-2(l) using

−→
F7-LVQ). In terms of maximum εm for

each individual mosaics, GM classifier performed better than MD and MD better

LVQ on 7, 3, and 2 mosaics, respectively, with the values ranging between 0 (for T-

2(b) using
−→
F3-MD) and -1.64 (for T-2(l) using

−→
F7-MD). In terms of feature vectors,

−→
F3, i.e., directional ACF-based features, accounted for 75% of the total test suite

and the remaining 25% was shared between
−→
F5 (2 mosaics, T-2(b) and T-2(j)) and
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−→
F6 (1 mosaic, T-2(c)). In general, results based on εl indicate that GM classifier

and ACF-based feature descriptors produces optimal segmentation results.

Comparison between SWA and RH16d results indicates that SWA outperforms

the latter in the vast majority of cases. The average LOOE varies between 0.8%

and 41.7% and it outperforms SWA results for only two mosaics, T-2(f) and T-2(i).

Results based on modified LOOE further indicate that the approach of SWA method

is more optimal than that of RH16d which uses a 40-dimensional feature vector for

classification.

In addition to the results from previous test suite, it can be concluded that

the SWA method gives superior segmentation results and clearly demonstrates the

conceptual underpinnings of segmenting heterogeneous materials at RES support.

The GM classifier gives better results than MD and LVQ classifiers. In contrast to

the analysis on T-1, entropy-based and ACF-based features were found to be the the

most useful descriptors for artificial texture characterization in T-2. In spite of this,

evaluation experiments (described in next section) will use
−→
M because these material

signatures can also be used as input parameters up-scaled transport models. The

entropy feature vector,
−→
H , is not selected for these evaluation experiments in order

to minimize the computational complexity (entropy feature is associated with high

feature space dimensionality).

2.5.2 Evaluation

In this section, the evaluation results of the SWA method on three bio-medical image

data sets are presented. The first data used for evaluation is CT scans whereas the
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remaining two data sets are MR scans. Between the two MR data sets, the first

data set is a simulated MR brain scans with isotropic voxels and the other is a real

MR scans with anisotropic voxels. The experiments on these data sets also differ in

terms of the qualitative and quantitative nature of assessment.

Based on the results from analyzing the SWA method on two-dimensional real

and synthetic image data sets, the evaluation experiments in this section will use

GM method for classification and will use the moments-based feature descriptors for

both RES identification and classification. In the following sub-sections, the results

of the evaluation experiment on each of the three heterogeneous bio-medical image

data are presented.

2.5.2.1 3-D Real CT Brain Data

The 2-D stack of CT scans were first re-sampled using bilinear interpolation to

result in a new axial slice spacing of 0.5mm. This ensured that the data set is (ap-

proximately) made of isotropic voxels (0.48828mm×0.48828mm×0.5mm). During

the re-sampling process care was taken to retain the original 209 slices. Following

this operation, ninety-five slices of size 512 × 512 pixels with zero-intensity were

appended to the re-sampled data in order to generate a dyadic, isotropic data set

(5123 voxels). This was done to meet the dyadic requirement of the SWA approach.

After re-sampling the CT data, sample regions corresponding to each of the

five materials were manually selected from the CT voxel data set. The first row in

Figure 2.20 shows the samples selected for classification along with their size: 323

voxels for soft tissue, 163 voxels of skin, 83 voxels for bone, 643 voxels for noise, and

101



163 voxels for background. Following the sample selection procedure, RES support

for this test data was identified from the statistics of
−→
M . The statistical plot of all

the four central moments at different scales is shown in Figure 2.20. In the second

row, the distribution of µ̂ as a function of scale is shown for each sample material.

The third and fourth rows shows the statistics of ν̂ and χ̂ as a function of scale. The

last row shows the statistics of κ̂ computed over different tile sizes. In all these plots:

the solid line is the mean value of the corresponding statistics; the grey shaded zone

represents ±1-standard deviation interval; and the top and bottom dashed-lines are

the maximum and minimum of the statistics calculated over all the tiles at a given

scale.

Results indicate that the statistics for soft tissue and background sample ma-

terials stabilizes at scale 3 (23 voxels). For bone and skin samples it is difficult

to arrive at any such conclusion, as the sample sizes are too small (163 voxels and

83 voxels, respectively) for the statistics to stabilize. For noise, as expected, the

statistics do not stabilizes with the increase in the sample volume. Results however

indicate that the mean statistics of the five materials are relatively well separated

as early as scale 2. Based on these observations and data restrictions the RES was

selected as 2, meaning the tile size for segmentation is 22 × 22 × 22 voxels. This

support scale physically corresponds to a sampling cube of size 2 × 2 × 2mm3 and

appears reasonable in as much as it may represent the characteristics of the major

components within a human head.

The signatures of the five materials are presented in Table 2.13. The values

within the parenthesis correspond to the standard deviations of their respective
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statistic computed at RES. The signatures in the table show that the overall mean

intensity (µ̂) between soft tissue and bone sample materials is not distinct enough to

discriminate both the materials. However, the standard deviation (ν̂) and skewness

(χ̂) for these materials do differ and are expected to help segmenting these materials

accurately. It can also be noticed that noise and background have similar statistics

suggesting the possibility of belonging to single material. Since these materials will

never be used for any further analysis, it is not of a major concern. The ν̂ statistic

increases as from soft-tissue to background, which indicates the increase in the

heterogeneity of the corresponding materials. Furthermore, the kurtosis statistic (κ̂)

for most of the materials is approximately 3 suggesting that those sample materials

with near-zero skewness may be normally distributed. Hence, it is likely that using

the GM method with the material signatures that are relatively well separated will

yield good segmentation results for the T-3 data set.

Table 2.13: Statistical characteristics of the five materials for the fresh CT scans of the

head section from visible woman data set, T-3, at RES of 2.

Material µ̂ ν̂ χ̂ κ̂

Soft Tissue 68.10 (0.25 ) 0.01 (0.001 ) -0.57 (0.31 ) 2.92 (0.70 )

Skin 65.24 (2.49 ) 0.02 (0.008 ) -0.04 (0.47 ) 2.52 (0.66 )

Bone 155.86 (5.58 ) 0.05 (0.02 ) -0.69 (0.43 ) 3.10 (1.21 )

Noise 6.7 (1.80 ) 0.08 (0.06 ) 0.04 (0.61 ) 3.1 (1.00 )

Background 4.1 (0.23 ) 0.1 (0.03 ) 0.05 (0.73 ) 3.89 (1.87 )
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Figure 2.20: Identification of RES support scale using SWA method for the head

section of VWD.
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The raw classification results from the SWA method at different axial locations

(1, 40, 80, 120, 160, and 200) and the raw segmented surfaces of the five materials are

shown in Figures and 2.21 2.22, respectively. These results capture the general fea-

tures of the head (skin, bones and brain) quite well. However, the raw segmentation

results contains scattered high frequency noise mostly at the material boundaries.

For instance, interface between soft tissue and skin. This high frequency noise is

removed by sieving the raw classification results (Pitas, 2000). The output from

this post-processing steps is presented in Figure 2.23 and the cut-sections of the

processed results are shown in Figure 2.24. The segmented soft tissue is shown in

the leftmost column in three different orthographic views. Similarly, the middle and

the rightmost columns display the results for skin and bone materials.

Visual inspection of these results clearly indicates that the SWA segmentation

method, based on material signatures at RES support, performed very well as skin

and bone are completely separated, with skin entirely outside of the skull. Most of

the soft tissue (muscle and brain) is found inside and near the skull as expected. An

attempt was made to further classify soft tissues separately into muscle and brain

matter but the sample of these materials showed identical statistical signatures. This

was not unexpected because CT uses X-rays to distinguish between soft and hard

tissues and does not provide sufficient detail to further classify within these tissues.

Alternative imaging modalities, like MR scans or high resolution color cross-sections

would be required to further differentiate the soft tissue. The latter, especially,

contains detailed information, but would involve excessive computational resources

to process. Overall, the quality of the segmentation results from SWA method can
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Figure 2.21: Top: original head section CT scans (512× 512 pixels) from VWD at

axial locations 1 (0.5mm), 40 (20mm), 80 (40mm), 120 (60mm), 160 (80mm), and 200

(100mm). Middle: raw segmentation results (128× 128 pixels) of the corresponding head

section CT scans from VWD into soft-tissue, skin, bone, noise and background materials

using SWA method at RES support of 2. Bottom: processed segmentation results

(128× 128 pixels) of the corresponding head section CT scans from VWD into soft-tissue,

skin, bone, noise and background materials using SWA method at RES support of 2.
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(a) (b) (c) (d) (e)

Figure 2.22: Raw segmentation of head section CT scans from VWD using SWA

method at RES support of 2. (a)–(e): surface renderings of the raw segmented volumes

of soft tissue, skin, bone, noise, and background, respectively.

be concluded to be acceptable for heterogeneous material characterization.

2.5.2.2 3-D Simulated MR Brain Data

In this validation experiment, since the ground truth data was available, the samples

for each of the material (CSF, grey-matter, white-matter) were selected for each

MR brain scans, T-4(a)–T-4(j), by extracting the maximal octants from a octree

decomposition.

After selecting the samples for each material, the statistics of the the four

central-moments were computed as a function of scale to identify the RES support.

The results of the manually identified RES support for the ten brain MR scans are

reported in the second column of Tables 2.15 and 2.16 for data sets with INU = 0%

and INU = 40 %, respectively. The RES support for all the ten simulated brain MR

scans in this test suite was selected as 2 × 2 × 2 voxels, keeping in view of sample

size available for CSF material (43 voxels). For example, it can be observed from
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Figure 2.23: Segmented volumes of different materials after removing the

high-frequency noise from the raw results of T-3 using SWA method. The first, second

and third column shows the post-processed results for soft tissue, skin, and bone,

respectively, in three different perspective views.
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Figure 2.24: Cut-sections of volumes from the SWA segmentation method after

removing the high-frequency noise from the raw results. The first, second and third

column shows the cut-sections of post-processed results for soft tissue, skin, and bone,

respectively, in three different perspective views.
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Figure 2.25 that, statistics of the feature descriptors for background, grey-matter,

and white-matter samples stabilizes at a sampling volume of size 4×4×4 voxels (i.e.,

RES support of 2). Based on this observation, if the RES is selected as scale 2, then

it becomes too large for characterizing CSF material. Hence, support volume for all

the data sets in this test suite was selected as 2× 2× 2 voxels which corresponds to

a 2 × 2 × 2mm3 of physical brain volume. Furthermore, representative elementary

volume (REV) of 2× 2× 2 voxels is justified because the mean statistic of the four

central moments at this scale are close to normal distribution (refer Table 2.14).

Thus, satisfying the assumptions of a GM classifier. However, this is not a limitation

of the SWA method because it uses stochastic continuum concept for characterizing

different materials and expects different materials to be available in enough sizes for

characterization. Similar to the bone sample restriction in the previous evaluation

experiment using fresh CT scans, this experiment also suggests the need for high

resolution imaging techniques for detailed classification of heterogeneous materials.

Segmentation results expressed in terms of Dice coefficient, sd, are summa-

rized numerically in Tables 2.15–2.16 and are illustrated in Figures 2.26– 2.27 for

an example axial slice at z = 30mm for the ten simulated MR volumes (i.e., MR

brain scans obtained at INU = 0% and INU = 40%, each with SNR = 1%, 3%, 5%,

7%, 9%) along with the locations of misclassified voxels for CSF, grey-matter and

white-matter. The performance of the developed segmentation method is shown

graphically for grey-matter and white matter in Figures 2.28(a) and 2.28(b), re-

spectively. The graphs also show the results obtained by Leemput et al. (1999),
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Table 2.14: Statistical characteristics of the four brain materials for data set T-4(g)

with SNR = 3% and INU = 40% from MNI BrainWeb simulated brain MR scans at RES

of 1.

Material µ̂ ν̂ χ̂ κ̂

Background 0.59 (2.14 ) 0.47 (0.04 ) 0.24 (0.37 ) 2.31 (0.59 )

CSF 1.92 (0.01 ) 0.05 (0.01 ) 0.23 (0.59 ) 2.60 (0.71 )

Grey-Matter 4.63 (0.01 ) 0.02 (0.00 ) 0.06 (0.42 ) 2.40 (0.70 )

White-Matter 6.25 (0.00 ) 0.01 (0.00 ) -0.21 (0.27 ) 2.2 (0.38 )

who used an Expectation-Maximization method with a extra image processing step

to correct the bias field (denoted as KVL). In general, a trend for the grey-matter

segmentation results from the SWA method can be observed and is mostly sta-

ble across increasing SNR for simulated brain scans with and without intensity

inhomogeneities. Surprisingly the performance index of white-matter segmentation

increases as the SNR increases from 1%-9% for data sets with and without bias field

corruption. Off course, the white-matter segmentation using SWA method under

performs for T-5(f) and T-5(g). This was largely due to the white-matter voxels be-

ing classified as noise. The overlap ratio produced by SWA method range from 0.72

to 0.96 with the vast majority of values above 0.85. Grey-matter is generally better

classified than white-matter which is better classified than CSF. The segmentation

results from SWA method are found to be consistent across SNR and INU values

expect for a mild trend towards increased accuracy with increasing noise level for
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Figure 2.25: Statistics of mean (ν̂), variance (ν̂), skewness (χ̂) and kurtosis (κ̂) of

background, CSF, grey-matter, and white-matter materials used in RES identification

step for T-4(g), with SNR = 3% and INU = 40%.

white matter at INU = 40%.

Comparison between SWA and KVL results indicates that SWA outperforms

KVL in the vast majority of cases. The mean overlap ratios obtained for data sets

with INU = 0% and SNR in the range of 1%–9% using SWA and KVL are: 0.96 and

0.93; and 0.90 and 0.90, for grey-matter and white-matter, respectively. Similarly,

the mean overlap ratio for data sets with INU = 40% and SNR in the range of

1%–9% between the methods are: 0.94 and 0.90; and 0.91 and 0.90, for grey-matter

and white-matter respectively. Results presented in Figure 2.28 further indicate
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Table 2.15: Segmentation results of CSF, grey-matter, and white-matter brain tissues

in T-4(a)–T-4(e) (INU = 0% and SNR = 1%−−9%) using SWA method at their

corresponding RES support.

Overlap Ratio, sd(k)

Test Data RES
CSF Grey-Matter White-Matter

SNR = 1%, T-4(a) 1 0.90 0.95 0.90

SNR = 3%, T-4(b) 1 0.95 0.94 0.92

SNR = 5%, T-4(c) 1 0.89 0.96 0.94

SNR = 7%, T-4(d) 1 0.86 0.96 0.94

SNR = 9%, T-4(e) 1 0.88 0.96 0.92

SWA Mean sd(k) 0.90 (±0.03) 0.96 (±0.001) 0.93 (±0.02)

KVL Mean sd(k) – 0.90 (±0.02) 0.90 (±0.03)

that the accuracy of SWA classification is more stable over SNR and INU than that

of KVL which exhibits a marked decrease in accuracy with increasing SNR. The

only case in which SWA underperforms KVL is for white matter classification at

1% and 3% SNR when INU = 40% which represents less than 5% of tested cases

and still produces an overlap ratio of 0.82 or more. The overall results from the

SWA method for grey-matter and white-matter segmentation shows an excellent

consistent performance along with outperforming the best results reported in the

literature (Leemput et al., 1999).
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Table 2.16: Segmentation results of CSF, grey-matter, and white-matter brain tissues

in T-4(f)–T-4(j) (INU = 40% and SNR = 1%−−9%) using SWA method at their

corresponding RES support.

Overlap Ratio, sd(k)

Test Data RES
CSF Grey-Matter White-Matter

SNR = 1%, T-4(f) 1 0.83 0.96 0.83

SNR = 3%, T-4(g) 1 0.89 0.96 0.87

SNR = 5%, T-4(h) 1 0.72 0.95 0.92

SNR = 7%, T-4(i) 1 0.83 0.95 0.91

SNR = 9%, T-4(j) 1 0.86 0.89 0.96

SWA Mean sd(k) 0.83 (±0.06) 0.94 (±0.03) 0.90 (±0.05)

KVL Mean sd(k) – 0.91 (±0.02) 0.90 (±0.03)

2.5.2.3 3-D Real MR Brain Data

In this experiment also, since the ground truth data was available, the samples for

the three brain materials were extracted from the eleven brain MR volumes (T-5(a)

–T-5(k)) by first constructing an octree on their respective ground truth volumes

(G-5(a)–G-5(k)) and then selecting the largest possible blocks from the octree that

correspond to the brain materials. After the sample materials were selected, the

statistics of the four central moments were estimated as the function of scale in

the usual manner. The plots of statistics as a function were then used as visual
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Figure 2.26: The first, second, third, and fourth column shows the input, ground truth,

segmentation and misclassification results of an axial slice at z = 30mm with 1%, 3%,

5%, 7%, and 9% SNR and INU = 0% into CSF, grey-matter, and white-matter using

SWA method, respectively.

aides for identifying the RES support. The results of identified RES support for

each of the eleven brain MR scans are shown in the second column of Table 2.17.
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Figure 2.27: The first, second, third, and fourth column shows the input, ground truth,

segmentation and misclassification results of an axial slice at z = 30mm with 1%, 3%,

5%, 7%, and 9% SNR and INU = 40% into CSF, grey-matter, and white-matter using

SWA method, respectively.

