
ABSTRACT

Title of Dissertation: NEURAL AND COMPUTATIONAL APPROACHES
TO AUDITORY SCENE ANALYSIS

Sahar Akram, Doctor of Philosophy, 2014

Dissertation directed by: Professor Shihab Shamma
Department of Electrical and Computer Engineering

Our perception of the world is highly dependent on the complex processing

of the sensory inputs by the brain. Hearing is one of those seemingly effortless

sensory tasks that enables us to perceive the auditory world and integrate acoustic

information from the environment into cognitive experiences. The main purpose of

studying auditory system is to shed light on the neural mechanisms underlying our

hearing ability. Understanding the systematic approach of the brain in performing

such complicated tasks is an ultimate goal with numerous clinical and intellectual

applications.

In this thesis, we take advantage of various experimental and computational

approaches to understand the functionality of the brain in analyzing complex audi-

tory scenes. We first focus on investigating the behavioral and neural mechanisms

underlying auditory sound segregation, also known as auditory streaming. Em-

ploying an informational masking paradigm, we explore the interaction between

stimulus-driven and task-driven attentional process in the auditory cortex using

magnetoencephalography (MEG) recordings from the human brain. The results



demonstrate close links between perceptual and neural consequences of the audi-

tory stream segregation, suggesting the neural activity to be viewed as an indicator

of the auditory streaming percept.

We examine more realistic auditory scenarios consisted of two speakers si-

multaneously present in an auditory scene and introduce a novel computational

approach for decoding the attentional state of listeners in such environment. The

proposed model focuses on an efficient implementation of a decoder for tracking the

cognitive state of the brain, inspired from neural representation of auditory objects

in the auditory cortex. The structure is based on an state-space model with the

recorded MEG signal and individual speech envelopes as the input and the proba-

bility of attending to the target speaker as the output of the model. The proposed

approach benefits from accurate and highly resolved estimation of attentional state

in time as well as the inherent model-based dynamic denoising of the underlying

state-space model, which makes it possible to reliably decode the attentional state

under very low SNR conditions.

As part of this research work, we investigate the neural representation of am-

biguous auditory stimuli at the level of the auditory cortex. In perceiving a typical

auditory scene, we may receive incomplete or ambiguous auditory information from

the environment. This can lead to multiple interpretations of the same acoustic

scene and formation of an ambitious perceptual state in the brain. Here, in a se-

ries of experimental studies, we focus on a particular example of ambitious stimulus

(ambitious Shepard tone pair) and investigate the neural correlates of the contextual

effect and perceptual biasing using MEG. The results from psychoacoustic and neu-



ral recordings suggest a set of hypothesis about the underlying neural mechanism

of short-term memory and expectation modulation in the nervous system.
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Chapter 1

Introduction

1.1 Auditory scene analysis

1.1.1 Brain, an exceptionally powerful processor

Listening to our world seems to be an effortless and undemanding activity in our

daily life. We perceive and analyze our environment by taking into our brain a com-

plex mixture of acoustic information, and suddenly we are able to localize the sound

sources around us, attend selectively to different instruments in an orchestra, and

reliably discriminate multiple sources in a complex auditory scene while associating

related features to each auditory object. All of these magical steps should take place

somewhere between the ear and the high-level processors in the brain.

Sounds in our environment are compiled together as a one-dimensional com-

plex signal, a variable wave pressure over time, by the time it reaches the outer

most part of our auditory system, the pinna. This organ, with its unique and weird
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looking anatomical structure, provides preliminary cues about the direction and

location of the sound. Later the sound navigates through the auditory pathways,

transforming from one type of energy to another and eventually making its way

through the nervous system. The nervous system has an excellent ability to put

together all the necessary information and extract cues from the scene to help us

answer seemingly trivial questions, such as which melody is being played, which in-

strument is playing it, and which singer is not singing harmony. These, in addition

to so many other amazing abilities are what makes our auditory life colorful and

enjoyable. Our attempts to understand the auditory mechanism of the brain, which

functions as a great computational tool, has been partially successful; however, to

have a comprehensive view of all the processing steps taken by the brain, we need

to build a thorough map of the auditory neural circuitry, starting from physical

vibrations to the perception of the sound (Yost, 1994).

1.1.2 Perceptual complexities

Segregation of an auditory scene into multiple streams is one of those highly de-

manding tasks which is powerfully and effortlessly resolved by the brain, even in ex-

tremely noisy and reverberant environments (Carlyon, 2004; Bregman, 1994). This

procedure, also known as the cocktail party problem (Cherry, 1953) is facilitated

by informative cues in the acoustic stimulus along the temporal and spectral di-

mensions. Although there have been intensive studies on the behavioral and neural

bases of auditory stream segregation over the last decades, large aspects of this pro-

2



cess still remain to be explored (Griffiths and Warren, 2004a; Elhilali and Shamma,

2008b; McDermott, 2009).

While the auditory processing is a quite complicated procedure—even if all

the necessary sensory information is provided by the environment—there are many

situations in which our information from the environment is insufficient, limited

or ambiguous. As a dynamic physical system, our brain is functioning based on

a set of perceptual principles that helps it derive perceptually meaningful events

out of auditory scenes with missing or limited sensory information. These percep-

tual principles are strongly influenced by our auditory memory, language, musical

background, and many other factors that are common or specific to certain groups

of people. Ambiguous sounds are one of those examples in which the perceptual

realization of the sound is not necessarily a one-to-one mapping into the sensory

information domain. In other words, a similar stimulus will sound differently if it

is presented in different contexts. Auditory illusion is another case where universal

principles override the actual information provided by the scene and makes us hear

things that may be physically absent. An example of auditory illusion is hearing

a missing fundamental frequency when other components of a harmonic series are

present (Shepard, 1964).

1.2 Thesis outline

In this thesis, a number of novel experimental and computational approaches tack-

ling different aspects of auditory scene analysis have been discussed. We investigate

3



neural mechanisms underlying complicated auditory tasks such as source segrega-

tion when multiple sound sources are present. Specifically, we focus on speech as an

important and common auditory source that is routinely streamed and tracked by

the human brain.

Another complex auditory scene studied here is an ambiguous stimulus for

which our brain may have multiple interpretations, resulting in the exact same

acoustic stimulus being perceived in one way or the other depending on various

neural and environmental conditions. Our focus is mostly on understanding the

neural mechanisms used by the brain to disambiguate such a stimulus, which can

be internally tied to higher-level processing mechanisms in the brain such as short

term memory and attention.

This dissertation is organized in six chapters. The following chapter summa-

rizes the present knowledge on auditory pathways and the high-level neural rep-

resentation of auditory stimuli in the brain, with a brief introduction to existing

computational models inspired by the biology. Next, we introduce Magnetoen-

cephalography (MEG), a non-invasive recording technique that has been used in

our studies to record cortical activities of the human brain while performing an au-

ditory task. We close this chapter by reviewing the benefits and limitations of this

technique for auditory studies, and by discussing some of the common approaches

used in the interpretation and analysis of MEG data.

Chapter 3 starts with a literature review over existing approaches in study-

ing auditory stream segregation. Later in this chapter, an experimental approach

for understanding the neural mechanism underlying detection of a single-frequency

4



target sequence embedded in spectrotemporaly randomized tones is presented as

a simplified example of auditory streaming. MEG recordings collected from the

auditory cortex of humans were analyzed and correlated with the behavioral per-

formances of the listeners, while their attention was manipulated towards different

aspects of the auditory scene. The results highlight the strong dependence of the

behavioral performance in streaming the target sequence to the stimulus parameters

which are directly reflected in the neural activity recorded from the brain, therefore

suggesting a close link between the perceptual and neural consequences of the audi-

tory streaming. This study has been published in the PLOS ONE journal (Akram

et al. (2014a)).

In chapter 4, a novel computational approach for decoding the attentional state

of listeners in a multi-speaker environment is proposed. The model is evaluated on

simulation studies and used in decoding real MEG data recorded from the human

brain. Later in this chapter, the main advantages of the new decoder over the

existing methods is highlighted and generalization of the current model to be applied

on more complex auditory scenes is discussed. The method part of this study

is published in Advances in Neural Information Processing Systems (Akram et al.

(2014b)), and the extended version is submitted to NeuroImage journal.

In chapter 5, the neural correlates of a compelling example of ambiguous au-

ditory stimuli is explored, which involves the detection of pitch-direction changes in

a pair of Shepard tones that are spectrally half an octave apart, and hence, equally

perceived as an upward or downward step change in pitch (Deutsch, 1980). Conduct-

ing a number of psychoacoustic and MEG experiments, the neural representation of

5



such ambiguity in the brain is investigated and the mechanism underlying percep-

tual biasing of this bistable stimulus to one or the other direction is explored with

the help of the surrounding context. In a final set of experiments, we examine if the

effectiveness of the biasing sequence is dependent on perceptual streaming of this

sequence prior to presentation of the ambitious pair.

Finally in chapter 6, a summery of the main findings of this work, along with

future prospects for this field of research is provided.

6



Chapter 2

Background

2.1 Auditory pathway

It is appropriate to start our study of sound processing with an introduction to the

auditory pathway, and to explain the structure and role of different elements along

this path. The main organs in the auditory system are the ear—mainly referring to

the entire peripheral auditory apparatus—and parts of the central nervous system.

Here, we briefly review basic knowledge about these organs and their role in forming

the perception of the sound.

2.1.1 Peripheral auditory system

The mysterious travel of sound through the auditory system starts when the one-

dimensional pressure-wave hits the pinna (Figure 2.1). The function of the pinna

is to perform spectral transformations on the incoming sound as well as to add

directional information to the sound by applying frequency-dependent amplitude

7



modulation on the sound before directing it to the auditory canal.

Further along the path, the eardrum separates the external ear from the middle

ear and transmits the sound from the air to the ossicles (The three smallest bones

in the human body, which have a stirrup shape. These bones are located in the

middle ear and transmit the sound from the air to the fluid-filled cochlea. In other

words, at this stage, acoustic energy from compression waves in the air is efficiently

transferred to fluid-membrane waves within the cochlea. The sound would then

passes through the basilar membrane, a stiff structure element that separates two

liquid-filled tubes that run along the coil of the cochlea. Changing its width and

stiffness across the cochlea, the basilar membrane can capture higher frequencies

at the front, and lower frequencies at the end of the membrane. It works as a

tonotopically ordered frequency axis along the length of the cochlea and can be

modeled as a filter bank to perform a short-term Fourier analysis on the frequency

contents of the sound (Hams, 1985; Kandel et al., 2000).

Later in the pass, inner hair cells transform the fluid waves into analog nerve

signals that are then relayed to the cochlear nerve fibers with a digital output.

Each nerve fiber represents a particular frequency and a specific range of loudness.

The encoded information carried by these fibers arrives at the first relay station

in the auditory system, the cochlear nuclei. The cochlear nuclei cells encode the

information provided by nerve fibers by generating action potentials with a specific

rate and particular timing of individual action potentials. According to the previous

studies, some features—such as the timing information of the neural patterns—are

enhanced and sharpened in the cochlear nucleus prior to sending them to more

8
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Figure 2.1: A schematic view of the periphery auditory system. Starting from the
ear, this is the first stage of transferring the sound into a hearing organism, which
feed directly into the nervous system by transduction of sound pressure-waves into
neural action potentials.

central areas Palmer et al. (1996).

A computational and biologically inspired model to preserve the perceptual

relevance and noise robustness properties we see in mammalian peripheral auditory

processing is explained in Chi et al. (2005). This model is widely used in studies as

one of the building blocks in auditory scene analysis and computational modeling

(Elhilali and Shamma, 2007, 2008a; Mesgarani et al., 2006; Mesgarani and Shamma,

2005). Here is a brief description of the model for the early auditory processing stage.

1. To model the spectral analysis performed by the cochlear filter bank, we

apply an affine wavelet transform to the input acoustic waveform s(t). This filter

bank, h(x, t), consists of 128 overlapping constant Q(' 3) band-pass filters with

center frequencies uniformly distributed along a logarithmic axis x over 5.3 octaves.

2. The output from the previous stage, y1(x, t), goes through a high-pass

filter—non-linear compression g(.)—and a low-pass filter, roughly modeling the hair

9



cell stage and membrane leakage in which phase-locking to frequencies above 2 kHz

is decreased on auditory nerves.

3. Next, the output of the previous stage, y2(x, t), is introduced to a first-order

derivative with respect to the tonotopic frequency axis and then passed through a

half-wave rectifier. This transformation simulates the action of the Lateral Inhibition

Network (LIN), which is presumably located in the cochlear nucleus and increases

the frequency selectivity of cochlear filter bank (Lyon and Shamma, 1996; Shamma,

1985).

4. The final step integrates the output of the previous stage y3(x, t) over a short

window with the time constant τ = 8 ms, using the function µ(t; τ) = e(−t/τ)u(t).

This stage compensates for further loss of phase-locking in the midbrain.

The mathematical formulation of the above steps is briefly described here (Chi

et al., 2005) :

y1(t, x) = s(t) ∗t h(x, t) (2.1)

y2(t, x) = g(δty1(t, x)) ∗t w(t) (2.2)

y3(t, x) = max(δxy2(t, x), 0) (2.3)

y4(t, x) = y3(t, x) ∗t µ(t; τ) (2.4)

10



2.1.2 Central auditory system

The anatomical complexity of the pathways and the neural morphology of this stage

are far less known compared to the periphery; however, ongoing physiological and

anatomical studies have gradually revealed the functionality and neural circuitry of

the central auditory system. The neural information is projected to the Superior

Olivary Complex (SOC) from the cochlear nucleus, and then to the Inferior Colliculi

(IC). The IC works as a relay in the ascending auditory system and it is believed

to integrate the information coming from the SOC and lateral lemniscus (Kandel

et al., 2000), before sending it to the higher auditory areas (Figure 2.2).

Most of the necessary features from an auditory scene are extracted as the

sound comes up to the level of IC and to higher auditory areas including auditory

thalamus (Medical Geniculate Body). The auditory cortex is believed to play a role

in discriminating or binding these features to form auditory objects (Pinto et al.,

2003). Further in the auditory model proposed by (Chi et al., 2005), the central

auditory processing is simulated using a multi-scale filter bank, in which each filter

has a specific selectivity to the spectral and temporal modulations of sound, denoted

as scale (Ω,cycle/octave) and rate (ω,cycle/time) respectively. The impulse response

of these filters is defined as a two-dimensional spectrotemporally separable Gabor

filter (Chi et al., 1999), which is computed as the product of spatial impulse response

hS(x; Ωc, φc), and temporal impulse response hT (t;ωc, θc).

hS(x; Ωc, φc) = hs(x;φc)cosφc + h̄s(x, φc)sinφc (2.5)

11
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Figure 2.2: A schematic view of the central auditory system. The encoded sound
information travels through intermediate stations such as cochlear nuclei and su-
perior olivary complex of the brainstem and get further processed until eventually
reaching the thalamus and from there relayed to the auditory cortex.

hT (t;ωc, θc) = ht(t; θc)cosθc + h̄t(t, θc)sinθc (2.6)

H(t, x,Ωc, φc, ωc, θc) = hS(x; Ωc, φc).hT (t;ωc, θc) (2.7)

More details about hs and ht functions can be found in (Chi et al., 2005). The

output of this model is a multi-scale, multi-rate representation of the sound in a

four-dimensional complex-valued space, varying along the frequency, time, spectral
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sale and temporal rate axes.

r(t, x,Ωc, φc, ωc, θc) = y(t, x) ∗tx H(t, x,Ωc, φc, ωc, θc) (2.8)

Where y(t, x) is the input spectrogram derived from equations in 1.2.1, and

∗tx is a two-dimensional convolution in frequency and time. This multi-resolution

representation can capture different properties of the original sound, such as up-

ward/downward orientation and slow/fast temporal and spectral envelopes of the

sound.

2.1.3 Neural representation in the auditory cortex

A complex sound can be represented in the neural domain by characterizing differ-

ent neurons with respect to their specific selectivity in the spectral and temporal

domains. There is a specific region for each neuron, in which the presence of the

stimuli will alter the firing rate of that neuron. This region is known as the receptive

field. In the auditory field, these receptive fields are a two-dimensional representa-

tion of spectral and temporal selectivity of that neuron and are known as STRFs

(Spectrotemporal receptive fields) (Christopher deCharms et al., 1998; Klein et al.,

2000; Theunissen et al., 2000).

The input/output relationship of a neuron can be modeled with the neurons

STRF, as a spectrotemporal transfer function. The input is a two-dimensional

spectrotemporal representation of the sound in the auditory cortex (described in

2.7), which is convolved with the STRF of the neuron, and the neural output is the

13



firing rate of the neuron as a function of time (Figure 2.3).

STRFs are providing a quantitative linear description on the neurons behavior

with respect to specific stimulus patterns; however, they suffer from a number of

limitations since most of the modeling approaches simplify the complicated biolog-

ical pathways to make them fit certain criteria. The linearity and time invariance

properties of the explained model are some examples of the shortfalls, which make

this model fail in other more general cases. Recognizing these limitations, this model

is employed in some of the current studies due to its inherent simplicity to explain

some neural behaviors in the human auditory cortex.
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Figure 2.3: Spectrotemporal receptive fields. Assuming linearity in the system,
each neuron can be modeled as having a time-varying firing rate computed from the
convolution of the stimulus with the neuron’s STRF. Here, the stimulus is the two-
dimensional spectrao-temporal representation of the sound described in 2.1 to 2.4,
which is filtered through neuron’s STRFs and the outputs of the filters demonstrate
the time-varying firing rates of the corresponding neurons.

14



2.2 Magnetoencephalography (MEG)

Investigation of the human brain is a pursuit of great intellectual interest. As

Hämälainen puts it so well (Hämäläinen et al., 1993):“The whole of humanity de-

pends on our minds”. Despite extensive ongoing research on this challenging topic,

the fundamental questions of the mechanisms used by the brain to store, retrieve,

and process information are still largely unknown. Recent developments in the field

of computational neuroscience, with many intellectual and clinical applications, are

great sources of inspiration for studies of the functional principles underlying the

human brain. To this end, Magnetoencephalography, a non-invasive neuroimaging

technique serves us as a great tool to record ongoing neural activity from different

areas of the brain.

2.2.1 Basis of MEG

Currents of all sorts deluge our body and produce electromagnetic fields. The brain

also sustains ionic current flows with neurons as the strongest generators (Figure

2.4). The amount of current generated by a single cell is too small to be detected in

a non-invasive measurement from outside of the head; however, if the architecture

of the cell is in line with other cells and the currents are derived with a sufficient

amount of synchrony, it gives rise to a large net current that is detectable centimeters

away, outside the head.

Cellular currents, as explained above, are primary contributors to MEG sur-

face signals. These current generators operate in a conductive medium and therefore
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introduce a secondary type of current that circulates through the head tissues, in-

cluding the skull bone, and loop back to close the electrical circuit. In certain limited

conductor geometries the first and secondary currents generate equal but opposite

fields, which leads to a zero net external field. Therefore, only currents with com-

ponents tangential to the spherical surface are detectable by the gradiometers, and

radial sources are externally silent.

Localization of the MEG sources is a crucial step in interpreting the recorded

neural data. Indeterminacy of the inverse problem, even if the MEG is measured at

infinitely many points around the head, leads to insufficient information for uniquely

computing the distribution of the current sources within the brain (Helmholtz, 1853).

Therefore, one must consider appropriate modeling constraints, such as prior knowl-

edge of the number and approximate location of the sources, to be able to derive

information about source distribution from the recorded data. In addition, discrim-

inating between the contribution of original and secondary currents to the measure-

ments in the proposed model further complicates the source localization procedure.

2.2.2 Instrumentation

MEG measurements are conducted externally using an extremely sensitive instru-

ment called a superconducting quantum interference device (SQUID). The SQUID is

a very low noise detector of magnetic fields that converts the magnetic flux threading

a pickup coil into voltage, allowing detection of weak neuromagnetic signals. Since

the SQUID relies on physical phenomena found in superconductors, it requires cryo-
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Figure 2.4: The source of MEG. (A) Neural cells drive ionic electrical currents
caused by electric potential differences along the cell, which is due to the excitatory
and inhibitory post-synaptic activities. The magnetic fields produced by primary
currents are demonstrated in the figure (dashed black lines). The electrical circuits
of currents are closed by secondary volume currents (solid black lines). (B) In a
larger scale, the superposition of currents coming from synchronized activity of the
neurons is shown as a red dipole surrounded by secondary volume currents shown
in yellow. Resulted magnetic fields (green contours) are measurable outside of the
skull with the resolution of 1 ms.

genic temperatures for operation. In a modern MEG device, an array of more than

300 SQUIDS is contained in a helmet shaped liquid helium-containing vessel called

a dewar, which allows for simultaneous measurements at many points over the head

(Figure 2.5–A & 2.5–B). Since the magnetic signals emitted by the brain are on

the order of a few femtoteslas, shielding from external magnetic signals is neces-

sary. The system is then operated in a Magnetically Shielded Room (MSR) that

minimizes interference from external magnetic disturbances, including the earths

magnetic field, noise generated by electrical equipment, and low frequency mag-

netic fields produced by moving magnetic objects such as elevators, cars, and trains.

Appropriate magnetic shielding can be obtained by constructing rooms made of

aluminum and mu-metal, thereby reducing high frequency and low frequency noise,
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respectively (Figure 2.5–C).

In some MEG systems there is the possibility to record EEG from dense arrays

of electrodes ( ≥ 60) simultaneously, thereby completing the electromagnetic signa-

ture of neural currents. Additional analog channels are usually available for miscella-

neous recordings (heart monitoring (ECG), muscle activity (EMG), eye movements

(EOG), respiration, skin conductance, subjects responses, etc.). Sampling rates can

reach up to 5 kHz on all channels with a typical instrumental noise level limited to

a few fT per square meter.

In the following studies, all MEG signals are recorded in a dimly lit magnet-

ically shielded room (Yokogawa Electric Corporation) using a 160-channel whole-

head system (Kanazawa Institute of Technology, Kanazawa, Japan). Its detection

coils are arranged in a uniform array on a helmet-shaped surface on the bottom of

the dewar, with ' 254 mm between the centers of two adjacent 15.5 mm diameter

coils. Sensors are configured as first-order axial gradiometers with a baseline of 50

mm; their field sensitivities are 5 fT/Hz or better in the white noise region. The

presentation software package (Neurobehavioral Systems) is used to present stimuli

to the subjects. The sounds (approximately 70 dB SPL) are delivered to the partici-

pants’ ears with 50 Ω sound tubing (E-A-RTONE 3A; Etymotic Research), attached

to E-A-RLINK foam plugs inserted into the ear canal. The entire acoustic delivery

system is equalized to give an approximately flat transfer function from 40–3000

Hz, i.e., encompassing the range of the presently delivered stimuli. Three of the

160 channels are magnetometers separated from the others, and used as reference

channels in noise-filtering methods (De Cheveigné and Simon, 2007). The magnetic
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signals were filtered to the range of 1–200 Hz, notch filtered at 60 Hz, and sampled

at 1 kHz.

A B C
Single SensorDewar

Liquid 
Helium

Skull

SQUID

Coil

Figure 2.5: MEG system. (A) A multisensory array located in a dewar. The helmet
shaped dewar, typically contain 300 sensors, covering most of the head and facilitat-
ing accumulation of the MEG data. (B) Each single sensor consists of a detection
coil which is connected to a SQID. (C) A magnetic shielded room containing the
MEG machine.

2.3 MEG in auditory studies

MEG has been used in numerous studies to characterize the responses to differ-

ent types of acoustic stimuli, ranging from non-speech tones (Brattico et al., 2009;

Gutschalk et al., 2005; Elhilali et al., 2009; Ackermann et al., 2001; Xiang et al.,

2010) to components of speech sounds such as vowels and syllables (Sams et al., 1991;

Phillips et al., 2000; Besle et al., 2004) to more complex speech sounds including

words and sentences (Suppes and Han, 2000; Luo and Poeppel, 2007; Pulvermüller

and Shtyrov, 2009; Ding and Simon, 2012a). According to the high temporal resolu-

tion of this recording technique (on the order of milliseconds), most of these studies
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focus on temporal analysis and morphology of sensor measurements at the cortical

level.

2.3.1 Response pattern to auditory stimuli

The earliest auditory-evoked responses in the auditory cortex peak near 20, 30 and

50 ms after the stimulus presentation, followed by a deflection at about 100 ms

(M100/N1m)—a prominent, robust response across listeners and stimuli—which has

been the most investigated auditory response (Näätänen and Picton, 1987; Roberts

et al., 2000). According to the related studies, the neural source of a M100 response

in the cortex is localized to planum temporale(Lütkenhöner and Steinsträter, 1998),

whereas the earlier and smaller M50 peak possibly originates in or near the primary

auditory cortex (PAC) (Rupp et al., 2002). There is evidence showing that M50 and

M100 responses belong to different functional systems. Consistency of presence of

the M100 response to the stimuli-like clicks, tones, and speech gives rise to the hy-

pothesis that the M100 response reflects the process of detecting changes in sensory

input, with its strength, latency, and lateralization varying with certain physical

and temporal aspects of stimuli (Näätänen and Picton, 1987; Roberts et al., 2000).

The amplitude and lateralization of M50, on the other hand, appears to be task

independent (Chait et al., 2004), with no dependence on interaural time differences

(McEvoy et al., 1994) or contralateral masking effects (Elhilali and Shamma, 2008b).

The M50 response plays a key role in exploring PAC (Mäkelä et al., 1994; McEvoy

et al., 1994) and early auditory system maturation (Cardy et al., 2004; Oram Cardy
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et al., 2008) in humans, and is largely incriminated in neurological disorders such

as schizophrenia (Adler et al., 1982; Thoma et al., 2005; Potter et al., 2006).

