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This dissertation pertains to the stabilization, robustness, and optimization

of Finite Dimensional Linear Time Invariant (FDLTI) decentralized control sys-

tems. We study these concepts for FDLTI systems subject to decentralizations that

emerge from imposing sparsity constraints on the controller. While these concepts

are well-understood in absence of an information structure, they continue to raise

fundamental interesting questions regarding an optimal controller, or on suitable

notions of robustness in presence of information structures.

Two notions of stabilizability with respect to decentralized controllers are con-

sidered. First, the seminal result of Wang & Davison in 1973 regarding internal

stabilizability of perfectly decentralized system and its connection to the decentral-

ized fixed-modes of the plant is revisited. This seminal result would be generalized

to any arbitrary sparsity-induced information structure by providing an inductive

proof that verifies and shows that those mode of the plant that are fixed with respect

to the static controllers would remain fixed with respect to the dynamic ones. A



constructive proof is also provided to show that one can move any non-fixed mode

of the plant to any arbitrary location within desired accuracy provided that they

remain symmetric in the complex plane. A synthesizing algorithm would then be

derived from the inductive proof.

A second stronger notion of stability referred to as “non-overshooting stability”

is then addressed. A key property called “feedthrough consistency” is derived, that

when satisfied, makes extension of the centralized results to the decentralized case

possible.

Synthesis of decentralized controllers to optimize an H∞-norm for model-

matching problems is considered next. This model-matching problem corresponds to

an infinite-dimensional convex optimization problem. We study a finite-dimensional

parametrization, and show that once the poles are chosen for this parametrization,

the remaining problem of coefficient optimization can be cast as a semidefinite pro-

gram (SDP). We further demonstrate how to use first-order methods when the SDP

is too large or when a first-order method is otherwise desired. This leaves the re-

maining choice of poles, for which we develop and discuss several methods to better

select the most effective poles among many candidates, and to systematically im-

prove their location using convex optimization techniques.

Controllability of LTI systems with decentralized controllers is then studied.

Whether an LTI system is controllable (by LTI controllers) with respect to a given

information structure can be determined by testing for fixed modes, but this gives a

binary answer with no information about robustness. Measures have already been

developed to determine how far a system is from having a fixed mode when one



considers complex or real perturbations to the state-space matrices. These measures

involve intractable minimizations of a non-convex singular value over a power-set,

and hence cannot be computed except for the smallest of the plants. We replace

these problem by equivalent optimization problems that involve a binary vector

rather than the power-set minimization and prove their equality. Approximate forms

are also provided that would upper bound the original metrics, and enable us to

utilize MINLP techniques to derive scalable upper bounds. We also show that we

can formulate lower bounds for these measures as polynomial optimization problems,

and then use sum-of-squares methods to obtain a sequence of SDPs, whose solutions

would lower bound these metrics.
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Chapter 1: Introduction

Decentralization has long played a crucial role in equipping engineers with a

significant paradigm based on which efficient control of dynamical systems could be

designed and maintained. Not only such decentralized architectures would reduce

the communication burden of large-scale systems and allow a scalable execution,

but they are also more robust to maintain in critical situations, when such control

systems are most needed.

Fundamental theoretical blocks of this paradigm has been a source of inter-

esting open questions rooting back to the illustrious counter example of Witsen-

hausen [1]. There has been a re-newed interest in tackling the challenges that arise

in this domain by employing optimization theory, mostly due to its thriving numer-

ical capabilities.

This dissertation is concerned with synthesis of decentralized control systems

by taking into account desirable steady-state and transient behaviors in the presence

of constraints on the structure of the information exchange between subsystems. We

will further analyze such decentralized architectures when the systems for which one

want to design a decentralized controller is subjected to uncertainties of different

sources that could possibly affect their steady-state behaviors.
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Stabilization of LTI systems with respect to LTI decentralized controllers is

studied in Chapter 2. Two notions of stabilizability are considered in that chapter.

The first one is the conventional internal stabilizability . This corresponds to a

seminal result in decentralized control regarding the development of fixed modes by

Wang and Davison in 1973 – that, given a control structure, plant modes which can-

not be moved with a static decentralized controller cannot be moved by a dynamic

one either, and that the other modes which can be moved can be shifted to any

chosen location with arbitrary precision. These results were developed for perfectly

decentralized, or block diagonal, information structure, where each control input

may only depend on a single corresponding measurement.

We consider fixed modes for arbitrary information structures. We provide

a comprehensive proof that with a given information structure, the modes which

cannot be altered by a static controller with the cannot be moved by a dynamic one

either, and the modes which can be altered by a static controller can be moved by a

dynamic one to any chosen location with arbitrary precision, thus generalizing and

solidifying Wang and Davison’s results.

This shows that a system can be internally stabilized by an LTI controller with

the given information structure if and only if all of the modes which are fixed with

respect to that structure are in the left half-plane; an algorithm for synthesizing

such a stabilizing decentralized controller is also distilled from the proof.

Another notion of stability is also considered in the same chapter. This sec-

ond criterion is stronger than internal stabilizability and requires that the energy

of the state would always be decreasing, and is thus called non-overshooting sta-
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bilizability. We identify a key property which allows extension of the centralized

results for this type of stabilizability. This property indeed holds for the most com-

mon classes of decentralized control problems. This enables one to determine that

non-overshooting stabilizability with respect to static controllers is equivalent to

non-overshooting stabilizability with respect to dynamic controllers, and to derive

a linear matrix inequality (LMI) which either synthesizes a stabilizing controller or

produces a certificate of non-stabilizability. We then compare these results with

those for internal stability.

We then turn our attention to the problem of synthesizing decentralized con-

trollers to optimize an H∞-norm for model-matching problems. This is the sub-

ject of Chapter 3. The model-matching form that we address can arise from the

closed-loop decentralized H∞ problem when a certain condition on the information

structure (namely Quadratic Invariance) is satisfied. There are no known methods

to obtain an exact H∞-optimal controller for a general information structure, and

we develop several methods of obtaining an approximate solution by constructing

finite-dimensional parametrizations of the controller. We show that once the poles

are chosen for this parametrization, the remaining problem of coefficient optimiza-

tion can be cast as a semidefinite program (SDP), and also demonstrate how to

use first-order methods when the SDP is too large or when a first-order method is

otherwise desired.

As for the poles, we consider them as dictionary elements for which an SDP

gives their corresponding optimal coefficients. We use the poles from the central-

ized H∞-optimal controller to suggest those for an initial dictionary, and then use

3



sparsity promoting optimization methods to effectively select poles from many can-

didates. A first-order Taylor approximation is then explored that allows one to

formulate another SDP that systematically adjusts the poles and the coefficients to

improve the closed-loop performance.

Next, we consider two purely optimization problems as they provide the neces-

sary optimization-based perspective and tools that we need in Chapter 6 to provide

a tractable non-binary measure of robustness in the decentralized settings. We ex-

plore problems on the minimization of a particular singular value in Chapter 4, and

on a subclass of Mixed Integer Non-Linear Programs (MINLP) in Chapter 5.

In Chapter 4 we consider the problem of minimizing a particular singular

value of a matrix variable, subject to convex constraints. Convex heuristics for this

problem are discussed, including some perhaps counter-intuitive results regarding

which heuristic is the best, which provide upper bounds on the optimal value of

the problem. The use of polynomial optimization formulations of the problem is

considered, to yield lower bounds on the value of the problem. Sum-of-Squares

(SOS) techniques are then used to formulate a lower bound on the polynomial

optimization problem as an SDP. We show that the problem can also be formulated

as an optimization problem with a bilinear matrix inequality (BMI), and discuss the

use of this formulation.

In Chapter 5 we consider a class of MINLP problems that are convex except

in terms of a vector of discrete variables. We introduce a class of methods, whereby

part of the objective is replaced by a new variable that makes it possible to sep-

arately update each of the discrete variables. This maintains linear complexity of

4



this update, while incorporating part of the objective minimization into the update.

When a certain condition on the separability of the discrete variable in the objec-

tive is met, the resulting method shows significant improvements. It is still possible

to capture these improvements even when this condition is not met, by means of

hybrid methods that approximately decouple the discrete variables while preserving

the same linear per-iteration complexity for the discrete variable update. Numer-

ical comparison shows that a certain class of such hybrid algorithms, which only

linearizes the effect of the non-dominant part of the coupling matrix, exhibits clear

improvements in performance.

In Chapter 6 we consider the determination of non-binary measures of robust

controllability with respect to decentralized controllers. Of course, whether an LTI

system is controllable (by LTI controllers) with respect to a given information struc-

ture can be determined by testing for fixed modes, but this gives a binary answer

with no information about robustness. A measure developed by Vaz and Davison

in 1988 [2] nicely captures the distance from a plant to the closest one with a de-

centralized fixed-mode (DFM), and ties it to eigenvalue assignability; that is, how

much effort is at most required to move the modes a given amount with the pre-

scribed information structure. This is equivalently referred to as the complex DFM

radius, that captures the smallest complex perturbation of the state-space matrices

which would result in a fixed mode. The real DFM radius is a more realistic and

less conservative measure, and captures the smallest real perturbation of the state-

space matrices required to render the system to have a a fixed mode. This was also

developed by Lam and Davison [3], more recently.

5



The main difficulty which have precluded widespread usage of these measures,

is that they involve the minimization of a non-convex singular value of a matrix,

which must further be minimized over a power set of the subsystems. This also

includes an inner non-concave maximization over an additional parameter for the

real DFM radius. We thus attained an easily computable, non-binary measure of

controllability for LTI systems with decentralized controllers of arbitrary information

structure.

We first transform this problem into a form that involves a polynomial over

integer variables in the objective, and show that this would indeed result in exactly

equal metrics for the complex and real DFM radius. Simpler forms involving affine

combinations of the integer variables (rather than monomials) are then derived. We

show that these simpler forms would correspond to an upper bound on the complex

and real DFM radius, and use them in conjunction with MINLP approaches in Chap-

ter 5 to derive an ADMM-based algorithm that decouples the effects of the integer

variables, such that they can be optimized directly with per-iteration computations

scaling linearly, rather than exponentially, with the number of subsystems. This

method is shown to produce results which closely track the assignability measure

across a variety of fixed mode types.

We conclude Chapter 6 with a discussion of upper and lower bounds for these

metrics. Finding lower bounds is not only important for providing guarantees on

where the true metric lies, but is typically more important since determining whether

the metric is bounded away from zero corresponds to whether the system can be

controlled at all. We will address these lower bounds by using the machinery devel-

6



oped for obtaining lower bounds on the k-th singular value of a polynomial matrix

variable in Chapter 4.

1.1 Preliminaries

We will proceed by stating some preliminary notations, and then define the

transfer functions of interest, and review the standard and conventional notion of

stability that is mostly used in this dissertation. We then define plant and con-

troller, their types, and review properties regarding their interconnection. We then

define sparsity constraints and informations structures and their relation. Finally,

Quadratic Invariance (QI) is reviewed, for use in Chapter 3.

Numbers

We proceed with the following preliminary definitions. Let R denote the set of

real numbers, and R̄ be the extended real numbers: R̄ = R∪{±∞}. Denote binary

set by B = {0, 1}, and any finite subset of R by Z, i.e.:

Z , {α1, · · · , α|Z|},

where |Z| <∞, and αi ∈ R, for i ∈ {1, · · · , |Z|}. Furthermore, denote the Cartesian

product of m possibly different instances of such sets by:

Z(m) , Z1 × · · · × Zm.

7



We will denote the projection of a real variable y ∈ Rm onto the set Z(m) by:

ΠZ(m) (y) =

[
ΠZ1 (y1) · · · ΠZm (ym)

]T
,

where

ΠZi
(yi) = arg min

z∈Zi

‖yi − z‖2,

for i ∈ {1, · · · ,m}. In its simplest form, all such Zi could be taken the binary set,

i.e., Zi = B for every i ∈ {1, · · · ,m}, which would result in Z(m) = Bm, for which

the projection would be simply picking the closest of either 0 or 1 to each element

of the vector y, i.e., ΠB (yi) = 1, if yi > 0.5 and 0 otherwise.

Define C to be the complex plane, and let <(·) and =(·) be the real and imag-

inary part of any complex number or matrix. Let B(λ0, ε) , {λ ∈ C | |λ− λ0| < ε}

denote the open ε-ball around λ0. Denote the unit imaginary number
√
−1 by j,

the imaginary axis by jR ,
{
z ∈ C | <(z) = 0

}
, the open left-half plane (LHP)

by C− , {λ ∈ C|<(λ) < 0}, and the closed right half of the complex plane by

C̄+ , C \C−. Denote the unit disk by D =
{
z ∈ C | |z| < 1

}
and unit circle by ∂D,

and the closed space outside the unit disk by D̄+ = C \ D.

Vectors

Let ei denote the unit vector of all zeros except for ith element which is 1.

Define 1 to be the vector of all ones, and I to be the identity matrix. Note that

dimension of ek, 1, and I should be clear from the context and thus we suppress

their explicit dependence in the notation. Unless otherwise declared, vector norms

8



in this paper are all standard Euclidean norm

‖v‖2 = 〈v, v〉 = v∗v for v ∈ Cn,

where superscript (·)∗ denotes the Hermitian operator.

Vectorization

For a real matrix R define vec (R) as the vectorization operator that puts

columns of R ∈ Rm×n on top of each other, and produces a vector in Rmn. We will

take the vectorization operator for a complex matrix A ∈ Cm×n as

vec (A) =

vec (<(A))

vec (=(A))

 .

Similarly, define vec−1 (v) as a reshaping operator which puts elements of v ∈ C2mn

in the right position in a matrix in Cm×n such that vec−1 (vec (A)) = A. We do not

explicitly indicate the dimensions required for the reshaping operator vec−1 (·), and

note that it should be clear from the context wherever used.

Matrices

For a matrix A ∈ Cm×n, let σmax(A) , σ1(A) ≥ · · · ≥ σmax(m,n)(A) , σmin(A)

denote its singular values. It is obvious that σk(A) = 0 for min(m,n) < k ≤

max(m,n). If m = n and A is a Hermitian matrix, i.e., A∗ = A, then all of its

eigenvalues would be in R and one can index them so that λmax(A) , λ1(A) ≥

· · · ≥ λn(A) , λmin(A). We refer to the non-negative and negative eigenvalues
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respectively by eig+,0(A) , eig (A) ∩ C̄+, and eig−(A) , eig (A) ∩ C−.

We use the standard inner product on Cn×n matrices, given by 〈L, V 〉 =

tr (L∗V ), where tr (·) is the trace operator.

Matrix Norms

For a complex matrix A ∈ Cm×n denote its Ky Fan k-norm [4, Eq. IV-33,

p. 92] by:

sk(A) ,
k∑
`=1

σ`(A). (1.1)

We then have that the matrix 2-norm (also known as the spectral norm) of A,

denoted by ‖A‖2, is ‖A‖2 = s1(A) = σ1(A), and its Nuclear norm, denoted by ‖·‖∗

is equal to ‖A‖∗ = smax(m,n)(A) =
∑

k σk(A). We also denote the Frobenius norm

by ‖·‖F for which we have:

‖A‖2
F = 〈A,A〉 =

∑
ij

|Aij|2 =
∑
k

σ2
k(A).

Also the ‖·‖∞-norm for real matrices is defined as:

‖A‖∞ = max
i

(∑
j
|Aij|

)
.

Continuous Time Transfer Functions

We are mostly interested in continuous-time systems. We define transfer func-

tions for continuous-time systems. A rational function G : C → C is called real-

rational if the coefficients of its numerator and denominator polynomials are real.
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Similarly, a matrix-valued function G : C → Cm×n is called real-rational if Gij is

real-rational for all i, j. A rational polynomial is called proper if the degree of its

denumerator is greater than or equal to the degree of its numerator, and strictly

proper if the degree of its denumerator is strictly greater than the degree of its

numerator.

Denote byRm×n
p the set of matrix-valued real-rational proper transfer matrices

Rm×n
p =

{
G : C→ Cm×n | G proper, real-rational

}
,

and let

Rm×n
sp ,

{
G ∈ Rm×n

p | G strictly proper
}
.

Also let RH∞ be the set of real-rational proper stable transfer matrices:

RHm×n
∞ =

{
G ∈ Rm×n

p | G has no poles in C̄+
}
.

Discrete Time Transfer Functions

We use Discrete Time systems explicitly in Chapter 3. We define transfer

functions for discrete-time systems determined on unit circle. A rational function G :

C→ C is called real-rational if the coefficients of its numerator and denominator

polynomials are real. Similarly, a matrix-valued function G : ∂D → Cm×n is called

real-rational if Gij is real-rational for all i, j. Similarly denote by Rm×n
p the set of
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matrix-valued real-rational proper transfer matrices

Rm×n
p =

{
G : ∂D→ Cm×n | G proper, real-rational

}
,

and let Rm×n
sp be

Rm×n
sp =

{
G ∈ Rm×n

p | G strictly proper
}
.

Also let RH∞ be the set of real-rational proper stable transfer matrices

RHm×n
∞ =

{
G ∈ Rm×n

p | G has no poles in D̄+
}
.

It can be shown that functions in RH∞ are determined by their values on ∂D, and

thus we can regard RH∞ as a subspace of Rp.

A discrete-time transfer function matrix G belongs to H∞ if and only if

ess supω∈[0,2π) σmax

(
G(ejω)

)
<∞,

where σmax(·) gives the maximum singular value. Similarly the H∞-norm of an

m-by-n G ∈ H∞ is:

‖G‖H∞ = ess supω∈[0,2π) σmax

(
G(ejω)

)
= ess sup <

(
u∗G(ejω)v

)
,

12



where the last essential supremum is taken over ω ∈ [0, 2π), u ∈ Cm, v ∈ Cn with

‖u‖ = ‖v‖ = 1.

We could now equivalently define RHm×n
∞ = Rm×n

p ∩Hm×n
∞ . When the dimen-

sions are implied by context, we omit the superscripts ofRm×n
p ,Rm×n

sp ,RHm×n
∞ ,Hm×n

∞ .

Stability Notions

We give the general definitions for stability of a linear system for its equilibrium

at zero. If the equilibrium point is not zero, a shift of the state could be applied

to the dynamics, to make the equilibrium point zero: We will specially consider the

following LTI dynamical system for which the only possible equilibrium point would

be zero.

ẋ(t) = Ax(t), x(t0) = x0, (1.2)

where x ∈ Rn and A ∈ Rn×n.

Definition 1 ([5, Definition 2.2]). A dynamical system is said to be:

1. Lyapunov stable at time t0 if and only if for each ε > 0, there exists a δ(ε) > 0

such that ‖x(t0)‖ < δ(ε) implies that ‖x(t)‖ < ε for all t ≥ t0.

2. Asymptotically stable if and only if it is Lyapunov stable and δ(ε) in the above

part can be selected so that lim
t→∞
‖x(t)‖ = 0.

As a widely known notion of stability for LTI systems, we consider the second

part of the above definition and refer to it by the following name:

Remark 2. A necessary and sufficient condition for asymptotic stability of the
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system of the form (1.2) is that < (eig (A)) < 0. We will also refer to this type of

stability as internal stability.

Except otherwise noted, all the stability notions through the rest are regarding

internal stability.

Plant and Controller

We suppose that we have a Finite Dimensional Linear Time Invariant (FDLTI)

causal, generalized plant P ∈ R(nz+ny)×(nw+nu)
p , partitioned as

P =

P11 P12

P21 G

 .

Given a controller K ∈ Rnu×ny
p , we define the (lower) linear fractional

transformation (LFT) of P and K

fLFT(P,K) , P11 + P12K(I −GK)−1P21. (1.3)

This interconnection is shown in Figure 1.1. This generalized plant P is only used

in Chapter 3. Elsewhere, when we talk about about the plant, we mean the map G

from u to y.

We suppose that there are ny sensor measurements and nu control actions,
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y u

z w

K

P11 P12

P21 G

Figure 1.1: Linear fractional interconnection of P and K

and thus partition the sensor measurements and control actions as

y =


y1

...

yny

 , u =


u1

...

unu

 ,

and then further partition K as

K =


K11 . . . K1ny

...
...

Knu1 . . . Knuny

 .

We also assume that we are provided with a minimal state-space representation

of G, denoted by (A,B,C,D). Wherever the results depend on a specific state-

space realization, we refer to G as a state-space system. We have that A ∈ Rn×n,
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B ∈ Rn×nu , C ∈ Rny×n, and D ∈ Rny×nu . We will decompose B column-wise as:

B =

[
B1 B2 · · · Bnu

]
,

and C row-wise as:

C =



C1

C2

...

Cny


.

With a slight abuse of notation, when eig−(·), and eig+,0(·) are applied on a

general LTI system G, we mean the negative, and non-positive eigenvalues of dy-

namic matrix of the minimal state-space representation of that system, i.e., eig−(G) ,

eig−(A), and eig+,0(G) , eig+,0(A).

We also denote a state-space representation of K by (AK , BK , CK , DK), and

define types of controllers that will help us to easily refer to whether a controller K

is static, proper dynamic, or static for some elements but proper dynamic for others.

We will make use of the following controller types:

• T d: Set of finite order proper dynamic controllers, i.e., AK , BK , CK , DK each

are real matrices of compatible dimension.

• T s: Set of static controllers, i.e., AK , BK , and CK are all zero and only DK

could be non-zero, i.e., Kij ∈ R for all (i, j).

• T s+1
i,j : Set of controllers such that all the elements of controller are static except
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for (i, j)th element which could be proper dynamic, i.e., we have K`k ∈ R for

all (`, k) 6= (i, j), and Kij is a proper transfer function in σ, where σ could be

taken s in the CT, or z in DT. This could be read as “static plus one”.

