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ABSTRACT

In constrained Markov decision problems, optimal policies are often found to depend on
quantities which are not readily available due either to insufficient knowledge of the model
parameters or to computational difficulties. This motivates the on-line estimation (or compu-
tation) problem investigated in this paper in the context of a single parameter family of finite-
state Markov chains. The computation is implemented through an algorithm of the Stochastic
Approximations type which recursively generates on-line estimates for the unknown value. A
useful methodology is outlined for investigating the strong consistency of the algorithm and
the proof is carried out under a set of simplifying assumptions in order to illustrate the key

ideas unencumbered with technical details. An application to constrained Markov decision

processes is briefly discussed.
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1. INTRODUCTION

It is well known that many questions concerning Markov decision processes (MDP’s) can
be reduced to a search for Markov stationary policies which satisfy certain constraints (or op-
timality) conditions. However, the authors argued in [5] that the resulting Markov stationary
policies are usually not readily implementable, sometimes in spite of strong structural prop-
erties. This is so because the values of the model parameters may not be available [4,9], and
even if they were available, the policy may still not be implementable due to computational

difficulties inherent to its definition [9].

In this paper, the discussion is given in the context of finite-state MDP’s. It is assumed
that the policy g of interest belongs to a one-parameter family of Markov stationary policies
{f" ,0 < n < 1} and that the parameter value n* characterizing g is specified by J(f") =V
for some given scalar V, where J(7) is the cost incurred by using an admissible policy 4. The
problem of interest is the on-line estimation (or computation) of the parameter n*, and is solved
here through an adaptive algorithm of the Stochastic Approximation type. The adaptive policy
a defined through this estimation algorithm is shown to incur the same cost as the policy g, i.e.,
J (o) = J(g), thus simultaneously resolving the above-mentioned implementation difficulties.

This problem is motivated in Section 3 via an example from the theorey of constrained
MDP’s, which provides the intuition behind the proposed adaptive algorithm. The convergence
results for the estimates and for the cost under the adaptive policy a are presented in Section
4. The method of proof uses the ODE method as discussed by Metivier and Priouret [7], but
the specific structure of the model at hand allows for great simplifications in their arguments.
The required regularity properties are derived in Section 5 under minimal conditions on the
transition probabilities, and the main estimate that underlies the use of the ODE method s
developed in Section 6. Section 7 concludes with an application to constrained MDP’s and an

extension of the results to models with weaker regularity properties.

A few words on the notation used throughout the paper: The set of all real numbers is
denoted by R, and I(A) stands for the indicator function of a set A. Unless stated otherwise,

limp, lim, and lim,, are taken with n going to infinity.



2. MODEL AND ASSUMPTIONS:

Assume the state space to be a finite set S of cardinality d and let the control space U
be an arbitrary measurable space. The one-step transition mechanism P is defined through
the one-step transition probability functions p,y(-) : U — IR which are assumed to be Borel
measurable and to satisfy the standard properties 0 < p,,(v) < 1 and > Paoy(u) =1forall z
and y in S, and all w in U. The space of probability measures on U (when equipped with its
natural Borel o-field) is denoted by M.

The sample space ) := S X (U x §)* is the canonical space for the MDP (S,U, P). The
coordinate mappings {U,}5° and {X,}3° are defined by setting U, (w) := v, and X, (w) := z,
for all n = 0,1,.... The sample space {1 is equipped with the o-field F := V2 ,F, where
F, = o{Xo,Uo, X1,-..,Un—1,Xy} for all n = 0,1,..., so that the mappings {U,}§ and
{X,}& are all random variables (RV).

An admissible control policy v is defined as any collection {v,}& of conditional distribu-
tions on U, i.e. , for all n = 0,1,..., the RV w — 7,,(A,w) is IF,-measurable for every Borel
subset A of U, with the interpretation that v, (+,w) is the probability distribution for selecting
the control value Uy, given the feedback information (Xo(w),Us(w),X1(w), ....;Un—1(w),Xn(w)).
Denote the collection of all such admissible policies by II.

Let u be a fixed probability distribution on S. For every admissible policy ~ in II, the Kol-
mogorov Extension Theorem then guarantees the existence (and uniqueness) of a probability

measure P on the o-field IF so that under P7, the RV X{ has distribution g and
P Xny1 =y | Fo] = /U ()P, y (1) n=0,1,...(2.1)

for all y in S. The expectation operator associated with « is denoted by E7.