2.3.2 Information extraction

The frequency spectrum of MEG data is rich and complex, since multiple processes

take place simultaneously and engage neural populations at various spatial, tempo-

ral, and frequency scales. In order to be able to study and trace the neural correlates

of a specific process in the brain, we need to take some pre-processing steps on the

recorded data to enhance the level of signals of interest, while attenuating noise

and uninteresting signals. Filtering the data within a frequency band, removing

the base-line activity, averaging over multiple trials, and other data correction tech-

niques are among the steps to make the data ready for further analysis. Evoked and

transient neural responses to auditory stimuli can be extracted from the recorded

data according to both the type of information we are looking for, and how it is

encoded in the neural response. In order to extract the evoked response, the same

stimulus is repeated several times and the data over all the repetitions are averaged

to emphasize the phase-locked response to the stimulus and cancel out the contribu-

tion of random-phase signals. Several types of MEG responses, such as the response

to the slow temporal modulations, have been demonstrated to be phase-locked to

the stimulus (Ding and Simon, 2009; Fuentemilla et al., 2006; Luo and Poeppel,

2007). On the other hand, the transient response results from an increase in power

in response to a stimulus, similar to the evoked activity but with variability in re-
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sponse time. Hence, averaging over repeated trials would not help in recovering the

transient response from the noisy signal. The latency and amplitude of the transient

response varies by different physical and perceptual properties of the stimulus such

as loudness, signal to noise ratio, spectral pattern of the stimulus, attention, and

perceptual saliency of the sound onset/offset (Näätänen and Picton, 1987; Kaplan-

Neeman et al., 2006; Biermann and Heil, 2000; Poeppel et al., 1996). Different

frequency and time domain analysis is employed to enable us to look at evoked and

transient responses and investigate various physical and perceptual traces on neural

recordings. However, the general approach for analyzing and exploring a data set

should be determined specifically for each experiment based on the properties and

hypothesis behind that experiment.

In all conducted experiments here, a pre-experiment consisting of 100 repeti-

tions of a 1 kHz, 50 ms tone pip is presented before starting the real experiment.

The inter-stimulus intervals (ISIs) are randomized between 0.75 ms and 1.55 s, and

participants are asked to count the tone pips. The experiment is done as a control

condition to check M100 responses (a prominent peak approximately 100 ms after

pip onset) and verify that the location and strength of neural signals fall within a

normal range.

2.3.3 Benefits and limitations

MEG is completely safe and noninvasive. The data can be collected in the seated

position allowing more natural cognitive experiments than fMRI. The measurement
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environment is completely silent, which facilitates auditory studies in particular.

Temporal resolution in MEG is very high—on the order of milliseconds—however;

spatial resolution is moderately low, on the order of centimeters.

Comparing MEG with similar non-invasive methods such as EEG, there are

a number of advantages in employing MEG over EEG systems. Most importantly,

while EEG is strongly degraded by the heterogeneity in conductivity within head

tissues (e.g., insulating skull vs. conducting scalp), this effect is extremely limited in

MEG, resulting in greater spatial discrimination of neural contributions. This has

important implications for source modeling and localization of the recorded neural

responses.

Additionally, subject preparation time and comfort improve in MEG, as there

is no need for direct contact of the sensors to the skin. Measurements in MEG are

absolute and there is no need for choosing a reference point, as opposed to EEG.

Moreover, MEG is particularly useful in detecting auditory responses because the

orientation of the neural sources in the auditory cortex is roughly parallel instead

of perpendicular to the scalp. This orientation results in a magnetic dipole across

the surface of a subjects head. In contrast, a neural current running perpendicular

to the subjects head would not show any magnetic dipole.

Among the limitations of MEG technique, a major technical problem is that

the localization of sources of electrical activity within the brain from magnetic mea-

surement outside the head is complicated and does not have a unique solution. This

is known as the ill-posed inverse problem and is itself the subject of research. How-

ever, feasible solutions can often be obtained by using relatively simple models. Due
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to the increased distance to sources and the almost spherical symmetry of the head,

it is difficult to provide reliable information about the subcortical sources of the

brain activity. Also, MEG does not provide structural and anatomical information

and must often be combined with MR data into a composite image of function,

overlaid on anatomy, to produce activation maps.
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Chapter 3

Neural correlates of auditory
streaming

3.1 Introduction

Our brain is a fascinating computational tool, which makes the whole hearing process

a trivial, effortless accomplishment for us; however, the underlying mechanism for

different processing stages is very little understood and a lot of scientific engineering

approaches to mimic the brain’s functionality have fallen short in computational

implementations.

Since Aristotle, many philosophers and psychologists have believed that per-

ception is the process of using the information provided by our senses to form mental

representations of the world around us, says Bregman in “A Book on Auditory Scene

Analysis” (Bregman, 1990). The whole process can be divided into two main stages.

The first stage involves forming the representations of the sensory input. Here, we

can specifically talk about extracting informational cues and auditory features from

the auditory scene. In the next stage, these features should be grouped together

appropriately to form segregated and meaningful auditory objects. The latter in-
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tegration stage seems to be a fairly complicated task that is optimally achieved by

the brain.

Nonetheless, the separation of an auditory scene into multiple streams—also

known as the Cocktail party effect (Cherry, 1953)—is a highly complex perceptual

task facilitated by informative cues in the acoustic stimulus along the temporal and

spectral dimensions. Although there have been intensive studies on the behavioral

and neural bases of auditory stream segregation over the last decades, large aspects

of this process still remain to be explored.

3.1.1 Auditory objects & grouping cues

Auditory objects are perceptually well-defined constructs, and despite their visual

counterparts, it is difficult to make an intuitive sense of such a notion in auditory

modality (Ahveninen et al., 2006; Alain and Arnott, 2000; DYSON, 2010; Kubovy

and Van Valkenburg, 2001; Schnupp et al., 2013; Shinn-Cunningham and Best,

2008). A two-dimensional representation of an auditory object can be defined as

a product of grouping mechanisms along the frequency and time dimensions (Grif-

fiths and Warren, 2004a; Griffiths et al., 2012; Bizley and Cohen, 2013). It is a

considerably challenging task to define clear perceptual boundaries between simul-

taneous auditory objects, and to separate the information that belongs to a specific

auditory object from the rest of the auditory scene. Several grouping principles are

proposed for classification of acoustic perceptual cues in a complex auditory scene

(Griffiths and Warren, 2004a; Bizley and Cohen, 2013), which are mainly based
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on analyzing auditory patterns in time-frequency space. Auditory grouping can be

considered to have two aspects known as sequential grouping and parallel (simul-

taneous) grouping. Sequential procedure refers to relating the spectral components

to their respective sources over time. Parallel grouping, on the other hand, requires

determining which parts of the complex acoustic scene presented at the same time

belong to which source, specifically. The grouping cues are presumably provided

by forming connections between elements of sensory input based on the principles

of similarity, continuity, proximity, and common motion. In the case of audition,

auditory objects are believed to be formed based on similar features such as pitch,

location cues and spectrotemporal properties, discussed in the next section.

Effective cues in auditory segregation

In a classic study of presenting a repeating sequence of temporally non-overlapping

high and low-frequency tones, ‘A’ and ‘B’, the frequency separation and the pre-

sentation rates of the tones were shown to be determinant factors in perceiving the

alternating tones as one or two separate steams. Small frequency separation (less

than 10%) or low presentation rates, would be perceived as one coherent stream

of A-B-A-B tones; however at larger frequency separations and higher presentation

rates, it starts to perceptually segregate as two auditory streams of A-A-A-· · · and

B-B-B-· · · (van Noorden, 1975; Bregman et al., 2000). There is also an ambiguous

state between the two mentioned states in which an alternating sequence can be

perceived as either one or two streams depending on the attentional focus of the lis-

teners and required behavioral tasks in that experiment (Moore and Gockel, 2012).
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To address the frequency separation property, a leading theory is that if the fre-

quency components are close enough so that they fall on the same cochlear channel

in the periphery auditory system and their excitation patterns in auditory periph-

ery overlap, they will bind together and form a single stream. This theory is also

known as peripheral channeling. Hartmann and Johnson (1991) studied streaming

in music using interleaved melodies, which were difficult to recognize unless they

were segregated and perceived as separated streams. They got the best results for

segregation task in the case for which the most peripheral channeling was expected,

i.e. the successive tones differed in spectrum.

Harmonicity is another feature that is believed to play an important role in

stream segregation. Frequency components with a harmonic relationship fuse to-

gether into a single pitch and give a distinct entity to a harmonic complex, which

makes it easy to stream out from complexes with different fundamental frequencies

(Rasch, 1978; Duifhuis et al., 1982). It is also shown that harmonic relation is not

necessary for binding the tones; any regularity in spectral spacing can be sufficient

for fusion of the tones into one auditory object (Roberts and Bregman, 1991).

If a sound source is on, all the features belonging to that source are present,

and if it goes off, none of the corresponding features exist anymore; thus, onset and

offset synchrony can play a key role in integrating those features that are believed

to come from the same sound source (Rasch, 1978; Bregman, 1990). According to

the reported studies, onset synchrony is a more effective integrating cue compared

to the offset synchrony (Darwin and Carlyon, 1995).

Sound sources in the environment have different spatial locations and all the
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sound elements belonging to one source would expectedly share the same spatial

cues. While it is difficult to evaluate the role of special cues in auditory object

formation independently, it is suggested that when the direction of the sound is

given to the subject as a prior cue, lateralization would play a strong role in vowel

identification (Darwin and Hukin, 2000). It has also been demonstrated that, in

situations with more than two concurrent sound sources available, such as in a

cocktail party, binaural processing plays a significant role in stream segregation

(Yost, 1994).

Among other integrating cues, amplitude modulation seems to be effective,

especially in the absence of spectral and temporal fine structures. In a study by

Grimault et al. (2002), it is demonstrated that sequential sounds can be streamed

apart based on the differences in their rate of temporal fluctuations, while no other

spectral or temporal cue is available; however, the effect of frequency modulation

on stream segregation seems to be more complicated and less understood.

Coherent movement in space is a powerful cue for object segregation in a visual

scene, although it is not true about the analogues auditory scene in which common

frequency modulation is expected to play similar role in streaming different sources

(Darwin and Carlyon, 1995). According to a study by Carlyon (1991), it is very hard

for the subjects to tell whether two inharmonic sounds are being frequency modu-

lated coherently or incoherently. There is, however, some evidence that subjects can

use FM coherence to separate concurrent complex sounds perceptually (McAdams,

1982).

Temporal envelope is another important cue, which involves in characterizing
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timbre of the sound. In a study by Dannenbring and Bregman (1976), the alter-

nating A-B-A paradigm was expanded to tree tone-tone, tone-noise and noise-noise

paradigms, in which a narrowband noise with 1.5 semitones bandwidth around 1

kHz center frequency was used. Since the excitation pattern of the noise is very

similar to that of the tone, peripheral channeling cannot play a role in streaming

noise from tone sequences. According to the reported results, listeners segregation

performance was better in tone-noise condition compared to the other two. One hy-

pothesis is that different temporal envelopes (in noise and tones) characterize them

with two different timbres, which leads to a better segregation.

Primitive vs. schema-based segregation

According to Bregman (1990), primitive segregation refers to bottom-up, pre-attentive

processes of auditory perceptual organization, in which attention to the sound or

learning parameters does not play a role. Mapping of the sound into the acoustic

domain and segregating different properties of the sound mixture take place in this

stage. However, a good number of our hearing experiences involve schema-based

or top-down processes in which, learning, memory, and active attentional state to

the sounds come into play. Top-down processes are influenced by listeners prior

experiences and familiarity with the presented sound. Extensive studies in humans

and animals, shows rapid, long lasting stimulus-specific changes in tuning selectivity

and response magnitude of the auditory neurons associated with learning process in

the brain (Recanzone et al., 1993; Menning et al., 2000; Polley et al., 2006; David

et al., 2012).
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There are also a good number of studies demonstrating the effect of atten-

tion on neural representation of the sounds in the brain, wherein attention-induced

enhancements in the amplitude and selectivity of auditory event-related potential

(ERP) components in human auditory cortex are reported (Hillyard and Picton,

1987; Näätänen, 1990). It is not very clear if a focused attention is necessary for

the buildup of stream segregation (see Psychoacoustic studies).

A wide range of neurophysiology studies in animals and humans have been

trying to solve and model different aspects of auditory scene analysis. Single-unit

recordings from an animals brain serves us with much more detailed information

about specific neural generators contributing to the recorded signal compared to

non-invasive recordings from a human brain. The latter represents auditory-evoked

neural activity at the population level from different sources in the brain; however,

there is a possibility of performing psychoacoustic tasks in humans along with neural

recordings to confirm the perceptual state of the brain at the same time, which is

much harder to be done with animals. The following sections briefly describe some of

the psychoacoustic, functional imaging and electrophysiology studies on behavioral

and neural correlates of auditory stream segregation in humans.

3.1.2 Psychoacoustic studies

The well-known A-B-A streaming paradigm, first investigated in 1970s by Bregman

and colleagues (Bregman and Campbell, 1971). As a result of these studies, several

models underlying auditory grouping and segregation mechanisms were proposed
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and further explored through variety of experimental techniques. Leon van Noorden

examined the behavior of human listeners in response to the repeating triplets (A-B-

A) of the streaming signal and investigated over perceptual characteristics involved

in integration, segregation and bistability (van Noorden, 1977, 1975). Bregman

studied important temporal characteristics of the auditory scene in facilitating or

impeding the streaming process and highlighted the effect of presentation rates and

time intervals between the successive tones in perceptual segregation of the streams

(Bregman et al., 2000).

The buildup effect known as the time taken for a stream percept to emerge from

an auditory mixture is another well-studied concept in auditory scene analysis. Dif-

ferent mechanisms underlying the gradual tendency of segregating the steams over

repeated presentation of the streaming stimulus has been proposed in these studies.

For example, frequency-shift detectors are hypothesized to play an important role

in integrating successive tones into a single stream (Anstis and Saida, 1985). In

another study, accumulation of evidence over time assumed to overwrite the default

perceptual state in the brain, which is hypothesized to be perceiving all the contents

in the scene as a single stream (Bregman, 1990).

Another significant facet of the streaming paradigm is the perceptual ambigu-

ity in segregating the streams, resulting in alternation of the percept between one or

two streams. Bistability in streaming is very common over a wide range of stimulus

parameters (Denham and Winkler, 2006; Kashino et al., 2007). The distribution of

switches in the perceptual states during streaming is quiet similar to that for visual

multi-stability when measured in the same group of subjects and is shown to be
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strongly modulated by the task instructions and behavioral goals (Pressnitzer and

Hupé, 2006).

Finally, the role of attention has been investigated extensively in stream selec-

tion (switching between the streams) van Noorden (1975), and buildup of streaming

(Carlyon et al., 2001). From an object-based point of the view, attention operates

at the level of auditory streams (objects) that are already grouped in a primitive

bottom-up process and it’s not directly involved in the formation of the stream it-

self. In a study by Carlyon et al. (2003), it’s demonstrated that tendency to report

streaming is reduced by the absence of attention or switch in attention. Also, reset-

ing in the buildup process when attention is briefly diverted away from the streaming

signal, reported in a study by Cusack et al. (2004), indicates the prominent role of

attention in the buildup process.

3.1.3 Functional imaging studies

EEG/MEG and fMRI techniques have been widely used as non-invasive methods

to study the neural correlates of auditory stream segregation in human (Denham

and Winkler, 2006; Micheyl et al., 2007a; Melcher et al., 2009; Gutschalk and Dyk-

stra, 2014). To explore the underlying mechanism of stream formation in the brain,

specifically the bottom-up, pre-attentive grouping mechanism and a higher order

attention-dependent buildup mechanism, both proposed by Bregman, ERP compo-

nent has been investigated in a variety of experiment designs (Winkler et al., 2005;

Snyder et al., 2006). They have found that P2 and N1c responses to the streaming
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sequence increased in amplitude correlated with behavioral measures of streaming.

Moreover, the mismatch negativity (MMN) was combined with streaming

paradigms to investigate the effect of attention in streaming process (Sussman et al.,

1999, 2007; Winkler et al., 2003). In a study by Sussman et al. (2007), ERPs evoked

by short trains of tones were recorded while the listeners attention was driven away

to a difficult noise intensity change detection task, simultaneously. Segregation was

promoted by increasing the frequency separation between subsets of the tones, in

which a number of probe tones with different intensity were present. The stimulus

design was such that when the whole sequence was heard as a single stream, no

regular pattern of iso-intensity existed because of the presence of probe tones with

variable intensity. On the other hand, when the sequence was perceived as two

separate streams, a regularity of intensity emerges in one of the streams, such that

the probe tones with different intensity from the standard tones would pop out and

elicit miss-match negativity (MMN) in neural response. According to the diversion

of attention away from the tone sequences, the results reported in this study sug-

gest that sustained attention is not required to initiate the formation of the auditory

stream. The paradigm for most of the MMN-involved streaming experiments is such

that the presence or absence of MMN is used as an indicator to check if the brain has

pre-attentively parsed a sequence of sounds into separate auditory streams (Snyder

et al., 2006; Winkler et al., 2003; Sussman, 2007). However, these studies do not

reveal any information about underlying mechanism of auditory streaming (Snyder

and Alain, 2007).

In another study by Gutschalk et al. (2005), they measured the auditory evoked
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neuromagnetic field in response to the streaming stimulus. The results demonstrate

a strong correlation between the magnitude of the auditory response affected by

frequency intervals and inter-stimulus interval (ISI) and perceptual detectability of

the streams. In addition, the results for dipole fitting indicates activation of the

non-primary auditory cortex in majority of subjects while performing the streaming

experiment.

Functional MRI has been also used to investigate the neural bases of streaming.

Despite very poor temporal resolution which fails this technique in following the

dynamics of behavioral and perceptual states, high spatial resolution allows a highly

resolved exploration of the brain regions involved in the streaming process. In a

study by Deike et al. (2004), it has been shown that using a variant of the streaming

paradigm, the left auditory cortex has an increased activity in segregation of sounds

based on spectral cues. In another fMRI study by Cusack (2005), they could not find

any activity difference in the auditory cortex while subjects reported the percept

of two vs. one stream in the ambiguous conditions; however, they found significant

activity difference in the intraparietal sulcus (IPS), for the two perceptual conditions.

It is not yet discovered whether the IPS activity is a cause or consequence of the

perceptual change in the bistable state (Shamma and Micheyl, 2010), but the results

keep up with the role of IPS in visual binding (Xu and Chun, 2009; Hill and Miller,

2009), in which there are evidences of IPS activation during the perceptual state

switches. In other studies (Kondo and Kashino, 2009; Kashino and Kondo, 2012)

they used an event-related design to investigate the temporal dynamics of brain

activity when the perceptual state switches between one and two-stream percepts.
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In their studies they confirmed the role of Medial Geniculate Body (MGB) and

the primary auditory cortex in perceptual switching during streaming and found

that activations in these regions are correlated with the individual differences in

perceptual pre-dominance in streaming.

3.1.4 Neurophysiology studies

Direct recordings from human auditory cortex has been performed in studies by

Bidet-Caulet et al. (2007); Bidet-Caulet and Bertrand (2009), in which depth elec-

trodes were inserted in the temporal cortex of epileptic patients listening to the

streaming paradigms for which the onset asynchrony was manipulated to induce

either streaming or grouping. Electrophysiological responses to the identical stimuli

and for different percepts (one or two streams) demonstrated a larger transient and

steady state responses as well as induced gamma band oscillations for onset syn-

chrony of the two concurrent sounds than in the case of onset asynchrony. A more

recent study via intracranical EEG recordings from temporal, frontal and parietal

cortex indicates the involvement of areas spread across the superior temporal and

perirolandic cortex, middle temporal gyrus, inferior and middle frontal gyrus in the

auditory streaming process (Dykstra et al., 2011). These studies provide evidence in

favor of the role of higher order non-auditory areas in sound segregation procedure

and auditory scene analysis in general.
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3.2 Neural correlates of streaming in an informa-
tional masking paradigm

As discussed in the previous section, a commonly experienced paradigm for study-

ing auditory perceptual organization is a sequence of two pure tones alternating

in time that can be perceived as a single or two segregated auditory objects un-

der certain conditions (Bregman, 1990; Elhilali and Shamma, 2008b; McDermott,

2009; Shamma et al., 2011a). Here, we have used a more spectrally rich paradigm

developed by Kidd Jr et al. (1994), known as informational masking paradigm, con-

sisted of a target tone sequence, embedded in a cloud of masker tones that are

randomly desynchronized (Figure 5.2–A) and has been shown to yield streaming

percepts analogous to those of the simpler two-tone sequences (Kidd Jr et al., 1994,

1995, 2011), both in their systematic dependence on stimulus parameters, as well

as the improvement of detection over the time course of few seconds (the so-called

buildup of streaming, (Carlyon et al., 2001; Micheyl et al., 2005; Näätänen et al.,

2001)). We consider this analogy to be the working hypothesis for the current study.

Alternative hypotheses regarding differences in streaming mechanisms between the

two paradigms are considered in detail in the discussion section.

Previous studies demonstrated critical dependence of target detection ability

on the attentional focus of the listeners as well as the density of the masker tones

and spectral separation between the target and masker tones (Elhilali et al., 2009;

Gutschalk et al., 2008; Micheyl et al., 2007b). The present study expands earlier

studies by further manipulating the effect of temporal and spectral components in
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the informational masking paradigm and exploring different perceptions of the scene

that can be used as an experimental tool for improving or impeding streaming ability

of the listeners (Akram et al. (2014a)).

The motivation for this study follows from two earlier studies by Elhilali et al.

(2009) and Xiang et al. (2010). In the latter, the interaction between task-driven

and stimulus-driven attentional processes for two competing rhythmic sequences at

two different rates (4 and 7 Hz) was explored and despite many similarities in neural

responses to the two presentation rates, the faster sequence (7 Hz) was quite differ-

ent from the slower (4 Hz) behaviorally, especially with regard to buildup over the

time course of each trial. Modulation rates in the range of 2–10 Hz, are known to

be crucially important in grouping the physical and perceptual cues in a complex

acoustic scene and stream formation (Kowalski et al., 1996; Miller et al., 2002; Moore

and Gockel, 2002). Since the presentation rates studied by Xiang et al. (2010), fall

in the range of the slow temporal modulations mentioned above, we decided to use

a paradigm similar to the earlier study by Elhilali et al. (2009), and replace the slow

target rate (4 Hz) with a faster rate (7 Hz) to explore the neural and behavioral

responses to the faster presentation rate more independently as well as conducting a

richer behavioral study on the buildup of target detectability as a function of target

sequence presentation rate. Moreover, we were interested in testing the hypothesis

that magnetoencephalographic (MEG) neural recordings obtained during the psy-

choacoustic experiments directly reflects the behavioral dependence of streaming on

stimulus parameters, under different behavioral conditions. Specifically, the infor-

mational masking paradigm allowed us to explore stream formation in a single tone
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sequence (target) as (1) a function of target/masker separation, (2) target tone fre-

quency and (3) target repetition rates. The task-specific design of the experiment

enabled us to manipulate the attentional focus of the subjects to different features

in the scene towards or away from the target sequence (Figure 5.2–A). In the tar-

get task subjects detected a frequency-shifted deviant in the target sequence; in the

masker task subjects detected a sudden elongation of the masker tones in time. Both

tasks required focused attention, but to spectrally and temporally different features

of the auditory scene. Since the stimuli presented in both tasks were identical, any

differences in the neural representation of the sound are expected to be a result of

attentional modulation. The main hypothesis behind this study is to examine the

possibility of viewing the neural activity as an indicator of the streaming percept.

3.2.1 Experimental design & procedures

Stimuli

The paradigm is related closely to previous stream segregation experiments in terms

of the parameters governing performance (Fishman et al., 2001; Gutschalk et al.,

2005; Micheyl et al., 2005; Snyder et al., 2006), but used the informational masking

stimulus, a regular foreground embedded within an irregular background. Specifi-

cally, each stimulus consisted of two concurrent streams, a narrow-band, temporally

regular target tone sequence and a wide-band cloud of tones that were temporally

irregular - the masker stimulus. Subjects were asked to detect either a deviation in

frequency of one tone in the target sequence (target task), or a deviation in duration
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Figure 3.1: Stimulus paradigm and behavioral performance. (A) Schematic rep-
resentation of the stimulus design. A rhythmic sequence of pure tones (target se-
quence, red) is placed within a background of randomly distributed (in time and
frequency) tones (maskers, yellow) and protected by a spectral zone with no stimulus
energy (green region). In the target task, subjects detected a randomly occurring
frequency-shifted tone (red arrow). In the masker task, subjects were instructed to
detect an elongation of all constituent tones of the masker in a 0.5 s time window
(blue arrows). Each trial contained only one type of deviant, both, or none. Sub-
jects performed the tasks in separate blocks, with the order counterbalanced across
subjects. (B) Behavioral performance in the target task as a function of protection
zone in a range from 0 to 16 semitones (Psychoacoustic experiment A, N=14) (C)
Behavioral build-up of detection in the target task. Histogram of time constants
obtained from exponential fitting to the buildup curves of the behavioral responses
as a function of the size of the protection zone (0–16 semitones). The inset shows
behavioral buildup of target task detection for a sample subject illustrating the
changes in the buildup speed as a function of different protection zone sizes.

in one of the masker tones (masker task), in separate blocks. Identical stimuli were

thus presented in the two different tasks, but with the subjects attention guided to

different aspects of the stimuli in the two tasks.

