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Chapter 1: Introduction

1.1 Motivation

Most robotic manipulator systems are limited in the scope of their possible appli-

cations. Many can perform just a select few tasks optimally. As such, manipulators

are frequently designed for as broad a task base as possible, given mechanical design

limitations for each desired application. [19] In exchange for increased task capabil-

ity, performance optimization for each individual task is decreased. In some cases,

different tools and advanced wrist structures [20] are used to expand the capability

of the manipulator. One other solution to the tradeoff of performance and task

range is the reconfigurable manipulator. A reconfigurable manipulator is hardware

and software configurable to be optimal for a specific task,[21] while retaining task

flexibity by the nature of its reconfigurable construction.

Reconfigurable manipulators are often preferred for highly dynamic environ-

ments, such as outer space and nuclear facilities. Underwater manipulators also

operate in a variable environment where a reconfigurable system is potentially use-

ful. [22] An additional requirement of the underwater manipulator is covering or

water-proofing of electrical connections. Micro-gravity based manipulators are of

particular interest to this thesis, due to the high range of tasks performed and flexi-

bility required. Some micro-gravity manipulators are expecially unique, such as the

1



morphing or flexible manipulator. The more widely used serial revolute reconfig-

urable manipulator will be addressed under the scope of this thesis.

For each task, the kinematics of the reconfigurable manipulator are different.

As such, kinematic determination for the manipulator can be difficult. Joint order,

type, and link length change on a task-by-task basis and this variability adds com-

plexity in determining the current kinematics. There are several current methods

of reconfigurable manipulator kinematic determination. Most reconfigurable ma-

nipulators are based around a library of known components. Optimal configuration

for a task is pre-calculated and the manipulator is assembled accordingly. A sim-

ilar version of this method is done with an Assembly Incidence Matrix (AIM), or

a matrix of 1s and 0s which relate joints and links. Both of these methods rely

on prior knowledge of the manipulator and its configuration and are software and

optimization intensive.

Other kinematic determination methods are based on sensor input. The most

common types are visual and accelerometer data. Machine vision data gives a

very accurate description of manipulator configuration, but requires high volume

data and an extensive calibration setup. Use of accelerometer data is the most

interesting method for the purposes of this thesis. It is a minimally sized sensor

that can be incorporated into manipulator design or placed on the outside of a

system. All current uses of the accelerometer in kinematic determination are based

around measurement of the gravity vector. Since a mirco-gravity based manipulator

is desired, these methods are unsuited for use in this thesis in their current form.

All current methods of reconfigurable manipulator kinematic determination
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are based on previous knowledge of arm configuration, high complexity calibration

or optimization, or use of the gravity vector. The purpose of this thesis is to develop

a new method of kinematic determination that is independant of previous config-

uration knowledge, requires no optimization, calibration, or external setup, and is

not dependant on knowledge of the gravity vector such that it can be used in a

microgravity environment.

1.2 Background

Some understanding of current forward and inverse kinematic techniques is required

following along with the robotics intensive aspects of this thesis. Two calculations

of manipulator kinematics are generally accepted as commonplace in the robotics

community. The Denavit-Hartenberg (DH) convention attaches a cartesian frame

to each link of the manipulator. Following specific rules, and, using the inherent

physical properties of the manipulator, a homogeneous transformation is derived

between the frame of the one link and the next. With these transformations, the

forward kinematics of the manipulator can be calculated. Four parameters are used

to describe each joint and joint relationships. The four DH parameters of each

joint are practical to use due to their association with link lengths and joint frame

orientation.

Screw theory kinematics presents a different approach. Screw theory relates

the position of the manipulator tip with a rotation and translation about some

axis. By using a series of rotations and translations associated with each joint, the
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position and orientation of the manipulator tip can be calculated with respect to a

reference frame. While this kinematic method is utilized less in the manufacturing

industry, it is the most geometrically based method of kinematic calculation, This

geometric basis can simplify the mathematics of the system and add flexibility for

use in a variety of applications. Since both DH and screw theory kinematics are

necesary knowledge in the goal of this thesis and associated background research, a

brief description of both is included for the reader.
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Chapter 2: Initial Research

2.1 DH Parameter Kinematics

In DH convention, the defined relationship between two joints allows calculations of

forward kinematics. The relationship between two neighboring joint axis is defined

specifically, incorporating the rigid link in between which constrains motion of one

joint relative to the other. For any two joint axes, the distance between them is

well defined and measured along a line perpendicular to both axes. This quantity

is called link length ai−1. In order to quantify rotation of one link axis relative

to the other, link twist is also defined. Link twist is the measure of the angle

between the link axes as projected onto a plane coincident with the perpendicular

line between the axes. This angle αi−1 is measured from axis i-1 to i. These two

quantities, length and twist, define the relationship between any two lines, in this

case two joint axes. Link offset di is additionally defined specifically for joints as

the distance from one link to the next along a common axis. Rotation about this

common axis from one link to the next is defined as joint offset θi. With these four

parameters, ai−1, αi−1, di and θi, defined between joints, kinematics for any robot

can be described.[10] Definition of kinematics using these parameters is called DH

convention.

Joint frames are attached following a convention that holds to the link rela-
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tionship parameters described above. In general, frames are affixed such that [10]:

• âi = the distance from Ẑi to Ẑi+1 along X̂i

• αi = the angle from Ẑi to Ẑi+1 measured about X̂i

• di = the distance from X̂i−1 to X̂i measured along Ẑi

• θi = the angle from X̂i−1 to X̂i measured about Ẑi

With the DH parameters assigned to each joint which has a frame affixed in the

above convention, a transformation from frame i to frame i-1 can be calculated. For

the interested reader, the derivation of the exact transform may be found in [10].

The transformation matrix from frame i to frame i-1 can be written as

i−1
iT =



cosθi −sinθi 0 ai−1

sinθicosαi−1 cosθicosαi−1 −sinαi−1 −sinαi−1di

sinθisinαi−1 cosθisinαi−1 cosαi−1 cosαi−1di

0 0 0 1


(2.1)

Once the transformation has been established for each link, forward kinematics are

straight forward. The link transformation matrices can be multipled linearly to find

a single transformation matrix from frame N to frame 0

0
NT = 0

1T
1
2T · · ·N−1

N T (2.2)

Position in one frame can thus be calculated in any other frame of the manipulator.

The Jacobian matrix is a set of time-varying linear transformations. It is com-

posed of the partial derivates of a system of functions. In kinematics the Jacobian
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plays a wide variety of roles, including mapping joint angle velocites to the velocity

of the end effector and as an idicator of singularities. The Jacobian can either be

found by looking at the z components multipled by velocity in the equation that

defines angular velocity

i+1ωi+1 = i+1
i Riωi + θ̇i+1

i+1Ẑi+1 (2.3)

or by direct differentiation of the kinematics equations. [10] One important appli-

cation of the Jacobian is its use in inverse kinematics as presented in [18]. In this

method it can be written that

~̇s = J(θ)θ̇ (2.4)

where ~̇s represents the position of the end effector tip and θ̇ the array of joint angles.

The change in end effector position as caused by change in joint angles is written as

δ~s = Jδθ (2.5)

where the change in end effector position should be equal to that of the difference

in target and current end effector position ~e. The values of the joint angles are

updated iteratively until the value obtained is close to a solution. One approach to

the angle update is to say that

~e = Jδθ (2.6)
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and then solve

δθ = J−1~e (2.7)

In this way, the inverse kinematics can be solved for the manipulator.

2.2 Research

There are, generally, two classes of kinematic determination methods for reconfig-

urable manipulators. Kinematics can be determined by some type of previously

known information about the manipulator. Pre-determined knowledge can include

component, joint and link, libraries or a different method of representing the rela-

tionship and types of joints and links. Manipulator kinematics can also be found

using external sensor information. The most common forms of external sensing

associated with kinematic determination are machine vision and accelerometers.

Sometimes external sensing techniques are combined with component libraries to

create a more comprehensive kinematic estimation. This section details applicable

previous works in the areas of kinematic determination using pre-knowledge and

external sensing techniques.

2.2.1 Pre-Determined Information Based Systems

Micro-gravity based reconfigurable manipulators tend to use a library of compo-

nents for kinematic estimation. [6] and [9] introduce two similar library techniques.

Only the Reconfigurable Modular Manipulator System (RMMS) kinematic deter-
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mination method will be discussed while the interested reader is referred to [9] for

a detailed description of a similar method. Starting with a geometric description

of the joints and links of the manipulator, as defined and created in [19], and their

sequence, DH parameters can be generated which describe the forward kinematics

of the manipulator.

Geometric desciptions for each component include a homogeneous transfor-

mation matrix for the link or joint module. In the case of a link, a transformation

from the connector at one end of the link to the connector at the other completely

specifies the geometry of the link. Because a joint has relative motion, two homoge-

neous transformation matrices are needed to incorporate both geometry and degree

of freedom (DOF). A sample joint is shown in 2.1.

Figure 2.1: Example Joint as Defined by RMMS

Two transformation matrices represent a translation and rotation from the

center of the lower right connector to the upper left. In order to facilite assembly in

an undetermined sequence, frames are attached to the connector points in identical

orientation so that the transformation between modules is the identity matrix. This

is the case except for an offset angle, twist between modules, which is incorporated

with an angle about the z axis in the connector. The transformations between links
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and joints are now used to calculate DH parameters for the robot. However, in some

cases, the calculated module transformation may not be possible in DH, such as a

translation along a Y-axis. Therefore, the DH frames must necessarily be different

from the module frame described above. Another transform is therefore needed from

the module to DH frame. At this point, the forward kinematics for the manipulator

can be calculated.

The difficulty in the library method is the optimization of the manipulator

configuration. With the configuration decision, the kinematics are known. DH

parameter generation requires relative position and orientation of successive DH

frames, and is based on a line representing the joint axis and the direction cosines of

that line. DH parameters are then determined based on succesive direction cosines.

Inverse kinematics are as difficult in a reconfigurable manipulator as they are in

a static configuration. Iterative methods are used to solve to inverse kinematic

problem, specifically using the inverse Jacobian.

While a library based kinematic determination system works for most manip-

ulators, it has less than ideal features as it is not applicable to a truly unknown

manipulator. The use of DH parameters in this system also complicates the mathe-

matics of the kinematic calculation. Mathmatical intensity is added as manipulator

configuration is determined by an optimization of library components for a specific

task, in addition to the extra transformations required to rotate the joint module

frames to match DH convention. In this case, DH convention adds some complexity

to the system through extra rotation and in the configuration selection. Specifics of

the library method described above can be found in [6].
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Another method of reconfigurable kinematic determination is based around

the Assembly Incidence Matrix (AIM) as presented in [5]. This is a graph based

representation used to indicate changing configurations and, like the library method,

is based around a set of known joint and link modules. Mechanically, the manip-

ulator modules are based around link modules with a multiport connector, such

that the joint module can be attached in many orientations, producing different

arm configurations. Like the library method, the AIM system cannot be used on an

undetermined manipulator.

The AIM based kinematic model does not use typical DH convention, instead

using a method based on the kinematic graphs of mechanisms.[24] In a modular

robot, vertices represent link modules and edges represent joint modules in the

kinematic graph. This graph is then expressed as a matrix of 1s and 0s, or a vertex-

edge matrix,[25] in which a value is 1 if an edge is incident on a vertex and zero

otherwise, and with an extra column for type of link and extra row for type of joint.

The AIM is therefore an expression of joint and link types, order of assembly, and

connection information. This is a complete description of the robot configuration.

In forward kinematics with the AIM method, two adjacent links υi and υj

connected by joint ek and with a joint displacement θk relative to the i frame, can

be related by

Tij(θk) = eξkθkTij(0) (2.8)

where Tij is a 4X4 transformation matrix and ξk describes the twist of the joint.

Based on 2.8, an algorithm is generated for a general tree-structured robot which
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can automatically derive forward kinematics given an AIM. A graph-traversing al-

gorithm, or a searching algorithm, is used to find link order. In this method, a

close-form inverse kinematic solution is generally not possible. Again, a numerical

iterative method is used to solve for inverse kinematics. The interested reader may

refer to [23] for a detailed calculation of forward and inverse kinematics for this

method.

Like the library based method of kinematic determination, the AIM method

is dependant on knowledge of manipulator configuration prior to forward kinematic

calculation, but in the form of an modified vertex-edge matrix. Additionally, the

AIM depends on highly complex mathemetics, even more so than a library based cal-

culation. Calculations also required include optimization and searching algorithms

for forward kinematics. Inverse kinematics require the usual numerical iteration

method. High complexity, in addition to required knowledge of the manipulator,

makes this method non-ideal for use in a system with only encoder counts per joint

revolution known. A more simplistic, analytical method is desired for kinematic

calculation of an arm that is rapidly changing to suit a task.

2.2.2 External Sensor Based Methods

Another strategy for kinematic estimation of an unmodeled manipulator is to use

data derived from sources external to the system. Visual data from an external

camera and accelerometer data are the most common types. Visual data can also

be used in combination with a library based kinematic estimation system for a more
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calibrated forward kinematics calculation. This section details the use of machine

vision, and machine vision with component libraries, and accelerometer data in

kinematic determination. A final determination is made, based on these sensors, on

the best method of simple kinematic estimation for a micro-gravity manipulator.

A vision based kinematic parameter identification strategy was developed by

[8] for the purpose of calculating industrial robot kinematics with higher accuracy

than the parameters specified by the manufacturer, in order to account for differences

in individual robots. The system begins with limited knowledge of the manipulator,

including the relative position and orientation of the base and camera attached to

the manipulator wrist. Also included is an extra transformation representing the

orientation error between two successive parallel joints. This joint orientation error

is highly dependant on errors in camera orientation.

The identification method for DH parameters needed in forward kinematics is

based on the measurement of a target position and orientation for several config-

urations of the manipulator. The transformation matrix representing the position

and orientation of the target with respect to the camera is calculated by analyzing

the image of the target. Each manipulator configuration generates six indepen-

dant equations, with more manipulator DOF increasing the number of equations

required. The use of additional equations will increase the accuracy of the guessed

parameters. The unknown parameters of the manipulator and the camera relative

to the target are resolved with an iterative method to solve an overdetermined set

of equations by means of least-squares. Convergence can be achieved by using the

manufacturer specified kinematics as a starting point.
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A complex vision system calibration and image processing scheme are required

for successfull kinematic calibration. The target used is composed of an array of

spheres, which appear as circles when projected onto a 2D image sensor. Using

image processing techniques, pixel interpolation of the image, and a least-squares

technique, the approximate centers of the circles in the image can be found, as well as

the radius of each sphere. With the centers of the circles, the position and orientation

of the target with respect to the camera frame can be determined. The coordinates

of the circle centers are mapped into the physical coordinates of the camera first.

A general change in rotation is written using the quaternion representation of the

finite rotation formula. This yields an overdetermined set of equations which can

be solved with a least-squares method. Each point on the target is linked to the

focal center of the lens and the quarternion representation is expressed using the

direction cosines of the target points projected onto the 2D camera plane. Kinematic

parameters are calculated from the solutions of the set of equations.

There are many limitations to the method of kinematic determination with

machine vision as it relates to the goals of this thesis. While accurate to less than

a tenth of a millimeter, this system is mathematically complex and intensive. The

majority of the method relies on vision based optimization, iterative techniques, and

least-squares techniques. In addition to having the highest complexity of any method

presented thus far, a vision system is dependant on external target parameters

and calibration of the camera relative to these targets. If a component library is

introduced as well as vision calculation as in [11], the system becomes even more

complex. Because of these factors, a vision based kinematic calculation is non-ideal
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for the goals of the kinematic determination method in this thesis.

Kinematic determination through use of an accelerometer is an interesting

proposal due to the low size and complexity of the sensor. There are two methods

which directly address the use of an accelerometer to find the kinematics of a system

in an earth gravity environment. One method supports the use of DH parameters

in forward kinematic calculation[1] while the other bases the estimation on screw

theory convention.

The first step to analysis of a revolute manipulator using acceleration, as

will be used in the subsequent previous works and research in this thesis, is the

recognition of circular motion during single joint actuation. In circular motion, the

linear acceleration of a point around the edge of the circle can be characterized by

the angular rotation rate, angular acceleration, and radius of the circle around which

the motion occurs. The derivation of the linear acceleration equation begins with

the definition of angular velocity.

ω =
2π

T
(2.9)

Linear velocity can be defined in terms of the period of the motion and the distance

from the center of motion.

v =
2πr

T
(2.10)

substituting 2.9 into 2.10 yields

v = ωr (2.11)

which holds generally for non-periodic motion. The linear velocity vector can be
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thought of as the right hand side of 2.11 multiplied with some unit vector which

defines the direction of the product.

~v = ωrû (2.12)

Since the angular rate and radius of the circle will be perpendicular in vector form,

2.12 can be written as

~v = ~ω×~r (2.13)

Differentiating 2.13 with respect to time and using the chain rule with the cross

product yields

d~v

dt
=
d~w

dt
×~r + ~ω × d~r

dt
(2.14)

where it can be seen that

d~w

dt
= ~α (2.15)

d~v

dt
= ~a (2.16)

and

d~r

dt
= ~v (2.17)

Substituing 2.15, 2.16, and 2.17 into 2.14 gives

~a = ~α× ~r + ~ω × ~v (2.18)

16



Using 2.13 in equation 2.18 yields the final linear acceleration equation around a

circle

~a = ~α× ~r + ~ω × (~ω × ~r) (2.19)

which is based solely on the radius of the circle, angular rate, and angular accelera-

tion. 2.19 is an important equation upon which the following methods of kinematic

determination will be based.

A manipulator with an artificial sensing skin has access to a more complete

data set than a standard manipulator. This allows the manipulator to localize

and react to events, such as touch. [1] implements an artificial skin manipulator

with which accelerometers are used to actively determine the relative location of

every sensor type and actuator. The robot uses its own sensors, located on each

joint, to model and calibrate itself, without any a-priori knowledge. This method is

also contact free and open-loop, whereby the robot can quickly and unambiguously

determine a kinematic model.

DH parameters for the method used by [1] are determined by actuation of

one joint at a time. There are N accelerometers for an N DOF manipulator. A

serial chain model is developed with DH parameters as input and acceleration and

rotation matrices as output. This model is capable of taking in the DH parameters,

outputting an acceleration, and optimizing the DH parameters such that the output

accelerations are as close as possible to the measured values. The first step in the

calculation is to place a measurement unit, i.e. accelerometer, on the z axis of each

joint. The measurement unit frame will be called the SU frame. The transformation
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between the joint and the SU frame is simply a rotation about and translation along

the z axis of the joint. The transformations that must be calculated are for each

joint frame, which are determined by the unknown kinematics of the manipulator.