A policy v in Il is said to be a Markov or memoryless policy if there exists a family {9}
of mappings g, : S — M such that v,(-) = g (-, X,.) P? — a.s. for all n = 0,1,... In the event
the mappings {g,}§° are all identical to a given mapping ¢ : S — M, the Markov policy is
termed stationary and will be identified with the mapping g itself. For any Markov stationary
g, define the d X d matrix P(g) = (p,y(g)) by posing

Pay(g) := /U Pay(w)g(du, z) (2.2)
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for all z and y in S.

3. THE IMPLEMENTATION PROBLEM — AN EXAMPLE
For any mapping ¢ : S — IR, define the corresponding long-run average cost functional
J. : I - IR by posing

Jo(7) == hmnni i [ c(Xi)} (3.1)

for every admissible policy ~ in IL.

The problem of interest here is to find a Markov stationary policy g such that J(g) =V,
with V' some real constant determined through various design considerations. Consider the

situation where there exist two implementable Markov stationary policies g and g such that

Je(g) <V < Je(g)s (3.2)

i.e., the Markov stationary policy g (resp. g) undershoots (resp. overshoots) the requisite
performance level V. This situation arises naturally in the solution of constrained MDP’s via
Lagrange arguments, and is discussed in Section 7. For every % in the unit interval [0,1], the
policy f" obtained by simply randomizing between the two policies § and g with bias n is the
Markov stationary policy determined through the mapping f" : $ — M where

(¢ 2) :=ng(z) + (1 -n)g(, ) (3.3)

for all z in S. Note that for n = 1 (resp. 5 = 0), the randomized policy f7" coincides
with g (resp. g). Owing to the condition (3.2), if the mapping 7 — J.(f7) is continuous

on the interval [0,1], then at least one randomized strategy f7 meets the value V and its

corresponding bias value 5* is a solution of the equation

J(f") =V, nin]o,1], (3.4)

whence g = f"" steers (3.1) to the value V.

Solving the (highly) nonlinear equation (3.4) for the bias value n* is usually a non-trivial

task, even in the simplest of situations [8]. The implementation a of the policy g which is
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defined below circumvents this difficulty by bypassing a direct solution of the equation (3.4).

The proposed implementations o = {a, }§° has the form
an(s, Hp) 1= Nn g(-, X)) + (1= 1n.)7(, Xn) n=0,1,---(3.5)

where {7, }$ is some sequence of [0,1]-valued RV’s which play the role of “estimates” for the
bias value n*.

In many applications, the mapping n — J.(f") is monotone, say monotone increasing
for sake of definiteness. The search for #* can then be interpreted as finding the zero of the
monotone function n — J.(f7) —V and this brings to mind ideas from the theory of Stochastic
Approzimations. Here, this circle of ideas suggests generating a sequence of bias values {9,}$°

through the recursion

1
NMnt+1 = [ﬂn +an (V - C(Xn+1)) n=20,1,... (3.6)

0
with 7o given in [0,1]. In (3.6), the notation [z]} = OV (2 A 1) is used for every z in R, and

the sequence of step sizes {a,}$ satisfies the conditions
[s o] [e o]
0<a,]O0, Zanzoo, Zai<oo. (3.7)
n=0 n=0

4. THE RESULTS

The purpose of this note is to provide mild conditions under which (i) the estimates
{nn}8° of n* generated through (3.6) are strongly consistent under P* and (ii) the policies ¢
and o achieve the same cost. These results, which are discussed in the remainder of the paper,
hold for more general situations with (3.3) replaced by a one-parameter family of stationary
policies {f7;0 < n < 1} such that f! = g and f° = g satisfy (3.2). Under a monotonicity
assumption, the same reasoning leads to the sequence of bias values generated by (3.6) and
to an implementation « of ¢ also given by (3.5). This more general formulation is assumed
thereafter and the assumptions of interest can now be stated as conditions (C 1)-(C3), where

(C1) Under each policy f", the RV’s {X,}&° form an aperiodic Markov chain with a single

recurrent class;



(C2) The transition probabilities n — py(f") are analytic on [0,1] for all z and y in S.
(C3) The equation '
L=V, o0<p<l (4.1)

has a unique solution n*, and for some ¢ > 0,
[Je(s7) = V](n —n") >0 (4-2)
whenever n # n* and |n — n*| < € in [0,1].
Condition (C2) is relaxed somewhat in Section 7. It is clearly satisfied when f7" is given
by (3.3) for then poy(f") = npzy(g) + (1 — 1)psy(g) for all z and y in S. The condition (4.2)
is tantamount to local monotonicity and in practice, is often verified by establishing some
stronger monotonicity property on 7 — J.(f") such as (C3bis) below.
(C3bis) The mapping [0, 1] » R:n — Jo(f") is strictly monotone, say monotone increasing
for sake of definiteness.