The target sequence was a sequence of identical pure tones with frequency

chosen randomly in the range of 250–500 Hz (in 2 semitone steps). The pure tones

were presented at a fixed rate in the range of 2–10 Hz, according to the experimental

condition. The masker stimulus formed a complex acoustic background consisting

of pure tones placed at randomized temporal and spectral positions. The temporal

positions of the tones were uniformly distributed over time at a density of 50 tones/s
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and over frequency at a spectral resolution of 2 semitones. The spectral positions

were chosen uniformly in logarithmic frequency in a range of 5 octaves centered

at 353 Hz (ranging from approximately 62 Hz to 1997 Hz), excluding a spectral

protection zone, i.e. a frequency band around the target sequence with no masker

tone allowed in it. The random sampling of frequencies kept the probability of

harmonically related maskers at a minimum. The protection zone on either side

of the target sequence varied in width, ranging from 0–16 semitones in 4 semitone

steps. The duration of the target and masker tones was 75 ms with 10 ms onset and

offset cosine ramps. For the target and masker tasks, deviations were introduced

at a randomly chosen constituent tone for either sequence, introducing a frequency,

or a duration change, respectively. There were 4 types of trials: (i) null condition

(no deviant); (ii) target condition (one target deviant per stimulus); (iii) masker

condition (one masker deviant per stimulus); and (iv) combined condition (one

target and one masker deviant independently, per stimulus). A target deviant was

an upward or downward displacement, of a randomly chosen target note, from the

target frequency by 2 semitones. A masker deviant was a single 500 ms window in

which all masker tones starting in this window were elongated from 75 ms to 400

ms. For each condition 15 exemplars were generated, differing in the position/tone

which was modified. The stimuli were generated using MATLAB (The MathWorks).

Each trial stimulus was 5.5 s long and sampled at 44.1 kHz.
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Experiments

The effect of manipulation of the paradigms parameters and attentional modulation

on task performance and neural responses was explored in 4 different experimental

blocks, 2 psychoacoustic (experiments A, B), and 2 MEG (experiments C, D). In

the psychoacoustic experiment A and MEG experiment C, the effect of different

spectral protection zone width was studied. In psychoacoustic experiment B, the

effect of changing target sequence rates with a fixed protection zone was investigated.

In MEG experiment D the dependence of the responses on target frequency was

measured, as well as changes in buildup and lateralization in the different tasks, all

in the context of a fixed protection zone and target tone rate.

Psychoacoustic studies

In the psychoacoustic studies participants performed the tasks at a computer in a

soundproof room. They were asked to control the computer using a Graphical User

Interface (GUI) and they were allowed to adjust the volume to a comfortable level

before starting the experiment. No change of stimulus intensity was allowed after

starting the experiment. A complete explanation of the required task, as well as the

basic instructions on using the GUI, was given in advance.

Psychoacoustic Experiment A In psychoacoustic experiment A, the effect of

different protection zone widths (0, 4, 8, 12 and 16 semitones) with a fixed target

rate of 7 Hz was examined. A block of 200 stimuli consisting of 5 protection zones

× 4 conditions × 10 exemplars were presented to the subjects. Participants could
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proceed from one trial to the next, by pressing a button when they were ready. For

this experiment, participants were required to do the target task only.

A training block of 15 trials in a decreasing order with respect to the protection

zone width was played to the subjects prior to the actual experiment. Participants

could listen to each sound as many times as desired and after each trial, they were

asked about the presence of deviants in that trial with the correct answer displayed

on the screen afterwards. For the real experiment, each stimulus was presented only

once, and no feedback was given after each trial. This part lasted approximately 1

hr.

Psychoacoustic Experiment B In psychoacoustic experiment B, the protection

zone was fixed to 8 semitones and the rates were varied from 2–10 Hz in steps of 2

Hz. A block of 200 trials consisted of 5 target sequence rates × 4 conditions ×10

exemplars with fixed protection zone was presented to the subjects. For each block

participants were required to do the target task only. Training sets of 20 stimuli

were provided for each section and they were allowed to listen to each sound as

many times as they needed to be able to perform the task. The training block

was presented with rates increasing from 2 to 10 Hz in steps of 2 Hz. For the real

experiment, stimulus was presented only once, and no feedback was given after each

trial. This part lasted approximately 1 hr. Participants performed experiments A

and B (psychoacoustics) on 2 different days.
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Subjects

In psychoacoustic experiment A, a total of 14 subjects participated (6 male; mean

age, 26 y; range 19–33 y), in psychoacoustic experiment B, 12 subjects (5 male;

mean age 25 y; range 19–30 y) participated. For MEG experiment C, 12 (7 male;

mean age, 25 y, range 18–33 y) participated in the study, whereas in MEG exper-

iment D, 12 subjects (6 male; mean age, 23 y, range 18–33 y) participated. Six

subjects took part in all experiments. Psychoacoustic and MEG experiments were

conducted over a period exceeding 15 months and therefore subjects participating

in different experiments were partly non-overlapping. All participants were right

handed (Oldfield, 1971), and had no history of hearing problems or neurological

disorders. The University of Maryland Institutional Review Board approved the

experiments, and written informed consent was obtained from each participant.

MEG recordings

MEG experiments C & D In the MEG experiment C, 3 identical blocks of

72 trials (3 protection regions × 4 conditions × 6 exemplars) presented for each

task (totaling 432 trials), whereas in MEG experiment D, only the 8 semitones

protection zone stimuli were used and more trials from the same condition were

collected. Three identical blocks of 60 stimuli (1 protection region × 4 conditions

× 15 exemplars) were presented for each task (totaling 360 trials). For both parts,

the inter-trial intervals were randomly chosen to be 1.8, 1.9, and 2.0 s. Participants

were allowed to rest after each block, but otherwise required to stay still. For both
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target and masker tasks, an identical stimulus ensemble (including identical inter-

trial intervals) was presented for all subjects and the participants were asked to

listen for the presence of a frequency deviant in the target rhythm (target task), or

duration deviant in the masker (masker task), based on the task order. Each task

deviant was present in exactly half of the trials.

A training block of 20 trials was presented before each task and for each

experiment. For the target task, training trials were played in a decreasing order

with respect to the protection zone width. For the masker task, the order was

increasing. For the real experiment, each participant performed both the masker

and the target task, with block order counterbalanced across participants. Each

stimulus was presented only once, and no feedback was given after each trial. The

entire session of both tasks lasted approximately 2 hrs. Details on MEG signal

recording can be found in chapter 2.

A pre-experiment consisting of 200 repetitions of a 1 kHz, 50 ms tone pip was

presented before starting the real experiment. The inter-trial intervals were ran-

domized between 0.75 ms and 1.55 s, and participants were asked to count the tone

pips. The experiment was done as a control condition to check the M100 response

(a prominent peak approximately 100 ms after pip onset) and verify that the lo-

cation and strength of neural signals fell within a normal range. Next, a training

block of 20 trials was presented before each task inside the MEG recorder, during

which the sounds could be repeated. Participants verbally indicated the existence

of the deviants and the correct answer was given afterwards by the investigator.

In the main experiment, participants were presented with three blocks of stimuli
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described above. They performed both the masker and the target tasks, with task

orders counterbalanced across participants, and were instructed to press a button

whenever they heard the appropriate deviant. The button controller was held in

the right hand, far away from the sensors. The entire session of both tasks in each

MEG experiments (C & D) took around 1 hr.

3.3 Data analysis

3.3.1 Behavioral performance analysis

To evaluate the ability of the participants to perform each task, a d′ measure of

performance was calculated (Kay, 1993). The hit rate and false alarm probabili-

ties corresponding to deviant detection for each requested task were calculated and

converted to z-scores to compute the d’ value. To investigate the effect of the pure

tone frequency of the target sequences on the behavioral responses in psychoacous-

tic experiment A, the stimuli were divided into two spectral groups (low-frequency

target and high-frequency target), depending on whether the target tone was lower

or higher than the middle frequency 353 Hz (those with target frequency of 353

Hz itself were randomly assigned to low- or high-frequency classes). Then we de-

rived a d′ measure for each frequency class and across different tasks. To study the

build-up of detectability of the target deviant in psychoacoustic part A, we divided

the deviant trials into 5 groups according to the deviants location in time, such

that each group covered two possible temporal locations for the deviant throughout
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the stimulus sequence (out of 10 possible temporal locations for deviants). The hit

probability was measured for each group and the false alarm rate was averaged over

all 5 groups, independent of its occurrence time because of the uncertainty in false

alarm trials. The specific hit rate for each time segment and the averaged false

alarm were used to calculate the d′ value for corresponding segments. Only one

participant gave non-positive d′ value of -0.7 due to her high false alarm rate and

low hit rate, whose data was excluded from the analysis of build-up. For the psy-

choacoustic experiment B, d′ values were computed as a function of different target

sequence rates (Figure 3.2–A). We repeated the same build-up analysis as above for

different rate conditions to investigate the interaction between target sequence rate

and build-up of target detectability (Figure 3.2–B)

3.3.2 Neural data analysis

To analyze recordings from MEG experiments C and D, in each trial the tempo-

ral range from 1.21 to 5.5 s was selected, to exclude onset effects. All shortened

responses were concatenated then to make an extended response with duration T

= 4.29 s × number of trials × number of blocks, for each channel and for each

task block. Each extended response was translated to the frequency domain using a

discrete Fourier transform (DFT), yielding a frequency spectrum from 0 to 500 Hz

at a resolution of 1/T Hz. The complex magnetic field strength was obtained by the

product of the DFT and the sampling interval (1/fs). Power spectral densities were

computed by squaring the complex magnetic field strength and normalizing it by
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T, the signal duration. Then we calculated the square magnitude of the frequency

component at 7 Hz, divided by the average square magnitude of the frequency com-

ponents in a window around 7 Hz (1 Hz on each side), excluding the component at

7 Hz. The resulting quantity will be referred to as the normalized neural response

at 7 Hz and we averaged this quantity over the 20 channels with the strongest nor-

malized responses for each participant. For channel selection, we pooled all trials

together regardless of the performed task and 20 best channels with strongest re-

sponse to the target sequence were chosen. The average square magnitude of the

frequency components in the mentioned window (excluding the 7 Hz frequency bin)

did not show any significant difference across tasks, so the normalization was task

independent, i.e. it was not biased by one of the two tasks. To explore the effect

of protection zone width on neural response strength normalized response ampli-

tude for target and masker tasks per protection zone width were calculated for each

participant, and averaged over all 12 participants in MEG experiment C (Figure

3.4–A). We investigated the effect of attention on neural response strength, by tak-

ing the ratio between the normalized responses to the target vs. masker tasks per

participant in MEG experiment D. As described above, the effect of the pure tone

frequency of the target sequences on the behavioral responses in MEG experiment

D was explored, by dividing the stimuli into two spectral groups (low-frequency

target and high-frequency target), depending on whether the target tone was lower

or higher than the middle frequency 353 Hz. Then the normalized neural responses

were calculated for each frequency class and across different tasks. To study the

effect of attention across different frequencies in MEG experiment D, the difference

48



of normalized responses for two tasks was calculated at 7 Hz and 5 other frequen-

cies: two adjacent bins (7Hz − df and 7Hz + df), with df = 7/30 Hz and 3 other

frequencies in theta, alpha and low beta frequency bands, that were multiple inte-

gers of df (21df ' 4.9, 43df ' 10 and 64df ' 15). Calculated differences did not

show a significant task-dependent effect, since there was not a significant difference

over average squared magnitude of the frequency components between 6 Hz and 8

Hz except for the 7 Hz. To analyze the effect of attention on the synchronization

between two distinct neural populations in MEG experiment D, phase coherence

between two channels m and n, was calculated using all Q = 180 trials (Srinivasan

et al., 1999):

γ2mn(f) =
X2
mn(f)

< Xmm(f) >< Xnn(f) >
(3.1)

Here, Xmn(f) is the average cross spectrum between channel m and channel

n, and Xmm(f) is the average power spectrum of the individual channel m:

Xmn(f) =
1

Q

Q∑
q=1

Fmq(f)F ∗nq(f) (3.2)

Fmq(f) is the Fourier transform of the qth trial of channel m at frequency f. If

two channels keep the same phase difference on every trial, the coherence value would

be one, while a random phase difference across trials leads to a coherence value near

zero. The coherence difference between target task and masker task was computed

for every channel pair. The standard error of the mean (SEM) was constructed to
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identify robust coherence change (Bendat and Piersol, 1986; Srinivasan et al., 1999):

εmn =

√
2

Q

(1− γ2mn)

|γmn|
(3.3)

To investigate phase modulation in auditory cortex, 20 channels with the

strongest normalized neural responses were chosen from 157 neural channels. To

further exclude the artificial coherence caused by volume conduction effect on ex-

tracranial magnetic filed only distant channel pairs (> 100 mm) were used in the

analysis (Srinivasan et al., 1999). In this way, artificial coherence caused by vol-

ume conduction was eliminated. The difference between number of channel pairs

with robust increased coherence and channel pairs with decreased coherence was

normalized over the total number of long-range channel pairs for each participant.

To analyze the possibility of hemispheric difference in response to stimuli in

MEG experiment D, the 20 best channels i.e. with the strongest normalized neural

response at the target sequence rate, were chosen from each hemisphere separately.

The hemispheric normalized neural responses showed no significant lateralization

in either task, in contrast to analogous results with the present paradigm at 4 Hz

(Elhilali et al., 2009), and hence hemispheric differences were not further analyzed.

The build-up of detectability was studied in MEG experiment D by dividing

the entire responses into five temporal segments of approximately 714 ms duration

since shorter segments did not show any buildup effect. Corresponding segments

extracted from all trials were concatenated to form single extended responses with

duration T ' 0.714 s × 60 trials × 3 blocks for each channel. Then the discrete
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Fourier transform (DFT) of each single response was computed, resulting in a single

Fourier response in the range of 0 to 500 Hz with a frequency resolution of 1/T Hz.

Different segment durations were used to find the time-scale on which the build-

up can be best resolved. Segment lengths were chosen to span an integer number

of periods at 7 Hz since we expect to see the build-up in detectability over time

windows corresponding to the target sequence rate of 7 Hz.

Behavioral versus neural correlation and bootstrap analysis

The effect of high versus low target frequencies on the behavioral and normalized

neural responses from MEG experiment B were correlated using the psychometric

and neurometric measures for each subject. Concretely, we computed

δ =
arctan(aNNR(HF )− aNNR(LF ))

(d′(HF )− d′(LF ))
(3.4)

Where NNR stands for averaged normalized neural response at High (HF) and low

frequencies (LF). This angle represents the relationship between the effects of tar-

get frequency and neurometric/psychometric measures. It has the virtue of keeping

within-subject correlations including their sign relation, but discarding absolute co-

scaling of the two measures. The across-participant angles were then combined using

circular statistics to yield an angular mean for each task (Fisher, 1995). As a pre-

processing step, the neural data (the normalized responses to target) was scaled by

a factor of two in order to match the absolute ranges of both neural and behavioral

values. A bootstrap procedure was then performed in order to confirm the posi-
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tive (respectively, negative) correlation between the neurometric and psychometric

functions in the target, respectively, masker task. A balanced bootstrap sampling

procedure (Efron and Tibshirani, 1994) was employed by randomly selecting 12 par-

ticipants with replacement and computing their angular sample mean and repeating

this process 1000 times. The procedure was controlled to ensure that all participants

appeared the same number of times over all 1000 bootstrap samplings. Confidence

measures were then derived from the bootstrap statistics.

Neural source localization

In order to localize the source regions in the brain underlying the magnetic response

in all MEG experiments, we used equivalent current dipole analysis. A limited set of

complex equivalent current dipoles, best fitting the complex magnetic field configu-

ration at 7 Hz peak in each hemisphere, were computed (Simon and Wang, 2005).

Only cortical sources were considered since MEG is not sensitive to subcortical neu-

ral sources. The same localization process was done for the M100 neural responses

obtained in an auditory test prior to the experiment, in which pure 1 kHz tones were

presented to the subjects. Significance of the relative displacement between the tar-

get and M100 dipole sources were determined by a two-tailed paired t-test in each

of the three dimensions: lateral/medial, anterior/posterior, and superior/inferior.

Goodness of fit was computed as the residual variance ratio, as a function of the

complex current-equivalent dipole (Simon and Wang, 2005). Only channels with

SNR > 4 were used in the fitting.
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3.3.3 Statistical analysis

Non-parametric tests were used throughout the study to avoid assumptions regard-

ing distributional shape. Single group medians were assessed with the Wilcoxon

signed rank test, two group median comparisons with the Mann-Whitney U-test,

and multiple groups with the Friedman test, all available in the Matlab Statistics

toolbox (The MathWorks, Natick).

3.4 Results

3.4.1 Psychoacoustic results

Wider protection zones facilitated the target task and increase build-up
speed

The protection zone—i.e., gap of spectral energy around the target sequence—partially

controled the difficulty of segregating the target from the competing maskers back-

ground and could potentially induce varying degrees of stream formation. Here, the

effect of protection zone width was investigated in a range of 0 to 16 semitones in

steps of 4 semitones in psychoacoustic experiment part A (Figure 5.2–B). Partici-

pants were asked to perform the target task only. A positive correlation between the

protection zone width and behavioral performance of the target task was measured

using bootstrap across participants (p < 0.001). An exponential recovery curve was

fitted to the performance curve, yielding a decay constant of 9.2 semitones and a

positive asymptote of 4.4 starting at 0.8. This indicated a progression of the be-

havioral performance over a large range of protection zones. Notably, even with no

53



protection zone (PZ = 0), performance remained above chance (d′ = 0.8, signed

ranks test, p < 0.001, d′ value for chance level was 0), since in this case a frequency

change in the target sequence was cued by a disappearance of the target tone at its

expected frequency.

We next investigated the build-up of streaming by considering the progression

of behavioral performance when the deviants were placed at different times in the

target sequence. In the target task the detection performance followed roughly an

exponential time course and improved with the width of the protection zone (Figure

5.2–C, inset shows data from a sample subject to reveal the trend for buildup speed

as a function of protection zone). This was quantified by the asymptotic values of

the exponential fits being positive, a necessary condition to demonstrate build-up

(bootstrap across participants, p < 0.001).

Time constants of the fitted exponentials decreased significantly from 0 semi-

tones to 4 semitones (6.2 to 5.1 s, bootstrap across participants, p < 0.001) and from

4 semitones to 8 semitones (5.1 to 2.6 s, bootstrap across participants, p < 0.001),

but did not change significantly from 8 to 12 semitones (2.6 to 2.4 s, p > 0.05). It

also had a significant drop from 12 semitones to 16 semitones (2.4 to 1 s, bootstrap

across participants, p < 0.001). To better demonstrate the distribution of time

constants as a function of different protection zones, a histogram of the time con-

stants for fitted exponential curves to the behavioral buildup curves of individual

subjects is plotted for different protection zone widths in Figure 5.2–C. The inset

shows example buildup curves of an individual subject. These results suggested that

the detection of the target task was easier for larger protection zones, while more
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buildup time was required for smaller protection zones.

Faster presentation rates facilitated the target task

Facilitation of task performance in the context of stream segregation has been stud-

ied in a number of previous studies (Miller et al., 2002; Shamma et al., 2011a;

Vliegen et al., 1999). Here, the effect of the presentation rate of a sequence of stim-

uli was studies for its known influence on stream formation in the well-known ABA

two-tone paradigm (Moore and Gockel, 2002). We investigated this dependence in

an informational masking paradigm with targets at different rates in psychoacoustic

experiment B (Figure 3.2–A). Using a fixed protection zone width (8 semitones),

the rate was varied between 2–10 Hz in steps of 2 Hz. The trials were presented in 5

consecutive blocks corresponding to 5 different rates. Over the range of tested rates,

the performance showed significant variation, with higher rates leading to improved

detection performance (Figure 3.2–A, signed rank test, p < 0.0001). Behavioral per-

formance increased over 2 and 4 Hz presentation rates and hit the maximum level

at 6, 8 and 10 Hz (Figure 3.2–A). Looking at the build-up of task detectability as a

function of presentation rate, faster build-up was observed for higher presentation

rates (Figure 3.2–B, d′ = 2.65, for the 40 trials in each condition).
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Figure 3.2: Behavioral performance improvement with target sequence rate reflected
in neural build-up curve. (A) Behavioral performance (psychoacoustic experiment
B, N = 12) as a function of target sequence rate for an expanded range from 2
to 10 Hz, in steps of 2 Hz. Overall performance increased with presentation rate,
eventually reaching the ceiling value of d′ = 4.1 (for 200 trials) (B) Build-up of the
behavioral performance as a function of presentation rate. The time for achieving
ceiling detection performance is reduced for faster presentation rates. Results are
depicted as median and [25,75] % percentiles.

3.4.2 MEG results

Magnetic field distribution showed a stereotypical pattern for neural ac-
tivity

The magnetic field distributions of the target sequence rate response component

revealed the stereotypical pattern for neural activity originating separately in the

left and right auditory cortex. The neural sources of all target rhythm response

components with high signal-to-noise ratio (SNR > 4) originated in auditory cortex

(Simon and Wang, 2005). The mean displacement of the neural source from the

source of the auditory M100 response was calculated for each hemisphere. The

displacement was significantly different in the anterior direction for both right (11.5±

5.8) and left hemisphere (10.8±4.3), using a two-tailed t-test (t = 3.1, p < 0.05 in the

right and t = 2.4, p < 0.05 in the left hemisphere), but no statistically significant
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displacement was observed in other directions. Goodness of fit for these sources

was 0.6 ± 0.18 (artificially reduced in accordance with Simon and Wang (2005)).

Assuming a M100 origin of planum temporale, this is consistent with an origin for the

neural response to the target rhythm in Heschls gyrus, the site of the core auditory

cortex, a region known for its good phase-locking to most naturally occurring rates

(< 40 Hz) (Liégeois-Chauvel et al., 2004; Miller et al., 2002; Steinschneider et al.,

2013).

Attentional modulation of response power and phase coherence

Neural responses to the acoustic stimuli were expected to reflect the physical at-

tributes of the stimulus, but also aspects of the subject’s attentional state. Since

the stimuli were acoustically identical for the two tasks, differences in the neural

responses during the two tasks have to relate to differences in the attentional state.

The phase-locked response to the target sequence rate at 7 Hz in MEG experiment

C was used as an indicator for the strength of representation of the target stream

(Elhilali et al., 2009). As expected, this phase-locked response was stronger during

the target task than during the masker task, as indicated by the amplitude of the

response power spectrum at 7 Hz (Figure 3.3–A). The individual normalized neural

responses at a target rate of 7 Hz showed a larger average power gain than for 4

Hz, which was studied before by Elhilali et al. (2009). Power gain was defined as

the ratio of normalized neural response to the target sequence in target vs. masker

task. For the present case of 7 Hz the power gain was 3.86 (SEM = 0.87, 3.3–B,

red and blue error bars represent target and masker task, respectively), while it had
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only been 2.1 at 4 Hz in the previous study by Elhilali et al. (2009). At the same

time, the overall amplitudes in 7 Hz experiment were almost a factor 10 smaller than

those reported by Elhilali et al. (2009). This overall reduction in amplitudes was

likely a consequence of the known low-pass property of auditory cortical responses

(Eggermont, 1991; Kilgard and Merzenich, 1999; Phillips et al., 1989; Schreiner and

Raggio, 1996).
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Figure 3.3: Attention modulated the normalized neural response. (A) The power
at the target sequence rate was larger in the target task compared to the masker
task (MEG experiment D, N = 12, 20 best channels selected for each participant,
see Methods for details). (B) Normalized neural response to the target sequence
is plotted in target-masker normalized response space for each participant. The
normalized neural response is computed as the ratio of the neural response power
at the target sequence rate (7 Hz) to the average power of the background neural
activity (from 6–8 Hz). Error bars represent the standard error for the target task
(red, orthogonal bars) and the masker task (blue, horizontal bars). Inset: the
MEG magnetic field distributions of the target rhythm response component for a
single participant, with red and green representing the target magnetic field strength
projected onto a line with constant phase.
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Wider protection zones facilitated the target task, but not the masker
task

To get a better understanding of the neural mechanism underlying performance

increase as a function of wider protection zone, we used 4, 8, and 12 semitone pro-

tection zones to perform MEG experiment C. Behavioral and neural results for both

target and masker tasks are shown in Figure 3.4. For the target task, widening the

protection zone facilitated the segregation of the target tones, and hence the detec-

tion of the frequency deviant (Figure 3.4–A, right panel, signed rank test, p < 0.001;

significantly positive slope, bootstrap across participants, p < 0.001) in agreement

with the results obtained in psychoacoustic experiment A. A corresponding increase

in the normalized neural response to the target sequence as a function of protection

zone was consistent with the changes in the behavioral results (Figure 3.4–A, right

panel, signed rank test, p < 0.001; significantly positive slope, bootstrap across

participants, p < 0.001). However, for the masker task, increasing the protection

zone did not have a significant effect on behavioral performance (Figure 3.4–A, left

panel, signed rank test, p = 0.21). Consistently, there was no significant change in

neural activity recorded during the same task (signed rank test, p = 0.1).

Faster rates facilitated the buildup of target detectability

As an extension to the psychoacoustic study part B, it was examined whether the

normalized neural responses reflected a similarly rapid build-up of performance for

higher target presentation rates To this end, neural and behavioral responses from

MEG experiment D were compared with those of 4 Hz target rate studied by Elhilali
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Figure 3.4: Larger protection zones ease the target task, but not the masker task.(A)
Behavioral performance and neural results (MEG experiment C, N = 12) for the
target task (left panel) and the masker task (right panel), as a function of protection
zone. (B) Analysis of neural and behavioral build-up over time for the target task.
Behavioral performance (left panel) and neural responses, normalized with respect
to the masker task neural response power (right panel) are plotted as a function
of time for both the 4 and 7 Hz target sequence rate (orange and green curves,
respectively), averaged over participants. Data shown for the 4 Hz target rate is
obtained from the study by Elhilali et al. 2009. Neural responses and corresponding
behavioral performances are acquired only for the 8-semitone protection zone.

et al. (2009). In the current study, behavioral detectability of the target deviant

was calculated for each of the 5 time segments corresponding to the target deviants

location (Figure 3.4–B, left panel, green). The build-up of the normalized neural

response was measured over the duration of the trial by separating the response into
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non-overlapping segments and computing the 7 Hz contributions in each segment.