• T s+k
I : Set of controllers such that all the elements of controller are static

except for k indices in the set I , {(i1, j1), · · · , (ik, jk)}, i.e., for all (i, j) /∈ I,

Kij ∈ R and for all (i, j) ∈ I, Kij is a proper transfer function in σ. This

could be read as “static plus k”.

Given a (not necessarily minimal) state-space representation of G and K, the

closed-loop ofG andK (Figure 1.2) has a state-space representation with dynamics

matrix denoted by ACL(G,K), given by:

ACL(G,K) ,

 A+BDKNC BMCK

BKNC AK +BKNDCK

 , (1.4)

where M , (I − DKD)−1, and N , (I − DDK)−1. We have MDK = DKN , and

similarly DM = ND. Let Γ(G,K), as illustrated in Figure 1.2, denote the map from

the set-point to the outputs of G (i.e., from r to y), when K is closed around G. A

state-space representation for this closed-loop interconnection Γ(G,K) is given by:

Γ(G,K) =


ACL(G,K)

BM

BKDM

NC DMCK DM

 (σ)

As a property of Γ(·, ·), we have the following relation for the given state-space
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G

K

y r

Γ(G,K)

+

Figure 1.2: The map from set-points to outputs when K is closed around G.

realization of the plant G, and controllers K1 and K2:

Γ(Γ(G,K1), K2) = Γ(G,K1 +K2), ∀ K1, K2. (1.5)

which can be verified by writing the state-space representation of both sides.

Sparsity Patterns

Suppose that Kbin ∈ Bm×n is a binary matrix. The following is the sub-

space of Rm×n
p comprising the transfer function matrices that satisfy the sparsity

constraints imposed by Kbin:

Sparse(Kbin) , {K ∈ Rm×n
p | Kij(σ) = 0 for almost all σ ∈ C

and for all i, j such that Kbin
ij = 0}

Conversely, given K ∈ Rm×n
p , we define Pattern(K) , Kbin, where Kbin is the
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binary matrix given by:

Kbin
ij =


0, if Kij(σ) = 0 for almost all σ ∈ C

1, otherwise,

for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Information Structures

We want to impose information structures on the controller which could

be described by a subset S ⊂ Rnu×ny
p , and want to have K ∈ S. It is only in

Section 2.2 that we account for general information structures, and everywhere

else in this dissertation we consider sparsity-induced structures on controllers

such that each control input may access certain sensor measurements, but not others.

We represent sparsity constraints on the overall controller via a binary matrix

Kbin ∈ Bnu×ny . Its entries can be interpreted as follows:

Kbin
kl =


1, if control input k may access sensor measurement l,

0, if not,

for all k ∈ {1, · · · , nu}, l ∈ {1, . . . , ny}.

The subspace of admissible controllers can be expressed as:

S = Sparse(Kbin).
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For a sparsity pattern S, we similarly let Adm(S) denote the set of admissible indices

for which the controller is allowed to be non-zero, i.e., (i, j) /∈ Adm(S) if and only

if Kbin
ij = 0.

Also for simplicity we define the following sparsity patterns:

• Sc: Centralized sparsity patterns, i.e., no sparsity constraints are imposed on

the controller. Adm(S) = {(i, j) ∀ i, j}.

• Sd: Diagonal sparsity patterns, i.e., nu = ny and K(σ) must be zero for all

off-diagonal term (for almost all σ). Adm(S) = {(i, i) ∀ i}.

For any sparsity pattern S, let a , |Adm(S)| be the number of admissible

non-zero indices in controller, and let the tuple

I(S) , {(i1, j1), · · · , (ia, ja)} (1.6)

be any arbitrary ordering of admissible non-zero indices of controller.

For any D ∈ T s ∩ S, we define the sequence of matrices D|(m) ∈ Rnu×ny ,

m ∈ {0, 1, · · · , a} with a = |Adm(S)| as:

D|(0) , 0, D|(m) ,
m∑
`=1

ei`Di`j`e
T
j`

for m ∈ {1, · · · , a} (1.7)

where ei` ∈ Rnu and ej` ∈ Rny , for ` ∈ {1, · · · , a}. We thus have D|(a) = D.

This D|(m) gives the static controller matrix with only the first m admissible indices.
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For a given i ∈ {1, · · · , nu}, define

Ji , {j | j ∈ {1, · · · , ny} and Kbin
ij = 1}, (1.8)

which are the set of sensor measurements yj that control action ui is allowed to

access. For a subset I ⊆ {1, · · · , nu}, denote its complement by Ī , {1, · · · , nu} \ I.

Similarly define JI ,
⋃
i∈I Ji, which are the set of sensor measurements that can be

seen from inputs in I. Also, for any subset I = {i1, · · · , i|I|}, we define

BI ,

[
Bi1 · · ·Bi|I|

]
.

Likewise, for any subset J = {j1, · · · , j|J|}, define

CJ ,


Cj1

...

Cj|J|

 .

As there is no inherent ordering in the sets I (and J), the aforementioned BI (and CJ)

could defer up to column (and row) permutations, in which case, any column (and

row) permutation of BI (and CJ) is a valid choice.

Quadratic Invariance (QI)

We now define quadratic invariance,

Definition 3 ( [6, Definition 2]). Let a causal linear time-invariant plant, rep-
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resented via a transfer function matrix G in Rny×nu
p , be given. If S is a subset

of Rnu×ny
p then S is called quadratically invariant under G if the following in-

clusion holds:

KGK ∈ S for all K ∈ S.

For the case of sparsity constraints, it was shown in [6] that a necessary and

sufficient condition for quadratic invariance is

Kbin
ki Gbin

ij Kbin
jl (1−Kbin

kl ) = 0, (1.9)

for all i, l ∈ {1, . . . , ny}, and all j, k ∈ {{1, · · · , nu}}.

KjlGijKki

Kkl

ylujyiuk

Figure 1.3: QI interpretation for sparse controllers

An interpretation (see Figure 1.3) is that if a sensor measurement (yl) can

indirectly effect a control input (uk) through the plant, then that controller must

be able to directly observe that measurement (Kbin
kl = 1). This is closely related to

the notion of partial nestedness [7, 8], and many problems of interest either fall in

this class or can be relaxed or approximated to fall in this class.
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Chapter 2: Stabilizability

This chapter is concerned with the stabilization of decentralized control sys-

tems, for which certain controller inputs may depend on some measurements but not

others. This corresponds to finding a stabilizing controller which satisfies a given

sparsity constraint. A special case of this, sometimes referred to as perfectly decen-

tralized control, occurs when each control input ui may depend only on a single as-

sociated measurement yi, which corresponds to finding a stabilizing controller which

is (block) diagonal. This special case is sometimes itself referred to as decentralized

control, particularly in the literature from a few decades ago. This malleability or

evolution of the definition has not only caused some confusion, but has also resulted

in some important results in the field only being studied for this special case.

We will consider two different notions of stabilization in this chapter. Sec-

tion 2.1 discusses internal stabilizability for the FDLTI decentralized systems and

is built upon a seminal result in decentralized control regarding the development

of fixed modes by Wang and Davison in 1973 [9]. That paper studies (FDLTI)

perfectly decentralized stabilization of FDLTI plants. Its contributions can be bro-

ken into three main components - a definition establishing the framework, and two

subsequent results. Fixed modes were defined as those modes of the plant which
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could not be altered by any static perfectly decentralized controller (that is, by any

diagonal matrix). The first result was that these fixed modes could also not be

altered by any dynamic perfectly decentralized controller: if you can’t move it with

a static diagonal controller, you can’t move it with a dynamic diagonal controller.

The second result was that if a mode is not fixed, then it can be moved arbitrarily

close to any chosen location in the complex plane (provided that it has a complex

conjugate pair if it is not real). These can be taken together to state that a system

is stabilizable by a (dynamic) perfectly decentralized controller if and only if all of

its (static) fixed modes are in the left half-plane (LHP).

When proving these results, it was shown that allowing one part of the con-

troller to be dynamic does not result in any fewer fixed modes than a static controller,

and then claimed that the first result followed; that is, that a dynamic controller

would not be able to move any of the fixed modes. Similarly, it was shown that

a single non-fixed mode could be moved to any chosen location, and then claimed

that the second result followed; that is, that an arbitrary number of non-fixed modes

could be simultaneously moved to chosen locations by a single controller. Getting

from these initial steps to a rigorous inductive argument, however, is not trivial.

Here in the present chapter, we extend these fundamental concepts for arbi-

trary information structure, while developing robust notation and rigorous proofs,

thus placing the new and existing results on a sound mathematical footing as was

considered in [10–12].

We first introduce notation for fixed modes that allows its dependence on

information structure, as well as with the allowed type of controllers (linear static,
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linear dynamic, non-linear, etc.). We then show that, for arbitrary information

structure, the fixed modes with respect to dynamic controllers are the same as the

fixed modes with respect to static controllers. Moreover, we provide a rigorous

proof that the non-fixed modes can then be moved to within an arbitrarily small

distance of chosen (conjugate) locations, using a dynamic LTI controller with the

given structure, thus extending and solidifying the seminal results of Wang and

Davison. The proof is constructive, and we lastly distill an explicit algorithm for

the stabilizing decentralized controller synthesis from the proof.

The obvious potential benefits of this are an increased understanding of decen-

tralized stabilizability, and the verification of important existing results. It is also

our hope that the notation developed will be useful in further extending our un-

derstanding of decentralized stabilizability to richer classes of controllers for which

the fixed modes may diminish relative to the original static definition, particularly

non-linear and/or time-varying controllers [13–16].

It is known that the centralized fixed modes (that are fixed with respect to

a centralized linear static controller) will still be present after applying any causal

controller including linear or nonlinear controllers, dynamic or static ones, and finite-

dimensional or infinite-dimensional ones [17, Section 6.1, p. 237, Remark 3]. A

certain class of the decentralized fixed modes, namely quotient fixed modes, also have

the same property and will remain present after applying any causal controller that

satisfy the information structure [16], while non-quotient decentralized fixed modes

can be eliminated by a periodically time-varying decentralized controller [18,19].

We further note that demonstrating the results of this section directly for ar-
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bitrary structure, as opposed to attempting to diagonalize the problem and then

prove the original perfectly decentralized results, would likely be useful when other

types of stability are required which are not invariant under such transformations,

though we currently focus on internal stability. As an example of the diagonaliza-

tion approach, readers are referred to [20], where existence of a stabilizing controller

under arbitrary sparsity-induced information structures has been demonstrated by

transforming the problem into a diagonal one to which [9] could be applied. Further-

more, [20] demonstrates an analytical test for determining structural fixed modes

under arbitrary sparsity-induced information structure and shows its equivalence to

a graph-theoretical condition.

Also, dealing with the original structure is preferable since stabilizing con-

trollers can be constructed without having to first expand their size. Finally, while

the proofs in [9], (as well as [16]), are constructive in nature, they do not clearly

lead to an explicit synthesis algorithm. A further advantage of proving this result in

earnest was the ability to extract such an algorithm, which then finds a stabilizing

LTI decentralized controller whenever one exists.

In contrast with Section 2.1, we study the stabilization of systems with decen-

tralized controllers when the stability criterion of interest is instead “non-overshooting

stability” in Section 2.2. This criterion is stronger than those which have typically

been studied, particularly for decentralized control, and requires that the energy of

the state always be decreasing. We identify a key property which allows centralized

results for this type of stability to be extended, which indeed holds for the most

common classes of decentralized control problems. Stabilizability with respect to
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static controllers is equivalent to stabilizability with respect to the dynamic ones

for this notion of stabilization. This allows one to derive a linear matrix inequality

(LMI) which either synthesizes a stabilizing controller or produces a certificate of

non-stabilizability. We then compare these results with those for internal stability,

i.e., fixed modes.

2.1 Stabilization for Arbitrary Sparsity-Induced Information Struc-

ture

We will define fixed modes, and introduce some auxiliary notation regard-

ing that in Section 2.1.1. We review the Kalman canonical form, and state some

preliminary results regarding the relation between that form and fixed-modes in

Section 2.1.2. We then provide comprehensive proofs, to verify that those modes of

the plant that are fixed with respect to the static controller will remain fixed with

respect to a dynamic one (in Section 2.1.3), and that all the non-fixed modes of

the plant could be placed arbitrary close to any conjugate location in the complex

plane (in Section 2.1.4). Finally, in Section 2.1.5 we derive an explicit stabilization

algorithm from the main proof.

2.1.1 Review

We will begin by defining fixed-modes, also known as Decentralized Fixed

Modes (DFM):

Definition 4. The set of fixed modes of a plant G with respect to a sparsity pattern S
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and a type T , is defined to be:

Λ (G,S, T ) , {λ ∈ C | λ ∈ eig (ACL(G,K)) ∀ K ∈ S ∩ T }

=
⋂

K∈S∩T

eig (ACL(G,K)) .

Remark 5. This reduces to the definition of fixed modes in [9] if S = Sd (diagonal

structure) and T = T s (static controllers).

For any FDLTI plant G, denote its open-loop modes by ζ(G) = eig (A), and for

each mode λ ∈ ζ(G), let µ(λ,G) denote its algebraic multiplicity. We will partition

the open-loop modes as:

ζ(G) = Λ (G,S, T s) ∪ Λ̃(G,S, T s) (2.1)

where

Λ̃(G,S, T s) = eig (A) \ Λ (G,S, T s)

gives the non-fixed modes, which we then further partition as:

Λ̃(G,S, T s) = Λ̃+(G,S, T s) ∪ Λ̃−(G,S, T s),

where

Λ̃+(G,S, T s) = {α ∈ ζ(G) | <(α) ≥ 0} \ Λ (G,S, T s)

= Λ̃(G,S, T s) ∩ C̄+

= {α1, · · · , α|Λ̃+(G,S,T s)|}
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are distinct unstable non-fixed open-loop eigenvalues of A, and

Λ̃−(G,S, T s) = {β ∈ ζ(G) | <(β) < 0} \ Λ (G,S, T s)

= Λ̃(G,S, T s) ∩ C−

= {β1, · · · , β|Λ̃−(G,S,T s)|}

are distinct stable non-fixed open-loop eigenvalues of G. We may suppress the

dependence of these collections of eigenvalues on some of their arguments when

clear from context.

We note that one can adopt the notion of the multiset to discriminate between

copies of a mode with multiplicity greater than one. This would have some concep-

tual advantages, but would unnecessarily complicate some definitions and proofs,

and so we maintain the use of standard sets, while tracking the multiplicities of the

modes which we will want to move (the unstable non-fixed modes). This is equally

acceptable, provided that a fixed and a non-fixed mode do not have the same value,

which would require the non-fixed modes to be defined as something other than the

complement of those which are fixed, as above (and multiset complementation could

handle this aspect nicely). Even that situation could not be problematic if we are

considering the complex plane as being split into an acceptable and an unacceptable

region, since such an overlap would either represent an acceptable situation, or one

which is fatal anyway.

Denote the total (with multiplicities) number of unstable non-fixed modes of
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a plant G by

ν(G) ,
∑

α∈Λ̃+(G,S,T s)

µ(α,G).

2.1.2 Centralized Results

In this section we review and establish results on controllability, observability,

and fixed modes for centralized control of linear time-invariant systems. We begin

with Kalman canonical form with the help of the following lemma:

Lemma 6. For every FDLTI plant G, there exists a similarity transformation ma-

trix T such that

T 0

0 I


 A B

C D


T−1 0

0 I

 =



Ã11 0 Ã13 0 B̃1

Ã21 Ã22 Ã23 Ã24 B̃2

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

C̃1 0 C̃2 0 D


. (2.2)

In the above equation we have the following correspondence between eigenvalues

of Ãii and modes of G:

• eig
(
Ã11

)
: controllable and observable modes of G,

• eig
(
Ã22

)
: controllable and unobservable modes of G,

• eig
(
Ã33

)
: uncontrollable and observable modes of G,

• eig
(
Ã44

)
: uncontrollable and unobservable modes of G.
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Proof. See, for example, [21].

In order to reduce some of the notation, we do not explicitly show the depen-

dence of Ãij, B̃i, C̃j on A,B,C, and T , but it should be kept in mind that wherever

we use Lemma 6 on a system, the resulting (̃·) variables are function of that system’s

state-space matrices, and Kalman similarity transformation matrix T .

The following lemma is useful in connecting centralized fixed modes with the

familiar notion of controllability and observability. It was shown for strictly proper

plants in [22]; we establish the following generalization before proceeding.

Lemma 7. Given a proper controllable and observable plant Gco, for almost any DK ∈

Sc ∩ T s, we have that:

eig (ACL(Gco, DK)) ∩ eig (Gco) = ∅. (2.3)

Proof. For a strictly proper plant refer to [22, Theorem 2]. Given the proper

plant Gco, consider the strictly proper part of it, namely Gco−D. Then, by [22, The-

orem 2] the set of static feedback gains D̃K for which eig
(
ACL(Gco −D, D̃K)

)
∩

eig (Gco −D) 6= ∅ constitute a finite union of hyperplanes in the ambient space,

and hence almost any D̃K ∈ Sc ∩ T s moves the open-loop eigenvalues of Gco − D.

If (I + D̃KD) is invertible, then by the change of variable DK = (I + D̃KD)−1D̃K ,

we have:

ACL(Gco −D, D̃K) = ACL(Gco, DK).

To complete the proof, we show that (I+D̃KD) is invertible for almost any D̃K . This
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can be seen as det(I+D̃KD) = 0 is a non-trivial polynomial in D̃K (choosing D̃K = 0

would yield non-zero determinant), and hence the set of D̃K for which det(I +

D̃KD) = 0 is a set with dimension less than the ambient space and has zero Lebesgue

measure.

Next we state the following result regarding fixed modes with respect to a

centralized sparsity pattern Sc, which tells us that the fixed modes of a plant with

respect to a centralized information structure are precisely its uncontrollable or

unobservable modes.

Lemma 8. For any FDLTI plant G,

Λ (G,Sc, T s) =
⋃

i=2,3,4

eig
(
Ãii

)
,

where Ãii are the blocks in the Kalman canonical decomposition of plant G, such

that the fixed modes are the union of uncontrollable or unobservable modes of G.

Proof. Denote the controllable and observable part ofG byGco , C̃1(sI−Ã11)−1B̃1+

D. We first establish that for any arbitrary DK ∈ Sc ∩ T s that is closed around G,

we have:

eig (ACL(G,DK)) = eig (ACL(Gco, DK)) ∪ (
⋃

i=2,3,4

eig
(
Ãii

)
). (2.4)

To see this, apply the similarity transformation T given in Lemma 6 on ACL(G,DK).

Then TACL(G,DK)T−1 would only differ in blocks Ã11, Ã21, Ã13, and Ã23 compared
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to the open-loop Ã in (2.2). This leaves the structure of Ã unchanged, and ren-

ders (2.4).

For any DK ∈ Sc ∩ T s, and for i = 2, 3, 4, we then have:

eig
(
Ãii

)
⊆ eig

(
TACL(G,DK)T−1

)
= eig (ACL(G,DK)) ,

and so
⋃

i=2,3,4

eig
(
Ãii

)
⊆ Λ (G,Sc, T s) .

For any remaining modes of G, i.e., λ ∈ eig
(
Ã11

)
, it follows from (2.4)

and Lemma 7 that there exists a static controller DK ∈ Sc ∩ T s such that λ /∈

eig (ACL(G,DK)), and so λ /∈ Λ (G,Sc, T s) .

Remark 9. In view of Lemma 7 and 8, almost any randomly chosen DK ∈ Sc ∩T s

moves all the open-loop modes of G, except those of Λ (G,Sc, T s).

We use our notation to restate the following result, which tells us that the

fixed modes of a plant with centralized information structure are the same with

respect to static or dynamic control.

Theorem 10. Given an FDLTI plant G,

Λ (G,Sc, T s) = Λ
(
G,Sc, T d

)
.

Proof. The ⊇ inclusion follows immediately since T s ⊆ T d.

We now need to show that Λ (G,Sc, T s) ⊆ Λ
(
G,Sc, T d

)
; using Lemma 8,

we can achieve this by showing that
⋃

i=2,3,4

eig
(
Ãii

)
⊆ Λ

(
G,Sc, T d

)
, which can
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be achieved by showing that
⋃

i=2,3,4

eig
(
Ãii

)
⊆ eig (ACL(G,K)) for arbitrary K ∈

Sc ∩ T d.

Given an arbitrary K ∈ Sc∩T d, and letting T be the similarity transformation

matrix from Lemma 6, we can then apply (2.2) to (1.4) to get

T 0

0 I

ACL(G,K)

T−1 0

0 I

 =

 Ã + B̃MDKC̃ B̃MCK

BKNC̃ AK +BKDMCK



=



∗ 0 ∗ 0 B̃1MCK

∗ Ã22 ∗ ∗ B̃2MCK

0 0 Ã33 0 0

0 0 ∗ Ã44 0

BKNC̃1 0 BKNC̃2 0 ∗



where (Ã, B̃, C̃,D) are as in (2.2).

If we apply another similarity transformation which swaps the first/second and

third/fifth row and column blocks, the result is an upper block triangular matrix

for which the eigenvalues clearly include those of Ã22, Ã33, and Ã44, as desired.

In the next two subsections, we generalize the result of [9] to arbitrary infor-

mation structures, and provide a comprehensive proof. Section 2.1.3 establishes the

invariance of fixed modes with respect to static and dynamic controllers, thereby

demonstrating the necessity of having all of the fixed modes in the LHP for decen-

tralized stabilizability, while Section 2.1.4 gives a constructive proof of existence of

a stabilizing controller when all of the fixed modes of G are in the LHP, thereby
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demonstrating the sufficiency.

2.1.3 Invariance of fixed modes

We will show in this subsection that for any arbitrary sparsity pattern S, the

set of fixed modes with respect to static controllers is the same as the set of fixed

modes with respect to dynamic controllers.