In similarity with the previous section the RES support is found to correspond to

voxels of 2× 2× 2mm3 to 4× 4× 4mm3.
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Figure 2.28: Segmentation results of (a) grey-matter and (b) white-matter for T-4 at

RES support using SWA approach. KVL refers to the EM segmentation algorithm with

bias estimation (Leemput et al., 1999).

After the RES identification, the GM classifier was used to segment the brain

MR volumes into the desired three materials. The segmentation results for the CSF,
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Table 2.17: Segmentation results of the brain MR volumes T-5, expressed in terms of

Tanimoto similarity coefficient (st), into CSF, grey-matter, and white-matter using SWA

approach at their respective RES support.

Overlap Ratio, st(k)

Test Data RES
CSF Grey-Matter White-Matter

T-5(a) 1 0.76 0.58 0.39

T-5(b) 1 0.36 0.66 0.69

T-5(c) 2 0.22 0.47 0.58

T-5(d) 2 0.27 0.75 0.58

T-5(e) 2 0.62 0.68 0.68

T-5(f) 1 0.53 0.87 0.35

T-5(g) 2 0.54 0.91 0.36

T-5(h) 2 0.80 0.77 0.68

T-5(i) 1 0.86 0.46 0.70

T-5(j) 2 0.43 0.90 0.52

T-5(k) 2 0.33 0.88 0.73

Mean 0.52 0.72 0.57

grey-matter and white-matter brain tissues in each of the eleven IBSR brain volumes

are presented in Figures 2.29(a), 2.29(b), 2.29(c), respectively, where they also com-
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pared to the performance of different segmentation methods that were applied to the

same data sets (Rajapakse and Fruggel, 1998): maximum a posteriori probability

(MAP), adaptive maximum a posteriori probability (AMAP), biased maximum a

posteriori probability (BMAP), fuzzy k-means (FkMN), maximum likelihood clas-

sifier (MLC) and tree-structured k-means (TSKM).

The SWA produces segmented images with overlap ratios that are generally

higher than those of the other methods for the 11 test images. For CSF, the SWA

overlap ratios are always significantly larger than those of other methods, irrespec-

tive of the level of difficulty of the image. For grey-matter, the SWA produces

overlap ratios higher than other methods by up to 0.4 and produces a lower overlap

ratio in only one, relatively easy, test image: T-5(i). For white-matter, the SWA

produces overlap ratios higher or comparable to those of other methods in 7 test

images, including the 5 most difficult ones, and lower overlap ratios in 4 test im-

ages. Overall, the SWA produced overlap ratios visibly superior to those of other

methods in 76% (25) of these 33 tests (3 materials in 11 images) and results that are

either superior or comparable to other methods in 85% (28) of the test cases. Most

interestingly, the SWA always segmented the most difficult images more accurately

than other methods. This is probably due to the fact that the SWA uses distinct

spatial statistics for each material in the image rather than using only local voxel

values (k-means) or a single set of parameters to represent spatial heterogeneity

(MAP). Presumably, the criteria used to classify brain images into various levels of

difficulty may have been biased more towards local voxel values (that affect class

means) than towards texture. Stated differently, it appears that images classified
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as ”highly difficult” based on local voxel values, still contained substantial textural

information which SWA successfully used to accurately segment them.

Mean overlap ratios produced by the SWA, averaged over materials, and aver-

aged over images, are compared to those of the 6 other methods in Figures 2.29(d)

and 2.29(e), respectively. Results indicate that the segmentation produced by the

SWA is, on average, always better than that produced by other techniques. For

the 11 test images, the material-averaged overlap ratio (mean of overlap ratios of

individual materials) of SWA is at least 0.13 larger than that of other methods,

corresponding to a segmentation accuracy improvement of at least 28% (the closest

performing method is BMAP). Similarly, the overlap ratios produced by SWA for

individual materials, averaged over the test images, are at least 0.17 (grey-matter),

0.03 (white-matter) and 0.43 (CSF) above those of other methods (Table 2.18)

which indicates averaged accuracy improvements of at least 31%, 6% and 480% for

grey-matter, white-matter and CSF segmentation, respectively.

Finally, it is noted that SWA results do follow a trend of increasing accu-

racy as the level of difficulty of images decreases (Figure 2.29(d)). However this

trend is milder than in prior methods (k-means and MAP), indicating that SWA is

more robust to intensity non-uniformity, noise, contrast deficiencies and other such

anomalies of the source MR image.

2.6 Conclusions and Future Research

In this chapter, a new texture based segmentation method for heterogeneous bi-

ological image data was developed and evaluated. The developed segmentation
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Table 2.18: Mean overlap ratio, expressed in terms of Tanimoto similarity coefficient

(st), for eleven brain MR volumes in test suite T-5 using different segmentation methods.

Mean Overlap Ratio, st(k)

Material
MAP AMAP BMAP FkMN TSKM SWA

Background 1.00 1.00 1.00 1.00 1.00 1.00

Grey-matter 0.53 0.55 0.53 0.46 0.51 0.72

White-matter 0.52 0.54 0.53 0.54 0.52 0.57

CSF 0.09 0.08 0.09 0.06 0.07 0.52

method (SWA) uses stochastic continuum concept to characterizes materials at a

coarser scale by using the heterogeneity properties from finer scale(s). The SWA

approach provides a quantitative approach to identify the representative elementary

scale (RES) at which the material properties of macroscopic entities become homo-

geneous. From a pattern recognition point of view, the RES concept is analogous

to the definition of ”texture” scale. The RES support was identified as the scale at

which the mean statistics of the four central moments stabilize. The SWA method

is based on multi-dimensional Haar wavelet decomposition for texture analysis uti-

lizing its symmetric and orthogonal properties for fast computations in arbitrary

dimensions.

The feature descriptors and classifier used by the SWA method were selected

by comparing the performance of 21 combinations of 7 feature vectors with 3 clas-

sifiers. The feature vectors include first-order spatial moments, entropy, and direc-
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tional auto-correlation lengths. The moment-based features (
−→
M) and the ACF-based

features (
−→
Z ) were the primary choices as they not only assist in segmentation of the

entities within biological image but can also be directly used as input parameters in

stochastic transport models. All the feature descriptors (except ACF-based) were

calculated efficiently from wavelet coefficients obtained using Haar MRA. The three

investigated classifiers were the Gaussian maximum likelihood with Mahalanobis

distance metric (GM), minimum-distance classifier (MD), and learning vector quan-

tization (LVQ).

Feature vectors and classifiers were analyzed over a set of three 2-D real im-

ages (a soil cross-section, a muscle tissue and a landscape) and a set of twelve 2-D

synthetic texture mosaics commonly used in the pattern recognition literature. A

performance metric, εd, that considers both segmentation accuracy (leave-one-out

error, εl) and feature vector size was used to compare the 21 feature vectors-classifier

combinations. Results indicated that the combination of spatial moments as feature

descriptors with the GM classifier provides the highest classification performance for

real image data. This combination also gave very good results on synthetic texture

mosaics, although results were less consistent than on real images. The Gaussian

Mahalanobis classifier using spatial moments was concluded to be superior to other

techniques and was selected for the SWA since the goal of the method is to segment

real biological images.

The developed SWA segmentation technique was evaluated on three biomed-

ical data sets. These test-suites varied from each other with respect to: (a) type
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of sensors used for data acquisition, (b) presence of imaging artifacts in the data,

and (c) spatial resolution of the data. The evaluation was both qualitative and

quantitative in nature and whenever feasible the results from SWA method were

also compared to contemporary segmentation methods. Results from the qualita-

tive evaluation experiment using test suite T-3 with voxel size 0.125mm3 demon-

strated that the SWA method was successful at segmenting skin, bone, and soft

tissue, from the fresh CT scans of head. Results from the quantitative evaluation

on ten simulated brain MR images with voxel size of 1mm3 (T-4) demonstrated

that the SWA method gives consistent segmentation results even in the presence of

intensity inhomogeneity and noise, and it outperforms the KVL method based on

expectation-maximization technique with a bias-field correction step. Segmentation

results obtained on eleven real brain MR scans with voxel size of 2mm3 (T-5), fur-

ther demonstrated that the SWA method is superior to six segmentation methods

presented in literature: maximum a posteriori (MAP) probability, adaptive max-

imum a posteriori probability (AMAP), biased maximum a posteriori probability

(BMAP), fuzzy k-means (FkMN), maximum likelihood classifier (MLC), and tree-

structured k-means (TSKM).

Development and evaluation results demonstrate that the SWA segmentation

method is an excellent technique for segmenting heterogeneous biological image

data. It is accurate, efficient and works equally well on bio-environmental and bio-

medical image data. Additionally, it works equally well in two-dimensions (digital

photos, microscope images, and satellite images) and three dimensions (CT and MR

images). It is accurate even if data is noisy and provides better efficiency-accuracy
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tradeoff than twenty other combinations of feature vectors and classifiers. It out-

performs six other segmentation methods presented in the literature. In addition, it

directly provides, as output, the heterogeneity statistics needed as input parameters

to stochastic transport models. For these reasons, the developed SWA method is

concluded to be a promising tool with great potential for unifying data analysis

concepts into simulation and modeling techniques and for integration into biologi-

cal decision support systems where digital images are an important source of input

data.

Although the novel segmentation method developed in this chapter gave ex-

cellent results for characterizing macroscopic materials in heterogeneous biological

image data, it still offers several avenues for potential improvements through re-

search. Firstly, a technique for standardizing the RES identification step could be

developed by defining stronger guidelines and mathematical justification. Currently,

the RES support is identified by supervised selection of the scale at which spatial

statistics stabilize. This could be automated (unsupervised) by analyzing the sta-

tistics of the feature descriptors and identifying the scale at which the deviation of

these statistics is optimal in some sense.

Secondly, one of the main assumptions of the SWA is that, all of the different

macroscopic materials present in the data have the same characteristic length scale.

Thus, the RES identification process selects a common representative elementary

scale for all the materials. In many practical cases, materials with different char-

acteristic length scales can coexist in the data (for example, soil with sand and

gravel horizons). In such situations, it could be better if the SWA method could

124



use adaptive RES supports for segmenting or characterizing these materials at dif-

ferent length scales. Such an implementation could also indirectly help to resolve

the partial volume effects common to bio-medical data sets.

Thirdly, the moment-based features descriptors used by the SWA method in-

clude only the first order moments. The generality of the method, and it accuracy

for synthetic data sets, could be improved by adding higher order statistical mea-

sures (like, co-occurrence matrices or ACFs). However, to remain consistent with

the MRA philosophy of the method, this will require the development of techniques

to compute such higher-order statistics directly from the multi-resolution wavelet

coefficients. In this context, the recent developments of directional wavelets (An-

tonie et al., 1999; Do, 2001; Li et al., 1997; Vandergheynst and Gobbers, 2002) may

prove useful for computing directional correlation lengths from wavelet coefficients.

Fourthly, although excellent, the development and evaluation results for SWA

method presented in this chapter are limited to the data sets: (a) three 2-D biolog-

ical images, (b) twelve 2-D texture mosaics, and (c) twenty-two 3-D brain or head

bio-medical images. It would be appropriate to extend the analysis of SWA to a

much larger number of data sets and classification methods, like the Statlog project

(Michie et al., 1994). Additionally, quantitative performance measures, like area

under the ROC curves, could be used to compare different classification methods

(Webb, 2002). It would also be interesting to investigate the feature selection and

feature extraction techniques and their impact on the overall performance of the

method (Bauer and Kohavi, 1999; Gama, 2000; Gama and Brazdil, 2000).

Lastly, the potential of parallel implementation of the SWA method would also
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be an interesting topic to investigate. This will, particularly, be useful for handling

large multi-dimensional data sets efficiently. It is notable that the separable Haar

wavelet decomposition with symmetric and orthogonal properties makes it extremely

well-suited for parallelization (Feil and Uhl, 2002; González et al., 2001; Yang and

Mishra, 1998).
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Figure 2.29: Segmentation results of: (a) CSF; (b) grey-matter; (c) white-matter for

T-5 using SWA approach and various segmentation methods from IBSR. (d) Tanimoto

coefficient averaged over all the brain materials for MR scans in T-5 test suite; (e) bar

plot showing the mean Tanimoto coefficient over the entire T-5 test suite.
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Chapter 3: Finite Element Mesh Generation Of Image Data

In this chapter, the next step of unstructured mesh generation of image data for use

in the numerical analysis of bio-systems is developed, implemented, and analyzed.

The developed mesh generation technique, IMesh, is implemented in Java SDK

1.4.1. Formal mathematical analysis is done to show the exact theoretical bounds

on the quality of the elements, which is also experimentally verified. The adaptivity

and efficiency of the technique is also demonstrated on a segmented 2-D landscape

image and on a segmented 3-D MR brain scan. The contribution of the research

described in this chapter is important in three ways. Firstly, the approach is based on

a strong theoretical foundation in mesh quality up to R8 dimensions. Secondly, the

unstructured mesh generation technique developed herein seamlessly integrates with

the quantitative heterogeneity-adaptive segmentation method developed in Chapter

2. Lastly, the mesh generation technique developed here can be used on a wide

variety of computing platforms (from a implementation stand point).

3.1 Introduction

Consider the example of the patient suffering from chronic astrocytoma glioma,

undergoing chemotherapy treatment as described in Chapter 1. In order to develop

a strategic drug delivery mechanism or treatment plan, a multi-step process (shown

in Figure 1.1) has to be developed, to accurately understand (by up-scaled transport

models) the effect of chemotherapy drugs.
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The first step involved in this multi-step process would be to obtain quan-

titative information of the tumor tissue such as the biological, physical, chemical,

and structural properties from biomedical images like CT and MR scans. Next, the

tumor tissue (domain of interest) needs to be identified (segmented) for performing

the numerical simulation. Once the domain is identified, a mesh with simpler ele-

ments needs to be generated, to facilitate the application of numerical techniques

for simulating the process dynamics occurring in the bio-system.

Given the fact that the bio-systems are highly heterogeneous, the simulation

process should account for this heterogeneity in their properties as much as possible

for more accurate understanding of processes in these systems. In Chapter 1, it

has been shown that the availability of sophisticated image sensors now permit to

non-invasively capture the relevant material properties needed for modeling bio-

systems. However, taking into account of the heterogeneity to very fine scales,

is computationally prohibitive. The up-scaled numerical techniques provides the

mathematical framework to account for the sub-scale heterogeneity by identifying

an representative elementary scale (RES) support and then simulating the processes

occurring in the bio-systems at that scale. Therefore, if the image data is to be used

in such a numerical framework, then it should be processed to, first identify the RES

support and then identify the domain of interest at the RES support.

In Chapter 2, a novel texture-based segmentation technique (SWA) rooted in

up-scaled stochastic continuum concept was developed, analyzed and validated. The

SWA technique permits: (a) quantitative characterization of the heterogeneous (ma-

terial) properties captured by image sensors by identifying RES support at which
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the different components are continuum, and (b) segmentation of the different ma-

terials at RES support by using heterogeneity statistics which form the parameters

for up-scaled numerical techniques.

Before the results from the proposed segmentation can be used in up-scaled

numerical modeling framework, one of the necessary steps would be to perform

mesh generation. Mesh generation, especially unstructured, has been a part of

mainstream computational geometry for quite sometime. In the last fifteen years,

there has been tremendous advancement in this area, when the problem attracted

computational geometers (Bern et al., 1990; Joe, 1995; Mitchell and Vavasis, 1992;

Ruppert, 1993; Shewchuk, 1998; Yerry and Shephard, 1991). The current mesh

generation techniques can be handled gracefully most of the complicated polygonal

and polyhedral domains (Bern et al., 1990; Chew, 1989; Mitchell, 1994; Mitchell

and Vavasis, 1992; Preparata and Shamos, 1990; Ruppert, 1993, 1995; Shephard

and Georges, 1991). However, most existing techniques, if not all, were proposed for

polygonal and convex polyhedron domain decomposition and not for image data.

In spite of the vast literature on mesh generation, there does not exist a single

quality unstructured mesh generation method for image data. This has been a

compelling factor for the scientific community not to use digital images capturing

vital material properties in any form of numerical analysis. Even when used, in most

instances, the underlying uniform grid formed by the pixels/voxels is used directly

for meshing.