No build-up was observed for window sizes less than 5 cycles, likely due to lack of

sufficient statistical power. A weak build-up as a flattened curve was obtained for

segment length approximately 714 ms (5 cycles) (Figure 3.4–B, right panel, green),

consistent with the progression speed of behavioral response (in MEG recording

session, left panel, green). Time constants given by fitted exponentials to both

neural and behavioral curves in 7 Hz target, were significantly positive but small

(0.63 s for neural curve and 0.1 s for behavioral curve, signed rank test, p = 0.03).

Given the fast build-up obtained psychoacoustically for the 8 semitones protection

zone of the 7 Hz target (Figure 5.2–C, 3rd panel), we conjecture that a fast neural

build-up was occurring at the beginning of trials, but early enough that it could not

be resolved using the current analysis. To further validate this analysis, the 4 Hz

target data from Elhilali et al. (2009) was reanalyzed. For better comparison of the

neural build-up curves, the normalized neural responses for both 4 and 7 Hz target

sequence rates were further normalized by the average power of the normalized

neural responses in the corresponding masker tasks (Figure 3.4–B, right panel). A

significant build-up was obtained using a 750 ms time window (three periods) for 4

Hz. The time constants obtained from exponential curve fittings were significantly

positive (1.17 ms for the neural data curve and 11.8 ms for the behavioral data,

signed rank test, p < 0.01) and larger than the ones for the 7 Hz curves (rank sum

test; p < 0.003 for behavioral curves and p < 0.02 for neural curves), suggesting

that the detection task for the 4 Hz target sequence embedded in a 8 semitones

protection region was harder than the detection task for 7 Hz target sequence under
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similar conditions.

High frequency targets facilitated the target task

Acoustic stimulus parameters influence the saliency of a streaming percept. One

such parameter is the frequency of the target tone sequence, which influenced the

results both for behavioral and neural data. In MEG experiment D target sequences

were divided into high and low frequency tones (above or below 353 Hz). Both

behavioral and neural data showed a significantly positive slope (bootstrap across

participants, p < 0.001) as a function of target frequency in the target detection task

(dark/light red line, Figure 3.5–A, left panel), indicating that high frequency tones

facilitated target detection. Neither slope was significantly non-zero in the masker

task for the average behavioral and normalized neural responses (Figure 3.5–A; right

panel); however, the individual behavioral and normalized neural response trends

showed a significant negative correlation as explained below. To better demonstrate

the correspondence between the normalized neural response and behavioral mea-

sures, we computed the correlation between the two indicators during both tasks as

a function of target frequency. As described in methods, we computed an angular

measure relating neurometric and psychometric changes as a function of frequency.

The resulting average angle over subjects was positive (42.4◦) for the target task

and negative (−29.8◦) for the masker task (Figure 3.5–B, yellow line). Bootstrap

analysis was performed across participants and the estimated angle is plotted as

a green line with the corresponding 95% confidence interval as the pink / blue

backgrounds for the target / masker tasks. The positive and negative correlations
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obtained for target and masker task respectively, confirmed that behavioral perfor-

mance in the target task was better for higher frequency targets (> 350 Hz) than

for lower frequencies (sum rank test, p < 0.01). An increase to the neural response

of the target is correlated with this trend. Conversely, the masker task showed a

trend of being oppositely affected by the physical saliency of the target task despite

the independence of the two tasks.

Attention to the target stream lead to selective power and phase enhance-
ment at target rate

The normalized neural response to the 7 Hz rhythms obtained from MEG experiment

D, showed a significant increase in the target vs. masker task (Figure 3.6–A, signed

rank test, p < 0.0001). In contrast, no significant change in the normalized neural

response to the nearby or distant frequencies was obtained, suggesting that the

sustained attention to the target stream leads to a feature-selective modulation of

the cortical response, but has no significant impact on responses to the other nearby

or distant frequencies (signed rank test, p-values = 0.15). The perceptual saliency of

the attended stimulus may also be the consequence of a more widespread activation

by the target in the brain. To explore this possibility, we examined phase coherence

between long-distance (> 100 mm) channel pairs. The results revealed a significant

enhancement at the target sequence rate (Figure 3.6–B) expressed as the mean

number of channels with increased or decreased coherence, in percent of the total

number of channel pairs analyzed. The phase enhancement was significantly positive

only at 7 Hz (signed ranks test, p < 0.001), while changing attentional state of the
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Figure 3.5: Bottom-up saliency of the target sequence increased for higher target
frequencies. (A) Behavioral and neural responses (MEG experiment C, N = 12) as
a function of target frequency. In the left panel, the red/orange line corresponds to
behavioral and neural responses for the target task with respect to the low and high
target frequency. In the left panel dark/light blue corresponds to behavioral and
neural responses for the masker task. Error hull represent 1 SEM. (B) Correlation
of the behavioral and neural responses as a function of target frequency. The ratio
of the neural to behavioral response differences as a function of target frequency was
averaged across participants. A mean slope angle of 42.4◦ for target (left plot) task
and −29.8◦ for masker (right plot) task (yellow line) were obtained in this analysis.
As detailed in methods, the slope angle corresponds to the strength of correlation
between neural and behavioral data. Bootstrap estimates (overlying green lines) and
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task, respectively) confirmed the positive/negative correlations for target/masker
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subjects did not enhance other rates, and was widely distributed indicating a phase

coherence increase within and across hemispheres for the target task relative to

the masker task. Therefore, these results suggest an attention or stream formation

dependent spatial spread of activity beyond the primary auditory areas.

3.5 Discussion

Stream formation is a central process in parsing the acoustic environment. Percep-

tual cues and attentional focus modify this segmentation, both qualitatively and

quantitatively. In the present experiments, we were pursuing two goals: first, to

examine the correspondence between the mechanisms and percepts of stream seg-

regation versus those of the informational masking paradigm, and especially their

dependence on the spectrotemporal properties of the stimuli; second, to investigate

the potential mechanisms of stream segregation and their interaction with selective

attention, for which we employed neuromagnetic imaging. Specifically, while holding

the stimulus fixed, we investigated the changes in the neural responses as attention

was directed to different components of the acoustic scene. This was repeated un-

der different spectrotemporal stimulus conditions so as to explain the integration

of perceptual features of a complex acoustic scene mediated by the processes of

attention.

We have based our experimental paradigm and analysis on the hypothesis

that detection of the target sequence in an IM stimulus employs similar neural

mechanisms used for detection of a target sequence in a classic 2-tone paradigm.
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Figure 3.6: Attention to the target stream lead to selective power and phase en-
hancement at target rate. (A) Power enhancement during target task. The differ-
ence between the normalized neural responses in the target task versus the masker
task (MEG experiment D, N = 12) showed a significant and highly precise enhance-
ment at the frequency of the target sequence (7 Hz, circled in red). (B) Phase
coherence enhancement between distant MEG channels of target relative to masker
task. The difference between the number of long-range channel pairs with robust
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Error bars represent 1 SEM in each graph.
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This hypothesis is supported by a number of earlier studies in which, the similarities

between the two paradigms are discussed. First, in line with the arguments discussed

in Micheyl et al. (2007b), we believe the systematic dependence of performance on

the size of the protection zone is analogous to the frequency separation parameter

in streaming experiments using the classic two tone paradigm (Bregman, 1990).

Nevertheless, this dependence can rely on the frequency selectivity of neurons in the

central auditory system, and hence a low-level neural mechanism (Fishman et al.,

2001; Micheyl et al., 2007b). Also in the same study by Micheyl et al. (2007b), it has

been shown that performance in detection of the target task decreases if the target

tone is presented every other burst. This is also consistent with the results found

by Bregman et al. (2000) that the degree of streaming shown to be related to the

gaps between successive tones in stream. Moreover, regarding the buildup effect,

in the classic streaming paradigm, it has been shown that detection of the target

task improves with increasing the number of tone bursts in the target sequence.

This is similar to what we see for the IM paradigm. The underlying mechanism

in both cases might be explained via sensory-evidence-accumulation, with a causal

relationship to the build-up of stream segregation.

Comparing behavioral and neural measures, we have confirmed that attending

to one stream significantly modulates the neural response to the attended stimulus.

Despite the known transient effects of attention on auditory signals (Näätänen, 1990;

Tiitinen et al., 1997), a sustained increase in the normalized neural response was

found to correlate with sustained attention. This enhancement is consistent with the

behavioral improvement in target detection for individual subjects, which supports
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the hypothesis that attentional manipulation can lead to increased responses to the

attended features, and suppression of the response to the background or unattended

features (Bidet-Caulet et al., 2007; Ding and Simon, 2012a; Mesgarani and Chang,

2012a; Elhilali et al., 2009; Paltoglou et al., 2009; Somers et al., 1999; Zion Golumbic

et al., 2013). However, given the stimulus design of the current study, it is also

possible that the neural response enhancement during target task is a consequence of

having more number of trials in which listeners are aware of the presence of the target

sequence vs. the masker task. Therefore, it is quiet difficult to establish whether the

enhanced neural power is a cause or an effect of selective attention and a different

experimental design would be needed to dissociate between the two interpretations of

the current results. Recent studies suggest that oscillatory entrainment in various

frequency bands can be enhanced by attention (Kim et al., 2006; Lakatos et al.,

2008; Morgan et al., 1996); however, the results of this experiment are unlikely

to be a consequence of entrainment since the normalized neural responses show a

significant power change only at frequency of the target presentation rate and no

other frequencies, even nearby frequency bins (See results and Figure 3.6–A). We

conclude accordingly that attentional modulation underlying our results is feature

selective engendering plain evoked MEG responses. This power enhancement was

in addition accompanied by a significant long-distance coherence of the responses

exactly at the rate of the target sequence, indicating an increase in synchronization

among distributed populations of responsive neurons.

We also observed a systematic dependence of performance and normalized

neural response strength on the width of protection zone for the target task. This is
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analogous to the increase in frequency separation between two-tone sequences stud-

ied in the more traditional ABA streaming paradigms (Bregman, 1990). According

to our findings, increasing the spectral separation improves behavioral detection

and, notably, also causes an increase in the normalized neural response. This can be

speculatively attributed to the well-known lateral inhibitory interactions, which may

occur among tones as much as an octave or more apart (Bartlett et al., 2011; Fish-

man et al., 2013). In this case, the boundary between energetic and informational

masking cannot be defined sharply since very close spectral distances between tar-

get and masker tones, will eventually inhabit the same frequency band (dependent

on the tuning width of auditory neurons), and thus could be considered as ener-

getic masking rather than informational masking. But it is also possible that these

suppressive interactions between the two temporally incoherent streams (target and

masker) are inherently due to the desynchronized activation of these respective fre-

quency channels, and not simply to pre-existing inhibitory connections (Shamma

et al., 2011a). If so, we would predict that this enhancement of response amplitude

with increasing frequency separation would also occur for two alternating tones de-

spite the fact that they are not simultaneous. Given our observation of no significant

change of the neural response for the masker task, we postulate attention to be a

required component to instantiate the increase of neural responses in the target task.

Higher target tone frequencies produced stronger normalized neural responses,

and their deviants were easier to detect. This effect may be due to an enhanced

bottom-up saliency that increases as a function of frequency, i.e. tones at higher

frequencies (350 Hz to 500 Hz) are perceived to be louder compared to low frequency
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tones (250 Hz to 350 Hz) at the same amplitude (ISO 226:2003). Interestingly, the

strong, positive correlation between the behavioral and normalized neural response

for the target task was complemented by a significant negative correlation in the

masker condition. Thus, subjects with a positive/negative behavioral trend as a

function of sound frequency, showed a decrease/increase in their corresponding nor-

malized neural response, respectively. This could be explained by the competitive

nature of the tasks, i.e. better detection in the masker task requires more effective

suppression (decrease) of the competing target sequence. This finding is also signif-

icant as it confirms that the difficulty of the tasks was sufficient to manipulate the

listeners attention towards or away from the target sequence.

Similarly, increasing the presentation rate of the target sequence had a sig-

nificant, positive effect on behavioral performance (2–10 Hz range) and its neural

correlates in the target detection task (4 vs. 7 Hz), presumably because of the more

rapid buildup of target/masker segregation (streaming). This is consistent with

previously measured effects of temporal rates in auditory scene analysis in which

faster rates induced stronger streaming effects (Bregman, 1990). An earlier study

by Xiang et al. (2010) found conflicting results when presenting competing pairs of

different temporal rate sequences (4 and 7 Hz) to the subjects, and instructed them

to attend to one of the two rhythms and detect in it a deviant temporal jitter. This

psychoacoustic study found a streaming advantage for the 4 Hz rhythms relative

to the 7 Hz, inconsistent with our current findings and classical streaming studies

(Bregman, 1990). We conjecture that this may simply have been a consequence

of the reliance on temporal jitter as the deviant, which is more difficult to detect
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with faster rates, leading to a decrease in the detection scores of the 7 Hz sequence.

Finally, average temporal alignment (termed coherence) has recently been suggested

as a dominant contributor to stream formation (Elhilali et al., 2009; Shamma et al.,

2011a; Teki et al., 2013). According to the temporal coherence hypothesis, distinct

neural populations with temporally correlated responses are grouped together rep-

resenting one single stream, whereas neural populations with uncorrelated temporal

responses are segregated representing different streams. In the present study, tem-

poral alignment did not play an important role for binding across multiple frequency

channels, since target and masker streams were temporally uncorrelated (due to the

random nature of the masker). However, this lack of coherence may have been used

as a discriminating factor, strengthening the perceptual and neural activity inde-

pendence between the target and masker components of the stimulus, leading to

a better target/masker segregation ability for listeners. Using both behavioral and

neural measures we have shown that conditions, which facilitate target detection, are

paralleled by enhancements in neural activity. This suggests that the neural sources

of the MEG signal associated with the target sequence are already affected by the

conditions that give rise to the streaming percepts, and are in fact good indicators

of the perceptual state of the subjects in perceiving the presence of informational

masking in the auditory scene, and perhaps other scenes too.
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Chapter 4

A state-space model for decoding
auditory attentional modulation in
a competing speaker environment

4.1 Introduction

One of the hallmarks of brain function is the ability to segregate and perceive an au-

ditory object in a complex auditory scene composed of several independent sources.

From a mathematical perspective, this is a highly ill-posed problem; however, our

brain is able to solve this problem in a seemingly effortless fashion. It has been

hypothesized that after entering the auditory system, the complex auditory signal

resulting from coincident sound sources in a crowded environment is decomposed

into acoustic features at different stages of the auditory pathway. Then, a rich

representation of spectrotemporal features reaches the auditory cortex, where an

appropriate binding of the relevant features and discounting of others leads to the

perception of an auditory object (Bergman, 1994; Griffiths and Warren, 2004b; Fish-

man and Steinschneider, 2010; Shamma et al., 2011b). A compelling example is the

Cocktail Party effect (Cherry, 1953; Brungart, 2001; McDermott, 2009), in which a
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listener is able to attend to an individual speaker in the presence of other competing

speakers and to segregate the attended speech from all other sound sources in the

environment.

The neural representation of speech as a distinct auditory object has been

extensively studied using auditory scenes consisting of pairs of concurrent speech

streams mixed into a single acoustic channel with no spatial cues provided (Ding

and Simon, 2012b,c; Mesgarani and Chang, 2012b; Pasley et al., 2012; O’Sullivan

et al., 2014). Any neural representation of a single stream of speech (considered as

an auditory object) involves complex segregation and grouping processes, given the

substantial overlaps in spectral and temporal domains. As reported by these studies,

concurrent auditory objects—even those with highly overlapping spectrotemporal

features—are neurally encoded as a distinct object in the auditory cortex and emerge

as fundamental representational units for high-level cognitive processing. In the

case of listening to speech, it has recently been demonstrated that the auditory

response manifested in magnetoencephalographic recordings is strongly modulated

by the spectrotemporal features of the speech (Ding and Simon, 2012c; Pasley et al.,

2012). In the presence of two speakers, this modulation appears to be strongly

phase-locked to the spectrotemporal features of the attended speaker as opposed to

the unattended speaker (See Figure 4.1–A) (Ding and Simon, 2012b; Mesgarani and

Chang, 2012b).

The complexity of this process becomes apparent when one tries to emulate

the underlying mechanism via computer algorithms. Mimicking the brain’s ability

to separate different sound sources when multiple sources are mixed into a single or
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small number of channels is not possible without imposing specific constraints on

the structure of the signal components. Some existing mathematical models have

proven effective in imposing such additional constraints required to achieve single-

channel source separation or scene analysis (Wang and Brown, 2006; Ellis, 2006;

Shao and Wang, 2008; Li and Huang, 2010; Wang et al., 2013). In conjunction with

statistical methods, these models form powerful domains for integrating different

information and constraints as well as for probing various hypotheses regarding the

underlying neural processes.

Common techniques, which are mainly based on the reverse correlation method-

ology, create the best approximation of the stimulus from the response of the neural

population, which can be compared with the original stimulus to reveal preserved or

dismissed features in the population response (Bialek et al., 1991; Gielen et al., 1988;

Hesselmans and Johannesma, 1989). Although useful for evaluating data from mul-

tiple neurons using electrocorticography(ECoG) (Mesgarani et al., 2009; Mesgarani

and Chang, 2012b) or MEG (Ding and Simon, 2012b), these methods have a number

of limitations. First, the achievable temporal resolution of the current techniques is

of the order of several minutes. In a real-world scenario, attention of the listener can

switch dynamically from one speaker to another; therefore, an appropriate decoder

needs to have a dynamic estimation framework with high temporal resolution in

order to capture attention switches in real-time, especially in light of the emergence

and rapid growth of brain-computer interface systems. Second, the full spectrotem-

poral features of speech are employed for decoding neural responses. It is not clear

whether the decoding can be carried out with a more parsimonious set of spec-
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trotemporal features. Finally, these decoders often rely on ad-hoc assumptions and

simplifications, which in turn overshadow a reliable statistical interpretation of the

data.

In this chapter, the aforementioned limitations are addressed by introducing

a biologically-inspired state-space model that accounts for the dynamicity of the

attentional state as well as its correlation with MEG observation in a competing-

speaker scenario (Akram et al., 2014b). To this end, a forward model relating the

auditory MEG activity to the envelopes of the two speech streams is utilized by

employing the sparse structure of the auditory response. The attentional state of

the listener is then modeled using a non-stationary Bernoulli process. Finally, von

Mises-Fisher circular statistics are employed to form a robust inverse model that

accounts for the correlation of the observed MEG data with respect to the two

speech streams. The Maximum a posteriori (MAP) estimation framework is used

to infer the state-space parameters from the observed data. In particular, a novel

application of two nested Expectation-Maximization (EM) algorithms is devised to

efficiently solve the MAP problem.

The proposed model has several advantages over existing methods. First, the-

oretically speaking, the proposed state-space model is able to preserve dynamics as

fast as the sampling resolution. Simulation studies as well as application to exper-

imental data reveal that this model is indeed capable of predicting the attentional

state of the listener with a temporal resolution of several seconds, which is a signif-

icant improvement over the state-of-the-art temporal resolution of several minutes.

Second, This model only requires the envelopes of the two speech streams as co-
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variates, which is a substantial reduction in the dimension of the spectrotemporal

feature set used for decoding auditory attention. Finally, the current state-space

framework provides confidence bounds on the state parameters as a by-product of

this estimation method, which can in turn be used for precise statistical inference

precedes such as hypothesis testing. Further simulation studies as well as appli-

cations of this method on experimentally acquired MEG data is provided in this

chapter. The analyses reveal the superior performance of the proposed decoder in

tracking the attentional state of a listener in a competing-speaker environment, as

compared to existing techniques.

Spk1

 Atte
nded

Spk2 Attended

Spk1

Spk2

MEG

Spk1 Speech

Spk2 Speech

MEG

Figure 4.1: Schematic depiction of auditory object encoding in the auditory cor-
tex. Here, the auditory scene consists of the mixture of two concurrent speech
streams. Recent studies show that cortical activity (solid thick traces) is selectively
phased-locked to the temporal envelope of the attended speaker (solid thin traces)
as opposed to the unattended speaker’s envelope.

76



4.2 Computational modeling

Current modeling framework is devided into three stages: the forward problem of

relating the MEG observations to the temporal features of the attended and unat-

tended speech streams; the attention model which takes into account the dynamics

of selective attention; and the inverse problem of decoding the attentional state of

the listener given the MEG observations and the temporal features of the two speech

streams.

4.2.1 The forward problem: estimating temporal receptive
fields

Consider a task where the subject is passively listening to a speech stream. Let

the discrete-time MEG observation at time t, sensor j, and trial r be denoted by

xt,j,r, for t = 1, 2, · · · , T , j = 1, 2, · · · ,M and r = 1, 2, · · · , R. Let the time series

y1,r, y2,r, · · · , yT,r denote the auditory component of the MEG observations. This

component can be obtained through source localization techniques or sensor-space

source separation algorithms, and will be denoted hereafter by MEG data (See

Section 4.2.3). Also, let Et be the speech envelope of the speaker at time t in dB

scale. In a linear model, the MEG data is linearly related to the envelope of speech

as:

yt,r = τt ∗ Et + vt,r, (4.1)

where τt is a linear filter of length L denoted by the temporal response function

(TRF), ∗ denotes the convolution operator, and vt,r is a nuisance component ac-

counting for trial-dependent and stimulus-independent components manifested in
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the MEG data. It is known that the TRF is a sparse filter, with significant com-

ponents analogous to the M50 and M100 auditory responses (Ding and Simon,

2012c,b)(See Figure 4.3–B). A commonly used technique for estimating the TRF is

known as Boosting (David et al., 2007; Ding and Simon, 2012c), where the compo-

nents of the TRF are greedily selected to decrease the mean square error (MSE) of

the fit to the MEG data. Here, an alternative estimation framework based on `1-

regularization is employed. Let τ := [τL, τL−1, · · · , τ1]′ be the time-reversed version

of the TRF filter in vector form, and let Et := [Et, Et−1, · · · , Et−L+1]
′. In order to

obtain a sparse estimate of the TRF, we seek the `1-regularized estimate:

τ̂ = argmin
τ

R,T∑
r,t=1

‖yt,r − τ ′Et‖22 + γ‖τ‖1, (4.2)

where γ is the regularization parameter. The above problem can be solved using

standard optimization software. Here, a fast solver based on iteratively re-weighted

least squares is employed (Ba et al., 2014). The parameter γ is chosen by two-

fold cross-validation, where the first half of the data is used for estimating τ and

the second half is used to evaluate the goodness-of-fit in the MSE sense. In a

competing-speaker environment, where the subjects are only attending to one of

the two speakers, the linear model takes the form:

yt,r = τat ∗ Ea
t + τut ∗ Eu

t + vt,r, (4.3)
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with τat , Ea
t , τut , and Eu

t , denoting the TRF and envelope of the attended and

unattended speakers, respectively. The above estimation framework can be gener-

alized to the two-speaker case by replacing the regressor τ ′Et with τ a′Ea
t + τ u′Eu

t ,

where τ a, Ea
t , τ

u, and Eu
t are defined in a fashion similar to the single-speaker case.

Similarly, the regularization γ‖τ‖1 is replaced by γa‖τ a‖1 + γu‖τ u‖1.

Selective attention: non-stationary Bernoulli process Suppose that at each

window of observation, the subject is attending to either of the two speakers. Let

nk,r be a binary variable denoting the attention state of the subject at window k

and trial r:

nk,r =


1 attending to speaker 1

0 attending to speaker 2

(4.4)

The subjective experience of attending to a specific speech stream among a number

of competing speeches reveals that the attention often switches to the competing

speakers, although not intended so by the listener. Therefore, we model the statistics

of nk,r by a Bernoulli process with a success probability of pk:

P (nk,r|pk) = p
nk,r

k (1− pk)1−nk,r . (4.5)

A value of pk close to 1 (vis-á-vis 0) implies attention to speaker 1 (vis-á-vis 2). The

process {pk}Kk=1 is assumed to be common among different trials. In order to model

the dynamics of pk, we define a variable zk such that

pk = logit−1(zk) :=
exp(zk)

1 + exp(zk)
. (4.6)
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When zk tends to +∞ (vis-á-vis −∞), pk tends to 1 (vis-á-vis 0). We assume that

zk obeys first-order autoregressive dynamics of the form:

zk = zk−1 + wk, (4.7)

where wk is a zero-mean i.i.d. Gaussian random variable with a variance of ηk. We

further assume that ηk are distributed according to the conjugate prior given by the

inverse-Gamma distribution with hyper-parameters α (shape) and β (scale).

