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An important problem in control theory is the design of observers for non-
linear control systems. By observer we mean a deterministic dynamical system
which uses observed information to compute an estimate of the state of the
control system in such a way that the error decays to zero. Baras and Krish-
naprasad have proposed that an observer design might result from a study of an
asymptotic nonlinear filtering problem obtained by adding small noise terms to
the equations defining the control system. The purpose of this thesis is to study
this asymptotic filtering problem and to develop observer designs based on their

idea.



Asymptotic nonlinear filtering problems have been studied by several authors,
and are closely related to large deviations (Wentzell-Freidlin theory). We prove
using vanishing viscosity and control theoretic methods a logarithmic limit result
for solutions of the Zakai equation. This limit is characterised by a Hamilton-
Jacobi equation which, as noted by Hijab, arises in Mortensen’s deterministic
minimum energy estimation. We make a careful study of this equation in the
light of the relatively recent theory of viscosity solutions due to Crandall and
Lions. We study the weak limit of the conditional measures and filters. Inspired
by Hijab’s large deviation result for pathwise conditional measures, we obtain a
large deviation principle “in probability” for the conditional measures, and also
a large deviation principle for the distributions of these measures.

This asymptotic analysis suggests that the limiting filter is a candidate ob-
server. We present an exact infinite dimensional observer for uncontrolled ob-
servable systems. In the case of uncontrolled nonlinear dynamics and linear
observations, Bensoussan obtained a finite dimensional observer which is an ap-
proximation to the limiting filter. A detectability condition was used to prove
exponential decay of the error, provided the initial condition lies in a bounded
region. We extend his approach to the general case of controlled nonlinear dy-
namics and nonlinear observation. In particular, we obtain an observer for a
class of fully nonlinear systems with no constraints on the initial conditions.

The Benes case is considered.
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Chapter 1
Introduction

An important problem in control theory is the construction of observers for

nonlinear control systems, say of the form

& = f(z,u), z(0)= 2o, (1.1)

where £ € IR® and y € IR. Here, the initial condition zo is unknown and y
represents observations or partial information regarding the state trajectory.
The observer problem consists of computing an estimate &(t) of xz(t), for

which the error decays to zero as t — oo; that is, to design a system

m = F(m’u,y)a m(0)=m0’ (12)

G(m),

8>
f

where m € M and & € IR", such that (for example)
| z(t) — 2(2) |[< Ce™, v >0. (1.3)

The observer state space M need not necessarily be finite dimensional. One
seeks methods for constructing the system (1.2) from the data f, h given for
(1.1).

When the control system (1.1) is linear (f(z,u) = Az + Bu, h(z) = Cz),
the observer problem was solved by Luenberger [44]. To date various ad hoc
methods have been applied in the general nonlinear case to certain special cases
(eg. linearisation, choosing convenient local coordinates, etc.), and no general

methodology has appeared.



Baras and Krishnaprasad [1] have proposed a method employing nonlinear
filtering asymptotics based on the informal idea that “nonlinear observer = limit
of nonlinear filters”. This is a probabilistic approach to a deterministic problem,
where one uses additional probabilistic structure in an effort to gain insight into
how to solve the problem.

Associate with (1.1) the family of filtering problems

dzf(t) = f(z(t),u(t))dt + VeNdw(t), z5(0) = z§, (1.4)

dy*’(t) = h(z"(t))dt + VERdv(t), y**(0) =0,

‘where w, v are independent standard Wiener processes, z§ is a random variable

with distribution x§ and density C.exp(—So(z)/€). Since zo is unknown, Sy is
chosen so that p§ = 6,,, as € — 0 for some mg € IR*. The matrices N, R are
inserted to give extra flexibility in the design (these are called design parameters);
we assume that rankN = n and R > 0. Then as ¢, § — 0, the trajectories of
(1.4) converge in probability to the trajectories of (1.1) corresponding to the
initial condition z(0) = me.

To obtain a nonlinear observer for (1.1), one then studies the limit of the
nonlinear filters for (1.4) and identifies the limiting filter (if indeed one exists).
Having accomplished this, one then must try to compute the error between the
estimate given by the limiting filter and the actual deterministic trajectory as
t — oo. Thus this approach involves two kinds of asymptotics: small parameter
and large time. The latter is very difficult in general, and is related to the
observability or detectability of the control system (1.1).

Asymptotic nonlinear filtering problems of the type (1.4) have been studied
by a number of authors. Picard [51], Bensoussan [4], and Ji [31] have treated

the case e = 1 and § — 0. Using a suboptimal filter (similar to the extended
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Kalman filter) they obtained by various techniques uniform in time estimates
of the error. Rather strong assumptions were made regarding the function A,
stronger than observability or detectability. The suboptimal filter has a 1/§
singularity, making it difficult to identify any limiting filter. In any case, the
limit would not be deterministic.

Hijab [25] treated the case ¢ = § — 0, and obtained a WKB expansion
of pathwise unnormalised conditional measures under certain smoothness as-
sumptions. In {26], Hijab derived a large deviation principle for the pathwise
conditional measures. His work in part provided the motivation for the asymp-
totic filtering method for observer design, since it identifies the limilting filter.
Mitter [47] also posed this asymptotic filtering problem. This is the case stud-
ied in detail in this dissertation. We shall make some comments on the other
cases in Section 7.3. We give a new and detailed analysis of this problem using
both PDE and probabilistic techniques. A logarithmic limit result for the un-
normalised conditional densities is obtained, and a large deviation principle “in
probability” is established for the conditional measures. We also study the weak
limit of these conditional measures and of the nonlinear filters.

We now indicate how our analysis is carried out. To simplify the discussion,

consider now

¢(t) = f(=(t)), 2(0) = o, (1.5)

y(t) = h(z(?)), y(0)=0,

with the associated noisy system

de(t) = f(a*(t)dt+ Vedw(t), =°(0) = a5, (1.6)
dy(t) = h(a*(t)dt + Vedo(t), y°(0)=0.

3



The Zakai equation for an unnormalised conditional density ¢¢(z,?) is

1
dg* = A:q"dt+;hq‘dye, (1.7)

¢*(2,0) = Ccexp(—So(z)/e),

where A, is the generator of the Markov process .

Formally applying the logarithmic transformation

Wc("v’ t) = —GIOg qe(mvt),

we obtain a nonlinear parabolic PDE for W¢. Sending ¢ — 0, then y* — y and
We — W, where W satisfies (in the viscosity sense) the Hamilton-Jacobi (HJ)

equation

2w+ max {DW - (@) +w) ~ (5 | P +5h(e) (=) } =0,

W(z,0) = So(z). (1.8)
Using the vanishing viscosity method developed by Crandall-Lions [6] and Evans—

Ishii [16], we obtain
¢“(z,8) = exp (—%[W(m,t)+o(1)]>

in probability as € — 0, uniformly on compact subsets of IR™ x [0,T]. This is
proved rigorously via the “robust” Zakai equation.

The HJ equation (1.8) is parameterised by the observation path y(:), and
characterises the deterministic limiting filter since it can be interpreted as the
Bellman equation for an optimal control problem arising in Mortensen’s deter-

ministic minimum energy estimation. Consider the auxilliary control system
z = f(z)+wu, (1.9)
y = h(z)+v,

4



where u, v are deterministic functions modelling noise. Viewing u as a control

and fixing y, we have

W(z,t) = (1.10)

infu) {So(2(0)) + J3 § | w(s) 2 +3h(2u(9))* — §(s)h(wu(s))ds : 24 (t) = z}

Noting that (h(z)—y(¢))? = h(z)?—2y(t)h(z)+y(t)?, we see that i;lfzeRn W(z,t)
is a measure of the minimum energy required for (1.9) to produce the given
output y(s) : 0 < s < t. If W(-,¢) has a unique minimiser &(¢), we call &(¢) the
deterministic estimate given y(s) : 0 < s < t. This defines a deterministic filter

Tely(+)]. In fact, we show that
Ty ()] = mly()]

as € — 0, where 7} is the stochastic filter defined pathwise.
Turning now to the second approach, the Kallianpur-Striebel formula gives

a representation for the unnormalised conditional measures of:

7i(#) = Botaexs (= [3 [ hasyds - [ n(a)ang]) (L11)

e
for all ¢ € Cy(IR"™). Using an extension of a theorem of Varadhan, we obtain the

large deviation type estimate

oi(A) < exp (—l inf W(:c,t))

€ z€A

in probability as ¢ — 0, for Borel sets A C IR". The symbol “<” denotes
logarithmic equivalence. This result allows us to prove a large deviation principle
(in a generalised sense) for the conditional measures = = of/of(IR"), and to
show that

7I‘tE = 5,,(;)
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in probability as € — 0, where z(.) is the deterministic trajectory.

We also obtain a large deviation principle for the distributions of the condi-
tional measures wf. This is a second level of large deviation behaviour for our
asymptotic filtering problem.

We can explain formally why the deterministic estimator arises naturally in
the context of large deviations as follows. In the theory of large deviations,
asymptotic probabilities are characterised in terms of variational problems. The
Wentzell-Freidlin theory [20] considers small random perturbations of dynamical
systems (see Section 2.2.2). If P% is the distribution of X* = {2°(s) : 0 < s < T}

on Q" = C([0,T), IR™), then one has
P;((A) = e‘%infseA Ix(9)
for Borel sets A C 1*, where the action function Iy is given by
Ix(0) = Soll0)+3 [ 1.~ f(0.) 7 d
X = »olvYo 2 Jo 3 s S
for absolutely continuous 8 € ", and infinity otherwise. Thus, heuristically,
P5(df) x e sx@«qpn,
Now let Py, x denote the conditional distribution of Y = {y*(s) : 0 < s < T}
given X¢ on Qo = {n € C([0,T),IR) : n(0) = 0}. Then we have
Piyx(dn | 6) = e % Jo MehO0Pdscgyn,

We can compute Pg/y, the conditional probability of X¢ given Y* on Q" using

Bayes’ rule:

Py (Aln)
Jaexp (=% S | #a — h(0s) I? ds) P (d0)
Janexp (= J& |5 ~ h(6,) |? ds) Pg(d0)
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Saexp (=2 [So(80) + J3 £ |6, = £(6,) I +1h(6,)?  1,h(8.)ds] ) “do”
Jam exp (=1 [So(00) + J5" § 102 — F(6s) [P +3h(8.)* — i, h(0,)ds]) “d6””

The expression in the exponent is just the quantity being minimised in (1.10),
and the above implies that the measures P§y concentrate on the optimal tra-
jectory as € — 0.

Finally, we turn to our observer designs. In general, we cannot obtain the
deterministic estimate &(t) from a finite set of ODEs, so we must regard (1.8)
as giving the (infinite dimensional) dynamics of the limiting filter. One notable
exception is the Bene§ class of systems, which admit finite dimensional filters.
An exact infinite dimensional observer is obtained by setting So = 0 in (1.8). If
we assume that (1.5) is observable on [0, T], then %(¢) = z(¢) for all ¢ > 0 and
all zo € IR".

We obtain a finite dimensional observer design in the spirit of extended
Kalman filtering. We use an approximate deterministic filter which is defined

by an ODE and a Riccati equation as the basis for our observer design:

m(t) = f(m(t)+QE)H(m(?)) (y(t) — h(m(t))),
QM) = Am()QE) + Q()A(m(1)) — Q) H(m(¢))H(m(t))Q(t) + I

where A(z) = Df(z), H(z) = Dh(z). This approach was initiated by A.
Bensoussan in (2] for the case h(z) = Cz.

If the nonlinearities are small, then we expect that Z(t) ~ m(t). The large
time behaviour of the error z(t) —m(t) depends critically on the initial conditions
Zo, Mo and on the growth of Q(t). Under a uniform detectability condition,
which is similar to the well known detectability condition for linear systems, one

can bound || Q(t) || uniformly. Then if | zo — mo |< p, where p depends on

7



the nonlinearities and design parameters, the error decays exponentially to zero.

The Lyapunov function z'Q(¢) 'z is used to prove this.



Chapter 2
Probabilistic Framework

Some basic results from the theories of nonlinear filtering and large deviations
are recalled below. There is now a substantial literature devoted to these sub-
jects, and in this chapter we present briefly the framework required for treating
our asymptotic nonlinear filtering problem. In addition, we prove some auxilliary

results for subsequent use.

2.1 The Filtering Problem

Let (2, F, P) be a complete probability space with a filtration {#;}, on which
are defined two independent standard Wiener processes {w;, F;}, {v:, F:} taking
values in IR™ and IR respectively. Defined also is an IR™ valued random variable
z§ independent of the Wiener processes with distribution u§, which is assumed
to have a density

ph(z) = Ce™ e (2.1)
where C. is a normalisation constant, Sp is Lipshitz continuous, convex, and
So(zo) =0, So(x) > 0if z # 29 € IR".

We consider a pair of stochastic differential equations (SDE)
dz(t) = f(z°(t))dt + Vedw(t), *(0)= a, (2.2)
dy(t) = h(z(t))dt + vedu(), y¥(0) = 0. (2.3)
Here we assume f € C}(IR",IR") and h € C¥(IR",IR). Thus there exists a

unique solution of (2.2), (2.3) in the strong sense on (R, F, P). Then {z{} is a

Markov process with generator

Ac = §A+f($)'D,



where A is the Laplacian and D denotes gradient in the z variable.

The process

X; = {z°(s) : 0<s<t}

is called the signal or state process, and cannot be observed directly. Rather, we

have available the observation process
Yo = {y(s) : 0<s< ¢},

which consists of a function of the state plus noise. The filtering problem is
concerned with estimating a functional of the state process using the information
contained in the observation process. This information is encoded in the filtration

{Y¢} defined by

Y; = o(Yy),

the o—algebra generated by the observations up to time t.
Let ¢ € By(IR"). The “best” estimate of ¢(xf) given ); is the conditional

expectation
w(¢) = Elé(=) | il

We use the notation £¢ for the conditional mean E[z{ | Vi]. The task of filtering
ltheory is to obtain representations and recursive equations for computing quan-
tities such as 7§(¢). We refer the reader to the books by Elliott [13], Kallianpur
[34], and Liptser and Shiryayev [43] for further details.

One can study filtering problems in more general settings. We choose not to
do so here, prefering to focus on the central ideas. The methods used in this

thesis can be extended if desired.
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2.1.1 Kallianpur—Striebel Formula

Fix T > 0. For ¢ € [0, T] define
O = C([0,#], R"), Qo = {n€ C([0,¢],IR):n(0) =0},

and equip these spaces with the uniform topology. .We shall always use || - ||
to denote the uniform norm. For t = T we write §imply Q" = Q%, etc. This
convention is used in other notation below (c.f. Liptser and Shiryayev [43],
Chapter 7). B(X) denotes the Borel o-algebra of a topological space X.

If (X, d) is a metric space, then (P(X), p) is the space of probability measures
on (X, B(X)) where p is the Prohorov metric (Ethier and Kurtz [15], Chapter 3):

o(v1,v2) = inf {6 > 0: 11(C) < v(C?) + 6 for all closed C C X}
for 11, v, € P(X), where
5 _ .
c —{XEX.;Ielgd(x,y) <5}.

If (X,d) is complete and separable, then so is (P(X), g), and convergence in

(P(X), o) is equivalent to weak convergence:
Vi = vast— o0

if and only if for all ¢ € Cy(X)

lim chdu,- = /X wdv.

1— o0

The random variables X§, Y defined above take values in 0}, Q0 respec-

tively. Define
P;(A) = P(X € A) (Ae€B(Q")).

11



The following theorem gives a functional integral representation for a condi-
tional expectation, and is known as the Kallianpur-Striebel formula. Refer to

Kallianpur and Striebel [33], Kallianpur [34] and Liptser and Shiryayev [43].

Theorem (Kallianpur-Striebel Formula ) Let ® € B,(Q™, IR). Then

Jan ®(0)A“(6, Y*(w)) Py (d6)
Jan A%(0,Y¢(w)) P (d6)

E[®(X%) | Y)(w) P-ae.we(, (2.4)

where

AO,7) = exp (—% [-;- /  h(6,)2ds — / t hO)dn]) (09", ne o) (25)

We use this formula to define several random measures as follows. Define

B(A)W) = [AOY@)P) (A€BE), we),  (26)
I4(A)(w) 57(6%% (2.7) -

Thus II¢ is a regular version of the conditional probability:
P(X‘ € A|Y)w) = I'(A)(w) P-as., (AeBO)).

We are also interested in corresponding conditional measures on IR®. Let

t € [0,7] and define

oi(A)w) = X({0:0,€ A})(w) (A€ B(R"), wefq), (2.8)

RAW) = SRk, 29)

So m¢ is a regular version of the conditional probability:
P(z; € A|Y)) (w) = m(A)(w) P-as. (A€ B(R")),

12



and if ¢ € B,(IR™) we have

mi(¢)(w) = Ep[d(zt) | Vil(w) (2.10)

Jan $(6:)A;(6, Y*(w)) Pk ()

Jon A0, V(@) Py (d0)

The measures (X¢, of) II¢, nf{ are (unnormalised) conditional measures.

7¢ 1s a random measure:

i+ Q — P(R") (2.11)

w — m(w).

Pathwise or robust analogues of thése measures, which we next define, are
useful from a practical poinf of view, as well as for asymptotic analysis (Hijab
[25], [26], and Chapter 5 herein). Refer to Davis [11], Sussmann [53], and others.

Using the integration by parts formula and Girsanov’s theorem, we proceed

as follows:

/m O(0)A*(0,Y*(w))Px(df) =

fex@ness (~¢ |5 [ mes@yas - [ ae@naie)]) e

- /Q<I><X‘(w))exp(
T5(X(&), Yi(w),@)P(dd)  P-as.