The aim of the research described in this chapter is to address this severe short-

coming by developing a quality guaranteed mesh generation technique for image
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data. The remainder of this chapter is organized as follows. Section 3.2 starts with

a review of the various types of domain decomposition (meshes) used in numerical

framework . This is followed by literature review on mesh generation techniques,

more specifically, unstructured mesh generation, available for polygonal domains,

convex polyhedral domains and image data. After summarizing the mesh genera-

tion techniques, the main objectives of the research described in this chapter are

presented in Section 3.3. In Section 3.4 the materials and methods needed to achieve

the objectives are outlined. This is followed by Section 3.5 where results are pre-

sented and discussed. Section 3.6 concludes the chapter and proposes future research

directions.

3.2 Literature Review

A mesh is a discretization of domain Ω(x1, x2, . . . , xd) in Rd into small simple shapes

or simplices, typically triangles or quadrilaterals in R2 and tetrahedra or hexahedra

in R3. Meshes composed of these simple shapes are used in many applications

such as computer graphics for scene rendering, numerical methods for interpolation,

and geographic information systems (GIS) for terrain modeling. One of its most

significant application is in the area of finite element analysis for solving partial

differential equations (PDEs) that arise in domain-based numerical simulations.

Meshes used in numerical methods can (usually) be categorized as structured

or unstructured. The generation of both structured and unstructured meshes can be

surprisingly difficult, each posing challenges of their own. But the mesh generation

literature reviewed in this chapter considers only the task of generating unstructured
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meshes. Furthermore, focus is mainly on generating simplicial meshes, i.e. meshes

composed of triangles in R2 and tetrahedra in R3. Meshes with quadrilateral, hexa-

hedral, or other non-simplicial elements are not dealt, although they comprise an

interesting field of study in their own right. Since the related topics of mesh refine-

ment, de-refinement, smoothing, improvement, and geometric problems are beyond

the scope of this document they are omitted from discussion.

3.2.1 Structured and Unstructured Meshes

Structured meshes exhibit a uniform topological structure that unstructured meshes

lack. A functional definition is that in a structured mesh, the indices of the neigh-

bors of any node can be calculated using simple addition, whereas an unstructured

mesh necessitates the storage of a list of each nodes neighbors. In practice, a third

category of block-structured or hybrid mesh is also found, which is formed by a

number of small structured meshes combined in an overall unstructured pattern.

High-quality hybrid meshes enjoy the advantages of both approaches, but hybrid

meshing is not yet fully automatic. Figure 3.1 illustrates an example of each. In

general, structured meshes offer simplicity and easy data access, while unstructured

meshes offer more convenient mesh adaptivity, refinement and de-refinement based

on initial solution, and a better fit to the complicated domains. Unstructured mesh

is also characterized by the flexibility it offers with respect to element sizes (i.e. it

allows for grading its element size rapidly from small to large size). Unstructured

meshes can provide multi-scale resolution and conformity to complex geometries, far

better than structured meshes. The difference between structured and unstructured

132



Figure 3.1: Types of meshes: (a) structured, (b) unstructured, (c) hybrid for the simple

polygonal domains.

meshes also extends to the shape of the elements: 2-D structured meshes typically

use quadrilaterals, while unstructured meshes use triangles. In 3-D the analogous

element shapes are hexahedra and tetrahedra, respectively. However, there is no

reason for structured and unstructured meshes to use different element shapes be-

cause it is possible to subdivide elements in order to convert between triangles and

quadrilaterals and between tetrahedra and hexahedra.

3.2.2 Mesh quality for numerical methods

Many physical phenomena in science and engineering can be modeled by partial

differential equations (PDEs). When these equations have complicated boundary

conditions or are posed on irregularly shaped objects or domains, they usually do

not admit closed-form solutions. A numerical approximation of the solution is thus

necessary. Numerical methods for solving PDEs include finite difference methods

(FDM), finite element methods (FEM), and the finite volume methods (FVM, also

known as the control volume method). They are used to model disparate phenom-

133



ena such as mechanical deformation, heat transfer, fluid flow, electromagnetic wave

propagation, and quantum mechanics. These methods numerically approximate the

solution of a linear or nonlinear PDE by replacing the continuous system with a

finite number of coupled linear or nonlinear algebraic equations. This process of

discretization associates a variable to the finite number of points in the problem do-

main and can be divide into three interdependent steps: problem formulation, mesh

generation, and solution of equations. Note that, although these methods result in

linear systems of similar structure, the desired characteristics of meshes for these

methods differ.

For FEM purposes, the shape and the quality of the elements in a FE mesh

dictates the accuracy and the numerical stability of the PDE being solved. Un-

structured mesh must satisfy certain conditions to properly handle the PDE for

a particular domain. According to Bern et al. (1990), a FE mesh must at least

satisfy the following conditions: (a) conformity - the mesh must conform to the

domain being modeled; (b) adaptivity - the mesh must be fine enough to produce

an acceptable approximation of the original problem, and, in parts of the domain

where the solutio is complicated or changes rapidly may require large number of

smaller elements than other part; (c) roundness - the elements should be relatively

well-shaped, because elements with large or small angles can degrade the quality of

the numerical solution. The last property is by far the most difficult to attain. For

some methods, elements with small angles lead to ill-conditioned linear algebraic

systems that are difficult to solve accurately.

In two dimensions, the finite element mesh should specifically avoid skinny and
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cap elements. The former represents elements with small angles, whereas elements

with obtuse angles (angles greater than 90◦) fall under the latter category. An ideal

finite element mesh should not have any skinny triangles as it affects the perfor-

mance of the solver. But at times, skinny triangles could be beneficial, especially,

in simulations involving anisotropic equations–the second derivative varies greatly

with direction. For example, numerical solution of the Navier-Stokes equation with

the viscosity parameter for simulating fluid dynamics. Elements with large angles

are undesirable because certain numerical methods requires the center of the cir-

cumcircle of each element to lie within the element (Baker et al., 1988), so that the

perpendicular bisectors of the element edges form the planar dual (Voronöı graph)

of the mesh. Circumcenter of an element would lie within the element if and only

if no angle of the element is obtuse. Hence, for the circumcenters of elements to be

well separated from the boundary, all the angles of the element should be away from

90◦. Figure 3.2 shows an example of skinny and cap triangular elements.

CapNeedle

Figure 3.2: Skinny triangles have circumcircles larger than their smallest edges. Each

skinny triangle may be classified as a needle, whose longest edge is much longer than its

shortest edge, or a cap, which has an angle close to 180◦.

In three-dimensions, tetrahedral elements can be ill-shaped in more ways than
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their two-dimensional counterparts. Based on both dihedral and solid angles the ill-

shaped tetrahedras can be classified into five types: needle, wedge, spindle, sliver,

and cap (Bern et al., 1995). An example illustrating them is shown in Figure 3.3.

A needle allows small solid angles, but not small or large dihedrals. A wedge allows

small but not large dihedrals. A spindle allows large but not small dihedrals, and

small but not large solid angles. A sliver allows large and small dihedrals, and

small but not large solid angles. And a cap allows bad angles of all types including

large solid angles. Note that a sliver or a cap can have all face angles bounded

away from 0◦ and 180◦ , although the tetrahedron itself may have arbitrarily small

solid angles and interior volume. An example is the sliver with vertex coordinates

(0, 0, 0), (0, 1, ε), (1, 0, ε), and (1, 1, 0), where ε→ 0.

Sliver
CapSpindle

Needle Wedge

Figure 3.3: The five types of bad tetrahedral elements.

A wide range of element quality measures have been proposed in the compu-

tational geometry literature (Liu and Joe, 1994a; Shewchuk, 2002). Most of these

quality metrics attain a maximum value for an regular simplex and a minimum value

for a degenerate case. The most widely used element quality metric is the radius-
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to-edge ratio, Θ, which defined as the ratio of the circumradius to the shortest edge

(Miller et al., 1995) and is shown in Figures 3.4(a) and 3.4(b) for a triangular and

tetrahedral element, respectively. The aspect ratio, AR, is another element quality

metric that is commonly used in the computational geometry literature (Bern et al.,

1990; Ruppert, 1993). It is closely related to the radius-to-edge ratio and for a con-

vex body it is defined as the ratio of the longest to the shortest width, which for a

2-D triangular element is equivalent to AR = L
H

(see Figure 3.4(c)).

Figure 3.4: Illustration of radius-to-edge ratio defined for (a) triangular element in 2-D

and (b) tetrahedral element in 3-D, and (c) definition of aspect-ratio for a triangle and a

convex body.

The radius-to-edge ratio, Θ(4ijk), for a triangle, 4ijk, in two dimensions

is closely related to its sharpest angle α because αikj = arcsin 1
2Θ(4ijk)

–the proof
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follows immediately from the geometric construction shown in Figure 3.5. Hence, a

bound on Θ will indirectly bound the minimum angle, and vice versa, and all two-

dimensional quality guaranteed algorithms try to achieve a bound on either of these

parameters. This is the main reason for the popularity of Delaunay triangulation

for generating triangular unstructured mesh. Because among all the possible trian-

gulations for a point set, Delaunay triangulation maximizes the minimum internal

angle. However, in 3-D, the radius-to-edge ratio is considered to be a slightly weaker

measure because it can not identify slivers since they are characterized by both small

and large Θ values. Therefore, a bound on Theta for three-dimensional meshes does

not guarantee the quality of unstructured tetrahedral mesh. Hence, sliver exudation

is one of the important post-processing steps for unstructured mesh generation in

three-dimensions (Baker, 1989).

d

r

r

c

i j

k

Figure 3.5: Geometric construction to prove the relation between radius-to-edge ratio

and the minimum internal angle for a two-dimensional triangular element.

In general, elements with large radius-to-edge or aspect ratio have adverse
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effects on the numerical solution by leading to ill-conditioned matrices (non-positive

definite) that worsen the speed and accuracy of the solver. Speed degrades before

accuracy; a triangular mesh with mild sharpest angle, say 10◦, can be noticeably

slower than a triangular mesh with a minimum angle of 45◦. Moreover, even if

the solver gives accurate answer, the large aspect ratio may result in interpolation

error. As mentioned earlier, at times large aspect ratio (or skinny triangles) might

be beneficial, especially when the problem being solved is anisotropic. The ideal

aspect ratio of a triangle is the square root of the ratio of the largest to smallest

eigenvalues of the Hessian matrix (Rippa, 1984). For triangular meshes, it does not

make much of a difference whether long skinny elements have large angles or small

angles, but if the aspect ratio exceeds the ideal ratio, the large angles will tend to

be worse than small angles a(Rippa, 1984).

The shape of the elements also affects another property of linear systems be-

sides the condition number. A triangular mesh in R2 with well-shaped elements gives

symmetric M-matrix, i.e., positive definite with negative off-diagonal entries for a fi-

nite element formulation of an equation with a Laplacian operator (∇). M-matrices

are exactly those matrices that satisfy a discrete maximum principle; this desirable

property rules out oscillations of the numerical method. In this case, well-shaped

has two precise interpretations: (a) the sum of the two angles opposite to each in-

terior edge of the mesh should be at most 180◦ (Babuska and Aziz, 1976). This

requirement implies that no quadrilaterals are ”reversed”, so the triangulation must

be a Delaunay or constrained Delaunay triangulation (CDT), and (b) depending

on the boundary conditions associated with the differential equation, an M-matrix
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may also require that the angle opposite to a boundary edge should measure at most

90◦. In three dimensions, an unstructured tetrahedral mesh gives an M-matrix if

and only if, for each edge e
′
in the mesh,

∑
e

|e| cot θe > 0 (3.1)

where e denotes all the edges in the mesh that are opposite to e
′
in the tetrahedra

of the FE mesh, |e| denotes the length of e, and θe is the dihedral angle at e. All

relation in equation 3.1 will be nonnegative if and only if all dihedrals in the mesh

are non-obtuse.

3.2.3 Unstructured Mesh Generation Techniques

Unstructured meshes offer flexibility in fitting complicated domains, rapid grading

from small to large elements, and relatively easy refinement and de-refinement. In

this section, first a literature review is presented on unstructured mesh generation

for PSLGs and convex polyhedra. The review on polygonal and polyhedral un-

structured mesh generation includes four major approaches that have potential for

application to image data, namely, conforming Delaunay triangulation, advancing

front methods, constrained Delaunay triangulation, and hierarchical data-structures

(quadtrees/octrees). This is followed by literature review on two mesh generation

strategies developed specifically for directly handling domains in image data: energy

minimization and interval volume tetrahedrization.
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3.2.3.1 Conforming Delaunay Meshing

The first approach of unstructured mesh generation for a PSLG domain in 2-D,

Ω(x1, x2), is achieved in two phases: placement of vertices followed by triangulation

of the vertices. (The extra vertices, apart from the domain’s original vertices that

are added to the input domain in order to obtain quality FE meshes are called

Steiner points). If the placement phase is smart enough, then the triangulation can

be relatively straight forward by considering only the input vertices and the Steiner

points and ignoring the edges.

In the placement phase, vertices are typically placed along the domain’s bound-

ary before adding them to the interior. In practice, the domain boundary is usually

lined with enough Steiner points such that the Delaunay triangulation of all the

vertices will conform to the domain. This requirement inspires a problem called

conforming Delaunay triangulation, and is formally defined as: given a polygonal

domain Ω, Steiner points are added such that each edge of Ω is an union of edges in

the Delaunay triangulation. The algorithm by Saalfeld (1991) lines the edges of Ω

with a large number of Steiner points uniformly spaced except near the endpoints.

A more efficient solution (Nackmann and Srinivasan, 1991) covers the edges of Ω

by disks that do not overlap other edges. Edelsbrunner and Tan (1993) gave the

best theoretically robust algorithm that uses O(n3) Steiner points for an n-vertex

multiple domain along with an O(n2) lower bound example.

There are several approaches for placing the Steiner points in the interior.

One approach (Mavriplis, 1991) combines the vertices from a number of structured
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meshes. A second approach (Baker, 1989; Barth and Jesperson., 1989) adds Steiner

points in successive layers, working inwards from the domain boundary as in ad-

vancing front mesh generation. A third approach (Weatherhill and Hassan, 1994)

chooses interior points at random according to some distribution, which may be in-

terpolated from a coarse quadtree or ”background” triangulation. An independent

random sample is, however, likely to produce ill shaped triangles (Bern et al., 1991).

Miller et al. (1995) proposed a technique that over samples and filters out points too

close to previously chosen points to alleviate this problem. Deterministic methods

achieve the same by defining birth and death rules that depend upon the density of

neighboring points (Bossen, 1996; Shimada and Gossard, 1992).

All of these methods can also handle material and domain anisotropy. The

first and second approaches, structured sub-meshes and advancing front, offer local

control of element shapes and orientations. These approaches may space points

improperly where structured meshes or advancing fronts collide, but this flaw can

usually be corrected by filtering points and later smoothing the mesh. The third and

fourth approaches trade direct control over element shapes for ease of fitting compli-

cated geometries. Nevertheless, one can achieve anisotropy with these approaches

by computing the Delaunay triangulation within a stretched space (Bossen, 1996;

Castro-Diaz et al., 1995). For example, Bossen (1996) uses a ”background” trian-

gulation to define local affine transformations; Delaunay flips (described below) are

then made with respect to transformed circles. Stretched Delaunay triangulations

have many more large angles than ordinary Delaunay triangulations, but this should

not pose a problem unless the stretching exceeds the desired amount.
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The triangulation phase uses the well-known geometric structure called De-

launay triangulation, DT, first proposed by Delaunay in 1934. For any given vertex

set, V = {v1, v2, . . . , vn} ∀ vi ∈ R2, DT(V) is defined as a graph that satisfies empty

circle condition. That is, a triangle Ti with vertices {va, vb, vc} ∀ vi ⊂ V appears in

DT(V), if and only if the circumcircle of Ti encloses no other points of the vertex

set V
′
= V − {va, vb, vc}. Figure 3.6 shows an example of empty circle condition.

Figure 3.6: Every triangle in a Delaunay triangulation satisfies the

empty-circle-condition.

The Delaunay triangulation of vertex set V with the vertices at normal position

gives a unique triangulation (T), such that the vertices of T collectively represent

the input vertices, V. Figure 3.7 shows Delaunay triangulation of a 2-D vertex set.

Other interesting properties of the Delaunay construction include:

1. the edges in a Delaunay mesh cannot intersect each other–i.e., edges of a

Delaunay mesh, T, can only intersect each other at the triangle vertices (refer

to Figure 3.8(a)).

2. If e is an edge of a triangulation of V, then either e is locally Delaunay, or

e is flippable and the edge created by flipping e is locally Delaunay (refer to

Figures 3.8(b) and 3.8(c)),
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Figure 3.7: Illustration of Delaunay triangulation of a vertex set with empty circle for

each triangle.