We first state a lemma which is obvious but will be helpful. This lemma states

that if λ is a fixed mode of a system with respect to static controllers and sparsity

pattern S, then after closing the loop with an arbitrary matrix DK ∈ S ∩ T s, if we

further allow only one of the static admissible elements of the controller to vary, then

λ will remain a fixed mode. Given any matrix DK ∈ S∩T s and any (i, j) ∈ Adm(S),

define G+(DK), as illustrated in Figure 2.1, as:

G+(DK)
4
= eTj Γ(G,DK)ei =

 AG+ BG+

CG+ DG+

 ,

where AG+ , ACL(G,DK) = A + BMDKC, BG+ , BMei, CG+ , eTj NC, and

DG+ , eTj DMei. We note that this notation suppresses the dependence of G+ on

the particular choice of the admissible index pair.

Lemma 11. Given any matrix DK ∈ S ∩ T s, and any (i, j) ∈ Adm(S), if λ ∈

Λ (G,S, T s), then λ ∈ Λ (G+(DK),Sc, T s), i.e., Λ (G,S, T s) ⊆ Λ (G+(DK),Sc, T s).

Proof. Suppose that λ ∈ Λ (G,S, T s). For an arbitrary real scalar controller V , we
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have:

ACL(G+(DK), V ) = ACL(eTj Γ(G,DK)ei, V )

= ACL(Γ(G,DK), eiV eTj )

(1.5)
= ACL(G,DK + eiV eTj )

= ACL(G,DV
K),

(2.5)

where we have defined DV
K , DK + eiV eTj as the static controller which is now

effectively being closed around the plant. Since we clearly have DV
K ∈ S ∩ T s and

since λ ∈ Λ (G,S, T s), it follows that λ ∈ eig (ACL(G+(DK), V )). Since V was

arbitrary, we have λ ∈ Λ (G+(DK),Sc, T s).

+

G

DK

eTj ei

uy

y′ u′

G+

Figure 2.1: G+ is the SISO map from u′ to y′.

Next, we relate fixed modes with respect to static controllers to those where

only one of the admissible elements is allowed to be dynamic; that is, to “static plus

one” controllers. The lemma will prove useful because closing such a scalar controller

around the plant is equivalent to interconnecting a SISO dynamic controller withG+,

and we can then leverage our knowledge of centralized controllers. This result will
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be the foundation of the induction that we want to use later on. The outline of the

proof is similar to that of [9, Proposition 1].

Theorem 12. For any sparsity pattern S, and any arbitrarily fixed indices (i, j) ∈

Adm(S):

Λ (G,S, T s) = Λ
(
G,S, T s+1

i,j

)
.

Proof. The ⊇ inclusion follows immediately since T s ⊆ T s+1
i,j .

We now need to show that Λ (G,S, T s) ⊆ Λ
(
G,S, T s+1

i,j

)
. We have:

Λ (G,S, T s)
Lem.11

⊆
⋂

DK∈S∩T s

Λ
(
G+(DK),Sc, T s

)
Thm.10

=
⋂

DK∈S∩T s

Λ
(
G+(DK),Sc, T d

)
=

⋂
DK∈S∩T s

⋂
kd∈T d

eig
(
ACL(G+(DK), kd)

)
=

⋂
DK∈S∩T s

⋂
kd∈T d

eig
(
Γ(Γ(G,DK), eik

deTj )
)

(1.5)
=

⋂
DK∈S∩T s

⋂
kd∈T d

eig
(
Γ(G,DK + eik

deTj )
)

=
⋂

Ks+1∈S∩T s+1
i,j

eig
(
Γ(G,Ks+1)

)
= Λ

(
G,S, T s+1

i,j

)

where the penultimate equality follows since (S ∩ T s) + eiT deTj = S ∩ T s+1
i,j , and

this completes the proof.

We note that it was this result, showing that modes which are fixed with
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respect to static controllers are still fixed with respect to “static plus one” controllers,

that was established for S = Sd in [9]. We will now show how to extend this result to

show that modes which are fixed with respect to controllers with any given number

of dynamic indices; that is, with respect to “static plus k” controllers, are still fixed

when an additional index is allowed to become dynamic; that is, with respect to

“static plus k+ 1” controllers. The main result of this subsection will indeed follow

once that has been established.

We will proceed with the following definitions. Let K(k)(σ) be the controller

after k steps, with k of its indices allowed to be dynamic, and define I(k) ,

{(i1, j1), · · · , (ik, jk)} ⊂ Adm(S) as the set of such indices where K(k)(σ) is al-

lowed to be dynamic, such that K(k) ∈ S ∩ T s+k
I(k) . Also let (A

(k)
K , B

(k)
K , C

(k)
K , D

(k)
K ) be

a state-space representation for K(k)(σ).

G

K(k)

K(?)

y u

G(k)

+

Figure 2.2: Plant G(k) and its respective controller K(?).

Define G(k)(σ), illustrated in Figure 2.2, by closing K(k)(σ) around G(σ) in

38



such a way that the outputs of G(k) are the same as the outputs of G, and such that

the inputs of G(k) are added to the outputs of K(k) and fed into G.

A state-space representation for G(k)(σ) is given by

G(k) , Γ(G,K(k)), (2.6)

i.e., by replacing (AK , BK , CK , DK ,M) with (AK
(k), BK

(k), CK
(k), DK

(k),M (k)) in

(1.1) on page 17, where M (k) = (I −DK
(k)D)−1.

We prove one remaining lemma before our main inductive step. This lemma

relates the modes which are fixed when closing controllers with k + 1 dynamic

elements around the plant, to the modes which are fixed when first closing controllers

with k dynamic elements around the plant, and then closing a controller with an

additional dynamic element around the resulting plant, as in Figure 2.2. This will

allow us to use our result relating static and “static plus one” controllers to make

conclusions relating “static plus k” and “static plus k + 1” controllers.

Remark 13. We used the fact that given (i, j) ∈ Adm(S), we have (S ∩ T s) +

eiT deTj = S ∩ T s+1
i,j ; that is, that adding static controllers and a dynamic element is

equivalent to taking all of the ”static plus one” controllers, at the end of the proof

of Theorem 12. If this could be extended to state that

(S ∩ T s+k
I(k) ) + T s+1

i,j = S ∩ T s+k+1
I(k)∪(i,j)

, (2.7)

that is, that adding ”static plus k” controllers and ”static plus one” controllers

39



at (i, j) ∈ Adm(S) \ I(k) is equivalent to taking all of the ”static plus k + 1” con-

trollers, then Theorem 15 would follow similarly and easily, and the upcoming lemma

would be trivial and unnecessary. It is not clear, however, that a ”static plus k+ 1”

controller can always be decomposed in that manner. We thus first introduce the

following lemma, which states that, regardless of whether those two sets in (2.7) are

the same, the modes which remain fixed as the controller varies over them are indeed

identical.

Lemma 14. Given a set of indices I(k) ⊂ Adm(S), an additional index pair (i, j) ∈

Adm(S) \ I(k), let I(k+1) , I(k) ∪ (i, j), and let G(k) be as in (2.6), then we have:

Λ
(
G,S, T s+k+1

I(k+1)

)
=

⋂
K(k)∈S∩T s+k

I(k)

Λ
(
G(k),S, T s+1

i,j

)
. (2.8)

Proof. For ease of notation, when the controllers are unambiguous such that we can

suppress the dependency upon them, define ALHS
CL = ACL(G,K(k+1)) and ARHS

CL =

ACL(G(k), K(?)) to be the closed-loop dynamics matrices arising on each side of the

equation for given controllers. Also let KLHS , {K(k+1) | K(k+1) ∈ S ∩ T s+k+1
I(k+1) },

and KRHS , {(K(k), K(?)) | K(k) ∈ S ∩ T s+k
I(k) , K

(?) ∈ S ∩ T s+1
i,j } give the sets

of controllers that must be considered on each side, such that the LHS can be

abbreviated as
⋂
KLHS

eig
(
ALHS

CL

)
, and the RHS can be abbreviated as

⋂
KRHS

eig
(
ARHS

CL

)
.

First we prove the⊆ part by showing that for every admissibleK(?), i.e.,K(?) ∈

S∩T s+1
i,j , and admissible K(k) in RHS, there exist a K(k+1) in LHS such that ARHS

CL =

40



ALHS
CL . To see this observe that:

Γ(Γ(G,K(k)), K(?))
(1.5)
= Γ(G,K(k) +K(?)).

Thus we choose K(k+1) = K(k) + K(?). This K(k+1) is admissible because it has

only one further dynamic element at position (i, j) ∈ Adm(S), and thus is in

T s+k+1
I(k+1) . Hence for every admissible (K(k), K(?)), there exists an admissible K(k+1) ∈

KLHS constructed as above such that ALHS
CL = ARHS

CL , and so
⋂
KLHS

eig
(
ALHS

CL

)
⊆⋂

KRHS

eig
(
ARHS

CL

)
.

We will prove the⊇ by contraposition, by showing that if λ /∈ Λ
(
G,S, T s+k+1

I(k+1)

)
,

then λ /∈ ⋂
K(k)∈S∩T s+k

I(k)

Λ
(
G(k),S, T s+1

i,j

)
, for any λ ∈ C. We can equivalently assume

that:

∃ K(k+1) ∈ KLHS s.t. λ /∈ eig
(
ACL(G,K(k+1))

)
, (2.9)

and then show that:

∃ (K(k), K(?)) ∈ KRHS s.t. λ /∈ eig
(
ACL(G(k), K(?))

)
. (2.10)

Starting with K(k+1) from (2.9), we will show that we can then construct a K(k)

and K(?) to satisfy (2.10).

Based onK(k+1) in (2.9), we choose K̃(?) ∈ S∩T s+1
i,j to be the strictly proper dy-

namic part of the last dynamic index by defining K̃(?) = (ÃK
(?)
, B̃K

(?)
, C̃K

(?)
, D̃K

(?)
)
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as:

ÃK
(?)

= A
(k+1)
K ,

B̃K
(?)

= B
(k+1)
K eje

T
j =

[
0 · · · B

(k+1)
K,j · · · 0

]
,

C̃K
(?)

= eie
T
i C

(k+1)
K =

[
0 · · · (C

(k+1)
K,i )T · · · 0

]T
,

D̃K
(?)

= 0,

i.e., B̃K
(?)

is of the same dimension as B
(k+1)
K with all its columns being zero except

the j-th column, and C̃K
(?)

is of the same dimension as C
(k+1)
K with all of its rows

being zero except the i-th row. Then define K̃(k) , K(k+1) − K̃(?), thus a (not

necessarily minimal) state-space representation for K̃(k) is:

ÃK
(k)

= diag(A
(k+1)
K , A

(k+1)
K ),

B̃K
(k)

=

[
(B

(k+1)
K )T (B̃K

(?)
)T

]T
,

C̃K
(k)

=

[
C

(k+1)
K −C̃K

(?)

]
,

D̃K
(k)

= D
(k+1)
K .

Construct G̃(k) in the same way as illustrated in Figure 2.2 by closing K̃(k) around G.

Now if we use the following similarity transformation T on ACL(G̃(k), K̃(?)),

T =



0 0 I 0

I 0 0 0

0 I 0 0

0 0 −I I


,
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then TACL(G̃(k), K̃(?))T−1 results in an upper block triangular matrix with blocksA
(k+1)
K ,

ACL(G,K(k+1)), and A
(k+1)
K , indicating that:

eig
(
ACL(G̃(k), K̃(?))

)
= eig

(
ACL(G,K(k+1))

)
∪ eig

(
A

(k+1)
K

)
. (2.11)

Thus (2.10) can only be false if:

λ ∈ eig
(
A

(k+1)
K

)
. (2.12)

We have shown that the only way to have an eigenvalue which is not on the LHS

(when K(k+1) is closed around the plant) but which is on the RHS (when K̃(?)

and K̃(k) are then constructed as above), is if it comes from the dynamics matrix

of K(k+1). We will now finish the proof by showing that if this is the case, we can

make a small perturbation to A
(k+1)
K such that it no longer has this eigenvalue, thus

removing it from the RHS, while it is still not a closed-loop eigenvalue on the LHS.

Construct K̂(k+1) by perturbing the A matrix of K(k+1); that is, K̂(k+1) is

defined by:

ÂK
(k+1)

= ÃK
(k+1)

+ εI, B̂K
(k+1)

= B̃K
(k+1)

,

ĈK
(k+1)

= C̃K
(k+1)

, D̂K

(k+1)
= D̃K

(k+1)
.

For sufficiently small ε this yields

λ /∈ eig
(
ÂK

(k+1)
)
. (2.13)
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Using the same steps as before to construct K̂(?) and K̂(k) results in εI also being

added to ÃK
(?)

and ÃK
(k)

. Then using the same similarity transformation T used

to derive (2.11), we have

eig
(
ACL(Ĝ(k), K̂(?))

)
= eig

(
ACL(G, K̂(k+1))

)
∪ eig

(
ÂK

(k+1)
)
, (2.14)

where Ĝ(k) is constructed by closing K̂(k) around G, as illustrated for the unper-

turbed systems in Figure 2.2.

Since ACL(G,K(k+1)) is continuous in the entries of K(k+1), and since the eigen-

values of a matrix are continuous in its entries (see, for example [23, Theorem 5.2.

on p. 89]), it follows that by a sufficiently small perturbation made to K(k+1), along

with (2.9), we still have λ /∈ eig
(
ACL(G, K̂(k+1))

)
. It then follows from (2.13)

and (2.14) that λ /∈ eig
(
ACL(Ĝ(k), K̂(?))

)
.

Thus we have been able to show that there exists a (K̂(k), K̂(?)) ∈ KRHS such

that λ /∈ eig
(
ACL(Ĝ(k), K̂(?))

)
, which completes our contraposition argument.

Now we are ready to prove the main inductive step: that given a certain

number of controller indices which are allowed to be dynamic, and the associated

set of fixed modes, allowing one additional index to become dynamic does not change

the fixed modes.

Theorem 15. Given an FDLTI plant G, a sparsity pattern S, an admissible set of

dynamic elements denoted by I(k) ⊂ Adm(S), an index pair (i, j) ∈ Adm(S) \ I(k),

and I(k+1) = I(k) ∪ (i, j), we have:

Λ
(
G,S, T s+k

I(k)

)
= Λ

(
G,S, T s+k+1

I(k+1)

)
.
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Proof. Beginning with the quantity on the right-hand side, we get:

Λ
(
G,S, T s+k+1

I(k+1)

) Lem.14
=

⋂
K(k)∈S∩T s+k

I(k)

Λ
(
G(k),S, T s+1

i,j

)
Thm.12

=
⋂

K(k)∈S∩T s+k

I(k)

Λ
(
G(k),S, T s

)

= Λ
(
G,S, T s+k

I(k)

)
,

where the final equality follows since clearly (S ∩ T s+k
I(k) ) + (S ∩ T s) = S ∩ T s+k

I(k) , and

this completes the proof.

We can now state and easily prove the main result of this subsection. The

following shows that for any FDLTI plant G, and any sparsity pattern S, the set of

fixed modes with respect to static and dynamic controllers are the same.

Theorem 16. Given plant G, and sparsity constraint S:

Λ (G,S, T s) = Λ
(
G,S, T d

)
. (2.15)

Proof. This follows by induction from Theorem 15.

2.1.4 Stabilization

The results from the previous subsection tell us that having all of the fixed

modes of the original system in the LHP is necessary for stabilizability with respect

to FDLTI controllers with the given structure. We now address the sufficiency of

the condition. With a constructive proof, we will show that we can stabilize a plant
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G with arbitrary information structure S, as long as it has no unstable fixed modes.

We will achieve this by showing that we can always find a controller which will

reduce the number of unstable modes, while leaving all of the fixed modes in the

LHP, which can then be applied as many times as required.

We will first state the following lemma from [9], which gives some proper-

ties regarding continuity and topology of non-fixed modes with respect to static

controllers. It tells us that we can keep the modes within a given distance of the

original ones by closing a small enough matrix D around the plant, and that an

arbitrarily small D can move all of the non-fixed modes.

Lemma 17. For any plant G, and any sparsity pattern S, partition the open-loop

eigenvalues of G as in (2.1). Then we have:

1. For all ε > 0, there exist γ > 0 such that for all D ∈ S ∩ T s with ‖D‖∞ < γ,

there are exactly µ(λ,G) eigenvalues (counting multiplicities) of ACL(G,D)

in B(λ, ε), for all λ ∈ Λ̃(G,S, T s).

2. For all γ > 0, and for almost any D ∈ S ∩ T s with ‖D‖∞ < γ, we have

that λ /∈ eig (ACL(G,D)), for all λ ∈ Λ̃(G,S, T s).

Proof. See Lemma 4 in [9]. The proof was developed for strictly proper plants

with diagonal information structure. However, it does not use any property specific

to only block-diagonal information structure and thus could be replaced by any

arbitrary information structure. To generalize it for the proper plants, a similar

change of variable technique as in proof of Lemma 7 can be used, which would add

an invertibility constraint that would hold for almost any linear static controller.
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Remark 18. It follows from the proof that the set of D which violate part 2 of

Lemma 17, forms a subset with zero Lebesgue measure, and thus a random D ∈ S

that is sufficiently small satisfies all of the conditions of Lemma 17. Precisely, the

space of static controllers that does not move the non-fixed modes is constructed by a

finite union of hyper-surfaces in (S ∩ T s) ⊂ Rnu×ny . Thus, a D that satisfies all of

the conditions of Lemma 17, can be found with probability one by randomly choosing

the direction of D ∈ S ∩ T s, and then scaling it appropriately such that ‖D‖∞ < γ.

We now establish the following theorem, which shows how a given non-fixed

mode can be extracted as a controllable and observable mode of a specific SISO

system, as illustrated in Figure 2.3.

Theorem 19. For any plant G with |Λ̃+(G,S, T s)| ≥ 1, and all fixed modes in

the LHP (i.e., Λ (G,S, T s) ⊂ C−), there exists a DK ∈ S ∩ T s, and an integer

m ∈ {1, · · · , a}, such that for the SISO system Gm defined as:

Gm = eTjmΓ(G,DK)eim =

 Am Bm

Cm Dm

 ,

 A+BMDKC BMeim

eTjmNC eTjmDMeim

 ,
(2.16)

where (im, jm) ∈ Adm(S) is the mth tuple in (1.6) on page 20, the following hold:

1. There exists α ∈ Λ̃+(G,S, T s), such that α is a controllable and observable

mode of Gm;

2. The total number of unstable modes of Gm is no greater than that of G,

i.e., ν(Gm) ≤ ν(G), where ν(G) is defined on page 30.
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Proof. The outline of the proof is as follows. To prove the first argument, we find

a D ∈ S ∩ T s that when closed around G, moves all of its non-fixed modes, and

identify the index m ∈ {1, · · · , a} for which D|(m) (defined in (1.7) on page 20)

is the first in the sequence to alter all of them. This means that only changing

the (im, jm)th element of the static controller will change unstable mode(s) of the

closed-loop, and thus those modes must be in the controllable and observable modes

of the SISO plant from uim to yjm .

Proof of argument 1: Since Λ̃+(G,S, T s) ⊆ Λ̃(G,S, T s), Lemma 17 guarantees

that we can take the static gain D ∈ S ∩T s such that when closed around G, would

move all of its unstable non-fixed modes. It also asserts that by choosing this D

small enough, the closed loop ACL(G,D) would have no more unstable modes than G

itself.

Construct a sequence of matrices D|(m) ∈ S ∩T s as in (1.7), so that D|(a) = D

and D|(0) = 0, thus:

∀ α ∈ Λ̃+(G,S, T s) : α /∈ eig
(
ACL(G,D|(a))

)
,

∀ α ∈ Λ̃+(G,S, T s) : α ∈ eig
(
ACL(G,D|(0))

)
.

By decreasing m from a to 1, there must exist a value of m ∈ {1, · · · , a}, such

that:

∀ α ∈ Λ̃+(G,S, T s) : α /∈ eig
(
ACL(G,D|(m))

)
, (2.17a)

∃ α ∈ Λ̃+(G,S, T s) : α ∈ eig
(
ACL(G,D|(m−1))

)
; (2.17b)
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that is, m is the first index for which all of the unstable non-fixed modes have

been moved. If we then set DK = D|(m−1) and use the definitions from (2.16), as

illustrated in Figure 2.3, similar to (2.5) we have:

ACL(G,D|(m)) = ACL(G,D|(m−1) + eimDim,jmeTjm)

(1.5)
= ACL(Γ(G,D|(m−1)), eimDim,jmeTjm)

= ACL(eTjmΓ(G,D|(m−1))eim , Dim,jm)

= ACL(Gm, Dim,jm).

(2.18)

From (2.17b), there exists at least one α ∈ Λ̃+(G,S, T s) such that:

α ∈ eig
(
ACL(G,D|(m−1))

)
= eig (Am) ,

but due to (2.17a),

α /∈ eig
(
ACL(G,D|(m))

) (2.18)
= eig (ACL(Gm, Dim,jm)) .

For all such α that are thus moved by only closing Dim,jm around the SISO sys-

tem Gm (for which the only information structure is the centralized one, Sc), we

have:

∃ Dim,jm ∈ R s.t. : α /∈ eig (ACL(Gm, Dim,jm))

⇒ α /∈ Λ (Gm,Sc, T s) .

Finally, due to Lemma 8, the fixed modes of any FDLTI plant with centralized

information structure are equal to its unobservable or uncontrollable modes, we
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must have that those α are controllable and observable modes of Gm.

Proof of argument 2: since Am = ACL(G,D|(m−1)), we need to show that

this D|(m−1) satisfies Lemma 17.1 when we take the ε-balls in Lemma 17 small

enough such that they do not intersect with C̄+. However this is the case since the

given D in part 1 of the proof satisfies Lemma 17, and D|(m) that are constructed

from this D, satisfy ‖D|(m)‖∞ ≤ ‖D‖∞ ≤ γ for any m ∈ {0, 1, · · · , a} based on the

definition.