= /Q B(0)A%(6, Y (w)) By ey (d6), (2.12)

1 [—y%(w)h(xir(a:)) + /0 i Ve(zE(@), v (w)) ds])

€

where

1 1
Ve(@,y) = 5h(e)’ +yAh(e) — 597 | Dh(a) P (z€ R", ye R), (2.13)

€ ~ 1 t ~. 1 ¢ 2 2
Ni(0,m,0) = exp |- [ naDh(0.)dw,(@) - - [ 02| DA(6,) | ds

(e, ne, we), (2.14)

13



As(6,7) = exp (—% [;n,h(at) + /0 t V‘(Os,ns)ds]) e, ne). (2.15)
Here P, is the distribution on Q" of the diffusion |
dz<(t) = g(&(t),n(t))dt + Vedw(t), &(0) = x5,
where
g(z,y) = f(z)—yDh(z) (v € R"y€ R) (2.16)

Notice that A¢ does not involve stochastic integration, and thus is well defined
for all € o, and not just on a set of e~Wiener measure one. Further, A
depends continuously on 7 € (. These properties are inherited by the measures

we next define:

S = [AOnFd) (A€B@), ne),  (217)

Z(A)ln] 18

II°(A)[n] S )l

and also

ai(A)ml = 2‘_({9 10, € A})[n] (A€B(R), n€ ),  (219)
7 (A = ﬁ%' (2.20)
In contrast to (2.11), this can be interpreted as a pathwise filter 7¢:
7e 1 Qo — P(R") (2.21)
)
These measures also define versions of the above conditional probabilities via

S(A) (W) = S(A)Y(W)] P-as. (A€B@Q), we D), (2.22)

and in particular we have

Jom $(0)A%(0, Y4(w)) By <(uyy (d0)

_ > P-a.s. (2.23
o R0, () By (40) )

T ($)w) =

14



We now prove that these robust measures are continuous functions of 5 €
. This has been established by several authors; for example Kushner [41],

Sussmann [53].

Proposition 2.1 The map 7§ defined by (2.20), (2.21) is locally Lipshitz con-

tinuous.

Proof: 1. Let K C Qy be compact, and n,{ € K. We will show that there

exists a constant Ck > 0 such that

o(® ML) < Crellm—Cll. (2.24)

2. For any M > 0, there exists C > 0 such that

1 rt c
J(M)= sup Fexp|——= sDh(z)dw, | < e« 2.25
(M) Il r p( \/E/o nDh(a}) ) (2:25)

We have
t T
Jn D) Pds < [Tl )Pl DA P ds < c.

Then by Lemma 7.1.2 of Kallianpur [34],

1 = Eexp (-—— [\/_/ nsDh(zf)dw, — / n? | Dh(z¢) |? ds])
> e~ cE'exp (—72/0 n,Dh(:z:f,)dw,) ,
which implies (2.25).
3. Let F' C IR" be closed, and set M = sup, ¢k || 7 ||. Following the method of

Sussmann [53], we shall prove that there exists C > 0 depending on K, € but

not on F' such that

| (F)n) - a:(F)CII < Clin—-Cll-
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Note that we can write
=€ 1 (4
54(F)ln] = Eler exo ({G(X*,m)
where
€ € t 1 €N2 € t €
GUX*m) = nh(a) — [ 3h(5)? + noAch(z5)ds = VE [ n,Db(al)du.
Then
| 35(F)la] — 33(F)[C) |< B (200 — e40x"0)
= E [y exp (%G(X% An) + 1G(Xe, (1 - /\)C)) dAL (G(X¢,n) — G(X5,()).
Define
t t
F(X%7) = mh(al) — /0 ns Ach(zS)ds — v/ /0 ns Dh(z)dw,.

Note that for v > 0,
|z | < 7cosh(£).
7

Using this inequality with v =[| n — ¢ ||, we get
l - 1 ._1_ t ¢ 2 s
i Pn - aipie | < =Sl [ et e

(exp EF(XC, An+ (1= 2)¢) + “—Z—:—gﬂ

+exp [IF(X‘, M+ (1= A)0) - ﬁz—:—gﬂ]) )

€

In—¢ || e€J(M +1),

IA

as required.

4. Next we have

_¢ — &t 1

(@5 (F)nles(B)¢] - a7 (F)[¢1a:(R™)[n])

CK,c”n_C“‘

IA
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5. Let § =Ck,||n—¢ || - Then

IA

m(F)n] < #®(F)¢H+ | 7 (F)ln] - #(F)[¢] |

TE(FO)[C]+ 6,

IA

which implies (2.24). |

2.1.2 Zakai Equation

Consider the unnormalised conditional measures of defined by (2.8). Define a

new measure Py on (Q, F) by

Then, under P,
~E 1 €
ge(t) = 7 (t)
is a standard Wiener process with respect to the filtration {J5}.

Under our assumptions, o has a density:

oi(4) = [ ¢(e,t)de (A€ B(RY).

The next theorem gives (linear) stochastic partial differential equations sat-
isfied by of and ¢°. These are the Zakai equations of nonlinear filtering, in
weak and strong form. See, for example, Elliott [13], Liptser and Shiryayev [43],
Kallianpur [34], etc.

Theorem (Zakai Equation) Let ¢ € C?(IR"). We have

oi(8) = w(@) + [ oAd)ds+ 1 [(oilghdy;  Pras,  (226)
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and

| 1
dg‘(z,t) = A:q‘(x,t)dt+Zh(a:)q‘(w,t)dy‘(t) P-as., (2.27)

¢“(z,0) = po(2).

The Zakai equation can be regarded as part of an infinite dimensional reali-
sation of the stochastic filter 7€ (2.11), as discussed in Hijab [25].
From Section 2.1.1, we have a Feynman-Kac type representation for the

solution of the SPDE (2.26):
o5(8) = /Q _$(B)AS(6,Y)Py(d8)  P-as. (2.28)

A similar representation can be obtained for the solution of (2.27) using the
robust Zakai equation derived below. As noted in the previous section, such
pathwise versions will be useful in the sequel.

Define

p'(e, () = exp (~2pi(@)h(a)) ¢z, )(w). (2:29)

Using Itd’s rule, p® satisfies

2p'(2, )W) — AP (@, )w) + 9(=,4i(@) - Dpf (&, () (2:30)
b2V 3iw)) + edive(z,ui (@) P (2 1) = O,

p°(z,0)(w) = po(x), P-a.s.

and note that this equation does not involve stochastic integration. It is a PDE
with random coefficients since it depends on w € Q via Y¢. Thus fix n € ¢ and

denote by p*(z,t) = p*(z,t)[n] € Cy*(IR" x [0,T]) the unique positive solution
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of

59 (2, 8)= 589 (2, )9 2,1 D (2, )= (V*(z,me) + ediva(z, 1)) (2, 1) = 0,
(2.31)

p*(2,0) = py(2),
We refer to (2.31) as the robust or pathwise Zakai equation, and it forms part of

an infinite dimensional realisation of the pathwise filter 7¢ (2.21). This defines

a version of the solutions to (2.27), (2.30) via
pi(a,t)(w) = p(z,t)[Y*(w)] P-as. (2.32)
Let }v’x,t,[;,] denote the distribution on Qf of the diffusion:
d5(s) = —g(#(s),n(t - 5))ds +vEdu(s), 0 < s <1,
#0) = =z
Then using the Feynman-Kac formula (see Freidlin [21], Theorem 2.2, page 132),
we have
p*(z,t)[n] = (2.33)
Jap P56 exp (=2 [[3 (V4(B,yn(t = 5)) + edivg(8s, n(t — 5))) ds]) By (d6).
This together with (2.32), (2.29) yields a functional integral representation for

qg¢ P-a.s. Note also:

[pn $(@)es ¥ OMpe (. 1)[Ve(w)]dz

T (9)(w) = Jan €% @@ pe (2 1)[Ye(w)]de

(2.34)

We now give a bound and continuity result for p¢[n].

Proposition 2.2 Let K C Q" be compact. Then there exists a positive constant
C such that

Pz, t)n] < e <(C-0)
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for alln € K and all (z,t) € IR" x [0,T), and

sup | p*(z,t)[n] — p(z,)[{) | £ Clln—C|
(z,t)€ R7x[0,T]

foradlln, (€ K.

Proof: To obtain the bound, use the representation formula (2.33) and reduce
to a gaussian integral with Girsanov’s Theorem. Then bound this integral.
The proof of the continuity result is similar to that of Proposition 2.1 and

~ will be omitted. |

2.2 Large Deviations

Let (X,d) be a complete separable metric space, equipped with the Borel o-
algebra B(X). For € > 0 let {P¢} be a family of probability measures on X with
P = 6x, as € — 0, for some xo € X (weak convergence of probability measures).
Large deviations is concerned with estimating the rate at which P¢(A) — 0 as
e — 0 for events A with xo € A; that is, to study asymptotic probabilities of
“rare” events. These asymptotics are characterised by a deterministic variational
problem: minimise an action or rate function over the set A.

A general formulation for studying such problems was given by Varadhan [54],
[65], and the measures {P¢} are then said to satify a large deviation principle
(LDP). Freidlin and Wentzell [56], [20] have studied extensively problems con-
cerned with small random perturbations of dynamical systems. There are close
links to PDE problems with small parameters; see for example Varadhan [55],
Freidlin and Wentzell [20], Freidlin [21], and the references contained therein.

A large deviation principle for a family {P¢} can be obtained using purely

probabilistic methods (for example, Ellis [14], who treats statistical mechanics
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problems using large deviations). Sometimes the problem can be expressed as
an equivalent PDE problem, which may be solved using probabilistic methods
via a representation formula (for example, Freidlin {21]), or stochastic control
techniques (Fleming [17]), or by using direct analytic (PDE) arguements (for
example, Evans and Ishii [16]).

Our interest is in the small parameter asymptotics of the filtering problem,
that is, in large deviation results for conditional measures and related asymp-
totics of the filtering equations. Below we define a LDP for families of random

measures.

2.2.1 Varadhan’s Formulation

Let X be defined as above, and let {P¢} be a family of probability measures on
X.

Definition (Varadhan [54] ) We say that {P¢} obeys the large deviation principle

(LDP) with action function I : X — [0, c0] provided:

(1) I is lower semicontinuous,
(ii)  For each M > 0, the set {x € X : I(x) < M} is compact;
(iii)  For any closed set C C X,

llriljslpelog P¢(C) £ —)l(IelgI(X);

(iv)  For any open set G C X,

llrcril()nfelog P{(G) > —;relgI(x).

Typically, I(xo) = 0 and I(x) > 0 if x # xq.
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EXAMPLE Let X = IR", and consider the random variables z§ with distribution

ps and density p§ defined by (2.1). Then for regular A € B(IR"™) one has
lim p5(A) = — inf So(2).

So if z¢ & A the decay rate is given by
H(A) X emeinfzea B,

as € — 0. The symbol “<” denotes logarithmic equivalence in the sense of (iii)

and (iv) of the above definition. In terms of densities,
ligelog §(2) = —So()

Here the action function is I(z) = So(z). ///

There are two important theorems for obtaining new large deviation results

from old ones. Each has a number of variants.

Theorem (Contraction Principle, Varadhan [54] ) Let {P¢} obey the LDP with
action function I. Let F, : X — Y be continuous, where Y is another complete
separable metric space. Assume lime,o Fe = F ezxists uniformly on compact
subsets of X. Define {Q} on Y by Q¢ = P<F,'. Then {Q°} obey the LDP with

action function

J(Y) = X:F!(Ig‘:y‘[(x).

Ify is not in the range of F, then set J(y) = +oo0.

Theorem (Varadhan’s Theorem [54], [55] ) Let {P¢} obey the LDP with action
function I. Let F¢, F : X — IR be bounded continuous functions such that

Fe¢ — F uniformly as ¢ — 0. Then for any closed set C C X and any open set
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G C X, we have:

lim sup €log | exp [—-IE-F(x)] P<(dx) < —igg [I(x) + F(x)],

€0

. 1 ¢ .
lim inf € log | exp [_EF(X)J Pé(dx) > —ilelg I(x) + F(x)].

The second result is an extension to function space of Laplace’s asymptotic

method. The next result is a version of Laplace’s method (c.f. Freidlin and

Wentzell [20], Chapter 3).

Theorem 2.1 (Laplace’s Asymptotic Method) Let F : IR* — IR be Borel

measurable, bounded below. Assume that for each € > 0,
a(e) = / e Fl)dz < co.

(i) If
limsupeloga(e) < M

e—0

for some constant M < oo, then for any closed subset C' of IR™, we have

lim sup e log Ce‘%F(”)dx < —irelgF(a:).

e—0

(ii) If F is upper semicontinuous, then for any open subset G of IR", we have

liminfelog [ e~ ¢¥@)dz > — inf F(z).
c—0 G z€G

Proof:  Upper bound. Write m = infye¢c F(x) and assume m < oo. Let

0 < A< 1. Then
/ e F@dy = / e~ (@)= BFF (@) gy
(o] c
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IA

c

< ema(3),

and so

IA

elog/c e~ F @) gy —(1—=XAm+ )\(76\-) log a(%).

Therefore
lim sup elog g e F@ gy < —(1-=A)ym+ M.

¢—0
Let A — 0 to obtain the required inequality.
Lower bound. Now write m = infyeq F(z), and assume m < oo. For any
§ > 0 define
Gs = {zreG: F(z)<m+4, |z |< R}

where R > 0 is chosen large enough to ensure G5 # §. Then G5 is a bounded

open subset of G, and

[0
G

\Y

/ e_%(m+6) dz
Gs

> Ln(Gs)e—%(m+6) ,

and hence
liminf €log g e F@dz > —(m+6).
This holds for all § > 0, hence the lower bound follows. |

2.2.2 Wentzell-Freidlin Theory

The Wentzell-Freidlin theory is concerned with small random perturbations of

the dynamical system

#(s) = f(z(s)), =(0) = zo, (2.35)
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for s € [0,T], given by, for example, the SDE (2.2) with small parameter ¢ > 0.
The parameter € is a measure of the intensity of the noise, and as ¢ — 0, the
trajectories of (2.2) are “close” to the trajectory of (2.35) with high probability.
However, there is a positive (exponentially small) probability that the trajecto-
ries of (2.2) will be far from the trajectory of (2.35). The behaviour of such rare
events is captured by a LDP.

We assume that z§ has density given by (2.1). Noting that P(z{ € A) =
Jpn P(z5 € A | 2§ = z)u§(dz), the following slight extension of Theorem 1.2,

page 45, of Freidlin and Wentzell [20] is easily obtained.

Lemma 2.1 Under the above assumptions we have:

(1) there is a constant C > O depending on T > 0 such that
sup E |zt —2; | < €C;
0<t<T

(ii) for all t > 0 and § > 0,

lim P({ggax; | =°(s) - =(s) |> 6) =0.

Assume temporarily that z§ = z a.s. Let P} denote the distribution of X*

on Q" Fix T > 0 and consider the control system

() = fla()+ult), 0<t<T, (2.36)

z(0) = =,
where u : [0,T] — IR" is measurable. For 8 € Q" define
1 (T
L) = inf{3 /0 |u(t) [P dt : zu =0, 24(0) =z} (2.37)
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: JT |6, — f(6,) |* dt if 0 is absolutely continuous
= and 6(0) = «,

00 otherwise

Theorem (Freidlin and Wentzell [20], Theorem 1.1, page 104) {P:} obey the
LDP with action function I(0).

Now suppose again that z§ has distribution x§, and recall that Pg is the
distribution of X*¢ on Q™
Py(A) = /R PY(A)C,e~ @ gy,
Define for 6 € Q™:

1) = gt {SuleuO) 4 5 [ 1O Pt s mo=0f. (239

Theorem 2.2 {P5} obey the LDP with action function Ix(8).

Proof: Upper bound. For any 6 > 0, from the previous theorem we have, for
C C Q" closed,
€ 1 .
PYC) < exp (- |jnf 2(0) - 6]).

for € > 0 sufficiently small. Then
P(C) £ C / exp (—l [So(x) + inf I,(9) — 6]) dz
= € R p dec z
and hence

limsupelog P¢(C) < — zienlg" [So(x) + 323 13(0)] +6

e—0

= —IX(H) + 6’
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using Theorem 2.1. Since § > 0 was arbitrary, the upper bound follows.

Lower bound. Note that if G C Q" is open, then

T 522 I,(9)

is upper semicontinuous. The lower bound follows using

PUG) 2 exp (= [int 1(6) + 6]

€

and Theorem 2.1. |

Let Pxy, Py denote the distributions on Q" x Qqo, Qo of (X¢,Y*), Y re-
spectively. Define for (8,7) € Q" x Qo,
3S0(b0) + 5 J3 105 = £(8,) 12 + | s — A(8,) [* ds
Ixy(8,n) = if (8,n) is absolutely continuous, (2.39)
00 otherwise;

and for 5 € Qo,

Iy(n) = aiergfnfxy(a,ﬂ)- (2.40)

Corollary 2.1 {Pgy} and { P} obey the LDP with action functions Ixy(8,7)

and Iy(n) respectively.

2.2.3 Large Deviations for Random Measures

As before let (2, F, P) be a probability space, and let X be a complete separable
metric space. We are interested in the following situation: {Q¢} is a family of

random probability measures on X with
(QC é 5Xo
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for some xo € X. That is, the probability measures Q° converge weakly in

probability to the point mass at xo: for all a > 0,
lig P (6(Q%,5) > @) = 0.

Let now {Q¢} be a family of random probability measures on X.

Definition 2.1 We say that {Q} obeys the large deviation principle in

probability (LDPP) with action function J : X — [0, 00] provided:
(i)  J is lower semicontinuous;
(ii)  For each M > 0, the set {x € X: J(x) < M} is compact;
(iii)  For any closed set C C X,
limsup elog Q°(C) < — ;22 J(x) in probability;
e—0

(iv) For any open set G C X,

hrcrllonf elog Q*(G) > — )1(1612 J(x) in probability.

Remark This definition is smiliar to a definition by Ji [31], who considered
filtering problems where a small parameter appears in the observation equation

only, and not in the state equation. ///
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Chapter 3
The Observer Problem

In this chapter we define what we mean by the term observer. The defi-
nition given is rather general, in as much as the observer state space may be
infinite dimensional, as is typically the case in nonlinear filtering. We discuss
the well known definitions concerning observability in the light of our definition,
and introduce a notion of uniform detectability which extends the definition of
detectability for linear systems.