The transformation from a measurement unit frame to some inertial frame is given

as

SUNT = SUNTDOFN+1
· (

N∏
d=1

DOF d+1TDOF d
)DOF 1TRS (2.20)

Each transformation matrix is calculated as per the standard DH convention given

in equation 2.1, with the addition of an initial pose angle and the angle as the joint

as actuated added to the calculated θ parameter. The estimated kinematic model

is now used to calculate position of the end of the manipulator using the joint

transformation matrices. Position is differenced twice to calculate the estimated

acceleration of the measurement unit in the reference frame.

RSN~aN =
(RS~pN(h) + RS~pN(−h)− 2 · RS~pN(0))

h2
(2.21)

However, the acceleration must be calculated in the SU frame to be accurate. An-

other rotation from the reference frame to the SU frame is needed as given by

SUN~aN = SUN
RS R · RSN~aN (2.22)

The acceleration calculated in equation 2.22 will be the same as the acceleration

calculated in equation 2.19.

With the set of generated accelerations, the measured accelerations can be
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used to calculate error in the system. One part of the error calculation is based

around the model estimated acceleration values and can be found by

e2 =
P∑
p=1

N∑
d=N−3

|SUN~amodel − SUN~aactual|2 (2.23)

The other portion of the error must be calculated using the measured and estimated

gravity vector. The gravity vector is sampled when the manipulator is in a static

position for every pose used in the kinematic calculation. The calculated rotation

matrices for the manipulator are used to rotate the gravity in an inertial frame to

the gravity seen by each measurement unit. The difference in these two values is

calculated as

e1 =
P∑
p=1

|RS~gN −
1

P

P∑
p=1

RS~gN |2 (2.24)

The sum of the acceleration and gravity error

eT = e1 + e2 (2.25)

is the output of a cost function which minimizes the error of the model output

and measured values. Since the optimizer can only succesfully handle so many DH

parameters to be estimated at a time, an optimization is performed for 2 joints per

optimization sequence, with one joint overlapping for each calculation. This means

only 10 variables are optimized at a time.
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2.2.3 DH Method Testing

The DH parameter estimation based on an accelerometer for each joint of the robot

presented in [1] has potential for use in a space environment, provided the error offset

added by gravity in the cost function of the model optimization is not significant.

An implementation of this method was tested with and without gravity in order to

assess the feasibility of using the method in a micro-gravity environment.

A Matlab program was created to recreate and verify the method described

in [1]. The program was tested with a 2DOF and 5DOF manipulator and function-

ality of the method verified to within the tolerances specified by [1]. Verification

was achieved by looking at the DH parameters output of the optimization function

without any error added to the system. Now removing the gravity error from op-

timization function, for a 2DOF manipulator, the DH parameters as estimated by

the optimizer are compared to the exact values, for the first joint, and given in table

2.1

Type α a θ d θacc dacc

Estimated First Joint 1.5710 0.3996 0.0446 1.0991 0.2007 0.0552

Exact First Joint π/2 0.4 0 1.1 0.2 0.1

Table 2.1: Initial Values for 2 Link Manipulator

This is an estimation, without the use of gravity error, for the first joint DH

parameters when the second joint parameters are given exactly to the optimizer.

θacc and dacc refer to the offset of the SU relative to the joint and, since joint 1
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cannot be measured, are not capable of being accurately estimated for the first joint

of any manipulator.

When the joint two variables are estimated instead of given, the optimizer

returns the values in table 2.2 for the second joint of the 2DOF manipulator.

Type α a θ d θacc dacc

Estimated Joint 2 -1.5713 0.1997 0.6906 0.5016 0.098 -0.4908

Exact Joint 2 −π
2

0.2 0 0.5 0.1 0.2

Table 2.2: Estimated Values for 2nd Joint of a 2 Link Manipulator

Without the use of gravity, the optimizer cannot estimate the DH parameters

of joint 2 accurately. In the serial chain model, an innaccurate estimate of the second

joint will yield an even more inaccurate guess of the parameters for the first joint.

Based on this and other similar tests for different 2 link configurations, the use of

this method for DH parameter determination without gravity is not possible.

Without gravity error, the only possible accurate use of this method is for pose

determination of a manipulator with other DH parameters known. This was tested

with a 5 DOF manipulator with no input error and gave the results in table 2.3.
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i aexact aestimate θexact θestimate daccexact daccestimate Num of Iterations

1 0 0 0.3 1.0407 0.1 1.00 105

2 0 0.0002 0.9 0.9002 0.2 0.1995 104

3 0 0 0.2 0.1995 0.3 0.3003 268

4 0.4 0.4002 1.1 1.0998 0.1 0.1004 153

5 0.2 0.2002 0.5 0.5011 0.2 0.1996 13

Table 2.3: Estimated Values for a 5 Link Manipulator Given 3 of 6 parameters

This is a relatively accurate result compared to the error tolerance in [1].

However, when error is added to the system, DH parameter accuracy degrades to a

point where additional parameters must be known by the system. Even when 4 of

6 DH parameters are known per joint, the optimizer produces a result outside the

desired error tolerance, as shown in table 2.4.

i aexact aestimate θexact θestimate daccexact daccestimate Num of Iterations

1 0 0 0.3 3.1416 0.1 0.6281 74

2 0 0.0014 0.9 0.9000 0.2 0.1969 66

3 0 0.0023 0.2 0.1951 0.3 0.2969 86

4 0.4 0.3998 1.1 1.1055 0.1 0.1030 126

5 0.2 0.1977 0.5 0.4856 0.2 0.2006 13

Table 2.4: DH Parameters for a 5 link Manipulator given 4 of 6 Parameters and
Error

Given the high error and required number of known variables for this system,
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it can only be used for pose determination, and not to desirable error tolerances.

It provides no useful information for the kinematic determination of an unmodeled

micro-gravity manipulator and cannot be used for the purposes of this thesis.

2.2.4 Screw Theory in Kinematic Determination

There is one method which uses a different convention with acceleration in order to

determine unmodeled kinematics. [4] presents a method based on the use of a single

accelerometer and screw theory conevention in order to solve for the kinematics of an

earth-based manipulator. The accelerometer is placed at the tip of the robot. There

are only three defined frames for the manipulator; joint frame [w], accelerometer

frame at a hard stop [a], and moving accelerometer frame [m]. The transformation

from [a] to [m] is a simple rotation about the z axis. The transformation from the

joint frame [w] to the accelerometer frame [a] is unknown. Gravity can be used to

help define the unknown rotation. Gravity in the moving frame is written as

mg = m
a R

ag = m
a R

a
wR

wg (2.26)

If gravity is written as the portion only in the direction of the screw axis, equation

2.26 can be rewritten as

azT w · mg = (wg)z (2.27)

It can be stated, from this equation, that the gravity in the screw axis direction is

constant in the joint frame [w]. With this value, the orientation of the screw axis
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for a joint can be determined and gravity in the moving frame calculated.

Since no acceleration occurs in the screw axis direction, a new linear accel-

eration equation can be written for the motion of the accelerometer as the joint

actuates.
t∫

0

wam(τ)dτ = wv(t)− wv(0) = rwiθ − rw(0)iθ0 (2.28)

where iθ is in the direction of tangential velocity. Equation 2.28 can be integrated

a second time to get a position in the joint frame.

t∫
0

t∫
0

wam(τ)dτdτ =

t∫
0

wv(τ)dτ = wx(τ)− wx(τ) (2.29)

Using position data and a least-squares fit, the point about which the accelerometer

turns can be calculated.

The radius of the arc is calculated based on the angular rate as derived from

the joint encoders and the previous integration of acceleration.

r =

|
t∫
0

wam(τ)dτ

ω(t)
(2.30)

Using geometric relationships, r can be used to find the vector to the screw axis as

b =

rcos(90 + θ − φ)

rsin(90 + θ − φ)

 (2.31)

where θ refers to the angle between r and the perpendicular to tangential velocity.
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Phi is calculated as

φ = arctan2(vy, vz); (2.32)

With the screw axis and vector to the screw axis calculated, the forward kinematics

are determined. Due to limited technology of the time, other calculations were

needed in this method to compensate for anomolies in the hardware which are not

relevent with accelerometer technology today.

While the screw theory method in [4] is dependant on gravity and double

integration techniques, it is a good example of the advantages of screw theory in

kinematic estimation. Because the reference in screw theory can be defined as needed

by the user, the mathematics of the system become simpler and geometrically based,

rather than referring back to a pre-defined pose or joint to joint relationships. No

optimization is needed because the zero pose is defined as is most convenient for the

mathematics being calculated. Only an analytical solution is required.
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Chapter 3: Screw Theory Kinematics

Screw theory kinematics are based on the screw axis representation, whereby the

orientation of a rigid body is reperesentated by a rotation about some screw axis.

This way of thinking about orientation leads to the representation of the spherical

displacement of a rigid body as shown in figure 3.1.1

Figure 3.1: Spherical Displacement of A Rigid Body

The vector ~r2 represents the new position of the rigid body after rotation about

the vector ~s and can be written as

~r2 = ~r1cosθ + ~s× ~r1sinθ + ~s(~rT1 ~s)(1− cosθ) (3.1)

where ~r1 is the initial position of the rigid body before rotation and θ is the angle
rotated about ~s. Equation 3.1 can be written simply as a pure rotation of the form

A~p = A
BR

B~p (3.2)

1All figures presented in this section are examples given in [2]
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where

B~p = ~r1 (3.3)
A~p = ~r2 (3.4)

The elements of the rotation matrix A
BR in equation 3.2 are given by

a11 = (sx
2 − 1)(1− cosθ) + 1

a12 = sxsy(1− cosθ)− szsinθ
a13 = sxsz(1− cosθ) + sysinθ

a21 = sysz(1− cosθ) + szsinθ

a22 = (sx
2 − 1)(1− cosθ) + 1

a23 = sysz(1− cosθ)− sxsinθ
a31 = szsx(1− cosθ)− sysinθ
a32 = szsy(1− cosθ) + sxsinθ

a33 = (sz
2 − 1)(1− cosθ) + 1 (3.5)

where ~s is the screw axis of about which the rigid body is rotated by θ, and is made

of components

~s =


sx

sy

sz

 (3.6)

The theory of rotation about an axis can be further expanded, as in Chasles’

theorum, to state that the displacement of a rigid body, regardless of how it is

displaced, can be described by a rotation about and a translation along some axis.

Given a rigid body that is translated by t and rotated by θ about an axis ~s as

is shown in figure 3.2, the new position of the rigid body can be written as

A~p = ~s0 + t~s+ (~p1 − ~s0)cosθ + ~s× (~p1 − ~s0)sinθ + [(~p1 − ~s0)T~s]~s(1− cosθ) (3.7)

where ŝ is the screw axis and ~s0 is a translation vector to the screw axis. ~p1

denotes the original position of the rigid body. This combination of rotation and

27



Figure 3.2: Rotation and Translation of a Rigid Body

translation is called a screw displacement. A homogeneous transformation can be

written, based on the rotation and translation, associated with the screw displac-

ment. Simplifying 3.7,

A~p = AB~p (3.8)

where A is the homogeneous transformation matrix associated with that screw

displacement. The components of a A are
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a11 = (sx
2 − 1)(1− cosθ) + 1

a12 = sxsy(1− cosθ)− szsinθ

a13 = sxsz(1− cosθ) + sysinθ

a21 = sysz(1− cosθ) + szsinθ

a22 = (sx
2 − 1)(1− cosθ) + 1

a23 = sysz(1− cosθ)− sxsinθ

a31 = szsx(1− cosθ)− sysinθ

a32 = szsy(1− cosθ) + sxsinθ

a33 = (sz
2 − 1)(1− cosθ) + 1

a14 = tsx − s0x(a11 − 1)− s0ya12 − s0za13

a24 = tsy − s0xa21 − s0y(a22 − 1)− s0za23

a34 = tsz − s0xa31 − s0ya32 − s0z(a33 − 1)

a41 = 0

a42 = 0

a43 = 0

a44 = 1 (3.9)

where θ is the rotation angle and t is the translational distance.

In the consideration of a kinematic chain, screw displacements can be applied

succesively to form a transformation from a moving frame to a reference frame.

Consider a rigid body guided to a fixed frame by a dyad made of 2 kinematic pairs,

called $1 and $2 respectively. The first pair connects the first moving link to the

reference frame and the second pair connects the second moving link to the reference

frame. The axis of the first pair is the fixed joint axis and the axis of the second pair
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is the moving joint axis. As the rigid body is rotated and translated along these two

joint axis, the total displacement can be considered a rotation about the moving joint

axis, followed by a rotation about the fixed joint axis. In this manner, the initial

location of the moving joint axis can be used for derivation of the transformation

matrix. The resulting transformation matrix is obtained by premultiplication of two

successive screw displacements as in,

Ar = A1A2 (3.10)

where the transformation matrices denote the screw displacement about the moving

and fixed joint axis, respectively. This proposition can then be extended to an n link

manipulator where a reference frame is chosen arbitrarily. Then, this method can

be thought of as the displacement of the manipulator from a reference position to a

target position by a series of finite screw displacments, each about a joint axis. By

using these screw displacements and premultiplying, a total rotation and translation

for the manipulator becomes

Af = A1A2 · · ·An−1An (3.11)

It can be easily observed that, for a manipulator, in a revolute joint ti = 0 and in

a prismatic joint θi = 0. The joint variables associated with the reference position

are subtracted from those associated with the target position and, using these, the

forward kinematics are computed directly as in

~p = A1A2 · · ·An~p0 (3.12)

An example of the Stanford manipulator and associated screw vectors is shown in

figure 3.3. All information needed to calculate forward kinematics in screw theory
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has now been characterized.

Figure 3.3: Stanford Manipulator with Screw Axes

Screw theory inverse kinematics can be derived in two ways. Due to the nature

of the screw theory vectors, there is almost always an analytical solution based on

these vectors to the inverse kinematic problem. This is because screw vectors are

geometrically based on the physical characteristics of the arm. In most cases, this

analytical method yields less potential solutions than an iterative solution.

The inverse kinematics can also be solved in the same manner as the DH con-

vention, using a jacobian and an iterative method[18]. Like the analytical solution,

the components of the screw based jacobian come directly from the screw vectors

of the manipulator. In order to calculate the screw based jacobian, a screw based

coordinate system must be defined. The coordinates of a unit screw are defined as

$̂ =

 ŝ

~s0 × ŝ+ λŝ

 (3.13)
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The vector ~s0× ŝ defines the moment of the screw axis about a static reference

frame. For a revolute joint,

$̂ =

 ŝ

~s0 × ŝ

 (3.14)

However, displacement is not determined until the intensity of the screw axis

is specified, leading to

$ = q̇$̂ (3.15)

This equation defines the twist, where q̇ is the intensity of the twist. For a manipula-

tor, the tip is being twisted simultaneously about the joint axis. These instantaneous

twists can be added linearly to describe the motion of the end effector. Kinematics

can then be written as

$n =
n∑
i=1

q̇i$̂i (3.16)

These screws and unit screws are then used to compose the Jacobian in the static

reference frame. In screw theory the Jacobian is with respect to

ẋ =

ωn
v0

 (3.17)

which is defined in terms of the angular velocity of the end effector and the linear

velocity of a reference point which is instantaeously coincident with the origin of the

reference frame in which the screws are expressed. The velocity of the end effector

is then written as

ẋ =

ωn
v0

 =
n∑
i=1

q̇i$̂i (3.18)

which can be simplified to

jẋ = jJq̇ (3.19)

32



It is observed that, from this, the Jacobian is simply

J =

[
$̂1, $̂2, · · · , $̂n

]
(3.20)

which is calculated directly from the scew axis ŝ and the vector to the screw axis ~s0.

The Jacobian is useful for a wide range of functions, including inverse kinematics and

controls, and it is beneficial to be able to derive this directly from the manipulator

kinematics.

In this section, screw theory kinematics and implementation have been dis-

cussed. The subject of this thesis is dependant on the functionality and use of

these methods. The forward and inverse kinematics solutions provide usefull insight

into the understanding of kinematic methods for solving reconfigurable and other

unmodeled manipulators.
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Chapter 4: Method Development

4.1 Importance of Method Development

Most of the previous work in kinematic determination for earth-based manipulators

uses DH convention. This convention perscribes a specific method of joint frame

attachment, thus defining the relationship between joints. Based on this specific

frame assignment, a zero-pose for the manipulator is pre-defined upon which the

kinematics must be based. For an unmodeled manipulator using DH convention,

an optimization method is required to find this specific way of relating joints and

the zero-pose of the robot. Simply by the way the DH convention is defined, a

kinematic determination method has added complexity in order to attempt to search

for pre-defined link relationships and a zero-pose of the manipulator. Screw theory,

in this application, removes the need for pre-defined relationships. Because the

zero-pose and reference frame can be defined arbitrarily as is most convenient for

the mathematics, much of the complexity of the math and optimization needed is

eliminated, while still producing fully defined kinematics for the arm. As proven in

[4], this process can be done with a single accelerometer and gravity. A method was

therefore developed for this thesis in order to determine the kinematics of a micro-

gravity manipulator based on a single IMU, with acceleration and angular rate, and

using screw theory for the kinematic determination. The goal of the method is to

produce a simple mathematical calculation by which, only having knowledge of the

encoder counts per joint revolution in the manipulator, the forward kinematics and

Jacobian can be easily determined.

The following chapter details the mathematics of a novel application of screw

theory in kinematic determination. This new method depends only on information
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from a single IMU at the tip of the manipulator and encoder counts in the joints and

is applicable specifically to serial revolute manipulators. A discussion of screw theory

as an integral part of the mathematical system is presented first. The calculation

of the screw vector and components of the measured angular velocity in the screw

vector direction is derived directly from a unique application of the screw theory

technique. Equation 2.19 is presented using measured and derived values and

rearranged as system of linear equations. A solution to the system of linear equations

using a truncated SVD produces the vector to the screw axis for each joint. Once

the screw axis and the vector to the screw axis are calculated, these values are the

complete the forward kinematics for the manipulator.

4.2 Kinematic Determination Method

Screw theory describes the orientation of a body in 3D space by a unit vector about

which the body is rotated and an angle describing how far the body has been rotated

about this axis. The description can be further expanded as a rotation about an

axis and a translation along an axis to describe both the orientation and position

of a body relative to a static frame. In a manipulator, a series of these rotation

and translation transformations, or screw displacements, is used to describe the

position and orientation of a moving frame, usually the manipulator tip, relative to

a chosen static frame, in most cases the base of the robot. Each joint represents

a screw displacement where the defining characteristics are the axis of rotation, or

screw axis, and vector from the static frame to the screw axis of the joint. These

two vectors completely define the manipulator kinematics. Thus, the first step in

kinematic determination is to calculate the screw axis and vector to the screw axis

for each joint.