3. in a Delaunay triangulation T all the edges of are Delaunay, and vice versa

(refer to 3.8(d) and 3.8(e)),

4. the boundary formed by taking the union of all the triangles in a Delaunay

mesh, T, represents the convex hull of the input domain (V),

5. Delaunay triangulation maximizes the minimum internal angle, and

6. Delaunay mesh is a dual of Voronöı graph.

However, there is an exception when four or more points in the vertex set are

in special position or co-planar. The circumcircle of a triangle, whose vertices belong

to the co-planar points, will pass through all the co-planar points, thus violating the

empty-circle condition. In such cases, one may choose to complete the triangulation

arbitrarily. Usually, the triangles that fall outside the domain Ω are discarded so

that DT(V) results in a triangulation whose edges will form the convex hull of V.
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Figure 3.8: (a) If no four vertices are co-circular, two crossing edges cannot both be

Delaunay, (b)case where e is locally Delaunay, and (c) case where e is not locally

Delaunay. The edge created if e is flipped is locally Delaunay, (d) If the triangle t is not

Delaunay, then at least one of its edges (in this case, e) is not Delaunay, and (e) Two

triangulations of a vertex set: at left, e is locally Delaunay; at right, e is not.
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Figure 3.9 gives an example of Delaunay triangulation for co-planar vertex set along

with possible alternatives to complete the triangulation.

(a) (b) (c)

Figure 3.9: Three ways to define the Delaunay diagram in the presence of co-circular

vertices: (a) include all Delaunay edges, even if they cross, (b) exclude all crossing

Delaunay edges, and (c) a subset of Delaunay edges that forms a triangulation is selected.

There are number of Delaunay triangulation algorithms (Fortune, 1993, 1997).

The following are some of the more well-known approaches: edge flipping (Sibson,

1978); incremental insertion (Bowyer, 1981; Guibas and Stolfi, 1985; Joe, 1993; Lee

and Schachter, 1980); and randomized incremental insertion (Chew, 1986; Clarkson

and Shor, 1989; Guibas et al., 1992; Seidel, 1993); divide-and-conquer (Chew, 1989;

Guibas and Stolfi, 1985; Shamos and Hoey, 1975); alternating divide-and-conquer

(Dwyer, 1987); sweep-line (Fortune, 1987); regular grid and sparse matrix (Fang

and Piegl, 1992, 1993). Of these methods, some are theoretically elegant and others

are relatively easy to implement. The following paragraph described edge flipping

algorithm because of its relevance to subsequent discussions.

The edge flipping algorithm has a worst-case running time of O(n2). In spite
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of being sub-optimal it performs quite well in practice. The edge flipping algorithm

starts from any triangulation of V and then locally optimizes each edge. Let e be

an internal (non-convex-hull) edge and Qe be the triangulated quadrilateral formed

by the triangles sharing e. Quadrilateral Qe is reversed if the two angles without

the diagonal total more than 180◦, or equivalently, if each triangle circumcircle

contains the opposite vertex as in Figure 3.10. If Qe is reversed, it is ”flipped” by

exchanging e for the other diagonal. An initial triangulation can be computed by

a sweep-line algorithm (Fortune, 1987). This algorithm adds the points of S by

x-coordinate order. Upon each addition, the algorithm walks around the convex

hull of the already-added points starting from the rightmost previous point and

adding edges until the slope reverses as shown in Figure 3.11. The theorem given

by Delaunay guarantees the success of edge flipping triangulation algorithm (i.e.,

a triangulation in which no quadrilateral is reversed must be a completion of the

Delaunay triangulation). The point placement followed by Delaunay triangulation

is a popular approach to mesh generation, especially in aerodynamics. The same

point placement methods work fairly well: combining structured meshes, advancing

front (Baker, 1989; Lo, 1991a,b), and random scattering with filtering (Weatherhill

and Hassan, 1994).

Similarly, the placement phase for meshing the 3-D polyhedral domains must

put sufficient number of points on the domain boundary to satisfy the conformity

requirement of Delaunay tetrahedralization. The first two point placement methods,

discussed for the two-dimensional case, suffer from the same problems when extended

to 3-D domains, i.e., points may be improperly spaced at junctures between fronts or

147



e

Figure 3.10: On the left is a Delaunay triangulation of vertex set and the right-side

figure shows reversed/flipped quadrilateral along the edge e.
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Figure 3.11: A Sweep-line algorithm for computing an initial triangulation of a vertex

set.
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patches. Furthermore, a new problem is encountered while extending all the three 2-

D methods to 3-D even for well spaced point set because of the possible appearance

of slivers in the final Delaunay tetrahedralization. For this reason, some Delaunay

mesh generators include a special post-processing step that finds and removes slivers

(Baker, 1989).

The triangulation phase of mesh generation is more involved for three di-

mensional domains. The generalization of edge flipping exchanges the two possible

triangulations of five points in convex position, as shown in Figure 3.12. A flip is

called a Delaunay flip if, after the flip the triangulation of the five points satisfies

the empty sphere condition, that is, no circumsphere encloses a point. In R3, it is no

longer true that any tetrahedralization can be transformed into the Delaunay tetra-

hedralization by a sequence of Delaunay flips (Joe, 1989). Currently, it is unknown

whether any tetrahedralization can be transformed into the Delaunay triangulation

by arbitrary flips. Nevertheless, there are verifiably correct incremental Delaunay

tetrahedralization algorithms based on edge flipping (Edelsbrunner and Shah, 1996;

Joe, 1991; Rajan, 1994).

There are other practical three-dimensional Delaunay triangulation algorithms

as well. Bowyer (1981) and Watson (1981) proposed incremental algorithms with

reasonable expected case performance. Barber et al. (1996) implemented a random-

ized algorithm in arbitrary dimensions. This algorithm can be used to compute

Delaunay triangulations through a well-known reduction given by Brown (1979)

which lifts the Delaunay triangulation of points in Rd to the convex hull of points

in Rd+1.
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Figure 3.12: In three dimensions, an edge flip exchanges three tetrahedra sharing an

edge for two tetrahedra sharing a triangle, or vice versa.

3.2.3.2 Advancing Front Meshing

Delaunay triangulation by itself does not generate a satisfactory mesh because of

these two reasons: (1) elements of poor quality may appear in the output FE mesh

and (2) input boundaries may fail to appear in the final mesh. The former problem

is typically treated by adding additional vertices at either the circumcenters or the

centroids of the poor quality elements. An alternative approach to address this issue

is to use the advancing front approach.

Advancing front methods in 2-D begins by dividing the boundaries of the mesh

into edges. These discretized boundaries form the initial front. Triangles are then

generated sequentially, starting from the boundary edges or faces and working to-

ward the center of the domain. The exposed inner faces of these elements collectively

form an advancing front. In general, advancing front techniques requires a good deal

of second-guessing. Firstly one has to ensure that the initial division of the bound-

aries is prudent. Later on, when the advancing fronts from the boundaries collide

at the center of the domain, they have to be merged together in a manner that
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does not compromise the quality of the elements. In spite of these drawbacks, ad-

vancing front methods typically create astonishingly good meshes near the domain

boundaries. Mavriplis (1991) was the first to combine the Delaunay triangulation

and advancing front methods. The combination makes a good deal of sense, because

a Delaunay triangulation in the interior of the mesh is an useful search structure

for determining how close different fronts are to each other. Some researchers have

used background grids for this task. Conversely, the advancing front method may

be used as a vertex placement method in Delaunay meshing. A sensible strategy

might be to abandon the advancing front shortly before the fronts collide, and use

a different vertex placement strategy (such as inserting vertices at circumcenters or

centroids of poor quality elements) in the center of the mesh, where such strategies

tend to be most effective. Figure 3.13 shows a finite element mesh generated by

the advancing front method of Barth and Jesperson. (1989). The mesh is Delaunay

triangulation of vertices placed along the advancing front moving outward from an

airfoil. The problems associated with colliding fronts are reduced in circumstances

like this, where one is meshing the exterior, rather than the interior, of an object.

As mentioned earlier, an advancing front approach places Steiner points for

Delaunay triangulation. On contrary, pure advancing front mesh generators (Lo,

1985; Löhner and Parikh, 1988; Nguyen-Van-Phai, 1982) places the elements them-

selves, rather than just adding the Steiner points. This approach gives more direct

control of element shapes, especially near the boundary, which is often a region of

special interest. Löhner and Parikh (1988) based their approach on this idea by

defining a desired element size (and perhaps stretching directions) at the vertices
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Figure 3.13: A Sweep-line algorithm for computing an initial triangulation of vertex set.

of a coarse ”background” tetrahedron and interpolating them to the rest of the do-

main. Their methods starts by: (a) triangulating the boundaries of the domain;

(2) constructing the initial front comprising the boundary faces; and (3) iteratively

selecting a face of the front and building a tetrahedron over that face. The algo-

rithm attempts to fill in clefts left by the last layer of tetrahedra before starting

the next layer; within a layer, the algorithm chooses small faces first in order to

minimize collisions. The fourth vertex of the tetrahedron will be either an already

existing vertex or a vertex specially created for the tetrahedron. In the latter case,

the algorithm tries to choose a smart location for the new vertex. For example, the

new vertex can be placed along a normal to the base face at a distance determined

by aspect ratios and length functions ultimately derived from the background tri-

angulation (Frey et al., 1996). In either case, cleft or new vertex, the tetrahedron

must be tested for collisions before final acceptance. Figure 3.14 shows the surface

of a fairly isotropic tetrahedral mesh computed by an advancing front mesh gen-
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erator. Marcum and Weatherill (1995) proposed an algorithm somewhere between

pure advancing front and advancing front point placement followed by Delaunay

triangulation. Their algorithm first starts with a coarse mesh and then uses advanc-

ing front to place additional Steiner points by subdividing the coarse tetrahedra to

maintain a triangulation. The resulting mesh is then improved first by Delaunay

and then by minmax-solid-angle flips.

Figure 3.14: The surface of a tetrahedral mesh computed by an advancing front

generator.

3.2.3.3 Constrained Delaunay Meshing

The constrained Delaunay triangulation is an alternative to discretize the polygo-

nal domains into simplices. The constrained Delaunay triangulation of a (possibly

multiple) domain Ω does not use Steiner points, but instead redefines Delaunay tri-

angulation in order to force the edges of Ω into the final triangulation by using the
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concept of vertex-visibility. A point p is visible to a point q in Ω if the open line

segment −→pq lies within Ω and does not intersect any edges or vertices of Ω. The

constrained Delaunay triangulation, CDT(Ω) contains each triangle not cut by an

edge and satisfies an empty circumcircle condition. (Here, ”empty” means that

the circle does not contain any vertices visible to points inside the triangle). This

visibility requirement ensures that the external proximities, where Ω wraps around

to nearly touch itself, have no effect. Figure 3.15 illustrates such an example; here

vertex v is not visible to any point in the interior of 4abc. The constrained De-

c
b

a

v

Figure 3.15: The constrained Delaunay triangulation of a polygon with holes.

launay triangulation can be computed by generalizing the edge flipping Delaunay

algorithm. Only this time, edges of the Ω are not stored in a queue. One major

problem associated with this approach for polygonal domains is obtaining an initial

triangulation. (Note that discretizing polygonal domains is relatively more com-

plex than vertex sets). The textbook by Preparata and Shamos (1990) describes an

O(n log n) in-time algorithm for the initial triangulation by adding new edges to Ω

and then subdividing them into easy-to-triangulate ”monotone” faces.
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The best approach for constrained Delaunay triangulation was first proposed

by Ruppert (1993). Ruppert’s algorithm, building up on the work by Chew (1989),

computes CDT(Ω) at the outset and then adds Steiner points to improve the mesh,

thus uniting the two phases of the Delaunay triangulation approach described earlier.

In choosing this approach, the user gives up control over point placement, but

obtains a more efficient mesh with fewer and ”rounder” elements. The Delaunay

refinement algorithm was subsequently sharpened by Mitchell (1994) and Shewchuk

(1996a,b) further refined it.

The first step of Ruppert’s Delaunay refinement mesh generator cuts off all

vertices of the domain Ω at which the interior angle measures less than 45◦. The

cutting line at such a vertex v should not introduce a new small feature to Ω; it is

best to cut off an isosceles triangle whose base is about halfway from v to its closest

visible neighbor. If v has degree greater than two, as might be the case in a multiple

domain, then the bases of the isosceles triangles around v should match up so that

no isosceles triangle receives a Steiner point on one of its legs. Next the algorithm

computes the constrained Delaunay triangulation of the modified domain. The

algorithm then goes through the loop given below. The last line of the loop repairs

a constrained Delaunay triangulation after the addition of a new Steiner point c.

To accomplish this step, there is no need to recompute the entire triangulation.

The removed old triangles are exactly those with circumcircles containing c, which

can be found by searching outwards from the triangle that contains c, and the new

triangles that replace the removed triangles must all be incident to the new vertex

c. The loop is guaranteed to halt when all angles are larger than 20◦. At this point,
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the cutoff isosceles triangles are returned to the domain, and the mesh is complete.

Ruppert’s algorithm comes with a strong theoretical guarantee: all new angles, that

is, angles not present in the input, are greater than 20◦, and the total number of

triangles in the mesh is at most a constant times the minimum number of triangles

in any such no-small-angle mesh. Ruppert proved the efficiency by showing that

each triangle in the final mesh is within a constant factor of the local feature size at

its vertices (lsfp∈Ω)1. Figures 3.17(a)–3.17(b) show the mesh computed by Chew’s

constrained Delaunay algorithm and by Ruppert’s Delaunay refinement algorithm,

respectively.

1The lsfp∈Ω is defined as the radius of the smallest circle centered at p that touches two non-

adjacent edges of the boundary; this is a spacing function intrinsic to the domain.
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�

�

�

�

Pseudocode 3.2.1: CDT(V )

comment: Constrained Delaunay triangulation for vertices V

comment: Compute Delaunay triangulation of vertex set V

T ← DT(V )

while there exists a triangle t ∈ T with any angle of 4t < 20◦

do



c← Circumcenter(t)

if c is within diametric semicircle of a boundary edge, e

then



comment: add the midpoint (m) of e to V

m←MidPoint(e)

V ← Push(m)

else


comment: add c to V

V ← Push(c)

comment: recompute the CDT of V

CDT(V )

return (T )

3.2.3.4 Hierarchical Meshing

The last type of unstructured mesh generation technique for PSLGs uses hierarchical

data-structures. A quadtree mesh generator (Baehmann et al., 1987; Bern et al.,

1990; Yerry and Shephard, 1983) starts by enclosing the entire domain Ω inside an

axis-aligned square (2n×2n dimension). It splits this root square into four congruent
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squares, and continues this recursive process of splitting until each minimal or leaf

square intersects Ω in a simple way. Further splits may be dictated by an user-defined

spacing function or balancing condition. Quadtree squares are then wrapped and

cut to conform to the boundary. A final triangulation step then gives the required

triangulation of the domain Ω. Figure 3.16 shows the quadtree decomposition and

quadtree-based triangulation for an input vertex set.

(a) (b)

Figure 3.16: (a) A quadtree decomposition, and (b) A quadtree-based triangulation of a

vertex set.

The quadtree mesh generation due to Bern et al. (1990) was the first triangu-

lation technique that guaranteed theoretical size optimality and bounded element

quality. As first presented, the algorithm assumes Ω to be a polygonal domain with

holes; however, the approach can multiple and even to curved domains. Bern et al.’s

provably quadtree-based mesh generation algorithm splits squares until each leaf

square contains at most one connected component of the domain’s boundary, with
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at most one vertex. The algorithm then splits the squares near vertices two more

times, so that each vertex lies within the buffer zone of equal-sized squares. This

approach handles curved domains more gracefully than the Delaunay refinement

algorithm approach (Ruppert, 1993), because the splitting phase can automatically

adapt to the curvature of the domain.

Next, the mesh generator imposes a balance condition: no square should be

adjacent to one less than one-half its size. This causes more splits to propagate

across quadtree, increasing the total number of leaf squares by a constant factor of

at most eight (Moore, 1995). Squares are then wrapped to conform to the domain.

Various wrapping rules work, pseudocode 3.2.2 is one such possibility for a square b

with edge length |b|.
�

�

�

�

Pseudocode 3.2.2: ProvableQuadMesh(Ω)

comment: Compute unstructured mesh for Ω using quadtree

for each vertex v of Ω

do


let y be the closest quadtree vertex to v

move y to v

for each leaf nodes b still crossed by an edge e

do


comment: 2:1 balancing of quadtree

move vertices of b < |b|
4
(e) to their closest points on e

discard faces of the warped quadtree that lie outside Ω

Lastly, the cells of the wrapped quadtree are triangulated so that all angles

are bounded away from 0◦. Every triangle in the mesh generated will have an aspect
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ratio greater than 4 and the number of triangles produced will be a constant factor

of optimal–minimum number of triangles in any triangulation of the given input

achieving the same aspect ratio bound. Figure 3.17(c) shows the triangular mesh

from Bern et al.’s provably good mesh generation strategy for the lake Superior.