The asymptotic filtering method is applied to detectable linear systems. Fi-

nally, we review several approaches proposed by other authors.

3.1 Problem Statement

We wish to design an observer for the nonlinear control system

T = f(:l:,u), z(0) = o, (3.1)

y = h(z),

with state z(t) € IR", control u(t) € [—1,1]™, and observation y(t) € IRP. The
initial condition zo € IR™ is unknown.

The problem is to use the available information t — u(t) and ¢ — y(t) to
compute an estimate Z(¢) of the state z(t) such that the error e(t) = z(t) — &(¢t)
converges to zero as t — co.

In general, some a priori knowledge concerning the initial condition zq is
required. We quantify this by saying that zo belongs to some class Z which

depends on: the problem data f, h; the initial estimate Zo; and on various

29



design parameters. For example, T = {z¢ € R" : | zo— & |< p}. It is desirable

that T be as large as possible, to maximise the permissible initial uncertainty.

Definition 3.1 An observer for the control system (3.1) is a dynamical system

M= Flmu,y), m(0)=mo, (32)
& = G(m),
such that
Jim | a(8) = 3(6) | = 0 (33)

for all zo € T, where T is a subset of IR".

Here, m(t) € M and Z(t) € IR*. The observer state space M may be infinite
dimensional (c.f. nonlinear filtering). Of course, observers for which M = R,

for some ! < 0o, are most useful.

3.2 Observability and Detectability

For an observer design to be successful, the measurements t — u(t) and t — y(t)
must contain “enough” information about the state trajectory. This information,
together with Z, is used by the observer to estimate the state. In an effort to
make precise what “enough” means, in this section, we study various notions of
observability.

Observability addresses the question: what does the information contained in
the measurements reveal about the states? More precisely, consider the control
system (3.1) and let ~, denote the flow corresponding to a control u : ¢
u(t). Let z}, x3 denote two initial conditions. Can the states zj and zj be

distinguished by comparing their observation records for some control u?
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Definition The control system (3.1) is gbservable if given any z} # z2 € R*

there erists a control u such that

b (ru(t)zd) # b (u(t)z?) (3.4)

for some t > 0. If (3.4) holds for some u, we say that the states z} and z2 are

distinguishable with respect to the control u.

Note that in general, p < n and A : IR® — IRP is not one to one: A is often
a submersion. Also, the control enters the definition in an essential way. There
may be many controls for which zj and z2 are indistinguishable.

In general, it is difficult to give criteria for testing whether or not a given
system is observable. A number of authors have addressed this issue, most
notably in the pioneering work of Hermann and Krener [24]. See also Isidori
[28].

There is an algebraic test for a weak form of local observability. Let U be a

neighbourhood of z¢ € IR*. Define

I(zo,U) = {zg€ U : z§ is not distinguishable from z, with

respect to u and v, (t)zo € U, 7u(t)zg € U for all t}.

Definition The control system (3.1) is said to have the local distinguishability

property if every o € IR™ has an open neighbourhood V' such that for all open
neighbourhoods U of zo, U C V, one has I(zo,U) NV = {z0}.

Let
(Ly | dh) = Span {Li(dh) 1w [=L,1]™, j=1,...,p; i=1,2,...} (3.5)
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denote the smallest codistribution containing {dh!,---,dh?} which is invariant
under the vector fields {f(,u) : u € [~1,1]™}. Here, Ly(.,) denotes the Lie
derivative with respect to the vector field f(-,u), and dh’ is the gradient 1-form
for the real valued function A%, j = 1,...,p, and the span is taken with respect

to the ring C*°(IR"). This is called the observability codistribution [24).

Definition The control system (3.1) is said to satisfy the observability rank

condition at zo € IR™ if there exists a neighbourhood U of x¢ such that
rank(L;s | dh)(z) = n (3.6)
fordlzelU.

Theorem (Hermann—Krener [24]) If the control system (3.1) satisfies the ob-
servabilty rank condition at xo, then the system has the local distinguishability
property at xo. Conversely, if the control system (3.1) has the local distinguisha-

bility property, then the observability rank condition is satisfied generically.

The idea is that if the observability rank condition fails, then the leaves
of the foliation induced by the annihilator of the observability codistribution
form equivalence classes of indistinguishable‘ states. Such local results amount
essentially to obtaining information by “differentiating the output”.

The definition of observability is connected with the problem of determining
exactly the unknown state. As we shall see in Chapter 6, it turns out that,
rather surprisingly, a notion weaker than observability is sufficient for successful
observer construction. We are not necessarily trying to recover the state exactly.
Rather, it suffices to estimate the state trajectory asymptotically as t — co. One

can construct observers for detectable linear systems (defined in the example
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below) which are not observable. This was first noted by Wonham; see [59],

Chapter 3. The situation is similar for nonlinear systems; see Chapter 6.

Define

A(z,u) = Df(z,u),

H(.’L‘) = Dh(x)’

where D denotes the gradient in the z variables. Assume that

Al = sup || A(z,u)| < oo,
z€R®, |ul<1

|H|l = sup || H(z) |l < oo.
z€R"

Definition 3.2 The control system (3.1) is uniformly detectable if there exists

a bounded continuous matriz valued map z,u — A(z,u) and a constant ap > 0
such that

0 (A(z,u) + A(z,w)H(z))n < —oo|n [? 3.7)

forallne R*, z € R, u € [-1,1]™.

A disadvantage of this condition is that it is in general difficult to check, and
A(z,u) may be hard to compute. No simple rank-type condition exists to date.

A simple but less general condition is the following.

Definition 3.3 The control system (3.1) is uniformly of full rank if there exists

a constant sg > 0 such that
H(z)H(z) > sol (3.8)

for all z € IR".

33



EXAMPLE (Linear Systems) Consider

&t = Az+ Bu, (3.9)
y = Cuz.
The system (3.9) (or the pair (C,A)) is observable if
ﬁ ker(CA*™Y) = §.
i=1
Here,

(L | dh) = span{C,CA,---,CA™ 1}

and so observability is equivalent to the rank condition
rank[C,CA,---,CA"] = n.

Let S(A) denote the stable subspace of A, that is, the span of the (generalised)
eigenvectors corresponding to eigenvalues with strictly negative real part. The
pair (C,A) is detectable if

() ker(CA™") C S(A).

=1
This is equivalent to the existence of a matrix A such that the eigenvalues of the
matrix A + AC have strictly negative real parts (Wonham [59]). Thus uniform
detectability for (C, A) implies detectability, but not conversely. States zj, z2
are indistinguishable if

zy—xh € [) ker(C A1),
=1
So observability implies detectability, but not conversely. ///
Thus uniform detectability requires roughly speaking that states which are

unobservable decay exponentially to zero.
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Remark Filtering theory does not generally address the observability issue.
Mitter [45] mentions observability in connection with his discussion of the ex-
tended Kalman filter; we discuss this further in Chapter 7. The conditional ex-
pectation gives the conditional minimum variance estimate, but the error does

not in general converge to zero as t — oo; see Kunita [36]. ///

3.3 Application to Linear Systems

In this section we provide a complete description of the asymptotic filtering
method as it applies to detectable linear systems. For further details, refer to
Baras, Bensoussan and James [2].

The method constructs explicitly an observer for the linear system
z(t) = Az(t)+ Bu(t), z(0) = zo, (3.10)
y(t) = Caz(1),

as the asymptotic limit of (Kalman) filters for a family of associated filtering

problems
dz*(t) = Az%(t)dt + Bu(t)dt + VeNdw(t), z°(0) = z, (3.11)
des(t) = Cz(t)dt + VeRdv(t), £(0)=0.

Such a construction is suggested by the fact that for certain choices of Qf =
cov(z§), the filters are independent of ¢, as discussed in Baras and Krishnaprasad
(1]

The work of Hijab [25], [26] is indispensible here in deriving a large deviation
principle for certain conditional measures (see Chapter 5), and identifying the

limit of the filters for (3.11) as an associated deterministic estimator (Chapter
4).
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We assume that z(t) € R", u(t) € R™, y(t) € IR?, and t — u(t) is piecewise
continuous.

The observer problem here consists of constructing a dynamical system
m(t) = Em(t)+ Fu(t)+ Gy(t), m(0) = mo, (3.12)
Bt) = Hm),
so that the error
e(t) = z(t) — (1) (3.13)
decays exponentially fast to zero, at a rate controlled by the designer, indepen-
dent from the choice of mg and zo. Here the matrices F, F, G and H are possibly
time-varying and the dimension of m(t) is not necessarily n.
Solutions to this problem are well known, first given by Luenberger [44]. In

particular, if the pair (C,A) is detectable, then there exists a matrix I' such that

the matrix A + I'C has eigenvalues in the open left half plane. Then set
E=A+TC, F=B, G=-TI', H=1.
In this case the error (3.13) satisfies
é(t) = (A+TC)e(t), e(0)=zo— mo,

and the eigenvalues of A + I'C can be arbitrarily assigned by the designer if
and only if (C,A) is observable. Typically I is selected by transforming (C, A)
into the observer standard form and choosing the coefficients of I' to achieve a
desired characteristic polynomial for A+T'C. Alternatively, one may employ the

grammian approach for stabilisation of Kleinman [37].

Consider the system (3.10). Define £(¢) = f§ y(s)ds, so that (3.10) becomes
z(t) = Az(t)+ Bu(t), z(0) = zo, (3.14)
£it) = Cz(t), £0)=0.
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Then associate with (3.14) the family of filtering problems (3.11), where w, v
are independent standard k-dimensional, respectively p-dimensional Brownian
motions. The initial condition z§ is Gaussian, independent from w, v with
E(z§) = mot, cov(z§)=Q§ , where Qf is positive definite. The matrix R is
assumed positive definite.

As is well known, the minimum variance estimate £¢(t) = E(z(t) | £¢(s),0 <
s £ t) for the linear Gaussian filtering problem (3.11) is given by the Kalman
filter [10]

dif(t) = A#(t)dt + Bu(t)dt + Q°(t)C'(RR') ™ (dé*(t) — C*(t)dt),

£(0) = moS, (3.15)
where Q)¢ satisfies the Riccati equation
Q(t) = AQ(t)+ QA - Q(t)C'(RR)'CQ(t) + NN', (3.16)
Q(0) = Qi/e

Note that these filters depend on € only via the matrix Q§/e. In fact, if we choose
Q5 = €Qo, then all the filters are independent of € and identical with the filter

fore=1.

Define

m(t) = Am(t) + Bu(t) + Q(t)C'(RR) 7 (y(t) - Cm(t)),  (3.17)

m(0) = my,
where Q(t) is the solution of the Riccati equation

Q) = AQ)+Q()A-QMC'(RR)TCQ()+ NN, (3.18)

Q(O) = Qo
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As is discussed in Chapter 4, m(t) = &(t) is the deterministic minimum energy
estimate of z(t) given the observation record ¥; = {y(s);0 < s < t}. This is
closely related to a large deviation principle for the conditional measures (Chap-
ter 5), and (3.17), (3.18) is the limiting filter. In fact, if lim..o m§ = mo and
limeo @f = Qo, one can prove:

limE | 3(t) — m(t) [*= 0

e—0

uniformly on [0,7]. In fact, m(-) coincides with the solution of (3.10) for the
initial condition z(0) = mq.

We are interested in the asymptotic behaviour of e(t) = z(t)—~m(t) as t — oo,
and we make the natural assumption that the pair (C, A) is detectable. We also
assume rank N = n and R > 0. It is important to obtain bounds on || Q(¢) ||
and || P(¢) ||, where P(t) = Q(¢)~'. As will be explained in Section 6.2, there

exist constants ¢ > 0, p > 0 such that

QM) I<q, I P@ <P

for all ¢ > 0. As in [2] and Section 6.3, one can use the Lyapunov function
z'P(t)x to prove

| z(t) —m(t) | K | 20 —mo e

for all ¢ > 0, for some I > 0, v > 0.

Thus the deterministic filter (3.17), (3.18) is an observer for the linear control
system (3.10). This design is a useful alternative to the standard Luenberger
design, and can be easily be extended to time varying systems provided that we

assume uniform complete observability (Kalman’s terminology [35]).
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3.4 Other Approaches

In this section we give a brief survey of some observer designs proposed by other
authors that have come to our attention. This discussion will serve to place our
approach in perspective.

Since the linear theory is well understood, it is perhaps natural to use linear
theory where possible in designing observers for nonlinear systems. One obvious
approach is to linearise the system (3.1) about an equilibrium zo, ug: f(zo,u0) =
0. Expanding z(t) = zo + 6z(¢) + ..., u(t) = uo + éu(t) + ..., we obtain the

linear system

S&(t) = Agbz(t)+ Bobu(t), (3.19)

Sy(t) = Cobz(t).

Then if (Co, Ao) is detectable, one might design an observer for (3.19) and use it
to estimate z(¢), the state of (3.1). This of course would be valid only for small
excursions from the equilibrium.

Another approach is to try to find coordinates in which the system exhibits
suitable linear features. For example, Krener and Respondek [39] consider the

system

£ = f(&u), &0)= &, (3.20)
¢ = h(&),

in some neighbourhood of a given point £,. Here, ¢ € IR*, ¢ € IRP. Under certain

conditions, they find coordinate transformations = : IR* — IR", ® : IR? — IR?,

§=E(z), ¢=2(),
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so that (3.20) becomes

¢ = Az+1(y,u), (3.21)

y=0.’13,

where (C, A) is an observable pair in observer standard form. Then I' can be
chosen so that A+ I'C has eigenvalues with negative real parts and an observer
for (3.21A) is

2 = (A+TC)z—Ty +4(y,u),

with error equation (e = z — 2)
e = (A+TC)e.
To obtain an observer for (3.20), one writes the ODE for { = Z(z):

{ = F(¢ ¢,0).

Then at least on a compact region containing o, the er.ror € — ¢ decays expo-
nentially to zero.

Most of their paper [24] is devoted to conditions under which the above
procedure is possible. These conditions are related to local observability, and the
computation of the coordinate transformations requires the solution of certain
PDEs. This approach has been extended by Levine and Marino [42], where
the nonlinear system is immersed in a linear system of higher dimension; the
transformations are local immersions rather than local diffeomorphisms.

Kuo, Elliott and Tarn [40] consider the uncontrolled system
z = f(z), (3.22)

y = h(z).
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They propose the following design:

¢ = f(2)+ B(y — h(2)).

If there exists a constant matrix B and a positive definite constant matrix Q

such that
Q (Df(z) — BDh(x))
is uniformly negative definite, then the error decays exponentially to zero for all
initial values. Their proof uses the Lyapunov function e'Qe. Notice in particular
that B and @ must be constant, and no constructive procedure for selecting
these matrices is given.
Observer design for bilinear systems

& = <A+iu,-B,-)w = A(uw)z, (3.23)

=1

y = Cu,

is nontrivial. A survey of some design methods is presented in Derese, Stevens

and Noldus [12]. A candidate observer is
z = (A(u) +T'(w)C) z — T'(u)y, (3.24)

with error equation

é = (A(u)+T(w)C)e. (3.25)

Then in order that (3.24) be an observer for (3.23), one needs to find a matrix
valued function I['(:) such that (3.25) is asymptotically stable for all controls
t — u(t). The results discussed in [12] address this issue, and sufficient con-
ditions are obtained which are applicable in various cases. In general, no con-

structive method for computing I'() is available, a difficulty shared with uniform
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detectability. Williamson [58] views (3.23) as a time varying linear system and
seeks to transform this system into a canonical form.

We finally remark that observer theory for linear systems remains an active
area of research: O’ Reilly [49]. For linear time varying systems, it seems impos-
sible to avoid using the observability grammian; no simple rank-type condition

is known. See also Section 6.4.1.
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Chapter 4
Deterministic Estimation

In 1968, Mortensen [48] proposed a deterministic method for state estimation
(filtering), based on the idea that the most likely state trajectory has minimum
energy (in a certain sense). The resulting filter is infinite dimensional, being
characterised by a Hamilton-Jacobi equation, and generically the estimate is
not computable by a system of finite dimensional equations. This difficulty is
shared with the stochastic method of filtering recalled in Chapter 2. In his thesis
[25], Hijab studied Mortensen’s method and compared it with the stochastic
approach. He was interested in the finite dimensional computability issue, as
well as small parameter asymptotics.

We employ the relatively recent notion of viscosity solution for Hamilton—
Jacobi equations and give a new treatment of Mortensen’s method. This is
fundamental to the use of PDE techniques for proving the small parameter
asymptotics in Chapter 5. In addition, we obtain a continuity result when the
deterministic estimator is well defined, and introduce an approximate determin-

istic estimator which will be the basis of our observer design in Chapter 6.

4.1 Formulation

We begin by reviewing Mortensen’s method [48], [25] of deterministic minimum

energy estimation.
Given an observation record ¥; = {y(s), 0 < 3 < t}, 0 <t < T, of the

deterministic system

t = f(z) + u, z(0) = =z, (4.1)
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g = h(z) + v, y(0) =0,

we wish to estimate the state at time ¢, the initial condition zo being unknown.
Here, v € L*([0,T],R"), v € L*([0,T), IR) are deterministic models for noise.
We assume that f € C}(JR", R") and h € C}(IR*, IR). Then

Y; € Qg’: = {n € Qo : 1 is absolutely continuous and || || < oo}

where
. - 1
I e = (/0 mds) -
The most likely path is one for which u,v have least energy and produce the

given observation record Y;.

More precisely, define
. 1 rt
Ji(zo,u,v) = So(zo) + 5/(; (] u(s) |? +v(s)2) ds, (4.2)

where S, is Lipshitz continuous, convex, and So(mo) = 0, So(z) > 0if z #
mo € IR*. A minimum energy input triple (g, u*,v*) given Y; is a triple that
- minimises J; subject to the constraint that the trajectory of (4.1) produces the
output Y;. By replacing v(s) by g(s) — h(z(s)) in (4.2) and omitting the y(s)?
term, we can formulate an equivalent unconstrained optimal control problem.