In order to determine the unit vector screw axis and vector to the screw axis
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for each joint, the placement of the static frame and the IMU, or the moving frame,

is key. In order for the IMU to take measurements describing the motion of each

joint, the IMU and coincident moving frame must be placed somewhere beyond the

last manipulator joint frame. Conventional screw theory, as applied to robotics,

places the static frame at the base of the manipulator. Since there is an unknown

relationship between the joint screw axis and the base of the manipulator, this

convention is no longer applicable. However, the relationship between the joint screw

axis and a frame at the tip of the manipulator is always the same, when moving only

a single joint at a time, and clearly shown in 2.19. Constant parameters through a

joint motion can be described by

~s0, ŝ = const (4.1)

From the perspective of the frame moving in an arc, the screw axis and vector to

the screw axis always look the same numerically as in equation 4.1. Because of this

constant defined relationship between IMU and every joint, it is mathematically

convenient to define the static frame as a frame placed coincident with the IMU

frame in the initial manipulator pose. This is true for any random manipulator

start pose. A position measurement will thus be taken from the origin of this static

frame to the origin of the moving frame, or in other words, from the origin of the

IMU frame in the initial robot pose to the origin of the current IMU frame.

To find the unit vector screw axis, only the angular velocity values as measured

by the IMU are needed. In fact, due to the properties of circular motion

ŝ = ŵ (4.2)

and can be taken directly from the angular velocity in an ideal case. From the

previous discussion of circular motion, the acceleration of the IMU frame is given in
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equation 2.19. This is solved for

~r = ~s0 (4.3)

A single differentiation of the angular velocity is used to find the angular acceleration

at each point of the arc trajectory. At this point, all the values needed to solve for

~s0 in equation 2.19 have been generated.

In order to solve for the vector to screw axis ~r, it is easiest to write 2.19 as

a system of linear equations. To write 2.19 as a system of equations, each cross

product in the equation can be written as a skew symmetric matrix. The individual

components of 2.19 in skew symmetric form become:

~ω × ~r =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



r1

r2

r3

 =


ω2r3 − ω3r2

ω3r1 − ω1r3

ω1r2 − ω2r1

 (4.4)

~ω × (~ω × ~r) =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



ω2r3 − ω3r2

ω3r1 − ω1r3

ω1r2 − ω2r1

 (4.5)

~α× ~r =


0 −α3 α2

α3 0 −α1

−α2 α1 0



r1

r2

r3

 =


α2r3 − α3r2

α3r1 − α1r3

α1r2 − α2r1

 (4.6)

When the skew symmetric forms are substituted back into 2.19, the new equation

becomes

~a =


ω3ω1r3 − ω3

2r1 − ω2
2r1 + ω2ω1r2

−ω3
2r2 + ω2ω3r3 + ω1ω2r1 − ω1

2r2

ω2ω3r2 − ω2
2r3 − ω1

2r3 + ω3ω1r1

+


α2r3 − α3r2

α3r1 − α1r3

α1r2 − α2r1

 (4.7)
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It can be seen that there is a vector ~r such that

A~r = ~a (4.8)

where A is a matrix of coefficients that when multiplied by ~r give the right-hand

side of equation 4.7. A is of the form

A = ~α×+~ω × (~ω×) =


(−ω3

2 − ω2
2) (−α3 + ω2ω1) (ω3ω1 + α2)

(ω1ω2 + α3) (−ω3
2 − ω1

2) (−α1 + ω3ω2)

(−α2 + ω1ω3) (ω2ω3 + α1) (−ω2
2 − ω1

2)

 (4.9)

Substituting A back into 4.8 gives the final equation


(−ω3

2 − ω2
2) (−α3 + ω2ω1) (ω3ω1 + α2)

(ω1ω2 + α3) (−ω3
2 − ω1

2) (−α1 + ω3ω2)

(−α2 + ω1ω3) (ω2ω3 + α1) (−ω2
2 − ω1

2)



r1

r2

r3

 =


a1

a2

a3

 (4.10)

which can be solved for ~r in most cases.

Usually, a system of equations like 4.10 can be solved by taking the inverse

of A and calculating

A−1~a = ~r (4.11)

However, in this case, the A matrix is always singular, which means that the inverse

of A cannot be used in the solution for ~r. The A matrix is singular because a vector

to the screw axis can be from the static frame to any point on the screw axis, leading

to non-unique, i.e. infinately many, solutions to equation set 4.10.

In order to resolve the issue of a non-invertable A matrix, a truncated version

of the singular value decomposition can be used. In this case, the application of the

truncated SVD solves the problem of a non-invertable matrix and presents a mini-

mum norm solution. The SVD is a mathematical rearrangement which decomposes
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a matrix into 2 rotation matrices, U and V ∗, and one scaling transform matrix Σ

along the rotated axis. Equation 4.8 can be re-written as

UΣV T~r = ~a (4.12)

where A is decomposed into 3 matrices. Equation 4.12 can be solved for ~r by

rearranging. The equation then becomes

~r = V Σ−1UT~a (4.13)

By definition of a truncated SVD [3], 4.13 can be rewritten as

~r =
n∑
i=1

~ui
T~a

σi
~vi (4.14)

where n is the number of columns in U and V , ui is the ith column of U , vi is

the ith column of V , and σi refers to the diagonal value on the ith column of Σ.

For zero values of σi it is obvious that equation 4.14 still gives a singular result.

Therefore, the 4.14 expansion can be truncated by discarding values of σi which are

zero and limiting the SVD to some number of columns p < n. The resulting ~r is the

minimum norm solution, or least squares solution, and is the shortest distance from

the origin of the static frame to the joint screw vector. This vector is ~s0,i, or the

vector to the screw axis. A ~s0,i vector is calculated for each point around a joint arc

and will be identical at every point. Now both the screw axis ŝi and vector to the

screw axis ~s0,i have been calculated and the forward kinematics for the manipulator

can be determined.

Based on the ŝi and ~s0,i vectors, the screw displacement matrices for each joint

can be calculated. The transformation matrix A is composed as per [2] and detailed

in section 3. By using these matrices in series, a displacement of the tip from one
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position to another can be calculated. If p0 refers to a position vector in the static

frame, then the new position p is calculated by

p = A1A2A3A4...ANp0 (4.15)

Thus, the kinematic solver can solve for any tip position in the static reference frame.

It is worth noting that in a constant gravity environment, the accelerometer will have

different values. A second acutation of the joint arc at a much slower trajectory can

be used to measure these values at every joint angle. Once subtracted from the

high speed values, the mathematics procedure above applies. Thus, the kinematic

estimator can be applied in both micro-gravity and constant gravity environments.

4.2.1 Error Mitigation

Unlike an ideal case, real world systems have measurement error, which must be

dealt with and replicated in any simulation of the kinematic determination model.

This will also give an indication of how much measurement error the system can

tolerate and the best methods of filtering out noise.

When the ŝ vector is calculated in a system with error, it produces a wide

range of answers due to the error in angular velocity ω. In order to remove error

in the calculation injected by angular velocity measurements, a singular value de-

composition (SVD) is used once again. In this application, the SVD will be used to

indicate the strongest direction of the angular velocity. The SVD technique is used

with the matrix of ω. Generally written,

ω = BΣW ∗ (4.16)

W ∗ contains the orthonormalized eigenvectors of ωTω. The first column of
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W ∗ corresponds to the highest non-zero singular value1 of the ω matrix. The high-

est eigenvalue gives an indication of the dominant direction of ω, or a vector with

magnitude in the direction of the joint screw axis. This ”best fit” vector can be

transformed into a unit vector and will be the solution to the screw axis. For an

eigenvector and eigenvalue in W ∗ that solve for ωTω, there is a different eigenvalue

and unit vector that also solve for ωTω. Since the unit vector solution is desired,

using the built in Matlab functions provide the unit vector solution to the SVD au-

tomatically. The produced eigenvector is the unit vector screw axis. Thus, the screw

axis for a joint is provided directly by an application of singular value decomposition

to the angular rates for an arc motion.

Since a differentiation of ω is needed to calculate the angular acceleration ~α,

the angular acceleration can be inaccurate due to other noise in ω. One way to

improve the angular acceleration values, and thus the estimation of ~r, is to limit the

values of angular velocity ~ω to only those components that point in the screw axis ŝ

direction. This is done by taking the dot product of the angular velocity and screw

axis.

~ωnew = (~ω · ŝ)ŝ (4.17)

With the calculation of angular acceleration, and the measurement of linear accel-

eration and angular velocity by the IMU, the system can be solved for the vector to

the screw axis ~r as described in section 4.2. Additionally, for a system with error,

these ~r vectors are averaged together over the whole arc motion in order to calculate

the final ~s0,i.

In this chapter, a new method for definition of unmodeled forward kinematics

is defined. A screw theory based solution is presented, using data from a single IMU

placed on the tip of a manipulator to solve for the screw axis vectors of the joints

and the vectors from the static frame origin to the joint screw axis. The method

1A singular value is defined as the square root of an eigenvalue
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of using these calculated vectors in forward kinematics is then shown. The method

is then considered when there is error in the IMU values and steps are taken to

minimize influence. A full 6 DOF definition of the tip of the robot can then be

calculated based solely on accelerometer and gyroscope data from the IMU.
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Chapter 5: Kinematic Determination Method Simulation

5.1 Mathematical Simulation

A Matlab simulation was created in order to test the mathematial theory of the

kinematic analysis method presented in section 4.2. A brief description of the

simulation is included in this section. Variation of user defined parameters is used

to collect data on the relationship of tip position error and screw vector error to

simulated IMU measurement errors. An analysis of the simulation data is used to

determine feasibility for use of this method and the initial parameters for a hardware

based test.

The mathematical model presented in 4.2 is used as the basis for the genera-

tion of simulated linear acceleration and angular rotation values. Given a set of arm

parameters, or a screw axis and vector to the screw axis, for each joint, the model

is capable of generating the position of the manipulator tip in the static frame.

These positions are then differenced twice to generate simulated accelerations. The

simulated angular rate is the derivative of a user-input joint angle function. After

these values are generated, to simulate a real world system, zero-mean error can

be added to the system. At this point, just as with real IMU data, the simulated

accelerations and angular rates are input back into the model as described in 4.2

and the program outputs a set of estimated screw axis vectors and vectors to the

screw axis for each joint.

The advantage of a simulated mathematical model is the capability of the user

to change the manipulator and error parameters of the simulation to reflect different

scenarios. The user configurable variables in this simulation are:

• ŝi and ~s0,i

43



• Number of joints

• Joint type

• Input angle function to the joint

• Simulated IMU sampling interval

• Joint angle arc period

• Joint arc sweep angle

• Error in acceleration (in Gs)

• Error in angular rate (in rad/s)

A generic sinusoidal joint angle input function, containing both angular velocity and

angular acceleration at all points, was used to generate simulation data.

In order to validate the kinematic model position and vector estimation, a

simulation analysis was performed using a 5 DOF manipulator with 0% error in the

generated IMU measurements. The example manipulator constructed is of the form

found in figure 5.1

Figure 5.1: Simulated Manipulator

This manipulator has joint screw axis ŝ and vectors to the screw axis ~s0 shown

in tables 5.1a and 5.1b. These vectors can be seen with visual inspection of the

manipulator diagram in figure 5.1.
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ŝ1 ŝ2 ŝ3 ŝ4 ŝ5

0 1 0 0 0

1 0 0 1 0

0 0 1 0 1

(a) Simulated Arm Screw Vectors

s0,1 s0,2 s0,3 s0,4 s0,5

1.2 0 0.7 0.6 0.3

0 0 0 0 0

0 0 0 0 0

(b) Simulated Arm Vectors to Screw Axis

Table 5.1: Simulated Arm Characteristics

With 0% error added to the generated IMU measurements in the system, the

manipulator vectors, as calculated by the kinematic estimator, are shown in table

5.2.

ŝ1 ŝ2 ŝ3 ŝ4 ŝ5

0 1 0 0 0

1 0 0 1 0

0 0 1 0 1

(a) Ish Screw Vectors

s0,1 s0,2 s0,3 s0,4 s0,5

1.20007398 0 0.7000432 0.60003699 0.3000185

0 0 -0.0000021398 0 -0.000000918

0.000003669 0 0 0.000001835 0

(b) Calculated Vectors to Screw Axis

Table 5.2: Calculated Manipulator Parameters

There are minor differences in the exact and calculated ~s0 vectors, all of which

are less than 1
10

of a millimeter in magnitude. These slight differences are likely

caused by rounding in the mathematical operations of the kinematic estimator and

are considered negligible for the purposes of this analysis. As demonstrated by a 5

DOF, 0% error manipulator analysis, the simulation succesfully verifies the operation

of the kinematic calculation method and implementation in software.

One of the most important influences on the kinematic model estimation is

the effect of error in the generated IMU values on the screw vectors and position of

the manipulator tip. Error is applied to the simulated acceleration and angular rate

values evenly, i.e. 5% to both acceleration and angular rate at the same time. The
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error added is some percentage of the true maximum acceleration and angular rate

generated by the first part of the simulation. It should be noted that, for example,

5% error refers to a psuedo-randomly generated error array where the maximum

values on either side of zero are bounded by 5% of the true acceleration or angular

rate values. Like a real IMU measurement, some error added will be less than the

maximum/minimum possible value. Screw vectors are calculated for a range of error

percentages in the measured values and compared to the exact screw vectors. The

results of this comparison are shown in figures 5.2b and 5.2a.

(a) Error in the Screw Axis (b) Error in Vector to the Screw Axis

Figure 5.2: Comparison of IMU error with Screw Vector Error

As expected, error in the screw vectors increases with measurement value error.

However, an increase in measurement value error has a much smaller effect on the

screw axis value than the ~s value. The relationship between measurement error and

~s could be exponential, exhibiting an increase in slope at about 30% measurement

error. In order to keep the error in ~s0 less than 10%, the measurement error must

be below 20− 25%. The relationship of error with ŝ is relatively linear, with a 30%

measurement causing 1% error in the screw axis values.

With the result of the effect of measurement error on screw vectors, the total

effect of this error on tip position can be calculated. Figure 5.3 shows the cumulative

effect of measurement error on tip position.
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Figure 5.3: Influence of measurement error on tip position

In order to have less than 10% error in tip position, a measurement error below

25− 30% is desirable for a single link. However, these measurement errors become

cumulative as the number of DOF in the manipulator increases. Five runs were

taken for each of 2-5 DOF. The average for each DOF is shown in figure 5.4. The

individual trial runs for each DOF can be found in Appendix C.

Figure 5.4: Influence of measurement error on tip position for N DOF

For a 1-2 DOF arm, 25− 30% measurement error is acceptable for a less than

10% position error. In a 5 DOF manipulator, this number is reduced to about 20%

measurement error. This is also, as seen in figure 5.2b, the maximum percentage
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measurement error to keep ~s0 with less than 10% error.

The relationship of measurement error to both the screw vector and tip posi-

tion error can be used to show the effect of screw vector error directly on tip position

error. Figures 5.5a and 5.5b show the effect of error in ~s0 and ŝ on error in the

final tip position.

(a) Effect of ~s0 Error (b) Effect of ŝ Error

Figure 5.5: Comparison of Screw Vector Error with Tip Position Error

The relationship of ~s0 error with tip position error is almost perfectly linear in

all cases. With ŝ, very small error causes large changes in tip position. In general,

to remain below the 10% position error, less than 20% error in ~s0 and less than

1.5% error in ŝ is desirable. This is a confirmation of the information given by the

influence of IMU measurement error on these values and tip position error.

With error in ~s0 and ŝ, it is hypothesized that larger joint angles would em-

phasize the error in these vectors as shown in the tip position. Further, more joints

actuated at larger angles would increase the error in tip position by propogating

the screw vector error through the kinematic calculation and multiplying it by these

increasingly larger angles. In order to test this hypothesis, a joint with constant

10% IMU measurement error, and thus constant screw vector error, was used to
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compare size of the actuated angle and the resulting tip position error. The percent

error and magnitude of the error in position estimate are shown in figure 5.6.

(a) Percentage Position Error with Angle Size(b) Magnitude Position Error with Angle Size

Figure 5.6: Effect of Actuated Angle Size of Tip Position Error

In most cases, the percentage position error for a small angle is larger than

the percentage position error after a large actuation. This is due to the constant

error in a small versus large motion. The difference in the slopes of the 5%/10%

and 15%/20% error lines in the magnitude of the position error is also significant.

15%/20% measurement error begins with a much higher magnitude of position error

and increases at a faster rate. 5%/10% measurement error yields a much lower initial

position error magnitude and increases more slowly, almost not at all in fact, as the

joint angle increases. Based on figure 5.6b, 5% or 10% error in IMU measurement

values is ideal as the joint angles increase. This is a smaller percentage than the

percentage of measurement error determined by looking at measurement error and

tip position for a single pose found previously.

As before, it is hypothesized that as the number of DOF increase, so too the

percent error in position will increase as joint angles increase. 2-5 DOF values were

taken and averaged over several runs in order to determine an exact relationship for

joint angle and percent position error. Individual runs can be found in Appendix
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D with varying measurement error for each set of DOF. A summary of the average

values for a 2-5 DOF arm is shown in figure 5.7 with a constant 10% measurement

error.

(a) Percentage Position Error with Angle Size(b) Magnitude Position Error with Angle Size

Figure 5.7: Effect of Actuated Angle Size on Tip Position Error NDOF

Different percentages of measurement error over 1-5 DOF exhibit the same

trends. It is interesting that as number of DOF increases to 3, the percentage and

magnitude of the error in position increases. However, for 4 and 5 DOF manipu-

lators, the percentage and magnitude of the position error decreases for high joint

angles. With percentages, this trend might be expected as the size of the motion

is greater than the constant measurement error input. However, the slope of the

error magnitude also changes and at high DOF, the magnitude of the position error

is less than what it was for 3 DOF. 5 DOF position error is also less then 4 DOF

position error for high angles. This is an interesting and unexpected trend that may

be related to the configuration of the simulated manipulator. However, for large

joint angles, the results suggest that a high DOF manipulator may be best in order

to minmize tip position error.

Variation in how the input parameters, such as screw vectors, are measured

also changes the accuracy of the results. Each joint is actuated in an arc to generate

acceleration and angular rate data. The defining characteristics of the arc are the
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sweep angle and period. Changes to each of these parameters changes the accurary

of the estimated ~s0 and ŝ. Changes in the sweep angle of the arc as related to the

error in ~s0 and ŝ are shown in figure 5.8.

(a) ~s0 Error with Arc Size
(b) ŝ Error with Arc Size

Figure 5.8: Effect of Arc Size on Screw Vector Error

There is a drastic decrease in the ~s0 and ŝ error as the angle is increased from

5 to 10 degrees. Further increases do not decrease the ~s0 error significantly. Error

in ŝ remains below 0.6% regardless of changes in sweep angle, and after an increase

to 10 degrees, remains below 0.2% error in ŝ. In order to keep error in the screw

vectors low, a minimum sweep angle of 10 ◦ should be used in the joint actuation

to generate acceleration and angular rate values.

Since screw vector error is related to tip position error, a comparison of sweep

angle size and tip position error is also useful. Again, cumulative error over multiple

DOF affects tip position error. Figure 5.9 shows a comparison over multiple DOF

of tip position error and the sweep angle used to evaluate each of the DOF.