Mitchell and Vavasis (1992) improved the splitting phase by ”cloning” the

square that intersects the domain in more than one connected component, so that

each copy contains only a single connected component of the domain. The FE

mesh from the quadtree-based algorithms exhibits preferred direction by aligning

itself along the horizontal and vertical axis. If this poses a problem, the mesh

improvement steps can be used to redistribute element orientation. Neugebauer

and Dickmann (1996) proposed a solution to this element alignment by replacing

the squares of the quadtree with rhomboid quadtrees so that the triangles in the

final mesh tend to be nearly equilateral. They were able to prove that polygonal

domains with polygonal holes and isolated interior points can be triangulated with

all the angles between 30◦ and 90◦–assuming there are no small input angle.

In three-dimensions, the hierarchical meshing techniques use octree data struc-

ture, which is a three-dimensional generalization of quadtree. In R3, hierarchi-

cal data-structure based meshing strategies start by bounding the input domain Ω

within a cube and then recursively splitting it into eight congruent cubes until each

minimal cube intersects Ω in a simple way. As in 2-D, a balance condition ensures

that no cube has neighbors less than one-half its size. The balance condition need

not be explicit, but rather it may be a consequence of an intrinsic local spacing

function (Vavasis, 2002).
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(a)

(b)

(c)

Figure 3.17: Meshes generated for the Lake Superior as PSLG input by the: (a) Chews

first constrained Delaunay algorithm, (b) Rupperts Delaunay refinement algorithm, and

(c) Bern-Eppstein-Gilbert quadtree-based algorithm.
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Shephard and collaborators (Schroeder and Shephard, 1990; Shephard and

Georges, 1991; Yerry and Shephard, 1984, 1991) proposed octree-based mesh gener-

ators for polyhedral domains. The original octree-based FE mesh generator (Yerry

and Shephard, 1984) tetrahedralizes leaf nodes of the octree using a collection of

predefined patterns, dictionary-method. To keep the number of patterns manage-

able, the generator makes the simplifying assumption that each cube is cut by at

most three facets of the input polyhedron. Figure 3.18 shows the surface mesh for a

polyhedron derived from octree-based mesh generator (Yerry and Shephard, 1984).

Perucchio et al. (1989) enhanced this method by proposing a more sophisticated way

to conform to boundaries. Buratynski (1990) further sharpened this technique by

using rectangular octrees and a new hierarchical set of wrapping rules. In all these

methods, the octree is refined so that each domain edge intersects boxes of only one

size. Boxes are warped to domain vertices, then edges, and finally faces. However,

these techniques focused primarily on automating the mesh generation process and

did not investigate the optimality and quality of the meshes.

Mitchell and Vavasis (1992) extended the 2-D mesh generator of Bern et al.

(1990) to tetrahedralize a non-convex bounded polyhedral domain with holes. The

generalization is not straightforward, because vertices of polyhedra may have very

complicated local neighborhoods. Nevertheless, the algorithm given by Mitchell

and Vavasis is guaranteed to avoid all five types of bad tetrahedra, while pro-

ducing a mesh with only a constant times the minimum number of tetrahedra

in any such bounded aspect ratio tetrahedralization. This optimality condition

is slightly stronger than the bound proposed by Bern et al.. Currently, this is the
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Figure 3.18: The surface of a tetrahedral mesh derived from an octree-based mesh

generator.

only known three-dimensional mesh generation algorithm with strong theoretical

guarantee. Vavasis (2002) released a modified version of this algorithm called QMG

for ”Quality Mesh Generator”, including a simple geometric modeler and equation

solver for performing FEA. The modified algorithm includes a more systematic set

of wrapping rules, in particular, the new wrapping method for an octree cube cut

by a single facet generalizes to any fixed dimension (Mitchell and Vavasis, 1996).

Although, provably good quadtree meshing has been extended to polyhedra of arbi-

trary dimensionality, its generalization to more than 2-D is quite intricate and the

theoretical bounds on element quality are not strong enough to be entirely satisfac-

tory for practical applications.

3.2.3.5 Energy Minimization Image Meshing

Hale (2001) and Langer et al. (2001), instead of working with segmented image
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volumes, independently proposed mesh generation techniques for working directly

with raw image data. The ”integrated image analysis” method proposed by Hale

(2001), finds boundaries of regions within images (i.e. segmentation) and then

generates finite element meshes for these regions by directly constructing a mesh

that is aligned with the boundaries. The space-filling mesh is computed in three

steps: (1)fill the space spanned by the image with a pseudo-regular lattice of atoms

(vertices), where pseudo-regular means that the nominal distance between an vertex

and its nearest neighbors varies smoothly and consistently with the density of the

features in the image; (2)move the atoms to minimize a total potential energy,

defined to be a weighted sum of an atomic potential energy and an image potential

energy; and (3)connect the atoms at the least potential energy configuration using

Delaunay (or some other) triangulation to form a mesh. Hale applied his mesh

generation technique on 2-D and 3-D seismic image data and 3-D MR scans.

The approach proposed by Langer et al. (2001) minimizes a function E, defined

as the sum of two terms for each triangular element:

E = αEhom + (1− α)Eshape,

where α ∈ [0, 1] is an user tunable parameter and Ehom and Eshape are functions that

depend on the element’s homogeneity and shape, respectively. E attains a minima

for equilateral triangles overlying a homogeneous set of pixels in the image. Thus,

at any given level of refinement, the edges of the triangle approximate the interfaces

in the material image as well as the length scale of the triangles. The user decides

the stopping criteria for the refinement or annealing process. Image segmentation is
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a byproduct and not an input for this approach because the homogeneity part of E

automatically finds the mathematical representation of the material boundaries.

3.2.3.6 Interval Volume Tetrahedralization

The second category of image meshing techniques generate meshes for the interval

volume bounded between the two iso-contours (Nielson and Sung, 1997). Mathe-

matically, it can be expressed as the volume bounded between two surface Ωa and

Ωb, where Ωi = αi ≤ f(x1, x2, x3) ≤ βi. All these methods generate unstructured

meshes in two steps: (1) generate the iso-surfaces bounding the the interval volume

along with the triangular surface meshes for the two iso-surfaces; and (2) generate

tetrahedral mesh for the interval volume that also includes the triangular elements

from the iso-surface.

The first step involving the polyhedral approximation of the surface(s) from the

interval volume is generated using the marching cubes method Lorensen and Cline

(1987). Although there exists several other techniques (like, polynomial approxima-

tion, snakes, and level set methods), marching cube method is widely used because

of its multi-resolution capabilities for 3-D surface construction. The marching cubes

algorithm for surface fitting is achieved by determining polygonal patch patterns in a

cube-by-cube manner. Wilhelms and Geldren (1992) enhanced the original marching

cubes approach by using the octree-based hierarchical data-structure. Octrees were

used primarily to minimize the expensive step of visiting all the cells/voxels in the

volume data. Shekhar et al. (1996) suggested an improvement to the octree-based

marching cube technique by using surface tracking mechanism along with octrees
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for faster surface reconstruction. The output of all these polyhedral approximation

methods for input volume is a surface representation with a sub-pixel resolution.

That is, while the volume data is an O(n3) volumetric space, the relevant surface

model is an O(kn2) polygon set. Other approaches for surface reconstruction, from

a topology stand-point, is to model the surface geometry by using mathematical

functions with continuity constraints. For instance, using spline curves/surfaces

(Kass et al., 1987; Shirley and Tuchman, 1990), wavelets (Gross et al., 1996), and

simplicial complexes (Cignoni et al., 1994; Zhou et al., 1997). The last category of

surface approximation is Ray casting (Garrity, 1990), which is used extensively in

visualization applications but is seldom used in interval volume methods (Nielson,

1997).

The second step in all the interval volume tetrahedralization methods is to

define a local mesh procedure for generating voxel-by-voxel tetrahedral elements.

Frey et al. (1994) were the first to propose such a local meshing procedure, which

involved two main phases for tetrahedral construction of voxels. First, the voxel is

scanned to locate the intersection points along the edges (refer to Figure 1 Frey et al.,

1994; Fujishiro et al., 1996, refer to Figure 6), then tetrahedrons are generated using

voxel configuration rules based on characteristic number. The characteristic number

of a voxel vi of Ωi, noted Cvi, represents the number of pixels which belong to the

class ci (see Figures 5–7 Frey et al., 1994; Nielson and Sung, 1997, Figure 3). Their

approach also accounts for mesh adaptivity, smoothing, refining and de-refining.

Similar approaches, though independently, were proposed by Fujishiro et al. (1996)

and Nielson and Sung (1997). The algorithm of Fujishiro et al. uses the concept
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of α − shapes (Edelsbrunner and Mücke, 1994) and computes for each voxel the

intersection of the two convex polyhedral surfaces adjusted for the ambiguous case

(Fujishiro et al., 1996, see Figure 7). On the contrary, Nielson and Sung’s algorithm

was primarily developed for applications where the data varies linearly over the 3-D

rectilinear grid. Neither of these techniques investigated the quality of the output

finite element mesh.

Bajaj et al. (1999) proposed a method based on tetrahedrization of each indi-

vidual prismatoid by 3-D Delaunay triangulation using advancing front method. In

the first phase, their method uses a reducing algorithm to sub-divide the polyhedral

domain into one or more prismatoids (Bajaj et al., 1996). In the second phase, the

algorithm triangulates the top and the bottom iso-surfaces using 2-D constrained

Delaunay triangulations and then splits the prismatoid with Steiner points into

smaller prismatoids not containing any Steiner points. The implementation of their

approach has an O(n2) time complexity, where n is the number of vertices (Lin,

1997). This method accounts for characterization, prevention, and post-processing

of untetrahedralizable parts of the interval volume.

Zhang et al. (2003) extended the idea of dual contouring to interval volume

tetrahedralization and hexahedralization for volumetric Hermite data. The dual

contouring analyzes those edges that have their end points lying on different sides

of the iso-surface, called sign change edge (Ju et al., 2002). Each sign change edge

is shared by four (uniform case) or three (adaptive case) cells, and one minimizer

is calculated for each of them by minimizing a predefined Quadratic Error Function
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(QEF), which is formally defined as: QEF (x) =
∑
i

(ni · (x− pi)), where pi and

ni represent the position and unit normal vectors of the intersection point, respec-

tively. For each sign change edge belonging to boundary cell, a quad or a triangle

is constructed by connecting the minimizers. These quads and triangles provide an

approximation of the iso-surface. Hence, the approach generates an unstructured

mesh that efficiently adapts to the interval volume. (Note that, especially for uni-

form grids, it is trivial to deal with the interior cells, as each cell/voxel can be split

into into five/six tetrahedras.) This approach guarantees that the resulting three

dimensional mesh is topologically equivalent to the real interval volume. In addi-

tion, the approach also uses the edge-ratio and Liu-Joe parameter (Liu and Joe,

1994b) to ensure mesh quality. Tetrahedras with bad edge-ratio and the overall

mesh quality improvement with respect to Liu-Joe parameter are achieved by us-

ing the edge contraction and the smoothing-based methods, respectively, (Teng and

Wong, 2000).

Wang et al. (2004) proposed sphere carving algorithm for the problem of in-

terval volume tetrahedralization. The input for this algorithm also uses segmented

image volume but instead it builds a tetrahedral mesh by maintaining a genus zero

surface. The resulting tetrahedralized 3-D volume is guaranteed to have genus2 zero

2Genus is a topologically invariant property of a surface defined as the largest number of non-

intersecting simple closed curves that can be drawn on the surface without separating it. Roughly

speaking, it is the number of holes in a surface. The genus of a surface, also called the geomet-

ric genus, is related to the Euler-Poincaré characteristic $, by, $ ≡ V − E + F = $(g), where

$(g) = 2− 2g (Coxeter, 1973).
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even when the segmented volume contains holes due to enclosed structures (like,

ventricular or non-white matter in brain MR images) or image noise.

3.2.4 Summary

The vast majority of research on quality guaranteed unstructured mesh generation

techniques has been targeted towards polygonal/polyhedral domains rather than

images. The most efficient approach for generating quality-guaranteed unstructured

meshes for PSLGs was found to be the method of (Bern et al., 1990) that combines

a hierarchical space decomposition for triangulations.

Methods to discretize image data for FEA are extremely rare. The non-invasive

property associated with imaging and recent developments in image sensors are em-

powering researchers with novel strategies for measuring various material properties

and delineating objects. Using such data as input to numerical simulation techniques

requires the development of efficient mesh generation technique adapted to image

data. Such meshes could support, for example, the simulation of blood flow in arter-

ies (Cebral and Löhner, 1999) or micro-structural analysis of bio-materials (Müller

and Rüegsegger, 1995). Contemporary methods for generating simplicial meshes

from image data were presented by categorizing them into two classes. First category

of methods integrate image segmentation and meshing in one step. The integrated

image analysis based domain discretization techniques produce a small number of

elements at material boundaries as it aligns elemental edges with such boundaries,

thereby interleaving automatic feature isolation. However, these methods are com-

putationally expensive because they require repeated computations of minimizing
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an objective function and its partial derivatives. Another problem associated with

these methods is that they are not information preserving and manipulate the image

data (e.g., the annealing step of the method proposed by Langer et al. (2001)). The

second category of methods for image data works with the polygonal/polyhedral

surfaces bounding the interval volume. These methods preserve the topology of the

domain in the image data, but they come with no theoretical guarantees on the

elemental quality. Moreover, these methods also need an extra image-processing

step to generate the iso-surfaces bounding the interval volume.

3.3 Objectives

The overall goal of this chapter is to develop an efficient quality-guaranteed, unstruc-

tured mesh generation technique for image data. The purpose of the technique is to

enable researchers to perform transport simulations using finite element method, on

spatial domains obtained by segmenting heterogeneous biological images obtained,

for example digital satellite images of a landscape or magnetic resonance imaging of

a body part. The specific objectives of the research described in this chapter are to:

Objective 3: Develop and implement a quality guaranteed unstructured simplicial

mesh generation technique for (segmented) image data.

Objective 4: Analyze the developed unstructured simplicial mesh generation tech-

nique for elemental quality and output size.

The mesh generation technique should be integrable with the texture-based im-

age segmentation technique developed in the previous chapter (refer to Section §2.3).
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Additionally, the developed method must be capable to adapt to the heterogeneity

presented in the image data, thereby generating coarser mesh for homogeneous re-

gions and finer mesh for highly heterogeneous regions. It should also be easily scale

to arbitrary dimensions so that it accommodates both 2-D images (e.g., air photos)

and 3-D images (e.g., MR scans). Lastly, unlike current integrated image-analysis

based mesh generation techniques (Hale, 2001; Langer et al., 2001), the developed

method must also be information preserving so that material boundaries in the seg-

mented image can be extracted exactly from the mesh, i.e., it should not destroy

the original image data.

3.4 Materials and Methods

3.4.1 Development

The approach used in this work to develop the image meshing procedure consists

of modifying the method of (Bern et al., 1990) so that it works with image data,

and extending this algorithm to higher spatial dimensions. The meshing method

of (Bern et al., 1990) was selected as a starting point because it is unstructured,

efficient, quality-guaranteed, adaptive, and uses a dyadic space decomposition that

is conceptually similar to that used in image segmentation techniques rooted in

multi-resolution analysis (e.g., SWA segmentation method developed in Chapter 2).

The 2-D algorithm of (Bern et al., 1990) consists of three steps: (1) generate a point

quadtree of the input vertex set; (2) balance the point quadtree using 2:1 rule, and

(3) triangulate the points within the nodes of point quadtree.
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The method used to adapt, the algorithm to arbitrary dimensional image data

will entail three major modifications: (1) the hierarchical data structure will be

changed from point quadtree to region quadtree to accommodate image elements;

(2) this data data structure will be extended to higher dimensions, and (3) a step

in which vertices are extracted from the region-based data structure will be added

to the algorithm, prior to meshing. The first modification needed to account for

the nature of image data consists of spatially extended regions (pixels in 2-D and

voxels in 3-D) rather than points. The second modification is required to ensure

that the image meshing strategy works on both two-dimensional bio-images (e.g.,

digital microscope image, satellite images) and on three-dimensional images (e.g.,

CT scans and MR scans). The third modification is necessary because Delaunay

meshing uses a vertex set (i.e. points) as inputs, rather than spatially extended

regions (i.e., pixels or voxels).

In this study, the first two modifications will be performed by using a region

2d-tree (explained below) to represent the input image data. This data structure

is the natural equivalent of the point-quadtrees used by (Bern et al., 1990) for

their 2-D input vertex set. It possesses the same density-adaptive spatial properties

and coincides with the data structure used by the SWA bio-image segmentation

method. The added step described as third modification above will be used to

produce a vertex set from the leaf nodes of the 2d-tree. This will be accomplished

by considering all leaf node corners to be vertices which guarantees that material

boundaries of the original image are preserved exactly by the mesh.