Define
Ju(zo,u) = Solzo) + /Ot L(2(s), u(s), s)ds, (4.3)
where
1 g 1 2 .
L(z,u,s) = 3 Pu |® + —2-h(a:) — y(s)h(z). (4.4)

We now minimise J; over pairs (zo,u). The deterministic or minimum energy

estimate () given Y; is defined to be the endpoint of the optimal trajectory
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s — 2*(8), 0 £ s £ t, corresponding to a minimum energy pair (z§,u*) : () =
z*(t).

| Next, we use dynamic programming to study this problem. Given a control
t — u(t), let z, denote the corresponding trajectory (given a specified initial
condition). Following the general scheme presented in Fleming and Rishel [19],

define a class of admissible pairs (zq, u) by
Uy = {(z0,u) € R* x L*([0,T],IR") : z,(0) = zo, z,(t) = z}; (4.5)

that is, pairs for which the corresponding trajectory passes through a specified

point z at time t. Define a value function

W((E, t) = (zo ui)nef Uss Jt(.’Bo, U) (46)

Note that this is a reversal of the standard set—up of dynamic programming
[19]. By using standard methods, we see that W(z, ) is continuous and formally

satisfies the Hamilton—-Jacobi-Bellman (HIB) equation
2W(z,t) + H(z,t,DW(a,t)) = 0, (4.7)

W(.’E,O) = So(w),
where ‘
H(z,t,)\) = max {A(f(z) +u) — L(z,u,t)}. (4.8)

W(z,t) is the minimum value of J, subject to the end point condition z,(t) = z.

The deterministic estimate is given by:

() = MEUR W(op), (4.9)

and we say that the deterministic estimator is well defined if Z(t) is the unique

minimiser of W(-,t) for each t and each observation record. When we wish to
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make explicit the dependence on the observation path, we write W(z, t)[Y], etc.

As described by Hijab [25)], this gives a deterministic estimator (filter) #:
7o QF, - P(RY (4.10)
Yi = bsmwa-

In control theoretic terms, we can regard the HJB equation (4.7) as part of an

infinite dimensional realisation of the map # (c.f. Hijab [25]).

Proposition 4.1 For any Y; € Q{{:, there exists a minimum enerqy pair
(z5,u*). If the map J,: Q" — IR defined by

v t1, . 1 .

J.(8) = So(00) + /0 5100 = £(8.) P +5h(0.)* = 5.h(0,)ds (4.11)

is strictly convez, then the minimum energy pair (zg,u*) is unique. If this holds

for each 0 <t < T, then the deterministic estimator (4.10) is well defined.

Proof: Notice that _

Ji(0) = Ju(60,0 — £(6)).
One can check that J; is lower semicontinuous (uniform convergence) and for
each M > 0, {§ € Q" : J,(§) < M} is compact (uniform topology). Hence there

exists 8* € Q" such that

v

Ji(07) = grelsi)r}* J:(0).
Then (63, * — f(6*)) is a minimum energy pair. The remaining assertions are

easily verified. |

EXAMPLE (Linear Systems; Krener [38] ) Consider the system
¢ = Az+ Nu, z(0) = =z, (4.12)
y = Cz+ Rv,
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with energy or cost function

1
Jt(.’Eo, u) = 5(.’1,‘0 - mo),.Po(.’Do - mo)

t1
+ [ 5 uls) [P 45 | BCa(s) P ~(s)(RR)™Ca(s)ds,
0 2 2
where Py > 0, R > 0, and rank/N = n. The value function has the explicit form
t]

W(a,0) = Hz—2()) PO e300+ [ 5 | B0(s) P —i(s)(RR)™C4(s)ds,
where #(t) is the deterministic estimate, given by

&(t) = AZ(t)+ P()"'C'(RR)™(y(t) — C#(t)), #(0) = mo, (4.13)
and P(t) is the positive definite solution of the Riccati equation

P(t) = —P(t)A—- A'P(t) - Pt)NN'P(t) + C'(RR)™'C,  (4.14)

P(0) = P,

Thus the deterministic estimator for the linear system (4.12) is well defined

and has a finite dimensional realisation (4.13), (4.14). ///

4.2 Viscosity- Solution

We now turn to the HJB equation (4.7). If Y € Q&' then the Hamiltonian H

(4.8) is in general only measurable in t. In this section we restrict ourselves to
Y, € 05, = {n € C}([0,¢], IR) : n(0) = 0}.
This space is equipped with the norm
7 ller = sup 17i(s) 1.

Then H € C(IR™ x [0,T] x IR*; IR).
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Now we prove that W(=z,t) is the unique viscosity solution of “thél. A
Hamilton-Jacobi-Bellman equation (4.7). Our assumptions imply that U, £0
for all z € R*, 0 <t < T, and consequently W(z,t) < oco. The analyslis' doés- "
not assume existence of optimal controls. » : . |

The following definition is taken from Crandall, Evans and Lions [9]. Wri-;ce.‘. .
C = C(R" x (0,T), R), and similarly for C* = C(IR" x (0,T), IR). |

Definition Let W € C. We say that W is a viscosity subsolution of (4.7)
provided that for all $ € C! the following property holds:

if W — ¢ attains a local mazimum at a point (z,t) € IR™ x (0,7, then
24(z,t) + H(z,t,Dé(s,t)) < 0. (4.15)

We say that W is a viscosity supersolution of (4.7) provided that for all ¢ € C?

the following property holds:
if W — ¢ attains a local minimum at a point (z,t) € IR™ x (0,T), then

24(z,t) + H(z,t,Dé(z,t)) > 0. (4.16)
If W is both a viscosity subsolution and supersolution, we say that W is a vis-

cosity solution of (4.7).

Lemma 4.1 (Principle of Optimality) Let 0 <t — h <t. Then

W(z,t) = inf {W(wu(t—h),t——h) + /tihL(mu(s),u(s),s)ds}. (4.17)

(30 1"’) Eux,t

Proof: Let (2o, u) € Uy and choose (&o, &) € Uz, (t—h),t-h- Define

a(s) 0<s<t—h
u(s) =
u(s) t—h<s<t.
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Then @ € Uy, and hence
t—h '
We,t) < Sol@o)+ [ Liwals)i(s),slds
t ) . ‘.
+/t_h L(zy(3),u(s), s)ds. _ |
Taking the infimum of the right hand side over (%, %) € L‘{zu(t_h);t_f.j"mvve obtain
t . .
W(z,t) < W(zy(t —h),t - h) + / L(wu(s), u(s), s)ds.
t- -
Now let 6 > 0. Choose (%o, %) € U, such that
t
W(z,t)+6 > So(za(0)) + / L(za(s), @(s), s)ds
> W(za(t—h),t —h) + / L(za(s), @(s), 8)ds
(:cu,hl)lgu,,. {W(wu(t —h),t—h)+ /t_h L(z.(3),u(s), s)ds} .
These inequalities imply (4.17). [ |
Fix (z,t) and choose ¥ > W(z,t). Define
Z'{:;:Y,t = {(mO,u) €Uy ¢ Jt(wo’u) <7},

= {z'eR* :|z—2'|<€}.

Lemma 4.2 Fiz € > 0. Then there exists > 0 such that if (zo,u) € U], then
zu(t —h) € B for all0 < h <19.
Proof: Note that z,(¢t) = ¢ € B.. Define
Tu = sup{h >0 : z,(3) € B for all s € [t — h,t]}.
Then | z,(t — ny) — z |= €. Let

= inf e
" (zou) € u;',t "
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We want to show that n > 0. Suppose not; 7 = 0. Then there is a sequence
(zg,u™) € U, with 1y, — 0 as n — co. Write z, = z,,, etc.

Now f is continuous, so there is a constant K > 0 such that | f(z') |< K for
all ' € B,. Then
0 < € = lil?"‘-'lfn(t“'"?n)‘
t
< [ (1 F(@a(6) |+ L un(s) ) ds
t=mm
t
< Kn, + | un(s) | ds
t

- —7n
Choose Np > 0 such that n > Ny implies K7, < ¢/2. Then
¢
0 < ¢/2 < | un(s) | ds for n > Np.
t—17n

(Note that if U is bounded, then the lemma follows from this inequality.)

Next, since (z3,u") € Uy, it follows that
t
/ lu(s) [Pds < 7.
t=nn
Then

0 < €2

IA

t

[ Tun(s) | ds
t=nn

< VM for n > No,

using the Cauchy-Schwarz inequality, which is impossible since /7, — 0. Con-

sequently 7 > 0 and the lemma is proved. |

Theorem 4.1 The value function W(z,t) defined by (4.6) is the unique viscosity

solution of the Hamilton-Jacobi-Bellman equation (4.7).

Proof: First we show that W(z,t) is a viscosity subsolution. Let ¢ € C* and

suppose that W — ¢ attains a local maximum at (z,t). Then there exists ¢ > 0
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such that

W(z,t) — ¢(z,t) > W(z',t') — é(z', ") (4.18)
forallz' € B, |t -t |[<e.

Choose a constant control %(s) = u € U. There is an zo such that (zo,u) €
Uzs. Choose 0 < 6 < € such that z4(s) € B. for | t — s |< §. The Principle of
Optimality (4.17) implies

t
W(z,t) < Wi(za(t —h),t — k) + / | L(@a(s), @(s), 8)ds. (4.19)
. t—
If 0 < h <6, then (4.18) gives

W(z,t) — d(z,8) > W(za(t—h),t —h) — d(za(t —h),t —h).  (4.20)

Combining (4.19) and (4.20) we obtain

¢(xﬁ(t ” h)at - h) — ¢(x7t)
—h

_ 711,-/;}; L(z3(3),%(s),s)ds < 0.

Letting h — 0 we ha,ve
24(z,t) + Dé(z,t) - (f(2) +u) - L(z,u,t) < 0.

But this holds for all u € U, hence (4.15) and so W (z,t) is a subsolution of (4.7).
To see that W(z,t) is a viscosity supersolution, let ¢ € C' and suppose that

W — ¢ attains a local minimum at (z,t). Then there exists an € > 0 such that
W(z,t) — ¢(z,t) < W(a',t') — ¢(z',¥,) (4.21)

forallz’ € B, |t/ —t|<e
Suppose, contrary to (4.16), that there exists a § > 0 such that
2 ¢(z,t) + H(z,t,Dé(z,1)) < ~0 < 0.
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By continuity, reducing e > 0"if_ hééjessary;
2 o(a', 1) + max {D¢(w t )(f(a: ) + u) L(x',u,t')} <-0<0 (4.22)

forallz’ € B, | t — t’ |< €. Let’ kel > W(a: t) and let 7 be given as in Lemma 3.2.

By the Principle of Optlma,hty (4 17) we have

W(z,t) = (z’l)n;fu“{W(xu(t h)t— + / Ju(s), s)ds}. (4.23)

Let 0 < b < 7 A€, and choose (zo,u) € U, ; such that

W (za(t — h),t — h) + [ ih L(zu(s), uls),s)ds < W(z,t)+ %. (4.24)
Since z,(t — k) € B., we have from (4.21)
W(zu(t — k), t — h) — ¢(zu(t — h),t — h) > W(z,t) - ¢(z,1). (4.25)

Combining (4.24) and (4.25) we have

2 < Hzult=h), t_; —d=t) - / L(za(s), u(s), s)ds.  (4.26)

However, for t — h < 8 < ¢, z,(3) € B. and |t — s |< ¢, and so from (4.22) we

have

58(zu(s),5) + D(zu(s), s) (f(zu(s)) + u(s)) — L(zu(s), u(s),s) < —.

Integrating, we obtain

é(z,t) — ¢(a:1;l(t —h),t—h) % /Lh L(zy(s),u(s),s)ds < —0.  (4.27)

But (4.26) and (4.27) contradict each other, so we must have § < 0; proving
(4.16). Thus W(=z,t) is a supersolution of (4.7).

The uniqueness assertion follows from Ishii [27], Theorem 1. In fact, since
So(z) is uniformly continuous, it follows from [27] that W (z,t) is also uniformly

continuous. |
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4.3 Continuity

In this se'c‘i_;ion'We prove that the deterministic estimator, when well defined,

depends continuously on the observation path.

Theorem 4.2 “There ezists a positive constant C such that

sup | W(e, )] — W(e,t)[¢]| < Clln—¢ |lm
(x,t)ER"%[0,T]

for ally, ¢ € QF.

Proof: Let (z,t) € R" x [0,T], a >0, and 7, ¢ € Q. Choose (zo,u) € Uy,

such that
Je(zo,u)[n] < W(z,t)[n] +
Now
| Tao, ] = Fwo, ]| = | [ (G~ a)h(aa(s))ds |
< la=Clmlal.
Then

W(z,8)[{] < Ji(zo,u)(]
Ji(zo, )]+ C [l 7 = { |l

< Wig,t)nl+Clln—(llm +e.

IA

Since a > 0 was arbitrary,

W(z,t){] < W(z, )+ Clln—(llas

Similarly,

W(z,t)[n] < W(z,t)[{J+Clln—Clla: -
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This completes the proof. : b 1

Corollary 4.1 Assume that the deterministic estimator is '-w"el‘l déﬁn}zd. Then
the map 7, defined by (4.10) is continuous. | | |
Proof: Fix 0 <t <T. It is enough to check that
#(t)n] — #(@)[n) in R™ as m; — 7 in Q.
Suppose not. Then there exists § > 0 such that
| 2()[nd — 2()n) | = 6
for all ¢ sufficiently large. Since W(-,t)[n] has a unique minimum,
|z —2@)nl| 2 6
implies
- Wiz, t)[n) - W(&(&)nl, t)n] =, (4.28)
for some v > 0. Also, we have
W (@), t)n] < W(z,t)[ni]

for all £ € IR". From Theorem 4.2,

| W(z,t)[n:] — W(z,t)n] | <

=2

for all ¢ sufficiently large.

Now

IA

W (a0, Olnd+ | W0, 0] - W@l Dl |
W (@(@)ln),)nd + 1

W (@@l Dinl + 3

W (&(t)[ni), ){n]

IA

IN

contradicting (4.28). |
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4.4 Approximate Determinis_‘tiéﬁEétimation

In this section we wish to motivate the observer de_si'gn._a,ppea_ring_ in Chapter
6. In Chapter 5 we will show that the deterﬁ;ir_ﬁstic ﬁltgr is the limiting ﬁl_’-
ter. Thus in terms of the asymptotic ﬁltering:.a,pproach :tio“obs:érver design, the
deterministic estimator is a candidate observer. Uﬁféréuﬁately from a practi-
cal point of view, the deterministic estimator is generi;:'a;lly infinite dimensional.
Also, since W(z,t) is in general only Lipshitz continuous, the deterministic es-
timate is difficult to compute. Thus an approximate finite dimensional method
of deterministic estimation is desirable.

Suppose that W (z,t) is a smooth solution of the HJB equation (4.7), and

the deterministic estimator is well defined. Then (4.9) implies
DW(&(t),t) = 0.
Differentiating, we get
D*W (3(t),1)&(t) + DEZW (3(t),t) = O.
Using (4.7) this gives

D*W(&(t),0)2(t) = D*W(&(2),1)f(&(t)) + Dh(#(2))(3(t) — h(3(2)))

+DW ((t),t)(Df((t)) + D*W(&(2),1))-
Therefore

F(2(2) + P(t) ' Dh(2(2))' (4(t) — h(2(2)),

mo,

8>
~~

o~
N’

I

8>
—

o
g

il

where

P(t) = D*W(

8>

(2), ).
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A similar calculation yields
B(t) = —P(t)A(3(1) - A@() () - (1) + H(&(t)) H(3(t))
+DPW (1), t)(2() — £(2(t))) — D*h(2(2))(9(t) — h(2(2)),
Where -
A(z)=Df(z), H(z)= Dh(z).

For linear systems, this last equation reduces to the Riccati equation (4.14).

Continuing in this way one finds in general that £(¢) cannot be computed by
a finite set of ODEs. Moreover, in general D?2W does not exist (D*W exists a.e.
if W is convex in z).

If we omit the high order terms, we obtain the system

m(t) = f(m(t)+ P(O)"H(m()) () - h(m(t)) (4.29)
m(0) = mo,

P() = —P()A(m(t)) — A(m(t))P(t) - P(t)* + H(m()) H(m(1)),
P(0) = Py = DSy(myg) > 0. (4.30)

The system (4.29), (4.30) is called the approzimate deterministic estimator. This
is the deterministic analogue of the extended Kalman filter (c.f. Mitter [45]),
and is not what one would obtain by linearising the system at an equilibrium
position.

We can interpret this in terms of a HJB equation and hence an optimal

control problem. Define
o 1 ! t1 2 .
We(z,t) = 5(z —m(t)) P(t)(z —m(t)) + /0 Fh(m(s))” = g(s)h(m(s))ds.
Here, o denotes a measure of the nonlinearity:
o = max (|| D*f ||| D*h ).
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One expects that W* — W as o — 0.
"~ Then

m(t) = FEDD o(q, 1

(this is well defined) and W* solves the HJB equation

2w (z,t) + H*(z,t,DW*) = 0 (4.31)

We(z,0) = So(z)
where

H*(z,t,0) = H(z,t,))+ V(z,?)

V¥z,t) = (z—my)'P /01 /0-1 rD? f(m; + rs(z — my))(z — my)?drds

—Jo Jo rll H(me +rs(z —my)) |2 +
H(my + rs(z — my)) D?h(my + rs(x — my))] (x — my)2drds +

3 | H(m)(z —me) P+ f5 Jo rD*h(m; + rs(z — my))(z — my)2drdsy,.

The optimal control problem corresponding to (4.31) has Lagrangian L*(z,u,t)
=1/2 | u |* +1/2h(z)? — g(t)h(z) — V*(=,t). This may be useful in comparing

#(t) and m(t) when « is small. We do not pursue this further here.
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i Chapter 5
. Small Parameter Asymptotics

We study #he :asyrﬁpﬁotics as € — O.Vof the filtering problem introduced in
Chapter 2. ThlS éﬁtaiis studying thé asymptotics of the corresponding Zakai
equation, in bo.th' its 'sti:ong and weak form. We obtain estimates showing
q<(z,t) < exp (——%W(:v,t)) in probability as € — 0 for the unnormalised condi-
tional density using PDE methods, where W(z,t) is the value function arising
in Mortensen’s deterministic estimation for the limiting observation path. Also,
we prove of(A) X< exp (—-% infreq W(a, t)) in probability as ¢ — 0 for the unnor-
malised conditional measures, directly using probabilistic methods.