4.2.2 The inverse problem: decoding attentional modula-
tion

Let y1,r, y2,r, · · · , yT,r denote the MEG data time series at trial r, for r = 1, 2, · · · , R

during an observation period of length T . For a window length W , let

yk,r :=
[
y(k−1)W+1,r, y(k−1)W+2,r, · · · , ykW,r

]
, (4.8)

for k = 1, 2, · · · , K := bT/W c. Also, let Ei,t be the speech envelope of speaker i

at time t in dB scale, i = 1, 2. We extract the envelope of the speech signal by

taking the absolute value of its analytic extension (Hilbert Transform). In order to

eliminate ringing and obtaining a smoothed envelope, the result was subjected to a

low-pass filter with a cut-off frequency of 20 Hz. Let τat and τut denote the TRFs

of the attended and unattended speakers, respectively. The MEG predictors in the
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linear model are given by:


e1,t := τat ∗ E1,t + τut ∗ E2,t, attending to speaker 1

e2,t := τat ∗ E2,t + τut ∗ E1,t, attending to speaker 2

, t = 1, 2, · · · , T. (4.9)

Let

ei,k :=
[
ei,(k−1)W+1, ei,(k−1)W+2, · · · , ei,kW

]
, (4.10)

for i = 1, 2 and k = 1, 2, · · · , K. Recent work by Ding and Simon (2012b) suggests

that the MEG data yk is more correlated with the predictor ei,k when the subject

is attending to the ith speaker at window k. Let

θi,k,r := arccos

(〈
yk,r
‖yk,r‖2

,
ei,k
‖ei,k‖2

〉)
(4.11)

denote the empirical correlation between the observed MEG data and the model

prediction when attending to speaker i at window k and trial r. When θi,k,r is

close to 0 (vis-á-vis π), the MEG data and its predicted value are highly (vis-á-vis

poorly) correlated. Inspired by the findings of Ding and Simon (2012b), we model

the statistics of θi,k,r by the von Mises-Fisher distribution (Fisher, 1993):

p (θi,k,r) =
κ
W/2−1
i

2πW/2IW/2−1(κi)
exp (κi cos (θi,k,r)) , θi,k,r ∈ [0 π], i = 1, 2 (4.12)

where IW (·) is the W th order modified Bessel function of the first kind, and κi

denotes the spread parameter of the von Mises-Fisher distribution for i = 1, 2. The

von Mises-Fisher distribution gives more (vis-á-vis less) weight to higher (vis-á-vis
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Figure 4.2: (A) von Mises–Fisher probability density for different κ parameters.
(B) Schematic view of von Mises–Fisher statistics on a three dimensional sphere:
normalized MEG data points are shown by black dots on the unit sphere. Red and
green arrows indicate the vectors of predicted MEG based on attending to speaker
1 or speaker 2, respectively. The angles between the MEG data at window k and
each of the predictors are shown as θ1,k and θ2,k, for the case of attending to speaker
1 (right plot) and speaker 2 (left plot), respectively. The point cloud formed by the
MEG data is aligned with the direction of the predictor vector corresponding to the
attention state.

lower) values of correlation between the MEG data and its predictor. The spread

parameter κi accounts for the concentration of θi,k,r around 0. Figure 4.2 shows a

schematic depiction of the von Mises–Fisher statistics in modeling the correlation of

MEG data with its predictors based on speech envelopes. We assume a conjugate

prior of the form p(κi) ∝ κi
d(W/2−1) exp(c0dκi)

IW/2−1(κi)
d over κi, for some hyper-parameters c0

and d.

Parameter estimation: a novel EM-based decoder Let

Ω :=
{
κ1, κ2, {zk}Kk=1, {ηk}Kk=1

}
(4.13)

be the set of state-space parameters. In principle, these parameters can be es-

timated through maximum a posteriori (MAP) estimation. However, due to the
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involved functional form of the log-likelihood and particularly temporal coupling

of the state parameters, direct maximization of the log-posterior requires solving

a high dimensional convex optimization problem. Instead, we use a novel form of

the Expectation-Maximization (EM) algorithm to efficiently estimate the state pa-

rameters (Dempster et al., 1977). Taking {nk,r}K,Rk=1,r=1 as the unobserved data, the

complete data log-posterior can lead to a feasible MAP estimate of the parameters,

due to its tractable functional form for optimization purposes (Appendix A).

The overall estimation procedure consists of two nested EM algorithms and is

outlined in Algorithm 1. In the outer EM, the E-step involves computing

E
{
n
(`+1)
k,r

∣∣∣Ω(`), {θi,k,r}2,K,Ri,k,r=1

}
, using Bayes’ rule, and the M-step updates κ

(`+1)
1 ,

κ
(`+1)
2 , {ηk}Kk=1 and {zk}Kk=1. As for the last two sets of parameters, the maximization

in the M-step itself is computed using the inner EM algorithm. In the inner EM

algorithm, the E-step corresponds to a Bernoulli smoothing algorithm (Smith and

Brown, 2003; Smith et al., 2004) and the M-step updates the state variance sequence

(Shumway and Stoffer, 1982). The detailed derivations of the estimation procedure

are provided in Appendices A, B and C. Confidence intervals for p
(`)
k can be obtained

by mapping the confidence intervals for the Gaussian variable z
(`)
k via the inverse logit

mapping. In summary, the decoder inputs the MEG observations and the envelopes

of the two speech streams, and outputs the Bernoulli success probability sequence

corresponding to attending to speaker 1. The choice of the hyper-parameters will

be discussed in Section 4.4.
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Algorithm 1: Estimation of the State-Space Parameters

input : MEG observations {yk,r}K,Rk,r=1, tolerance tol ∈ (0, 0.001) and
maximum number of iterations for outer and inner EM algorithms
Lmax and Mmax ∈ N+, respectively.

Initialization: initial guess of state variables z
(0)
k and state-noise variances

η
(0)
k for k = 1, 2, · · · , K, initial conditions z0|0 and σ0|0, Initial values for von

Mises-Fisher distribution parameters κ
(0)
1 and κ

(0)
2 . Initialize iteration

numbers to l = 1 and m = 1;
Outer EM iteration:
while l ≤ Lmax or relative change in log-posterior ≥ tol do

E-step: Compute E(`){nk,r} := E
{
nk,r

∣∣∣ {θi,k,r}2,K,Ri,k,r=1 ,Ω
(`)
}
, for all

k = 1, 2, · · · , K and r = 1, 2, · · · , R. (A.2).

M-step: Update κ
(`+1)
1 and κ

(`+1)
2 (A.3).

Inner EM iteration:
while m ≤Mmax or relative change in log-posterior ≥ tol do

E-step: Compute z̄
(`+1,m)
k|K := E

{
zk

∣∣∣ {E(`){nk,r}
}K,R
k,r=1

}
for all

k = 1, 2, · · · , K using Bernoulli smoothing (A.5,A.6).

M-step: Update η
(`+1,m)
k , for all k = 1, 2, · · · , K. (A.7).

end

z
(`+1)
k := z̄

(`+1,m)
k|K and η

(`+1)
k := η

(`+1,m)
k , for all k = 1, 2, · · · , K.

end

output: κ̂1 := κ
(L+1)
1 , κ̂2 := κ

(L+1)
2 , p̂k := logit−1

(
z
(L+1)
k

)
and η̂k := η

(L+1)
k for

all k = 1, 2, · · · , K, where L ≤ Lmax is the final counter value of the
outer EM.

4.2.3 Experimental procedure & data analysis

Subjects, stimuli, and procedures Eleven normal-hearing, right-handed young

adults (ages between 20 and 31) participated in this study, consisting of two exper-

iments: constant-attention experiment (eight subjects, three female) and attention-

switch (seven subjects, four female). Four subjects (three female) participated in

both experiments. All subjects were compensated for their participation. The ex-

perimental procedures were approved by the University of Maryland Institutional
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Review Board. Written, informed consent was obtained from each subject before

the experiment.

The stimuli consist of segments from the book A Child’s History of England

by Charles Dickens, narrated by two different readers (of opposite genders). Four

speech segments (one target and one masker segment for each speaker) were used

to generate three speech mixtures. Each speech mixture was constructed by mixing

two speech segments digitally in a single channel with duration of 1 minute, as

described next. The first mixture was generated using the male target segment

and the female masker segment, whereas the second mixture was generated using

the female target segment and the male masker segment. The third mixture was

generated using male and female target segments. Periods of silence longer than 300

ms were shortened to 300 ms to keep the speech streams flowing continuously. All

stimuli were low-pass-filtered below 4 kHz and delivered diotically at both ears using

tube phones plugged into the ear canals. In all trials, the stimuli were mixtures with

equal root-mean-square values of sound amplitude, presented roughly at a 65 dB

sound pressure level (SPL).

In the constant-attention experiment, subjects were asked to focus on one

speaker (speaker 1, male; speaker 2, female) through the entire trial. In the attention-

switch experiment, subjects were instructed to focus on one speaker in the first 28

seconds of the trial, switch their attention to the other speaker after hearing a 2

second pause (28th to 30th seconds), and maintain their focus on the latter speaker

through the end of that trial. Consequently, there were four conditions: 1) attending

to speaker 1 for the entire trial duration, 2) attending to speaker 2 for the entire trial
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duration, 3) attending to speaker 1 and switching to speaker 2 halfway through the

trial, and 4) attending to speaker 2 and switching to speaker 1 halfway through the

trial. The first mixture was used as the stimulus for condition 1, second mixture for

condition 2 and third mixture for conditions 3 and 4. Each mixture was repeated

three times during each experimental condition. The first second of each section was

replaced by the clean recording from the target speaker to help the listener attend

to the target speaker. After each condition was presented, subjects answered com-

prehensive questions related to the passage on which they focused, as a way to keep

them motivated on attending to the target speaker. Eighty percent of the questions

were correctly answered on average. The order of presentation for the constant-

attention experiment (conditions 1 and 2), and the attention switch (conditions 3

and 4) was counterbalanced across subjects participating in that experiment.

A pilot recording from subjects listening to single speaker trials was performed

prior to the actual study. In this experiment, 6 trials (3 repetitions of each male and

female target segments) were presented to the subjects and recordings were used for

estimating the Temporal Receptive Fields (TRFs) in the forward model.

A pre-experiment consisting of 100 repetitions of a 1 kHz, 50 ms tone pip was

presented to all subjects after entering the MEG machine. The results were used

as a control condition to check the M100 response (a prominent peak in auditory

response, approximately 100 ms after pip onset) and verify that the location and

strength of neural signals fell within a normal range (Lütkenhöner and Steinsträter,

1998). The inter-trial intervals were randomized between 0.75 ms and 1.55 s, and

participants were asked to count the tone pips.
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Data recording MEG signals were recorded in a dimly lit magnetically shielded

room (Yokogawa Electric Corporation) using a 160-channel whole-head system (Kanazawa

Institute of Technology, Kanazawa, Japan), and with a sampling rate of 1 kHz.

Detection coils were arranged in a uniform array on a helmet-shaped surface on

the bottom of the dewar, with 25 mm between the centers of two adjacent 15.5-

mm-diameter coils. Sensors are configured as first-order axial gradiometers with a

baseline of 50 mm; their field sensitivities are 5 fT/Hz or better in the white noise

region.

The presentation software package from Neurobehavioral Systems was used

to present stimuli to the subjects. The sounds (approximately 65 dB SPL) were

delivered to the participants ears with 50 sound tubing (E-A-RTONE 3A; Etymotic

Research), attached to E-A-RLINK foam plugs inserted into the ear canal. The

entire acoustic delivery system was equalized to give an approximately flat trans-

fer function from 40 to 3000 Hz, thereby encompassing the range of the presently

delivered stimuli.

A 200 Hz low-pass filter and a notch filter at 60Hz were applied to the magnetic

signal online. Three of the 160 channels were magnetometers separated from the

others and used as reference channels in measuring and canceling environmental

noise (de Cheveigné and Simon, 2007). Five electromagnetic coils were used to

measure each subject’s head position inside the MEG machine. The head position

was measured twice during the experiment, once before and once after to quantify

the head movement.
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MEG processing and neural source localization Recorded MEG signals con-

tained both stimulus-driven responses and stimulus-irrelevant background neural

activity. In order to extract components that were phase-locked to the stimulus

and consistent over trials, as opposed to the random irrelevant activities, we em-

ployed the Denoising Source Separation (DSS) algorithm (de Cheveigné and Simon,

2008). This algorithm is a blind source separation method that decomposes the

data into temporally uncorrelated components by removing inconsistent temporal

components that are not phased-locked to the stimulus. In other words, DSS sup-

presses the components of the data that are noise-like and enhances those that are

consistent across trials, with no knowledge of the stimulus or the timing of the task.

The recorded neural response during each 60s was band-pass filtered between 1–8 Hz

and down sampled to 200 Hz before submission to the DSS analysis. We found that

only the first DSS component contains a significant amount of stimulus information,

so analysis was restricted to this component, which we denote by the auditory MEG

component throughout this paper. The spatial magnetic field distribution pattern

of the auditory MEG component was used for neural source localization. In all

subjects, the magnetic field corresponding to the auditory MEG component showed

a stereotypical bilateral dipolar pattern (See Figure 4.3–A).

Statistical analysis All trials were tested for significance of the correlation val-

ues between MEG data and the model prediction—attended speaker’s speech enve-

lope—to remove noise-contaminated trials from further analysis. In order to test the

uncorrelatedness hypothesis, the Fisher transformation of the Pearson’s correlation
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ρ between the MEG data and the model prediction was computed:

r =
1

2
ln

(
1 + ρ

1− ρ

)
(4.14)

The empirical Fisher transformed correlation values are assumed to be ap-

proximately normally distributed with a mean value of r and a standard deviation

of 1√
N−3 , where N indicates the number of samples within each trial. All trials were

evaluated on a two-tailed test of the population mean with the null hypothesis of

r = 0. Poorly correlated trials (at a confidence level of 70%) were omitted, resulting

in rejection of about 0.6% of the trials (1 out of 180).

In order to verify the significance of difference in correlation values between

the MEG data and the attended (ρ1) vs. unattended (ρ2) speakers, a similar proce-

dure was carried out for each trial. A two-tailed test of the population mean with

the null hypothesis of r1 = r2 —with r1 and r2 denoting the Fisher transforma-

tion of ρ1 and ρ2, respectively —was evaluated, and all those trials for which the

resulted normally distributed correlation values were not significantly different (at

a confidence level of 70%) were rejected. The Benjamini-Hochberg False Discovery

Rate (FDR) correction (Hochberg and Benjamini, 1990) at an FDR rate of 30%

was applied to the last two conditions with attention-switch to correct for multiple

comparisons. Three percent of the trials (4 out of 179) were rejected as a result; all

further analysis was carried out using the remaining 175 trials.
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4.3 Results

In order to evaluate the performance of the state-space model in decoding the at-

tentional state of listeners and to illustrate the effectiveness of this model in various

stimulus conditions, a number of realistic simulations and experimental data sets

were employed. We first present our results on the robust estimation of TRF, which

forms the basis of the forward models used in both simulations and experimental

data analysis. We will then present simulation results which highlight the capability

of our proposed estimation framework in tracking the attentional state under a wide

range of SNR values as well as dynamics. Finally, we will apply the proposed atten-

tional decoding framework to real MEG data from several subjects which chimes in

accordance to our simulation studies.

4.3.1 TRF estimation

The spatial magnetic field distribution pattern of the auditory MEG component is

shown for all subjects in Figure 4.3–A. As expected for auditory evoked fields, the

field maps show a stereotypical bilateral dipolar pattern. Estimated TRFs using

the auditory MEG component for all subjects are shown in Figure 4.3–B. TRFs

corresponding to the attended speaker were estimated from the pilot conditions

where only single speech streams were presented to the subjects. Separate TRFs

were obtained for male and female speakers, using 3 repeated trials for each and

the TRF with smaller fitting normalized least square error was picked and used

through the rest of analysis. The TRF corresponding to the unattended speaker
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Figure 4.3: TRF estimation. (A) MEG magnetic field distributions of the first DSS
components for all (11) subjects, show a stereotypical pattern of neural activity
originating separately in the left and right auditory cortices. Purple and green con-
tours represent the magnetic field strength. Red arrows schematically represent the
locations of the dipole currents, generating the measured magnetic field. (B) TRFs
estimated from MEG data for all (11) subjects. Most TRFs have significant com-
ponents analogous to the well-known M50 and M100 auditory responses as marked
in blue (M50) and red (M100) for each individual subject.

was approximated by truncating the attended TRF beyond a lag of 90ms, on the

grounds of the recent findings of Ding and Simon (2012b) which show that the

components of the unattended TRF are significantly suppressed beyond the M50

evoked field.

4.3.2 Decoding auditory attention from MEG: a simulation

study

In order to simulate MEG data modulated by attention, first a binary sequence

{nk,r}240,3k=1,r=1 was generated as realizations of a Bernoulli process with success prob-
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ability pk = 0.95 or 0.05, corresponding to attention to the first or second speakers,

respectively. The total observation time was 60s with a sampling rate of Fs = 200Hz

(T = 12000 samples) and the processing window length was chosen to be 250ms

(W = 50 samples). Using a TRF template of length 0.5s estimated from exper-

imental data (See Section4.3.1), we generated 3 trials for various SNR values and

with multiple number of attention switches throughout each trial.
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Figure 4.4: MEG data simulation. Simulated MEG data (black traces) and model
prediction (red traces) of (A) speaker one and (B) speaker two at SNR = 10 dB.
Regions highlighted in yellow indicate the attention of the listener to each of the
speakers. (C) Estimated values of {pk} with 95% confidence intervals. (D) Esti-
mated values of {pk} from simulated MEG data vs. SNR = 0, −10 and −15 dB.
Error hulls indicate 95% confidence intervals. The MEG units are in pT/m. (E)
Behavioral results of the simulated MEG data vs. SNR values ranging from −20 to
10 dB. The time fraction for which the estimated attentional sate follows the target
speaker (the opposite speaker) as a function of different SNRs is shown in the left
panel (right panel).

Figures 4.4–A and 4.4–B show the simulated MEG signal (black traces) and

predictors of attending to speaker one and two (red traces) at an SNR of 10 dB.

Regions indicated by arrows in panels A and B demonstrate the time intervals, in
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which listeners are supposed to attend to either of the two speakers.

The hyper-parameters for the von Mises-Fisher distribution were chosen as

d = 100KR/2 and c0 = 0.01, as the resulting correlation between the simulated

MEG data and the model prediction is in the range of ≈ [0–0.2]. The choice of

d = 100KR/2 gives more weight to the prior than the empirical estimate of κi.

The hyper-parameters α and β for the inverse-Gamma prior on the state variance

were chosen as α = 2.01 and β = 0.5. This choice of α close to 2 results in a non-

informative prior, as the variance of the prior is given by β2/[(α−1)2(α−2)] ≈ 245,

while the mean is given by β/(α− 1) ≈ 0.5.

Estimated values of {pk}240k=1 (green trace) and the corresponding confidence in-

tervals (green hull) are shown in Figure 4.4–C. The estimated pk values reliably track

the attentional state, and the transitions are captured with high accuracy. MEG

data recorded from the brain is usually contaminated with environmental noise as

well as nuisance sources of neural activity, which can considerably decrease the SNR

of the measured signal. In order to test the robustness of the decoder with respect

to observation noise, we repeated the above simulation with SNR values ranging

from −20 to 10 dB. As demonstrated in Figure 4.4–D, the confidence intervals and

the estimated transition width widen gracefully as the SNR decreases. The dynamic

denoising feature of the proposed state-space model results in a desirable decoding

performance for SNR values above −15 dB (Figure 4.4–E).
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4.3.3 Decoding auditory attention from MEG: application

to real MEG data

We assessed our proposed state-space model and decoder on experimental MEG

data recorded from 11 human subjects who listened to one of the two competing

speakers in constant-attention and attention-switch experiments (see Methods). All

hyper-parameters in the model were chosen similar to those of the simulation studies

in the previous section, except for the prior parameter c0 for the von Mises-Fisher

distribution which was conservatively chosen as c0 = 0.01, since the observed corre-

lation values between real MEG data and their predictors are typically in the range

[0− 0.2].

The predicted pk values resulted from single and multi-trial analysis are shown

in Figure 4.5 for three sample subjects. For multi-trial analysis (3rd panel of each

plot) 90% confidence intervals are shown by the shaded hulls around the estimated

values. In the first and second conditions subjects were instructed to maintain their

attention through the entire experiment to the male and female speakers, respec-

tively (Figures 4.5–A and 4.5–B). The decoding results demonstrate the decoder’s

reliable recovery of the attention modulation by estimating {pk} close to 1 for the

first condition and values close to 0 for the second condition. For the third and

fourth conditions, subjects were instructed to switch their attention after hearing a

2 s pause, in the middle of each trial, from the male to the female speaker (Figure

4.5–C) and from the female to the male speaker (Figure 4.5–D). Using multiple-trial

analysis, the decoder was able to capture the attentional switch occurring roughly
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Figure 4.5: Decoding auditory attentional modulation in experimental MEG data.
In each subplot, the MEG data (black traces) and the model prediction (red traces)
for attending to speaker 1 (male) and speaker 2 (female) are shown in the first
and second panels, respectively, for one sample subject. The third panel shows the
estimated values of {pk} and the corresponding confidence intervals using multi-trial
analysis for three sample subjects. The fourth panel shows the estimated {pk} values
for single trials. A) Condition one: attending to the speaker 1 through the entire
trial. B) Condition two: attending to the speaker 2 through the entire trial. C)
Condition three: attending to the speaker 1 until t = 28s and switching attention
to the speaker 2 after the 2 s pause. D) Condition four: attending to the speaker 2
until t = 28s and switching attention to the speaker 1 after the 2 s pause. Dashed
lines in subplots C and D indicate the start of the 2s silence cue for attentional
switch. Error hulls indicate 90% confidence intervals. The MEG units are in pT/m.
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halfway through the trial. The decoding of individual trials in the forth panel of

Figure 4.5–C & 4.5–D suggest that the exact switching times were not consistent

across different trials, as the attentional switch might have occurred slightly earlier

or later than the presented cue.

The performance of individual subjects were evaluated by computing time

fractions in which the target speaker or the alternative speaker were followed ac-

cording to the estimated results from the state-space decoder. All computations

were done within the confidence interval of 90% for multi-trial and 70% for single-

trial analysis. An illustrative example of the time intervals in which a sample subject

is in target, alternative target (Alt-target) or unfollowed attentional sate is shown

in Figure 4.6, for a sample trial in male-female attention-switch condition (condi-

tion 3). The evaluated target and Alt-target attentional time fractions for single

trials are plotted in Figure 4.7–A1 and 4.7–A2, for the constant-attention and the

attention-switch experiments, respectively. As shown in these figures, most of the

data points fall above the identity line, indicating larger time fractions in which the

target speakers were attended vs. the alternative targets. The behavioral results

from multi-trial analysis were significantly improved compared to the single-trial

estimations (one way ANOVA, P < 0.01). This is indeed expected from the the

state-space formulation, as the variance of the state variable zk is inversely pro-

portional to the number of trials R (See Eq. (A.5)). The results of multi-trial

estimations are shown in Figure 4.7–B1 & 4.7–B2 for each individual subject and

two experimental conditions. The median, 25% and 75% quartile values are shown

in separate box plots for target and Alt-target attended time fractions and for each
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individual experiment. In addition, individual subject performances averaged over

condition pairs within constant-attention experiment (conditions one & two) and

attention-switch experiment (conditions three & four) are plotted in blue on top of

the corresponding box plots. Evaluated performances for the decoded attentional

states show that time fractions in which the target speakers were attended to, were

significantly larger than the Alt-target attended time fractions (one way ANOVA,

P < 0.001), highlighting the successful decoding of the attentional states via the

state-space model.
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Figure 4.6: Schematic illustration of attentional states for a sample subject, in
an example of male-female attention-switch condition experiment. The estimated
attentional probability at each time point can be in one of the following states:
Target Attended (TA), Alternative Target Attended (Alt-TA), and the Unfollowed
state (UF).
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which the Alt-target speaker is attended for individual subjects in constant-attention
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4.4 Discussion

In this study, we developed a neurobehaviorally inspired state-space model that

provides an estimation framework for decoding the attentional state of a listener in
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a competing-speaker environment. The proposed algorithm takes advantage of the

temporal continuity in the attentional state, resulting in a decoding performance,

which is highly accurate and resolved in time. Parameter estimation of this model

is carried out using the EM algorithm, which is tied to the efficient computation

of the Bernoulli process smoothing, resulting in a very low overall computational

complexity. The output of the state-space model at each EM iteration is plotted in

Figure 4.8 for a sample subject and all four experimental conditions. These plots

illustrate the convergence path of the EM iterations in estimating the attention

probability values pk, starting from values at chance level (0.5) and converging to

values near 0 or 1 depending on the targeted speaker.
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Figure 4.8: A step-wise illustration of the EM convergence. The output of the state-
space decoder is plotted after each EM iteration for sample trials of a subject in
Constant-Attention (A) and Attention-Switch (B) experiments. Estimated values
from final iterations are shown in bold green/orange lines.

The novel state space model proposed in this study is supported by perfor-

mance evaluation of the model on realistic simulated data, as well as evoked neural

activity from the auditory cortex of humans, recorded via MEG. These studies di-

vulge three main advantages in the current model over the state of the art methods
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such as the reverse correlation technique (Bialek et al., 1991; Gielen et al., 1988;

Hesselmans and Johannesma, 1989).

First, in the proposed model, temporal resolution of the estimated state of

attention is in the order of multi-seconds. This resolution is comparable to em-

pirically estimated speed of attention switching in humans; therefore the proposed

model provides a dynamic framework for tracking the attentional state of a lis-

tener in real world scenarios.This is a considerable improvement over the commonly

used methods based on reverse correlation, in which the recovery of the stimulus

paradigm from the corresponding neural response results is a poor reconstruction

of the stimulus using short processing time windows, and therefore fails in tracking

the attentional state in a precise fashion (Ding and Simon, 2012b; Mesgarani and

Chang, 2012b).

Second, the proposed algorithm employs only the envelopes of the two speech

streams as the stimulus covariates. This is a substantial reduction in the dimen-

sion of the spectro-temporal feature set used for decoding compared to those used

in previous studies. Reducing the dimensionality of the feature space is not only

an extremely important issue in real-world applications, but also can hint to the

features of speech which are encoded by the brain as markers of auditory attention,

and thereby lead to a better understanding of the neural basis of auditory stream

segregation.