+

G

D|(m−1)

K ′

eTjm eim

uy

y′ u′

Gm

Figure 2.3: Gm is the SISO map from u′ to y′, and Km is the map from y to u,
giving the total control for the original plant.

In the following proposition, we will use observer-based pole placement for

a centralized information structure to show how one can stabilize unstable, non-

fixed modes of Gm in (2.16). We will add one further design constraint that the
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unstable modes of the controller would be different than that of Gm, and will show

that this constraint is always achievable by a small perturbation of the gains. This

ensures that an induction-based argument can be used later on. This constraint is

not mentioned in [9], and it is unclear that without such a constraint how one can

guarantee that a rigorous induction could follow, even for a diagonal information

structure.

Proposition 20. All of the controllable and observable unstable modes of the plant Gm

can be stabilized by an observer-based controller K ′ such that:

eig+,0(K ′) ∩ eig+,0(Γ(Gm, K
′)) = ∅. (2.19)

Proof. Our proof is in a constructive manner, we will first find a K ′ to only stabilize

the controllable and observable modes of Gm without considering (2.19). We will

then show that (2.19) is not satisfied only on a set with zero measure, and thus

almost any small perturbation in the specific elements of K ′ will satisfy (2.19).

First find a similarity transformation T that will put Gm in its Kalman canon-

ical form, therefore we would have:

T 0

0 I


 Am Bm

Cm Dm


T−1 0

0 I

 =



Ãm11 0 Ãm13 0 B̃m
1

Ãm21 Ãm22 Ãm23 Ãm24 B̃m
2

0 0 Ãm33 0 0

0 0 Ãm43 Ãm44 0

C̃m
1 0 C̃m

2 0 Dm


, (2.20)
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where as before, all the (̃·) parameters depend on the transformation matrix T and

the state-space representation of Gm. We want to stabilize all the unstable modes

in Ã11. Since based on definition (Ã11, B̃1) is a controllable pair and (Ã11, C̃1) is an

observable pair, there exists a state feedback gain F and an observer gain L, such

that eigenvalues of Ã11 − B̃1F and Ã11 − LC̃1 can be arbitrary assigned, and hence

can be stabilized. We will now show that the following controller will stabilize all

the unstable modes of Ã11. Take the controller as:

K ′ =

 A′ B′

C ′ 0

 =

 Ã11 − B̃1F − LC̃1 + LDmF L

−F 0

 ;

apply T from (2.20) on Gm and close K ′ around it, then the closed-loop ACL(Gm, K
′)

would be: 

Ã11 0 Ã13 0 −B̃1F

Ã21 Ã22 Ã23 Ã24 −B̃2F

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

LC̃1 0 LC̃2 0 Ã11 − B̃1F − LC̃1


Apply another similarity transformation T1, which keeps the first four rows the same
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and subtract the first row from the fifth, then we have:

eig (ACL(Gm, K
′)) = eig

(
T1ACL(Gm, K

′)T−1
1

)
=

eig



Ã11 − B̃1F 0 Ã13 0 −B̃1F

Ã21 − B̃2F Ã22 Ã23 Ã24 −B̃2F

0 0 Ã33 0 0

0 0 Ã43 Ã44 0

0 0 LC̃2 − Ã13 0 Ã11 − LC̃1


Thus the eigenvalue of the closed loop would be

eig (ACL(Gm, K
′)) = eig

(
Ã11 − B̃1F

)
∪ eig

(
Ã11 − LC̃1

)
∪
(

4⋃
i=2

eig
(
Ãii

))

Therefore for all observer-based controllers that naturally satisfy eig
(
Ã11 − B̃1F

)
∈

C− and eig
(
Ã11 − LC̃1

)
∈ C−; unstable modes of Γ(Gm, K

′) would be independent

of F and L, i.e.:

eig+,0((Γ(Gm, K
′)) =

4⋃
i=2

eig+,0(Ãii), (2.21)

and all unstable modes in Ã11 can be stabilized by appropriate choice of matrices F

and L.

We will now show that (2.19) is not met on a set with zero measure in the

ambient space of L. Replacing (2.21) in (2.19) yield that constraint (2.19) is met if

and only if:

eig+,0(K ′)
⋂ (

4⋃
i=2

eig+,0(Ãii)

)
= ∅, (2.22)

53



and if not, we enforce (2.19) by appropriately perturbing the L matrix. Construct

the perturbed controller K̂ ′ by replacing L in K ′ with L̂ = L+ Lε, i.e.:

K̂ ′ ,

 Â′ L̂

−F 0

 ,

with Â′ , Ã11− B̃1F − L̂C̃1 + L̂DmF . We want to show that K̂ ′ satisfies (2.22) for

almost any Lε. To see this, first define W as:

W ,

 A′ I

−C̃1 +DmF 0

 .

It is also straightforward to verify that ACL(W,Lε) = Â′. We want to apply Re-

mark 9 on W to show that almost any perturbation Lε moves all the unstable open-

loop modes of W (which is equivalent to the unstable modes of K ′ as eig (W ) =

eig (K ′)). This would be achieved by showing that non of the unstable modes of W

would be a fixed one, precisely:

ACL(W,−L) = Ã11 − B̃1F

⇒ Λ (W,Sc, T s) ⊆ eig
(
Ã11 − B̃1F

)
⊂ C−,

as F is chosen to stabilize Ã11. Moreover, given that eig
(
Ã11 − LC̃1

)
⊂ C−, if we

chose Lε sufficiently small, then due to a continuity argument we have

eig
(
Ã11 − L̂C̃1

)
⊂ C−. Thus any sufficiently small perturbation Lε will make K̂ ′

satisfy (2.19) while still keeping Ã11 − L̂C̃1 stable.
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We now encapsulate the desired properties of the intermediate controller at

each step that partially stabilizes the plant in the following corollary, which combines

Theorem 19 and Proposition 20.

Corollary 21. For every plant G that satisfies the assumptions of Theorem 19,

there exists an m ∈ {1, · · · , a} and a controller Km ∈ S ∩ T s+1
im,jm

such that:

ν(Γ(G,Km)) ≤ ν(G) − 1, (2.23)

eig+,0(Km) ∩ Λ̃+(Γ(G,Km)) = ∅, (2.24)

where (im, jm) ∈ Adm(S) is the mth tuple in (1.6) on page 20,

Proof. Use Theorem 19 to find DK and m, use Proposition 20 to find K ′, and con-

struct the MIMO controller Km , D|(m−1) + eimK
′eTjm . As illustrated in Figure 2.3,

this Km has the following state-space representation:

Km =

 AKm BK
m

CK
m DK

m

 =

 A′ B′eTjm

eimC
′ DK

 , (2.25)

and clearly satisfies:

ACL(Gm, K
′) = ACL(G,Km). (2.26)

Due to Theorem 19 and Proposition 20, K ′ will stabilize at least one unstable

mode of G, hence we have ν(Γ(Gm, K
′)) ≤ ν(G) − 1, and thus (2.23) would be

an immediate result of this property of K ′ combined with (2.26). Finally, (2.24)

follows from (2.19) as AKm = A′ and Λ̃+(Γ(Gm, K
′)) = Λ̃+(Γ(G,Km)), due to (2.25)
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and (2.26).

We use induction to prove that if all the fixed modes of G are in LHP, then

we can stabilize G by dynamic controller. We will first define the following inter-

connection that will be useful in the induction. Let Ǧ(0) , G and at each step k,

denote the transfer function from u to y, as illustrated in Figure 2.4, by Ǧ(k+1),

i.e., Ǧ(k+1) = Γ(Ǧ(k), K
(k)
m ). Let (A

(k)

Ǧ
, B

(k)

Ǧ
, C

(k)

Ǧ
, D

(k)

Ǧ
) be a state-space representa-

tion for Ǧ(k), also denote the total number of unstable modes of Ǧ(k) by ν(k):

ν(k) ,
∑

α∈Λ̃+(Ǧ(k))

µ(α, Ǧ(k)).

Ǧ(k)

K
(k)
m

y u

Ǧ(k+1)

+

Figure 2.4: Plant Ǧ(k+1) , Γ(Ǧ(k), K
(k)
m ).

The induction will be in such a way that in each step k, we will find an

integer m(k) ∈ {1, · · · , a}, and a K
(k)
m ∈ S∩T s+1

i
m(k) ,jm(k)

that when closed around Ǧ(k),

will stabilize at least one unstable mode of Ǧ(k), thus ν(k+1) ≤ ν(k) − 1. Then we

will treat the corresponding Ǧ(k+1) as the new plant for which we want to stabilize

the rest of remaining ν(k+1) unstable eigenvalues, thus in at most ν(0) steps, G will

be stabilized. A crucial part of induction is that Ǧ(k+1) must have no fixed mode in

56



closed RHP. This is not addressed in [9]. We will formalize this fact with the help

of following lemma. It is enough to show that closing Km around G does not add

any unstable fixed modes to Γ(G,Km).

Lemma 22. Assume that all the fixed modes of G are in LHP, i.e.:

Λ (G,S, T s) ⊂ C−, (2.27)

and let Km ∈ S ∩ T s+1
im,jm

satisfy (2.24). Then we have:

Λ (Γ(G,Km),S, T s) ⊂ C−.

Proof. Proof is done by contradiction, we will first create the following set-up to state

the idea. Let (AK , BK , CK , DK) be a minimal state-space representation for Km.

We have:

Λ (G,S, T s) ⊆ Λ (Γ(G,Km),S, T s) ,

since the RHS is the set of fixed modes with respect to controllers in the form Km+

S∩T s, whereas the LHS equals Λ
(
G,S, T d

)
(by Theorem 16), that is the set of fixed

modes with respect to controllers in S∩T d, which is a bigger set than Km ∈ S∩T d.

Next, it is trivial to check that if we close −Km around Γ(G,Km), then by applying

a similarity transformation T2, a state-space realization that does not omit non-
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minimal modes of Γ(Γ(G,Km),−Km) can be written as:

T2 0

0 I

Γ(Γ(G,Km),−Km)

T−1
2 0

0 I

 =



A BCK 0 B

0 AK 0 0

BKC BKDCK AK BKD

C DCK 0 D


,

(2.28)

thus we have

eig (Γ(Γ(G,Km),−Km)) = eig (A) ∪ eig (AK) .

Furthermore, due to (2.27), there exist a D ∈ S ∩T s that will move all the unstable

modes of A. If we apply the same D on (2.28), due to the block-diagonal structure we

have eig (ACL(Γ(Γ(G,Km),−Km), D)) = eig (ACL(G,D)) ∪ eig (AK), which yields:

Λ (Γ(G,Km),S, T s) ⊆ Λ (G,S, T s) ∪ eig (AK) . (2.29)

Now we are ready to do the main contradiction part, assume that there exist

an α ∈ Λ (Γ(G,Km),S, T s), with <(α) ≥ 0, then

α ∈ Λ (Γ(G,Km),S, T s) , <(α) ≥ 0

α
(2.29)
∈ Λ (G,S, T s) ∪ eig (AK)

(2.27)⇒ α ∈ eig (AK)

(2.24)⇒ α /∈ eig (Γ(G,Km))

⇒ α /∈ Λ (Γ(G,Km),S, T s)
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thus we have achieved the desired contradiction.

Constraint (2.24) in Corollary 21 ensures that the unstable modes are non-

overlapping, and is one sufficient condition to prove Lemma 22. When this condition

is not met for an initial choice of the feedback/observer gain, one way to always make

it feasible is by adding the perturbation Lε to the observer gain. This in turn might

prevent exact pole placement, but, one can place the poles arbitrarily close to the

desired locations by choosing Lε sufficiently small.

Now we are ready to claim that if all the fixed modes of G are in the LHP, then

we can stabilize G by a dynamic controller. This stabilizing controller would be a

summation of individual controllers K
(k)
m , each obtained in one step of the induction,

where in each step k, K
(k)
m would only have one dynamic element (i.e., K

(k)
m ∈

S ∩ T s+1
i
m(k) ,jm(k)

, for some m(k) ∈ {1, · · · , a}).

Theorem 23. For any FDLTI plant G, and any sparsity pattern S,

if Λ (G,S, T s) ⊂ C−, then there exist a controller K ∈ S ∩ T d that will stabilize G.

Proof. Proof is done by induction. Take k ← 0 and let Ǧ(0) , G. As per assumption

of this theorem, Λ
(
Ǧ(0),S, T s

)
= Λ (G,S, T s) ⊂ C−. At each induction step k, we

would stabilize at least one of the unstable modes of Ǧ(k) by Corollary 21. Specif-

ically, with G replaced by Ǧ(k) in Corollary 21, we can find a m(k) ∈ {1, · · · , a},

and a controller K
(k)
m ∈ S ∩ T s+1

i
m(0) ,jm(0)

, that will stabilize at least one of unsta-

ble modes of Ǧ(k). This K
(k)
m satisfies (2.24) (with G replaced by Ǧ(k)), and thus

by Lemma 22, Ǧ(k+1) = Γ(Ǧ(k), K
(k)
m ), would have all of its fixed modes in LHP,

i.e., Λ
(
Ǧ(k+1),S, T s

)
∈ C−. This guarantees that we can proceed with the in-
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duction by taking k ← k + 1, as long as Ǧ(k) has any remaining unstable mode.

Since at each step at least one unstable mode is stabilized, G would be stabilized

in at most ν(G) steps. The final K ∈ S ∩ T d that will stabilize G, is equal to the

summation of controllers at each step, i.e.:

K(s)
(1.5)
=
∑

k
K(k)
m (s).

We can easily show that stability of all the fixed modes of G, Λ (G,S, T s) ⊂

C−, is also a necessary condition for the existence of stabilizing controller:

Theorem 24. A plant G is stabilizable by a controller K ∈ S ∩ T d, if and only

if Λ (G,S, T s) ⊂ C−.

Proof. The sufficiency part is done in Theorem 23. For the necessity part note that

static fixed modes can not be moved by the dynamic controller either (Theorem 16),

i.e.:

Λ (G,S, T s) 6⊂ C−

Thm.16⇒ Λ
(
G,S, T d

)
6⊂ C−

bydef⇒ @ K ∈ S ∩ T d s.t. ACL(G,K) ⊂ C−.
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2.1.5 Synthesis and Numerical Example

In this section we provide an explicit algorithm to stabilize a plant which

has no unstable fixed modes, and run it on one numerical example to illustrate its

implementation. Algorithm 1 is distilled from the steps taken in the section to prove

the sufficiency theorem, and thus can almost certainly be improved upon in several

respects.

In Algorithm 1, D is chosen randomly at each outer-step, and as stated in

Remark 18, would be a valid choice with probability one. This D must be chosen

small enough (‖D‖∞ < γ(k)) such that the total number of unstable modes would

not increase when each element of the sequence {D|(m)}am=1 is closed around Ǧ(k). A

prior knowledge of such an upper bound on D, denoted by γ(k), is not available and

is hard to attain. This leads us to consider the alternative approach of repeatedly

making D smaller in a loop until Theorem 19.2 holds. This iterative scaling repeats

itself when (2.19) is not met. In this case, as proof suggests, we perturb L(k) by L̂(k).

This perturbation must be chosen small enough that it will not make any modes

of Ã
(k)
11 − (L(k) + L̂(k))C̃

(k)
1 unstable. The upper bound on the perturbation L̂(k) is

unknown, and thus, similar to the case for D, we iterate to make it small enough to

meet the constraints.

Remark 25. The intersection in the if-then section in Algorithm 1 would almost

always result in a null set if interpreted with unlimited precision. However, choosing

to replace the exact intersection with a proximity condition could possibly avoid very

large feedback and observer gains.
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Algorithm 1 Finding a controller K ∈ S ∩ T d to stabilize G

Input: Plant G, information structure S
Output: Controller K ∈ S ∩ T d that will stabilize G
k ← 0, Ǧ(0) ← G, K(σ)← 0
/* Repeat the outer loop until the plant is stabilized */
while |Λ̃+(Ǧ(k))| ≥ 1 do

/* Select a static controller as in Rem. 18 */
Choose a random D ∈ S ∩ T s

while ν(Γ(Ǧ(k), D)) > ν(Ǧ(k)) do
D ← D/2

end while
/* Find a controllable index as in Thm. 19 */
m(k) ← a
while Λ̃+(Γ(Ǧ(k), D|(m(k)−1))) ∩ Λ̃+(Ǧ(k)) = ∅ do

m(k) ← m(k) − 1
end while
/* Form the SISO plant as in Fig. 2.3 */

Ǧ
(k)

m(k) ← eTj
m(k)

Γ(Ǧ(k), D|(m(k)−1))eim(k)

/* Stabilize the SISO plant as in Prop. 20 */

Find a Kalman similarity transformation T (k) for Ǧ
(k)

m(k)

Name all the corresponding partitions by (̃·)(k)

Find a F (k) to stabilize Ã
(k)
11 − B̃(k)

1 F (k)

Find a L(k) to stabilize Ã
(k)
11 − L(k)C̃

(k)
1

/* Ensuring that constraint (2.24) holds */

M (k) ← (I −D|(m(k)−1)D
(k)

Ǧ
)−1

D̆(k) ← eTj
m(k)

D
(k)

Ǧ
M (k)ei

m(k)

if eig+,0(Ã
(k)
11 − B̃(k)

1 F (k) + L(k)(D̆(k)F (k) − C̃(k)
1 )) ∩

(
4⋃
i=2

eig+,0(Ã
(k)
ii )

)
6= ∅

then
/* Perturb the observer gain if (2.24) does not hold */

Choose a random L
(k)
ε

/* Make the perturbation sufficiently small not to have any new unstable
mode */

while |eig+,0(Ã
(k)
11 − (L(k) + L

(k)
ε )C̃

(k)
1 )| ≥ 1 do

L
(k)
ε ← L

(k)
ε /2

end while
L(k) ← L(k) + L

(k)
ε

end if
/* Construct the MIMO controller as in Cor. 21 */

K(k) ←
[

Ã
(k)
11 − B̃(k)

1 F (k) + L(k)
(
D̆(k)F (k) − C̃(k)

1

)
L(k)eTj

m(k)

−ei
m(k)

F (k) D|(m(k)−1)

]
K ← K +K(k)

Ǧ(k+1) ← Γ(Ǧ(k), K(k))
k ← k + 1

end while
return K
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Remark 26. We can replace C− throughout the section with another open set of

acceptable closed-loop eigenvalues, letting its complement replace C̄+ as the closed

set of unacceptable closed-loop eigenvalues. The results of Section 2.1.3 hold up

to show that the fixed modes must not be in the unacceptable region, the results of

Section 2.1.4 hold up to show that if they are not, then all of the modes can be

moved to the acceptable region, and Algorithm 1 can be applied to find a controller

which achieves that objective. One can further define a smaller open set of desir-

able closed-loop eigenvalues into which all of the non-fixed modes can be moved by

Algorithm 1, taking note of the possibility of fixed and non-fixed modes overlapping

in the acceptable-yet-undesirable region, as mentioned in Section 2.1.1.

The following numerical example will use Algorithm 1 to stabilize the plant G.

Example 27. Consider the following plant:

A = diag(2, 3, 5,−1,−1)

B =



0 0 3 0 2

0 0 0 1 0

0 0 2 0 5

1 0 0 0 0

0 2 0 0 0


C =



4 0 8 0 0

0 1 0 0 0

6 0 3 0 0

0 0 0 5 0

0 0 0 0 6


and D = 0. Let the sparsity-induced information structure for the controller be given
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by the admissible-to-be-nonzero indices:

Adm(S) = {(1, 1), (3, 1), (4, 1), (5, 2), (1, 3), (3, 3), (4, 3), (5, 4), (5, 5)}.

This plant has fixed mode Λ (G,S, T s) = {−1}. If we follow Algorithm 1 to stabi-

lize G, and choose our desired closed-loop modes of Γ(G,K) to be

[
−0.5 −1 −1 −1.5 −2 −2.5 −3 −3.5

]T
,

this is achieved by the following resulting controller:

AK =


14.92 −460.40 −4.66

0.37 −24.44 0.74

22.92 −763.84 −25.42

 BK =

 03×1

317.11

27.44

405.61

03×3



CK =

 04×3

3.90 −71.64 −7.44


T

DK =



0.08

0

0.42

0.09

0

05×4


.

An alternative approach is taken in [24], in which, at each step, a (possibly dynamic)

stabilizing controller is applied at the next diagonal element of the controller, and

it is shown that by adding stabilizing controllers at each step, the set of (possibly

unstable) fixed modes are reduced, until the last step where the remaining fixed modes
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must be necessarily stable. Applying the method of [24] on this plant would result

in a stabilizing controller of order 7, as compared to 3 here. An explanation could

be that in [24], a (possibly dynamic) stabilizing controller is applied at each of the

elements, resulting in abundant of controller states, whereas in here, only for each

unstable mode, a stabilizing controller (not necessarily of order 1) is needed.

If we look at each of the nine SISO maps from uim to yjm in G, then the

union of controllable and observable modes of all these SISO maps are {2, 5}, which

does not contain the unstable mode 3. This shows that a static gain (the Dm−1 of

Figure 2.3) might be necessary to assign some modes in decentralized settings, which

is counter-intuitive compared to the centralized case where a stabilizing observer-

based controller would have zero static gain.

2.2 Decentralized Non-overshooting Stabilization

We review existing results regarding centralized non-overshooting stabilizabil-

ity in Section 2.2.1, and then extend this to the decentralized case in Section 2.2.2.

Section 2.2.3 containa numerical examples to further clarify this type of stability,

and its comparison to the well known decentralized internal stabilizability that was

developed in Section 2.1.

2.2.1 Centralized Case

Materials in this section are mostly adopted from the ones in [5,25], and readers

are referred to these papers for detailed discussions and examples of each type of
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stability and their corresponding properties.