There is, matching the trend of sweep angle size and screw vector error, a

drastic decrease in position error as the sweep angle is increased from 5 to 10 degrees

for lower DOF, and 5 to about 20 degrees for higher DOF. Because large sweep

angles gather more data, a better average of the screw vector can be calculated over

shorter sweep angles and thus a higher sweep angle will give more accurate position

results. Higher DOF, as expected, have a higher position error for a larger range
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(a) Magnitude of Position Error with Arc
Size

(b) Percent Position Error with Arc Size

Figure 5.9: Effect of Arc Size on Position Error

of small sweep angles. After about 20 degrees, further increases in sweep angle size

do not have significant reduction of tip position error. For a 1-3 DOF manipulator,

a minimum sweep angle of 10◦ is ideal. For a 4-5 DOF manipulator, a minimum

sweep angle of 20◦ is ideal.

Sweep arc period also has an impact on the accuracy of the screw vectors, and

thus the error in tip position. Figure 5.10 shows the effect of increasing the arc

period, with a constant arc sweep angle of 10◦, on the accuracy of the screw vectors.

(a) ŝ Error with Arc Period

(b) ~s0 Error with Arc Period

Figure 5.10: Effect of Arc Period on Screw Vector Error

An arc period of greater than approximately 7 seconds increases the error

in the ~s0 significantly. This result shows that an arc should have a constant speed

approxmation of greater than 1.4◦/s for a system with a constant measurement error
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of 10%. If the measurement error increases, the constant speed requirement for the

arc period will also increase.

As before, the error in tip position can be related to the arc period through

the screw vectors. Figure 5.11 shows the relationship of arc period and tip position

error for multiple DOF manipulators.

(a) Position Error with Arc Period (b) Position Error with Arc Period

Figure 5.11: Effect of Arc Period on Position Error

Surprisingly, changing the period of the arc does not significantly affect posi-

tion error for a given large angle pose. This may be due to the unique configuration

of the simulation manipulators or other factors. Manipulators with DOF 1-5 all also

shows about the same effect in position error. There may be other factors in the

manipulator, such as measurement error or arc sweep angle, which affect the final

position much more than arc period and overwhelm the effects of arc period in the

tip position graphs.

The last method increasing accuracy in the screw vectors and position esti-

mates is to increase the number of joint arcs over which acceleration and angular

rate data is taken. This method is similar to an increase in joint sweep angle in

that more arcs, and thus more data points, will increase the screw vector accuracy

by averaging in additional data to mitigate zero-mean error. Figure 5.12 shows the

effect of increasing and averaging multiple arcs on the accuracy of the calculated

screw vectors.
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(a) ŝ Error with Arc Repeats

(b) ~s0 Error with Arc Repeats

Figure 5.12: Effect of Arc Repeats on Screw Vector Error

There is a drastic decrease in ~s0 and ŝ error as repeats are increased to 8-10

arcs averaged toghether. Increasing number of arcs further has diminishing returns

in decreasing screw vector error. However, the total magnitude of error decreases

in both vectors is small. ŝ error remains below 0.6% in all cases and 4 arc repeats

brings error below 0.3%. ~s0 error remains below 2.8% in all cases and 4 arc repeats

bring error below 1.4%. Based on these results, 8-10 repeats per arc is ideal, but

4-6 repeats will be adequate for significant reduction of vector error compared to a

single arc.

The kinematic estimation simulation provides results that define the relation-

ship between tip position error and measurement error, screw vector error, and input

variables which define how measurement data is collected. These results define how

well a system will function given constant error and variable values, as might be

expected in a real world scenario with an N DOF manipulator. Based on the sim-

ulation, a hardware test would be best suited to a 4-5 DOF manipulator collecting

joint data with a wide and fast arc actuation. 8-10 arc repeats are ideal but 4-6 arc

repeats will reduce screw vector error significantly. Ideally, for a high DOF manip-

ulator, measurement error should be less than 20% of the maximum true values in

order to keep tip position error to less than 10%.
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Chapter 6: Hardware Experiment

6.1 Experiment Description

A hardware implementation of the kinematic determination method described in

section 4.2 was also created in order to test the capability of the model in a real world

scenario. The goal of the hardware experiment is to calculate both screw vectors

and implement the forward kinematics, comparing ”true” position values of the

manipulator tip to those positions generated based on the kinematic determination

method. A description of the hardware and experiment procedures follows in this

chapter, along with expected results and method of results analysis. Error and error

mitigation specific to the hardware system is also incorporated into the analysis of

the data. Data from the hardware experiment is analyzed and used to investigate the

capability of the method and improvements to the experiment which could increase

the fidelity of the model. Analysis of the system is completed as compared to the

values and expectations generated in the simulation.

In order to test kinematic determination capability, a serial revolute manipula-

tor with several DOF, 4-5 as per the simulation determination, is ideal. The Ranger

Mark I manipulator originally specified for the Underwater Neutral Buoyancy Ve-

hicle (NBV) at the Space Systems Lab (SSL) is a 6 DOF arm with RPPRPR joints

in that order from base to tip. It is useful in this experiment due its high DOF,

easy existing software interface[16], and user-friendly joint angle control. The IMU

is placed, as needed by the screw theory kinematics for this method, beyond joint 6

of the manipulator. Joint 6 is not used as an actuated joint since the moment arm

from the IMU to joint six is negligible in terms of acceleration generation. Figures

6.1 and 6.2 show the Ranger manipulator with IMU attached.
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Figure 6.1: IMU as connected to Manipulator

Figure 6.2: IMU as attached to Joint 6 Plate
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At this point, the manipulator is set up for joint actuation, which will measure

acceleration and angular rate values for each joint. The user can select a manipulator

pose that is semi-random from which to perform the joint actuation. Again as per

the simulation, an arc sweep angle of 20◦ is ideal, so a pose where this can be

accomplished is necesary without interference from hard stops. A trapazoidal joint

angle trajectory between a series of points is used as the input function to the

joint. As the joints perform the trajectory, IMU data is taken. A second joint angle

trajectory is then performed, identical to the first, but at a much slower rate. This

is done in order to measure gravity at each point on the joint trajectory. Once

data is taken for each joint at both high and slow speed, the gravity for each joint

angle can be removed from the high speed measurements, leaving an acceleration

reading that is due only to the angular velocity and acceleration around the arc

trajectory. Once this acceleration and angular rate data is measured for each joint,

it is used to calculate the screw axis ŝi and vector to the screw axis ~si for each

joint of the manipulator. These two vectors are then used to complete the forward

kinematics model of the manipulator. As the manipulator is actuated, the new

forward kinematics model produces position estimates which can be compared to

the measured ”true” position at the same points. The error between the estimated

and true position can then be used to analyze the performance of the developed

kinematic determination system as compared with results found in the kinematic

simulation. A brief summary of the experiment procedure is given below.

• Select manipulator

• Place IMU beyond the last actuated joint of the manipulator

• Select manipulator initial pose

• Input joint angle trajectory for each joint

• Measure acceleration and angular rate for each point on the joint angle tra-

jectory
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• Measure gravity for each point on the joint angle trajectory

• Subtract gravity from measured acceleration values for acceleration due to

circular motion

• Use angular rate and acceleration to calculate ŝi and ~si for each joint

• Implement forward kinematics calculation for a variety of poses covering the

robot workspace

• Measure or calculate ”true” position of the IMU

• Analyze difference in position calculations to quantify fidelity of the new model

6.1.1 Error Analysis

Based solely on the Matlab simulation of the forward kinematics, it is expected

that the results of the hardware implementation will give a position estimate that

is closely related to measurement error and how the measurement data is taken.

Some of these variables can be modified by the user, until hardware limitations are

exceeded, and some are built into the system, such as manufacturer IMU zero-mean

noise and drift.

The minimum error in the system is based on the error values built into the

selected IMU. A commercial mems IMU, the Memsense nIMU, was chosen for this

experiment due to accuracy and availability of the unit. The minimum error indi-

cated by the manufacturer can be seen in table 6.1. A control test of the specific

IMU used for the experiment verified the manufacturer numbers and indicated an

approximate 1.5◦/s offset in the X axis and 0.5◦/s offset in the Y axis of the gyro-

scope.

Gyro Offset Gyro Noise Accelerometer Offset Accelerometer Noise

+
−1.5◦ +

−0.35− 0.95◦ +
−30 mG +

−6− 8 mG

Table 6.1: IMU Manufacturer Error Tolerances
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If the IMU produced the only error in the system, accelerations and angular

rates of magnitude +
−24 − 32 mG and +

−1.4 − 3.8◦/s would be required to produce

an accurate estimate of the manipulator kinematics. However, there is additional

error produced by the vibration of the joint motors, increasing in magnitude as the

speed of the joint increases. An example of small and large error caused by motor

vibration is shown in figure 6.3

(a) Acceleration with Vibration
(b) X Axis in Motion

Figure 6.3: IMU Error with running motors

The joint with the most error will be joint 4, since it has the smallest moment

arm. Based on a least-squares fit, shown in figure 6.4, the average difference between

the true acceleration value and the measured acceleration value was approximately

1.8 m
s2

, using a good test run. For a system where the measured values should, at a

maximum, be 2 m
s2

, based on the least-squares fit, this constitues a 90% error in the

measured acceleration. Comparing with values from other joints, this is the worst

case error that will be seen in the system.

As concluded from the simulation results, an increase in the speed of the joint

angle trajectory may somewhat increase the magnitude of measured values com-

pared to the magnitude of the error. This speed increase is limited by the physical

characteristics of the manipulator, especially one in an earth gravity environment,

such as motor maximum speed and current, loading on specific joints due to high
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Figure 6.4: Error in Joint 4 measurement

inertia, and loading of specifc joints due to gravity. Repetitions of the joint angle

trajectory for each joint will also reduce error by providing more points which can

be averaged for a more repeatable, accurate measurement. Using these techniques,

error in the IMU measurement was reduced by increasing the speed of the joint angle

trajectory and increasing the number of arc repetitions using the values in table 6.2.

The arc trajectory sweeps out a 10◦ angle. This trajectory angle, less than ideal,

was chosen due to limitations in the hardware, based on both speed and sweep of the

arc. 4-6 arc repeats were chosen based on reducing the error in the screw vectors,

and are also somewhat less than ideal numbers due to hardware limitations. These

numbers represent close to the physical limitations of the manipulator in a gravity

environment.
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Joint Arc Trajectory Period (s) Number of Repeats

Joint 2 1.0 6

Joint 3 1.0 6

Joint 4 0.368 4

Joint 5 0.368 4

Table 6.2: Joint Trajectory Period and Repeat Count

Based on the measurement error seen in the worst and best joint actuations,

and using simulation data as a basis, without considering some of the extra filters

added to the hardware data processing, 25 − 30% error can be expected in the

position estimation.

6.2 Calculation of ”True” Position

In order to compare results from the new kinematic determination method with

a ”true” position of the IMU, the truth position must be calculated or measured.

While direct measurement is ideal, the position can be calculated using accurately

measured DH parameters for the manipulator in an equivalent forward kinematics

scheme. This calculation is also more complex due to the relative placement of the

DH frames with the static frame of the screw based method. For the comparison

in this thesis, the position of the IMU was calculated using the DH method rather

than measured directly.

In order to calculate the true IMU position in the perspective of the screw

theory static frame, the DH parameters as measured by Ellsberry [17] were used in

the forward kinematics, as given in table 6.3.
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i αi−1 (deg) ai−1 (m) di (m) θi (deg)

1 0 0 0.2491 θ1

2 90 0 0 θ2

3 0 0.5589 0 θ3

4 -90 0.1514 0.5388 θ4

5 90 0 0 θ5

6 90 0 0 θ6

T 0 0 0.2666 0

Table 6.3: Denavit-Hartenberg parameters for Ranger Mark I. From [17].

As placed in the screw theory based method, the static frame in which position

measurements are taken is located coincident with the IMU frame in the initial pose

of the robot. The transformation from the inertial world frame to this frame is

calculated by

A
WT z = A

TT
T
6 T

6
5T

5
4T

4
3T

3
2T

2
1T

1
0T

0
WT (6.1)

The transformation from the world frame [W] to the base frame [0] and from the tip

frame [T] to the IMU frame [A] is a Euler-Angle rotation and translation. The total

transformation matrix A
WT z is unique to the initial pose of the robot. To calculate

the new position of the IMU in the static reference frame, and thus calculate the

same position as the screw theory method, the position of the origin of the IMU

frame must be transformed into the world frame, and then into the static reference

frame.

p = A
WT z

W
0 T

0
1T

1
2T

2
3T

3
4T

4
5T

5
6T

6
TT

T
AT

Apo,A (6.2)

This calculation will produce a position measurement in the same frame as the

equivalent position measurement in the screw theory based method.

There is also additional error added into the system by using the DH trans-
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formation instead of direct measurement. Error in the measurement of the DH

parameters contributes to error in the ”true” position estimation. Also, the trans-

formation between the IMU frame [A] and tip frame [T] cannot be measured exactly

and, as such, is visually estimated. This will also inject position error on the order

of 1-2 cm into the ”true” position estimation.

6.3 Position Error Analysis

An initial pose was selected for the manipulator as shown in figure 6.5a and the

exact joint angles, as represented from a pre-determined ”home” position, are listed

in table 6.4. A visual representation of the screw vectors is also shown in figure

6.5b.

(a) ”zero” arm pose (b) Arm pose with vectors

Figure 6.5: Manipulator Initial Pose with and without vectors

Joint Angles (Radians)

Joint 1 2 3 4 5 6

Angle 0 0.63 1.2109 0 2.2 0

Table 6.4: Initial Arm Pose Joint Angles

IMU data for joints 2-4 was collected and processed for screw vector calcula-

tion. An example of the acceleration and angular rate is shown in figures 6.6 and
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6.7. The full set of joint measurement data can be found Appendix A.

(a) X Acceleration Joint 4 (b) Y Acceleration Joint 3

Figure 6.6: Joint Example Accelerations

(a) Angular Rate about X Joint 2 (b) Angular Rate about X Joint 4

Figure 6.7: Joint Example Angular Rotation

Due to noisy data, a filter was required. Each filter was tuned based on the

power spectral density (PSD) of each axis of each joint. The tuned filter was then

applied to the data. An example of one utilized PSD plot and a comparison of

unfiltered and filtered data is shown in 6.8.

As per the mathematical model and simulation described previously in secion

4.2, the screw axis of the joint and the vector to the screw axis was calculated for

joints 2-4. Table 6.5 shows the calculated values.
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(a) PSD Plot of Joint 4 X Axis
(b) Comparison of filtered and unfiltered
data

Figure 6.8: Joint Example Angular Rotation

ŝ2 ŝ3 ŝ4 ŝ5 ~s0,2 ~s0,3 ~s0,4 ~s0,5

0.9709 0.9718 0.1964 0.9697 0.04555 -0.0887 0.0158 0.01944

-0.2390 -0.2358 0.8307 -0.2433 0.1546 -0.3851 0.1367 0.05255

-0.0154 -0.0068 -0.5209 -0.0213 0.4945 0.6781 0.2239 0.2843

Table 6.5: Calculated Screw Vectors for Ranger Mark I

These vectors to the joint screw axis are visually accurate. The consistency

of the screw axis of joints 2,3, and 5 is also a positive sign that the system has

come up with a reasonable answer, as the screw axis for those three joints should

be identical. Now, with these vectors, the position estimates of the DH kinematics

can be compared to the screw theory kinematics position estimates as calculated by

the values in 6.5.

21 positions representative of a wide variety of joint angle combinations were

used for the initial position estimates. Each position is calculated as though the

manipulator were traveling from the initial pose to the new position. The first

eight test points represent positive and negative single joint actuations. Figures

6.9a, 6.9b, and 6.10a show the difference in position on the three axis of the static

reference frame. Figure 6.10b shows the magnitude root mean square error of the

position.

In general, the position as determined by the kinematic model presented in
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(a) X Position Error (b) Y Position Error

Figure 6.9: X and Y Position Plotted for 21 Poses

(a) Z Position Error (b) Root Mean Error of Position

Figure 6.10: X Position and Position Root Mean Error for 21 Poses
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this thesis follows closely with the position as calculated by measured values. The

average percentage error in position estimation is 17%. Given the high measurement

error in the system, this is a better result than expected based on the simulation

data. Error in the data points is caused by error in position contributed by each

joint. A summary of how much joint contributes over a set of angles is shown in

figure 6.11.

Figure 6.11: Position Error Contributed by each joint

Based on the results in figure 6.11, joints 2 and 5 contribute the most position

error to the system. The contribution of joint 2 to error is expected, as that joint

was actuated slowly and had a smaller moment arm than joint 3. The second highest

error contributor, joint 5, is somewhat unexpected as it has a larger moment arm

than joint 4 and was actuated at the same speed. This could be due to bad runs or

other unexpected contributing factors.

As an example, the actual position versus the estimated position for a range

of angles of joint 2 is shown in figure 6.12.

As expected from the simulation results, larger joint angles will contribute

more to the position error. Over the range of results from the hardware versus the

simulation, the hardware performed better than expected given high measurement
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(a) Estimated and Actual X position
(b) Estimated and Actual Y position

Figure 6.12: X and Y Exact and Estimated Position Over Joint 2 Angles

error. Some of the trends seen in the simulation, such as error and joint angle, were

also verified with the hardware implementation.

6.3.1 Error Correction

There are several corrections that can be made to this type of hardware system

which will improve the accuracy of the guessed manipulator tip positions. A more

accurate system for measurement of actual position will be discussed, along with

suggestions for improvements in the IMU and manipulator selection. Location of

the manipulator, either in gravity or microgravity, also makes a difference in the

accuracy of the forward kinematics.

As mentioned in section 6.2, the final transformation in the DH calculation

from frame T to frame A, or from tip to IMU, was innacurate due to errors in

measurement. The final values used were measured and approximated as best as

possible from visual inspection and crude measurement tools. This adds approxi-

mately 1-2 cm of error into the ”true” position calculation. Ideally, a tool such as

a Faro arm can measure this transformation, and in fact the position vector, very
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accurately to sub-mm levels. In order to perform a true comparison, a high accu-

racy measurement of the actual position vector should be taken and compared to

the guessed position vector. In order to use the DH comparison, an accurate final

transformation should be measured.