If this mapping is monotone decreasing, or if the inequality in (4.2) is reversed, then
the stochastic approximation algorithm (3.6) is modified by replacing (V — ¢(Xpn+1)) with
(e(Xn+1) = V).

That (4.1) has at least one solution follows from (3.2) and from the following result which

is contained in the proof of Theorem 5.4.

Lemma 4.1 Under the assumptions (C1)-(C2), the mapping [0,1] — R : n — J.(f") s
analytic on [0, 1].

The main result of this paper can now be stated.

Theorem 4.2 Assume (3.2) and (3.7) to hold. Under the assumptions (C1)-(C8), the follow-

ing statements hold true.

(i): The sequence of estimates {n,}3° is strongly consistent under P2, i.e.,
lim,n, =n* P® — a.s. (4.3)

(ii): The policies g and a achieve the same cost, t.e.,



The approach adopted here for establishing the convergence (4.3) uses an ODE argument
based on the deterministic lemma of Kushner and Clark [3] as presented by Metivier and
Priouret in [7]. The key result for the analysis is probabilistic in nature and is given the next

proposition whose proof is delayed till Section 6. To state the result, consider the RV’s {¥,}§°

given by
Yo = Je(f™) — ¢(Xn+1) n=0,1,---(4.5)
and for every T > 0, pose
k—1
m(n,T) :=max{k>n:Zai§T}. n=0,1,---(4.6)

Theorem 4.3 Under the assumptions (C1)-(C2), the convergence

lim,, ( sup | zk: a;Y; ]) =0 P — a.s. (4.7)

nSkSm(n:T) i=n

takes place.

Proof of Theorem 4.2. The result (4.4) on the cost follows readily from the parameter
convergence (4.3) upon making use of Theorem 3.1 of [10] which provides extensions to an
argument originally due to Mandl [6, Thm. 3, p. 46].

As explained by Metivier and Priouret [7], the convergence (4.7) underlines the P%-a.s.
convergence of {1, } to n*. The reader is invited to consult [3,7] for a complete exposition of
the arguments which are now briefly summarized: Interpolate the estimate sequence {7y},
say by piecewise linear functions [0,00) — R anchored at 7, at ¢, = Z;:Olai, and define a
sequence of left shifts 7(")(t) = (¢t — t,) which bring the “asymptotic part” of {n,} back

to a neighborhood of the time origin.

Now observe that the recursion (3.6) can be written in the form

1

Nn+1 = nn+an[(V—-Jc(f""'))+Yn] n =0, 1,.(48)
0

and that from any convergent subsequence {n{™)(:)}s° a further convergent subsequence

{n®)(.)}%° can then be extracted by standard boundedness and equicontinuity arguments.
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It is then easy to see from Theorem 4.3 that its limit 5(-), and for that matter the limit of any

convergent subsequent, satisfies the ODE
W) =V - J(f"™), ¢>0, n(0)inlo,1], (4.9)

which is asymptotically stable with a unique stable point #*, as a consequence of (C3).

A simple shifting argument now implies 5(t) = n* for all ¢ > 0 and this completes the

proof. These arguments are now standard and are omitted here for sake of brevity. O

5. SOME REGULARITY RESULTS

The proof of the convergence (4.3) is based on the so-called ODE method as presented by
Metivier and Priouret [7]. This approach hinges crucially on the fact that several quantities
of interest are Lipschitz continuous (in the variable n) and it is the purpose of this section
to establish the requisite regularity properties in some detail. In what follows, it will be
convenient to view any mapping f : S — IR as a d dimensional vector (f(z)) (still denoted by
f). Also, let I denote the d x d identity matrix and let 04 stand for the 1 X d row vector with
zero entries.

Note first that in the special case of (3.3), condition (C1) follows from a simple condition
on g and g.

Lemma 5.1. Let f7 be given by (3.8). If both Markov chains P(g) and P(g) are irreducible
(resp. aperiodic), so is each one of the Markov chains P(f"),0<n <1.