Hijab [25] has studied this asymptotic estimation problem, and he obtained
a WKB expansion when W(z,t) is smooth. He identified the limiting filter as
Mortensen’s deterministic estimator. In addition, Hijab [26] has proved a LDP
for pathwise conditional measures, which we recall below.

We obtain a LDP in probability for the conditional measures, and prove
that they converge weakly in probability to the Dirac measure concentrated on
the deterministic trajectory. In the case that the deterministic estimate is well
defined, we prove that the pathwise stochastic filters converge weakly to the

deterministic estimator.

5.1 PDE Method

We consider the family of diffusion processes in IR™ (2.2) with real valued obser-
vations (2.3). Assume as before that f € C}(IR*, IR*), h € C}(IR", IR), and z{

has density p§ given by (2.1).
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. As e—-)O the trajectories of (2.2) converge in probability to the trajectory
X ={z(1) : 0 $t< T} of the deterministic system (2.35) with initial condition
Zos :;,nd the -tr-a,jeéto'rieé of (2.3) converge in probability to Z = {2(¢) : 0 <t <
'T} € Qo, where
L 2(t) = /Oth(a:(s))ds. (5.1)
Lef. q° ‘be the solution of the Zakai equation (2.27). Our objective in this

section is to obtain the asymptotic formula

¢(2,8) = exp (—%(W(x,t)+o(1))), (5.2)

in probability as € — 0, where Wz, t) is the value function arising in determin-

istic estimation for the observation path Z € Qo (see (5.29) below).

5.1.1 A Hamilton—Jacobi Equation

Fix Y € Qg and denote by p*(x,t) = p*(z,t)[Y] the solution of the robust Zakai
equation (2.31). We will recover the probabilistic interpretation in Section 5.1.3.
Following Fleming and Mitter [18], who considered filtering problems with

e =1, we apply the logarithmic transformation

S(z,t) = —elogpi(z,t). (5.3)
Then S¢(z, t) satisfies
2 9¢(x,t) — %AS‘(w,t) + He(z,t,DS(z,t)) =0, (5.4)
S(z,0) = So(z) — elogCe,
where
He(z,,)) = A-g(a,t) + % A2 —V¥(a, 1), (5.5)
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Vi(z,t) = V(2,y(t)) + edivg(z, y(1)),
9(z,t) = g(z,y(t)).
Here V*(z,y), g(z,y) are defined by (2.13), (2.16). Equation (5.4) is a nonlinear
parabolic PDE, which can be interpreted as the Bellman equation for a stochastic

control problem [18].

Formally letting € — 0 we obtain a Hamilton—Jacobi equation
2 5(z,t) + H(z,t,DS(z,t)) = 0, (5.6)

S(CL‘, 0) = So(.’t),

where
Ho,t,0) = A-glat) + 3 | M =V(z,0), (5.7)
V(z,t) = sh(=) +y(H)DA()(z) - 2yt | Dh=) . (58)

Note that V¢ — V' and H¢ — H uniformly on compact subsets.
We shall interpret solutions of (5.6) in the viscosity sense. In fact, S(z,t) can
be interpreted as the value function for an optimal control problem. Consider

the dynamics

& = g(z,s)+u, z(0)=z,. (5.9)

We wish to minimise
t /1 )
L(zo,w) = Sofzo) + [ (5 | u(s) | +V(:cu(s),s)) ds.  (5.10)
Denote by F; the corresponding class of admissible pairs (zg,u). Define

S(a:,t) = (zo,ui)nef}_ztlt(zo,u). (5.11)

The arguments in Chapter 4 can be used to prove the following.
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Theorem 5.1 The value function S(z,t) defined by (5.11) is the unique viscosity
solution of the Hamilton—Jacobi equation (5.6). Further, if K C Qo and Q@ C IR"

are compact, then there exists C > 0 such that

sup | S(z,t)[n] - S(z,)[¢]| < Clln—Cll
(=1)€Q@x[0,T]

foralln, (€ K.

Our main task is to prove that §¢ — S as ¢ — 0 uniformly on compact sub-
sets. From this the asymptotic formula (5.2) will follow (Theorem 5.3). Before
proceeding, we define an extension of the deterministic estimator to all of g as

follows:

For Y € Qy, define

W(z,1)[Y] = S(z,)[Y] - y(t)h(z). (5.12)

If W(-,t) has a unique minimum for each 0 < ¢t < T and each Y € , we say as

before that the deterministic estimate

2(t)[Y] = 8L W(z,t)[Y]

is well defined. Note that if Y € QS', then W[Y] satisfies the HIB equation

(4.7). This defines a continuous map
7—l't . QO,t s 'P(IR”) (513)
Yo = danm

which extends (4.10).

5.1.2 Some Estimates

Let S¢(z,t) be the solution of (5.4). In this section we obtain estimates for

| §¢ |, | DS¢ | and for the Holder norm of S¢ in ¢t € [0,T] on compact subsets
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independent of the parameter e. These estimates will be used in Section 5.1.3

to prove that S¢ — S,

Lemma 5.1 For every compact subset Q C IR™ x [0,T], there exists ¢y > 0 and
K > 0 such that for 0 < ¢ < ¢y we have
| S(z,t)| < K, for all (z,t) € Q, (5.14)

| DS(z,8)| < K, for all (z,t) € Q. (5.15)

To prove (5.14), we use a comparison theorem which depends on the max-
imum principle for linear parabolic PDE. Let Br C IR" denote the closed ball
centred at 0 with radius R > 0, write 'y = Bp x {0} UJBg x [0,T) and define
Qr = Bgr x [0,T], denoting by Q% its interior.

Lemma (Maximum Principle, Friedman [23]) Define
€ €
Lw = %w—EAw+b-Dw ,
where b¢ is smooth. If Lw <0 (Lw > 0) in Q%, then
w(z,t) < sup w(z,s) ( inf  w(z,s) < w(m,t))
(z8) € T (z5) € TR

for all (z,t) € Qr.

Lemma 5.2 (Comparison Theorem) Let S¢ be a solution of (5.4), and define
x 1
Ly = %v——;-Av+g-Dv+§|Dv [ —Ve.

Let w = v — S°. Ifﬁv >0 (,év <0) in Q%, and if S < v (v < 5¢) on 'y, then
Se<v(v< 99 in QY.
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Proof: If Lv > 0, then

8 ¢ 1 2 € |2
aw-§Aw+1)wg+§(|pv| ~| DS ) > 0.

Now | Dv | — | DS |*= Dw (Dv + DS¢)'. Set
b = g+-;-(Dv+DS‘).

Then Lw > 0 and on I'g, w(z,s) > 0. Hence w(z,t) > 0 for all (z,t) € Qr by
the maximum principle. |
Proof of Lemma 5.1: 1. We now construct a function v such that Lv >0
in Q% and S¢ < v on I'g, independent of (sufficiently small) € > 0 (Evans-Ishii
[16]). Define

v(z,1) = RT—ll_x_F +ut+ M, (5.16)
where the constants g > 0, M > 0 are to be chosen.

We write v; for v,,, etc. Then
Fo = o £ 2n + 8|z |?
ST ET\® T T B[z PP
n 2g‘x,- 2 | T |2
YL@ [y T (B [
1 | z |?
#o <O ((Rz— BT |2>3)
2|z |?
@— =y
> 0in Q%

- Ve

v

-+

for all small € > 0, provided g is chosen sufficiently large. Choose M so large
that
So(z) £ M for all z € Bp.

Now v(z,t) — oo as | z |— R uniformly in ¢ € [0,T], hence
S < vin Q%
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and since v is continuous in Q%, there is a constant K > 0 depending on R such
that
S¢(x,t) < K for all (z,t) € Qry2,

for all sufficiently small € > 0.

Similarly we can find a lower bound for S¢ on Qg2.
2. Next we estimate the gradient, using a variant of the techniques used in Evans
and Ishii [16], as suggested to us by L. C. Evans. To simplify the notation we -

write v = S¢, which from (5.4) satisfies

1 .
U — %v;i + o Vivi +og' —V® =0, (5.17)

where we have used the summation convention. Let @ CC @' cC R" x (0,T),
where @, @' are open and “CC” means “compactly contained in”. Choose
¢ € CP(IR" x [0,T]) such that 0 < ( <1, ( =1 on @ and { = 0 near 9¢Q’, and
define

z = CCogvg — v (5.18)

where the constant A > 1 is to be chosen.

Suppose that z attains its maximum over Q' at (zo,%o) € @'. Then we have

z; = 0and (5.19)

0 < 2z — %z,-,- (5.20)

at the point (zo,to). Then at this point, using (5.20),

0 < 2(Civrve + 2(2vkvkt — vy
~e(iGivrvr — €Ciivive — 4€((iVEVR:

€
2 2
—€C“VkiVki — €C VRVki; + -2‘)\1);;
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< —eC¢?| Do | +2(%y (vt - —;-v;,-)
k
+A (_vt + %w;) +C|Dv|?
for € sufficiently small. Using (5.17) we find that

0 S —Vk (sz,-v,-)k - gi (szkvk)'_ + -/2\-'0."0,- -+ CC | Dv |3

+C | Dv 2 +)XC | Dv | +AC.
This together with (5.19) implies
%|Dv 2< CC| Do P +C | Do [2 +AC | Do | +AC. (5.21)

Let
A = plmax(¢ | Dv|)+1], (5.22)

where y > 1 is to be chosen. Then
¢IDv > <| Do |?[max(¢| Do [)+1],
and thus from (5.21),

52‘- |Dv [P < C|Dvl|?+[max(¢|Dv|)+1]72C | Dv [* +uC | Dv | +Cpu

< C|Dv | 4+uC|| Dv | +1] (5.23)

using the fact that [max(¢ | Dv |) + 1]7! < 1. Choosing y so large that p/4 <
p/2 — C, we have from (5.23)

| Dv | < C[| Dv | 4+1] at (zo,t0).
Then, because g > 1 and 0 < { <1, at (zo,%0) we have

(2| Dv |* =\

n
l

IA

CCIC| Dv|+1]+ AC

IA

AC. (5.24)
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This implies
z < Clin Q. (5.25)

If it happened that (zo,%0) € 0Q’, then
z = —dv < CXat (20,10),
and this also implies (5.25). But from (5.25),
max (C2 | Dv ]2) < maxz+ CX < C),
and using the definition (5.22) we have
max (C2 | Dv Iz) < Culmax(¢ | Dv|) +1]

which implies

(|Dv|<Cin@Q,

and hence

| Dv | < Cin Q.

The following Holder estimate is a modification of Lemma 5.2 of Crandall

and Lions [7].

Lemma 5.3 For every compact subset Q@ C IR"™, there exists ¢¢ > 0 and K > 0

such that for 0 < € < €y we have
| $(z,t) ~ 8%(x,5) [S K (Ve |t—s [V + |t —s]) (5.26)

forallz € Q; t,se[0,T].
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Proof: Let Q CC @ CC IR", and choose ( € C°(IR") such that { =1 on
@ and ¢ = 0 near 0Q’. Choose ¢ > 0 such that dist(3Q, Q") > v/eT and so
that (5.14), (5.15) hold on @ x [0,T] for 0 < € < €. Write

v = (5
Then

1 .
o= goi| = 1 ¢(—5S80 = g'SE+ V) +GS° - euSi — S¢S |

< Ko on IR* x [0,T].

Let p, be a standard mollifier for 0 < a < v/eoT, and set v* = p, * v. Then

asin [7],for 0<t < T,

| vf lzo(rry < Ko+ €|l 05 ||Leo(rm)

eC
< I(o + :— ” Dv ”Loo(Rn) .
Next, for z € RN, t,5 € [0,T),

| v(z,t) —v(z,s) ] < |v(z,t)—v¥(z,t) |+ ]| v*(z,t) — v¥(z,s) |

+ | v“(x,s) - ’U(.’IJ,S) I

IA

aI{+(I(o+§) It —s|
< K(Mt-s|"+|t-s]),

on our setting a = /2 |t — s |V/2,

Finally note that v = S° on Q. |

5.1.3 Asymptotic Result

We first present an asymptotic result for the robust Zakai equation for a fixed

observation record.
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Theorem 5.2 FizY € Qo. Let p*, 5S¢, S denote the corresponding solutions of

(2.31), (5.4), (5.6). Then under the above assumptions, we have
- li_r)%elogp‘(m,t) = li_I'%S‘(w,t) = S(z,t) (5.27)
uniformly on compact subsets of IR™ x [0,T].

Proof: Lemmas 5.1 and 5.3 imply fhat S¢ are uniformly bounded and equicon-
tinuous on compact subsets. VBy the Arzela-Ascoli theorem, there is a sub-
sequence ¢ — 0 such that S converges uniformly on compact subsets to a
continuous function §. By the “vanishing viscosity” theorem, Crandall and Li-
ons [6], S is a viscosity solution of (5.6). By uniqueness, S = S. In fact, $¢ — §

as € — 0. |

Recall that the solutions X*¢ Y of (2.2), (2.3) converge in probability uni-
formly on [0,T] to the solution of the corresponding deterministic system, and
7 € Qo denotes the limit of the process Y¢. We write S¢[Y] for the solution of
(5.4) for Y € Qo, and similarly S[Y].

Let ¢°(z,t) denote the solution of the Zakai equation (2.27). Then by (2.29),
(5.3):

—elog¢‘(z,t) = S[Y*|(z,t) — y°(t)h(z). (5.28)
As in (5.12), define

W(z,t) = S[Z)(z,t) — 2(t)h(z). (5.29)

Note that Z is continuously differentiable and so W is the value function for

deterministic estimation with observation record Z; = {z(s),0 < s <t} € QF".

Lemma 5.4 Fiz Z € Qq, and let Q be a compact subset of IR*. Then for all
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B > 0 there exists v > 0, €o > 0 such that if || n— Z ||< v, 0 < € < €g, we have

sup | S¢[n)(z,t) — §°[Z](=, 1) |< B. (5.30)
z€Q, 0Kt<T
Proof: Let | - ||g denote the supremum norm on @ X [0,7]. Suppose the

assertion is false. Then there exists # > 0, a subsequence ¢; — 0, sequences

v; — 0, n; € Qo with || n; — Z ||< v; such that
I $%[ns) = S¥[Z]lle 2 8 > O, (5.31)

for j = 1,2,... Note that n; = Z uniformly on [0,7] as j — oo.

An inspection of the proofs of Lemmas 5.1, 5.3 reveals that the sequence
{S5¢[n;]};5, is uniformly bounded and equicontinuous on @ x [0, T]. These proofs
did not require differentiation of the coeflicients with respect to ¢, and so the
estimates can be made uniform in the parameter n over a compact subset in .

Thus, as in the proof of Theorem 5.2, there is a subsequence ji such that
klim Seik[n;] = S|Z] = klim Sk [Z).
Letting j = jx — oo in (5.31) yields a contradiction. |

Corollary 5.1 Let K C €y and @ C IR™ be compact. Then for all 8 > 0 there

exists €g > 0 such that if 0 < € < €g then

sup | S(z,t)[n] — S(z, )] | < B
(z,t)€Q x[0,T]

foralln e K.

Proof: Using the fact that S[n| depends continuously on 5 € £, we can argue

by contradiction as above. |
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Theorem 5.3 Under the above assumptions, we have:
lin&elogq‘(x,t) = —W(z,t)
€—

in probability uniformly on compact subsets of IR™ x [0,T].

(5.32)

Proof: Since Y* — Z in probability, in view of (5.28) it is enough to show that

p(S¢[Y*], S[Z]) — 0 in probability, where p denotes a metricon C(IR"x [0, T]; IR)

corresponding to uniform convergence on compact subsets.

Fix 6 > 0,8 > 0. From Lemma 5.4, we can choose v > 0,¢; > 0 such that

p(SY], 542]) < B/2

forall0<e<egandal | Y - Z ||< 4.

Choose ¢; > 0 such that
P(|Y*=2Z|>7) <6
for all 0 < € < €3. From Theorem 5.2, choose €3 > 0 such that
p(5°(2],5[2]) < B/2

forall 0 < e < e3. Set 0 < €g < €1 A €3 A €3.

Then if 0 < € < €,

(5.33)

(5.34)

(5.35)

P(p(S[Y,5[2) > B) < P(p(S[Y,512))>B/2; | Y =Z|>7)

IA

8.

5.2 Probabilistic Method

Once again we are interested in the filtering problem (2.2), (2.3), and we make

the same assumptions as above.
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Let of be the solution of the weak form of the Zakai equation (2.26). Com-

plementing formula (5.2), we prove in this section
oi(A) x e~ ¢infsea W) (5.36)

in probability as € — 0, where W(z,t) is defined by (5.29). The proof uses the

representation formula (2.28), rather than the results of the previous section.

5.2.1 Varadhan’s Theorem “in Probability”

In order to use the representation formula (2.28) to prove (5.36), we need an
extension of Varadhan’s Theorem to random functions F¢. Recall the notation

and terminology used in Section 2.2. We follow the development in Varadhan

[55].

Theorem 5.4 Let {P¢} obey the LDP with action function I. Let F¢: X x Q —
IR be a family of random functions such that for each w € Q, F¢(-,w): X - IR
ts continuous. Let F' : X — IR be bounded and continuous. Assume that for all

a > 0,8 > 0 there exists €, > 0 such that 0 < € < €; implies

P (sup | Fé(x) — F(x) |< a) > 1-2. (5.37)
xeX

Then if C C X is closed, G C X is open, we have: for all ¥ > 0, 6 > 0 there

exists €9 > 0 such that 0 < € < ¢ implies
1
—~=F° . < —i > 1— _
P (elog/cexp[ eF (x)] P<(dx) < ilelcfr[l(x) + F(x)] + 6) > 11—+, (5.38)

P (e log/;;exp [—-i—F‘(x)] P¢(dx) > —;Ielg[I(X) + F(x)] — 6) > 1—+.(5.39)
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To prove this theorem, we use the following lemma. This lemma is more

general than required.