Third, the principled statistical framework used in constructing the decoder

allows us to obtain confidence bounds on the estimated attentional state. This

feature is crucial to obtaining a statistically-principled framework for assessing the
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validity of the algorithm output. Moreover, the proposed approach benefits from

the inherent model-based dynamic denosing of the underlying state-space model,

and is able to reliably decode the attentional state under very low SNR conditions.

A potential application of this analysis framework is to be used as a real-time

cocktail party analyzer, tracking the attentional state of a listener in a complex

auditory environment. The state space model provides estimation of the probabil-

ity of attending to either one of the speakers at each time point t based on the

recorded MEG data at all other time points before (via non-linear filtering) and

after (via backward smoothing) t. Assuming that the cognitive state of attention

is a continuous process in time, this continuity is appropriately accounted for in

the proposed model; however, for real-time Brain-Computer Interface (BCI) appli-

cations, the smoothing step can be omitted and estimation of the attentional state

can be causally carried out via the proposed non-linear filter.

Future work includes generalization of the proposed model to more realistic

and complex auditory environments with more diverse sources such as mixtures

of speech, music and structured background noise. Nevertheless, the promising

performance of the proposed algorithm for MEG recordings makes it an appealing

candidate for EEG applications.
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Chapter 5

Perceptual mechanism of
contextual effect on ambiguous
stimuli in the auditory cortex

5.1 Introduction

Human perception in real-world scenarios is typically based on incomplete or am-

biguous information. In order to arrive at a consistent interpretation of a continuous

stimulus, personal knowledge about the world is integrated with the current stim-

ulus to embody perceptual expectations. Such knowledge arises over a wide range

of time frames, from lifelong experiences to immediately preceding or even simul-

taneously occurring stimuli. These experiences form the context within which the

current stimulus is interpreted and more generally represent the constructive neural

process that generates a coherent and unified representation of the world.

The effect of context on perception can be studied precisely in the laboratory

with the use of stimuli that are perceptually ambiguous, i.e., they can have multiple

perceptual states, while their physics are unchanged. These are often referred to as

multi-stable stimuli. Well-known visual examples include the Necker cube (Necker,
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1832) and bistable apparent motion (Ramachandran and Anstis, 1985), whereas

some auditory examples include the verbal transformation effect (Warren and Gre-

gory, 1958) and auditory stream segregation (A-B-A paradigm; (Bregman, 1990)).

Multi-stability can also take place in combined audio-visual modalities (Pressnitzer

and Hupé, 2006; Hupé et al., 2008; Schwartz et al., 2012). In all these examples,

one or more percepts emerge over time, while the stimulus itself is kept unchanged.

In some cases, this perceptual switching can be induced by preceding biasing stim-

uli. Examples of this can be found in well-known effects of prior spectral bias on

phonemic percepts (Holt, 2006; Holt et al., 2005; Stephens and Holt, 2003), where

prior acoustic stimuli composed of sine-wave tones that are drawn from spectral

distributions with different mean frequencies robustly affect speech categorization.

Another example of perceptual switching induced by preceding stimuli is the

tritone paradox, an auditory illusion first introduced by Deutsch (1980), in which a

sequentially played pair of Shepard tones, separated by a semi-octave, is heard as

ascending by some people and as descending by others. A Shepard tone, named after

Roger Shepard (Shepard, 1964), is a complex sound consisting of a superposition

of octave spaced tones. A schematic view of a Shepard tone is shown in Figure

5.1–A (with all the constituent tones enclosed within a dashed green rectangle).

Since the Shepard tone complex theoretically covers the entire spectrum, it can be

parameterized by a circular property in pitch, such that shifting it up or down by

an octave (12 semitones) over the frequency axis results in the exact same Shepard

tone (Figure 5.1–B).

When presenting two Shepard tones sequentially, with the second tone shifted
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up or down on the frequency axis (e.g., by ± 2 semitones with respect to the first

tone), one can clearly perceives a pitch-change in the corresponding direction. In

Figure 5.1–A, the spectral transition between the first and second Shepard tones is

heard as a clear downward step in pitch and for the second and third tones is heard

as a clear upward step in pitch. By contrast, in the case of the tritone paradox,

where the pair of Shepard tones are separated by half octaves (± 6 semitones), the

spectral transition between the two Shepard tones becomes ambiguous in that it

can be equally viewed as an upward or downward step in pitch (Figure 5.1–A, third

and forth Shepard tones).

Earlier studies by Chambers and Pressnitzer (2011); Chambers et al. (2012)

showed that presentation of a spectrally defined acoustic context prior to presenta-

tion of the ambiguous Shepard pair can reliably influence the perceived direction of

pitch-change in the pair. The acoustic context, also known as the biasing sequence,

consists of a sequence of Shepard tones that are spectrally confined to the lower

or upper half-octave spectral regions with respect to the first Shepard tone in the

ambiguous pair (Figure 5.2–A, to simplify the diagram, only one octave is shown).

The ascending or descending percept is strongly dependent on the spectral region in

which the biasing tones are placed. If the biasing sequence is located in the upper

or lower half-octave with respect to the first Shepard tone in the ambiguous pair, it

is highly probable that an ascending or descending pitch-change is perceived by the

listeners. An analogous case of such a priming effect in visual modality has been

described by Zhang et al. (2012), in which a brief exposure to a vertical or horizon-

tal motion increased the probability of perceiving the motion in the corresponding
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direction. Thus there exist both auditory and visual examples of percepts that are

strongly influenced by the preceding sequence of stimuli.

There have been several number of human psychoacoustic experiments and

animal neurophysiological studies that investigated the neural correlates of the con-

textual effect on perception in both the auditory and visual modalities. However, the

main limitation of all these studies is that where there is access to perceptual states

of humans, there is no corresponding neural information available, and when there

is access to the neural information from the animal’s brain, it is very challenging

to verify the perceptual state. In this chapter, several psychoacoustic experiments

are described in which neural recordings from the auditory cortex of humans—using

MEG—were used to record both neural and behavioral data simultaneously, and

hence to investigate the underlying mechanisms of perceptual manipulation caused

by contextual biasing in the tritone paradox example.

In a first set of experiments, the neural correlates of the contextual influence

of the biasing sequence on the directional percept of the ambiguous Shepard tone

pairs were investigated. Specifically, we examined the auditory cortical responses

immediately following the biasing tones so as to assess the responsiveness of the

neurons at various frequency-specific channels along the tonotopic axis, where they

induced to be in a sensitized state as reported in the vision literature by Wissig

and Kohn (2012) or in an adapted (suppressed) state prior to the final percepts, as

suggested by Linke et al. (2011) & Englitz et al. (2013).

In the following two experiments, the spectrotemporal properties of the con-

textual trace (biasing sequence) were further characterized with slightly modified
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paradigms to improve SNR and resolution of the neural measurements in the spec-

tral and temporal domains.

Finally, a series of psychoacoustic and neural experiments were conducted to

determine whether the biasing mechanism is merely dependent on the bottom-up

primary feature extraction procedures or whether it involves high-level top-down

mechanisms such as attentional modulation. Specifically, potential links between

the biasing effect and steaming of the biasing sequence is explored and discussed in

this section.
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Figure 5.1: Shepard tones and circular property in pitch space. (A) Shepard tones
are a stack of octave-spaced tones that cover the entire spectrum from low to high
frequencies. From left to right a Shepard tone was translated slightly up or down
relative to the previous tone, resulting in a clear perception of up and down shift in
pitch, respectively. However in the last pair on the right, the second tone is shifted
by 6 semitones, causing an ambiguous percept. (B) Perceived pitch of a Shepard
tone has a circular property in the spectral domain, i.e., shifting the Shepard tone
by an octave leads to the same Shepard tone. Examples of ambiguous (0 & 6 st)
and unambiguous (0 & 2 st) pairs are shown on the circle in black arrows.
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5.2 Neural correlates of the ambiguous Shepard
tone pairs percept

To investigate neural correlates of the ambiguous percept of the Shepard tone pairs,

MEG recordings of the neural activity in response to the biasing context were ana-

lyzed and correlated with the perceptual responses of human listeners. The behav-

ioral data and neural recordings were collected from multiple subjects performing a

2 Alternative Forced Choice (2AFC) task, in which subjects were asked to decide

whether a pair of Shepard tones ascended or descended in pitch, after listening to

the biasing sequence. In order to estimate the activation state of the auditory cortex

from the MEG recordings a rhythmic sequence of Shepard tones, known as the probe

sequence, was interspersed between the contextual sequence and the ambiguous pair
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(Figure 5.4–A). This otherwise silent period is considered to be the maintenance pe-

riod during which the memory of the biasing tones persists in the auditory cortex

and subsequently interacts with and leads to the percepts of the final test tones.

5.2.1 Experimental design & procedures

Stimuli The acoustic stimuli were digitally generated using MATLAB (Math-

Works, Natick) at a sampling rate of 44.1 kHz. Each trial consisted of three parts:

1) a biasing sequence, followed by 2) a probing sequence and 3) an ambiguous test

pair at the end. The constituent tones of all these sequences were Shepard tones

(Shepard, 1964), which varied in spectral location and duration.

An individual Shepard tone was generated as the sum of octave-spaced pure

tones with a flat spectral envelope (Figure 5.2–A, tones within the green dashed

rectangle) and randomized phases. A cosine shaped gating function with a half-

period of 5 ms were applied to all Shepard tones. The spectral location of a Shepard

tone is given by the position of each of its constituent tones within an octave relative

to a base-frequency. The assigned spectral location of a Shepard tone, also known

as pitch class, is conventionally provided in semitones, in the range 0–11 st. Here,

a base-frequency of 440 Hz is assigned as pitch-class 0. The number of constituent

tones in a Shepard tone varied to cover the full range of hearing by the subject. If

the Shepard tone is spectrally shifted by a full octave, it maps to the same stimulus,

which is the circular property of the space of Shepard tones mentioned earlier (Figure

5.1–B).
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The biasing sequence was composed of a series of 8 Shepard tones with a

tone duration of 125 ms and inter-stimulus intervals of 125 ms, and hence a total

duration of 2 s. Spectral locations of the biasing tones were randomly selected from

the upper or lower semi-octave relative to the spectral location of the first tone in

the ambiguous pair (Figure 5.2–A). These spectral locations lead to strong upward

or downward biasing effects, respectively (as seen in Figure 5.2–B).

The probe sequence was also composed of Shepard tones with a constant pitch-

class and shorter tone lengths compared to the tones in the bias sequence (Figure

5.4–A). The characteristic properties of the probe sequence, such as tone length, se-

quence duration and presentation rate were determined in a separate psychoacoustic

experiment as described later.

Finally, the test pair consisted of a sequence of two Shepard tones that were

spectrally separated by half an octave. Such pairs of Shepard tones are ambiguous

with respect to the perceived direction of change in pitch. The test pair was pre-

sented 315 ms after the end of the probe sequence and with an inter-stimulus gap

of 125 ms.

Subjects Ten participants (four males; mean age 26 y, range 24–34 y) took part

in an initial series of psychoacoustic experiments to determine the parameters of the

probing sequence. Seventeen normal-hearing right-handed adults participated in the

MEG studies. One MEG participant was excluded from further analysis due to an

excess of electrical artifacts. Nine subjects (four males; mean age 24 y, range 18–29

y) participated in the first MEG experiment. Seven participants (three males; mean
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age 26 y, range 18–32 y) participated in the second and third MEG experiments.

5.2.2 Psychoacoustic studies

In the psychoacoustic experiments, participants performed the tasks at a computer

in a sound-attenuated room (J.W. Manny Inc., Eckel Sound Rooms). They were

asked to control the computer using a Graphical User Interface (GUI) and were

allowed to adjust the volume to a comfortable level before starting the experiment. A

complete explanation of the required task, as well as the basic instructions for using

the GUI, were given in advance. For each presented sequence, subjects were asked

to judge the direction of pitch-changes for the last two stimuli, i.e., the ambiguous

test pair. They were instructed to press a designated button for each choice. By

design, no correct answer existed for an ambiguous pair and, and hence no feedback

was provided.

In an initial psychoacoustic study, a simplified paradigm consisting of a biasing

sequence followed by an ambiguous test pair was used to provide a baseline for

behavioral performance of the listeners (Figure 5.2–B, N=10). As a result, 92± 8%

of the UP-biases and 88 ± 10% of DOWN-biases led to ascending and descending

responses, respectively. In the absence of the bias sequence, the probability of UP

responses was at chance level (52 ± 6%) averaged over all subjects (Figure 5.2–B,

the gray marker).

In a second psychoacoustic study, the presentation rates and durations of the

probe tone sequences were determined. The probe sequence consisted of tones sim-
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ilar in structure to the bias sequence, except for having a fixed pitch-class and a

much shorter duration. To ensure that the probe sequence did not itself induce

a perceptual bias, psychoacoustic tests were conducted to determine the optimal

parameters (tone length, presentation rate, and overall sequence length) that min-

imized its biasing potential. Subjects were tested in 9 experimental conditions: 3

different presentation rates (4, 7 and 10 Hz) and 3 different tone lengths (35, 65,

95 ms) for the probe sequence. Each condition contained 240 trials (12 pitch class

× 2 biasing direction × 10 repetitions). The results are depicted in Figure 5.3–A.

It is found that the presentation rate did not have a significant influence on the

biasing strength (one-way ANOVA, p > .05 for all pair comparisons within each

column in Figure 5.3–A). Therefore, the lowest tested rate (4 Hz) was chosen to

maximize the SNR of the neural recordings. This arises from a so-called 1/f power

law relationship, found in EEG/MEG activities in the following form:

Sx(f) =
Constant

|f |γ
(5.1)

Here Sx(f) is the power spectral density, f is the frequency and γ is some

spectral parameter which is usually close to 1 but can lie in the range 0 < γ < 2,

and can be greater than 2 in the presence of the noise sources (Keshner, 1982).

Tone duration was found to be critical, with shorter tones producing a negligi-

ble biasing effect (down from 92± 5% for 75 ms to 50± 7% at 35 ms). The effect of

the original bias on the ambiguous pair was also evaluated as a function of different

probe sequence lengths, in a range of 0.5–4 s (Figure 5.3–B). Since longer durations
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of probe sequence showed a decrease in the original biasing effect, the length of the

sequence was limited to 2 s, to minimize any incidental biasing by the probes.

Overall, a direct measurement of the correlation between the spectral location

of the probe sequences and the test tone percepts was shown to be negligible for the

selected parameters above (probe sequence of 4 Hz presentation rate, 35 ms tone

length, and 2 s duration, Figure 5.3–C)), compared to the effect of the bias sequence.

Therefore, these parameters were used for all subsequent MEG experiments.
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Figure 5.3: A spectrally local MEG probe sequence with short tone durations has
little influence on the directional percept. (A) The biasing effect of the probe se-
quence is reduced with a shorter tone length, and is not different from chance at
a tone length of 35 ms. Repetition rate had only a little effect on the percept,
and we thus chose 4 Hz for its maximal response size in MEG recordings (N=10).
(B) Behavioral performance with respect to the probing sequence duration. Probe
sequences with a length of up to 2 s (corresponding to 8 tones) preserved the bias
effect of the bias sequence. (C) Subjects’ percepts were not influenced by the probe
sequence, as shown here by scoring the behavioral performances either based on
the spectral locations of the bias (strong separation) or the probe (chance perfor-
mance) sequence. These results are derived from the recording in the MEG machine
(N=19).
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5.2.3 MEG studies

In MEG experiments, participants listened to sequences of Shepard tones consisting

of bias, probe, and test pairs as described above. At the end of each trial, subjects

were required to indicate whether they heard an ascending or descending change

in pitch. A short training block of 20–30 trials was conducted at the start of each

MEG recording session, which typically lasted about 1 hour.

The most influential pairs of Shepard tones were determined for each subject

prior to the MEG studies. Unlike in Repp (1997), we deployed a flat spectral

envelope on the amplitudes of the constituent tones of a Shepard tone, and hence

no specific frequency region controlled the level of ambiguity. Subjects listened to a

block of 120 trials (12 pitch classes × 10 repetitions), each trial consisting of a bias

sequence followed by an ambiguous test pair positioned at different pitch classes

(0–11). The three most perceptually ambiguous pitch classes, and hence maximally

influenced by the preceding bias tones were then selected and used in the subsequent

MEG experiments.

In the first MEG study, 3 identical blocks of 120 trials consisting of four

conditions (2 biasing locations × 2 probe locations) and 30 trials in each condition

(3 pitch classes × 10 repetitions) were presented in random order within each block.

Earlier psychoacoustic experiments by Chambers and Pressnitzer (2011) sug-

gested that the biasing effect on the perceived pitch direction lasted for a compara-

tively long period of time (up to multiple seconds). A second MEG experiment was

designed to verify whether the suppression of the neural response in specific channels
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following the bias was also maintained for the whole period after presentation of the

bias sequence and before presentation of the test pair. Since presentation of the

tones in the probe sequence itself caused adaptation in the neural response to the

probe sequence, our measurements in the previous experiment became unreliable

after they hit the noise level (∼1 s). In this experiment, low SNR measurements

were avoided by introducing a delay in the presentation onset of the probe sequence

with respect to the last tone in the bias sequence. The delays varied between 1.5 and

3 s, and the amount of suppression was estimated from the responses to the early

tones in the sequence as depicted in Figure 5.6–A. Three identical blocks of 96 trials

consisting of 8 conditions (2 pause durations × 2 bias locations × 2 probe locations)

with 12 trials in each condition (3 pitch classes × 4 exemplars) were presented to

the subjects in a randomized order within each block.

In the first MEG study the activation state of the cortex was only measured

at two frequency locations: (1) at the center of the biasing sequence, and (2) in the

opposite location, a half-octave away (Figures 5.4–A & 5.6–A). To refine the spectral

estimate of the suppression pattern, the activation state at 6 additional locations

were measured in a third MEG study, covering the full octave with a resolution of 2

st (Figure 5.7–A), providing a total of 6 measurements for each octave, i.e., at the

locations 2, 4, 6, 8, 10 and 12 st, relative to the first tone in the test pair (Figure

5.7–A). Three identical blocks of 108 trials, consisting of 12 experimental conditions

(2 biasing locations × 6 probing locations) and 9 trials in each condition (3 pitch

classes × 3 exemplars) were presented to the participants with randomized trial

orders within each block.
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5.3 Data analysis

To analyze recordings from all MEG experiments, the 2 s temporal responses to

the probe sequences were extracted and divided into 4 time windows of 500 ms

each. Neural responses of all trials corresponding to each time window were then

concatenated to obtain an extended response with duration T =[ 500 ms × number

of trials ] within a conditional number of blocks, for each time window and for

each channel. Concatenated responses were represented in the frequency domain

using a Discrete Fourier Transform (DFT), yielding a frequency spectrum from 0

to 500 Hz at a resolution of 1/T Hz. The complex magnetic field strength was

obtained by using the product of the DFT and the sampling interval (1/SR). Power

spectral densities were computed by squaring the complex magnetic field strength,

normalized by the duration T of the signal. We then calculated the square magnitude

of the frequency component at 4 Hz, averaged over the 50 channels with the strongest

normalized responses for each participant.

Neural recordings of all trials were first separated into two groups: (1) Con-

gruent trials, for which the percept of pitch-change is located on the same side as

the Bias, and (2) Incongruent trials, for which the percept is located on the oppo-

site side of the Bias. Within each group, trials were further separated into Biased

(Probe sequence in the same spectral region as the Bias tones) and Unbiased (Probe

sequence in the opposite region as the Bias tones) trials. Due to the modulation

rate of 4 Hz of the probe sequence, only 4 Hz response power was analyzed and

then averaged within these four groups (Congruent-Biased, Congruent-Unbiased,
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Incongruent-Biased, Incongruent-Unbiased).

In order to have a fair cross-conditional comparison of the results, an equal

number of trials for each condition were analyzed. This addressed the dependence

of the SNR on the number of trials, and the variation of the number of trials for

each Congruent and Incongruent group per participant (based on individual perfor-

mance). Trial equalization was done by performing the analysis on the minimum

number of trials available for conditions, and then bootstrap resampling was applied

for those conditions with a higher number of trials and averaged over the results of

bootstrapping to obtain the final neural response power.

Within-subject normalization was required to make the final results compa-

rable across subjects and independent of individual differences in MEG signal size.

Neural responses were first normalized by the mean value of all conditions for a

given subject, and then averaged over all subjects to obtain the population means

and standard errors shown in Figures 5.5, 5.6 and 5.7.

Noise level at the 4 Hz presentation rate for each MEG experiment was com-

puted by extracting and concatenating the inter-trial pauses over the whole exper-

imental session. The extended response was then analyzed in the same way as the

neural response to the probing sequence. In order to account for the variability of

noise level in different experiments, noise levels were computed independently for all

MEG experiments and scaling factors of the noise levels for later experiments with

respect to the first experiment were computed. All neural responses for the later

experiment were then normalized with the corresponding scaling factors.

The strength of the neural suppression of the probe sequence at 4 Hz presen-
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tation rate was correlated with the percentage correct behavioral results obtained

from subjects on their perceived direction of pitch-change in the ambiguous pair.

In the Congruent group, the correlation between the neural strength of the Biased

sequences for the first analyzed time window and the behavioral scores (calculated

with respect to the biasing direction) were computed. We used Pearson correlation

coefficients in this analysis, e.g., for the Congruent group we evaluated:

CC[N,B] =

K∑
i=1

[N(i)×B(i)]√
K∑
i=1

N(i)2

√
K∑
i=1

B(i)2

(5.2)

Here, K is the number of subjects, N is the normalized neural response to the probe

sequence for the first time window, and B is the behavioral performance. Bootstrap

procedures were then performed in order to confirm the negative correlation be-

tween the neurometric and psychometric functions in each of the two groups. A

balanced bootstrap sampling procedure (Efron and Tibshirani, 1994) was done by

randomly selecting 9 participants with replacement and computing the correspond-

ing correlation coefficient. This process was repeated 1,000 times. The procedure

was controlled to ensure that all participants appeared the same number of times

over all 1,000 bootstrap samplings. Confidence measures were then derived from

the bootstrap statistics.

To localize the source regions in the brain underlying the magnetic responses,

subjects from all MEG experiments were pooled together. The localization proce-

dure was done with respect to the source of the M100 response (a prominent peak
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∼ 100 ms after the onset of a pure tone (Näätänen and Picton, 1987)), for which

all subjects participated in a preliminary experiment listening to 100 repetitions

of a 1 kHz pure tone (see methods). In response to these short tones, a transient

auditory evoked response was observed in the MEG recordings of every participant.

The source of the M100 was then localized using an equivalent-current dipole model

best fitting the magnetic field configuration at the M100 peak, in each hemisphere.

The MEG laboratory software program v.2.001M (Yokogawa Electric, Eagle Tech-

nology, Kanazawa Institute of Technology) was used for this procedure. A similar

localization procedure with complex equivalent-current dipole model was used to

estimate the source for probing sequence best fitting the complex magnetic field

configuration at 4 Hz peak, in each hemisphere (Simon and Wang, 2005). Only

channels with SNR > 4 were used in the fitting. Also, since MEG is not sensitive

to subcortical neural sources, only cortical sources were considered. Goodness of fit

was computed as a function of the complex equivalent-current dipole and was given

by one minus the residual variance ratio (Simon and Wang, 2005). Significance of

the relative displacement between the estimated dipole locations for the 4 Hz and

M100 neural responses were determined by two-tailed paired t-tests in each of the

three dimensions: lateral/medial, anterior/posterior, and superior/inferior.

5.4 Results

To clarify the relationship between the response strength to the probe sequence

and the corresponding perceptual pitch-change of the ambiguous test pair, neural
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responses were separated into the Congruent and Incongruent groups. All the anal-

yses were performed in parallel on these two groups and compared across other

experimental conditions.

5.4.1 Local suppression and the percept

To explore how the effects of the biasing sequence persisted over the maintenance pe-

riod, the sensitivity of auditory cortical frequency-specific (tuned) regions following

the presentation of biasing sequence were explored. Specifically, we probed response

strength at the spectral centers of the bias sequences, i.e., ± 3 st relative to the first

tone in the test pair, and starting 375 ms after the last tone in the biasing sequence

as depicted in Figure 5.4–A. Responses in these two channels were expected to be

maximally different since they corresponded to the Biased and Unbiased conditions,

i.e., preceded or not preceded by the bias tones, respectively.

Considering all the trials together, there was no significant difference in the

neural responses from Biased and Unbiased conditions (Figure 5.4–B); however,

when we grouped the trials based on each subjects performance, neural activity in

the Biased and Unbiased regions showed significant difference, especially in the first

two time windows of the probe sequences. This difference demonstrated opposite

patterns for the Congruent and Incongruent trials. In the Congruent trials, neu-

ral responses during the Biased condition were significantly suppressed compared

to the Unbiased condition during the first and second 500 ms analysis windows

(Figure 5.5–A; F1,16 = 5.8, p < 0.05 and F1,16 = 5.23, p < 0.05 for the first and
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second time-windows respectively). This difference was not tractable after the first

two time-windows (∼ 1 s), because the probe tone responses themselves adapted

rapidly, decreasing to low SNR’s close to the noise level. This limitation on the

ability to monitor the persistence of the suppression over longer time intervals was

circumvented in a subsequent experiment as described below. The pattern was ex-

actly the opposite for the Incongruent trials—in which the subjects perceived the

pitch direction incorrectly or opposite to the location of the bias sequence. Here, the

normalized neural responses to the probe sequence in the Biased versus Unbiased

conditions were also differentiated during the first and second time windows, but

with a significantly higher suppression for neural activity in the Unbiased condition

(Figure 5.5–B) (F1,16 = 4.54, p < 0.05 and F1,16 = 11.49, p < 0.005 for the first and

second time-windows, respectively).