A state-space system of the form (1.2) is said to have overshoot , if for some

initial condition x0, and some t > t0, we have that ‖x(t)‖ ≥ ‖x0‖. The following

type of stability makes a close connection to overshooting properties.

Definition 28 ([5, Definition 2.3]). A state-space system of the form (1.2) on page 13

is called strongly asymptotically stable (in the strict sense), if and only if d‖x(t)‖
dt

< 0,

for all t ≥ t0, and for all x(t0) 6= 0.

Remark 29 ([5, Remark 2.3]). The above definition makes clear that if a state-

space system is strongly asymptotically stable in strict sense, each trajectory enters

a hyper-sphere ‖x(t)‖ = r ≤ r0 , ‖x0‖ from a non-tangential direction, and thus

can not have an overshoot. It is for this reason that we refer to this type of stability

as non-overshooting stability.

A similar condition to the one in Remark 2 on page 13 is also available for this

type of stability and is stated below.

Remark 30 ( [5, Theorem 2.1]). A state-space system of the form (1.2) is non-

overshooting stable if and only if A+ AT ≺ 0.

Non-overshooting stability is invariant under orthogonal transformations of

the form (UTAU,UTB,CU, 0), where UTU = UUT = I, and is not invariant under

arbitrary linear transformations, and thus is not a property of transfer matrices.

The following remark connects aforementioned two notion of stability to each

other.
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Remark 31 ([5, Remark 2.2]). If a state-space system is non-overshooting stable,

then it is also internally stable. Algebraically this means that, if A + AT ≺ 0, then

< (eig (A)) < 0.

It holds that the non-overshooting stabilizability with respect to static con-

trollers is a necessary and sufficient condition for non-overshooting stabilizability

with respect to dynamic controllers:

Theorem 32 ([25, Proposition 4.2]). A state-space system G is non-overshooting

stabilizable by a static controller, if and only if it is non-overshooting stabilizable by

a dynamic controller.

Proof. See, for example Proposition 4.2 in [25].

We will follow the above proof and extend it to our constrained version in the

next section. Finally, a direct observation in the proof of [25, Proposition 4.2] is

that:

Corollary 33. A state-space system K that makes a strictly proper state-space

system G non-overshooting stabilized, is itself non-overshooting stable, and also in-

ternally stable (due to Remark 31).

2.2.2 Decentralized Case

This section extends the non-overshooting stabilization in presence of con-

straints on the information structure of the controller. We will mainly focus on

structures which manifest themselves as a sparsity pattern on the controller, and
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briefly mention when such an argument could be generalized to other types of struc-

tures.

We are interested in information structures that satisfy the following property,

and will make it clear in the context when the following property is assumed.

Definition 34. An information structure S is said to be feedthrough consistent

if it is such that:

DK ∈ S, for all K ∈ S. (2.30)

Remark 35. Any sparsity-induced information structure is feedthrough consistent.

Other than sparsity constraints, this property holds for a wide variety of in-

formation structures in the control literature, including (but not limited to) delay,

and symmetry constraints.

The following theorem ties the non-overshooting stabilizability with respect

to static and dynamic controllers, when the information structure of interest is

feedthrough consistent.

Theorem 36. Assume that S is feedthrough consistent. A state-space system G is

non-overshooting stabilizable by a proper dynamic state-space system in S, if and

only if it is non-overshooting stabilizable by static output feedback in S.

Proof. The proof is the extension of the similar one in [25] (in which G was required

to be strictly proper, i.e., D = 0, while in here we assume G is a proper state-

space system). The necessity part follows easily since the static controllers in S are
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themselves a subset of the dynamic controllers in S, i.e.:

T s ⊂ T d =⇒ S ∩ T s ⊂ S ∩ T d.

For the sufficiency part, assume that there exists a state-space system K =

(AK , BK , CK , DK) ∈ S ∩ T d that makes G non-overshooting stabilized, then by

Remark 30:

ACL(G,K) + ACL(G,K)T ≺ 0. (2.31)

Expanding ACL in the above equation will result in:

A+BDKNC BMCK

BKNC AK +BKNDCK

+ ACL(G,K)T ≺ 0. (2.32)

Since (2.32) is negative definite, its first block-diagonal element must itself be neg-

ative definite, i.e.:

A+ AT +BDKNC + CTNTDT
KB

T ≺ 0.

Also since (2.30) guarantees that DK is itself an admissible controller, we have that:

ACL(G,DK) + ACL(G,DK)T

=A+ AT +BDKNC + CTNTDT
KB

T ≺ 0, DK

(2.30)
∈ S,

thus DK ∈ S ∩ T s makes G non-overshooting stabilized.

The following corollary is a direct consequence of Theorem 36, and demon-
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strates a standard approach for obtaining a static non-overshooting stabilizing con-

troller when G is strictly proper.

Corollary 37. If a state-space system G is strictly proper (D = 0), and informa-

tion structure S is such that in addition to being feedthrough consistent, we have

that DK ∈ S is a convex criterion, then G is non-overshooting stabilizable if and

only if the following convex program is feasible:

find DK

subject to ACL(G,DK) + ACL(G,DK)T ≺ 0,

DK ∈ S,

(2.33)

with variable DK ∈ Rnu×ny . Specifically, if we consider sparsity-induced information

structures, which all correspond to imposing affine constraints on DK, we have the

following LMI for checking non-overshooting stabilizability:

find DK

subject to ACL(G,DK) + ACL(G,DK)T ≺ 0,

(DK)ij = 0 for all (i, j) s.t. Kbin
ij = 0,

(2.34)

with variable DK ∈ Rnu×ny .

However, when D 6= 0, the term DK(I − DDK)−1 in ACL makes (2.33) non-

convex and thus we can not use Corollary 37 directly. We derive an alternative

approach for checking non-overshooting stabilizability through a change of variable

when G is proper, and when S is further quadratic invariant under D.
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The following theorem will demonstrate when and how a change of variable

for the D 6= 0 case could make ACL convex in its variable.

Theorem 38. Assume that we have a proper state-space system G, and the infor-

mation structure S is a closed subspace that is QI under D, then:

{ACL(G,DK) | DK ∈ S} = {ACL(G−D,DQ) | DQ ∈ S}. (2.35)

Proof. Given DK , define

DQ , DK(I −DDK)−1. (2.36)

Also, by inverting this map, one can verify that:

DK = (I +DQD)−1DQ = DQ(I +DDQ)−1. (2.37)

Due to [6, Theorem 14], because S is QI under D, we have the following relation

between the set of admissible DK ∈ S, and the transformed variable DQ:

DK ∈ S if and only if DQ ∈ S. (2.38)

It is notable that (2.36) is well defined if and only if (2.37) is well defined, i.e.,

since (I −DDK)−1 = I +DDQ, we have that

1 /∈ eig (DDK)⇔ −1 /∈ eig (DDQ)⇔ −1 /∈ eig (DQD) .
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Finally, the equivalence of the constraints on the original DK , and the transformed

variable DQ (2.38), along with

ACL(G,DK)
(1.4)
= A+BDK(I −DDK)−1C

(2.36)
= A+BDQC

(1.4)
= ACL(G−D,DQ),

yield that (2.35) holds.

The following corollary will give an alternative approach to check for non-

overshooting stabilizability, when D is not necessarily zero. Precisely, it will demon-

strate how to use the result of Corollary 37, and Theorem 38 for the case of S being

QI under D, and G being a proper state-space system.

Corollary 39. Assume that G is a proper state-space system, and S is such that

further than assumptions of Theorem 38, is feedthrough consistent. Then, a neces-

sary and sufficient condition for non-overshooting stabilizability of G is given by the

following convex program:

find DQ

subject to ACL(G−D,DQ) + ACL(G−D,DQ)T ≺ 0,

DQ ∈ S,

(2.39)

with variable DQ ∈ Rnu×ny . Similarly, if we consider sparsity-induced information
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structures, we have:

find DQ

subject to ACL(G−D,DQ) + ACL(G−D,DQ)T ≺ 0,

(DQ)ij = 0 for all (i, j) s.t. Kbin
ij = 0,

(2.40)

with variable DQ ∈ Rnu×ny . To recover the original DK, we can use the inverted

map (2.37).

Proof. Due to the Theorem 38, (2.35) holds, thus, we can use Corollary 37 with G,

and DK in Corollary 37 replaced by respectively G−D = (A,B,C, 0) ∈ Rsp and DQ.

Next, we study a necessary condition for non-overshooting stabilizability with

respect to sparsity-induced information structures. Specifically, we take advantage of

the necessary and sufficient connection between internal stabilizability of a plant and

its fixed-modes locations developed in Section 2.1, and relate it to non-overshooting

stabilizability in the following theorem.

Theorem 40. If a state-space system G is non-overshooting stabilizable with respect

to a sparsity-induced information structure S, then it has all of its fixed mode in the

open left half plane, i.e.:

Λ (G,S, T s) ⊂ C−.

Proof. As stated in Remark 31, non-overshooting stabilizability is a stronger condi-

tion than internal stabilizability and implies it. Therefore, if G is non-overshooting
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stabilized, it is also internally stabilized , which in conjunction with Theorem 24

gives the desired result.

2.2.3 Numerical Examples

We will conclude this section by inspecting the main concepts of this sec-

tion through two numerical examples. First we use an example to see when non-

overshooting stabilizability is feasible, and then inspect its related time response

behavior

Example 41. Let G be given as

A = diag(−3,−1, 1.5, 2.5),

B =



2 0 0

3 4 0

0 5 6

0 0 7


, C =


8 0 0 9

0 10 11 0

0 0 12 13

 ,

and D = 0. Let sparsity be given by

Kbin =


1 0 0

1 1 0

0 1 1

 .
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We use cvx [26] to solve (2.34) for DK, and we have:

DK =


−0.69 0 0

0.12 −1.05 0

0 0.37 −1.21

 .

Which gives the following closed-loop modes:

eig (ACL(G,DK)) = {−194.65,−0.55,−21.66,−66.91},

eig
(
ACL(G,DK) + ATCL(G,DK)

)
= {−396.60,−132.13,−38.71,−0.15}.

We pick a random initial condition:

x0 =

[
0.49 0.27 0.20 0.09

]T
,

and illustrate ‖x(t)‖ and ‖y(t)‖ in Figure 2.5(a), and the corresponding state trajec-

tories in Figure 2.5(b). It is noteworthy that Figure 2.5(a) hints that although the

joint energy of states is monotonically decreasing, energy of output variables might

not necessarily follow the same pattern, and can have an overshoot. In fact, as il-

lustrated in Figure 2.5(b), it might be the case that increase in some states would be

compensated by the other ones such that the norm (‖x(t)‖) would be monotonically

decreasing. Nevertheless, we have that lim
t→∞
‖y(t)‖ = lim

t→∞
‖x(t)‖ = 0.

We established that G having all of its fixed modes in LHP is a necessary

condition for non-overshooting stabilizability. However, as the following numerical

example shows, having all the fixed modes in the LHP does not guarantee non-
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Figure 2.5: State energy, output energy, and state trajectories for a given initial
condition x0 in Example 41

overshooting stabilizability.

Example 42. Let G be given as:

A = diag(2, 3, 5,−1,−1),

B =



−1 0 2

0 1 0

0 0 2

1 0 0

0 2 0


, C =


4 7 8 0 0

0 0 0 5 0

0 0 0 0 6

 ,

and D = 0. Also let the binary matrix corresponding to the sparsity-induced infor-
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Figure 2.6: State energy, output energy, and state trajectories for a given initial
condition x0 in Example 42

mation structure be given as:

Kbin =


1 0 0

1 0 0

0 1 1

 .

Then we have:

Λ (G,S, T s) = {−1} ⊂ C−.

The LMI in (2.34) is infeasible for DK while a internally stabilizing controller of

order 4 can be found by the algorithm suggested in Section 2.1. State energy, output

energy, and plant state trajectories when this internally stabilizing controller is closed

around G is illustrated in Figure 2.6. As Figure 2.6(a) shows, even the state energy

is no more monotonically decreasing.
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Chapter 3: Optimal H∞ Synthesis

Model-matching problems emerge at the core of many estimation and con-

troller design tasks. This problem has been heavily studied for the most significant

measures of performance in absence of decentralization constraints. This has re-

sulted in analytical insights, and various synthesizing algorithms along with charac-

terization of their properties for obtaining an exact optimal solution. However, this

problem has remained largely intractable in general in presence of decentralization

constraints. We focus on the optimal decentralized model-matching problem in H∞

sense in this section. The main techniques for centralized H∞ control, linear ma-

trix inequalities (LMIs) [27] and Riccati equations [28], do not allow one to optimize

directly over the controller, and thus do not present an obvious way to allow one to

place constraints on the controller. There has thus been a variety of methods trying

to solve for structuredH∞ controller by approximation, including a homotopy-based

method for solving a non-convex bilinear matrix inequality [29], finding local optima

with non-smooth optimization techniques [30], and an approach based on dissipative

property of systems which result in sub-optimal H∞ controller design by LMIs [31].

There are relationships between structured control problems and multi-objective

problems [32], and a parametrization based on a finite-dimensional basis has been
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used to approach the solution for the latter [33].

When the problem one wishes to solves satisfies a certain condition, called

quadratic invariance, the optimal decentralized control problem may be cast as a

convex model-matching optimization problem, regardless of which closed-loop norm

the designer wishes to optimize [6]. For some specific structures or objectives, the

problem can be further reduced to one which is solved by standard methods. For

example, when both the plant and controller admit lower triangular structure, exact

optimal H∞ controllers could be found via a finite number of LMIs solved one after

another [34]. When the objective of interest is the H2-norm, the problem can be

reduced to a centralized problem [6]. In general, however, the resulting problem is

infinite-dimensional and still non-trivial, particularly for certain objectives.

As with centralized control, there are many cases where one must optimize

for the worst-case, such as the decentralized control of smart structures to prevent

failure during earthquakes [35], for which H∞-norm is considered to be a more

appropriate objective. While many of the techniques we study could be applied to

arbitrary or mixed objectives, we focus on the H∞-norm in this chapter.

When the problem of interest is quadratically invariant, one can apply Q-

parametrization and transform the closed-loop into a model-matching form, for

which we then use a sequence of finite-dimensional (FD) parametrization of the Q-

parameter, with the property that the solutions of this sequence approach that

of our original problem. We discuss methods for solving the finite-dimensional

parametrized version of our problem, which could easily be adapted for any norm

of interest. As a keystone of our framework, we show how the main result of [36]
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can be used to recast any of the FD optimization problems in this sequence as a

semidefinite program (SDP) when the norm of interest is indeed the H∞-norm.

A natural choice of an FD parametrization in the discrete domain is a Finite

Impulse Response (FIR) basis that corresponds to all of the poles being placed at

the origin, which is not always the best choice. We will then consider another FD

parametrization that places the poles in other locations of the complex plane rather

than the origin. This could be equivalently formulated as a basis selection, or a

dictionary learning problem for the pole locations. However, there is no clear way

to choose the order of the controller and optimize the location of the controller poles

from a continuum of choices, both because the H∞-optimal decentralized model-

matching problem might not always have a rational solution [37], and because the

problem is non-convex in pole locations. Hence, we develop and explore several

methods for improving pole selection in later parts of this chapter as was first done

in [38]. We approach the basis selection problem in three stages as was first done

in [39]. We first use the poles from the centralized solution as an initial choice

for the pole locations. Second, we adopt the convex program introduced in [40] to

automatically choose a sparse combination of the poles among a finite set of stable

ones. Third, we use the Taylor linearization to linearize the controller around small

perturbations added to its poles, and show that this linearization will result in a

convex program that can choose perturbations in a way that improves the objective.

Although this chapter mainly focuses on discrete-time systems, by appropri-

ately adjusting the candidate bases, continuous-time counterparts could be derived

similarly. These results can also be extended to include delay constraints in discrete-
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time as long as they satisfy quadratic invariance.

The organization of this chapter is as follows. We form the problem of finding

an H∞-optimal decentralized controller in Section 3.1. Quadratic Invariance (QI)

and its consequences is discussed in Section 3.2. Section 3.3 demonstrates the finite

basis used for approximating an infinite dimensional controller and its corresponding

state-space representation. In Section 3.4, we show how, for any norm, the decen-

tralized controller parametrized by a FD basis could be thought of as static output

feedback (SOF) with sparsity pattern imposed on the static gain and proceed to

solve it in case of H∞ norm with help of method proposed by [36]. Section 3.5 will

demonstrate improved methods regarding basis selection in three stages, we will

illustrate use of poles from centralized solution in Section 3.5.1, adopt a convex pro-

gram (based on l1 heuristic) that suits selection of a sparse combination of poles in

a finite set of stable ones in Section 3.5.2, and introduce the Taylor approximation

for improving pole locations in Section 3.5.3. In order to study practical aspects

of proposed methods, numerical examples are introduced throughout the section to

both clarify the methods, and to compare them with each other.
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3.1 Problem Setup

Given a generalized plant P and a subspace of admissible controllers S, the

following is the optimal decentralized control problem we seek to address:

minimize
K∈Rp

‖fLFT(P,K)‖H∞

subject to K stabilizes P

K ∈ S,

(3.1)

where the lower linear fractional transformation (LFT) function fLFT(·, ·) is defined

as in (1.3). Which subsystems can affect others is embedded in the sparsity pattern

of P , and which subsystem controllers can access the sensor information from which

others’ is embedded in S. We call the subspace S the information structure .

Many decentralized control problems may be expressed in the form of prob-

lem (3.1), including all of those addressed in [41,42]. The problem is intractable in

general, but for some P and S, has been shown to be equivalent to a convex opti-

mization problem. This is the subject of the next section, and we will then focus on

methods to solve those problems for the H∞-norm.

3.2 Quadratic Invariance

We defined quadratic invariance in Definition 3. Here, we give a brief overview

of related results, in particular, that if it holds then convex synthesis of optimal

decentralized controllers is possible.
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It was shown in [6] that if S is a closed subspace and S is quadratically

invariant under G, then with a change of variables, problem (3.1) is equivalent to

the following optimization problem:

minimize
Q∈RH∞

‖T1 − T2QT3‖H∞

subject to Q ∈ S.
(3.2)

where T1, T2, T3 ∈ RH∞. See Theorem 17 in [6] for finding T1,T2, T3 and re-

covering K from Q. Through the rest of this chapter we will focus on this equivalent

form instead of (3.1).

y u

z w

Q̂

T1 −T2

T3 0

Figure 3.1: Model-matching problem from Youla parametrization

This states that if our problem is quadratically invariant (QI), we may use a

particular Youla parametrization [43] to reduce the problem to the model-matching

problem shown in Figure 3.1, as one can for centralized problems, and the constraint

on the controller is passed on to the Youla parameter. The optimization problem

in (3.2) is then convex. We may solve it to find the optimal Q, and then recover the

optimal K for our original problem (3.1). Similar results have been achieved [44] for

other function spaces as well, also showing that quadratic invariance allows optimal

linear decentralized control problems to be recast as convex optimization problems.
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While the problem is convex, the domain is infinite-dimensional, and solving

it is certainly not straightforward. This equivalence holds for arbitrary closed-loop

norm in the objective, and when the norm of interest is instead the H2-norm, it was

shown in [6] that the problem can be further reduced to an unconstrained optimal

control problem and then solved with standard software. Some recent progress has

also been made to directly compute the optimal state-space controller parameters

for some specific information structures in the H2 case [45].

3.3 Finite-Dimensional Parametrizations of Q

In this section, we discuss a method for addressing the convex infinite dimen-

sional model-matching problem (3.2), by a FD parametrization of the Q-parameter.

This has long been used for the centralized problem (without the constraint) for

objectives where more elegant solutions are not, or were not available (including

multiple-objective problems [33]), and has been suggested as a possible method

for (3.2) since the QI results were first available. The idea is to use a finite-

dimensional basis to parametrize the domain RH∞, where the limit of the span

will be dense in the original domain. We will first illustrate this FD parametrization

for the usual choice of basis in discrete time, which corresponds to a Finite Impulse

Response (FIR) of different delays in different parts of the controller, and then

generalize it to other bases.

Suppose we choose a maximum order of N for the map between each input and

output of the controller element. Then for each i ∈ {1, · · · , nu} and j ∈ {1, . . . , ny},
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we have an approximate FD parametrization:

Q̂ij(z) =
N∑
k=0

αijk
zk

,

and there are nu · ny · (N + 1) variables to find.

We can then state the following FD parametrized approximation to our convex

decentralized model-matching problem (3.2):

minimize ‖T1 − T2Q̂T3‖H∞

subject to Q̂ij(z) =
N∑
k=0

αijk
zk

Q̂ ∈ S,

(3.3)

with variables Q̂ ∈ RHnu×ny
∞ , α ∈ Rnu·ny ·(N+1), and assuming that we substitute the

first constraint into the objective, we have a finite-dimensional convex optimization

problem in the vector α.

We can find a state-space representation of Q̂ as described below. For each

j ∈ {1, . . . , ny}, let AQj ∈ RN×N and BQ
j ∈ RN be given as:

AQj =



0 1 · · · 0

...
. . . . . .

...

...
. . . 0 1

0 · · · · · · 0


, BQ

j =



0

...

0

1


, (3.4)
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and for each i ∈ {1, · · · , nu} and j ∈ {1, . . . , ny}, let

CQ
ij =

[
αijN · · · αij1

]
, DQ

ij = [αij0].

Then define

AQ = diag(AQ1 , ..., A
Q
ny

), BQ = diag(BQ
1 , ..., B

Q
ny

), (3.5)

CQ =


CQ

11 · · · CQ
1ny

...
. . .

...

CQ
nu1 · · · CQ

nuny

 , DQ =


DQ

11 · · · DQ
1ny

...
. . .

...