Lemma 5.5 Let F¢ be a family of random functions on X. Let F be a lower
semicontinuous function on X. Assume:
(i) If I(x) < oo, then there exists ¢ > 0, r > 0 such that if Nx = {y e X:

d(x,y) <r} and 0 < e < € then

P (ys:}gx(—FC(y)) < —F(x)+ a) > 1- 4. (5.40)

(ii) For all p > 0 there is an L > 0, €' > 0 such that 0 < € < €' implies
P ()i(n)f( Fix) > —L) > 1-p. (5.41)
€
Then for all v > 0, § > 0 there exists o > 0 such that 0 < € < €o implies

P(elog Joexe [—%Ff(x)] Pe(dx) < — ig)f([](x)+F(x)]+6) > 1— 7. (5.42)

Proof: Choose v >0, § >0; 0 < p < /2. From hypothesis (ii), let L, ¢ be
such that (5.41) holds. Write

A = )i(r€1>f([I(x)+F(x)].

Choose M > 0 such that L — M < —A, and let K = {x € X : I(x) < M}. Let
{x;}2, be a dense subset of K. Set a« = §/5, 8 =7/2.

By hypothesis (i), for each ¢ = 1,2, ..., there exists €/, r;, N; = {y 1 d(x;,y) <

r;}, such that if 0 < € < ¢; then

P(A) > 1-8/2
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for

Aie = {5ulg.(—F‘(y))S—F(Xs)+a}.

Since I is lower semicontinuous, reducing r; if necessary, if y € N; then
I{y) 2 I(x)— e
Let G; = {y : d(x;,y) < r;/2}. Since {x;} is dense in K, and since K is
compact, K C UY, G; = G for some positive integer N. Fix i € {1,...,N}.

Now {P¢} obey the LDP with action function I, so there is an 0 < ¢; < €}

such that 0 < € < ¢; implies

elogP(G;) < —yiéle'I(y)+a
< ~—I(X,')--|-26vn

Then on A;.,if 0 <e <,
QG) = | exp [—%F‘(x)] P<(dx)
¢ o
< exp [~ 2(Fe(x) = )] PG,
and hence
elog Q(Gi) < —F(x:)+ a+ elogP(Gi)

< —A+3c.

Let Ax, = ﬂ?;l A; .. Then there exists ex > 0 such that if 0 < € < ex, then

PlAkd 2 1-38/2 > 1-1/2,

i=1
and elog N < a. Soon Agk,, if 0 < € < ¢k,

elogQ*(G) < elogN+.r{1a,xNelogQ‘(G,-)

i=1,...,

< —A+4a.
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Let
Bk, = AgN {inf F‘(x) > —L} .
xeX

Then there exists ¢g > 0 such that 0 < € < ¢ implies

P(BK,C) 2 1—"//2—P

Z 1_71
and elog2 < a. Thus on By, if 0 < € < ¢,

elog Q*(X) < elog2 + max (elog Q°(G), elog Q°(G®))

< a+max(—A+4a, L - M)
< —A+5a.
Consequently
P(elogQ¢(X) < —A+6) > P(Bk,)
21—~
as required. |

Proof of Theorem 5.4: Upper bound. Let C C X be closed. Define F¢, F to
equal F¢, F on C respectively, and to equal 400 off C. Then F¢, F are lower
semicontinuous functions.

Let x € C. Then (5.37) and the continuity of F on C imply (5.40). If x € C,
(5.40) is obvious. Since F'¢ > F¢ on X, (5.37) and the boundedness of F' imply
(5.41). Then applying Lemma 5.5 we obtain (5.38).

Lower bound. Let G C X be open. Assume

A = )i(lélg[I(X)-I-F(X)] < oo.
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Set a = §/3, B =~v. Choose z € G such that
I(z2)+ F(z) < Ag+a.

Our hypotheses imply there exist ¢¢ > 0, r > 0 such that if Nz = {y :

d(z,y) < r} and 0 < € < €, then
P(AZ,E) 21— ﬁ

for

oo = { sup (P 2 ~F@) = of.

€Nz

Reducing ¢ if necessary,

elogP{(N;) 2 _xlenAfrz Ix)—«a
> —I(z) - 2a

provided 0 < € < €.

Then on Az, if 0 < € < €,
I3 . 1 € €
Q(G) = /;;exp [ eF (x)] P<(dx)

> exp [—-16-(F(Z) + a)] P¢(Nz),

and hence
elogQ{(G) = —F(z) — o+ elogP{(Ny)
> —[I(z) + F2)] - 20
> —Ag—3a.
Hence
P(elogQ(G) > —Ag —6) = P(Az)
21—~
as required. |
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5.2.2 Asymptotic Result

Recall that Y¢ = {y¢:0 < s < T'} converges in probability to Z = {2,: 0 < s <

T}. Fix 0 <t < T, define the random functions
1 t 2 t
F(o,w) = 5 /0 h(6,)%ds — /0 h6)dyi(w), (b€, we)  (5.43)
and the function

F(0) = % / “h(@)ds - [  h(8,)24ds. (5.44)

Lemma 5.6 For all « > 0, B > 0 there exists ¢ > 0 such that 0 < € < ¢
implies

P (sup | F<(6) — F(0) |> a) < p. (5.45)

geqr
Proof: From (2.3),
t t i
[ medys = [ h(o)h(5)ds +VE [ h(0.)do.
0 1] 0

Then using the Chebeshev inequality,

P (supgenn | [Eh(0,)h(z)ds — f5 h(0,)z,ds |> a)
< L Esupgeqn | Jo h(0:)[h(x%) — h(zs)]ds |*

< L || h |I? Lip(h)*TeC,

where the last inequality follows from Lemma 2.1.

Again using the Chebeshev inequality,
¢ t
P (sup Ve | / h(6,)dv, |> a) < —Esup | [ h(8)dv, [P, (5.46)
feqn 0 o geqn  JO
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Choose a sequence of random variables 6° so that

sup I/t h(0,)dv, |* = lim I/t h(6})dv, |* < 0 a.s.
seon o s s am A 9 s >

Then the RHS of (5.46) is bounded by

€ .. to €
— liminf B A h(8:)*ds < EET Nel?.

« 100

Let W(z,t) be Mortensen’s value function for the observation path Z, defined
by (5.29).

Theorem 5.5 Under the above assumptions, for each closed set C C IR" and

each open set G C IR", we have:

limsupelogof(C) < — igg W(z,t) in probability, (5.47)
e—0 z
lircnionfelog oi(G) > - lgg W (z,t) in probability. (5.48)

Proof: Let p; denote the cannonical projection 2" — IR™, for 0 <t < T. Let
A € B(IR"). Then from (2.8)

si(A)w) = =*(p;'A)
1
= [, e [—-—F‘(G,w)] P5(do). (5.49)
piia €
Recall that {P§} obey the LDP with action function Ix defined by (2.38). Now

ot x@)+ FO) = igf inf [1x(0) + FO)]

= ;relg W (z,t).

Then apply Theorem 5.4 to (5.49) for the sets p;'C, p;'G. [ |
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5.3 Large Deviations

We have seen that the optimal control problem associated with deterministic
minimum energy estimation plays a key role in studying the asymptotics of
the Zakai equation. In this section we shall see that this control problem is
exactly the variational problem governing a large deviation principle for certain
conditional measures. In addition we study the weak limit of the conditional

measures, and identify the limiting filter.

5.3.1 Hijab’s Result

We present Hijab’s [26] “pathwise” LDP for certain conditional measures, em-
ploying our notation, etc. Hijab proved his result for the case that (2.2) has
fixed initial conditions z§ = xo, so the result we state is a slight extension of his;
here z§ is random with density p§(z) defined by (2.1).

Recall the measures Y, II¢ defined by (2.17), (2.18) respectively, parame-
terised by n € Q0. For each n € o, the measures {p[iz]} obey the LDP with

action function
. 1 (T
10 = it {suauo)+5 [ 1w P s=0f 650

where here %, denotes the solution of (5.9) with initial condition #,(0) = 6(0).

Define

T
F(0,7) = —nrh(07)+ /0 Ve(8y,ms)ds (0€Q™, neQ) (551

T
F0,n) = —nrh(f7) +/0 V(0s,7m5)ds (5.52)
where V¢ is defined by (2.13) and
1 1
V(z,y) = ih(:z:)2 +yDh(z)f(z) — §y2 | Dh(z) |* (z € R*, y € R). (5.53)
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Next define
JOm = I0)ln]+ F(6,m) (5.54)
: . T1 Ny . .
= igf {So<mu(o>) b [T E U0 P +V ()00 — nrh(aT)) ¢ 2= a};
compare with (5.10), (5.11). If n € Q| this expression reduces to
: T1 2 , 1 2 -
inf { So(zu(0) + [ 5 | u(®) [P +5h(@u(8))? ~ feh(eu(t))dt : =01
where z, is the solution of (2.36). Compare with (4.3), (4.6), (4.11). Write

J(O) = J(O)m — nf J(©O")nl. (5.35)

geqn

Theorem (Hijab [26]) For each n € Qo, {II°[n]} obey the LDP with action
function J(6)[n].

Proof: Apply Varadhan’s Theorem to

(A = [ exp [~2F0,n)| Pyy(ds) (A€ B@™)).

5.3.2 A LDP “in Probability” for Conditional Measures

We now prove large deviation results for the conditional measures II¢, 7 defined
by (2.7), (2.9) respectively. Recall Definition 2.1. Let F¢, F be given by (5.43),
(5.44) respectively and let Ix be the action function for {Pg} defined by (2.38).

Define
= Ix(6) + F(9) (5.56)

)
= inf {So(xu(O)) + /OT% | w(t) |2 +%h(wu(t))2 — zh(zy(t))dt @ z, = 0}
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where z, is the solution of (2.36). Set

J(0) = J(6) - Jnf J(8), (5.57)

= J(6)[2]
If 6 € Q" is absolutely continuous, then

1 T
J(6) = Sal00) + 5 /0 |8, — £(6,) 2 +(35 — h(6,))*ds.

Theorem 5.6 {II°} obey the LDPP with action function J(8).

Proof: First note that the upper and lower bounds (iii), (iv) of Definition 2.1
follow as in the proof of Theorem 5.5 using Theorem 5.4.
By definition, J > 0 and is lower semicontinuous. Choose L > 0 such that

F > —L. Then

{6:70)<M}c{6:1(0)< M+ L}
which is compact. This proves (i) and (ii) of Definition 2.1. |

For each 0 <t < T, define

Ji(z) = W(z,t) - Iiél}i;nW(a:',t), (5.58)

0ier}zfn {J:(8) : 6, =z},
where J;(6) is defined by (5.57) with T replaced by t.

Corollary 5.2 {ri} obey the LDPP with action function Jy(z).
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5.3.3 Limiting Measure and Filter

Recall that the solution X = {z(¢): 0 < ¢t < T'} of (2.35) with initial condition Zo
is the limit in probability of the solution of (2.2), and that Z = {2(¢) : 0 <t < T'}
given by (5.1) is the limit in probability of the solution of (2.3). W(z,t) is the
corresponding value function defined by (5.29), and Ji(z) is defined by (5.58).

Lemma 5.7 For each 0 <t < T, z(t) is the unique minimiser of W(-,t). That

is, Ji(z(t)) =0, &(t) = z(t), and for each a >0

Jiz) > 0 (0<t<T).

inf
z:|lz—z(t) |20

Proof: Clearly Ji(z) > 0 for all z € IR". Suppose J;(z*) = 0 for some z* € IR".
Then since {6 : §; = z*} is closed, there exists §* € Qf such that J;(6*) = 0 and

07 = z*. Then 65 = z¢ and
0% = f(0%), % =h(6), ae 0<s<t.
Now X € QF is the unique solution of (2.35), hence §* = X. Consequently,

z* = z(t).

Now suppose that there exists a > 0 such that

Ji(z) = 0.

in
zi|lz—z(t)| >0
Let {zx}$2, be a sequence such that
khm Jt(xk) = 0.

Since J; is an action function, we can assume zj — z* for some z* € IR" and
Jy(z*) = 0. Then | z* — z(t) |> a > 0 and the above argument shows z* = z(t);

a contradiction. This completes the proof. 1
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The proof of the following theorem uses an extension of results in Varadhan

[55].
Theorem 5.7 Under the above assumptions, for each 0 < t < T, we have:
w5 & Oa(2) (5.59)

as e — 0.

Proof: Let 0 <t < T. We must show that for each a > 0, > 0 there exists

€0 > 0 such that 0 < € < ¢ implies
P (o(nf,6:9) > @) < B. (5.60)

Define

B, = {ze R":|z—z(t) |> a}.
By hypothesis,

inf {h@} =7 > 0
Since {7{} obey the LDPP, there exists ¢; > 0 such that 0 < ¢ < ¢; implies
P(A) 2 1-p
for
€ : 7
A, = {elog 7 (C) < —;g(f) Je(z) + —2—}

Choose 0 < ¢ < €; such that

provided 0 < € < .

Let C C IR™ be closed. Then on A, if 0 < € < €,

7;(Bs) < e'%,
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hence

T(C) < 6.(C*) +e,

since: if C' C By, then §;(;1(C*) = 0 and 7{(C) < 7{(C*) < o; if C ¢ B,, then
Sz(t)(C"‘) =1.
Consequently, (5.60) holds. |

We turn now to the pathwise filters. Recall the maps
7‘r§, T s Qo — 'P(B"),

where 7{ is the pathwise filter (2.20), (2.21) and #; is the deterministic estimator

(5.13); assumed well defined.

Theorem 5.8 Under the above assumptions, we have

#{[n] = #4[n] (5.61)

as € — 0 uniformly on compact subsets of Q.

Proof: 1. From the results of earlier sections, we see that for each n € o,

{7{[n]} obey the LDP with action function

Jiz)ln] = Wz, t)[n] - W((2),1)[n]. (5.62)

In fact, we claim the following: Let K C o be compact, and C' C IR™ closed.

For all 8 > 0, there exists ¢, > 0 such that
eloga{(C)[n] < — inf W(a,t)[n] + B (5.63)

for all 0 < € < €, and all n € K. Here, &¢ is the unnormalised measure defined

by (2.19).
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Suppose that (5.63) is false. Then there exists # > 0, and sequences ¢; —
0, {n:} C K such that

€; log 5’:'. (C) [771'] 2 - :-Ielg W(:L', t)[ﬂi] + ﬂ

for all : = 1,2,... Since K is compact, we may assume that p; — 7 € K as

t — oco. This implies
liminf¢;log 57 (C)[n:} > — inf W(z,$)[7] + 8. (5.64)
Now employing the notation used in the proof of Proposition 2.1,

(C) = Elgeoern (L0, m)
= ElLgcoexp (el,-G(Xq , ﬁ)) exp (EI;F(X o — ﬁ))
< (EIz:.- cC €XP (%G(X“,ﬁ)))% (E exp (;F (X%mi — T‘/)))%
< (FHom) e (——————M 27 ”) - |

€

The last inequality uses the arguement from part 2 of the proof of Proposition
2.1. Hence
limsup ¢ log o (C)[m] £ — 11612 W(z,t)[n)].

1—00
Combining this last inequality with (5.64) we deduce 8 < 0, a contradiction.
This proves (5.63).

2. We next claim that for all & > 0, there exists v > 0 such that

Peomza” 271 >0 65
nekK, z:li-l-l—i'(t)[n]}_a Hz)n 27 > (5.65)

Suppose not. Then there exists « > 0, v; — 0, 7, = 7 € K and {z;} C IR"
with

z; —&(t)m] | 2 «
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and

0 < Ji(z)m] £ ¥ (5.66)
From Proposition 2.2, it follows that there exists C’ > 0 such that
W(z,t)lg] 2C'|z|-C’

for all (z,t) € R* x [0,T], n € K. Now n; — 7 implies (¢)[n:;] — &(¢)[7], so

there exists M > 0 such that
C'a; | -C" £ W(zi,t)[n] £ M,

which implies
M+C

| z; | < oL

Therefore we can assume z; — T € IR"® with
|z - 3()7] | 2 e
Sending ¢ — oo in (5.66) we deduce
W(z,t)[n = W(&(@), ).

Since the deterministic estimator is well defined, this equality forces Z = &(t)[7],
a contradiction. This proves (5.65).

3. To prove (5.61), we must show that for all § > 0 there exists ¢o > 0 such that

o(i[n], ®n]) <6 (5.67)

for all 0 < € < ¢ and all n € K; where g is the Prohorov metric on P(IR").

Let 6§ > 0 and define

Bs = {z:|z—2&(t)n] |2 6}.
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From (5.63), (5.65), there exists ¢, > 0,y > 0 such that
e ‘ . 04
elog@i(Bs)[n] < — inf Ji(z)ln] + 5,

and hence
7 (Bs)ln] < e
for all 0 < € < ¢ and all n € K. Choose ¢ > 0 such that

XL
2¢

e < 4.

Then we deduce

(O] < 7(CO)n) +6

for all 0 < € < €9, 7 € K. Hence (5.67) follows.
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Chapter 6
Observer Designs

In this chapter we present observer designs for the nonlinear control system

T = f(xau)a :L'(O)::L'o, (61)
y = h(z)

where z € R*, v € R™, |ui| <1 i=1,...,m and y € IR?. The initial
condition z¢ is unknown.

We first consider a finite dimensional observer, and prove the following re-
sult for this design: provided that we have some knowledge of zo (in the form
|zo — mo| < p, where my is the initial condition of the observer) and assuming
that (6.1) satisfies a detectability condition, then the observer trajectory m(t)
converges exponentially to the system trajectory z(t) as ¢ — oo. The radius
of convergence p depends on the nonlinearities in the dynamics and observa-
tions as well as on certain design parameters. For a certain class of systems, no
knowledge of zq is required.