Proof. Note that if for some n = 0,1,--- and some pair of states z and v, either pgz) () >0
(

or p{? (g) > 0, then p%)(f”) > 0 for all 0 < % < 1. The result now follows readily from the
definitions of irreducibility and aperiodicity. |

Under (C1), the Markov chain P(f7) is positive recurrent for all 0 <7 <1 (since S is
finite) and therefore possesses a untque invariant measure m(n) which is interpreted as a 1 x d
row vector (m(n,z)). It is well known that this invariant vector m(n) is the unigue solution to
the system of equations

T=nP(f"), weq=1 (5.1)

in the variable 7 = (7(z)) in R**¢ with eq denoting the d x 1 column vector with all entries

equal to unity.



The next Lemma is useful for establishing the required regularity results. Throughout
the discussion, the analyticity of a matrix-valued mapping is understood entrywise.
Lemma 5.2 If the mapping [0,1] = R : 9 — R¥™?%:n 5 A(n) = (A4, (1)) is analytic with
the property that the inverse A™1(n) of A(n) ezists for every n in [0,1], then the mapping
[0,1]] > R:n — R¥>?:p > A~Y(n) is analytic on [0, 1].
Proof. By standard results from Linear Algebra, there exist d? + 1 polynomial functions
7o ¢ R* 5 R and Tzy : R - R, with z and y ranging in S, in d? variables A = (A,,) such
that

At (n)zy = ’r:oy((AA((:)))) (5'2)

for all z and y in S and all 0 < n < 1. Here, these polynomial functions are of degree at most
d and the relation ro(A(n)) = det A(n) #0 holds for all 0 <75 < 1.

It now follows from the expression (5.2) that the mapping n — A~ ()., is rational for
all z and y in S, thus a.nalytic‘ throughout [0,1] except possibly at a finite number of points
where the function may exhibit poles. However, ro(A(n)) is analytic in 5 and has no zero, so
that the assumed analyticity of the mapping n — A(%n) precludes the existence of poles for
each one of the mappings n — A~1(n),, for all z and y in S. |

The smoothness of the components of 7(n) can now be investigated.

Lemma 5.3 Under (C1)-(C2), the mapping [0, 1] = R :n — m(n,z) is analytic for every z
in S,

Proof. The equations (5.1) satisfied by the invariant vector can be rewritten more compactly

mQ(n) = [0a 1] (5.3)

where Q(7) is the d x (d + 1) matrix given by
Q) :=[Ia— P(f") ed. (5.4)

Consider the d x d matrix Q(n) obtained from Q(n) by removing its first column. Since
the invariant measure is uniquely determined by (5.1), it is plain that m(n) is the unique

solution to the vector equation 7Q(n) = [0g—1 1] with an obvious interpretation for 04_;.
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Consequently Q(n) is invertible and

m(n) = (04— 1)Q(n)7". (5.5)

The mapping n — Q~(n) is clearly analytic on [0,1] due to (C2) and the result readily follows
from Lemma 5.2. A

It is worth pointing out that under (C1),

limn-n—_l}_—lEf" [z": 1X; = :1:]] =n(n,z) (5.6)

=0

for all z in S (independently of the initial distribution), whence

2=0

J(f") = limnn—:TIEf" |:z": C(Xi)] = Zzw(n,x)c(:c) (5.7)

Of interest here are the Poisson equations associated with the cost ¢ under the policies

7,0 £ 7 < 1. More precisely, the mapping 2 : S — IR and the constant J (in IR) solve the

Poisson equation (associated with ¢) under policy f7 if

h(z) +J = e(2) + 3 ey (FM)R() (5.84)
for all zin 9, or in equivalent matrix form,
h+Jeg=c+ P(f"h . (5.8b)

It is clear that if the pair (J, k) solves (5.8) so does (J,h + aey) for every a in R. Moreover,
it is well known that if the pairs (J1,h1) and (Jq, h2) both solve (5.8), then

Jl J2 = hmn Efn l:z C :l (59)

t=0
and hy — hs is constant on recurrent classes.

As pointed out earlier, the Markov chain P(f") has a single positive recurrent class under

(C1) (for each 0 < 5 < 1), in which case the Poisson equation (5.8) has exactly one solution
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(Jo(n),h(n)) where h(n) : S — R is determined up to an additive constant [11, Thm. 4.1]. A
particular representative, still denoted h(n), is now described. Before giving this definition, it

is convenient to observe that

1 7n
=1 n N = J(f" .10
J:(n) hmnn+1E izoc(X)jl J(fM) (5.10)
as a result of (5.9).
Define the stochastic matrix P*(f") by
1 ¢ :
(") = limp—— P(f")". 5.11
() = i 2P 511

This limit exists under (C1) by virtue of elementary results in the theory of Markov chains
2]. Since P(f") has a single recurrent class, it is plain from (5.6) that all the rows of P*(fm)

are identical to 7 (n), so that
P*(f") = egm(n) (5.12)

forall0<n < 1.