DQ
nu1 · · · DQ

nuny

 (3.6)

and we have

Q̂(z) =

 AQ BQ

CQ DQ

 (z). (3.7)

Remark 43. With this representation, all of the parameters αijk have been gathered

in only CQ and DQ. This will allow the problem to be cast as one of finding an

optimal static output feedback controller.

Remark 44 (Alternative parametrization). It is similarly possible to gather all the

variable parameters in BQ and DQ and have the fixed parts in AQ and CQ. Our

methods could be very similarly adjusted to account for this case too.

Remark 45 (Different poles per column). We can generalize this parametrization

to allow for different poles for each column of Q̂, as long as the controller remains

stable. To this end, suppose each column j ∈ {1, · · · , ny} of Q̂ has nj different poles
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and denote them by pj1, · · · , pjnj
(all in D). Then, instead of (3.4), we have that:

AQj = diag
(
pj1, · · · , pjnj

)
, BQ

j = 1nj
,

where AQj ∈ Rnj×nj are possibly different diagonal matrices representing stable poles

of the controller for columns j = 1, · · · , ny. The order of Q̂ would then be nQ̂ ,∑ny

j=1 nj and AQ and BQ can be constructed as (3.5). We then have CQ
ij ∈ R1×nj

and thus CQ ∈ Rnu×nQ̂.

With the modification indicated in the following remark, we can further allow

for complex poles.

Remark 46 (Complex poles). Since we are interested in Q̂ ∈ RH∞, complex eigen-

values of AQj must appear in conjugate pairs α±jβ. In order to keep both AQ and CQ

real matrices (thus eliminating the need for specifying which coefficients in CQ must

be conjugate of each other) whenever a complex conjugate pair is in the spectrum

of AQj , instead of

α + jβ 0

0 α− jβ

, we will represent it as

 α β

−β α

 by applying

a similarity transformation. Similarly, for the corresponding parts in BQ
j , we will

use

[
2 0

]T
instead of

[
1 1

]T
, which is obtained by applying the same similarity

transformation.

Remark 47. With this representation, we get Q̂ij = CQ
ij (zI − AQj )−1BQ

j +DQ
ij .

With the parameters all gathered in CQ andDQ, we now state a lemma showing

how to impose the sparsity-induced information structures on these variables.
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Lemma 48. If Q̂ =

 AQ BQ

CQ DQ

, with AQ, BQ, CQ, DQ given as above, then Q̂ ∈ S

if and only if

CQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0.

(3.8)

Proof. It is straightforward to verify that the state-space representation gives

Q̂ij(z) =
∑nj

k=1

αijk

z − pjk
+ αij0

for the general case of different poles, or similarly

Q̂ij(z) =
∑N

k=1

αijk
zk

+ αij0

for the case of FIR parametrization. It then follows that Q̂ ∈ S if and only if αijk = 0

for all k ∈ {0, 1, . . . , nj}, and for all (i, j) such that Kbin
ij = 0, which can be equally

expressed as (3.8).

We can then form an equivalent optimization problem using this lemma and

the FD parametrized version of problem (3.2) by replacing Q with Q̂ and optimizing

over CQ ∈ Rnu×nQ̂ and DQ ∈ Rnu×ny , thus leaving the following finite-dimensional
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convex optimization problem

minimize ‖T1 − T2Q̂T3‖H∞

subject to Q̂ =

 AQ BQ

CQ DQ


CQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for all (i, j) s.t. Kbin

ij = 0,

(3.9)

with variables Q̂ ∈ RHnu×ny
∞ , CQ ∈ Rnu×nQ̂ , DQ ∈ Rnu×ny , and assuming that we

substitute the first constraint into the objective, we have a convex finite-dimensional

problem in the matrices CQ and DQ.

3.3.1 Subgradient

We first address problem (3.3) directly for the FIR parametrization given

in (3.4), (3.5), and (3.6). Generalization of this subgradient for other arbitrary basis

could also be derived similarly. We will show that we can compute the objective

and its subgradient for a given value of variable α. We can thus solve the optimal

decentralized model-matching problem with the considered FD Q-parameter using

various methods. We demonstrate it here using the ellipsoid method. If evidence

arises that this is remotely competitive with the performance of our main result,

then more sophisticated algorithms will be explored for this direct approach.

The main ideas are from [46] and are adapted for the decentralized case. The

advantage of this basic approach in here is that it can easily be modified to be
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adapted for other objectives of interest, such as multi-objectives or other norms.

Given a convex functional f : X 7→ R, a subgradient of f at x0 evaluated on y,

denoted by f sg(x0, y) : X ×X 7→ R, is a linear functional in its second variable, such

that:

f(y) ≥ f(x0) + f sg(x0, y)− f sg(x0, x0), ∀ y ∈ X . (3.10)

This definition suits the convex functionals considered in this chapter, and is a

more simplified and standard definition compared to those in Section 4.2 that are

generalized to account for the local behavior of non-convex functions.

We want to obtain a subgradient of H∞-norm of closed-loop map T1 − T2QT3

when the controller Q is approximated by the FIR parametrization

Q̂(z) =
∑
i,j

∑N

k=0

αijk
zk

Eij,

where Eij , eie
T
j . By substituting Q̂ for Q, closed-loop map can be written as a

function of parameters α = {αijk} as:

H(·) : Rnuny(N+1) 7→ RHnu×ny
∞

H(α) , T1 − T2

(∑
i,j

∑N

k=0

αijk
zk

Eij

)
T3.

We will derive the subgradient vector of f∞(α) , ‖H(α)‖H∞ at α0 by first describing

it when it is computed on another point α1, i.e., f sg
∞(α0, α1), and then will derive

the subgradient vector explicitly. Following will achieve the first step:
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Theorem 49. Given T1, T2, T3, a subgradient of f∞(α) = ‖H(α)‖H∞, at α0 evalu-

ated on α1 is given by:

f sg
∞(α0, α1) = −<

(
u∗0T

ω0
2

(∑
i,j

∑N

k=0
α1
ijke

−jkω0Eij

)
T ω0

3 v0

)
. (3.11)

The equation is illustrated as follows. We first compute the frequency ω0 at which

the H∞ norm of H(α0) is achieved (i.e. σmax

(
H(α0)(ejω0)

)
= ‖H(α0)(ejω)‖H∞),

then a singular value decomposition of H(α0)(ejω0) would be computed to have

H(α0)(ejω0) = U0Σ0V
∗

0 . The first columns of U0 and V0 are then extracted and

named as u0 and v0. Now we can form (3.11), where T ω0
i = Ti(e

jω0), for i = 1, 2, 3.

Proof. To prove that (3.11) is a subgradient of f∞, we must show that it satisfies

the subgradient inequality (3.10). We first state the following basic equality that

can be derived by direct substitutions in the definitions:

f∞(α0) = ‖H(α0)‖H∞ = <
(
u∗0
(
H(α0)(ejω0)

)
v0

)
= <(u∗0T

ω0
1 v0) + f sg

∞(α0, α0).

(3.12)

Next we can see that for all α1 ∈ Rnuny(N+1) :

f∞(α1) = ess sup
ω,‖u‖=‖v‖=1

<
(
u∗
(
H(α1)(ejω)

)
v
)

≥ <
(
u∗0
(
H(α1)(ejω0)

)
v0

)
= < (u∗0T

ω0
1 v0) + f sg

∞(α0, α1)

(3.12)
= f∞(α0)− f sg

∞(α0, α0) + f sg
∞(α0, α1)

⇒ f∞(α1) ≥ f∞(α0) + f sg
∞(α0, α1)− f sg

∞(α0, α0), ∀ α1.
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We will now proceed by computing the subgradient vector explicitly, i.e., we

will compute the subgradient vector φ ∈ Rnuny(N+1) such that 〈φ, α1〉 = f sg
∞(α0, α1).

Theorem 50. Given T1, T2, T3, and α0, elements of a subgradient vector φ for f∞(α0)

are given by:

φijk = −<
(
u∗0T

ω0
2 EijT

ω0
3 v0e

−jkω0
)
,

where i ∈ {1, · · · , nu}, j ∈ {1, . . . , ny}, and k ∈ {0, · · · , N}.

Proof. We can write the RHS of (3.11) as:

(3.11) = 〈φ, α1〉

= −
∑
i,j

∑N

k=0
α1
ijk<

(
u∗0T

ω0
2 EijT

ω0
3 v0e

−jkω0
)

⇒ φijk = −<
(
[u∗0T

ω0
2 ]i[T

ω0
3 v0]je

−jkω0
)
,

where the first equality is due to the linearity of the subgradient, the second equality

follows as α1 is a real vector, and the third as (3.11) is valid for all α1.

This subgradient vector φ is used in implementations of the ellipsoid method

in later sections.

3.4 LMI for H∞-norm with the Fixed FD Basis

We first review a key result in Section 3.4.1 establishing that finding the H∞-

optimal static controller for certain plants, including those that admit to a model-

matching form through a Q-parametrization, can be cast as a semi-definite program.
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We then show in Section 3.4.2 how this result can be used to cast the QIH∞-optimal

decentralized control problem with a FD basis for the Q-parameter as an SDP.

3.4.1 Static Output Feedback

We review the main result of [36], which will be crucial to have the static

parameters of the controller explicitly present in the SDP whose objective will the

closed-loop H∞-norm and its solution will be the optimal value of these (static)

parameters.

Theorem 51. Consider a generalized discrete-time plant with state-space realization

that can be partitioned as follows:



Ă1 Ă B̆11 B̆

0 Ă2 B̆21 0

C̆11 C̆12 D̆11 D̆12

0 C̆ D̆21 0



; (3.13)

then, the optimal static output feedback controller Kstatic along with the optimal H∞-
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norm, can be found by solving the following SDP:

minimize γ

subject to



X̀ 0 ÀT C̀T

0 γI B̀T D̀T

À B̀ X̀ 0

C̀ D̀ 0 γI


� 0

(3.14)

with variables γ ∈ R, and real matrices of appropriate dimension Kstatic, E = ET ,

S, and R = RT , as well as À, X̀, B̀, C̀, and D̀, which are given by the additional

constraints:

À =

Ă1E Ă1S + Ă+ B̆KstaticC̆ − SĂ2

0 RĂ2

 ,

B̀ =

B̆11 + B̆KstaticD̆21 − SB̆21

RB̆21

 ,
C̀ =

[
C̆11E C̆12 + D̆12K

staticC̆ + C̆11S

]
,

D̀ = D̆11 + D̆12K
staticD̆21,

X̀ = diag(E,R),

(3.15)

each of which is affine in all of the variables.

Proof. See [36].

The paper also notes that plants without a 22-block (where the controller

inputs to the plant do not affect the measurements which the controller may act on)
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can be partitioned as in (3.13), and are thus amenable to optimal static feedback

with this SDP.

3.4.2 LMI Formulation with Quadratic Invariance

In this subsection we show how the problem of finding the H∞-optimal de-

centralized controller for a QI problem, or the H∞-optimal decentralized model-

matching problem with a FD basis for the Q-parameter, can be formulated as an

SDP.

T̀

T1 −T2
z w

T3
yy̆ u

0

Qdyn

AQ

InQ̂

0

BQ

0

Iny

Qstatic

[CQ DQ]

Figure 3.2: T̀ defined by augmenting plant with the fixed part of Q

The model-matching problem has (by definition) no 22-block, and can thus be

represented as a generalized plant as in (3.13). The FD parametrized Q that we are

trying to design for it, was shown to be separable into a fixed dynamic part, which

can be represented as:

Qdyn ,


AQ BQ

InQ̂
0

0 Iny

 ,
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and a variable static part: Qstatic , [CQ DQ].

The fixed dynamic part (Qdyn) can then be considered part of an augmented

plant, as illustrated in Figure 3.2. This leaves us to optimize over static controllers

(matrices) Qstatic for the augmented plant T̀ .

A state-space realization for T̀ is given by:



A1 0 0 0 B1 0

0 A2 0 0 0 B2

0 0 A3 0 B3 0

0 0 BQC3 AQ BQD3 0

C1 −C2 0 0 D1 −D2

0 0 0 InyN 0 0

0 0 C3 0 D3 0



, (3.16)

where (Ai, Bi, Ci, Di) is a state-space realization of Ti for i = 1, 2, 3. This partition

still comports with (3.13). We can then apply the results of the previous subsection,

and combine this with Lemma 48, to arrive at the key outcome of this section.
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Key SDP. The parametrized version of main problem (3.9) using a FD basis

for the Q-parameter is solvable by the following SDP:

minimize γ

subject to



X̀ 0 ÀT C̀T

0 γI B̀T D̀T

À B̀ X̀ 0

C̀ D̀ 0 γI


� 0

CQ
ij = 0 for (i, j) s.t. Kbin

ij = 0

DQ
ij = 0 for (i, j) s.t. Kbin

ij = 0,

(3.17)

with variables γ ∈ R, and real matrices of appropriate dimensionQstatic =

[
CQ DQ

]
,

E = ET , S, and R = RT , as well as À, X̀, B̀, C̀, and D̀ which are given by the addi-

tional affine constraints (3.15), where in each constraint, the (̆·) constants would be

obtained by matching (3.13) to (3.16), and the variable Kstatic is replaced by Qstatic.

Proof. Finding a Q with fixed FD basis for problem (3.2) is equivalent to finding a

static output feedback controller for T̀ (see Figure 3.2), for which matrices for the

generalized plant (3.13) are given by the specified partitioning in (3.16). The H∞-

optimal static output feedback controller for this is then given by SDP (3.14), and

the sparsity-induced information structure Q̂ ∈ S could then be enforced as (3.8)

due to Lemma 48, which results in (3.17).
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After obtaining the optimal Qstatic =

[
CQ DQ

]
, we can recover the optimal

Q̂ as in (3.7). Then if we take Q = Q̂, we can recover the controller K by [6,

Theorem 17].

Remark 52. Through the rest of this chapter, γ denotes the optimal closed-loop

H∞-norm obtained from the SDP (3.17).

Remark 53. This SDP allows for having different poles for each column of Q̂(z)

by properly adjusting the matrices AQ and BQ, as long as they are constructed as in

Remark 45 and Remark 46.

Remark 54. We can view the decentralized H∞-optimal control design subject to

a QI sparsity pattern (or equivalently the decentralized model-matching problem)

parametrized by a FD basis as a two-phase problem. The first phase is choosing AQ

and BQ as in (3.4) and (3.5), named as dictionary selection, and the second

phase is solving the SDP (3.17) for the optimal coefficients CQ and DQ. An

admissible BQ serves as a normalization factor and is irrelevant to the achievable

optimality level γ (the same Q̂ij can be obtained by scaling BQ
j and CQ

ij appropriately.

This means that the dictionary selection reduces to choosing an appropriate AQ.

We now provide an example to illustrate the FIR Q-parameter. We use a

discretized version of the same plant which was used in [6], along with the same

sequence of sparsity-induced information structures.
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Example 55. Consider an unstable lower triangular plant

G(z) =



s(z) 0 0 0 0

s(z) u(z) 0 0 0

s(z) u(z) s(z) 0 0

s(z) u(z) s(z) s(z) 0

s(z) u(z) s(z) s(z) u(z)



with s(z) = 0.1
z−0.5

, u(z) = 1
z−2

, and P given by:

P11 =

G 0

0 0

 P12 =

G
I

 P21 =

[
G I

]
,

and a sequence of sparsity constraints Kbin
1 , . . . , Kbin

6 :

Kbin
1 =



0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 1


Kbin

2 =



0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 1



Kbin
3 =



0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 0

1 1 0 0 1


Kbin

4 =



0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 0 0 0

1 1 1 0 1


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Kbin
5 =



0 0 0 0 0

0 1 0 0 0

0 1 0 0 0

1 1 1 0 0

1 1 1 0 1


Kbin

6 =



1 0 0 0 0

1 1 0 0 0

1 1 1 0 0

1 1 1 1 0

1 1 1 1 1


,

defining a sequence of sparsity-induced information structures Si = Sparse(Kbin
i )

such that each subsequent constraint is less restrictive, and such that each is quadrat-

ically invariant under G. We also use S7 as the set of controllers with no sparsity

constraints; i.e., the centralized case.

First, we apply SDP (3.17) to the centralized problem, where we can compute

the optimal solution with existing methods. This serves as a sanity check to en-

sure that we get convergence to the optimum, and to explore how the parametrized

solutions converge as the order grows.

2 4 6 8 10 12
4

6

8

10

12

14

16

18

(a) Optimal norm versus N for centralized con-
troller

2 4 6 8 10 12
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1400

SDP
Ellipsoid

(b) Time efficiency of different methods for de-
centralized case S4

Figure 3.3: FIR approximation of the Q-parameter

Figure 3.3(a) plots the optimal H∞-norm obtained by solving our SDP (3.17)

101



for a centralized sparsity pattern (i.e., no sparsity constraints), as the order of the FD

parametrization N increases, and is solved using the cvx toolbox [26] for MATLAB.

This is meant to serve primarily as a sanity check, and to provide some initial

indication of the satisfactory order of the FD parametrization, before moving on to

the decentralized problems of interest. It shows that, as expected, as N increases from

1 to 13, the optimal H∞-norm decreases and converges toward the actual solution,

indicated by the dashed line, which was obtained using MATLAB’s internal function

hinfsyn. The plant, and thus the actual optimal controller, are of order 5, and we

observe close convergence after increasing the order slightly beyond that.

We then apply our results to the decentralized problems. Figure 3.3(b) shows

how the SDP method and the ellipsoid method that uses the computed subgradient

compare for the information constraint S4, as the order N varies again from 1 to

13. The SDP (3.17) is solved first, and the time it takes is shown with the solid

line. The ellipsoid method is then used, with its stopping criterion chosen based on

the optimal value of the SDP f ∗SDP, setting
fbestellip−f

∗
SDP

f∗SDP
< 0.1, such that we stop when

we have an optimal point that is at least within 10% of the SDP solution. CPU time

is reported from a machine with 2.3GHz CPU, and 8GB of RAM. We see that the

ellipsoid method takes much more time, and this pattern was consistent over all of

the information structures, though it diverged more slowly for some others.

We then turn our attention to computing and comparing the H∞-optimal solu-

tions for the sequence of sparsity constraints. The results are presented in Figure 3.4

and are computed by solving the SDP (3.17) for Kbin
i , for i = 1, · · · , 6, and with

i = 7 representing a centralized controller. In each of these cases, N is fixed at 13.
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Figure 3.4: Optimal norm for different sparsity patterns

This shows that (as expected) as we relax the information constraint, the optimal

norm would also be non-increasing, since Si ⊂ Sj for i < j.

Comparing these results with those for which the H2-norm was instead opti-

mized for the same plant and sparsity patterns in [6], we similarly see that the first

significant drop occurs with the relaxation from S3 to S4; i.e., by allowing the fifth

controller to access the third measurement. We dissimilarly see that the relaxations

from S5 to S6 no longer produce a noticeable change in performance.

3.5 Pole Selection Methods

We will now address the dictionary selection phase, and will discuss and de-

velop methods for choosing better poles for the columns of Q̂, rather than sim-

ply using the FIR Q-parameter. In each method, we will construct (AQ, BQ)

first, and then with those fixed, we will find coefficients (CQ, DQ) by solving the
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SDP (3.17). We will study various schemes for pole selection and compare them

through numerical experiments. We first inspect pole selection based on the cen-

tralized solution of (3.2) in Section 3.5.1, either by using the full centralized solu-

tion in Method 1 (Cent-All), or a reduced set based on the centralized solution in

Method 2 (Cent-Red). In Section 3.5.2, we populate the dictionary and then use

a variant of the l1 heuristic to choose a small number of effective poles for each

column from a large set, leading to Method 3 (Sparse). Finally in Section 3.5.3,

we will derive Method 4 (Taylor) using Taylor approximation to linearize the per-

formance about the current pole locations, enabling us to systematically adjust the

pole locations along with their coefficients.

3.5.1 Dictionary Selection Based on Centralized Solution

The optimal centralized solution (Kcent) to (3.1) (i.e., without the K ∈ S

constraint) can be found by several standard methods [27, 28]. One näıve method

for obtaining a decentralized controller is to then force the non-admissible elements

of Kcent to be zero. However, this solution might not even be stabilizing. Whenever

QI holds, and thus the equivalent formulation (3.2) is possible, we can first obtain

the centralized solution to (3.2), denoted by Qcent, and then force its non-admissible

elements to be zero. This approach is at least guaranteed to result in a feasible

solution (a stabilizing controller that satisfies the information constraint), and could

also be further improved in performance as discussed below.

We will first obtain theH∞-optimal centralized model-matching solution Qcent,
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P 1 P 2

nz and nw 10 8
nu and ny 5 4
G unstable stable
Order of G 5 16
Order of T 21 48
Order of Qcent 21 48
γcent = ‖T1 − T2Q

centT3‖H∞ 4.816 4.816

Table 3.1: Summaries of the two sample plants

and then use its poles to construct a parametrization for the optimal decentralized

parameter which we seek. Denoting the order of Qcent by ncent, this method is then

outlined as below:

Method 1 (Cent-All).

1. Use poles of Qcent to construct the same block-diagonal {AQj }
ny

j=1, with nj =

ncent.

2. Construct BQ
j , AQ, and BQ as in Remark 45 for the real poles, or as in Re-

mark 46 for the complex poles.

3. After this dictionary selection stage, use the SDP (3.17) to solve for the opti-

mal coefficients.

Example 56. We test our methods and compare them based on two sample plants.