A change in manipulator and IMU selection will also improve the accuracy

of the kinematic estimator. In comparison to IMUs currently being used in space

applications, the IMU used for this experiment was of relatively low accuracy and

high error. A higher end IMU will give higher precision measurements and less zero-

mean error inherent to the device. An IMU with a higher tolerance for vibration

would also be beneficial. It is also worth noting that the Ranger Mark I arm has

been in heavy use for the past 15+ years. Because the original mechanical systems

are still in place on the arm, extra vibration and error is likely visible compared to a

newer system. In addition, the Mark I was not built to take high gravity loads and

high loads at top speed, unlike some of the other versions of the Ranger system. A

manipulator built to take high loading in gravity would be ideal due to the ability to

move all joints at higher speed without risking damage to the system. Another way

of mitigating gravity load is to test the manipulator in a microgravity environment,

as intended for the purposes of this thesis. The manipulator will not have gravity

loads and will be able to actuate joints with more speed at less cost to the arm,

which will again improve accuracy in the kinematic estimator.
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Chapter 7: Summary and Conclusions

7.1 Summary and Conclusions

The research detailed in this thesis developed a new method of kinematic determina-

tion for unmodeled manipulators based around the use of screw theory and a single

IMU. This method can be used with any serial revolute manipulator and requires

only knowledge of encoder counts per revolution for each joint. The mathematics of

the method were presented, with and without error correction, as a low-complexity,

mathematically convenient way of calculating a full 6 DOF position and orienta-

tion for a manipulator. A simulation of the method was analyzed, looking at the

relationship of measurement error and input variables to position error to assess

the feasibility of use of the method. The results of the simulation were then veri-

fied with a real-world manipulator and a comparison of the measurement error to

position error discussed.

An analysis was completed of previous works using different methods to de-

termine unmodeled manipulator kinematics. Most previous work is based on prior

knowledge of the manipulator or other external sensor information. The majority

of these methods use DH convention. It was concluded, based on previous methods,

that the use of DH parameters adds unnecessary complexity to the kinematic de-

termination. Screw theory is a simpler method for this application and used in the

current research. Accelerometers also provide an advantage in being a small, simple

system that can be used with any manipulator, not just one where the joints and

links are known. As such, a method using a single IMU and screw theory was de-

veloped for kinematic estimation of a micro-gravity manipulator, based on successes

and limitations of previous research.
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A simulation was developed in order to test the performace and fidelity of the

kinematic estimation method under different conditions. A relationship between

the variables of the method and error of the system was determined in order to

characterize how changes in one part of the calculation effect the outcome. In

general, a measurement error of less than 30% in both acceleration and angular rate

is needed in order to calculate the position of the end effector with less than 10%

error. Other variables, such as arc sweep and period, number of arc repeats, and

number of DOF of the manipulator can improve or worsen this ratio. The simulation

determines that the kinematic estimator is capable to a degree of accuracy directly

related to measurement error in the system.

A hardware implementation was also developed to test the kinematic estimator

and verified the trends seen in the simulation with measurement error and position

error. Screw vectors and vectors to the screw axis were determined on the manipu-

lator and those values were used to calculate the forward kinematics. A comparison

of true and estimated positions was used to evaluate the performance of the esti-

mator for a real-world system. Given a 40− 90% measurement error in each joint,

a position error of 15 − 25% was calculated, with magnitude depending heavily on

the size of the joint angles. Based on the simulation results, this ratio falls within

expected values and is actually slightly better than expected for this manipulator

in its current configuration.

7.2 Future Work

As detailed in section 6.3.1, there are several improvements possible to improve

the results of a real-world use of the kinematic estimator. Each manipulator will

have error inherent in the design and hardware and different manipulators may be

more or less accurate. A higher accuracy IMU will also help the calculation. One of
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the most important changes is the use of a highly accurate system to measure the

position vector as the arm moves, instead of the less accurate measurement used

in this thesis due to hardware availability. Measurement in micro-gravity wil also

help remove error by improving the capabilities of the arm and removing the need

to subtract out gravity, and add other measurement error, from the calculation.

Different tests implementing some or all of these methods will help additionally in

evaluating the performance of the kinematic estimator for future research.

An analysis of the reaction of an IMU to different levels and frequencies of

vibration would also be beneficial. It may be that there are vibration modes in

the arm motors which excite vibration modes in the IMU which cause additional

measurement error. This leads very naturally into a dynamics analysis for the

manipulator. An understanding of the dynamic modes of the manipulator, as most

likely measured by a very similar method to the kinematic estimator, will help to

quantify error in measurements and the performance of the manipulator itself. The

combination of a kinematic estimation and dynamic estimation would be a much

more complete picture of the manipulator characteristics for refined control.

There are several manipulator types not addressed that would be interesting

to develop using the identified kinematic estimator. Parallel manipulators and pris-

matic link manipulators could potentially benefit from or have simplified calculation

of forward kinematics. The ability to determine kinematics for a generic manipu-

lator, without restrictions, would be extremely advantageous. Since screw theory

is applied to parallel manipulator forward and inverse kinematics, because of how

much it simplifies the calculation, use of this kinematic estimator may fit in well

with those already developed methods.
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7.2.1 Future Applications

With the use of the developed kinematic estimator, the way in which reconfigurable

manipulators can be designed is expanded significantly. No geometric knowledge of

joints or connectors is required, allowing the use of any shapes, connectors, links,

or other designs as benefits the manipulator task. A system can be developed by

which any manipulator can determine its own kinematics, in whatever configuration

is desirable for the system. The potential for a system like this, especially if manip-

ulators are modified or changed out on a regular basis, where no software updates

or changes are required, and no complex calculations are needed, is very interesting.

Another interesting application is the used of this method in underwater

robotics. Currently, there are very few reconfigurable underwater manipulators.

Using the kinematic estimator developed in this research, no electrical or other con-

nections are needed between joints, allowing a completely mechanical interface. A

mechanical interface with no other connections is far easier to change out underwater

and could allow the development of a useful underwater reconfigurable manipulator.
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Chapter A:

(a) X Acceleration J5
(b) Y Acceleration J5

Figure A.1: Joint 5 XY Accelerations

Figure A.2: Z Acceleration J5

The arcs in the angular rate data are much clearer than those of acceleration, as

seen in figures A.3a, A.3b, and A.4. Angular rate graphs also show a ”glide” period

of constant angular rate. This is typical of a trapazoidal trajectory as controlled by

the joint motor.

The majority of the rotation occurs about the X and Y axis. The same pro-

cedure was performed for joint 4, at identical arc period and sweep angle.
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(a) Angular Rate About X J5 (b) Angular Rate About Y J5

Figure A.3: Joint 5 XY Angular Rates

Figure A.4: Angular Rate About Z J5

(a) X Acceleration J4 (b) Y Acceleration J4

Figure A.5: Joint 4 XY Accelerations
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(a) Z Acceleration J4 (b) Angular Rate about X J4

Figure A.6: Joint 4 Z Accel and X Rotation

(a) Angular Rate About Y J4 (b) Angular Rate About Z J4

Figure A.7: Joint 4 YZ Angular Rates
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The graphs of joints 5 and 4 are very similar. Joint 4 is a noisier data set,

seen in A.1a, A.1b, and A.2, due to the fact that the IMU was closer to the joint 4

axis of rotation. Joints 2 and 3 behaved somewhat differently as they were further

from the measurement point and had increased arc period. The extra arc repeats

as described in 6.1.1can be seen in the graphs of the data for joint 3.

(a) X Acceleration J3 (b) Y Acceleration J3

Figure A.8: Joint 3 XY Accelerations

(a) Z Acceleration J3 (b) Angular Rate about X J3

Figure A.9: Joint 3 Z Accel and X Rotation

There is no period of constant angular velocity in the recorded measurements

for joint 3. Angular acceleration and angular velocity are present throughout the arc

time, in theory leading to a stronger total acceleration reading. There is, however,

still significant noise. The IMU measurements of joint 2 are similar to those of joint

3, as seen in figures A.11a through A.13b.
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(a) Angular Rate About Y J3 (b) Angular Rate About Z J3

Figure A.10: Joint 4 YZ Angular Rates

(a) X Acceleration J2
(b) Y Acceleration J2

Figure A.11: Joint 2 XY Accelerations

(a) Z Acceleration J2 (b) Angular Rate about X J2

Figure A.12: Joint 2 Z Accel and X Rotation
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(a) Angular Rate About Y J2 (b) Angular Rate About Z J2

Figure A.13: Joint 2 YZ Angular Rates
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Chapter B:

While not necesary for kinematic calculation by the method presented in this thesis,

it may be desirable for the user to have a visual representation of the manipulator.

Specifically, the pose of the arm, or at least an approximation, may be beneficial.

Given the screw axis and vectors to the screw axis, it is possible to calculate a visual

representation of the manipulator, not including joint offsets. Given a point, the

origin of a frame, a line that represents the screw axis, and a perpendicular line

between the point and screw axis, a second vector to the screw axis that matches

the physical representation of the manipulator can be determined. This concept is

illustrated in B.1.

Figure B.1: Calculation of Pose via Point to Line

The LMN vector ~LMN represents the physical link between two joints. K

represents some distance along the screw axis between the intersection of the per-

pendicular vector to the screw axis and the physical vector. Traveling K along the

screw axis results in a vector Kŝ. Figure B.1 shows that the addition of the vectors
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Kŝ and ~s0 results in the vector ~LMN , or rearranged:

Kŝ = ~s0 − ~LMN (B.1)

which is also applicable in 3D space. Considering the point at which the

physical vector ~LMN intersects the screw axis, this points is labeled (L,M,N) in

cartesian space. Thus, equation B.1 can be divided into three seperate equations,

each representing an axis of the cartesian reference frame.

s0,x +Kŝx = L (B.2)

s0,y +Kŝy = M (B.3)

s0,Z +KŝZ = N (B.4)

There are now three equations and four unknowns. Figure B.1 also shows that

lines ŝ and Kŝ will be parallel, which means their dot product will be 0. This can

be used to produce the fourth equation. Equation B.1 can be rewritten as a dot

product with ŝ

0 = (~s0 − ~LMN) · ŝ (B.5)

Using the algeabraic definition of a dot product, B.5 can now be written as

0 = (s0,x − L)sx + (s0,y −M)sy + (s0,z −N)sz (B.6)

Simplifying the expanded form of B.6 by using A and B as coefficents of the form

A = s0,i−1,xsx + s0,i−1,ysy + s0,i−1,zsz (B.7)

B = s0,i,xsx + s0,i,ysy + s0,i,zsz (B.8)
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and solving for K by substituing B.2, B.3, and B.4 into B.6

K =
A−B

(sx2 + sy2 + sz2)
(B.9)

K is substituted back into B.2, B.3, and B.4, and the ~LMN vector is solvable.

The endpoint of the ~LMN vector is used as the starting point for the next joint.

Thus, by graphing the LMN vectors in 3D space, a rough picture of the pose of the

manipulator can be generated in addition to the kinematic solution.

82



Chapter C:

Figure C.1: Influence of measurement error on tip position for 2 DOF

Figure C.2: Influence of measurement error on tip position for 5 DOF
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Chapter D:

(a) Percentage Position Error with Angle Size

(b) Magnitude Position Error with Angle Size

Figure D.1: Effect of Actuated Angle Size on Tip Position Error 2DOF

(a) Percentage Position Error with Angle Size
(b) Magnitude Position Error with Angle Size

Figure D.2: Effect of Actuated Angle Size on Tip Position Error 3DOF
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(a) Percentage Position Error with Angle Size
(b) Magnitude Position Error with Angle Size

Figure D.3: Effect of Actuated Angle Size on Tip Position Error 4DOF

(a) Percentage Position Error with Angle Size(b) Magnitude Position Error with Angle Size

Figure D.4: Effect of Actuated Angle Size on Tip Position Error 5DOF
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Chapter E:

The following code is an example, using variable measurement error, of the kinematic

determination simulation.

%This is the arc calculation

%Set the link lengths (the r magnitudes)

r = [.2 .3 .1 .3 .3];

%Generate a pose

deg = [30 0 0 0 0];

radians = [deg(1)*pi/180,deg(2)*pi/180, deg(3)*pi/180, deg(4)*pi/180,

deg(5)*pi/180];

%Prismatic joints

t = 0;

%Number of joints

N = 5;

%Set the s hat vectors (from the final reference frame perspective)(in the

%"flat" configuration

s = [0;1;0];

s(:,2) = [1;0;0];

s(:,3) = [0;0;1];

s(:,4) = [0;1;0];

s(:,5) = [0;0;1];

%Set the s0 vectors (from the final reference frame in the "flat"

%configuration)

s0 = [1*(r(1)+r(2)+r(3)+r(4)+r(5));0;0];

s0(:,2) = [0;0;0];

s0(:,3) = [1*(r(3)+r(4)+r(5));0;0];
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s0(:,4) = [1*(r(4)+r(5));0;0];

s0(:,5) = [1*(r(5));0;0];

%Set the orientation of the final frame and q relative to the final

%reference frame-and in the flat config

q0 = [0;0;0;1];

%For the arc calcs

%Set the angle we want to sweep through

B = 0.6981317;

%Set the period of the sin function of theta

T = 5;

%Grab a time step-does not have to be this but its convenient for

%simulation purposes

h = 0.01;

points = T/h;

w = zeros(3,N);

Asave = eye(4);

ROT = eye(3);

g = 1;

k = 1;

Accel_cell = cell(1,N);

w_cell = cell(1,N);

%g is incremented every loop no matter what

%k begins to increment on the 3rd loop-or when accelerations can first be

%calculated

%Generation of values: Simulated "measurements"

%Create the new array of A and R

figure(15)

for i=1:N

%For each joint go through the sweep
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for t0=(-h*9):h:T

%Generate the pattern

theta_patt = B*sin((2*pi*t0)/T);

plot(t0,theta_patt);

hold on;

w_patt = ((2*pi*B)/T)*cos((2*pi*t0)/T);

alpha_patt = -1*((4*pi^2*B)/(T^2))*sin((2*pi*t0)/T);

theta = theta_patt;

%Calculate the screw matrix for the individual joint-for subsequent

%matrices, use this matrix cumulatively with the previous 0

%matrices

8/3/2013 4:08 PM
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a43

a44

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

=

(s(1,i)^2-1)*(1-cos(theta))+1;

s(1,i)*s(2,i)*(1-cos(theta))-s(3,i)*sin(theta);

s(1,i)*s(3,i)*(1-cos(theta))+s(2,i)*sin(theta);

s(2,i)*s(1,i)*(1-cos(theta))+s(3,i)*sin(theta);

(s(2,i)^2-1)*(1-cos(theta))+1;

s(2,i)*s(3,i)*(1-cos(theta))-s(1,i)*sin(theta);

s(3,i)*s(1,i)*(1-cos(theta))-s(2,i)*sin(theta);

s(3,i)*s(2,i)*(1-cos(theta))+s(1,i)*sin(theta);

(s(3,i)^2-1)*(1-cos(theta))+1;

t*s(1,i)-s0(1,i)*(a11-1)-s0(2,i)*a12-s0(3,i)*a13;

t*s(2,i)-s0(1,i)*a21-s0(2,i)*(a22-1)-s0(3,i)*a23;
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t*s(3,i)-s0(1,i)*a31-s0(2,i)*a32-s0(3,i)*(a33-1);

0;

0;

0;

1;

%Asave is the A matrix of the previous loop recorded when theta=0

Aold = Asave;

A = [a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44];

%Calculate the rotation matrix so that we can rotate the

%accelerations into the IMU frame. We are calculating the

%accelerations in the reference frame so they must be rotated

ROT11 = s(1,i)*s(1,i)*(1-cos(theta))+cos(theta);

ROT12 = s(1,i)*s(2,i)*(1-cos(theta))-s(3,i)*sin(theta);

ROT13 = s(1,i)*s(3,i)*(1-cos(theta))+s(2,i)*sin(theta);

ROT21 = s(1,i)*s(2,i)*(1-cos(theta))+s(3,i)*sin(theta);

ROT22 = s(2,i)*s(2,i)*(1-cos(theta))+cos(theta);

ROT23 = s(2,i)*s(3,i)*(1-cos(theta))-s(1,i)*sin(theta);

ROT31 = s(1,i)*s(3,i)*(1-cos(theta))-s(2,i)*sin(theta);

ROT32 = s(2,i)*s(3,i)*(1-cos(theta))+s(1,i)*sin(theta);

ROT33 = s(3,i)*s(3,i)*(1-cos(theta))+cos(theta);

ROTsave = ROT;

ROTprev = ROT;

ROT = [ROT11 ROT12 ROT13;ROT21 ROT22 ROT23;ROT31 ROT32 ROT33];

%Multiply the current screw matrix by the previous one

A = A*Aold;

%Use the succesive screw displacements to calculate the new

%position vector which is 0 in the original reference frame

qnew = A*q0;

%Keep track of the analytical values
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theta_deg(g) = theta_patt;

alpha_patt2(g) = alpha_patt;

w_patt2(g) = w_patt;

if(g == 2)

%If time is 0, save the current A

%Asave = A;

%Create an array to calculate the 0 acceleration and the

%accelerations in general

%qstore(:,2) = qnew;

tstore(:,2) = qnew;

%Calculate teh angular velocity in the IMU frame-w refers to

%the array of 0 only, w_e refers to the larger array of all

%values

%w(:,i) = s(:,i)*w_patt;

w_e(:,g) = s(:,i)*w_patt;

%Make an array of the position vectors-just for fun I guess

pos(:,g) = qnew;

g = g+1;

elseif(g == 3)

%qstore(:,3) = qnew;

tstore(:,3) = qnew;

%Calculate w vector in the IMU frame

w_e(:,g) = s(:,i)*w_patt;

%Double differentiate to get the 0 acceleration. Since we need

%both the before and after values, we need to calculate the

%zero values 1 loop after 0

%General case array-this array begins when k = 1;

accel_e(:,k) = (tstore(:,3)-2*tstore(:,2)+tstore(:,1))/(h^2);

accel_e(1:3,k) = transpose(ROTsave)*accel_e(1:3,k);
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pos(:,g) = qnew;

g = g+1;

k = k+1;

elseif(g == 1 )

%Same thing as zero, but just store these values, they will be

%used in the first double differentation

%qstore(:,1) = qnew;

tstore(:,1) = qnew;

w_e(:,g) = s(:,i)*w_patt;

pos(:,g) = qnew;

g = g+1;

elseif(g == 10)

%If time is 0, save the current A

Asave = A;

%Create an array to calculate the 0 acceleration and the

%accelerations in general

qstore(:,2) = qnew;

tstore(:,1) = tstore(:,2);

tstore(:,2) = tstore(:,3);

tstore(:,3) = qnew;

accel_e(:,k) = (tstore(:,3)-2*tstore(:,2)+tstore(:,1))/(h^2);

%Rotate to IMU frame

accel_e(1:3,k) = transpose(ROTsave)*accel_e(1:3,k);

%Calculate teh angular velocity in the IMU frame-w refers to

%the array of 0 only, w_e refers to the larger array of all

%values

w(:,i) = s(:,i)*w_patt;

w_e(:,g) = s(:,i)*w_patt;

%Make an array of the position vectors-just for fun I guess
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pos(:,g) = qnew;

g = g+1;

k = k+1;

elseif(g == 11)

qstore(:,3)

tstore(:,1)

tstore(:,2)

tstore(:,3)

=

=

=

=

qnew;

tstore(:,2);

tstore(:,3);

qnew;

%Calculate w vector in the IMU frame

w_e(:,g) = s(:,i)*w_patt;