With the modifications, listed above, the image segmentation algorithm de-
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veloped in this study will consist of the following steps:

1. generate a region 2d-tree representation of the input d-dimensional images,

2. balance the 2d-tree using 2:1 rule

3. extract a vertex set from the corners of the balance 2d-tree’s leaf nodes, and

4. use Delaunay meshing to produce a simplicial mesh from the vertex set.

The high degree of similarity between this algorithm and that of (Bern et al., 1990)

suggests that the proposed image meshing method will possess similar characteristics

in terms of element quality and density adaptivity.

The details of the region 2d-tree representation and balancing used in this

study are as follows. The original, d-dimensional image, S, is represented as:

S
(
x1, x2, . . . , xd : xi ∈ [0, 2n−1]

)
, (3.2)

where n is a positive integer. The input image data is resized appropriately to ensure

that it respects equation 3.2. The region 2d-tree recursively subdivides S into 2d

number of nodes until a predefined stopping criterion is attained (Samet, 1990). In

our case, a leaf node is recursively split until all the pixels inside the node/block

have the same value. The process of creating 2d sons of a node is called splitting.

Henceforth, the 2d-tree decomposition of S will be denoted by UT . Figure 3.19(b)

illustrates the quadtree (22-tree) maximal block decomposition for a 2-D image of

8× 8 pixels shown in Figure 3.19(a). Any node which is not split is called a leaf or

external node. Conversely, an internal or non-leaf node is one that has child nodes.
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In Figure 3.19(c), the leaf nodes are shown as squares and the non-leaf nodes as

empty-circles. The level of the root node in a 2d-tree is equal to the log2 of the

dimension of the input image. Since the input is assumed to be a dyadic image, the

root node of the 2d-tree is always at level lj, where lj ∈ [0, n], and all the children

are at a level lower than their respective parent nodes. The size of a node at level

l is equivalent to its width and is given by s = 2lj . The depth of a 2d-tree is equal

to the difference between the levels of the root node and the deepest non-leaf node.

For example, depth of the quadtree shown in Figure 3.19(c) is 3, because the root

node is at l3 and the deepest non-leaf node is at l0.

A node in a 2d-tree has 2d vertices or corners. An edge of a leaf node is the

line connecting two neighboring corners of the leaf node in 2-D and a facet of a leaf

node is the corresponding planar polygon in 3-D. The term face of a leaf node is

used to refer a generic d -dimensional entity, that can represent a corner, an edge, or

a facet in R0, R1, or R2. The degree of a 2d-tree is defined as the number of edges

formed from one leaf node edge when that leaf node is split. The 2d-trees discussed

in this study are of degree two, as splitting a leaf node involves dividing its edges

into two equal parts. Two leaf nodes sharing a k -dimensional face, k ∈ [0, d], are

called k -neighbors (Moore, 1995) and the special case of leaf nodes sharing a d− 1

face is called e-neighbors (i.e., in 2-D two leaf nodes sharing an edge and in 3-D two

leaf nodes sharing a facet are called e-neighbors).

At each stage in generation of a 2d-tree from an image, a node can be subdi-

vided resulting in a decomposition which can be largely unbalanced. A frequently

used approach to overcome this situation is to impose the 2:1 balancing rule (Bern
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Figure 3.19: An example of (a) 2-D input image of size 8× 8 pixels, (b), its maximal

block decomposition, and (c) the corresponding pointer-based region quadtree structure.
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et al., 1990; Herzen and Barr, 1987; Yerry and Shephard, 1983) for converting a

generic 2d-tree (UT ) to an e-balanced 2d-trees (BT ). The 2d-tree is e-balanced if,

any leaf node at level lj contains no e-neighbors at level greater than lj+1. For

example, leaf nodes 9 and 10 (both at levels l0) in Figure 3.19(b) have node 13 as

an e-neighbor which is at a level l2. To meet the 2:1 balancing requirement, node

13 in the unbalanced quadtree is should be split into four children. The e-balanced

quadtree obtained by applying this 2:1 balancing rule to the unbalanced quadtree of

Figure 3.19(b) is shown in Figure 3.20. The 2:1 balancing rule can be implemented

efficiently to bound the BT by O(|UT |) operations (Moore, 1995).

The four step image meshing algorithm will be implemented in the Java lan-

guage using the Java Software Development Kit (SDK) version 1.4.1. Java was

selected over C++ and fourth generation languages (4GL) like MATLAB, IDL, and

Mathematica for the following reasons: (1) Java is freely available; (2) Java runs on

arbitrary platforms, from mobile devices to super computers, and; (3) Java code is

platform independent, it can be written once and run on any platform with an Java

interpreter. The slower speed of associated with executing Java byte code, compared

to C/C++, is viewed in this study as a minor drawback relative to its advantages.

The algorithms used for generating a region 2d-tree from image data, for e-

balancing the tree and for Delaunay meshing will be obtained from the literature

and implemented or translated into Java source code. In the event that an existing

algorithm can be modified to improve its performance, such modification will be

performed and the performance of the resulting modified algorithm will be com-

pared to that of the original algorithm using test images prior to inclusion in the
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Figure 3.20: (a) Maximal block decomposition and (b) quadtree structure after imposing

the 2:1 balancing rule on the quadtree in Figure 3.19.
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implementation.

The notation and conventions used for implementation are as follows. The

input image co-ordinate system is assumed to be in Euclidean space with the axes

in the clockwise orientation. That is, for a 2-D image the origin is at the NW

corner, whereas a 3-D image has its origin at the LUF corner. This axes orientation

is consistent with the conventions used in the image processing literature. The input

image is assumed to be discrete approximation of a continuous function with a single

value at a each location on a uniform integer gird with spacing h = 1. Lastly, the

input image S is bounded by 2d number of vertices or corners that are given by the

following relation:

V {S (x1, x2, · · · , xd)} =



{x1, x2, · · · , xd−1, xd} ,

{x1, x2 + h, · · · , xd−1, xd} ,

...

{x1, x2, · · · , xd−1 + h, xd} ,

{x1, x2, · · · , xd−1, xd + h}



(3.3)

The information stored in the image can consist of floating-point values or integer

and can be in any compression format, as long as the input conventions are meet.

Figures 3.21 and 3.22 illustrates the conventions and notations listed above.

3.4.2 Analysis

The goals of the analysis are to obtain a theoretical bound and an expression for

output mesh (GM) generated by the IMesh algorithm. The element quality index

that will be used to analyze the quality of the unstructured mesh from the IMesh
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Figure 3.21: An example of (a) two-dimensional image with its coordinate system and

(b) relationship between a 2-D block’s four quadrants and its boundaries.
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Figure 3.22: An example of (a) three-dimensional image with its coordinate system, (b)

the labelling of faces, edges, and vertices for a 3-D block, and (c) labelling of octants

associated with a 3-D block.
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algorithm is selected from FE mesh quality measures presented in the literature

(Shewchuk, 2002). The radius-to-edge ratio (Θ) is the preferred choice as the qual-

ity index for the analysis because it readily scales to higher-dimensional simplices.

Formally, it is defined as follows: Let QM = {q1, q2, . . . , qn} be the output of the

simplicial mesh, then the radius-to-edge ratio is defined for the entire mesh QM

using the following relation,

θ (qi) =
rcirc

ēmin

(3.4)

Θ (QM) = max (θ (qi) , qi ∈ QM) (3.5)

In equation 3.4, ēmin is the minimum edge length of the simplex and rcirc is the

circumradius of an element (i.e., the radius of circumscribing circle, sphere or hyper-

sphere). Another advantage of using this quality metric is that, in two-dimensions, a

bound on Θ also bounds the minimum internal angle, αmin, of the entire triangulation

(Shewchuk, 2002, see Section 3.1). These two metrics are related by:

αmin = arcsin
1

2Θ
(3.6)

The worst possible radius-to-edge ratio, that can be produced by the IMesh,

will be identified using a three step process: (1) all possible non-isomorphic con-

figurations of vertices, on leaf nodes, obtainable in an e-balanced 2d-tree will be

enumerated; (2) the simplices that can be generated (by Delaunay triangulation)

from the above configurations will be identified; and (3) the radius-to-edge ratio, θ,

for each simplicial element will be computed. The bound on the element quality,

Θ(GM), for the output mesh from IMesh will then be calculated using equation

3.4.
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The enumeration of all possible non-isomorphic vertex configurations on a

leaf node, λ, will be performed using a d -partite graph representation since every

(d− 1)-dimensional face Fi of the leaf node λ is adjacent to every other face except

the opposite face. Figure 3.23 shows an example of this equivalence in two- and

three-dimensions. In 2-D, the vertices of the G(λ) geometrically represent the edges

of λ and in 3-D the six vertices of the graph are geometrically equivalent to the six

facets of the cube.

F
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WN

S
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Figure 3.23: Example showing the equivalence of representing a 2-D node and a 3-D

node as a d-partite graph. The vertices of the d-partite graphs (on the right) represent

the edges and faces of the 2-D block and 3-D block, respectively.

Since a 2:1 balancing rule is imposed for constructing the e-balanced 2d-trees,

every leaf node, λ of size `, in BT can only have e-neighbors of three possible sizes:
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`/2, `, and 2` (Figure 3.24). These possibilities can be further reduced into two cases

where the e-neighbors are of size `/2, and `. Because, e-neighbors of λ with sizes

`/2 and 2` can be treated as one case by interchanging λ with its e-neighbor. The

case when a leaf node has an e-neighbor of size `/2 will place 3d−1 − 2d−1 vertices

along their common (d − 1)-dimensional face. For example, in 2-D a new vertex

(31 − 21) is added at the mid-point along their common edge. Similarly, in 3-D

five (32 − 22) new vertices are added along their common face. This is indicated

on the d -partite graph, G(λ), by coloring the vertex (circle) that corresponds to

the edge (face) that is split. For analysis, the graph vertices will be assigned black

or white shade depending on whether it is split or not. Figure 3.25 illustrates the

equivalence between leaf node and d -partite graph representations in a two and a

three-dimensional situation where two e-neighbors of the central leaf node, λ, are

split.

λ λ λ

Figure 3.24: Illustration showing a 2-D node (λ) in a e-balanced quadtree along with its

possible e-neighbors. The configuration on the left shows λ having an edge neighbor of

half its size. In the middle, λ shares its edge with an equal size e-neighbor. The

rightmost configuration shows λ have an e-neighbor of twice its size.

The use d -partite graph representation reduces the problem of enumerating

the leaf node configurations to that of finding the non-isomorphic configurations
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Figure 3.25: Example showing the equivalence of representing a 2-D node and a 3-D

node as a d-partite graph when its e-neighbors are split. The vertices of the d-partite

graphs, shown on the rightmost column, with ”solid black” color corresponds to the 2-D

node’s edges and 3-D node’s faces that are split.
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of the graph. Enumeration of all the possible non-isomorphic configurations of the

d -partite graphs, permits to (indirectly) obtain all possible vertex locations in BT ,

which in turn, permits the generation (by Delaunay triangulation) of all possible

simplicial elements produced by IMesh and hence the proof for quality bounds for

the algorithm.

3.5 Results

3.5.1 Development

The image meshing method (referred to as IMesh in the following) was developed

and implemented in accordance with the four step algorithm presented in the Sec-

tion §3.4.1. The resulting technique for computing the quality unstructured meshes

QM from either a segmented or a raw multi-dimensional image S , is given in the

pseudocode 3.5.1. As discussed previously the four main steps of IMesh algorithm

are: (1) to convert the Rd input image to a to 2d-tree representation, UT , (2) con-

struct e-balance the 2d-tree (BT ) by imposing the 2:1 balancing rule (instrumental

in fine tuning the element quality of the output mesh), (3) use the unique vertices,

UV , of all the leaf nodes in the BT , and (4) use the unique vertices generated in

the previous step as an input to a Delaunay triangulation technique for building the

unstructured finite element mesh, QM .
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�

�

�

�

Pseudocode 3.5.1: IMesh(S)

comment: Image Meshing Algorithm for image data, S

comment: Compute 2d-tree for S

UT ← ArrayToTree(S) (1)

comment: Build a e-balanced 2d-tree of UT

BT ← BalancedTree(UT ) (2)

comment: Get unique vertices of the leaf nodes in BT

UV ← UniqueVertices(LeafNodes(BT )) (3)

comment: Compute Delaunay triangulation of UV

UM ← QDelaunay(UV ) (4)

output (UM)

Figure 3.26 illustrates the output from each of these four steps involved in

generating a quality triangular mesh for an example two-dimensional image. The

source image is two-dimensional square consisting of 8× 8 pixels with four intensity

levels (or classes). The region-quadtree generation step converts it to a set of 13

leaf nodes, each of which correspond to a homogenous sub-region of the input image

(Figure 3.26(b)). Leaf nodes are observed to be physically smaller where the input

image contained fine-scale heterogeneity and larger where the image was relatively

homogeneous. The quadtree representation has preserved all of the information

contained in the original image but represents it using only 13 leaf nodes rather

than 64 pixels. The e-balanced quadtree produced as the output of step 2 of the
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algorithm is shown in Figure 3.26(b). In this example, only one leaf node had to

be split in order to e-balance the tree. This led to a total of 16 leaf nodes in the e-

balanced quadtree representation of the source image which corresponds to only on

fourth of the number of pixels in that image. The unique vertices collected from the

corners of leaf nodes in the e-balanced tree are shown in Figure 3.26(c). A total of

27 vertices were extracted and one readily observes that the spatial density of these

vertices varies over space in relation to the heterogeneity of the input image: vertex

density is highest in areas where the source image has fine-scale heterogeneity and

smallest where the source is spatially homogeneous. The Delaunay mesh computed

over these vertices in step 4 of the algorithm is presented in Figure 3.26(d) . The

mesh consists of 38 triangular elements which is approximately one quarter of the

128 triangles that would be necessary to mesh the source image directly on a pixel

basis. The mesh is observed to be density adaptive with a high density of small but

rounder elements where the input image is to be highly heterogeneous and a low

density of large quality elements where it is homogeneous. Close inspection further

reveals that all material boundaries of the source image are represented by element

edges in the mesh, as required by this study’s objectives.

The efficiency, adaptivity, quality and boundary preservation property of the

mesh are a direct result of the procedure used to generate it in the IMesh algorithm.

Efficiency is primarily a result of the use of a 2d-tree to efficiently represent the

input image as a small number of leaf nodes in step 1 of the algorithm. This

step, furthermore, results in a density-adapted mesh since leaf nodes are smaller

where the source image has been fine scale heterogeneity and larger where it is
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homogeneous. Step 2 of the algorithm mildly reduces its spatial efficiency but is

key to producing a quality mesh. The quality of elements is a result of steps 2 to

4 of the algorithm (the e-balancing step using the 2:1 rule). This step results in

bounds on the shape of the elements produced by IMesh that are analyzed in detail

in Section §3.5.2 and guarantees that no bad simplicial elements will be generated.

The boundary preservation property of the mesh results from steps 1, 3, and 4 as

the quadtree respects original image boundaries and Delaunay meshing on corner

vertices of leaf nodes generates elements with edges aligned to those of the leaf

nodes. The efficiency, adaptivity, and quality (proved in the next section) of IMesh

are hence found to be similar to those of the 2-D point-based algorithm of (Bern

et al., 1990) which it extends to image data.

The characteristics of the IMesh algorithm are further illustrated using 2-

D and 3-D segmented biological image data sources in Figures Figure 3.27(a) and

3.28(a), respectively. The result of applying IMesh to a 1024 × 1024 pixels seg-

mented digital satellite photo, representing a farmed landscape and wetland is

present in Figure 3.27(b). The output mesh consists of: 29716 leaf nodes in the

e-balanced quadtree, 37647 unique vertices, and 75292 triangles which is 3.59% of

the total triangles had each image pixel been split into two triangles. The mesh

density is observed to adapt significantly to the image heterogeneity boundary with

a low density of elements in homogeneous areas and a high density at material

boundaries. The original locations of all material boundaries are preserved by the

mesh. The smallest and the largest internal angles of the elements is 26.565◦ and

90◦, and the worst radius-to-edge ratio is
√

5
2

(aspect-ratio is at most 2.5). Hence
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(a) Input Image

(b) Step 1 (c) Step 2
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 1
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(d) Step 3 (e) Step 4

Figure 3.26: An example of applying IMesh algorithm in 2-D for: (a) input image of

size 8× 8 pixels, (b) its quadtree maximal block decomposition, (c) its 2 : 1 e-balanced

quadtree maximal block decomposition, (d) unique vertices of the leaf nodes, and (e)

output Delaunay mesh of the input image.
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the output mesh is considered to be of good quality (neither a needles nor a cap

shaped elements appear).

(a) (b)

Figure 3.27: (a) Input segmented landscape image, and (b) output mesh generated by

IMesh algorithm.