To demonstrate the relationship between subjects behavioral performances

(behavioral scores with respect to the biasing direction) and the relative amount of

Biased suppression, the correlation coefficients between the two measures were com-

puted in the Congruent trials. The outcome was a significantly negative correlation

of −0.65 ± 0.19 (p < 0.05, N = 9, indicated confidence bounds were obtained by

bootstrapping across participants). This suggests that higher performance is closely

tied to stronger suppression of the Biased regions during the Congruent trials (Figure

5.5–C).
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Figure 5.4: Schematic view of the stimulus paradigm. (A) The activation state for
different spectral locations was measured by placing a probe sequence in one of the
two spectral locations: in the center of the probe sequence or the opposite location
half an octave away. The power of the response at 4 Hz (as a function of time) was
used as an indicator of the recruitable response at the respective spectral location.
(B) No significant difference in the neural responses of the Biased and Unbiased
conditions was observed, averaged over all trials.

5.4.2 Neural suppression persistence over multiple seconds

Suppression in the neural response to the probe was found to last over multiple

seconds, consistent with the earlier results on the time scale of the biasing effect

(Chambers and Pressnitzer, 2011; Chambers et al., 2012). Specifically, time con-

stants for recovery from suppression were estimated by fitting an exponential to the

normalized neural responses, computed over the first 500 ms time window of the

probing sequence, at 0.375 s (obtained from the first experiment), 1.5 s and 3 s

delays after presentation of the bias sequence. The results shown in Figure 5.6–B

& 5.6–C illustrated that suppression in the Biased region was deep and lasted over

the time course of multiple seconds. Furthermore, the relative response suppression

in the Biased and Unbiased conditions for the Congruent versus Incongruent groups

was consistent with the earlier results described in Figure 5.4–B. The suppression
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Figure 5.5: Reduction in the auditory cortex response predicts the directional per-
cept. (A) In the Congruent trials, activation of the auditory cortex is found to be
more reduced at the location of the bias than at the opposite location, measured as
the normalized neural power to the 4 Hz probe sequence presented after the biasing
sequence (N=9). This suggests a suppressive trace after the bias, rather than a hy-
pothetical positive priming effect. Biased and Unbiased conditions are color coded
according to the probe locations (brown and green for Biased and Unbiased con-
ditions, respectively) consistent with colors used in the stimulus cartoon for probe
locations. Averaged noise level is shown as a flat line within each plot. Error bars
and error hulls represent 1 SEM. (B) In the Incongruent trials, activation of the
auditory cortex was found to be opposite to the Congruent trials, i.e., with weaker
suppression on the side of the bias sequence. Hence, stronger reduction was found
in agreement with the subsequent percept, suggesting a causal relation with the
percept. (C) Behavioral responses are plotted as a function of normalized neural
response for the first 500 ms window of the Biased condition in the Congruent trials.
A linear fit to the data points from 9 subjects reveals a negative slope, suggesting
stronger adaptation in the Biased neural responses for better performance scores
(R2 = 35%).

weakened exponentially over the time course of the maintenance period with a time

constant of 10.83±4.12 and 4.71±0.4 s (bootstrapping across participants, p < 0.01)

in the Congruent and Incongruent trials, respectively. Correlated with the reduction

in the strength of the perceived contextual influence over time (0.375 s: 67± 4.2%;

1.5 s:60 ± 4.8%; 3 s: 55 ± 5.1%; chance is at 50%), the difference in suppression

strength between the Biased and Unbiased neural responses is also reduced (See
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Figure 5.6–B & 5.6–C).
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Figure 5.6: The suppressive trace persists on the order of seconds after the bias
sequence. (A) We measured the strength of the adaptive trace at different times
after the bias sequence by introducing a pause of variable length between the bias and
the probe sequence. (B) In the Congruent trials the average neural response (N=7)
remained more reduced on the Biased side than the Unbiased side, over the measured
period up to 3 s. Biased and Unbiased conditions are color coded according to the
probing locations (brown for Biased and green for Unbiased conditions) consistent
with colors used in (A) for probe locations. (C) In the Incongruent trials, only the
Unbiased responses show a significant reduction, consistent with the hypothesis of
a causal influence of suppression on the subsequent percept. Average noise level is
shown as a flat line within each plot. Error bars and error hulls represent 1 SEM.

5.4.3 Frequency profile of net suppression

In this experiment, the normalized neural responses to the first 500 ms time window

of each probing sequence were extracted and analyzed. To emphasize the spectral

shape differences between the Congruent and Incongruent conditions, the neural

responses were subtracted in the Incongruent condition from the Congruent con-

dition at each frequency location and for each subject. The spectral shape of the

neural response differences averaged over 6 subjects was found to be significantly

different as a function of spectral location (Figure 5.7–B; F1,54 = 3.29, p < 10−5),

with its trough near the middle of the biasing frequency region (at +3 st). Further
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implication of these experiments and the potential neural mechanisms underlying

the biasing effect are provided in the Discussion.
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Figure 5.7: The suppressive trace left by the bias varies simply with distance to the
center of the contextual sequence. (A) To better resolve the shape of the adaptive
trace proceeding the biasing sequence, we probed frequency regions in a finer reso-
lution. Probed locations were chosen at 2 semitone intervals starting at 2 st relative
to the first tone in the test pair. In a given trial, only one location was probed (B)
Normalized neural response difference of the suppressive trace between the Con-
gruent and Incongruent trials revealed significant change (p < 10−5) as a function
of pitch class with a through roughly in the middle of the biased region. Results
are plotted in brown (Biased condition) and green (Unbiased condition) colors and
averaged over 6 subjects. Error bars show 1 SEM.

5.4.4 Magnetic field distribution & source localization

Magnetic field distribution of the probe sequence response component revealed the

stereotypical pattern for neural activity originating separately in the left and right

auditory cortex. A phasor map of the neural response spatial pattern is shown

in Figure 5.4–A(inset), as a graph of the complex (magnitude and phase) mag-

netic field on all channels. Red and green contours represent the magnetic field

strength projected onto the lines with constant phase that maximized the projected

fields variance (Simon and Wang, 2005). Goodness of fit for these sources was
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0.7 ± 0.12 (artificially reduced in accordance with (Simon and Wang, 2005)). The

topography of the special magnetic field of all probing rhythm response compo-

nents with sufficiently high signal-to-noise ratio was similar to those of the M100

response. The mean displacement of the neural source from the source of the au-

ditory M100 response (Näätänen and Picton, 1987) was then calculated for each

hemisphere. The displacement was significantly different in the anterior direction

for both right (9.4± 3.8) and left hemispheres (10.1± 2.3), using a two-tailed t-test

(t = 4.2, p = 0.002 in the right and t = 3.4, p < 0.01 in the left hemispheres), but

no statistically significant displacement was observed in other directions. Assuming

a M100 origin of planum temporale, this is consistent with an origin for the neural

response to the probe rhythm in the Heschls gyrus, the site of the core auditory

cortex, a region known for its good phase-locking to most naturally occurring rates

(< 40 Hz) (Liégeois-Chauvel et al., 2004; Miller et al., 2002).

5.5 Biasing effect: a case of streaming?

Earlier experiments have revealed that listening to a biasing sequence proceding

an ambiguous test pair can induce an ascending or descending percept, depending

on the spectral properties of the bias sequence. It is nevertheless unclear whether

the underlying mechanism of the biasing effect is dependent purely on bottom-up

feature-extraction processes or if it involves higher-level top-down mechanisms such

as attentional modulation. The experiments described here aimed to investigate

the role of attention in contextual biasing, using a slightly modified task-dependent

125



paradigm. Specifically, they explored whether hearing out the biasing tones as an au-

ditory stream has a significant impact on perceptual manipulation of the ambiguous

test pair. That is, whether or not one needs to hear the biasing tones as a ”stream”,

in order to get effective biasing. Discovery of a potential connection between the

two well-explored mechanisms in auditory scene analysis—auditory streaming and

auditory contextual biasing—enables us to explore each mechanism in the light of

the other, as an objective tool.

5.5.1 MEG & psychoacoustics (I)

As discussed in chapter 3, one of the important cues facilitating auditory streaming

is the onset/offset synchrony of the constituent components of an auditory sequence

(Rasch, 1978; Bregman, 1990). The synchronization feature and its influence on the

biasing sequences was the key focus of the design of the following experiments. Bias

sequences, composed of synchronous or asynchronous Shepard tones and preceded

an ambiguous test pair. They were first played to the subjects in separate blocks

to evaluate the effectiveness of each sequence in manipulating the percept. Then,

the two sequences were presented simultaneously in each trial to compete with each

other in biasing listeners’ percept to opposite directions (up and down) at the same

time. According to the earlier studies on the effect of temporal synchrony on the

streaming ability of listeners (Rasch, 1978; Bregman, 1990), it is hypothesized that if

steamability of the biasing sequence is important in creating the biasing experience,

then synchronous sequence, compared to the asynchronous one, should be easier to
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stream and are therefore more effective in manipulating the percept of pitch-change

direction. Although obtaining such a result is not sufficient to establish a causal rela-

tionship between the streaming of the biasing sequence and experiencing the biasing

effect, it can reveal some potential links between the two auditory experiences.

Experimental design

Stimuli & procedure In the psychoacoustic experiments, the stimulus was a 3

s long sequence, consisting of 8 Shepard tones with 125 ms tone length, and 125

ms inter-tone interval. The ambiguous test pair was presented 156 ms after the last

biasing tone with tone duration and inter-tone interval similar to those of the biasing

sequence. For the synchronous biasing tones all the components in each Shepard

tone were synchronized and had the same onset (as in the previous experiments),

whereas in the asynchronous case the onsets of the constituent components in each

Shepard tone were randomly jittered in the range of ± 8 ms (Figure 5.8–A).

The experiment consisted of a presentation of 3 blocks with 80 trials each (4

pitch classes × 2 biasing direction × 10 exemplars). In the first block, trials con-

tained only the synchronous biasing tones and in the second block, trials contained

only the asynchronous biasing tones (Figure 5.8–A, first and second panels). In

the third block, synchronous and asynchronous biasing tones were both present at

the same time and competed with each other in biasing the perceptual state of the

listeners by having their tones in spectrally opposite regions (Figure 5.8–A, third

panel).

In the MEG part, only the paradigm with competing synchronous and asyn-
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chronous tones was presented simultaneously was presented to the subjects. The de-

gree of asynchrony in the sequence was varied in 3 experimental conditions (±0–30%,

±30–60% and ±60–100% jittering of the onsets of the constituent components in

a Shepard tone). To increase the chance of seeing neural response differences via

MEG, the degree of asynchrony in the sequence was made considerably larger com-

pared to those in the psychoacoustic experiment. Biasing tones were then followed

by a probing sequence and an ambiguous test pair, as shown schematically in Figure

5.9–A. Three identical blocks of 108 trials (2 biasing directions × 2 probe locations

× 3 asynchrony degrees × 3 pitch classes × 3 exemplars) were presented to the

subjects, while being inside the MEG machine.

In both experiments, subjects listened passively to the biasing sequence with

no task that manipulated their attention toward one or the other biasing sequence.

Subjects Eleven normal-hearing right-handed adults with a mean age of 27 (range

18–35 y; five males) participated in this study. One subject was excluded from

additional analysis because of inability to perform the task. Seven subjects (range

18–35 y; three males) participated in the MEG experiment.

Results

Psychoacoustic results for synchronous, asynchronous and mixed bias sequences are

shown in Figure 5.8–B. Subjects were clearly biased in the separate synchronous

and asynchronous conditions with relatively high biasing scores, computed with re-

spect to the biasing sequences’ spectral locations (see Figure 5.8–B, bar plots for
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synch/asynch conditions). The difference between the behavioral scores for syn-

chronous and asynchronous conditions was quite small but significantly positive

(p < 0.05, mean = 1%), indicating that synchronous tones are slightly more effec-

tive than asynchronous tones when presented separately in each trial.

The results for the mixed condition is shown in Figure 5.8–B (third panel). The

behavioral scores computed based on the synchronous and asynchronous bias tones’

spectral locations are shown in gray and yellow bars, respectively. In most trials

listeners were biased with respect to the synchronous sequence (one-way ANOVA,

p < 0.001), showing that the synchronous biasing sequence is more powerful in

manipulating the subject’s percept in comparison with the simultaneously presented

asynchronous sequence. Again, although this result is not sufficient to deduce a

causal relationship between streaming of the biasing sequence and contextual biasing

effect on the test pair, it motivates us to conduct further experiments to explore the

potential links between the two auditory tasks.

In the MEG study, the behavioral performance of the subjects is shown in

Figure 5.9–B. For different degrees of asynchrony, there was a slight but significant

improvement in the behavioral scores with respect to the synchronous sequence as

the asynchronous sequence became more and more jittered (one-way ANOVA, p <

0.01). The neural responses to the probe sequences following the synchronous and

asynchronous biasing tones were analyzed similarly to the procedure discussed earlier

in the MEG experiments in this chapter. Trials in each condition were separated into

the Congruent (perceptually biased w.r.t. the synchronous biasing sequence) and

Incongruent (perceptually biased w.r.t. the asynchronous biasing sequence) groups.
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Figure 5.8: Psychoacoustics (I). (A) Schematic representation of the bias sequences
for synchronous, asynchronous and mixed conditions. (B) Averaged behavioral per-
formances, evaluating the biasing effect in synchronous, asynchronous and mixed
conditions. Behavioral results scored with respect to the spectral location of the
synchronous and asynchronous sequences are shown in gray and yellow bars, respec-
tively. Colored borders indicate the expected perceived pitch-change direction (blue:
up and red: down), in each experimental condition. The results reveal significantly
higher averaged scores for biasing effect with respect to the synchronous sequence as
opposed to the asynchronous sequences in the Mixed condition (one-way ANOVA,
p < 0.001)

Medians, 25% and 75% quartiles plotted for the two Congruent and Incongruent

groups (Figure 5.10–A & 5.10–B, respectively) indicated stronger suppression in

the spectral regions corresponding to the perceptual biasing direction; however, the

difference is weaker compared to the earlier experiments in which only one biasing

sequence was present during each trial. This is presumably due to the simultaneous

presence of both biasing sequences and their interaction.

130



Finally, neural responses to the probe tones in the spectral region of the asyn-

chronous tones did not show significant change with respect to different degrees of

jitter, perhaps because the amount of asynchrony was already sufficiently large to

dominate the effects even at its smallest amount. It would be useful in future exper-

iments to investigate perceptual and neural differences for smaller jitter, i.e., < 30

ms.
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Figure 5.9: Stimulus description and behavioral performances. (A) Cartoon spec-
trogram of the stimulus in MEG experiment. (B) Averaged behavioral performance
of the subjects while performing the pitch-change direction task inside the MEG
machine, for different degrees of asynchrony. Individual performances are shown in
red. The averaged performance reveals a significant improvement in the third versus
the first asynchrony condition (one-way ANOVA, p < 0.001), and in the third ver-
sus the second asynchrony condition (one-way ANOVA, p < 0.01), indicating that
synchronous biasing sequences become more effective as the amount of asynchrony
in the asynchronous sequence increases.

5.5.2 Psychoacoustics II

In order to evaluate the role of attention in the biasing mechanism, a second set of

psychoacoustic experiments were conducted in which subjects were asked to main-

tain their attention on one of the synchronous or asynchronous biasing sequences in
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Figure 5.10: MEG neural responses in different asynchrony conditions. (A) and
(B) represent Median, 25% and 75% quartiles of the normalized neural responses to
the probing sequences in the Congruent and Incongruent groups across all subjects,
respectively. Responses to the probe sequences that precede by synchronous and
asynchronous biasing sequences are shown in gray and yellow, respectively.

the presence of the competing biasing sequence. To ensure attention to the targeted

biasing tones, subjects were asked to perform an attention task while listening to the

biasing sequences. They were then presented with an ambiguous test pair and asked

to report their perceived pitch-change direction as in the previous experiments. The

cross-effect of streaming the biasing tones and the strength of perceptual biasing

was then studied by evaluating listeners’ conditional performances from the two

behavioral tasks (See Results).

Experimental design

Stimuli & procedure The stimulus was a 5 s long sequence, consisting of 2

superimposed biasing sequences, each with 8 Shepard tones (125 ms tone length,

and 125 ms inter-tone interval). The ambiguous test pair was presented 156 ms
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after the biasing period with a tone duration and inter-tone interval of 125 ms.

For the synchronous biasing tones all of the components in each Shepard tone were

synchronized and had the same onset (as in the previous experiments), whereas in

the asynchronous case the onsets of the constituent components in each Shepard

tone were randomly jittered in the range of ±[42–84ms] (Figure 5.11–A).

A training block of 20 trials was presented to the subjects before the start

of the experiment to make sure they were able to identify and follow each biasing

sequence, independently. Subjects were then presented with 2 blocks of 60 trials

each (2 biasing directions × 2 task conditions (presence or absence of the deviant)

× 5 deviant locations× 3 pitch classes). They were asked to maintain their attention

on one of the biasing sequences (synchronous or asynchronous) through the entire

biasing period of each trial and for all trials in a block. The order of the task

(targeted biasing sequence) was counterbalanced across subjects. After listening to

the biasing tones in each trial, subjects had to decide if they heard a deviant on any

of the targeted biasing tone sequence. They were then presented with an ambiguous

Shepard pair and were asked to report their perceived direction of pitch-change in

that pair. Subjects reported the answers to both tasks after each trial.

Subjects Seven subjects (mean age, 25 y; four males) participated in this exper-

iment.
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Results

In order to evaluate subjects’ performances in the attention task (deviant detec-

tion), d′ scores were computed for individual subjects. The results indicated that

the detection performance was higher overall in the synchronous task compared to

the asynchronous task (one-way ANOVA, p < 0.0001). Trials were then separated

into 5 groups based on the temporal locations of the deviants. Computed d′ values

of the five time windows demonstrated a temporal buildup of deviant detection in

both synchronous and asynchronous attention tasks (Figure 5.11–B). This is a sim-

ilar result to the temporal build-up of the target task detection in the informational

masking paradigm discussed in Chapter 3. It was interpreted then as listeners’

improved ability in streaming the target sequence over the time. This observation

along with the earlier results on the significant improvement of the behavioral per-

formance of listeners in getting biased with respect to the synchronous sequence as

the amount of asynchrony in the competing asynchronous sequence increased, sup-

port this hypothesis that subjects are able to stream the targeted biasing sequence

in this paradigm.

Next, the effect of the streaming performance on the biasing strength was eval-

uated through computation of the marginal and conditional probabilities of subjects’

performances in the second task (perceived pitch-change direction). The probability

of reporting the pitch-change direction according to the targeted biasing sequence

spectral location, P (T2), was evaluated for each subject, as well as P (T2|T1), the

conditional probability of reporting T2 correctly given that the deviant on the tar-
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geted biasing sequence is correctly detected. In earlier experiments we have found

that presentation of only one or two biasing tones can still have a significant biasing

effect on subject’s percept; therefore, only those trials with their deviants located

on the fourth and fifth time-window were included in the analysis of conditional

probability, so as to exclude all other trials for which the deviants occurred earlier

in the sequence and listeners may have had the chance to switch their attention

between the two basing sequences afterward.

The results for the targeted synchronous and asynchronous sequences are plot-

ted in gray and yellow lines in Figure 5.11–C. The difference between the conditional

and marginal probabilities is significantly positive across all 7 subjects for both

attentional conditions (Figure 5.11–C, bar plots, one-way ANOVA, p < 0.01 &

p < 0.001, for synch and asynch attentional conditions, respectively). These results

indicate a positive impact of the first task on the second task, meaning that sub-

jects were biased more strongly in those trials, in which they were able to detect the

deviant on the targeted biasing sequence.

Differences between the marginal and conditional distributions for synchronous

conditions are significantly smaller than the asynchronous conditions (one-way ANOVA,

p < 0.01). This is probably due to the task effort being higher in following the asyn-

chronous biasing sequences compared to the synchronous tones. Note that it was

shown earlier that listeners were more strongly biased by the synchronous sequences

while passively listening to trials with mixed biasing condition.

Overall, the results suggest that although selectively attending to the se-

quences is not a necessary component in perceptually biasing listeners (subjects
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Figure 5.11: Psychoacoustics (II). (A) Schematic view of a typical stimulus. During
the presentation of the bias sequence, subjects are asked to stay focused on the syn-
chronous or asynchronous sequence and detect the presence of a deviant (elongation
of the constituent tones in a Shepard tone) along the presentation of the biasing se-
quences (T1). The deviant occurs randomly in 50% of the trials and can be placed on
any Shepard tone in the sequence. Subjects are then presented with an ambiguous
test pair and asked to report the perceived pitch-change direction (T2). (B) Behav-
ioral buildup of the detection task (T1) is plotted for synchronous and asynchronous
sequences. (C) The difference between the conditional and marginal probabilities,
P (T2) and P (T2|T1), averaged over all subjects is significantly positive (one-way
ANOVA, p < 0.01 & p < 0.001, for synch and asynch attentional conditions). It is
plotted in gray and yellow bar plots for synch and asynch conditions, respectively.
Differences between the marginal and conditional distributions for synchronous con-
dition are significantly smaller than the asynchronous condition (one-way ANOVA,
p < 0.01). Gray and yellow lines indicate the individual performance probabilities
P (T2) and P (T2|T1), for each subject.

were able to get the biasing effect by listening passively to the biasing tones), it

nevertheless enables the listeners to change their perceptual bias by actively focus-

ing on certain streams and ignoring others.

5.6 Discussion

In this chapter, the neural correlates of contextual influences in auditory perception

were investigated, and it was found that a stimulus-specific suppression of the au-

ditory cortex activity predicts a listeners subsequent percept. Further, the results
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indicated that the strength of suppression was predictive of the subjects perfor-

mance. The suppression lasted for multiple seconds consistent with the time-scales

of human performance in psychoacoustic studies. While in the present paradigm

stimulus-specificity refers to a spectral location, we hypothesize that such effects

would occur for more general contextual stimuli, and that the suppression thus re-

flects a form of early sensory memory, represented already in the auditory cortex

(e.g., in Asari and Zador (2009)).

Properties of the neural manifestation of the contextual influence The

representation of the contextual influence could have differed in multiple ways with

respect to brain stage, shape and direction. First, the contextual influence could

have lacked a representation in the auditory cortex and instead only have been rep-

resented in higher order auditory or non-sensory areas, as the effect could have been

predicted to be closer to decision-related areas, such as the prefrontal cortex (Fritz

et al., 2010). Based on source localization (using dipole fitting) and the frequency-

specificity of the response, we conclude that the responses come from the auditory

cortex instead. Second, the shape of the contextual representation could have been

very broad, based on the broad spectral content of the Shepard tones. Instead, the

specificity of the representation—in the sense of being specific to a limited range

of frequencies, and hence neighboring Shepard tone stimuli—indicates that the au-

ditory cortex represents different Shepard tones, and hence the restricted range of

Shepard tones in the context in a locally distinguishable manner. More basic mech-

anisms of local representation such as SSA (stimulus-specific adaptation discussed
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below, (Ulanovsky et al., 2003)) may contribute to this shape, but do not account

for the relation to perception in their current from. The locality suggests that a

certain amount of contextual content is retained in the representation. Third, the

contextual influence could have been expected to be in the form of an enhancement

or sensitization, rather than a suppression as was described in the primary visual

cortex of the awake mouse (Zhang et al., 2012). Instead, a representation of the con-

textual information in terms of suppression is found here, a finding that potentially

has profound consequences for theories on how prior expectations in a Bayesian

framework are encoded in the brain (e.g., (Huys et al., 2007)). Traditionally, priors

have been represented as an increase in neuronal firing rates or neuronal sensitivity.

However, physiological measurements in the auditory cortex have often displayed

suppression or reductions in firing rates during various behavioral states, such as

in preparation for task performance (Otazu et al., 2009) and memory maintenance

(Linke et al., 2011), and may thus represent a more typical strategy in the auditory

system.

Suppression reflects external context and internal state If this represen-

tation of context is general, one may hypothesize that it is not only generated by

external stimuli but is also modulated by internal expectations or just fluctuations

of brain state. Moreover, regardless of how this suppressive representation is gener-

ated, it is likely that it influences perception.

The findings in the current studies demonstrated this latter point by the fact

that contextual suppression was stronger when trials were grouped according to
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performance (Congruent versus Incongruent; Figure 5.5–A & 5.5–B) rather than by

simply the biasing spectral location. There was no significant separation based on

the latter; therefore, no data are shown. This suggests that strong suppression in-

duced either externally by biasing sequences or internally by expectations and other

top-down factors, played a causal role in inducing the reported percepts. Further

support for this hypothesis is provided by the correlation between the strength of

suppression and the average performance of the subjects (Figure 5.5–C) . Natu-

rally, a follow-up question of the present study would be to test the manifestation

of top-down influences directly, e.g., if a cross-modal cue for directional perception

manifests itself in the activity of the auditory cortex as a local suppression.