The first one, denoted as P 1, is the unstable plant from Example 55 along with the

choice of S = Sparse(Kbin
4 ). The other plant, denoted as P 2, is a stable randomly

generated plant. We first fix ny = nu = 4, and then randomly generate a stable A0
G ∈

R4×4, generate B0
G, C0

G, and fix D0
G = 0. Then, the resulting G0 is projected onto
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a lower triangular information structure that gives G. The information structure of

the controller for this plant corresponds to the following binary matrix:

Kbin =



0 0 0 0

0 1 0 0

1 1 0 0

1 1 0 1


,

and we choose T as:

T1 = α

G 0

0 0

 , T2 = α

G
I

 , T3 = α

[
G I

]
,

where α is a scalar chosen to make the optimal centralized closed-loop H∞-norm

equal for the two plants. Summaries of these two plants are given in Table 3.1.

Following Method 1 (Cent-All), we will choose AQj for each of the plants P 1

and P 2 to match the poles of their corresponding optimal centralized solutions Qcent,

which are depicted in Figure 3.5. All of the poles are stable with max |λ| = 0.99.

<{z}

={z}

× ×××× × × ××××××××××××××

(a) Poles of P 1

<{z}

={z}

××××
×
×

×
×
×
×
×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×
×
×
××××××× ×××××××××××

(b) Poles of P 2

Figure 3.5: Location of Qcent poles

By applying the Cent-All method to P 1, the SDP solver was able to reach γ =
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6.152 1, whereas direct projection of Qcent onto S (denoted by QS) would result

in ‖T1 − T2QST3‖H∞ = 278.539. The corresponding SDP has 45,130 variables, and

it takes approximately 160 minutes to reach this level of optimality on the prescribed

PC. For P 2, the SDP becomes extensively large (152,177 variables), and thus im-

practical to solve. Direct projection for P 2 will result in ‖T1 − T2QST3‖H∞ = 12.654.

The resulting controller Q̂ would then have order nQ̂ = nyncent, which can grow

large easily. The centralized H∞-controller results in a solution that has the same

order as the generalized plant for which it is designed [27, p. 15], i.e., ncent = nT .

This term can be much larger than the order of the original plant, depending on how

the model-matching problem (3.2) is derived from the closed-loop problem (3.1).

This motivates us to reduce the dictionary size by considering the most signif-

icant poles in each column of the projected Qcent. This method is outlined below:

Method 2 (Cent-Red).

1. Project Qcent onto S by making the non-admissible elements zero, and name

it as QS .

2. Use a typical order reduction method on each column of QS to obtain the N

most significant poles in each column, and denote the resulting set of poles for

each column by Vj for j = 1, · · · , ny.

3. Assemble possibly different AQj = diag(Vj), and utilize Remark 45 to construct

1 We use the cvx package to solve these optimization problems. However, if the problem size
becomes large, SDP solvers used in cvx (SDPT3 4.0, and Mosek) fail to reach the solution. We
report values from the last step when the solver terminates, and thus it is possible that reported
data will be near the solution (depending on performance of solver), but not within pre-specified
precision. To keep timing data comparable, we will use SDPT3 4.0 for all optimizations.
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BQ
j , AQ, and BQ. Use Remark 46 for complex poles.

4. After this dictionary selection stage, use the SDP (3.17) to solve for the opti-

mal coefficients.

Numerical results for order reduction of different sizes are reflected below.

Example 57. We continue with Example 56, and apply Method 2 (Cent-Red) on P 1

and P 2. Order reduction on each column is done by Balanced Stochastic model

Truncation (BST) via the Schur method (bstmr in MATLAB). The resulting closed-

loop H∞-norm as we increase the number of poles in each column (N) is illustrated

in Figure 3.6. The closed-loop H∞-norm associated with the direct projection for P 1

was about 278.5 and thus we have shown it in Figure 3.6(a) with a jump in the y-axis.

For comparison purposes, related data for FIR approximations with increasing N (as

in Section 3.3 and Section 3.4.2) is also provided in Figure 3.6 and shown in green.

We see that for P 1, Cent-Red (shown in blue) slightly but consistently outper-

formed the FIR approximation over different numbers of poles, while taking more

time. We see a slight increase at N = 4, which is possible since the selections made

when smaller numbers of poles are allowed can end up being better when used in the

decentralized closed-loop. It is similarly possible for the Cent-Red method to outper-

form Cent-All (dashed red), as it does slightly for N ≥ 5 for P 1, since the model

reduction technique can choose poles which were not present in the larger controller.

For P 2, we see that a low-order FIR approximation is hardly improved upon, and

Cent-Red catches up once it has 2 to 4 poles per column.

This order reduction on QS is a fairly fast method for choosing the dictionary,
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Figure 3.6: Applying Method 2 (Cent-Red) in Example 57: Closed-loop H∞-norm
versus number of poles per column, N

however, it is selected solely based on the contribution of the poles in columns of QS .

This makes the considered order reduction technique an open-loop approach that

cannot directly account for the relative importance of the poles when Q̂ is closed

around T . This motivates us to consider a framework which selects the poles based

on their effect in the closed-loop H∞-norm, which will be the topic of the next

section.

3.5.2 Sparsity Promoting Framework

In this section we will implement a variant of the l1 regularization to help

us choose a small dictionary while keeping the closed-loop H∞-norm small. The

sparsity inducing heuristic here would be a convex penalty (on CQ) added to the

objective of the SDP (3.17). This heuristic is adopted from [40] (also known as

the relaxed simultaneous sparse approximation), and provides a convex relaxation

for deciding which poles could be eliminated from an initial choice of poles without
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significantly increasing the closed-loop H∞-norm.

We first outline the aforementioned approach below, and describe each step in

more detail afterwards. We will then inspect its performance through the numerical

examples from the previous sections.

Method 3 (Sparse).

1. Add initial choice of poles for the controller to the dictionary, i.e., choose AQj ,

for j = 1, · · · , ny, to be block-diagonal matrices with their eigenvalues inside

the open unit disk D.

2. Construct normalized BQ
j (as described below).

3. Construct block-diagonal AQ and BQ as in (3.5).

4. Solve SDP (3.17) with the following convex penalty on the sparsity of CQ:

min γ + λ‖CQ‖r̃x

s.t. remaining conditions of (3.17),

(3.18)

where ‖·‖r̃x is defined below.

5. For each j = 1, · · · , ny, eliminate those poles of AQj that have zero correspond-

ing coefficients in CQ.

6. Construct the new AQj , BQ
j , AQ, and BQ, and solve the SDP (3.17) again for

the refined solution.
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The initial choice of poles in step 1 can be selected in many ways. It could be

arbitrary finite sets in D with each set representing the initial choice for each column

of Q̂. For example, it could be a union of the most effective poles in each column

of QS and some other poles in D. These poles could be either real with degree one

(resulting in a single 1× 1 element in the diagonal of AQj ), or in complex conjugate

pairs (resulting in 2× 2 blocks as in Remark 46).

Remark 58. Each real pole with degree one has all of its corresponding coefficients

in a single column of CQ, and poles in complex conjugate pairs in two consecutive

columns. This holds due to AQ and {AQj }
ny

j=1 all being block-diagonal.

Elements of the dictionary must be normalized to have the same weight so

that the sparsity-promoting regularizer functions properly choose them based on

their contribution. By choosing BQ
j = 1nj

, each pole would appear as 1
z−p . We

adopt the normalization suggested in [47], which results in the poles appearing as

1−|p|2
z−p . To achieve this normalization, if an element (k, l) of BQ is not zero by

construction (i.e, to enforce block-diagonal structure), it would be normalized by

multiplying by 1−∑j|AQ(k, j)|2.

The r̃x-norm in step 4 is a modified version of the simultaneous sparsity in-

ducing norm (rx-norm) in row format in [40]. This norm could be stated in column

format to promote sparsity for each column for a matrix M ∈ Rm×n as:

‖M‖rx ,
n∑
j=1

max
i=1,··· ,m

|Mij|.

We want to apply this penalty on CQ, and the intuition as mentioned in [40] is that
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if we are going to keep a pole in the dictionary, we want that pole to contribute to as

many admissible elements in Q̂ as possible. In other words, most of columns of CQ

should be zero, but the non-zero columns should have as many admissible non-zero

elements as possible. To do so, we apply the l∞-norm on each column to promote

non-sparsity among admissible elements, and then apply the l1-norm to promote

sparsity on the resulting vector.

The ‖·‖rx does not account for poles in complex conjugate pairs properly. We

can not eliminate one of the complex poles but not its conjugate, and thus these poles

could be eliminated, if the two corresponding consecutive columns in CQ would be

simultaneously zero. To properly adopt this norm for complex poles, we will apply

the l∞-norm on the coefficients corresponding to conjugate pairs simultaneously. To

illustrate this, divide indices of columns of CQ into two sets. Denote the one that

corresponds to real poles as J<, and the other one that corresponds to beginning

index of consecutive complex pairs as J=. This separation of indices is illustrated in

the following example.

Example 59. Let S be such that Kbin =

1 0

1 1

. If we choose the dictionary

as AQ1 = diag

0.1, 0.2,

 0.3 0.4

−0.4 0.3


 , and AQ2 = diag

−0.6,

 0 0.5

−0.5 0


, then

the normalized BQ
j are given by BQ

1 =

[
0.99 0.96 1.5 0

]T
, and BQ

2 =

[
0.64 1.5 0

]T
;

moreover, n1 = 4, n2 = 3, nQ̂ = n1 + n2 = 7, and CQ ∈ R2×7. We also have

J< = {1, 2, 5} and J= = {3, 6}.
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Define the modified ‖·‖r̃x-norm as:

‖CQ‖r̃x ,
∑
j∈J<

max
i=1,··· ,nu

|(CQ)ij|

+
∑
j∈J=

max
l∈{j,j+1}

max
i∈{1,··· ,nu}

|(CQ)il|.

The aforementioned modification will promote sparsity on the two consecutive columns

that correspond to a complex conjugate pair simultaneously, thus keeping them zero,

or non-zero at the same time. We can then solve step 4 with λ being a regularization

factor that makes γ comparable to the r̃x-norm. After identifying the appropriate

set of poles for a smaller dictionary in step 4, we drop the unnecessary ones in step 5,

and then solve the smaller problem for the refined solution in step 6.

We now demonstrate pole selection by the Sparse method (Method 3) in the

following example.

Example 60. Continuing with Example 57, we apply the Method 3 (Sparse) on P 1

and P 2. Matrices AQj are constructed by combination of the 4 most significant poles

in each column of QS (obtained via BST as in Example 57) and 4 poles located at

{±0.25,±0.75}, thus giving 8 poles per column for both P 1 and P 2. We vary λ and

trace its behavior on the optimality level γ, McMillan degree of Q̂ (denoted as nQ̂),

and the time required for computation of this method in Table 3.2.

One possible reason behind the subtle counter-intuitive decrease in the second

row of Table 3.2 that arises from the solver ability is due to the fine-tunning Step 5

in the Sparse method that would eliminate some poles, and hence results in a much

smaller SDP that is more numerically well-behaved in the final step of that method.
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P 1 P 2

λ γ nQ̂ t [sec] λ γ nQ̂ t [sec]

0.000 5.932 32 126 0.00 5.178 32 217
0.005 5.919 28 183 0.01 5.176 23 255
0.050 5.925 23 158 0.10 5.176 22 360
0.500 5.932 16 255 1.00 5.176 17 1155

Table 3.2: Applying Method 3 (Sparse) in Example 60

Nevertheless, we see that as we increase λ, we have almost the same closed-loop H∞-

norm, but for a controller with fewer states. This is one powerful aspect of this

method which chooses poles based on their importance in the objective.

The sparsity promoting framework in this section would recover a low-order

controller. Determining which poles the sparsity regularizer would choose to be

the most effective ones among a large-set of them would however demand solving

a large optimization problem thoroughly. We study an alternative approach in the

next section that enables us to improve locations of the poles sequentially, where

each step entail a small optimization problem, and we can stop at any step upon

achieving a satisfactory objective value.

3.5.3 Dictionary Learning Based on Taylor Approximation

We want to improve the controller pole locations for our model-matching prob-

lem in a systematic way in this section. We will use a sequential optimization

framework that allows us to start from any initial choice for the pole location and

adjust them using small optimization problems in each step until we achieve a sat-

isfactory objective value. In each step, we will perturb the controller poles by a
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small amount and linearize the resulting transfer function of the controller around

these perturbations. This approximation makes the convex synthesis of the optimal

perturbations feasible. The suggested approach is based on the linearization of the

factorized matrices in dictionary learning frameworks [48], and we will adopt it to

our problem.

We will first sketch this approximation for a SISO controller with a single

pole, and then state the general algorithm. Assume that the controller transfer

function is given as c
z−p , where the optimal c has been found using SDP (3.17). We

will perturb the pole location by δp, which would also result in the change δc in its

respective optimal coefficient. The resulting transfer function would then be c+δc
z−(p+δp)

with variables δp and δc. Solving for these two perturbations when ones uses this

controller in our model-matching problem would result in a non-convex problem.

Thus, we linearize the controller transfer function around these perturbations and

use the following first order approximation:

c+ δc
z − (p+ δp)

u
c

z − p +
1

z − pδc +
c

(z − p)2
δp

=
c+ δc
z − p +

c

(z − p)2
δp,

(3.19)

with variables δp and δc. We will embed this perturbed controller in the closed-loop,

which can then be re-written in a way that (similar to our initial FD parametriza-

tion of the Q-param, Figure 3.2) would have all of its variables (δc and δp) in its

static part. This would allow us to use an SDP similar to (3.17) to solve for the
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perturbations. To see this, observe that if we augment A and C to be

A =

p 0

1 p

 , C =

[
c+ δc cδp

]
,

we would have:

C(zI − A)−1

1

0

 =
c+ δc
z − p +

c

(z − p)2
δp,

which means that all the variables would be in the augmented C, and thus we

can accordingly use SDP (3.17) with proper modifications to solve for them. The

linearization of (3.19) is valid for small enough δp, and thus a bound should be

placed on |δp|. We will then update the location of the pole p as p ← p + δp, and

solve (3.17) for the new coefficients (CQ, DQ).

The resulting method in the general case for a modal parametrization is out-

lined below, and a detailed description will follow after.

Method 4 (Taylor).

1. Let step number be denoted by k ← 0, choose the initial set of poles per column

of Q̂, and construct corresponding block-diagonal {(AQj )
(0)}ny

j=1, {(BQ
j )

(0)}ny

j=1,

AQ
(0), and BQ

(0).

2. Solve the SDP (3.17) with AQ ← AQ
(k), BQ ← BQ

(k), and name the obtained

solutions as γ(k), CQ
(k), DQ

(k).

3. If γ(k) is satisfactory, or a local minima has been achieved, then terminate;

else continue.
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4. Solve the following optimization problem:

min γ (3.20)

s.t. AQ ←

AQ(k) 0

I AQ
(k)

 , BQ ←

BQ
(k)

0

 ,
Qstatic =

[
CQ CQ

(k)∆ DQ

]
,

‖∆‖ < ε,

∆ij = 0, if i ∈ J< and j 6= i,

∆ij = 0, if i ∈ J= and j /∈ {i, i+ 1},

∆i+1,j = 0, if i ∈ J= and j /∈ {i, i+ 1},

∆ii = ∆i+1,i+1 for all i ∈ J=

∆i,i+1 = −∆i+1,i for all i ∈ J=

remaining conditions of (3.17),

with all the variables of (3.17), and an additional variable ∆ ∈ RnQ̂×nQ̂ which

is described in detail below.

5. Update the poles as AQ
(k+1) ← AQ

(k) + ∆.

6. Let k ← k + 1, and go to step 2.

In step 1, complex conjugate pairs in AQj , and their respective parts in BQ
j

must be handled as in Remark 46, which is illustrated in more detail later in this

section.
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Remark 61. Our framework easily allows us to consider transition of complex and

real poles into one another, i.e., if a complex conjugate pair becomes very close to

the real axis in the current iteration, we can consider them to be real poles in the

next iteration by properly updating the sets J< and J=. Likewise, we can allow two

real poles to become complex conjugate in the next iteration if they become very close

to each other in the current iteration.

It is noteworthy to mention that the dimension of AQ, BQ, Qstatic, and the aux-

iliary variables changes from step 2 to 4 (and vice-versa). Also, the Qstatic in (3.20)

replaces the one given in SDP (3.17).

Variables CQ and ∆ in step 4 correspond to c + δc and δp respectively in the

SISO case (3.19). Variable ∆ would then gather the corresponding perturbation

to the poles of the multi-modal MIMO parametrization, and is a block-diagonal

matrix whose sparsity pattern is same as AQ. We will illustrate this by the following

example:

Example 62. For the choice of matrices in Example 59, ∆ ∈ R7×7 is given as:

∆ = diag

δ1, δ2,

 δ3 δ4

−δ4 δ3

 , δ5,

 δ6 δ7

−δ7 δ6


 .

The last 5 equality constraints on ∆ in (3.20) precisely specify such structure

for a general case. This structure indicates that for a real pole p, perturbation δ ∈ R

represent the corresponding adjustment on the real line, and appears as a 1×1 vari-

able in the diagonal of ∆ in the same position as p. Similarly, for a complex conjugate
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AQ
(0) ε γ(0) γ(best)

P 1

Ex. 57, N = 2 ε2 9.731 6.218
Ex. 57, N = 4 ε1 6.732 6.072
Ex. 60, λ = 0.5 ε1 5.932 5.915

P 2

Ex. 57, N = 2 ε2 5.347 5.184
Ex. 57, N = 4 ε1 5.178 5.177
Ex. 60, λ = 1 ε1 5.176 5.176

Table 3.3: The source of initial set of poles for Taylor approximation in Example 63

pair p< ± jp=, two conjugate directions δ< ± jδ= would specify their adjustment in

the complex plane, and would appear in the block diagonal of ∆ as

 δ< δ=

−δ= δ<

, in

the same position as

 p< p=

−p= p<

. Thus, ∆ ∈ RnQ̂×nQ̂ is a block-diagonal matrix

that matches the sparsity and symmetry pattern of AQ.

We will now inspect the performance of the Taylor method (Method 4) with

the following example.

Example 63. We continue with Examples 57 and 60, and apply the Taylor method

with the initial choice of poles picked from particular instances of them. We will

bound ∆ by |∆ij| < ε, and will use either ε1 = 0.01, or ε2 = 0.05. Table 3.3

reflects the related data, in which AQ
(0) is the initial choice of poles taken from the

mentioned examples, γ(0) is its corresponding closed-loop H∞-norm, and γ(best) is

the best result in the first 20 iterations. It is notable that γ(best) does not necessarily

come from the last iteration since for some iterations the linearization might not

result in an accurate approximation. Figure 3.7 illustrates the first 20 steps of the

Taylor method for aforementioned settings in Table 3.3. It is seen that by adjusting
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Figure 3.7: Applying Taylor approx. when the poles are initialized as in Table 3.3

the pole locations properly using the Taylor method, a low-order controller with 2

poles per column has achieved almost the same performance as one with 4 poles per

column for both P 1 and P 2.

Remark 64. One important merit of this dictionary learning approach is that after

each step a stabilizing controller Q̂(k) is achieved that has improved the closed-loop

H∞-norm, whereas in Section 3.5.2, the same level of γ can only be achieved after

solving a very big SDP. Moreover, this convex formulation of perturbation directions

allows for embedding it in more complex objectives, as for those in multi-objective

problems.
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Chapter 4: Minimization of a Particular Singular Value

Here we consider the problem of minimization of the k-singular value of a ma-

trix variable in this chapter. This problems becomes convex only when minimizing

the largest singular value (k = 1), while for all the other cases (k ≥ 2) the problem

is neither convex nor concave, and could be NP-hard in general.

When one wishes to obtain low-rank solutions, the convex heuristic of nuclear

norm has been shown to be effective and even guaranteed to recover a low rank

solution in some cases [49–51]. However, when one tries to minimize a specific

singular value, the most common approach is to apply a non-smooth non-convex

technique by using the subgradient of that singular value [52, 53]. It has also been

suggested that due to structural relation of the singular values, one can minimize

the partial tail sum of singular values [54], which would also be a non-convex non-

smooth problem.

The problem of minimizing the k-th singular value of a matrix is closely related

to the problem of minimizing the k-th largest element of a vector, and we note that

the approach we derive in this chapter could be very similarly formulated for that

case as well. Also, the same behavior regarding our convex heuristic has been seen

when we apply it on the k-th largest element of a vector.
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One application of minimizing such a singular value arises in decentralized

control theory, where one would like to know how far a FDLTI state-space system

is from losing decentralized controllability or observability. This is further discussed

in Chapter 6.

We will formulate the problem in Section 4.1, and then consider convex heuris-

tics for obtaining upper bounds for this problem in Section 4.3 as was first done

in [55]. We will then review a local notion of subgradient of the k-th singular value

in Section 4.2. When finding upper bounds, we assume that there are convex con-

straints that prohibit trivial solutions, and analyze a class of convex heuristics by

taking a non-integer partial sum of the singular values from the greatest one up to a

non-integer portion of (k+1)-th singular value. We inspect this heuristic numerically

and compare it against the conventional ones, both in presence and absence of low-

rank solutions. It was widely observed that our counter intuitive convex heuristic

for minimizing the k-th singular value would perform better in the absence of a low-

rank solution. However, we prove that if our convex heuristic recovers a low-rank

solution, then the nuclear norm would also recover that solution, suggesting that

if one is only concerned with the rank minimization, and not minimizing the k-th

singular value even if it would ultimately be greater than zero, nuclear norm would

be at least as good as our convex heuristic. We also discuss using subgradient based

methods to further improve the solution obtained from our convex heuristic in the

same section.

We consider lower bounds for this problem in Section 4.4. We provide a poly-

nomial optimization problem that will be exactly equal to the singular value of con-
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sideration using factorization of the semidefinite matrices in Section 4.4.2. However

as it involves a large number of variables and constraints, we give an alternative

approximate form via characterization of positive definite matrices using leading

principle minors in Section 4.4.3. This alternative form would involve fewer vari-

ables and constraints, but of higher degrees. We provide another form by sampling

from the non-convex constraint in the Courant-Fischer variational formulation of

the singular values in Section 4.4.4, an then review and utilize Sum-of-Square (SOS)

techniques to derive lower bounds on these polynomial programs, which would in

turn result in lower bounds for the minimization problem that we are interested

in. These different formulations would be comparable against each other in terms of

tightness of the lower bound and the size of the corresponding optimization problem.