The result of applying IMesh to a 256× 256× 256 voxels of segmented brain

MR volume with three tissues, namely CSF, grey-matter, and white-matter is pre-

sented in Figure 3.28(b). The output mesh consists of 627736 leaf nodes and 2733351

tetrahedral elements and closer inspection shows that the 3-D mesh respects the ma-

terial boundaries. The worst case radius-to-edge ratio is
√

29
4

and hence guarantees

that the output mesh does not contain any bad tetrahedral elements, except slivers.

The case of slivers appearing in the output mesh from IMesh algorithm is minimal

because the locations of the vertices of a leaf nodes in a e-balanced octree is well

positioned to avoid slivers. This result along with that for the 2-D biological image,

confirm the expected efficiency, adaptivity, and boundary preservation properties of

IMesh.
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(a) (b)

Figure 3.28: (a) Input segmented MR brain volume with CSF, grey-matter and

white-matter tissues, and (b) tetrahedral mesh generated by IMesh algorithm.

The Java SDK 1.4.1 source code and the compiled byte code of the IMesh

developed in this study can be accessed from the internet (Gudla, 2005). The

details of the development are as follows. The first step of the IMesh algorithm

involves constructing a pointer-based 2d-tree with its root node as large as S . This

study uses the ArrayToQuadtree procedure of Samet (1989) for implementing

the pointer-based 2d-tree algorithm. Although FD linear 2d-trees Samet (1989)

can give compact data representation (compression), pointer-based region 2d-trees

representation is used in the implementation, as they are more efficient for tree-

traversal operations (for instance, neighbor finding). Since the IMesh algorithm

involves several such tree-traversal operations the selection of pointer-based 2d-tree

representation over FD linear 2d-trees is justified. However, to accommodate the

input requirements of a multi-dimensional array, the original 2d-node data-structure

(Samet, 1989, see Section §1.5)) was modified with the following changes:

• ”FATHER” field of type Node contains pointers to the node’s father (parent)
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and is unchanged,

• ”SONS” field of type Node contains pointers to its 2d sons (children) and is

unchanged,

• ”NODETYPE” field is changed to data-type boolean, which takes a value 0

or 1 when the 2d-tree node is non-leaf or leaf, respectively,

• ”VALUE” field of data-type float is added for accommodating gray-scale pixel

intensities or a floating-point values of the image data. For a non-leaf node

the ”VALUE” field is set to {∅},

• ”LEVEL” field of data-type integer is added, which takes a value in the interval

[0, n] depending on the level of the node in the 2d-tree, and

• ”CORNER” field of type Point (see pseudocode 3.5.2) is added to the data-

structure to maintaining the North-West (NW ) and Left-Upper-Front (LUF )

integer space co-ordinates associated with the node in R2 and R3, respectively.

Samet’s ArrayToQuadtree conversion algorithm was also modified appropri-

ately to reflect the changes made to the Node data-structure (see pseudocode

3.5.3). A detailed description and analysis of this algorithm can be found in Samet

(1989, Section §4.1). The modified algorithm of converting an array to 2d-tree,

(ArrayToTree), takes a (multi-dimensional) floating-point array or (segmented)

image as input and returns a pointer-based region 2d-tree, UT, bounding the input

data.
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Pseudocode 3.5.2: Point( )

comment: Data structure for a point in Rd

integer x1, x2, . . . , xd

�

�

�

�

Pseudocode 3.5.3: Node( )

comment: Data structure of a node in quadtree

pointer Node FATHER

pointer Node[2d] SONS

boolean NODETYPE

float VALUE

integer LEVEL

Point CORNER

The 2:1 e-balanced version, BT , of the 2d-tree BT is generated using the al-

gorithm proposed by Sivan (1996) for surface modeling except for the TrimNodes

function used at steps 1 and 2 in pseudocode 3.5.4. In the BalancedTree algo-

rithm, the TrimNodes function serves the purpose of filtering out the leaf node(s)

at levels ln and ln − depth from ever being processed which reduces the overall

processing time. This is done because if a 2d-tree has a leaf node at ln, then the

input image/array is completely homogeneous and does not need any further balanc-

ing. Similarly, the leaf nodes in a 2d-tree at level ln−depth will never be split during

the 2:1 balancing phase. Thus, such a filtering step minimizes the number of nodes
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to be processed while constructing the e-balanced 2d-tree. (Note that in Sivan’s

original algorithm every leaf node is checked for 2:1 balancing condition, which in

turn uses a relatively expensive step of finding the e-neighbors.) The size-filtering

step is implemented very efficiently, with little overhead, by exploiting the 2d-tree

structure to collect only those leaf nodes that are between levels, l ∈ {1, 2, . . . , n−1}.
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�

�

�

�

Pseudocode 3.5.4: BalancedTree(UT )

comment: e-balancing a pointer-based region 2d-tree UT

comment: Insert leaf nodes of UT into L

L← LeafNodes(UT )

comment: Retain nodes from L whose level ∈ [1, l − 1]

L← TrimNodes(L) (1)

while L 6= {∅}

do



comment: pop node li from L

li ← Pop(L)

comment: Load the edge-neighbors of li into a queue, NL

NL← EdgeNeighbors(li)

BT ← e-Balance(li)

NL← TrimNodes(NL) (2)

while NL 6= {∅}

do



comment: pop out a node, li, from L

nli ← Pop(NL)

BT ← e-Balance(nli)

return (BT )

Four test images were used to quantitatively compare the performance of

Sivan’s original algorithm with its proposed modifications: (1) a 2-D raw MR brain

scan (shown in Figure 3.29(a)), (2) a 2-D MR brain scan segmented into ten tissue
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types (shown in Figure 3.29(b)), (3) a 3-D simulated raw MR brain scan with SNR

= 1% and INU = 40% (shown in Figure 2.11(f)), and (4) a 3-D segmented MR

brain scan from MNI-BrainWeb (shown in Figure 2.12). The e-balanced 2d-tree

construction times, expressed in seconds, were obtained by implementing both the

algorithms in Java SDK 1.4.1 and executing them on a SUN ULTRA-10 worksta-

tion running on Solaris 2.9 with 674 megabytes of physical RAM under typical load

conditions. Experimental results of the time required for constructing e-balanced

2d-tree using Sivan’s algorithm and the proposed size-filtering algorithm are shown

in Table 3.1. The modified algorithm is 2 to 200 times faster than the original.

The performance improvements are more pronounced for heterogeneous image data

in higher dimensions. It is clearly evident that the size-filtering step speeds up

the e-balanced 2d-tree construction and the modified algorithm was selected while

implementing IMesh algorithm.

The unique vertex, UV , needed in step 3 of IMesh is generated from the

e-balanced 2d-tree BT by applying the quicksort algorithm (Hoare, 1962) on the

Point data-type. The Point data-type is declared comparable to facilitate the

generation of unique vertices on-the-fly. The current implementation of the IMesh

program is capable of generating the unique vertices in several compatible formats

(e.g., Triangle (Shewchuk, 1996b), detri (Joe, 1995; Mücke, 1993), and QHull (Bar-

ber et al., 1996)).

The final step of the IMesh method involves Delaunay triangulation of the

vertex set UV generated by collecting the unique corners of leaf nodes in BT . Al-

though, there exists several implementations for Delaunay triangulation of point
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(a) (b)

Figure 3.29: Test images used for quantitative comparisons of the e-balanced 2d-tree

construction using Sivan’s algorithm and BalancedTree algorithm: (a) raw MR scan from

MNI-BrainWeb, and (b) corresponding segmented MR scan with ten different tissues.
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Table 3.1: Comparison of constructing balanced 2d-tree using Sivans algorithm (BQT1)

and BalancedTree algorithm (BQT2).

Leaf Nodes Examined Time, secs

Input Data # Splits
BQT1 BQT2 BQT1 BQT2

2-D Raw MR

(Figure 3.29(a))
72 40181 317 1.452 0.551

2-D Segmented MR

(Figure 3.29(b))
567 17301 2567 0.771 0.331

3-D Raw MR

(Figure 2.11(f))
1936 7263929 17680 115067.266 441.481

3-D Segmented MR

(Figure 2.12)
18109 2832933 153709 23247.848 102.168
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data set, the quickhull algorithm was chosen because it is the only known approach

scalable across arbitrary dimension (Barber et al., 1996, see Figure 1)). Moreover,

the quickhull algorithm is also implemented as an open source computational geom-

etry package, called QHull (Barber et al., 1996) and is widely available for various

computing platforms. Hence, in the final step, the output from the UniqueVer-

tices function is redirected as an input to the QDelaunay3. The resulting output

mesh from the QDelaunay can be viewed using the GeomView visualization

program, which is also available from the QHull website. The implementation re-

sults for IMesh are summarized in Table 3.2. All examples presented earlier in this

section were produced using this implementation (Gudla, 2005).

3.5.2 Analysis

In this section, the bounds on size and quality of the output FE mesh from the

IMesh algorithm is presented. First, the proof for two-dimensional element quality

is discussed and then generalized to higher dimensions (up to R8). Second, the proof

for the bound output for the output mesh from IMesh algorithm in a worst-case

scenario is discussed.

Result 3.5.1. Let λ be any leaf node of a e-balanced 2d-tree, BT, and

µ = {e-neighbors(λ)}

, then the number of non-isomorphic configurations, NI(r), when r elements of µ

3The QDelaunay is a part of QHull software package. http://www.qhull.org

198



T
ab

le
3.

2:
Su

m
m

ar
y

of
im

pl
em

en
ta

ti
on

re
su

lts
fo

r
IM

e
sh

al
go

ri
th

m
.

S
te

p
In

p
u
t

D
es

cr
ip

ti
on

O
u
tp

u
t

F
u
n
ct

io
n

A
lg

or
it

h
m

C
on

ve
rt

in
p
u
t

P
oi

n
te

r-
b
as

ed
re

gi
on

q
u
ad

tr
ee

1
S

im
ag

e
to

2d
-t

re
e

U
T

A
r
r
a
y
T

o
T

r
e
e

(S
am

et
,
19

89
)

ex
te

n
d
ed

to

m
u
lt

i-
va

lu
ed

an
d

m
u
lt

i-
d
im

en
si

on
al

im
ag

e

e
-b

al
an

ce
S
iv

an
(1

99
6)

al
go

ri
th

m
w

it
h

2
U

T
2d

-t
re

e
u
si

n
g

2:
1

ru
le

B
T

B
a
l
a
n
c
e
d
T

r
e
e

p
er

fo
rm

an
ce

en
h
an

ci
n
g

si
ze

-fi
lt

er
in

g

C
ol

le
ct

u
n
iq

u
e

le
af

Q
u
ic

k
so

rt
(H

oa
re

,
19

62
)

3
B
T

n
o
d
e

co
rn

er
ve

rt
ic

es
U

V
U

n
iq

u
e
V

e
r
t
ic

e
s

on
P

O
IN

T
d
at

a
ty

p
e

G
en

er
at

e
si

m
p
li
ci

al

4
U

V
m

es
h

on
co

rn
er

s
Q

M
Q

D
e
l
a
u
n
a
y

Q
H

u
l
l

(B
ar

b
er

et
al

.,
19

96
)

199



are split is

NI(r) =


⌈

r+1
2

⌉
, 0 ≤ r ≤ d

⌈
2d−r+1

2

⌉
, d < r ≤ 2d

where d e denotes ceil function.

Proof. Let Fi represent the ith (d − 1)-dimensional face of λ and λ(Fi) be the e-

neighbor of µ along Fi, where i ∈ [1, 2d] 4. If G(λ) denotes the d -partite graph

representation of λ such that its ith vertex corresponding to Fi. A black or white

colored vertex in the former denotes a split or un-split face in the latter. Addi-

tionally, if a binary value of 1 or 0 is assigned to black or white colored vertex in

the d -partite graph, then the problem of enumerating the number of possible non-

isomorphic configurations is reduced to number partitioning. That is, the case of

enumerating the non-isomorphic leaf node configurations when its r faces are split

is equivalent to partitioning the integer r into at most two parts with each part less

d.

Case 1: r = 0 and r = d. These are trivial cases and each will result in only

one configuration.

Case 2: 1 ≤ r ≤ d. For this case, r can be partitioned into two parts in⌈
r+1
2

⌉
combinatorial ways (Comtet, 1974, pp. 115–116). Thus, the number of non-

isomorphic leaf node configurations when r, 1 ≤ r ≤ d d-1 -dimensional faces are

split is equal to
⌈

r+1
2

⌉
.

Case 3: d < r < 2d. Let r̃ = 2d− r be the number of faces that are not split.

This condition will reduce to the previous case by interchanging the values assigned

4A hyper-cube in Rd has 2d faces each of which is a (d− 1)-dimensional hyper-cube.
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to split and unsplit vertex of G(λ). Hence, NI(r̃, d) =
⌈

r̃+1
2

⌉
.

An immediate consequence of Result 3.5.1 is the total number of non-isomorphic

configurations, TNI, for any leaf node of BT when none or any of its e-neighbors are

split. Result 3.5.2 provides an expression for TNI as a function of dimensionality

d.

Result 3.5.2. Let λ be any leaf node of BT and µ = {e- neighbors(λ)}, then the

total number of non-isomorphic configurations in Rd, TNI(d), when none or any of

the elements of µ are split is given by, TNI(d) = (d+1)(d+2)
2

.

Proof. Assume TNI(d) = (d+1)(d+2)
2

to be true for Rd, then using Result 3.5.1:

TNI(d) =
d−1∑
r=0

⌈
r + 1

2

⌉
+

⌈
d + 1

2

⌉
+

2d∑
r=d+1

⌈
2d− r + 1

2

⌉

=

⌈
d + 1

2

⌉
+ 2

d∑
r=0

⌈
r + 1

2

⌉
(3.7)

TNI(d + 1) =

⌈
d + 2

2

⌉
+ 2

d−1∑
r=0

⌈
r + 1

2

⌉
(3.8)

Subtracting equation 3.8 from equation 3.7 gives,

TNI(d + 1)− TNI(d) =

⌈
d + 1

2

⌉
+

⌈
d + 2

2

⌉
= d + 2 (3.9)

By induction, equation (3.9) reduces to:

TNI(d + 1) = TNI(d) + (d + 2)

=
(d + 1)(d + 2)

2
+ (d + 2)

=
(d + 2)(d + 3)

2
(3.10)
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Table 3.3 provides an exhaustive list of Results 3.5.1and 3.5.2 for 2-D, 3-D and

4-D. The six possible non-isomorphic configurations of a 2-D leaf node, represented

as bi-partite graph, are shown in Figure 3.30. Similarly, the ten possible 3-D leaf

node non-isomorphic configurations, represented as tri-partite graph, are shown in

Figure 3.31. The corresponding leaf-node representations are shown in the top rows

of Figures 3.32 and 3.33, respectively. The effect on a leaf node of having any of its

e-neighbors are split is to add vertices along the common (d− 1)-dimensional face.

The node adjacency representation can be further transformed to a representation

showing the leaf node with its original 2d vertices and the extra vertices added

along its faces to accommodate a split e-neighbor. This representation for both

2-D and 3-D cases are shown in the bottom row of Figures 3.32 and Figures 3.33,

respectively. In these figures, the original vertices associated with the leaf node are

shown in black shade whereas the newly added vertices due to the splitting of a

e-neighbor are shown in gray shade. The availability of all these representations for

the total non-isomorphic configurations of leaf nodes allows to prove the bounds on

the elemental quality more readily than before.

Theorem 3.5.3. In two-dimensions, the output triangular mesh, QM , from the

IMesh method bounds: (a) the radius-to-edge ratio Θ(QM) to at most
√

5
2

and (b)

the minimum angle α to 26.565◦.

Proof. In 2-D, it was established earlier that only six possible non-isomorphic con-

figurations of a leaf node arrangement can appear in a balanced quadtree (refer to
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Table 3.3: Exhaustive listing of the number of possible non-isomorphic configurations,

up to 4-D, for a leaf node that has its (d− 1)-dimensional face(s) split.

NI(r)

Dimension, d
r = 0 1 2 3 4 5 6 7 8

TNI(d)

2 1 1 2 1 1 6

3 1 1 2 2 2 1 1 10

4 1 1 2 2 3 2 2 1 1 15

S E

WN

S

E

WN

SE

WN

SE

WN

S

E

WN

S E

WN

Figure 3.30: The d-partite graph representations for the six possible non-isomorphic

splitting of a leaf node in two-dimensions.
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Figure 3.31: The d-partite graph representations for the ten possible non-isomorphic

splitting of a leaf node in three-dimensions.