This design is a development of the design given in Baras, Bensoussan and
James [2], a paper which treats systems with uncontrolled nonlinear dynamics
and linear observations. The main contributions here are the results for nonlinear
observations and controlled dynamics. We remark that these designs do not
involve coordinate transformations, canonical forms, local linearization, etc., and
seem robust when compared with other designs. However, the designs do involve
solving Riccati equations and computing certain matrices and constants.

We also give an infinite dimensional observer design based on the deter-
ministic estimator. Assuming that (6.1) satisfies an observability condition, the

observer computes exactly the unknown state after a finite time has elapsed.
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6.1 An Observer Design

We assume that f,h are smooth with bounded derivatives of orders 1 and 2.
Assume t — u(t) is continuous. Let N € L([R*, IR"*), R € L(IRP, IRP) and
assume rank N =n and R > 0.

Write A(z,u) = Df(x,u), H(z)= R™'Dh(z), where D denotes gradient in

the z variable. Set
|All = sup{||A(z,u)|| : = € R", |us| <1}

and similarly define ||H||, and so on.

Consider the coupled system

m(t) = f(m(t),u(t)) + QMHMB))R™ (y(t) ~ h(m(t)))  (6.2)

m(O) = my
Q) = A(m(t),u(t)Q() + Q) A(m(2), u(t))

—QMH(m(®) H(m()Q() + NN’ (6.3)
Q(O) = Qo>0.

This is our finite dimensional observer for (6.1). It is essentially a modifica-
tion of the deterministic or minimum energy estimator, as discussed in Baras,
Bensoussan and James [2]. In Section 4.4, this system was interpreted as an ap-
proximate deterministic minimum energy estimator. Note in particular that the
Riccati differential equation (6.3) depends on the control. This is not necessary
when f(z,u) = f(z) + Bu: set A(z) = Df(x).

We will assume that the system (6.1) is uniformly detectable, or uniformly of
full rank; see Section 3.2. Since N has rank n and ||A]| < oo, the pair (A(z,u), N)

is uniformly stabilisable (refer to Section 6.2.1), and NN’ > rol for some o > 0.
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Let Po = Qg', P(t) = Q(t)7*, and let p,q be the bounds for || P(2)|, ||Q(2)]
(given in Section 6.2.2).
Regard Ag, N, R as design parameters. Define p = p(Qo, N, R) by

(| P

Our main theorem is the following convergence result, similar to Theorem 8 in

[2].

p (VBILD* £l + vall R | DAl 1D?A]) (6.4)

Theorem 6.1 Assume there exist Qo, N, R such that
|$0 - mOl < p(QO, Na R) (65)

Then the system (6.2), (6.3) is an observer for the nonlinear control system (6.1)
provided that (6.1) is uniformly detectable or uniformly of full rank, and the

above assumptions hold. That is, there exist contants K > 0, > 0 such that
|z(t) = m(t)| < K|zo — mole™ (6.6)

for allt > 0.

Remark There is a trade-off between the decay rate v = 4(Qo, NV, R) and the
radius of convergence p. The designer can optimize his choice of «, p by varying

the design parameters. ///

By using different estimates for the nonlinearities, we obtain an observer for
(6.1) without any contraints on the initial conditions zo, mo for a class of systems.
Included in this class are systems for which A(z,«) is uniformly negative definite

(see the example in Section 6.4.2).

Define § = §(Qo, N, R) by

T -
§= ?1% — 4p||Df|| — 4l|B7Y||* | DA|I*. (6.7)
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If D?f or D*h is zero, we omit the corresponding term from (6.7).

Corollary 6.1 Assume there ezist Qo, N, R such that
0 < 8(Qo, N, R). (6.8)

Then the system (6.2), (6.3) is an observer for the control system (6.1) pro-
vided that (6.1) is uniformly detectable or uniformly of full rank, and the above

assumptions hold. That s, there exist contants K > 0,4 > 0 such that
lz(t) — m(t)] < K|zo — mole™ (6.9)

for allt > 0 and all z9,mo € IR".

Remark Our design can readily be extended to time varying systems. One has

to modify appropriately the detectability conditions. ///

6.2 Riccati Equations

Write X = IR* X [—1,1]™ and { = (z,u) € X. If t — & = (z+,u;) is a continuous
curve, we write A, = A(&;) = A(z:, ut), ete.

Consider the Riccati differential equations

Q: = AQ:i+ QA — QHH,Q, + NN, (6.10)
P, = —PA,— A'P,—~ PNN'P, + H'H,, (6.11)
Qo = PBy'>0.

Existence and uniqueness for (6.10), (6.11) are standard, and note that P, = Q; .

In this section, we obtain uniform bounds for the solutions of these Riccati

equations.
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6.2.1 Uniform Detectability and Stabilisability

The bound for || Q; || requires a detectability condition, such as uniform de-
tectability or uniform full rank.

To obtain a uniform bound for || P; ||, we assume that rank N = n and use the
following uniform stabilisation result, based on Kalman [35]. Let ®r(t,20) denote

the fundamental transition matrix corresponding to a time varying matrix F;.
Recall NN’ > rqol.
L.emma 6.1 Assume rankN = n. Consider the control system

‘ét = —AtZt — NUt, Z(O) =z, (612)

where A, = A(&:) for some curve t — ;. Then there exists a feedback control

uf = I'y2; such that
|y ( 1 )
b(t,to) |<y/=exp|—=—=(t—10) ], 6.13
” A( 0) ” ,80 P 2,31( 0) ( )
fort > to 2 0, where fit = —A; — NT'; and for any o > 0,
= ge-2olMll 2,,20(|4}) 2\t
Bo(o) = oe (1+ a2l N 12) 7,

Bi(o) = ae*ll (1 N M_”f) |

o0

I T I N[ Bue) =[I T | -

Proof: Consider the optimal control problem of minimising the cost

Tultoy2)= [ Iz I + 1w |” dt
0

over controls u for the system (6.12). Define the controllability grammian
tote (F ¥4
C(to,to + 0') = / (I)_A(to, t)NN _A(to, t)dt.
to
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Note that || ®_4(t,%0) ||°< €24l and
rooe 2T < C(to, to + o) <|| N |2 o4l

so that the system (6.12) is uniformly completely controllable [35].

The value function is given by
1 ’
V(to,z) = 52 Z4, 2,
where Z, solves the Riccati equation
Zy = AyZy + ZA + ZNN'Z, — 1.

The optimal control is

uf = —~N'Z; 2.

Now

V(to, Z)

v

to+4-o
L7 e at
to
> folo) |2

Also, using the control
u} = N’@_A(to, t)C(to, to + 0‘)—12,

we obtain

V(to,2) < Bu(o) | 2 7.

Finally, note that V(t,2) is a Lyapunov function for
é: = — (At + NI‘t)Z:;

whence (6.13).
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6.2.2 Bounds

Theorem 6.2 Assume that £ — A(£), H() are continuous and bounded, (6.1)

is uniformly detectable, and rankN = n. Then we have

2 2
ezl < (”Qo” + JJ-]!I—I2—Z:;-|M—) = ¢ < 00, (6.14)
Boy o . LEIR+ITIPY _
T (f,;nPou - L ITE ) = p < oo (6.15)

These bounds are independent of T > 0.

Note The bound ¢ depends on the choice of A, while p depends on o. To
obtain the best bound, one can optimise over these parameters. For linear time-

invariant detectable systems, one can also obtain a bound for || Q: ||. ///

Proof: We modify an argument due to A. Bensoussan in [2]. To prove (6.14),
consider the following linear optimal control problem with time-varying coeffi-

cients:

— 1 = Ay + Hjvs, nr = h, (6.16)

where h € IR" is given and v is the control. The cost functional is
e, T) = moQomo + [ (vive+ mNN'p)ds (6.17)

Define a value function

Vi(h,T) = inf{J1(v,T) : nr = h}
The Hamilton-Jacobi-Bellman (HJB) equation is

Vi max[DyYA(~Ai ~ Hip) = v* = ' NNj] =0

Let @Q; be the solution of (6.10). Then

V(n,t)=1"Qm
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is the unique (viscosity) solution of (6.11) with V(»,0) = n'Qon.

Consider the (suboptimal) feedback control law

Then by (6.16),
— 7y = (A} + H{ADme, 0 = h.

Then we have
/ T / !
V(n,T) = KQrh < noQomo + [ mi(NN'+ AcAi)nedt
Now using (6.18),
2 T yyu '
rol? =2 [ mi( AL + H{ Apymeds = |B[?
Hence using uniform detectability (3.7), |n0]> < [h[|* and
T |A[*
2t < —.
[ nda < o

Combining this with (6.19) we obtain

IV £ AP

M@wstmm+ '
Qg

which proves (6.14).

Similarly, to prove (6.15), consider the optimal control problem
/.\t =AM+ Nvy, Ap=h

with cost
T
Jo(v,T) = Ny Po A + / (vlvs + N, H! H, \)dt.
0
Define the value function
Va(h,T) = inf{Jo(v,T): Ar= h}.
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Then the HJB equation

0
or

—Va + mgx[D,\ Va(Ad + Nv) — vE= X H H, /\] =0,

with V,(),0) = X Py A and solution V3(A,t) = X' P, A, where P, is the solution of

(6.11). By Lemma 6.1, set
v(t) =T Ay,
then by (6.20)
A = (As + NTy); Ar = h.
Thus
WPrh <X Podo+ [ "N (TUT. + HL H)A dt
Now
A = @ 4(—t, =Tk,
and hence | Ao |2< %‘11 | 2 |? and

T |h|?
20t < —,
./o el*dt < 2Bo

This together with (6.22) yields (6.15).

(6.21)

(6.22)

Corollary 6.2 Assume that £ — A(£), H(£) are bounded and continuous, and

that (6.1) is uniformly of full rank. Then

NI+ AL
200

1Qrl< (210 0+

for all T > 0, where for any T > 0,

-1
b

ao(r) = eIl (1 + 72l | N ”2)

on(r) = retril (1 + I_ILVI_I") ,

roT
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A< H || ea(m) =T |-

Proof: Consider the control system
Z.t = A;Zt + Ht'ut, Z(O) =z, (624)

where Ay = A(¢:) for some curve t — ;. Define the grammian

to+T

Oto, to +7) = / B 1 (to, t) HIH, @', (to, t)dt.

to

Now || ®4:(2,10) ||2< €24l and
sore” ML < O(to, to + 7) <|| H ||* reMll]

so that the system (6.24) is uniformly completely controllable [35]. Now proceed

as in the proof of Lemma 6.1. |

6.3 Asymptotic Convergence

Using the bounds (6.14), (6.15) we prove Theorem 6.1, and Corollary 6.1. The

proofs are modifications of a proof due to A. Bensoussan in [2].
Proof of Theorem 6.1 The error e(t) = z(t) — m(t) satisfies

é(t) = fla(t),u(t)) = f(m(t),u(t)) — Q) H(my) R (y(t) — h(m(t)))
= [A(m(t),u(t)) - Q) H(m(2))" H(m(t))]e(t)
+f(2(?), u(?)) — f(m(2), u(?)) — Df(m(t), u(t))e(?)]
~Q(t)H(m(t))'R™[h(x(t)) — h(m(t)) — Dh(m(t))e(t)]
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Therefore using the Riccati equation (6.11) for P(t),

%e(t)'P(t) e(t) = —e(t) P()NN'P(t)e(t) - e(t) H(m(t)) H(m(t))e(t)
+2e(t)P(2) | ' / " 1D f(m(2) + rse(t), u(t))e(t)Xdrds

~2e(tY H(m(t)y B [ 1 / "1 D2h(m(t) + rse(t))e(t) drds

LI < et (—ro/a® + IP@OIVEID S (625)

+Vall R * I DA |D?A) ()
Let C = (/|| D*f|| + vallR~||? || D&|| | D?A|)). By hypothesis (6.5) we have
—-g% +|PFeo|C < 0.
Since P(t)Ze(t) is continuous, there is an interval [0,%o) such that
—2—3 +|P(t)}e(t)|C <0 on [0,t).

But then (6.25) implies

d 2 2

Et-IP(t)fe(t)| <0 on [0,%),

and thus
|P(t)e(t)] < | P eol

for t € [0,20). By continuity this inequality holds for ¢ € [0,%o]. Hence we can

proceed from ¢y on. Thus there exists § > 0 such that
1 < 1 (ro 5
P@Relt) < 5 (3 -
for all t > 0. So (6.25) implies
d 1 2 2
ZIP@e(t) < ~6le(e)P
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But from (6.15)
e(t)' P(t)e(t) < ||P(t)|| le(t)]” < ple.?,

so that
d

! 6 !
2 SO P)e(t) < ——e(@) P(t)e(t),

which implies

e(t) P(t)e(t) < e(0) Poe(0)e#", t > 0.

Therefore, using (6.14), we have

le®)]* < qe(t)P(t)e(t)

< qe(0)Poe(0)e™#, ¢ >0,

which implies (6.6).
Proof of Corollary 6.1 We have

%e(t)'P(t)e(t) = —e(t)P(t)NN'P(t)e(t) — e(t)'H (m(t)) H(m(t))e(t)
+2e(t) P(t)(f(2(1), u(t)) = f(m(t), u(t)) — Df(m(t), u(t)))e(t))
~2e(t) (R Dh(m(t)) R~ (h(z(t)) — h(m(t)) — Dh(m(t)e(?))

I —
< (—-q—g+4p||Df” + 4| R Ithllz) le(®)|”

By assumption (6.8) there is a 6 > 0 such that
~ 3 +4plDfI| + 4B | DAY = ~6 <.

Therefore

d i 2 2
ZIP(O) e(t)” < ~8le(t)

for all t > 0 and all eg € IR". This implies (6.9).
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6.4 Examples

We now give some simple examples to illustrate the applicability of our design.

6.4.1 Bilinear Dynamics, Linear Observation

Consider the general bilinear system

& = (A+fju,-3,-> z, z(0) = =, (6.26)

i=1

y = Cuz.
We assume |y;] < 1, p=1, and here £ = u € [-1,1]™ = X. Write

A(u) =A+ Z u; B;.

=1

Define, for 7 > 0, the observability grammian

to+T ' '
Olto,to +7) = / & 41(to, )C'C 'y, (to, t)dt,

to

where A; = A(u(t)). Assume that (6.26) is uniformly observable in the sense

that there exists 7 > 0 such that for all £ > 0
Yo(T)I < O(to,to + 1) < M(7)1

for constants vo(7), 71(7) > 0, independent of the control. The we can bound
|| Q¢ || as in Corollary 6.2.
Then the following system is an observer for (6.26), with no contraints on

the initial conditions.
m(t) = A(u(t))m(t) + Q(t)C'(y(t) — Cm(t)), m(0) = mo, (6.27)

Q) = A((1)Q(t)+Q1)A(m(t)) - QRH)C'CQM +1, Qo=1.

99



For simplicity we have taken Qo, N, R to be identity matrices. To improve the
decay rate v, one could try other values for Qq, N, R. |

Compare this design with the design for linear time-varying systems in
Willems and Mitter [57], and O’ Reilly [49].

Now in IR? consider
a1(u) apz(u
Al) = 11(u)  a1z2(u) ,
az(u) ago(u)

C = (1,0),
and assume that

agz(u) < —ap, >0,
for all | u |< 1. Then setting

—Qg — an(u)

A(u) =

—alg(u) - (121(11,)

gives

0 (A(u) + A(w)C)n = —ao|n |*.

Then (C, A(u)) is uniformly detectable and (6.27) is an observer for (6.26).

6.4.2 Stable Linear Dynamics, Nonlinear Observation

Consider the system

& 1 V2 T 1
sz \/5 -4 T 0
y = sinz;.

This system is controllable and observable. However, the pair of matrices

(Dh(z), A) is not observable for z; = k%, where k is an odd integer. The system
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has eigenvalues —1, —~2 and A is symmetric, hence (Dk(z), A) is automatically
uniformly detectable, with ap = 1, A(z) =0. Let R=rI, N = \/rol, Qo = 1.
Here, H(z) = %(cos z1,0). Now

6= r0(72 + 7'0/2)'2 —4r2,

Set r =3, 79=0.2,y=0.1. Then § = 7.82.
The observer for (6.28) is

m(t) = Am(®)+ Bu(t) + 3Q() Hon(®) (4(0) — sinma(t),  (6.29)
Q) = AQ()+ QM)A — Q) H(m(t)) H(m(£)Q() + 0.21.

By Corollary 6.1, m(t) converges exponentially to z(t) for all zo, mo € IR".

6.4.3 A Special Case

We now give an example of a class of systems for which observer design is easy.

Consider
&(t) = f(z(t),ut)), 2(0)= =, (6.30)
y(t) = Ca(b),
assuming that C is invertable:
C'C > soI > 0.
Then the system
m(t) = f(m(t),u(t)) + éC' (y(t) — Cm(¢)), m(0) =mo (6.31)
is an observer for the control system (6.30) for all initial values provided that
given v > 0, « is chosen so that

So
a<

T+ AN
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To see this, we have

d 1
Z1e® = 2(0) (F(z)u(®) - Jm(e), u(t)) - ~C'Ce(t))
So 2
< _20
< 2(141-2) e
< —27e(t) .
Thus
| z(t) —m() | < | 2o — mo | ™
for all zg,mg € IR™.
Of course one can compute z(t) directly by inverting C. The above dynamical
procedure seems more robust. In fact, one could use it to invert matrices!

The rate of convergence can be made arbitrarily fast by adjusting v > 0.

6.5 An Exact Observer

In this section we shift our perspective somewhat and obtain an infinite di-
mensional observer for uncontrolled systems. The observer recovers exactly the
unknown state under a natural observability condition.

Consider the dynamical system
t = f(z), z(0)= zo, (6.32)
y = h(z),
and assume f € CL(R",IR"), h € Cy(IR",IR?). Let z(t) = v(t)zo denote the

solution to (6.32).

Definition 6.1 The system (6.32) is observable in finite time if there exists

0 < T < oo such that for any z} # 2 there is a t € [0,T] such that

h(y(t)zg) # h(v(t)zg).
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Compare with the definition of observability given in Chapter 3, and also the
definition for time—varying linear systems. Our design also applies to controlled
systems provided that Definition 6.1 holds for each control function.