%Double differentiate to get the 0 acceleration. Since we need

%both the before and after values, we need to calculate the

%zero values 1 loop after 0

accel(:,i) = (qstore(:,3)-2*qstore(:,2)+qstore(:,1))/(h^2);

%Rotate the value back into the IMU frame

accel(1:3,i) = transpose(ROTsave)*accel(1:3,i);

%General case array-this array begins when k = 1;

accel_e(:,k) = (tstore(:,3)-2*tstore(:,2)+tstore(:,1))/(h^2);

accel_e(1:3,k) = transpose(ROTsave)*accel_e(1:3,k);

pos(:,g) = qnew;

g = g+1;
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k = k+1;

elseif(g == 9 )

%Same thing as zero, but just store these values, they will be

%used in the first double differentation

qstore(:,1) = qnew;

tstore(:,1) = tstore(:,2);

tstore(:,2) = tstore(:,3);

tstore(:,3) = qnew;

accel_e(:,k) = (tstore(:,3)-2*tstore(:,2)+tstore(:,1))/(h^2);

%Rotate to IMU frame

accel_e(1:3,k) = transpose(ROTsave)*accel_e(1:3,k);

w_e(:,g) = s(:,i)*w_patt;

pos(:,g) = qnew;

g = g+1;

k = k+1;

else

%Only for general case now-we already calculated our 0 value

tstore(:,1) = tstore(:,2);

tstore(:,2) = tstore(:,3);

tstore(:,3) = qnew;

%Calculate all the accelerations for the pattern based on

%numerical double differentiation

%Cuts off t = -h and the last valeu, t = 20

accel_e(:,k) = (tstore(:,3)-2*tstore(:,2)+tstore(:,1))/(h^2);

%Rotate to IMU frame

accel_e(1:3,k) = transpose(ROTsave)*accel_e(1:3,k);

w_e(:,g) = s(:,i)*w_patt;

pos(:,g) = qnew;

k = k +1;

94



g = g +1;

end

end

Accel_cell(1,i) = {accel_e};

w_cell(1,i) = {w_e};

g = 1;

k = 1;

end

hold off;

%Now for some error addition:

%I need 2000 points of random error for each

%Reduce the error-these are approximately 1% of the maximum value I see in

%the readings

Accel_save = Accel_cell;

w_save = w_cell;

maxa = max(max(cell2mat(Accel_save)));

maxg = max(max(cell2mat(w_save)));

a = [0.1 0.1];

c = [0.1 0.1];

b = [-0.1 -0.1];

d = [-0.1 -0.1];

a

b

c

d

=

=

=

=
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a.*maxa;

b.*maxa;

c.*maxg;

d.*maxg;

for e=1:length(a)

permeaserrora(e) = a(e)/max(max(cell2mat(Accel_save)))*100;

permeaserrorg(e) = c(e)/max(max(cell2mat(w_save)))*100;

end

%Generate some random error for each joint

for n=1:(length(a))

for i=1:N

Randa_error(n,i) = {(a(n)-b(n))*rand(3,points+9)+b(n)};

Randg_error(n,i) = {(c(n)-d(n))*rand(3,points+9)+d(n)};

accel1 = cell2mat(Accel_cell(1,i));

error = cell2mat(Randa_error(n,i));

error(4,:) = 0;

for u=1:points

accel1(:,u) = accel1(:,u) + error(:,u);

end

Accel_cell(n,i)

= {accel1};

gyro1 = cell2mat(w_cell(1,i));

error = cell2mat(Randg_error(n,i));

for u=1:(points+2)

gyro1(:,u) = gyro1(:,u) + error(:,u);

end

w_cell(n,i) = {gyro1};

end

end
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%Now, we think, things can actually be calculated analytically

%INPUTS:

%Acceleration array for the arc from accelerometer

%Angular velocity array fron the gyro

%

As a side note, the velocity array can be compared to the analytical

%

solution for a real robot to see where the differences are and possibly

%

use this to compensate for the derived angular acceleration as well

%Theta array as commanded to the motor

%Associated time array and steps

%OUTPUTS:

%Take the derivative of the gyro readings (compare to theoretical solution

%based on motor input pattern for a real arm)

%Calculate the s unit vector

%Grab the shat first-we can take an average for a real robot, so lets

%average here just to be safe

%So the error makes things really really sucky-try a central moving

average

%filter to make the data better-8 points for the average to start

%Start with just the rotations to see if it works

ma_cell = cell(length(a),N);

maa_cell = cell(length(a),N);

LPFcell = cell(length(a),N);

for n=1:length(a)

for b=1:N

wvalues = cell2mat(w_cell(n,b));

avalues = cell2mat(Accel_cell(n,b));
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for i=1:1:(points+2)

%Average of point 5 (i+4) (t = -0.25 s ) is the recorded first point of

the moving

%average

ma(1,i) = (wvalues(1,i)+wvalues(1,i+1)+wvalues(1,i+2)+

wvalues(1,i+3)+wvalues(1,i+4)+wvalues(1,i+5)+wv

ma(2,i) = (wvalues(2,i)+wvalues(2,i+1)+wvalues(2,i+2)+

wvalues(2,i+3)+wvalues(2,i+4)+wvalues(2,i+5)+wv

ma(3,i) = (wvalues(3,i)+wvalues(3,i+1)+wvalues(3,i+2)+

wvalues(3,i+3)+wvalues(3,i+4)+wvalues(3,i+5)+wv

ma_cell(n,b) = {ma};

end

for i=1:1:points

%Average of point 5 (i+4) is the recorded first point of the moving

%(t = -0.2 s)

%average

%Also losing the last point (or point 409)

maa(1,i) = (avalues(1,i)+avalues(1,i+1)+avalues(1,i+2)+

avalues(1,i+3)+avalues(1,i+4)+avalues(1,i+5)+a

maa(2,i) = (avalues(2,i)+avalues(2,i+1)+avalues(2,i+2)+

avalues(2,i+3)+avalues(2,i+4)+avalues(2,i+5)+a

maa(3,i) = (avalues(3,i)+avalues(3,i+1)+avalues(3,i+2)+

avalues(3,i+3)+avalues(3,i+4)+avalues(3,i+5)+a

maa_cell(n,b) = {maa};

end

%Try filtering the CMA version first (also possibly the filter

%before the CMA would work better)

%Filter our some of the high speed error

passed = 1/T+5;
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fNorm = passed / ((1/h)/2);

[l,d] = butter(10, fNorm, ’low’);

LPFcma_a(1,:) = filtfilt(l, d, maa(1,:) );

LPFcma_a(2,:) = filtfilt(l, d, maa(2,:) );

LPFcma_a(3,:) = filtfilt(l, d, maa(3,:) );

LPFcell(n,b) = {LPFcma_a};

end

end

vals = cell2mat(maa_cell(1,1));

vals2 = cell2mat(Accel_cell(1,1));

vals3 = cell2mat(LPFcell(1,1));

vals4 = cell2mat(ma_cell(1,1));

figure(1);

plot3(vals(1,:),vals(2,:),vals(3,:),’b’);

hold on;

plot3(vals2(1,:),vals2(2,:),vals2(3,:),’r’);

%plot3(vals3(1,:),vals3(2,:),vals3(3,:),’g’);

hold off;

axis equal;

figure(10)

for i=1:(points)

hold on;

plot(i,vals3(3,i),’r’);

end

hold off

figure(14);

plot3(vals4(1,:),vals4(2,:),vals4(3,:),’b’);

%So the central moving average filter helps, but it isnt enough

%As it turns out, SVD can be used to find the solution to the screw axis
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%The matrix V defines the singular values, such the the first column is

the

%direction in which my cloud of points tends the strongest (this is a

%mathematical proof that I need to do/understand as to why this works)

length(a)

shatguesscell = cell(length(a),1);

for n=1:length(a)

for i=1:N

wvals1 = cell2mat(ma_cell(n,i));

wvals2 = transpose(wvals1);

[U,S,V] = svd(wvals2);

wsave = wvals1(:,1);

if( dot(wsave,V(:,1)) > 0)

shat_guess_ave(:,i) = 1*V(:,1);

else

shat_guess_ave(:,i) = -1*V(:,1);

end

%for my own analysis

diff(:,i) = abs(s(:,i)-shat_guess_ave(:,i));

end

shatguesscell(n,1) = {shat_guess_ave};

end

%Better! We’ll see if thats enough

%Now get the portion of the measured w that is only in the shat direction

%to help make the ws better so we can differentiate later

for n=1:length(a)

for b=1:N

wvalues = cell2mat(ma_cell(n,b));

for i=1:1:(points+2)
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wnew = (dot(wvalues(:,i),shat_guess_ave(:,b)))*shat_guess_ave(:,b);

wvalues(:,i) = wnew;

end

ma_cell(n,b) = {wvalues};

end

end

vals = cell2mat(ma_cell(1,1));

vals2 = cell2mat(w_cell(1,1));

figure(2);

plot3(vals(1,:),vals(2,:),vals(3,:),’b’);

hold on;

plot3(vals2(1,:),vals2(2,:),vals2(3,:),’r’);

hold off;

axis equal;

figure(3);

for i=1:(points+2)

plot(i,norm(vals(:,i)),’b’);

hold on;

plot(i,norm(vals2(:,i+4)),’r’);

end

%Okay, now we need to take the derivative of our angular velocities and

%compare them to the analytical angular acceleration magnitude

8/3/2013 4:08 PM

ArcCalcErrVariable2

7 of 16

file:///C:/Users/connie/Desktop/octave/html/ArcCalcErrVariable2.html

%This means the first angular acceleration will be for t=-0.2 and the

last for

%t = 19.8 (since the w loop goes from -0.25 to 19.8 now)
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%Also restrict the w arrays to these values (chop off the first and last

%values...)

g = 1;

w_cell_new = cell(length(a),N);

accel_ang_cell = cell(length(a),N);

for n=1:length(a)

for i=1:N

w_v = cell2mat(ma_cell(n,i));

for f=-5:1:(T/h)-4

t0 = h*f;

%Store angular acceleration for checking purposes

alpha(g) = -1*((4*pi^2*B)/(T^2))*sin((2*pi*t0)/T);

g = g + 1;

if(f == -5 )

nstore(:,1) = w_v(:,f+6);

elseif( f == -4)

nstore(:,2) = w_v(:,f+6);

%Create the array of w that does not have the end 2 values

w_new(:,f+5) = w_v(:,f+6);

elseif( f == -3)

nstore(:,3) = w_v(:,f+6);

w_new(:,f+5) = w_v(:,f+6);

%Create the first acceleration value

accel_ang(:,f+4) = (nstore(:,3)-nstore(:,1))/(2*h);

else

nstore(:,1) = nstore(:,2);

nstore(:,2) = nstore(:,3);

nstore(:,3) = w_v(:,f+6);

accel_ang(:,f+4) = (nstore(:,3)-nstore(:,1))/(2*h);

102



%Skip the last value for the new array of w

if( f~=(points-4) )

w_new(:,f+5) = w_v(:,f+6);

end

end

end

%Maybe Instead of CMA, I can do a low-pass filter? Seems tp help a

%little bit...

%I think it is true to assume that all passed frequencies will be lower

%than the sampling frequency-in fact I KNOW what the sinusoidal

%frequency should be and can pass only things close to that

passed = 1/T+5;

fNorm = passed / ((1/h)/2);

[b,d] = butter(10, fNorm, ’low’);

LPFangular(1,:) = filtfilt(b, d, accel_ang(1,:) );

LPFangular(2,:) = filtfilt(b, d, accel_ang(2,:) );

LPFangular(3,:) = filtfilt(b, d, accel_ang(3,:) );

%filtering w doesn’t seem to help all that much

if ( i==1)

LPFw(1,:) = filtfilt(b, d, w_new(1,:) );

LPFw(2,:) = filtfilt(b, d, w_new(2,:) );

LPFw(3,:) = filtfilt(b, d, w_new(3,:) );

end

w_cell_new(n,i) = {w_new};

%accel_ang_cell = {accel_ang};

accel_ang_cell(n,i) = {LPFangular};

end

end

for i=1:(points)
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plot(i,norm(LPFw(:,i)),’g’);

end

hold off;

figure(4);

angularaccel = cell2mat(accel_ang_cell(1,1));

plot3(angularaccel(1,:),angularaccel(2,:),angularaccel(3,:),’r’);

hold off;

figure(5)

for i=1:points

y = norm(angularaccel(:,i));

plot(i,y,’b’);

hold on;

end

hold off;

%Have the arrays, guess the rs, both the magnitudes and the zero vector r

%(which will be our s0hat!)

%Skew symetric method of writing a cross product yields:

%It is a good note that a measured theta will be required here, either

from

%the encoders or the IMU

s0alphacell = cell(length(a),1);

for n=1:length(a)

for i=1:N

%Grab the values for each joint

angular = cell2mat(accel_ang_cell(n,i));

w_new_2 = cell2mat(w_cell_new(n,i));

%accel_new2 = cell2mat(maa_cell(1,i));

accel_new2 = cell2mat(LPFcell(n,i));

for f=-5:1:((T/h)-6)
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%We only want 1:3 elements of acceleration anyway

accel_new(:,f+6) = accel_new2(1:3,f+6);

t0 = f*0.05;

thetan = B*sin((2*pi*t0)/T);

%This is the matrix that results from doing the cross products in

%the acceleration equation in the skew symetric method

A11 = -1*w_new_2(3,f+6)^2-w_new_2(2,f+6)^2;

A12 = -1*angular(3,f+6)+w_new_2(2,f+6)*w_new_2(1,f+6);

A13 = w_new_2(3,f+6)*w_new_2(1,f+6)+angular(2,f+6);

A21 = w_new_2(1,f+6)*w_new_2(2,f+6)+angular(3,f+6);

A22 = -1*w_new_2(3,f+6)^2-w_new_2(1,f+6)^2;

A23 = -1*angular(1,f+6)+w_new_2(3,f+6)*w_new_2(2,f+6);

A31 = -1*angular(2,f+6)+w_new_2(1,f+6)*w_new_2(3,f+6);

A32 = w_new_2(2,f+6)*w_new_2(3,f+6)+angular(1,f+6);

A33 = -1*w_new_2(2,f+6)^2-w_new_2(1,f+6)^2;

A_new = [A11 A12 A13;A21 A22 A23; A31 A32 A33];

%2 methods of doing this-Ill do a comparitive analysis at some

%point, but the SVD method is more numerically dependable

A_beta = pinv(A_new);

R_beta = A_beta*accel_new(:,f+6);

%Truncated singular value decomposition for the answer with the

%least mean norm value

[U,S,V] = svd(A_new);

sig = diag(S);

sum = 0;

columns = size(U(1,:));

weight = 0;

for r=1:columns(2)

if( abs(sig(r)) > 0.0001 )
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sum = sum +

((transpose(U(:,r))*accel_new(:,f+6))./sig(r,1))*transpose(V(:,r));

weight = abs(sig(r)) + weight;

end

end

R = transpose(sum);

Rmag_beta(f+6) = norm(R_beta);

Rmag(f+6) = norm(R);

weights(f+6) = weight;

R_mult(:,f+6) = -1*R;

R_mult2(:,f+6) = R_beta;

end

%Calculate the weighting for the average

TotalW = 0;

for b=1:2000

TotalW = weights(b) + TotalW;

end

Rsum_x = 0;

Rsum_y = 0;

Rsum_z = 0;

TP = 0;

for b=1:2000

Percent(b) = weights(b)/TotalW;

TP = TP + Percent(b);

R_mult(:,b) = (Percent(b))*R_mult(:,b);

Rsum_x = Rsum_x + R_mult(1,b);

Rsum_y = Rsum_y + R_mult(2,b);

Rsum_z = Rsum_z + R_mult(3,b);
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end

%Average the values to get a more accurate response

%Use the weighted average

R_ave = [mean(R_mult(1,:));mean(R_mult(2,:));mean(R_mult(3,:))];

%R_ave = [Rsum_x;Rsum_y;Rsum_z];

R_ave_2 = [mean(R_mult2(1,:));mean(R_mult2(2,:));mean(R_mult2(3,:))];

s0_alpha(:,i) = R_ave;

s0_beta(:,i) = R_ave_2;

end

s0alphacell(n,1) = {s0_alpha};

end

for n=1:length(a)

s0_alpha = cell2mat(s0alphacell(n,1));

shat_guess_ave = cell2mat(shatguesscell(n,1));

for i=1:N

s0diff(:,i) = s0(:,i) - s0_alpha(:,i);

shatdiff(:,i) = s(:,i)-shat_guess_ave(:,i);

s0diffmag(n,i) = norm(s0diff(:,i));

percenterrs0(n,i)= (s0diffmag(n,i)/norm(s0(:,i)))*100;

shatdiffmag(n,i) = norm(shatdiff(:,i));

percenterrshat(n,i) = (shatdiffmag(n,i)/norm(s(:,i)))*100;

end

end

%Output values will be shat_guess ave and s0_alpha

%These can be used to calculate the screw rotations for any thetas

starting

%from the reference pose

%Since we know the vectors (in the reference pose) to each screw axis,

%minimized such that they point to the joint in question, we can actually
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%calculate the initial pose of the robot based on these (and get

individual

%link lengths in our revolute serial manipulator)

%actually not quite

%Lets run a test here to see if the result is the same with both methods,

%both the shortest distance to the screw axis found by our calculations,

%and the joint to joint used to calculate the accelerations

%Lets give it some thetas

%I think we need to make an array of theta to make some calculation a

%little easier

theta_test = [0 0 0 0 0;

0.05 0.05 0.05 0.05 0.05;

0.1 0.1 0.1 0.1 0.1;

0.2 0.2 0.2 0.2 0.2;

0.3 0.3 0.3 0.3 0.3;

0.4 0.4 0.4 0.4 0.4;

0.5 0.5 0.5 0.5 0.5;

0.6 0.6 0.6 0.6 0.6;

0.7 0.7 0.7 0.7 0.7;

0.8 0.8 0.8 0.8 0.8;

0.9 0.9 0.9 0.9 0.9;

1 1 1 1 1;

1.2 1.2 1.2 1.2 1.2;

1.5 1.5 1.5 1.5 1.5;

1.8 1.8 1.8 1.8 1.8;

2 2 2 2 2;

2.2 2.2 2.2 2.2 2.2;

2.5 2.5 2.5 2.5 2.5;

2.8 2.8 2.8 2.8 2.8;
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3 3 3 3 3;

3.2 3.2 3.2 3.2 3.2;

3.5 3.5 3.5 3.5 3.5;

3.8 3.8 3.8 3.8 3.8;

4 4 4 4 4];

%Calculate both versions of As

Afirst_cell = cell(1,N);

Aafter_cell = cell(1,N);

cross_test = cell(2,N);