Figure 3.32: Illustration showing the vertices of a 2-D leaf node (black circles) in a

e-balanced quadtree and the extra vertices (gray circles) needed to match its split

e-neighbors in each of the six possible non-isomorphic 2-D leaf node configurations.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Figure 3.33: Illustration showing the vertices of a 3-D leaf node (black circles) in a

e-balanced octree and the extra vertices (gray circles) needed to match its split

e-neighbors in each of the ten possible non-isomorphic 3-D leaf node configurations.
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Figure 3.32). Hence, it is sufficient to prove the quality bounds on the triangular

elements obtained from Delaunay triangulation of these six types leaf nodes. The

Delaunay triangulations of these six configurations are shown in Figure 3.34, where

triangular elements are assigned unique colors based on their shape. Inspection

of the Delaunay meshes for six leaf node configurations reveals only four template

triangular elements. These four template triangles are shown in Figure 3.35 and

their respective geometry and quality metrics: circumradius(rcirc), edge length (ē),

radius-to-edge-ratio (θ), and minimum internal angles (αmin) are given in Table 3.4.

(Note that these results are reported assuming the leaf node size to be two units.)

Results indicate that the maximum radius-to-edge ratio, Θ, for the entire mesh

generated by the IMesh is at most
√

5
2

and the minimum internal angle α is at

least arcsin 1√
5

= 26.565◦. These bounds guarantee that IMesh will not generate

needle-shaped and cap-shaped elements in two-dimensions.
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Figure 3.34: Delaunay triangulation of six possible quadnode configurations in a

balanced quadtree decomposition. The triangles with same color in the decomposition are

similar.

The analysis for the 2-D meshes can be extended to 3-D meshes where a values

of Θ(GM) guarantees the absence of all bad tetrahedral elements except slivers.

Corollary 3.5.4. In 3-D, the output mesh (QM) from the IMesh method bounds

the radius-to-edge ratio, Θ(QM), to at most
√

29
4

which is less than 2.
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�
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(d)

Figure 3.35: Four prototype triangles deduced from the set of Delaunay triangulation of

nodes in a balanced quadtree shown in Figure 3.34.

Table 3.4: Summary of the properties of the template triangles in the 2-D mesh from

IMesh method.

Template Triangle rcirc ē θ αmin

a (Figure 3.35(a))
√

2 2, 2, 2
√

2 1√
2

45◦

b (Figure 3.35(b)) 5
4

2,
√

5,
√

5 5
8

53.13◦

c (Figure 3.35(c)) 5
√

2
6

√
2,
√

5,
√

5 5
6

36.88◦

d (Figure 3.35(d)) 5√
2

1, 2,
√

5
√

5
2

26.565◦
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Proof. In 3-D, since there exists only ten non-isomorphic leaf node arrangements

that will appear in the e-balanced octree (refer to Figure 3.33). In similarity to

the two-dimensional case, the Delaunay tetrahedralization of these configurations

produces only eleven (11) unique template tetrahedras shown in Figure 3.36. The

respective properties (rcric, ē, and θ) of all template tetrahedras are summarized in

Table 3.5 and indicate a maximum radius-to-edge ratio of
√

29
4

.

Applying this exhaustive list technique to e-balanced 2d-trees of higher di-

mensions leads readily to a generalized quality metric for output mesh from IMesh

algorithm.

Corollary 3.5.5. For arbitrary dimensions, Rd, 4 ≤ d ≤ 8, the output mesh QM

from the IMesh method has the maximum radius-to-edge ratio, Θ(QM), bounded

by

√
(d+2)2+22

4
.

Proof. In higher dimensions, up to R8, the number of non-isomorphic leaf node

configurations is computed using the relationships from Results 3.5.1 and 3.5.2.

Once these configurations are known, the vertices of each of the leaf node from the

configurations are used for computing the Delaunay mesh using the QDelaunay

routine. The radius-to-edge ratio for entire output mesh, Θ, in Rd, 4 ≤ d ≤ 8 is

then calculated for all identified unique simplicial templates. The ΘQM values so

obtained for output meshes in Rd, 4 ≤ d ≤ 8 are:
√

10
2

,
√

53
4

,
√

17
2

,
√

85
4

, and
√

26
2

,

respectively. In other words,

Θ (QM) =

√
(d + 2)2 + 22

4
, 4 ≤ d ≤ 8 (3.11)
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Figure 3.36: Eleven unique prototype tetrahedra obtained from the Delaunay

tetrahedralization of all non-isomorphic 3-D node configurations shown in Figures

3.33(k)–3.33(t).
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Table 3.5: Summary of the properties of the template tetrahedras in the 3-D mesh from

IMesh method.

Template Tetrahedra rcirc ē θ

a (Figure 3.36(a))
√

3 2, 2, 2,
√

8,
√

8,
√

12
√

3
2

b (Figure 3.36(b)) 3
2

2, 2,
√

6,
√

6,
√

6,
√

8 3
4

c (Figure 3.36(c))
√

3
2

1, 1,
√

2, 2,
√

5,
√

5
√

3
2

d (Figure 3.36(d))
√

29
4

1, 2,
√

5,
√

5,
√

6,
√

6
√

29
4

e (Figure 3.36(e))
√

17
3

√
2, 2,
√

6,
√

6,
√

6,
√

6
√

17
3
√

2

f (Figure 3.36(f))
√

59
6

1,
√

2,
√

3,
√

5,
√

5,
√

6
√

59
6

g (Figure 3.36(g))
√

27
4

√
2,
√

2,
√

2,
√

6,
√

6,
√

6
√

27
4
√

2

h (Figure 3.36(h))
√

5
2

1,
√

2,
√

2,
√

3, 2,
√

5
√

5
2

i (Figure 3.36(i))
√

5
2

√
2,
√

2,
√

3,
√

3, 2,
√

5
√

5
2
√

2

j (Figure 3.36(j))
√

3
2

√
2,
√

2,
√

2,
√

2,
√

2,
√

2
√

3
2
√

2

k (Figure 3.36(k)) 1
√

2,
√

2,
√

2,
√

2,
√

2, 2 1√
2
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Combining the quality bounds obtained earlier for 2-D and 3-D with the result

obtained above produces a quality bound formula for the IMesh method, valid at

least for all hyper-spaces with less than nine dimensions:

Θ (QM) =

√
(d + 2)2 + 22

4
, 2 ≤ d ≤ 8 (3.12)

Theorem 3.5.6. For any Rd image data, S (x1, x2, . . . , xd : xi ∈ [0, 2n−1]), the size

of the output mesh (|QM |) from the IMesh method is bounded by O
(
2nd

)
.

Proof. The worst case scenario for IMesh is that of an input image that is entirely

non-homogeneous (for example, chess board). In this case, the 2d-tree is full (no

nodes are pruned) and the number of leaf nodes is 2nd. Since the leaf node of a full

2d-tree can be meshed into a constant number of simplices (e.g., two triangles in

2-D and five or six in tetrahedras in 3-D), the size of the output mesh, |QM |, from

the IMesh algorithm is at most O
(
2nd

)
.

3.6 Conclusions and Future Work

In this chapter, a new unstructured finite element mesh generation technique for

image data was developed and analyzed. This new method, IMesh, was developed

by modifying and extending the 2-D PSLG technique of Bern et al. (1990), so that

it would apply to image data and arbitrary dimensions. The new algorithm consists

of four steps: (1) construct a 2d-tree for the input multi-dimensional dyadic image;

(2) generate a e-balanced 2d-tree by imposing the 2:1 balancing rule; (3) generate

211



the unique vertices of the leaf nodes in e-balanced 2d-tree; and (4) Delaunay mesh

the unique vertices from the previous step.

The application of Imesh to a 2-D segmentation landscape image and a 3-

D segmented MR brain scan demonstrated its efficiency, adaptivity, quality and

boundary preservation characteristics. The method generates significantly less ele-

ments than would be produced by direct meshing of individual pixels. It generates

heterogeneity adapted meshes with a large density of small elements in zones where

the source image is highly heterogeneous and a low density of larger elements in

homogeneous areas. All elements produced by the algorithm further respect the

original material boundaries of the source image such that this image can be re-

covered from the mesh (i.e., the method is reversible, it is bi-directional). These

characteristics of IMesh make it particularly suitable for the generation of meshes

for finite element analysis of transport process in domains represented by segmented

biological images.

The IMesh technique was implemented by adapting various algorithms pre-

sented in the literature for two and three-dimensions, and to improve their per-

formance. The region quadtree data structure in Samet (1989) was modified to

accommodate multi-dimensional image data and to efficiently retrieve the vertices

of the leaf nodes by using the pointer-based 2d-tree traversals. The e-balancing

algorithm of Sivan was modified with a size-filtering step that improved its perfor-

mance by factors of 2 to 200. The quicksort and QHull algorithms were used as

is. IMesh was implemented in Java SDK 1.4.1 to enable its use on a wide variety

of computing platforms.
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Exact theoretical bounds on the quality of elements produced by IMesh were

derived by formal mathematical analysis and exhaustive listing of non-isomorphic

leaf nodes and template simplices. Results were obtained for input image in 2 to 8

spatial dimensions and demonstrated that IMesh is guaranteed to always produce

good elements (and not a single bad element) in both 2-D and 3-D.

The mesh generation method developed in this dissertation can generate multi-

scale unstructured meshes and uses hierarchical data structures identical to those of

the SWA image segmentation technique developed in Chapter 2. Hence, the mesh

generation method and the texture-based segmentation method can be integrated

seamlessly for analysis of heterogeneous bio-systems using numerical up-scaling tech-

niques. The method can also be used as a independent tool for generating quality

meshes from image data. Based on the above results, it is concluded that the

four-step IMesh image meshing method is a valuable tool for developing simplicial

meshes from 2-D and 3-D image data to support finite element analysis of dy-

namic process occurring in heterogeneous bioenvironments. It is efficient, adaptive,

reversible, generates quality-guaranteed elements, can run on most modern com-

putational platforms, and can be seamlessly integrated with the multi-scale SWA

image segmentation method.

Several avenues of future research remain open for improving IMesh. The

first is to minimize the total number of elements at the boundaries. The method de-

veloped in this chapter generates a large number of elements at material boundaries.

This is a desirable feature when solving PDEs using finite elements, as one expects

sharp changes in the numerical solution near the boundaries. However, too many
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elements can overburden some computational resources and it could be valuable to

investigate de-refinement strategies, as a post-processing step, to reduce the number

of small elements at material interfaces.

Secondly, the FE mesh from the IMesh algorithm exhibits some level of pre-

ferred direction by aligning the elements along the principal axes of the input image.

In some applications (for instance, aerodynamics simulations) this can pose prob-

lems. Investigating mesh improvements steps (Neugebauer and Dickmann, 1996) to

reduce such right-angled elements would possibly be a worthwhile endeavor.

Thirdly, it would be interesting to study the computational complexity of using

dictionary method (Gross et al., 1996), as opposed to Delaunay triangulation, for

meshing of leaf nodes in the e-balanced 2d-tree. One of the possible benefits of

using dictionary method would be to avoid the floating point operations associated

with Delaunay construction that can be computationally demanding. Since step 3

of IMesh generates a finite number of template simplices, the triangulation of leaf

node can be obtained by using look-up and conformity tables. This could lead to

further computational improvements in the technique.

The IMesh method is capable of producing multi-scale meshes because of the

hierarchical spatial sub-division scheme used for generating the FE mesh. How-

ever, this capability was not used in the present study. Meshes at coarser scales

can be constructed efficiently by using the finer scale 2d-tree representation of the

image data along with Delaunay point deletion schemes (Devillers, 1999; Mostafavi

et al., 2003) or dictionary methods. Such multi-scale meshes could than be used

in conjunction with multi-grid finite element methods to produce highly efficient
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simulations of bio-process transport dynamics.

Finally, the rapid advances in both algorithms and hardware appear to be

approaching some intrinsic limit. Current implementations are reaching the point

of diminishing returns in terms of trading off computational cost for accuracy. In

this context, the IMesh method, which is intrinsically parallelizable (Bern et al.,

1999; Reeve and Barragan, 2000a,b), provides an efficient solution to address this

problem. The benefits from implementing a parallel version of IMesh would be

enormous and would serve the scientific community even better. The availability of

parallel programming libraries, like message passing interface (MPI, Gropp et al.

(1994)) and parallel virtual machine (PVM, Geist et al. (1994)), should make it

feasible to implement a parallel version of IMesh on high performance computing

environments.
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Chapter 4: Conclusion

The quantitative analysis of processes occurring in heterogeneous biological envi-

ronments can benefit significantly from new development in image sensors that pro-

vide high-resolution non-invasive measurements of their spatial characteristics. One

promising approach to the type of analysis consists of: (1) acquiring image data

about the environment of interest; (2) segmenting the image data into the distinct

materials contained in that environment; (3) developing a simplicial mesh over the

segmented data, and; (4) performing a simulation of a process of interest, on the

mesh, using the finite element method.

The goal of this research was to contribute to the development of this promising

approach by developing computational tools that could be used to efficiently perform

the second and third steps. The specific objectives were to:

Objective 1: Develop a supervised texture-based segmentation technique that can

quantitatively characterize the heterogeneity of a material at a coarser scale

by accounting for the heterogeneity from sub-scales.

Objective 2: Evaluate the developed technique for segmenting heterogeneous ma-

terials in biological image data.

Objective 3: Develop and implement a quality guaranteed unstructured simplicial

mesh generation technique for (segmented) image data.

Objective 4: Analyze the developed unstructured simplicial mesh generation tech-
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nique for elemental quality and output size.

The method used to attain these objectives was to: (1) review the literature on

image segmentation methods and mesh generation techniques; (2) identify the best

existing methods for these operations along with their shortcomings relative to the

needs of their research; (3) develop new methods (where needed) and adapt existing

techniques (where appropriate); (4) implement the new and modified methods in

modern computing languages, and; (5) analyze and evaluate the new methods for

efficiency, accuracy and quality over 2-D and 3-D image data of bioenvironmental

and biomedical relevance.

This process resulted in a new image segmentation technique that outperforms

existing methods when applied to biological image data, and a new unstructured

mesh generation technique that is density adaptive and guaranteed to produce qual-

ity elements for such data. The specific contributions to knowledge made by this

study were:

1. Multiresolution analysis, using Haar wavelets, can be used to efficiently iden-

tify the representative elementary scale of the materials in a heterogeneous

biological image.

2. Spatial moments of pixel intensities, computed at a pre-identified represen-

tative elementary scale, form efficient feature vectors for the segmentation of

heterogeneous biological images in 2-D.

3. The combination of RES identification by Haar MRA with spatial moments
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as feature vectors produces a segmentation method (named SWA) that can

efficiently and accurately classify heterogeneous biological images in 3-D.

4. The 2-D meshing algorithm of (Bern et al., 1990) can be extended to pro-

duce efficient heterogeneity adaptive, boundary preserving multi-dimensional

meshes on segmented bio-image data. (This novel method is named IMesh).

5. The developed multi-dimensional unstructured mesh generation technique,

IMesh, is guaranteed to produce quality elements in both 2-D and 3-D.

The SWA image segmentation method and the IMesh unstructured mesh

generation technique meet the objectives that were set out for this research. Fur-

thermore, they are the only tools in existence, today, that meet these objectives. It

is therefore concluded that this study was successful in contributing to the develop-

ment of the promising integrated approach for the quantitative analysis of processes

occurring in heterogeneous biological environments described earlier. This study

contributed two major components required by such an approach.

The development performed in this research should now provide significant

help in studying the dynamics of various processes in complicated bio-systems. Fig-

ure 4.1 depicts possible future developments in which the SWA segmentation and

IMesh are integrated with other tools to support quantitative analysis of complex

bio-systems. In the bio-medical related areas such integrated systems could be used

for: (a) developing better medical diagnostic tools, like early detection of tumor

growth; (b) developing efficient drug delivery systems; or (c) developing novel ther-

apies and treatment strategies. Similarly, these integrated systems should be able
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to assist the soil and water resources research community: (a) to more accurately

identify the hot spots in watersheds with high nutrient and non-point source pollu-

tants concentration; (b) to more accurately understand the problems of nutrient and

pollutant transport in soils systems; and (c) to prescribe best management practices

for reducing the nutrient and pollutant loads in target hot spots. Such systems could

also help analyze thermal process dynamics in heterogeneous food products and the

population dynamics of mobile agents over heterogeneous landscapes.

Decision Support System

System

Data Accquisition

Pre−Processing

Segmentation Mesh Generation

Numerical Solution

Figure 4.1: Schematic of an integrated tool for analysis of complex bio-systems.
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Appendix A: Effect of RES on SWA Classification Accuracy

In this appendix, the developed SWA segmentation technique in Chapter 2 is applied

on the two-texture synthetic image presented earlier in Figure 2.14(a). The objective

is to demonstrate the effect of the size of sample tiles (below and above the previously

identified RES support of 16 × 16 pixels) on classification accuracy. Results are

presented in Figure A.1 and they clearly demonstrate that very high error levels

are attained when the tile size is very small. Increasing tile size leads to lower

classification error (expressed in εl) until RES is reached, after which the error

metric stabilizes.
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Figure A.1: Effect of RES support on the SWA classification accuracy for the

two-textured mosaic shown in Figure 2.14.
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