It is now a simple exercise to see that the eigenvectors of P* coincide with those of P, and
that the matrix G(n) i= P(f") — P*(f") has spectral radius strictly less than unity, whence
I — G(n) is invertible. For all 0 < 5 < 1, the mapping h(7n) : S — R is now defined by

h(n) = Iz = G(0)] " La = P*(f")]e. (5.13)

Simple algebraic manipulations show that the pair (J.(n), (n)) given by (5.10) and (5.13)
solves the Poisson equation (5.8), since J.(n)eq = eqm(n)e = P*(f")c by virtue of (5.7) and
(5.12). '

Theorem 5.4 Under the assumption (C1)-(C2), the solution pair to the Poisson equation (5.8)
given by (5.10) and (5.18) is analytic on [0,1], i.e., the mappings [0,1] > R : n — J.(f") and
[0,1] >R :n — h(n,z), with z ranging over S, are all analytic.

Proof. Since S is finite, the analyticity of the mapping n — J.(n) is an immediate consequence

of Lemma 5.3 in view of (5.7) and (5.10).

11



The matrix-valued function n — P*(f") is analytic on [0,1] as a result of the represen-
tation (5.13) and of Lemma 5.3. It is now plain that the mappings n — Is — P*(f") and
n — Iq — G(n) are both analytic on [0,1], and the result now follows from Lemma 5.2. |

As a consequence of Theorem 5.4, since S is finite, there exists a positive constant K such

that
|Jo(n) — Je(7)| < K|ln—#]  and  sup,|h(n,z) — h(7,2)| < Kln — 4| (5.14)
forall 0 <n,7 < 1.

6. A PROOF OF THEOREM 4.3

This section is devoted to the proof of the a.s. convergence result (4.7). It is plain from
Theorem 5.4 that for each z in S, the mapping » — h(n,z) is continuous on [0, 1], thus
bounded and therefore

B :=sup,sup, | h(n,2) |< oo (6.1)

since S is finite. Moreover, with the simplified notation E” for the expectation operator Ef",

the Poisson equation (5.8) easily implies that

E"[h(n, Xn41) | Fn] = h(n, X,) + Jo(n) — ¢(Xx) n=0,1,---(6.2)

for all 0 € n < 1, whence

l En[h(n’Xn-H) | ]Fn] - Eﬁ[h(ﬁ’Xn+l) ' ]Fn] |
= | h(n, Xp) = h(7, Xn) + Je(n) — Je(7) | < 2K |n—7|
by making use of (5.14).
It follows from (5.8) that
—Ip = c()(n-i-l) - Jc(nn)
= h(nn, Xnt1) — E"[h(nn, Xnq2) | IF 1]
=2 + 28 4 73 n=0,1,---(6.4)
with
Z) t= h(nn, Xni1) — B [h(rny Xnt1) | Fo] (6.5a)
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Z? = B h(0n Xn41) | Fo] = E™ (B 1, Xng2) | o] (6.50)

and

Z{) := B [h(nn+1, Xnt2) | Frta] = E™ (A0, Xnp2) | Fop] (6.5¢)
for all n =0,1,.-.. Define the RV’s {S,S’“)}3° for all k = 1,2, 3, by posing

n—1
S,Sk) = Z aiZi(k) n=1,2,---(6.6)

1=0

with Sél) = Séz) = Sés) = 0. It now suffices to show that

£
lim,, ( sup | Z aiZi(k) ]) =0 P® —a.s. (6.7)

n<t<m(n,T)

forall T >0and all k=1,2,3.

It is plain that the RV’s {Z,(,l)}8° form a (P*,IF,) martingale-difference, whence {S’,(Ll)}f)>°

is a zero mean (P%,FF,)-martingale. Routine calculations show that

n—1 oo

sup, B%[| SV || = sup,B° [Z at |z 12] < 4B’} o (6.8)
=0 =0

upon using (6.1) and (3.7), and the (P*,TF,)-martingale {S,(Ll)}8° is thus uniformly integrable

under P, By the Martingale Convergence Theorem, the RV’s {S,(;l)}8° converge a.s. under

P® (to an a.s. finite limit), in which case they form a Cauchy sequence P“-a.s. and (6.7)

follows for &k = 1.