Poses = length(theta_test);

posdiffcell = cell(length(a),1);

pererrcell = cell(length(a),1);

posdmagcell = cell(length(a),1);

for v=1:length(a)

s0_alpha = cell2mat(s0alphacell(v,1));

shat_guess_ave = cell2mat(shatguesscell(v,1));

for n=1:Poses

for i=1:N

a11 = (shat_guess_ave(1,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a12 = shat_guess_ave(1,i)*shat_guess_ave(2,i)*(1-cos(theta_test(n,i)))

-shat_guess_ave(3,i)*sin(t

a13 = shat_guess_ave(1,i)*shat_guess_ave(3,i)*(1-cos(theta_test(n,i)))

+shat_guess_ave(2,i)*sin(t

a21 = shat_guess_ave(2,i)*shat_guess_ave(1,i)*(1-cos(theta_test(n,i)))

+shat_guess_ave(3,i)*sin(t

a22 = (shat_guess_ave(2,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a23 = shat_guess_ave(2,i)*shat_guess_ave(3,i)*(1-cos(theta_test(n,i)))

-shat_guess_ave(1,i)*sin(t

a31 = shat_guess_ave(3,i)*shat_guess_ave(1,i)*(1-cos(theta_test(n,i)))
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-shat_guess_ave(2,i)*sin(t

a32 = shat_guess_ave(3,i)*shat_guess_ave(2,i)*(1-cos(theta_test(n,i)))

+shat_guess_ave(1,i)*sin(t

a33 = (shat_guess_ave(3,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a14 = t*shat_guess_ave(1,i)-s0_alpha(1,i)*(a11-1)-s0_alpha(2,i)*

a12-s0_alpha(3,i)*a13;

a24 = t*shat_guess_ave(2,i)-s0_alpha(1,i)*a21-s0_alpha(2,i)*

(a22-1)-s0_alpha(3,i)*a23;

a34 = t*shat_guess_ave(3,i)-s0_alpha(1,i)*a31-s0_alpha(2,i)*

a32-s0_alpha(3,i)*(a33-1);

a41 = 0;

a42 = 0;

a43 = 0;

a44 = 1;

A = [a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44];

Aafter_cell(1,i) = {A};

a11 = (s(1,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a12 = s(1,i)*s(2,i)*(1-cos(theta_test(n,i)))-s(3,i)*sin(theta_test(n,i));

a13 = s(1,i)*s(3,i)*(1-cos(theta_test(n,i)))+s(2,i)*sin(theta_test(n,i));

a21 = s(2,i)*s(1,i)*(1-cos(theta_test(n,i)))+s(3,i)*sin(theta_test(n,i));

a22 = (s(2,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a23 = s(2,i)*s(3,i)*(1-cos(theta_test(n,i)))-s(1,i)*sin(theta_test(n,i));

a31 = s(3,i)*s(1,i)*(1-cos(theta_test(n,i)))-s(2,i)*sin(theta_test(n,i));

a32 = s(3,i)*s(2,i)*(1-cos(theta_test(n,i)))+s(1,i)*sin(theta_test(n,i));

a33 = (s(3,i)^2-1)*(1-cos(theta_test(n,i)))+1;

a14 = t*s(1,i)-s0(1,i)*(a11-1)-s0(2,i)*a12-s0(3,i)*a13;

a24 = t*s(2,i)-s0(1,i)*a21-s0(2,i)*(a22-1)-s0(3,i)*a23;

a34 = t*s(3,i)-s0(1,i)*a31-s0(2,i)*a32-s0(3,i)*(a33-1);

a41 = 0;
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a42 = 0;

a43 = 0;

a44 = 1;

A = [a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44];

Afirst_cell(1,i) = {A};

cross_test(1,i) = {cross(s(:,i),s0(:,i))};

cross_test(2,i) = {cross(shat_guess_ave(:,i),s0_alpha(:,i))};

end

q_new1 = cell2mat(Afirst_cell(1,1))*q0;

q_new2 = cell2mat(Aafter_cell(1,1))*q0;

if( N > 1)

q_new1 =

q_new2 =

end

if( N > 2 )

q_new1 =

q_new2 =

end

if( N > 3 )

q_new1 =

q_new2 =

end

if( N > 4 )

q_new1 =

q_new2 =

end

cell2mat(Afirst_cell(1,1))*cell2mat(Afirst_cell(1,2))*q0;

cell2mat(Aafter_cell(1,1))*cell2mat(Aafter_cell(1,2))*q0;

cell2mat(Afirst_cell(1,1))*cell2mat(Afirst_cell(1,2))*
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cell2mat(Afirst_cell(1,3))*q0;

cell2mat(Aafter_cell(1,1))*cell2mat(Aafter_cell(1,2))*

cell2mat(Aafter_cell(1,3))*q0;

cell2mat(Afirst_cell(1,1))*cell2mat(Afirst_cell(1,2))*

cell2mat(Afirst_cell(1,3))*cell2mat(A

cell2mat(Aafter_cell(1,1))*cell2mat(Aafter_cell(1,2))*

cell2mat(Aafter_cell(1,3))*cell2mat(A

cell2mat(Afirst_cell(1,1))*cell2mat(Afirst_cell(1,2))*

cell2mat(Afirst_cell(1,3))*cell2mat(A

cell2mat(Aafter_cell(1,1))*cell2mat(Aafter_cell(1,2))*

cell2mat(Aafter_cell(1,3))*cell2mat(A

pos_diff(:,n) = (q_new1-q_new2);
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posd_mag(:,n) = norm(pos_diff);

percenterr(:,n) = (posd_mag(:,n)/norm(q_new1))*100;

%Root mean square error in position

posRMS(:,n) = sqrt((q_new1(1,1)-q_new2(1,1))^2+(q_new1(2,1)-

q_new2(2,1))^2+(q_new1(3,1)-q_new2(3,1))^2);

q1save(:,n) = q_new1;

q2save(:,n) = q_new2;

end

pos_diff = pos_diff;

posdiffcell(v,1) = {pos_diff};

pererrcell(v,1) = {percenterr};

posdmagcell(v,1) = {posd_mag};

end
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figure(1)

plot(theta_test(:,1),cell2mat(pererrcell(1,1)),’b’);

% hold on;

% plot(theta_test(:,1),cell2mat(pererrcell(2,1)),’r’);

% plot(theta_test(:,1),cell2mat(pererrcell(3,1)),’g’);

% plot(theta_test(:,1),cell2mat(pererrcell(4,1)),’c’);

xlabel(’Joint Angle’,’FontSize’,14);

ylabel(’Percent Error in Position Estimate’,’FontSize’,14);

title(’Effect of Joint Angle Size on Tip Position Error in a 5DOF

Arm’,’FontSize’,16);

%legend(’5% Measurement Error’,’10% Measurement Error’,’15% Measurement

Error’,’20% Measurement Error’);

figure(2)

plot(theta_test(:,1),cell2mat(posdmagcell(1,1)),’b’);

% hold on;

% plot(theta_test(:,1),cell2mat(posdmagcell(2,1)),’r’);

% plot(theta_test(:,1),cell2mat(posdmagcell(3,1)),’g’);

% plot(theta_test(:,1),cell2mat(posdmagcell(4,1)),’c’);

xlabel(’Joint Angle’,’FontSize’,14);

ylabel(’Magnitude of Error in Position Estimate (m)’,’FontSize’,14);

title(’Effect of Joint Angle Size on Tip Position Error in a 5DOF

Arm’,’FontSize’,16);

%legend(’5% Measurement Error’,’10% Measurement Error’,’15% Measurement

Error’,’20% Measurement Error’);

test = transpose(cell2mat(pererrcell(1,1)))

test2 = transpose(cell2mat(posdmagcell(1,1)))

ans =

2

test =
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0

0.1223

0.2702

0.5260

0.8071

1.0883

1.3643

1.6363

1.9076

2.1809

2.4575

2.7367

3.0170

3.2811

3.5603

3.9678

4.4777

5.1528

6.0458

7.0243

7.9812

8.8294

9.6391

10.3027

test2 =

0

0.0012

0.0028

0.0056
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0.0092

0.0132

0.0174

0.0218

0.0263

0.0307

0.0351

0.0395

0.0441

0.0496

0.0571

0.0664

0.0779

0.0937

0.1129

0.1323

0.1505

0.1637

0.1694

0.1716
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Arc calculation-for a real robot

Program which analyzes, one joint at a time, based on acceleration and

rotation data, the screw vectors

%Read in the file I generated for Joints 1-5

OofJ = input(’Enter the joint order as a an array, no commas: ’);

RofJ = input(’Enter the number of repeats for each joint, in order: ’);

N = 0;

for i=1:length(OofJ)

N = N + RofJ(i);

end

%We will have repeats-to average for each joint now

JOINTS = cell(1,N);

w_cell = cell(1,N);

Accel_cell = cell(1,N);

t_cell = cell(1,N);

j_cell = cell(1,N);

%Now I need to read multiple values and sort the values into cells

%Each cell should be 1 X N, where N is the number of joints, going from

%first to last joint-and parsing out gyro and accel values

num = 1;

for b=1:length(OofJ)
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for i=1:RofJ(i)

str = num2str(OofJ(b));

mystring = ’Joint’;

endstr = ’.dat’;

dash = ’-’;

rptcnt = num2str(i);

mystr = strcat(mystring,str,dash,rptcnt,endstr);

matrix = csvread(mystr);

matrixa = matrix(:,3:5)*9.81;

matrixg = matrix(:,6:8)*pi/180;

matrixj = matrix(:,2);

matrixt = matrix(:,1);

w_cell(1,num) = {matrixg};

Accel_cell(1,num) = {matrixa};

t_cell(1,num) = {matrixt};

JOINTS(1,num) = {matrix};

j_cell(1,num) = {matrixj};

num = num+1;

end

end

%Now, we think, things can actually be calculated analytically-real robot!

%INPUTS:

%Acceleration array for the arc from accelerometer

%Angular velocity array fron the gyro

%

As a side note, the velocity array can be compared to the analytical

%

solution for a real robot to see where the differences are and possibly

%
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use this to compensate for the derived angular acceleration as well

%Theta array as commanded to the motor

%Associated time array and steps

%OUTPUTS:

%Take the derivative of the gyro readings (compare to theoretical solution

%based on motor input pattern for a real arm)

%Calculate the s unit vector

%Grab the shat first-we can take an average for a real robot, so lets

%average here just to be safe

%So the error makes things really really sucky-try a central moving

average
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%filter to make the data better-8 points for the average to start

%Start with just the rotations to see if it works

%length defines how many points we have

ma_cell = cell(1,N);

maa_cell = cell(1,N);

LPFcell = cell(1,N);

for b=1:N

wvalues = transpose(cell2mat(w_cell(1,b)));

avalues = transpose(cell2mat(Accel_cell(1,b)));

tvalues = transpose(cell2mat(t_cell(1,b)));

T = tvalues(end,1);

lengthy(b) = length(wvalues(1,:))-10;

%h for me is somewhat variable-but it dowsn’t matter too much

h = mean(diff(tvalues));
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for i=1:1:(lengthy(b)+2)

%Average of point 5 (i+4) (t = -0.25 s ) is the recorded first point of

the moving

%average

ma(1,i) = (wvalues(1,i)+wvalues(1,i+1)+wvalues(1,i+2)+

wvalues(1,i+3)+wvalues(1,i+4)+wvalues

ma(2,i) = (wvalues(2,i)+wvalues(2,i+1)+wvalues(2,i+2)+

wvalues(2,i+3)+wvalues(2,i+4)+wvalues

ma(3,i) = (wvalues(3,i)+wvalues(3,i+1)+wvalues(3,i+2)+

wvalues(3,i+3)+wvalues(3,i+4)+wvalues

ma_cell(1,b) = {ma};

end

for i=1:1:lengthy(b)

%Average of point 5 (i+4) is the recorded first point of the moving

%(t = -0.2 s)

%average

%Also losing the last point (or point 409)

maa(1,i) = (avalues(1,i)+avalues(1,i+1)+avalues(1,i+2)+

avalues(1,i+3)+avalues(1,i+4)+avalue

maa(2,i) = (avalues(2,i)+avalues(2,i+1)+avalues(2,i+2)+

avalues(2,i+3)+avalues(2,i+4)+avalue

maa(3,i) = (avalues(3,i)+avalues(3,i+1)+avalues(3,i+2)+

avalues(3,i+3)+avalues(3,i+4)+avalue

maa_cell(1,b) = {maa};

end

%Try filtering the CMA version first (also possibly the filter

%before the CMA would work better)

%Filter our some of the high speed error

passed = 1/T+5;
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fNorm = passed / ((1/h)/2);

[l,a] = butter(10, fNorm, ’low’);

%s=fdesign.lowpass(’Fp,Fst,Ap,Ast’,0.01,1,1,.5);

%d=design(s,’equiripple’); %Lowpass FIR filter

LPFcma_a(1,:) = filtfilt(l,a, maa(1,:) );

LPFcma_a(2,:) = filtfilt(l,a, maa(2,:) );

LPFcma_a(3,:) = filtfilt(l,a, maa(3,:) );

LPFcell(1,b) = {LPFcma_a};

maa = [];

ma = [];

a = [];

LPFcma_a = [];

end

vals = cell2mat(maa_cell(1,1));

vals2 = cell2mat(Accel_cell(1,1));

vals3 = cell2mat(LPFcell(1,1));

vals4 = cell2mat(ma_cell(1,1));

vals5 = cell2mat(w_cell(1,1));

figure(1);

plot(1:length(vals(1,:)),vals(1,:),’r’);
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hold on;

plot(1:length(vals3(1,:)),vals3(1,:),’b’);

hold off;

figure(10)

for i=1:(lengthy(b))
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hold on;

plot(i,vals3(3,b),’r’);

end

hold off

figure(14);

plot3(vals4(1,:),vals4(2,:),vals4(3,:),’b’);

hold on;

plot3(vals5(:,1),vals5(:,2),vals5(:,3),’r’);

hold off;

%

%

%

%

figure(15)

plot(1:104,vals4(1,:),’b’);

hold on;

plot(1:104,vals5(5:108,1),’r’);

%So the central moving average filter helps, but it isnt enough

%As it turns out, SVD can be used to find the solution to the screw axis

%The matrix V defines the singular values, such the the first column is

the

%direction in which my cloud of points tends the strongest (this is a

%mathematical proof that I need to do/understand as to why this works)

for i=1:N

wvals1 = cell2mat(ma_cell(1,i));

%wvals2 = cell2mat(w_cell(1,i));

wvals2 = transpose(wvals1);

[U,S,V] = svd(wvals2);

V
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wsave = wvals2(1,:);

%if( dot(wsave,V(:,1)) > 0)

shat_guess_ave(:,i) = 1*V(:,1);

%else

%shat_guess_ave(:,i) = -1*V(:,1);

%end

%for my own analysis

%diff(:,i) = abs(s(:,i)-shat_guess_ave(:,i));

end

%

%Better! We’ll see if thats enough

%Now get the portion of the measured w that is only in the shat direction

%to help make the ws better so we can differentiate later

for b=1:N

wvalues = cell2mat(ma_cell(1,b));

%wvalues = transpose(cell2mat(w_cell(1,b)));

for i=1:1:(lengthy(b)+2)

wnew = (dot(wvalues(:,i),shat_guess_ave(:,b)))*shat_guess_ave(:,b);

wvalues(:,i) = wnew;

end

ma_cell(1,b) = {wvalues};

end

vals = cell2mat(ma_cell(1,1));

vals2 = cell2mat(w_cell(1,1));

figure(2);

plot(1:lengthy(1)+2,vals(1,:),’b’);

hold on;

%Okay, now we need to take the derivative of our angular velocities and

%compare them to the analytical angular acceleration magnitude
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%This means the first angular acceleration will be for t=-0.2 and the

last for

%t = 19.8 (since the w loop goes from -0.25 to 19.8 now)

%Also restrict the w arrays to these values (chop off the first and last
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%values...)

g = 1;

w_cell_new = cell(1,N);

accel_ang_cell = cell(1,N);

accle_angraw = cell(1,N);

for i=1:N

w_v = cell2mat(ma_cell(1,i));

for f=-5:1:lengthy(i)-4

%t0 = h*f;

%Store angular acceleration for checking purposes

%alpha(g) = -1*((4*pi^2*B)/(T^2))*sin((2*pi*t0)/T);

g = g + 1;

if(f == -5 )

nstore(:,1) = w_v(:,f+6);

elseif( f == -4)

nstore(:,2) = w_v(:,f+6);

%Create the array of w that does not have the end 2 values

w_new(:,f+5) = w_v(:,f+6);

elseif( f == -3)

nstore(:,3) = w_v(:,f+6);

w_new(:,f+5) = w_v(:,f+6);
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%Create the first acceleration value

accel_ang(:,f+4) = (nstore(:,3)-nstore(:,1))/(2*h);

else

nstore(:,1) = nstore(:,2);

nstore(:,2) = nstore(:,3);

nstore(:,3) = w_v(:,f+6);

accel_ang(:,f+4) = (nstore(:,3)-nstore(:,1))/(2*h);

%Skip the last value for the new array of w

if( f~=(lengthy(i)-4) )

w_new(:,f+5) = w_v(:,f+6);

end

end

end

%Maybe Instead of CMA, I can do a low-pass filter? Seems tp help a

%little bit...

%I think it is true to assume that all passed frequencies will be lower

%than the sampling frequency-in fact I KNOW what the sinusoidal

%frequency should be and can pass only things close to that

passed = 1/T+5;

fNorm = passed / ((1/h)/2);

[b,a] = butter(10, fNorm, ’low’);

LPFangular(1,:) = filtfilt(b, a, accel_ang(1,:) );

LPFangular(2,:) = filtfilt(b, a, accel_ang(2,:) );

LPFangular(3,:) = filtfilt(b, a, accel_ang(3,:) );

%filtering w doesn’t seem to help all that much

if ( i==1)

LPFw(1,:) = filtfilt(b, a, w_new(1,:) );

LPFw(2,:) = filtfilt(b, a, w_new(2,:) );

LPFw(3,:) = filtfilt(b, a, w_new(3,:) );
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end

w_cell_new(1,i) = {w_new};

%accel_ang_cell = {accel_ang};

accel_ang_cell(1,i) = {LPFangular};

accel_angraw(1,i) = {accel_ang};

LPFangular = [];

accel_ang = [];
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w_new = [];

end

plot(1:lengthy(1),LPFw(1,:),’g’);

hold off;

figure(4);

angularaccel = cell2mat(accel_ang_cell(1,1));

accel_test = cell2mat(accel_angraw);

plot3(angularaccel(1,:),angularaccel(2,:),angularaccel(3,:),’r’);

hold off;

figure(5)

for i=1:lengthy(1)

y = norm(angularaccel(:,i));

f = norm(accel_test(:,i));

plot(i,y,’--bs’);

plot(i,f,’--rs’);

hold on;

end

hold off;
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%what about a CMA for angular acceleration?