Relation to neuronal recordings of contextual effects The ensemble po-

tentials obtained in MEG/EEG recordings provide high temporal resolution, but

cannot provide insights into the representation at the level of individual cells. Pre-

vious neurophysiological studies have addressed the question of contextual tone-tone

interactions in the auditory cortex (Brosch and Schreiner, 1997; Brosch et al., 1999;

Asari and Zador, 2009); however, their focus has not been on the influence on the

representation of perceived directionality of pitch-change. Also, most studies have

been conducted in anesthetized animals, making the transition to human percep-

tion a complicated affair. Adaptation of sensory neurons to a maintained sensory

stimulation has historically been considered merely to reflect fatigue in spike gen-

eration or synaptic transmission. However, numerous studies have demonstrated

that adaptation/suppression is a much more general phenomenon, both on the per-
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ceptual and neural levels. Several forms of activity dependent reduction of neural

sensitivity have previously been described in the auditory cortex, most notably for-

ward suppression (Brosch and Schreiner, 1997; Wehr and Zador, 2005; Scholl et al.,

2010) and stimulus-specific adaptation (SSA) (Ulanovsky et al., 2003, 2004; Condon

and Weinberger, 1991). While these forms of adaptation have been discussed sepa-

rately, commonalities and interrelationships are likely to exist among them, and with

the present results. For example, in forward suppression, the interactions between

subsequent tones can be facilitatory or suppressive, with suppressive interactions

dominating especially at the frequency location of the first stimulus much like what

we see relative to the effects of the biasing tone sequences (Brosch and Schreiner,

1997; Brosch et al., 1999). In stimulus-specific adaptation, a surprising level of

locality in suppression has been demonstrated for sequences of two more and less

stimuli, with a precision on the order of a few semitones (Condon and Weinberger,

1991), and thus below the tuning width of most neurons. Furthermore, SSA has

been demonstrated to last for multiple seconds (Ulanovsky et al., 2004), to be most

prominent for the onset response (von der Behrens et al., 2009) and to be of mixed

thalamocrtical and cortical origin (Taaseh et al., 2011). Almost all studies of SSA

have been performed in anesthetized animals, leaving open the question of top-down

control of SSA. Given the similarity in time-scale and frequency specificity between

the current findings and SSA, it is likely that the two phenomena share similar

origins or underlying mechanisms. In a parallel study (Englitz et al., 2013), neural

activity in the auditory cortex of awake, non-behaving ferrets, in response to Shep-

ard biasing and test tone sequences (but not probe sequences) was recorded. As in
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the present studies, a localized suppression was measured in the frequency channels

stimulated by the bias sequences. It persisted for over a second following the end

of the bias sequence, and decayed monotonically away from the center frequency

of the bias. These findings led to the proposal that the pitch shift percepts can

be accounted for accurately by a decoding scheme based on differential suppression

of local frequency-shift-detector cells, as previously advocated by (Demany et al.,

2009).

Suppression and sensory memory Memory formation is thought to be a multi-

step process. Some computations relating to the working memory content may most

efficiently be executed close to the periphery. A putative function of the suppression

demonstrated here could be a form of sensory memory located already in primary

sensory cortex, as has been proposed by Jääskeläinen et al. (2007). Retaining the

memory of previous stimuli can be useful for comparison tasks, which are based on a

stimulus property explicitly represented in sensory cortex. An example of this kind

for frequency comparison was demonstrated by Linke et al. (2011), where a locally

reduced activity was demonstrated in the auditory cortex during the maintenance

phase between reference and probe stimulus. The authors interpreted their results

as a mechanism for the brain to prevent new information during this phase from

overwriting the memory. Similarly, Nelken and colleagues (Nelken and Ulanovsky,

2007) have argued that the local reduction observed in SSA could be interpreted as

the memory of the standard sequence, and the relatively increased response to the

deviant stimulus as the mismatch signal, commonly observed in mismatch negativ-
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ity. While this view has been challenged on more general grounds (Farley et al.,

2010), it still remains a building block for the memory involved in mismatch neg-

ativity with first order properties like frequency. In the present studies, the local

spectral suppression due to the biasing tones may mark the most likely connection

between the two subsequent test tones in the ambiguous pair, as has been proposed

more generally by Huys et al. (2007). In contrast to the aforementioned study, the

representation of this memory is, however, in the form of a reduction rather than

an increase in activity (Akram et al., 2013).

Potential controls for the probe stimulus paradigm Using MEG, it is chal-

lenging, if not impossible, to measure the activation state of the auditory cortex

during the maintenance period after the biasing context without introducing addi-

tional stimuli. In these studies a set of such probing stimuli is chosen to perform

this measurement, while ensuring that they did not influence the bias induced by

the preceding sequences. For example, in a series of psychoacoustic experiments it

has been demonstrated that the probe sequences did not overwrite the perceptual

effect of the biasing sequence. Therefore, response differences measured with the

same probe sequences can be attributed to the aftereffect of the bias sequences on

the activation state and not to the probe sequences themselves.

In a further control experiment, it was examined whether the directional per-

cepts reported by the listeners were dependent on the spectral locations of the probe

by evaluating the behavioral scores based on the locations of the probe sequences.

The behavioral performances were expected to be around chance level since the

142



probes caused no perceptual change and had no functional relationship to the per-

cepts. The lack of such a relationship was shown in Figure 5.2–A, where the probe’s

location did not have an influence on the perceived direction (at least in the presence

of a preceding bias). Finally, it should be noted that even if the probe sequences had

a minor influence on the subsequent percept, the present results would remain valid,

since every response was evaluated at the location of the probe (by the design of the

measurement), and hence the presence of the probe could not explain differences in

the response.

Contextual effects for more general stimuli The presently used stimulus

paradigm has been simplified to allow specific conclusions in a laboratory setting.

Natural stimulus contexts will rarely present such simplicity. Also, the type of am-

biguity studied here, the pitch shift between the Shepard test pair, does not occur

much in natural sounds. Nevertheless, realistic scenes are rich in ambiguities of var-

ious types, most of which are automatically resolved based on contexts at different

levels, ranging from immediately preceding stimuli to higher-level knowledge about

the current scene. In a series of audio-visual experiments, it has been shown that

videos can moderate phonetic contextual effect and disambiguate an acoustically

ambiguous precursor syllable (Fowler et al., 2000; Holt et al., 2005). According to

these studies, the presence of auditory-visual interactions cannot necessarily be dis-

tinguished among theories of speech perception. In most of the existing theories, the

information for recognition of speech sound can be provided from multiple sources,

e.g., lexical or visual, but the extent to which these sources are important can differ.
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Lexical and statistical information has been shown to result in second-order interac-

tions (Elman and McClelland, 1988; Magnuson et al., 2003; Samuel and Pitt, 2003),

whereas for visual sources, there is no evidence that the visual information produces

such indirect interactions (Huys et al., 2007). A rich body of behavioral studies in

humans report aftereffects on the perception of higher-level stimulus properties such

as identity, gender and emotion of faces (Rhodes et al., 2003; Webster et al., 2004),

for review see Clifford et al. (2007)), which are consistent with adaptive/suppressive

effects: they have been rationalized as a repulsion caused by the suppressed represen-

tation of the adaptor. These higher level effects suggest that adaptive mechanisms

are not only present in early sensory stage, but are in fact employed throughout mul-

tiple levels of perceptual processing. Another kind of generality of stimulus contexts

is presented by complex scenes, such as crowded auditory scenes, e.g., the proverbial

cocktail party situation (Cherry, 1953), where multiple speakers and other acous-

tic sources are simultaneously present. Humans outperform man-made systems in

their ability to recognize speech under these circumstances, likely by their superior

use of contextual cues, which allow better separation of sources and more accurate

predictions of subsequent input. Although the complexity of these scenes is much

higher than in the present paradigm, similar mechanisms could be applied to en-

hance stimulus recognition. A local suppression of activity would have differential

effects on attended and unattended information. Non-attended background infor-

mation is predicted on a statistical level only and leads to a cancellation with the

actual stimulus. Attended foreground information would lead to suppression on the

basis of multi-level expectations and, consequently, the difference from the actual
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stimulus can become informative as it signifies the part of the information one is

unable to predict.

Contextual effect and Streaming Although an auditory stream is not a well-

defined concept in the field of auditory science, the terminology has been exten-

sively used among auditory scientists over the last decades. It is not yet clear what

properties an auditory stream should possess or what the neural representation of

an auditory stream might be in the brain; however, some general principles are

proposed to be used as a basis for object analysis studies in any sensory domain

including auditory (see the review by Griffiths and Warren (2004a)). According to

these principles, auditory streaming involves the separation of information related

to the auditory stream and information related to the rest of the auditory world.

It should also involve the abstraction of information that is independent of the au-

ditory representation, i.e, the extraction of invariant characteristics that define a

stream in the auditory domain.

Several models in auditory scene analysis are based on the analysis of spec-

trotemporal features that form a basis for the grouping of features on which stream

formation depends. One of the important features known to facilitate auditory

streaming procedure is onset synchrony(Rasch, 1978; Bregman, 1990; Shamma et al.,

2011a). In the study of contextual effect on the ambitious Shepard tone in this

chapter, it has been shown that perceptual biasing strength is also modulated by

the onset synchrony of the biasing Shepard tones. Therefore, it was investigated

whether there is a potential connection between the streamability of the biasing
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sequence and perceptual biasing of the ambiguous test pair by conducting a number

of psychoacoustic and MEG experiments.

Dependance of the two auditory experiences above, can establish an objective

neurobehavioral measure for auditory streaming by evaluating the perceptual bias-

ing effect strength in a joint experimental paradigm. The results obtained in the

current studies suggests that listeners can successfully perform the streaming related

tasks during the basing sequence presentation, which specifically has a positive cor-

relation with their ability to get biased according to the attended Shepard sequence.

However, given the current information, one still cannot argue if streaming the bi-

asing sequence is a necessary condition for perceptual biasing of the listeners. More

psychoacoustic and neurophysiological experiments, with modified or novel experi-

mental paradigms should be used to follow up on the current studies and shed light

on the underlying connections between the two auditory experiences.
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Chapter 6

Conclusion

6.1 Thesis overview

Hearing problems and different aspects of approaching them have been extensively

explored over the last decades; however, there is still a lot to discover in this field of

research. Analyzing a complex auditory scene is a seemingly effortless accomplish-

ment for a normal-hearing listener, but it is extremely difficult to simulate such a

procedure in an artificial system. The main goal of the studies in this thesis is to

first investigate the neural mechanisms underlying auditory perception of complex

sounds at cortical level, and second, to explore neuro-biologically inspired compu-

tational models for these brain’s cognitive functions.

At an experimental level, we are most interested in unraveling the computa-

tional strategies that explains cortical activities and their underlying neural mech-

anisms. In chapter 3, we focused on investigating the neural correlates of auditory

streaming in a simplified stream segregation scenario, using an informational mask-
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ing paradigm. Evidence shown in this work argues for an interesting interaction

between bottom-up feature extraction mechanisms and top-down attentional mod-

ulations, leading to perceptual segregation of a single frequency tone-sequence from

a background of spectrotemporaly randomized tone cloud. While earlier studies fo-

cused on the role of attention as a high-level mechanism in binding relevant features

and forming a segregated stream, here we present evidences for strong dependence

of the behavioral performance to the stimulus parameters, which are directly re-

flected in the neural activity recorded from the brain. The results suggest that the

recorded neural activity from the brain can be employed as an objective indicator

of the streaming percept in listeners.

Taking advantage of the recent findings on close links between perceptual and

neural correlates of streaming, we were able to implement a computational model to

track the attentional state of listeners. In chapter 4, the proposed model capitalizes

on prior observations to build a statistically-principled decoder of human auditory

attentional states under competing-speaker auditory stimulation. The underlying

measurements represent the problem as one of Bayesian inference and propose an

EM-based procedure for estimating the latent variables. The performance of this

algorithm is demonstrated on simulated data, and then tested on real MEG data

where subject’s attention manipulated to either speaker in the stimulus mixture.

We also explored the neural mechanism underlying the contextual effect on the

perceptual organization of ambiguous sounds in the auditory cortex. The experi-

mental approaches, described in chapter 5 employed a variation of tritone paradox

as the stimulus and characterized the spectrotemporal properties of the contextual
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trace using MEG technique. The results reveal a tonotapically localized suppres-

sion trace that persists for multiple seconds after presentation of the context. Most

interestingly, the strength of the suppression was predictive of the decisions of the

listeners even when the stimulus context was not. The findings support the no-

tion that cortical responses to an auditory scene are not static, but are rapidly

and locally modified by the stimulus to leave a persistent effect which influences

subsequent stimuli and determines perceptual states.

In summery, this thesis is an attempt to explore some of the behavioral and

neural mechanisms employed by the brain to analyze complex acoustic scenes and

unravel the ambiguous auditory scenarios with the help of the contextual effect.

It would be of great interest to combine all these experimental and modeling ap-

proaches to conjecture generalized theories of auditory perception and bridge the

gap between theoretical and experimental neuroscience, hence the development of

practical engineering tools for sound processing.

6.2 Future prospects

In the last few years, there has been considerable interest in the neuroscience com-

munity in decoding high-level latent brain states from noisy neural recordings. One

such state variable is attention: primates and other high-level organisms can prefer-

entially distribute resources to encode and process a selective set of incoming stimuli

in a way that is typically not externally visible. In the case of auditory selective

attention, empirical studies have identified a set of neural variables that can be mea-
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sured to provide information about sound to which a subject is currently directing

attention. Some of these variables can be measured via magnetoencephalography

(MEG), as described in chapter 4.

An interesting future direction for this study is to use the proposed attentional

state decoder in developing an intelligent hearing aid device to help hearing-impaired

listeners in analyzing the complex auditory scenes around them. Current hearing

aids fail to recover users’ ability to hear out the speech signal in a multi-speaker

or noisy environment. Using an intelligent hearing-aid, the attended target can be

detected via the EEG/MEG recordings of the brain and enhanced through guiding a

directional microphone array or other methods that enables us to amplify and track

the target of attention. Another future prospect is to develop a brain-computer-

interface (BCI) system, which has potential applications in helping paralyzed pa-

tients. Discovering the direction of attention for these patients can be used as a cue,

combined with other sources of information, to understand their intention in the

first place and help them facilitate executing their intended task in the next step.
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Appendix A

Parameter Estimation of the
Inverse Problem

Let
Ω :=

{
κ1, κ2, {zk}Kk=1, {ηk}Kk=1

}
(A.1)

be the set of parameters.

The log-posterior of the parameter set Ω given the observed data
{
θi,k,r

}2,T,R
i,k,r=1

is given by:

log p
(

Ω
∣∣∣{θi,k,r}2,K,Ri,k,r=1

)
=

R,K∑
r,k=1

log

[
κ
W/2−1
1 pk

2πW/2IW/2−1(κ1)
exp (κ1cos (θ1,k,r))+

κ
W/2−1
2 (1− pk)

2πW/2IW/2−1(κ2)
exp (κ2cos (θ2,k,r))

]
+
[
(κ1 + κ2)c0d+ d(W/2− 1)(log κ1 + log κ2)− d

(
log IW/2(κ1) + log IW/2(κ2)

)]
−

R,K∑
r,k=1

{
1

2ηk
(zk−zk−1)

2
+

1

2
log ηk + (α+ 1) log ηk +

β

ηk

}
+ cst.

where cst. denotes terms that are not functions of Ω. The MAP estimate
of the parameters is difficult to obtain given the involved functional form of the
log-posterior. However, the complete data log-posterior, where the unobservable
sequence {nk,r}K,Rk=1,r=1 is given, takes the form:

log p
(

Ω
∣∣∣{θi,k,r, nk,r}2,K,Ri,k,r=1

)
=

R,K∑
r,k=1

nk,r
[
(W/2− 1) log(κ1) + κ1 cos (θ1,k,r)−log IW/2−1(κ1)

]
+

R,K∑
r,k=1

(1−nk,r)
[
(W/2− 1) log(κ2) + κ2 cos (θ2,k,r)−log IW/2−1(κ2)

]
+
[
(κ1 + κ2)c0d+ d(W/2− 1)(log κ1 + log κ2)− d

(
log IW/2(κ1) + log IW/2(κ2)

)]
+

R,K∑
r,k=1

[nk,r log pk + (1−nk,r) log(1−pk)]

−
R,K∑
r,k=1

{
1

2ηk
(zk−zk−1)

2
+

1

2
log ηk+(α+ 1) log ηk+

β

ηk

}
+cst.

The log-posterior of the parameters given the complete data has a tractable
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functional form for optimization purposes. Therefore, by taking {nk,r}K,Rk=1,r=1 as the
unobserved data, we can estimate Ω via the EM algorithm (Dempster et al., 1977).

Using Bayes’ rule, the expectation of nk,r, given
{
θi,k,r

}2,K,R
i,k,r=1

and current estimates

of the parameters Ω(`) :=
{
κ
(`)
1 , κ

(`)
2 ,
{
z
(`)
k

}K
k=1

,
{
η
(`)
k

}K
k=1

}
is given by:

E
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∣∣∣{θi,k,r}2,K,Ri,k,r=1,Ω
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}
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1

W/2−1
p
(`)
k

2πW/2IW/2−1(κ
(`)
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exp
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(`)
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exp
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κ
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1 cos (θ1,k,r)
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+
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2
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2πW/2IW/2−1(κ
(`)
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exp
(
κ
(`)
2 cos (θ2,k,r)

) .
(A.2)

Denoting the above expectation by the shorthand E(`){nk,r}, the M-step of the EM

algorithm for κ
(`+1)
1 and κ

(`+1)
2 gives:

κ
(`+1)
i = A−1


R,K∑
r,k=1

ε
(`)
i,k,r cos (θi,k,r) + c0d

(d+

R,K∑
r,k=1

ε
(`)
i,k,r)

 , ε
(`)
i,k,r =

{
E(`){nk,r} i = 1
1− E(`){nk,r} i = 2

(A.3)

where A(x) := −W/2−1
x

+
0.5(IW/2−2(x)+IW/2(x))

IW/2−1(x)
, with IW (·) denoting the W th

order modified Bessel function of the first kind. Inversion of A(·) can be carried out

numerically in order to find κ
(`+1)
1 and κ

(`+1)
2 . The M-step for {ηk}Kk=1 and {zk}Kk=1

corresponds to the following maximization problem:

argmax
{zk,ηk}Kk=1
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r,k=1

[
E(`){nk,r}zk−log(1 + exp(zk))− 1

2ηk

[
(zk − zk−1)

2
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− 1+2(α+1)

2 log ηk

]
.

(A.4)
An efficient approximate solution to this maximization problem is given by another
EM algorithm, where the E-step is the point process smoothing algorithm (Smith
and Brown, 2003; Smith et al., 2004) and the M-step updates the state variance

sequence (Shumway and Stoffer, 1982). At iteration m, given an estimate of η
(`+1)
k ,

denoted by η
(`+1,m)
k , the forward pass of the E-step for k = 1, 2, · · · , K is given by:
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(A.5)

Note that the third equation in the forward filter is non-linear in z̄
(`+1,m)
k|k , and

can be solved using standard techniques (e.g., Newton’s method). More details
on derivation of the non-linear forward filter can be found in Appendix B. For
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k = K − 1, K − 2, · · · , 1, the backward pass of the E-step is given by:
s
(`+1,m)
k = σ

(`+1,m)
k|k /σ
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k+1|k
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)
s
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(A.6)

The M-step gives the updated value of η
(`+1,m+1)
k as:

η
(`+1,m+1)
k =

E
(
z2k

∣∣∣Ω(`), {θi,k,r}2,K,Ri,k,r=1
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)
− 2E
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)
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1 + 2(α+ 1)
. (A.7)
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Appendix B

Recursive non-linear filter
algorithm

Assume that at time (k− 1), zk−1|k−1 and σ2
k|k−1 are given under the gaussian conti-

nuity assumption on zk. The distribution of zk given zk−1|k−1 is N(zk−1|k−1, σ
2
k|k−1),

where σ2
k|k−1 = ηk +σ2

k−1|k−1. To derive the non-linear recursive filter, we keep track

of the parameters of the posterior distribution p(zk|Ω).

log(p(zk|Ω)) =

{
−

(zk − zk−1|k−1)
2

σ2
k|k−1

}{
E(`){nk}zk − log(1 + exp(zk))− β

ηk
+

1 + 2(α+ 1)

2
log ηk

}
.

(B.1)
To find the optimal estimate of zk, we apply a gaussian approximation to

posterior prediction equation. The approximation is based on recursively computing
the posterior mode zk|k and computing its variance σ2

k|k as the negative inverse

Hessian of the log posterior probability density (Tanner). Differentiating equation
(B.1) w.r.t. zk gives

−
zk − zk−1|k−1

σ2
k|k−1

+ E(`){nk} −
exp(zk)

1 + exp(zk)
= 0 (B.2)

and solving for z yields

zk = zk−1|k−1 + σ2
k|k−1

{
E(`){nk} −

exp zk
1 + exp(zk)

}
. (B.3)

This equation is non-linear w.r.t. zk and can be solved using Newton’s method.
The Hessian of equation (B.1) is given by:

−1

σ2
k|k−1

− exp(zk)(1 + exp(zk))− exp2(zk)

(1 + exp(zk))
2 (B.4)

and hence, the variance of zk, under the Gaussian approximation is given by:

σ2
k|k =

(
1

σ2
kk − 1

+
exp zk|k

(1 + exp(zk|k))
2

)−1
. (B.5)
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Appendix C

State-space covariance algorithm

The lagged covariance estimate σk,u|K can be computed from the state-space covari-
ance smoothing algorithm (De Jong and Mackinnon, 1988) given by the following
equation:

σk,u|K = σ2
k|k(σ

2
k+1|k)

−1σk+1,u|K (C.1)

for 1 ≤ k ≤ u ≤ K. It follows that the covariance terms required for the
E-step in the state-space model are

E{zk, zk−1} = σk,k+1|K + z̄k|K z̄k+1|K (C.2)

and

E{z2k} = σ2
k|K + z̄2k|K (C.3)
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Ahveninen, J., Jääskeläinen, I.P., Raij, T., Bonmassar, G., Devore, S., Hämäläinen,
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McEvoy, L., Mäkelä, J., Hämäläinen, M., Hari, R., 1994. Effect of interaural time
differences on middle-latency and late auditory evoked magnetic fields. Hearing
research 78, 249–257.

Melcher, J.R., Levine, R.A., Bergevin, C., Norris, B., 2009. The auditory midbrain of
people with tinnitus: abnormal sound-evoked activity revisited. Hearing research
257, 63–74.

Menning, H., Roberts, L.E., Pantev, C., 2000. Plastic changes in the auditory cortex
induced by intensive frequency discrimination training. Neuroreport 11, 817–822.

Mesgarani, N., Chang, E.F., 2012a. Selective cortical representation of attended
speaker in multi-talker speech perception. Nature 485, 233–236.

Mesgarani, N., Chang, E.F., 2012b. Selective cortical representation of attended
speaker in multi-talker speech perception. Nature 485, 233–236.

165



Mesgarani, N., David, S.V., Fritz, J.B., Shamma, S.A., 2009. Influence of context
and behavior on stimulus reconstruction from neural activity in primary auditory
cortex. Journal of neurophysiology 102, 3329.

Mesgarani, N., Shamma, S., 2005. Speech enhancement based on filtering the spec-
trotemporal modulations, in: Acoustics, Speech, and Signal Processing, 2005.
Proceedings.(ICASSP’05). IEEE International Conference on, IEEE. pp. 1105–
1108.

Mesgarani, N., Slaney, M., Shamma, S., 2006. Content-based audio classification
based on multiscale spectro-temporal features. IEEE Transactions on Speech and
Audio processing 14, 920–930.

Micheyl, C., Carlyon, R.P., Gutschalk, A., Melcher, J.R., Oxenham, A.J.,
Rauschecker, J.P., Tian, B., Courtenay Wilson, E., 2007a. The role of auditory
cortex in the formation of auditory streams. Hearing research 229, 116–131.

Micheyl, C., Shamma, S.A., Oxenham, A.J., 2007b. Hearing out repeating elements
in randomly varying multitone sequences: a case of streaming?, in: Hearing–From
Sensory Processing to Perception. Springer, pp. 267–274.

Micheyl, C., Tian, B., Carlyon, R.P., Rauschecker, J.P., 2005. Perceptual organi-
zation of tone sequences in the auditory cortex of awake macaques. Neuron 48,
139–148.

Miller, L.M., Escab́ı, M.A., Read, H.L., Schreiner, C.E., 2002. Spectrotemporal
receptive fields in the lemniscal auditory thalamus and cortex. Journal of neuro-
physiology 87, 516–527.

Moore, B.C., Gockel, H., 2002. Factors influencing sequential stream segregation.
Acta Acustica United with Acustica 88, 320–333.

Moore, B.C., Gockel, H.E., 2012. Properties of auditory stream formation. Philo-
sophical Transactions of the Royal Society B: Biological Sciences 367, 919–931.

Morgan, S., Hansen, J., Hillyard, S., 1996. Selective attention to stimulus location
modulates the steady-state visual evoked potential. Proceedings of the National
Academy of Sciences 93, 4770–4774.
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Sussman, E.S., Horváth, J., Winkler, I., Orr, M., 2007. The role of attention in the
formation of auditory streams. Perception & psychophysics 69, 136–152.

Taaseh, N., Yaron, A., Nelken, I., 2011. Stimulus-specific adaptation and deviance
detection in the rat auditory cortex. PLoS One 6, e23369.

170



Tanner, M., . Tools for statistical inference, 1996.

Teki, S., Chait, M., Kumar, S., Shamma, S., Griffiths, T.D., 2013. Segregation of
complex acoustic scenes based on temporal coherence. Elife 2.

Theunissen, F.E., Sen, K., Doupe, A.J., 2000. Spectral-temporal receptive fields
of nonlinear auditory neurons obtained using natural sounds. The Journal of
Neuroscience 20, 2315–2331.

Thoma, R.J., Hanlon, F.M., Moses, S.N., Ricker, D., Huang, M., Edgar, C., Irwin,
J., Torres, F., Weisend, M.P., Adler, L.E., et al., 2005. M50 sensory gating predicts
negative symptoms in schizophrenia. Schizophrenia research 73, 311–318.
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