To prove (6.7) for k = 2, note that for all 0 < n < ¢, the relation

14
S -850 =3 a2

¢
= - Z(ai—l — a;) E" [h(n:, Xit1) | Fy)

t an—1 B [h(1ny Xni1) | Fp] — agErer (P(Met1, Xeyz) | Foga] (6.9)
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holds. It is now plain from (6.1) that

12
|53~ 83 |< B (aie1 — a5) + B(an—1 + a2) (6.10)
< 2Ban-; (6.11)

upon telescoping the terms in the first sum on the right handside of (6.10) and making use
of the monotonicity of the weight sequence {a,}§. The conclusion (6.7) for k = 2 is now

immediate.

Finally for k = 3, note from (6.3) that
| Z8) |< 2K | nn — Nt | n=0,1,---(6.12)
whereas the recursion (3.6) implies
| Mnt1 = Nn |< @ntr |V = ¢(Xnt1) |< @np1 B n=0,1,---(6.13)
with B =V + sup, | ¢(z) |. By combining (6.12) and (6.13), the inequality
| Z(3) |< 2BKanty n=0,1,---(6.14)

is seen to hold and since {a,}$° is decreasing, this yields the bound

e m(n,T) m(n,T)
sup |3 aiZ < N 0|2 |<2BK Y a? <2BKen(T+an).  (6.15)
n<l<m(n,T) i=n i=n =n
The convergence (6.7) now follows from (3.7). 1

7. CONCLUDING REMARKS

The results of this paper can be given the interpretation either of an estimation procedure,
where the estimated parameter is defined through (3.4), or of an adaptive implementation
scheme, where the controls are generated “on line” through (3.6). The paper concludes with

an application to constrained MDP’s and with several extensions of the results.

Constrained optimization
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The results of Section 4 have an immediate application to the following problem. Let
¢ and d be two cost functions S — R and denote the corresponding long-run average costs
incurred by an arbitrary policy « in II, as defined in (3.1), by J.(v) and J4(~), respectively.
With Iy := {y € I : J.(v) > V} for some V in R, consider the constrained optimization
problem

Maximize Ji() over Ily.

In the event ¢ < 0 and d > 0, the problem has a natural interpretation of maximizing the
reward subject to a bound on the cost. Assume henceforth that Iy is non-empty and strictly
contained in II; so that the problem is feasible but not trivial.

Beutler and Ross [1] have shown that if U is compact and if the mappings u — p,, (u) are
continuous for all z and y in S, then there exist two Markov deterministic policies § and g so
that (3.2) holds. Moreover, if f7 is given by (3.3), then n — J.(f") is continuous, and if 7*

solves (3.4), then g = f"" is a solution to the constrained optimization problem.

Applying the results of Theorem 4.2, it follows that if n — J,(f") satisfies condition
(C3), then the policy « obtain through (3.5)-(3.6) satisfies J,(e) = J;(g) = V. Similarly,

Ji(a) = Ji(g) and a solves the constrained optimization problem.
Extensions

The results of this paper can be obtained under regularity conditions which are much
weaker than (C2). One possible set of conditions under which the analysis carries through is

stated as condition (C2bis) below, where

(C2bis) The transition probabilities N — Pay(f7) are Holder continuous for all z and yin S,
i.e. there exist constants K > 0 and 0 < B < 1, such that

P2y (£7) = poy (f7)] < K|n — 7| (7.1)
for all z and y in S.

In exact parallel with the developments of Sections 5 and 6, conditions (C1), (C2bis) and
(C3) are sufficient to guarantee that

(i): For all z in S, the mapping n — w(n,z) is Holder continuous with parameter 3.
(ii): The mappings n — JAf") and n — h(n,z), with z ranging over S, are all Holder

continuous with parameter g.
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(iii): If {nn}§° is given by (3.6), then (4.3) and (4.4) hold.

The proofs of (i)-(ii) are identical to the ones given for Lemma 5.3 and Theorem 5.4,
respectively, upon observing that the class of Holder continuous functions with parameter g is
closed under addition and multiplication, and under composition with the function z — % on
closed intervals which do not include 0. The proof of Theorem 4.3 carries over with a slight
modification, namely that the last term in (6.3) and (6.12) needs to be changed to 2K |n — 7|?.
Modifying (6.14)-(6.15) appropriately, the last bound in (6.15) becomes 2éﬁKa£(T + ay),
which converges to zero due to (3.7).

If the regularity postulated in (C2bis) is changed to continuous differentiability of order

r, then the same remarks show that the smoothness in (i)-(ii) will then also be of order r.
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