%CMA seems to make it WORSE for some reason

% ang_cma_cell = cell(1,N);

% for i=1:N

%

angularaccel = cell2mat(accel_ang_cell(1,i));

%

ang_cma(:,1) = angularaccel(:,1);

%

ang_cma(1,2) = (angularaccel(1,1) + angularaccel(1,2) +

angularaccel(1,3))/3;

%

ang_cma(2,2) = (angularaccel(2,1) + angularaccel(2,2) +

angularaccel(2,3))/3;

%

ang_cma(3,2) = (angularaccel(3,1) + angularaccel(3,2) +

angularaccel(3,3))/3;

%

ang_cma(1,3) = (angularaccel(1,1) + angularaccel(1,2) +

angularaccel(1,3) + angularaccel(1,4

%

ang_cma(2,3) = (angularaccel(2,1) + angularaccel(2,2) +

angularaccel(2,3) + angularaccel(2,4

%

ang_cma(3,3) = (angularaccel(3,1) + angularaccel(3,2) +

angularaccel(3,3) + angularaccel(3,4

%

ang_cma(1,4) = (angularaccel(1,1) + angularaccel(1,2) +

angularaccel(1,3) + angularaccel(1,4
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%

ang_cma(2,4) = (angularaccel(2,1) + angularaccel(2,2) +

angularaccel(2,3) + angularaccel(2,4

%

ang_cma(3,4) = (angularaccel(3,1) + angularaccel(3,2) +

angularaccel(3,3) + angularaccel(3,4

%

%

for b=1:(length-8)

%

ang_cma(1,b+4) = (angularaccel(1,b)+angularaccel(1,b+1)+

angularaccel(1,b+2)+angularac

%

ang_cma(2,b+4) = (angularaccel(2,b)+angularaccel(2,b+1)+

angularaccel(2,b+2)+angularac

%

ang_cma(3,b+4) = (angularaccel(3,b)+angularaccel(3,b+1)+

angularaccel(3,b+2)+angularac

%

end

%

%

ang_cma(:,length) = angularaccel(:,length);

%

ang_cma(1,(length-1)) = (angularaccel(1,(length-2)) +

angularaccel(1,(length-1)) + angularac

%

ang_cma(2,(length-1)) = (angularaccel(2,(length-2)) +

angularaccel(2,(length-1)) + angularac
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%

ang_cma(3,(length-1)) = (angularaccel(3,(length-2)) +

angularaccel(3,(length-1)) + angularac

%

ang_cma(1,(length-2)) = (angularaccel(1,(length-4)) +

angularaccel(1,(length-3)) + angularac

%

ang_cma(2,(length-2)) = (angularaccel(2,(length-4)) +

angularaccel(2,(length-3)) + angularac

%

ang_cma(3,(length-2)) = (angularaccel(3,(length-4)) +

angularaccel(3,(length-3)) + angularac

%

ang_cma(1,(length-3)) = (angularaccel(1,(length-6)) +

angularaccel(1,(length-5)) + angularac

%

ang_cma(2,(length-3)) = (angularaccel(2,(length-6)) +

angularaccel(2,(length-5)) + angularac

%

ang_cma(3,(length-3)) = (angularaccel(3,(length-6)) +

angularaccel(3,(length-5)) + angularac

%

ang_cma_cell(1,i) = {ang_cma};

% end

%

% angularaccelcma = cell2mat(ang_cma_cell(1,1));

% for i=1:length

%

y = norm(angularaccelcma(:,i));
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%

plot(i,y,’r’);

% end

%Have the arrays, guess the rs, both the magnitudes and the zero vector r

%(which will be our s0hat!)

%Skew symetric method of writing a cross product yields:

%It is a good note that a measured theta will be required here, either

from

%the encoders or the IMU

for i=1:N
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%Grab the values for each joint

angular = cell2mat(accel_ang_cell(1,i));

%angular = cell2mat(accel_angraw(1,i));

w_new_2 = cell2mat(w_cell_new(1,i));

%accel_new2 = cell2mat(maa_cell(1,i));

accel_new2 = cell2mat(LPFcell(1,i));

for f=-5:1:(lengthy(i)-6)

%We only want 1:3 elements of acceleration anyway

accel_new(:,f+6) = accel_new2(1:3,f+6);

t0 = f*0.05;

%thetan = B*sin((2*pi*t0)/T);

%This is the matrix that results from doing the cross products in

%the acceleration equation in the skew symetric method

A11 = -1*w_new_2(3,f+6)^2-w_new_2(2,f+6)^2;

A12 = -1*angular(3,f+6)+w_new_2(2,f+6)*w_new_2(1,f+6);
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A13 = w_new_2(3,f+6)*w_new_2(1,f+6)+angular(2,f+6);

A21 = w_new_2(1,f+6)*w_new_2(2,f+6)+angular(3,f+6);

A22 = -1*w_new_2(3,f+6)^2-w_new_2(1,f+6)^2;

A23 = -1*angular(1,f+6)+w_new_2(3,f+6)*w_new_2(2,f+6);

A31 = -1*angular(2,f+6)+w_new_2(1,f+6)*w_new_2(3,f+6);

A32 = w_new_2(2,f+6)*w_new_2(3,f+6)+angular(1,f+6);

A33 = -1*w_new_2(2,f+6)^2-w_new_2(1,f+6)^2;

A_new = [A11 A12 A13;A21 A22 A23; A31 A32 A33];

%2 methods of doing this-Ill do a comparitive analysis at some

%point, but the SVD method is more numerically dependable

A_beta = pinv(A_new);

R_beta = A_beta*accel_new(:,f+6);

%Truncated singular value decomposition for the answer with the

%least mean norm value

[U,S,V] = svd(A_new);

sig = diag(S);

sum = 0;

columns = size(U(1,:));

weight = 0;

for r=1:columns(2)

if( abs(sig(r)) > 0.0001 )

sum = sum + ((transpose(U(:,r))*accel_new(:,f+6)).

/sig(r,1))*transpose(V(:,r));

weight = abs(sig(r)) + weight;

end

end

R = transpose(sum);

Rmag_beta(f+6) = norm(R_beta);

Rmag(f+6) = norm(R);
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weights(f+6) = weight;

R_mult(:,f+6) = R;

R_mult2(:,f+6) = R_beta;

%

%

%

%

%

%

%

%

%

%

end

%Calculate the weighting for the average

TotalW = 0;

for b=1:2000

TotalW = weights(b) + TotalW;

end

Rsum_x = 0;

Rsum_y = 0;

Rsum_z = 0;

TP = 0;

for b=1:2000

Percent(b) = weights(b)/TotalW;
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TP = TP + Percent(b);

R_mult(:,b) = (Percent(b))*R_mult(:,b);

Rsum_x = Rsum_x + R_mult(1,b);

Rsum_y = Rsum_y + R_mult(2,b);

Rsum_z = Rsum_z + R_mult(3,b);

end

%Average the values to get a more accurate response

%Use the weighted average

R_ave = [mean(R_mult(1,:));mean(R_mult(2,:));mean(R_mult(3,:))];

%R_ave = [Rsum_x;Rsum_y;Rsum_z];

R_ave_2 = [mean(R_mult2(1,:));mean(R_mult2(2,:));mean(R_mult2(3,:))];

s0_alpha(:,i) = R_ave;

s0_beta(:,i) = R_ave_2;

end

s0_alpha

shat_guess_ave

%Output values will be shat_guess ave and s0_alpha

%These can be used to calculate the screw rotations for any thetas

starting

%from the reference pose

%For these real repeated values, now we need to average our answers

shat_guess_avef = zeros(3,length(OofJ));

s0_alphaf = zeros(3,length(OofJ));
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for i=1:length(OofJ)

Repeats = RofJ(1);

if(i > 1)

Spot = RofJ(i-1);

for b=Spot+1:Spot+RofJ(i)

shat_guess_avef(:,i) = shat_guess_avef(:,i) + shat_guess_ave(:,b);

s0_alphaf(:,i) = s0_alphaf(:,i) + s0_alpha(:,b);

end

else

for b=1:Repeats

shat_guess_avef(:,i) = shat_guess_avef(:,i) + shat_guess_ave(:,b);

s0_alphaf(:,i) = s0_alphaf(:,i) + s0_alpha(:,b);

end

end

shat_guess_ave_fin(:,i) = shat_guess_avef(:,i)/RofJ(i);

s0_alpha_fin(:,i) = s0_alphaf(:,i)/RofJ(i);

end

%Since we know the vectors (in the reference pose) to each screw axis,

%minimized such that they point to the joint in question, we can actually

%calculate the initial pose of the robot based on these (and get

individual

%link lengths in our revolute serial manipulator)

%actually not quite

%Lets run a test here to see if the result is the same with both methods,

%both the shortest distance to the screw axis found by our calculations,

%and the joint to joint used to calculate the accelerations

%Lets give it some thetas

% theta_test = [0.2 0.4 0 0 0];

% %Calculate both versions of As
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% Afirst_cell = cell(1,N);

% Aafter_cell = cell(1,N);

% cross_test = cell(2,N);

%

% for i=1:N

%

a11 = (shat_guess_ave(1,i)^2-1)*(1-cos(theta_test(i)))+1;

%

a12 = shat_guess_ave(1,i)*shat_guess_ave(2,i)*

(1-cos(theta_test(i)))-shat_guess_ave(3,i)

%

a13 = shat_guess_ave(1,i)*shat_guess_ave(3,i)*

(1-cos(theta_test(i)))+shat_guess_ave(2,i)

%

a21 = shat_guess_ave(2,i)*shat_guess_ave(1,i)*

(1-cos(theta_test(i)))+shat_guess_ave(3,i)

%

a22 = (shat_guess_ave(2,i)^2-1)*(1-cos(theta_test(i)))+1;

%

a23 = shat_guess_ave(2,i)*shat_guess_ave(3,i)*

(1-cos(theta_test(i)))-shat_guess_ave(1,i)

%

a31 = shat_guess_ave(3,i)*shat_guess_ave(1,i)*

(1-cos(theta_test(i)))-shat_guess_ave(2,i)

%

a32 = shat_guess_ave(3,i)*shat_guess_ave(2,i)*

(1-cos(theta_test(i)))+shat_guess_ave(1,i)

%

a33 = (shat_guess_ave(3,i)^2-1)*(1-cos(theta_test(i)))+1;
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%

a14 = t*shat_guess_ave(1,i)-s0_alpha(1,i)*(a11-1)-

s0_alpha(2,i)*a12-s0_alpha(3,i)*a13;
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a24 = t*shat_guess_ave(2,i)-s0_alpha(1,i)*a21-s0_alpha(2,i)*

(a22-1)-s0_alpha(3,i)*a23;

a34 = t*shat_guess_ave(3,i)-s0_alpha(1,i)*a31-s0_alpha(2,i)*

a32-s0_alpha(3,i)*(a33-1);

a41 = 0;

a42 = 0;

a43 = 0;

a44 = 1;

A = [a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44];

Aafter_cell(1,i) = {A};

a11 = (s(1,i)^2-1)*(1-cos(theta_test(i)))+1;

a12 = s(1,i)*s(2,i)*(1-cos(theta_test(i)))-s(3,i)*sin(theta_test(i));

a13 = s(1,i)*s(3,i)*(1-cos(theta_test(i)))+s(2,i)*sin(theta_test(i));

a21 = s(2,i)*s(1,i)*(1-cos(theta_test(i)))+s(3,i)*sin(theta_test(i));

a22 = (s(2,i)^2-1)*(1-cos(theta_test(i)))+1;

a23 = s(2,i)*s(3,i)*(1-cos(theta_test(i)))-s(1,i)*sin(theta_test(i));
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a31 = s(3,i)*s(1,i)*(1-cos(theta_test(i)))-s(2,i)*sin(theta_test(i));

a32 = s(3,i)*s(2,i)*(1-cos(theta_test(i)))+s(1,i)*sin(theta_test(i));

a33 = (s(3,i)^2-1)*(1-cos(theta_test(i)))+1;

a14 = t*s(1,i)-s0(1,i)*(a11-1)-s0(2,i)*a12-s0(3,i)*a13;

a24 = t*s(2,i)-s0(1,i)*a21-s0(2,i)*(a22-1)-s0(3,i)*a23;

a34 = t*s(3,i)-s0(1,i)*a31-s0(2,i)*a32-s0(3,i)*(a33-1);

a41 = 0;

a42 = 0;

a43 = 0;

a44 = 1;

A = [a11 a12 a13 a14; a21 a22 a23 a24; a31 a32 a33 a34; a41 a42 a43 a44];

Afirst_cell(1,i) = {A};

cross_test(1,i) = {cross(s(:,i),s0(:,i))};

cross_test(2,i) = {cross(shat_guess_ave(:,i),s0_alpha(:,i))};

end

q_new1 =

q_new2 =

pos_diff

posd_mag

cell2mat(Afirst_cell(1,1))*cell2mat(Afirst_cell(1,2))*

cell2mat(Afirst_cell(1,3))*cell2m

cell2mat(Aafter_cell(1,1))*cell2mat(Aafter_cell(1,2))*

cell2mat(Aafter_cell(1,3))*cell2m

= q_new1-q_new2;

= norm(pos_diff);

%The new position is the same with both methods of calculation-proven

%kinematically

%This does throw a wrench in the pose-how can I calculate it?

%I think it can be done by theory of perpendicular distances, point to
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line

%shortest distance, and a dot product = 0

%Calculate the first R12 we want

LMN(:,1) = s0_alpha_fin(:,1);

% for i=2:N

%

D = LMN(1,i-1)*shat_guess_ave(1,i)+LMN(2,i-1)*shat_guess_ave(2,i)

+LMN(3,i-1)*shat_guess_ave(

%

F = s0_alpha(1,i)*shat_guess_ave(1,i)+s0_alpha(2,i)*shat_guess_ave

(2,i)+s0_alpha(3,i)*shat_g

%

K = (D-F)/(shat_guess_ave(1,i)^2+shat_guess_ave(2,i)^2+

shat_guess_ave(3,i)^2);

%

%

L = s0_alpha(1,i)+K*shat_guess_ave(1,i);

%

M = s0_alpha(2,i)+K*shat_guess_ave(2,i);

%

N = s0_alpha(3,i)+K*shat_guess_ave(3,i);

%

%

LMN(:,i) = [L;M;N];

% end

%A few more calculations here and a plot of the calculated manipulator in

%"0" pose in 3D space would be good, maybe with the shat and s0 vectors

displayed

R1 = LMN(:,1);
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% R2 = LMN(:,2);

% R3 = LMN(:,3);

% R4 = LMN(:,4);

% R5 = LMN(:,5);

%

% R12 = R2 - R1;

% R23 = R3 - R2;

% R34 = R4 - R3;

% R45 = R5 - R4;

figure(6);
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vec = quiver3(0,0,0,R1(1),R1(2),R1(3),’b’);

hold on;

% vec2 = quiver3(R1(1),R1(2),R1(3),R12(1),R12(2),R12(3),’r’);

% hold on;

% R = R1 + R12;

% if( abs(norm(R) - norm(R23) < 0.0001) )

%

R23 = zeros(3,1);

% end

% vec3 = quiver3(R(1),R(2),R(3),R23(1),R23(2),R23(3), ’g’);

% R = R + R23;

% if( abs(norm(R) - norm(R34)) < 0.0001 )

%

R34 = zeros(3,1);

% end
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% vec4 = quiver3(R(1),R(2),R(3),R34(1),R34(2),R34(3), ’b’);

% R = R + R34;

% if( abs(norm(R) - norm(R45)) < 0.0001 )

%

R45 = zeros(3,1);

% end

% vec5 = quiver3(R(1),R(2),R(3),R45(1),R45(2),R45(3), ’r’);

% axis([-2 2 -1 1 -1 1]);

hold off;

accel1

accel2

accel3

accel4

=

=

=

=

cell2mat(Accel_cell(1,1));

cell2mat(Accel_cell(1,2));

cell2mat(Accel_cell(1,3));

cell2mat(Accel_cell(1,4));

t1 = cell2mat(t_cell(1,1));

t2 = cell2mat(t_cell(1,2));

t3 = cell2mat(t_cell(1,3));

t4 = cell2mat(t_cell(1,4));

j1 = cell2mat(j_cell(1,1));

j2 = cell2mat(j_cell(1,2));

j3 = cell2mat(j_cell(1,3));

j4 = cell2mat(j_cell(1,4));
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global matrixax tcell jcell;

matrixax = [accel1(:,1);accel2(:,1);accel3(:,1);accel4(:,1)];

matrixay = [accel1(:,2);accel2(:,2);accel3(:,2);accel4(:,2)];

matrixaz = [accel1(:,3);accel2(:,3);accel3(:,3);accel4(:,3)];

tcell = [t1;t2;t3;t4];

jcell = [j1;j2;j3;j4];

hold off;

figure(2)

plot(tcell,matrixay(:,1));

figure(3)

plot(tcell,matrixaz(:,1));

% CALCULATE THE FILTER COEFFICIENTS

SamplePeriod = mean(diff(tcell));

SampleFrequency = 1/SamplePeriod;

%

SET THE FILTER BANDWIDTH (HZ)

FilterBandwidth = 10.0 ;

display(FilterBandwidth) ;

[rows,cols] = size(matrixax);

NumberSamples = rows ;

column = 1;

F = (0:NumberSamples-1) ;

F(:) = matrixay(:,column) ;
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NFFT = min(256,NumberSamples) ;

Xave = mean(matrixay(:,column)) ;
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figure(4)

psd(matrixay(:,column)-Xave,NFFT,SampleFrequency,[]) ;

title(’YAccel J2 PSD’) ;

% CALCULATE THE FILTER COEFFICIENTS

SamplePeriod = mean(diff(tcell));

SampleFrequency = 1/SamplePeriod;

FilterOrder = 10 ;

wn = FilterBandwidth/(0.5*SampleFrequency) ;

[b,a] = butter(FilterOrder,wn) ;

% RUN THE FORCE DATA THROUGH THE FILTER AND PLOT

global F_filt;

F_filt = filtfilt(b,a,F(:)) ;

figure(5);

plot(tcell(:),F(:),’b’,tcell(:),F_filt(:),’r’) ;

xlabel(’time (sec)’) ;

ylabel(’YAccel 2 (N)’) ;

title(’YAccel J2 Filt and UnFilt vs. time’) ;

figure(1)

plot(tcell,matrixay(:,1));

hold on;

options = optimset(’Display’, ’ITER’, ’MaxIter’,1000,’MaxFunEvals’,10000,

’TolX’,1*10^-8);

cost = fminsearch(’myfunc4’, [-4 8],options);

Amp = cost(1);

Offset = cost(2);

for i=1:length(jcell)

Y(i) = Amp*sin(jcell(i)+Offset);

end

plot(tcell,Y,’r’);
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testdiff = abs(matrixax - transpose(Y));

testdiffnorm = mean(testdiff);

max(Y)

max(matrixax)

hold off;

Error using ==> input

Cannot call INPUT from EVALC.

Error in ==> ArcCalcRealData at 6

OofJ = input(’Enter the joint order as a an array, no commas: ’);

Published with MATLAB 7.6

8/3/2013 4:10 PM
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