We modify the deterministic estimator (4.7) by setting So = 0, and obtain

the following system:

&m(z,) + f(z) - Dm(z, 1) + 3 | Dm(z,1) [* ~zh(z)’ +y(Oh(z) = 0,

m(z,0) = 0, (6.33)
£(t) = :rénll;zﬁ m(z,1).

This system is of the form (3.2) with state space M = C(IR", IR), and is con-

trolled by the observation path y(-) of (6.32).

Theorem 6.3 If the system (6.32) is observable in finite time, then

#(t) = z(t)

for all t > T and all zo € IR*. Therefore (6.33) is an observer for (6.32).

Proof: We have
mut)~im{1/ﬂé—fw)ﬁ+| ~hO) P~ |y [P ds 0, =2}
) - gean L2 Jo E] s Ys s Ys Ve .
Then, for t > T, m(-,t) has a unique minimum #(t) = z(t) if and only if (6.32)

is observable on [0,T]. Note that (3.3) is satisfied a fortiori. |

Remark This type of observer can be defined for systems evolving on manifolds
with manifold-valued observations. This and other developments will be treated

elsewhere. ///
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~ Chapter 7
Miscellaneous Topics

We collect in this final chapter some miscellaneous comments and results.
A large deviation principle for the distributions of the conditional measures is
presented in Section 7.1. Thus there is a second level of large deviation behaviour
associated with our asymptotic filtering problem. The Benes class of systems, for
which finite dimensional filters exist, is treated in Section 7.2. Then in Section
7.3 we obtain the different limits that result when the signal to noise ratio is

altered. Finally in Section 7.4 we make some concluding remarks.

7.1 Distributions of Conditional Measures

Let 7 be the conditional probability measures defined by (2.9), (2.10), viewed
as random elements of P(IR") (2.11). The distribution of #§ is a probability

measure PS on P(IR") defined by
P (A) = P(r;€ A) (A€ B(P(R"))). (7.1)

In this section we establish a LDP for {Pf, }.

Recall the maps
75, Tt Qo — P(IR"),

where 7¢ is the pathwise filter (2.20), (2.21) and 7, is the deterministic estima-
tor (5.13); assumed well defined. Recall that {Py} obey the LDP with action
function Iy defined by (2.40). For v € P(IR"), define

In(v) = inf{Iy(n) :n € 77" (v)} . (7.2)
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Theorem 7 .1 Under the above assumptions, {Ps,} obey the LDP with action

function I (v).

Proof: Noting that
€ __ € —ey—1
Pﬂ'c - PY o (ﬂ.t) ’
and since 7, 7; are continuous and lim._,o 7{ = 7; exists uniformly on compact

subsets of {29, we can apply the contraction principle to deduce the assertion. [J

Notice that

I(v) = inf {W(a‘:(t),t)[n] + % /0 “#2ds:ne QN fr;l(u)} : (7.3)

7.2 The Benes Class

In [3], Benes introduced a class of systems, with nonlinear drift and linear obser-
vations, for which the conditional density can be explicitly computed by a finite
set of ordinary and stochastic differential equations. That is, the stochastic filter
is finite dimensional. Hijab [25] has studied this class, as well as the analogue
for deterministic estimation. In this section we apply the asymptotic filtering
method to the Benes class of systems. Under certain (restrictive) conditions, an
observer results in the limit.

We are interested in systems of the form

f(z), (0) = =, (7.4)

z = Cz, z(0)=0,

-
il

where z(t) € IR and z(t) € IR?. Consider the filtering problem

da'(t) = f(at(8))dt+vVEeNdu(t), a%(0) =z, (1.5)
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dys(t) = Caz°(t)dt+ /eRdv(t), y‘_(0)=0,

where NN' > rol, R > 0.
The Benes class of drifts f € C°(IR™, IR") are those satisfying:
(i) for some F € C*(IR", IR),

f(z) = —NN'DF(z)}

(it) forall € >0,
f(a:)'(NN')"lf(x) + edivf(z) = 2T + 22z + 245,

where ©¢ — %, Z¢ — E, ¢ — ¢ as € — 0, and X, % are
symmetric.
Two additional detectability conditions are required:
(iii) D*F(z) > 0;

(iv) foralle=>0,
C'(RR’)'lC + 3¢ > agl, a>0.

The initial condition o is unknown, so we let z§ be random with density

py(z) = Ce exp(—21So(z)), where
So(z) = ';'(fc — po)' Po( — po) + F(z),

for some po € IR*, Py > 0. As before, Py, N, R are design parameters, although
N is restricted according to (i) and (ii) above.
Let ¢*(z,t) denote the unnormalised conditional density solving the Zakai

equation. We use the exponential representation:

¢(z,t) = e V@D, (7.6)
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Using Itd’s rule, W¢(z,t) solves
oW — -;-tr(NN’D"’W‘)dt + % | DWEN [? dt + DW* - f(z)dt
—% | R*Cc * dt + 2'C'(RR)) " dy*(¢) — edivf(z)dt = 0, (7.7)
We(z,0) = So(z)— elog C..
We now find an explicit solution for ¢*(z,¢) via (7.6), (7.7) using a gauge trans-
formation.

Define
Ut(z,t) = W<=z,t) — F(z).

Then we have
oU* — %tr(NN’DZU‘)dt + % | DUN |* dt — Z*zdt + «'C'(RR')1dy“(t)
~ 5@ (C(RR)'C + et — gtdt = 0,
Uf(z,0) = %(m — o) Po(z — po) — elog C..
If we look for solutions of the form
U(e1) = 3(z — w0 PO — 1(0)) +9°(0),
we obtain, after some manipulation,
dpt(t) = —P(t)"} (¢ + Seuc(t))dt (7.8)
+P()7'C'(RR) ™ (dy"(t) — Cu“(t)dt),
Pi(t) = —P*(t)NN'P(t)+C'(RR)™'C + 2, (7.9)
Y(0) = — 5 (Y PAER(E) + 5o Poto — elog C. (7.10)
+ [ (Ser(NN"P(5)) = 5y (s) P)NN'P(s)u(s) + ) i,
with initial conditions
p(0) =po, P(0) = P (7.11)
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Then one can prove:

Under assumptions (i)-(iv), the unnormalised conditional density q*(x,t) has the

ezplicit solution (7.6), where
Wee,t) = 3@~ w@O) P — 1)) + 95(0) + F(a),
and P<(t), u¢(t), ¥ (t) are the solutions of (7.8)-(7.11).

A filter for the mazimum likelihood estimate

me(t) = SEUL (g, )

can be obtained by differentiating the equality: DW¢(m<(t),t) = 0 (c.f. Chapter
4). In general m®(t) does not equal the conditional mean (¢).

We now turn to the limiting filter: the deterministic estimator for the obser-
vation record Z = {z(t) : 0 < ¢t < T'}. Here, Z is the limit in probability of Y,

given by (7.4), and is viewed as an observation record of the auxilliary system

& = f(&)+ Nu, (0)= &, (7.12)
jy = Ci+ Rv, y(0)=0,
with cost
. 1 . ‘D
Ji(Zo,u) = 5(1‘0 — #o) Po(Zo — po) (7.13)

+ [ 5 (o) P 43 | RICE(s) P ~a(s)YC'(RR) ™ i(s)ds.

Conditions (ii) and (iv) reduce to
(i) f(@)(NN)1f(z) = 2'Sz + 22z + 2¢;
(iv)’ C'(RR)Y'C+X > aol.
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" The value function W (z,t) satisfies

1 1
%W + 5 | DWN | +DW - f(2) - 5 | R™'Cx [* +2'C'(RR) ™ 4(2) = 0,

W(z,0) = So(z), (7.14)
and is given explicitly by
W(at) = 3z~ s PO~ u(t) +9(0) + F),  (1.13)

where P(t), u(t) and 9(t) are the solutions of

wt) = —P)"HE+Zu(t) + P(t)T'C'(RR') 7 (4(t) — Cu(t)), (7.16)
P(t) = —P@#)NN'P(t)+C'(RR)Y'C+%, | (7.17) -
W) = ~ult) PO + St Posio

+f (—%u(s)'P(s)NN’P(s)p(s) +)ds, (7.18)

with initial conditions
Then W¢(z,t) — W(z,t) in probability as € — 0.

Recall the deterministic estimate

m(t) = JEHL W(a,0)

(Previously we used the notation £(t).)

Theorem 7.2 Under assumptions (i), (it)’, (1ii) and (iv)’, the deterministic
estimator for the system (7.4) is well defined and can be computed by the finite

dimensional filter

m(t) = f(m(t))+P(t)" C'(RR) 7 (5(t) = Om(1)), m(0) = mo, (7.20)

B@t) = P(t)+ D*F(m(t)), (7.21)
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where P(t) is the solution of (7.17). Further, the value function can be explicitly

computed as above.

Proof: Let Q(t) = P(t)~!, which solves
Qt) = ~Q(t) (C'(RR)™*C + 5) Q(t) + NN".

Using the methods in Section 6.2, we have

N|?+ || BC?
1Po 1 < p AR

I NI*+ [ C(RRYIC+ 2] _
2(10 -

el < @l +

’

for all £ > 0. To obtain the bound for P(t), one uses the control v(t) = N); in
(6.20) with A, = 0. The bound for Q(t) follows from the detectability condition
(iv)’: setting A = —(C"(RR/)™'C + %)2, we have

7' (AC'(RR)'C+3%))n < —ao|n .

Now
D*W(z,t) = P(t)+ D*F(z)
2 lI > 0.
q
Hence W(-,t) is strictly convex, and therefore has a unique minimum. |

Finally, we present a limited result on whether or not the deterministic esti-

mator is an observer for (7.4). Assume further
(iii)’ D?F(z) > Pol, for some S > 0.
Define
r
5(P03NaR) = q_g'_2p “ Df ” - “ DY ”

=2q | C IR I? (g + [ (D*F)™ ).
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Theorem 7.3 Under assumptions (i), (ii)’-(iv)’, if there exists Py, N, R such
that
6(FPo,N,R) > 0, (7.22)

then the system (7.20), (7.21), (7.17) is an observer for the dynamical system

(7.4). That is, there exists constants K > 0,7 > 0 such that
|z(t) —m(t) | < K|zo—mo|e™

for all t > 0 and all o, mo € IR".

Proof: We have

%e(t)’P(t)e(t) = 2¢(t)P(t) (f(2(t)) - f(m(t)) — P(t)'C'(RR')™Ce(2))
+e(t) (=P()NN'P(t) + C'(RR)™'C + I) e(t).

Now using Kailath [32], p656, we have

P@t)™ = [P(t)+ D*F(m(t)]™

= Q) - Q) (QM) + (D*F(m(t)))™) Q(t).

Using this identity in the above equality and estimating the various terms,

one proves the theorem. |

Remark In general, it is not clear that condition (7.22) is verified. Notice
that the bounds p, ¢ are bounded functions of || R |— oo, so the last terms
in §(Py, N, R) can be made small. From another point of view, under our as-
sumptions (7.4) is asymptotically stable, and the observer (7.20), (7.21) can be

viewed as a perturbation. ///
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7.3 Limits for Other Signal to Noise Ratios

In the Introduction we introduced the family of filtering problems (1.4) with
noise scaling /e in the state equation and V6 in the observation equation. The
quantity €/6 is a measure of the signal to noise ratio or the relative rate at which
the noise goes to zero. We now describe the different limiting behaviour that
occurs as this ratio is altered.

Specifically, consider the filtering problems

dzf(t) = f(z°(t))dt + €'dw(t), z*(0) = z§, (7.23)

dy'(t) = h(z*(8))dt + & dv(t), y*(0) =0,

where 0 < v < 1. The signal to noise ratio (SNR) is €2*~!, and note that
—1 < 2y —1 < 1. Bensoussan [4] treated the case 0 < vy < 1/2, Picard [51] and
Ji [31] the case v = 0, and Hijab [25], [26] the case v = 1/2. In [4], [51] and [31]
their main concern was the constructién of approximate filters.

In Chapter 2 we defined the notion of large deviations for the specific nor-
malisation factor €!. More generally, as in Freidlin and Wentzell [20], we say
that {P¢} obey the LDP with action function I and normalisation coefficient

A(€) provided (i) and (ii) hold in Varadhan’s definition (Section 2.2.1) and
lina A(e)tlog PE(A) < e~ Me)infxea I(X)

in the sense of (iii) and (iv) in that definition. Here, A(¢) — oo as ¢ — 0.
Similarly we can modify the definition for random measures {Q¢}.

We take z§ to have density p§(z) = C. exp(—3750(z)), with So defined as in
Section 2.1. The trajectories of (7.23) converge in probability to the trajecto-
ries of the corresponding deterministic system (2.35), (5.1). It is clear that the

distributions {P%} obey the LDP with action function Ix(6) defined by (2.38)
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and normalisation coefficient A(e) = €~27. It turns out that three types of lim-
iting behaviour occur for the filtering problem, depending on the value of the

parameter v:

(a) O0<y<1/2 (high SNR),
(b) ~y=1/2 (balanced SNR),
(c) 1/2<y<1 (low SNR).

The Kallianpur—Streibel formula for the conditional measures takes the form

£ A)
T ()

m0) = foew (-t 5 [ w0 [ Wodie]) Pian) Peas,

for A € B(Q"). For 0 € Q" define F(6) by (5.44). Define

“7(A) P-as.,

(e = <' = f0<y<1/2,

| F  if12<v<y

' F(0) if0 <y <1/2,
J0) =  I(0)+F(O) ify=1/2,

‘ 1(9) if1/2<y<1.

Also, we define

J'9) = J(8) - inf JV(O).

gleﬂn

If § € Q" is absolutely continuous,

%f(;r(h(os) - és)zds if0 < v < 1/2,
JNO0) =\ So(o) + 313 16, — f(0,) 12 +(h(8,) — 2,)%ds  ify=1/2,
So(8o) + 3 [T | 6, — £(8,) ? ds if1/2 <y < 1.

Theorem 7.4 {II*7} obey the LDPP with action function J7(8) and normali-

sation coefficient X (e).
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" The proof of this theorem depends on the following lemma.

Lemma 7.2 IfC C Q" is closed and G C Q™ is open, we have:

limsup A7(e)log ¥ (C) £ — 52(1; Ju”’(ﬂ) in probability,
c—0

liminf \"(€) log B*7(G) > - jnf J7(8) in probability.

Proof: The proof is similar to that of Theorem 5.4, so we only sketch some of
the changes required.

The basic idea is to notice that
e M ogL(C) £ — 322 F(0) + & *e* log P§(C) + 6,
and if 0 < 4 < 1/2 then the second term on the right goes to zero. Similarly,
€ log T(C) < —eP? 322 F(8)+ e 1log P (C) + 6,

and if 1/2 < 4 < 1, then the first term goes to zero.

These ideas can be made precise along the lines of Theoerm 5.4 and Lemma

5.5. |

If ¥ = 0, then the state equation is independent of e. Then the resulting

action function is random, given by, for § € Q" absolutely continuous,

1°(0)(w) = % /OT (h(6,) - h(z:(w)))” ds,

with normalisation coefficient A\°(¢) = e~2. This result was obtained by Ji [31].

At the other extreme, if v = 1, then y*(t) — y°(¢), where

P(0)@) = [ hlz(s))ds +v(2)(w)
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Here, z(t) is the deterministic trajectory. In this case, Theorem 7.4 remains

valid.

In the cases 1/2 < 4 <1 we have:
o & ¢y,

as € — 0, where X € Q" denotes the deterministic trajectory. If 0 < v < 1/2

and 4 is injective, then

= g bx,

as € — 0. However, when v = 0 and A is injective the limit is random:
e° =P> bx1

as € — 0. This injectivity condition was used in Picard [51] and Ji [31].

7.4 Concluding Remarks

We have seen that the asymptotic filtering approach leads to the suggestion that
the limiting filter, identified as the deterministic estimator, is a candidate ob-
server (Baras and Krishnaprasad [1]). Indeed, this approach has motivated two
observer designs: a finite dimensional observer for uniformly detectable systems,
and an infinite dimensional observer for observable systems. The former esti-
mates the state asymptotically as ¢ — oo, while the latter computes the state
exactly after a finite time has elapsed.

A gap in the theory is the lack of simpler conditions implying detectability
and observability. The principal disadvantages of our finite dimensional design

involve the computation of the matrix-valued function A(z,u) and the sensitive
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dependence of the radius of convergence and decay rate on the design parame-
ters. The infinite dimensional observer presents some interesting computational
problems, akin to those arising in nonlinear filtering.

There are a number of interesting questions regarding the interactions be-
tween the limits as € — 0 and ¢ — oo that might have a bearing on our problem.
Kunita [36] has studied the large time behaviour of nonlinear filtering errors in
the case that the signal state space X is compact. Ji [31] has extended some
of Kunita’s results to noncompact state spaces. The conditional measures {;}
are viewed as a Markov process with values in P(X), and the filtering error is
computed in terms of invariant measures of the processes {z:;}, {m:}. Large
deviation results for invariant measures of diffusions in /R™ have been obtained
by Freidlin and Wentzell [20] (for example Theorem 4.3, page 129). In view of
the LDP for the distributions of {7{} obtained in Section 7.1, one might find
some large deviation result for invariant measures of the filtering process {={}.
Detectability and observability may have implications in filtering. Detectability
is connected with the positive definiteness of the Hessian of the value function.
In the context of extended Kalman filtering, Mitter {45] alluded to this. These
remain unresolved issues in our investigations.

It is our opinion that “approximate” estimators, an example of which was
presented in Chapter 6, are more likely to be useful in practice than “exact”
estimators. Further, in practical situations the structure and symmetry of the
problem at hand should be fully exploited. Like the Kalman filter, both of our
designs seem to enjoy robustness properties. An approximation to the infinite
dimensional observer may be useful in providing an initial estimate for the finite
dimensional asymptotic observer.

It seems difficult to build a general and easily usable theory of observer design
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design for nonlinear control systems. The asymptotic filtering approach provides

insight and suggests potentially useful observer designs.
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