We discuss how we can alternatively formulate the problem of minimizing a

particular singular value subject to convex constraints by a Bilinear Matrix Inequal-

ity (BMI) that will be further subjected to an orthonormality condition on one of

its variables in Section 4.5.

4.1 Problem Formulation

Given a matrix X ∈ Cm×n, convex functions f1(X), · · · , fī(X), and affine

functions h1(X), · · · , hj̄(X) all from Cm×n to R, we are interested in the following

optimization problem:
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minimize σk(X)

subject to fi(X) ≤ 0 i = 1, · · · , ī

hj(X) = 0 j = 1, · · · , j̄,

(4.1)

with variable X ∈ Cm×n, and where σk(X) denotes the k-th largest singular value of

the matrix X. Without loss of generality we assume that m ≥ n and thus σn+1(X) =

· · · = σm(X) = 0. We will hence focus on the non-trivial cases 1 ≤ k ≤ n, for

which σ1(X) ≥ · · · ≥ σn(X). This problem is convex if and only if k = 1 and we

are interested in cases where k > 1.

4.2 Subgradient of the k-th Singular Value

We review concepts related to definition of the subgradient constrained to the

local behavior of the non-smooth non-convex functions considered in this section.

Definitions presented here are simplified versions of the ones in [52, Section 2].

Definition 65 (Regular Subgradient). Given a function f : Rp → [−∞,+∞], we

say y ∈ Rp is a regular subgradient of f at x, if f(x) <∞, and in a neighborhood

of x, we have:

f(x+ z) ≥ f(x) + 〈y, z〉+ o(z) as z → 0,

where o(z) denotes a real-valued function defined in a neighborhood of the origin

which satisfies limz→0‖z‖−1o(z) = 0.

The set of all regular subgradients of f at x is called the regular subdifferential,
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and is denoted by ∂̂f(x). See Figure 4.1(a) as an example of a regular subgradient

when f is not convex. The regular subdifferential could be empty at some points, yet

a descent direction could still exist in some cases. As an example see Figure 4.1(b)

where there does not exist any plane that passes through the edge of the pyramid,

and would be below the function at any open neighborhood containing a point on

the edge, while any plane that contains the edge of intersection of the blue and

red planes also contains descent directions. The following definitions consider this

aspect in a more general form.

Definition 66 (Limiting Subgradient). Given a function f : Rp → [−∞,+∞],

we say y ∈ Rp is a limiting subgradient of f at x, if f(x) < ∞, and there exists

a sequence of points xr approaching x with values f(xr) approaching f(x), and a

sequence of regular subgradients yr in ∂̂f(xr) approaching y.

The set of all limiting subgradients of f at x is called the limiting subdifferen-

tial.

Definition 67 (Clarke Subgradient). Given a function f : Rp → [−∞,+∞], if f is

locally Lipschitz in a neighborhood of x, a convex combination of subgradients at x

(regular or limiting subgradients) is called a Clarke subgradient at x.

The set of all Clarke subgradients of f at x is called the Clarke subdifferential,

and is denoted by ∂Cf(x).

We are now ready to describe the subgradient of the k-th singular value with

respect to a matrix variable in the following theorem.
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gradient for a non-convex function
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matrix as a function of a parameter in [0, 1]2

Figure 4.1: Illustrating cases on a local concept of a subgradient for non-convex
functions

Theorem 68. Given a matrix X ∈ Cm×n with singular value decomposition X =

UXΣXV
T
X , a Clarke subgradient of σk(·) at X, for 1 ≤ k ≤ min(m,n), denoted by

σsg,k(X) is also a (rank one) matrix in Cm×n and is given by:

σsg,k(X) = UXeke
T
k V

T
X , (4.2)

Proof. See, for example, [53, Corollary 6.4].

Remark 69. A regular subgradient of σk(·) at X could also be obtained in the same

way as (4.2), unless when σk(X) = σk−1(X), in which case the regular subdifferen-

tial would be the empty set. This is the reason definition 67 become advantages to

have the right level of technicality for developing a feasible descent direction for our

problem.
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4.3 A Convex Heuristic

We analyze a class of convex heuristics for problem (4.1), and inspect their

performance via numerical simulations later in this section. To this end, we gener-

alize the Ky Fan k-norm in (1.1) on page 10 and define the generalized non-integer

Ky Fan `-norm of X as:

s`(X) ,
b `c∑
i=1

σi(X) + ( `− b `c)σb `c+1(X), (4.3)

where ` ∈ [1, n] is a real variable, and where b`c denotes floor of `.

Example 70. If we take ` = 2.7 then s2.7(X) = σ1(X) + σ2(X) + 0.7σ3(X).

Corollary 71. s`(X) is convex in X for all ` ∈ [1, n].

Proof. Write the non-integer Ky Fan `-norm as convex combinations of integer Ky

Fan k-norms, where each would be convex in X [56, Argument 19, p. 147].

Remark 72. The nuclear norm of X is by definition equal to sn(X).

Problem (4.1) is non-convex in X for all k > 1 and we would like to replace

the objective with the convex heuristic s`(X) and inspect the best `, i.e., we are

interested in solving the following problem:

X∗` ∈ arg min
X∈Rm×n

s`(X)

subject to fi(X) ≤ 0 i = 1, · · · , ī

hj(X) = 0 j = 1, · · · , j̄,

(4.4)
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and then reporting σk(X
∗
` ) as the output of our convex heuristic. Also, denote the

best ` value for a specific singular value k by `∗k, i.e.:

`∗k , arg min
`∈[1,n]

σk(X
∗
` ).

Remark 73. Perhaps a first guess could be taking ` = k, however our understanding

from a wide variety of numerical examples shows that generally we have `∗k > k.

Example 74. As an example of (4.4) assume that we want to minimize the σ2(X),

and let X1 and X2 satisfy the feasibility constraints. Furthermore assume that the

singular values of these two matrices are given as in Table 4.1. If we only choose ` =

σ1 σ2 σ3 σ1 + σ2 σ1 + σ2 + σ3

X1 10 9.9 9 19.9 28.9
X2 12 8 7.9 20 27.9

Table 4.1: Singular values for Example 74

2 for our convex heuristic, i.e., minimizing σ1(X) + σ2(X), we would be worse off

than taking the sum of the first three singular values. This could happen as the

singular values are implicitly tied together via structural constraints σ1(X) ≥ · · · ≥

σn(X). This would be further inspected via a variety of numerical examples in the

rest of this chapter.

For numerical examples through the rest of this section we will focus on the
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following optimization problem.

minimize σk(X)

subject to Xij = Bij for (i, j) ∈ I

X ij ≤ Xij ≤ X̄ij for (i, j) ∈ Ī,

(4.5)

with variable X ∈ Rm×n, and fixed I ⊂ {1, · · · ,m} × {1, · · · , n}, B ∈ Rm×n,

X ∈ Rm×n, X̄ ∈ Rm×n, and where Ī denotes the complement of the set I. We

want to inspect our convex heuristic for this problem by replacing the objective

with s`(X), i.e., we will solve:

X∗` ∈ arg min s`(X)

subject to Xij = Bij for (i, j) ∈ I

X ij ≤ Xij ≤ X̄ij for (i, j) ∈ Ī.

(4.6)

Example 75. In this example we will fix m = n = 20, and consider 200 instances

of (4.6) by random uniform generation of I, B, X, and X̄. We will vary ` and look

at the kth singular value of the solution of (4.6). More precisely we will plot the dif-

ference of σk(X
∗
` ) to its minimum when we vary `, i.e., plotting σk(X

∗
` )−min` σk(X

∗
` )

versus `. Results for k = 4, 7, and 16 are provided in Figures 4.2(a), 4.2(b),

and 4.2(c) respectively.

The vertical black dashed line indicates where ` = k, the blue is the average

of σk(X
∗
` ) − min` σk(X

∗
` ) across 200 samples, the dashed cyan lines show the 5%

and 95% quantiles for this metric, and the dashed blue shows where the average hits
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Figure 4.2: Non-integer Ky Fan `-
norm as the convex heuristic for min-
imizing σk
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Figure 4.3: Non-integer Ky Fan `-
norm as the convex heuristic for min-
imizing σk with low-rank solutions
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its minimum. It was observed that for almost all k (even for the k that are not

presented in this figure), the average hits its minimum is some point after l > k,

suggesting that perhaps the best convex heuristic for minimizing σk in this class

(by s`) is achieved at a ` > k.

We have tested our heuristic on random matrices where the solutions would

almost never be rank deficient. However it is interesting to see how this heuristic

compares to nuclear norm for rank minimization. We will first show that how our

heuristic and the nuclear norm are related to each other in the following theorem,

and then discuss some experimental lessons when we apply them on a similar class

of problems as in Example 75.

Theorem 76. If X∗`0 is a minimizer of (4.4) with rank ≤ d`0e − 1, for some `0 ∈

[1, n], then it also minimizes (4.4) for any ` ≥ `0, i.e.: if σd`0e(X
∗
`0

) = 0 then s`(X
∗
` ) =

s`(X
∗
`0

).

Proof. Proof is done by contradiction. Since X∗` is a minimizer of s`(·), the conclu-

sion can be false only if s`(X
∗
` ) < s`(X

∗
`0

), for which we show that some singular

value must be negative, which achieves the desired contradiction. This condition

can be equivalently written as:

s`0(X∗` ) + s`(X
∗
` )− s`0(X∗` ) < s`(X

∗
`0

) = s`0(X∗`0) (4.7)

where the equality follows as σd`0e(X
∗
`0

) = 0 and thus σk(X
∗
`0

) = 0 for all k ≥ d`0e,

which by definition results in s`(X
∗
`0

) = s`0(X∗`0) for all ` ≥ `0. Also, since X∗`0 is a
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minimizer of s`0(·), we have that s`0(X∗` ) ≥ s`0(X∗`0) for all `, and thus (4.7) becomes

true only if s`(X
∗
` ) − s`0(X∗` ) < 0, meaning that some σk must be negative in the

accumulative sum. This achieves the contradiction.

Remark 77. Theorem 76 suggests that there is no loss in considering the convex

heuristic of nuclear norm (` = n) compared to the cases where ` < n when we have

a low rank solution (of rank ≤ d`0e − 1 for some `0 < n). However this is not the

case in Example 75, where the solutions were almost always full rank.

In the next example we consider cases where the solution could be low rank

and inspect our heuristic on this class also.

Example 78. We again fix m = n = 20, and consider 50 instances of (4.6).

In each of these instances a random X0 with rank 10 is generated first, then I is

randomly selected and we set Bij = (X0)ij for all (i, j) ∈ I, then X and X̄ are

uniformly generated in a way that X0 (the rank 10 matrix) remains a feasible point.

We again vary ` and look at the kth singular value of the solution of (4.6). We

then further decrease σk(X
∗
` ) with a subgradient based method. We take X∗` as our

starting point, and do descent step along the subgradient of σk for each `. The

subgradient is straightforward to derive when all the singular values are distinct,

however more technical considerations would be needed when this would not be the

case. See [52, 53] for a detailed derivation of the subgradient of the k-th singular

value. Results for k = 4, 7, and 16 are provided in Figures 4.3(a), 4.3(b), and 4.3(c).

The vertical dashed black line indicates where ` = k, the blue is the average

of σk(X
∗
` ) −min` σk(X

∗
` ) across 50 samples, the red line shows the average further
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enhancement resulted from applying the subgradient based method on each of the

samples, the dashed magenta lines show the 5% and 95% quantiles for the red line,

the dashed blue shows where the blue hits its minimum, and the dashed red shows

where the red hits its minimum. The observation that both the minimum of the

convex heuristic and its enhanced version (by subgradient method) would happen for

some ` > k was widespread. It can also be seen that when k = 16 the solution,

up to numerical errors, would remain the same after some point (see Remark 77),

meaning that for rank-deficient solutions nuclear norm would still recover as good

as the suggested heuristic in this chapter. The solution obtained from the nuclear

norm is displayed in the figures where ` = n = 20.

Our heuristic for minimizing the k-th singular value results in an upper bound

for the global minimizer, and we want to have optimality certificates on how good

these upper bounds will be. In the following section we will discuss methods for

obtaining such lower bounds.

4.4 Lower Bounds

We will derive lower bounds for the global minimizer of the k-th singular value

in this section. In Section 4.4.1, we review Sum of Squares techniques for obtaining

lower bounds on problem that could be formulated as polynomial optimization. In

each of the subsequent subsections we formulate the k-th singular value as a differ-

ent polynomial optimization problem which can then be used in conjunction with

SOS techniques in Section 4.4.1 to obtain lower bounds. We use a factorization
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of positive semidefinite matrices to derive a polynomial optimization problem in

Section 4.4.2, then we lay out an alternative form with fewer constraints of higher

degrees in Section 4.4.3. Finally we utilize the Courant-Fischer variational formu-

lation of singular values to obtain another form which would require less resources

for implementation. Properties related to each of these specific formulations are

discussed where appropriate.

In the remainder of this section we directly address problem (4.1) with the

assumption that fi(X) and hj(X) would all be polynomials in X, however we no

longer require that they would be convex or affine.

4.4.1 Sum-of-Squares

We will first give a brief overview of polynomial optimization problems, and

then review some related results that we will use later in this section. The materials

in this subsection are mostly adopted from [57].

Definition 79 (Polynomial Optimization Problem). Given real-valued polynomi-

als p(x), g1(x), · · · , gr(x) all from Rn to R, the following optimization problem is

called a Polynomial Optimization (P.O.) problem:

p∗K , min
x∈K

p(x), (4.8)

with variable x ∈ Rn, and where the set K ⊆ Rn is defined by polynomial inequalities

as K , {x ∈ Rn | gi(x) ≥ 0, for i = 1, · · · , r}.
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Remark 80. The equality constraint h(x) = 0 can be expressed by two inequality

constraints h(x) ≥ 0, and (−h(x)) ≥ 0.

Furthermore, define the sum of squares polynomials as:

Definition 81 (Sum-of-Squares). A real-valued polynomial p(x) : Rn → R is called

Sum-of-Squares (SOS), if it can be written as:

p(x) =
ĩ∑
i=1

(pi(x))2 ,

for some ĩ ∈ N, and where pi(x) : Rn → R are all polynomials in x for i = 1, · · · , ĩ.

We would like to derive lower bounds on one particular instance of such P.O.

problems. This could be achieved if the set K satisfies the following assumption:

Assumption 82 ([57, Assumption 4.1]). The set K is compact and there exists a

real-valued polynomial u(x) : Rn → R such that the set {x ∈ Rn | u(x) ≥ 0} is

compact, and:

u(x) = u0(x) +
r∑

k=1

gi(x)ui(x), for all x ∈ Rn,

where ui(x) are all SOS polynomials for i = 0, · · · , r.

Remark 83. One way to ensure that this assumption holds is that the variable x

would be bounded, i.e., it would be known that the solution of (4.8) would lie in

some bounded region ‖x‖2
2 ≤ a. In this case, one can add an inequality con-

straint gr+1(x) ≥ 0, with gr+1(x) = a − ‖x‖2
2, to the set K, and take ui(x) = 1,

if i = r + 1, and 0 otherwise.
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It can then be proved that with this assumption one could obtain a sequence of

finite dimensional Semidefinite Programs (SDP) that would converge to the optimum

value p∗K from below. This is stated in the following theorem:

Theorem 84 ([57, Theorem 4.2] ). Let p(x), p∗K, and the set K be given as in

Definition 79. Assume that K is a compact set that satisfies Assumption 82, then

there exists a sequence of finite dimensional SDP indexed by their order N , denoted

by QN
K, that converges to the optimal value p∗K from below, i.e.:

inf QN
K ↑ p∗K , as N →∞.

4.4.2 Lower Bound via Factorization

In this section we will utilize the factorization of the semidefinite matrices to

transfer problem (4.1) into a polynomial optimization problem.

We will use the following lemma:

Lemma 85. Given a matrix X ∈ Rm×n with nonzero singular values σ1(X) ≥ · · · ≥

σn(X), for any k ∈ {1, · · · , n} we have that:

σk(X) = min
R∈Rm×n

rank(R)=k−1

‖X −R‖2.

Proof. See, for example [58, Eq. (5.12.10), p. 417].

We can further replace rank(R) = k − 1 constraint with rank(R) ≤ k − 1

and at the same time extend the result to allow for zero singular values as in the
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following corollary:

Corollary 86. Given a matrix X ∈ Cm×n we have that:

σk(X) = min
R∈Cm×n

rank(R)≤k−1

‖X −R‖2.

Proof. Let UXΣXV
∗
X denote a SVD of X, then a solution of the optimization problem

in Lemma 85 would be achieved by taking

R = UX diag(σ1(X), · · · , σk−1(X), 0, · · · , 0)V ∗X ,

even if rank(X) < n. Any solution with the strict constraint rank(R) < k − 1

would imply σk−1(R∗) = 0. This would render the minimum value to be equal

to σk−1(X) ≥ σk(X), meaning that the aforementioned R would still be an optimal

solution.

By combining the above corollary with the SDP representation of the matrix 2-

norm, we would have:
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Theorem 87. The optimization problem (4.1) is equivalent to the following:

minimize τ

subject to fi(X) ≤ 0 i = 1, · · · , ī

hj(X) = 0 j = 1, · · · , j̄

R = UV τI X −R

(X −R)∗ τI

 � 0,

with variables τ ∈ R, X ∈ Cm×n, R ∈ Cm×n, U ∈ Cm×(k−1), V ∈ C(k−1)×n.

Proof. Constraint rank(R) ≤ k − 1 is equivalent to R = UV where U has k − 1

columns and V has k− 1 rows. Then the result follows from SDP representation of

the 2-norm.

We can insert R = UV into the optimization problem and factorize the

semidefinite constraint as what follows to derive a polynomial optimization problem:

Corollary 88. The optimization problem (4.1) is equivalent to the following:

minimize τ

subject to fi(X) ≤ 0 i = 1, · · · , ī

hj(X) = 0 j = 1, · · · , j̄ τI X − UV

(X − UV )T τI

 = GTG,

with variables τ ∈ R, X ∈ Cm×n, U ∈ Cm×(k−1), V ∈ C(k−1)×n, G ∈ C(m+n)×(m+n).

138



Remark 89. The minimization problem in Corollary 88 is a polynomial optimiza-

tion problem with (m+n)2 + (k− 1)(m+n) +mn+ 1 variables and (m+n)2 + ī+ j̄

constraints, or equivalently 2 ((m+ n)2 + (k − 1)(m+ n) +mn) + 1 real variables

and 2(m + n)2 + ī + j̄ real constraints. Furthermore each of the constraints (aside

from fi(X) ≤ 0 and hj(X) = 0) is of degree two.

The SOS technique in Section 4.4.1 can now be applied to derive a lower

bound for this polynomial optimization problem, however due to the large number

of variables and constraints, we will consider an alternative form which give us fewer

variables and constraints but of higher degrees in the following section.

4.4.3 Lower Bound via Leading Principle Minors

We will form an alternative formulation with fewer variables and constraints in

this section. This form will only replace the semidefinite factorization in Corollary 88

with a constraint on the leading principle minors, which we define below.

Definition 90 (Leading Principle Minors). Given a square matrix A ∈ Rn×n, the

leading principle minors of A are the determinants of the d×d sub-matrices obtained

from only considering the first d rows and columns of A, where d ∈ {1, · · · , n}. We

denote them by gd(A):

gd(A) , det

[Id 0

]
A

Id
0


 ,

for d ∈ {1, · · · , n}.
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Positive definiteness of a matrix can be equivalently stated in terms of its

leading principle minors:

Lemma 91. Given a symmetric matrix A ∈ Rn×n, we have that A � 0 if and only

if each of the n leading principle minors of A are strictly positive.

Proof. See, for example [59, Theorem 3, p. 306], or [60, Sylvester’s Criterion]

Remark 92. It is noteworthy that although checking for positive definiteness of

a matrix is equivalent to n leading principle minors being positive, checking if a

matrix is positive semidefinite requires that all the principle minors would be non-

negative [59, Theorem 4, p. 307]. There are 2n − 2 principle minors of A.

Although it is possible to derive an exact equivalent to the optimization prob-

lem in Theorem 87 by principle minors, due to excessive exponential number of

resulting constraints we will derive an approximate one based on leading princi-

ple minors by first tightening the positive semidefinite constraint in Theorem 87 to

the positive definiteness, and then using Lemma 91 to derive an approximate lower

bound with fewer constraints and variables in the following corollary.

Corollary 93. The optimization problem in Theorem 87 when replacing the posi-

tive semidefinite constraint with positive definite constraint, and when X is real is
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equivalent to:

minimize τ

subject to fi(X) ≤ 0 i = 1, · · · , ī

hj(X) = 0 j = 1, · · · , j̄

gd


 τI X − UV

(X − UV )T τI


 > 0 for d = 1, · · · ,m+ n,

with variables τ ∈ R, X ∈ Rm×n, U ∈ Rm×(k−1), V ∈ R(k−1)×n.

Proof. The corollary is a direct consequence of Lemma 91

Remark 94. The only approximation in Corollary 93 compared to the exact for-

mulation in Corollary 88 is due to tightening the semidefinite constraint, which is

possible as long the feasible set of Corollary 93 is not empty. The minimization prob-

lem in Corollary 93 is a polynomial optimization problem with (k−1)(m+n)+mn+1

variables and m + n + ī + j̄ constraints. These constraints (aside from fi(X) ≤ 0

and hj(X) = 0) are of degree m+ n at most.

4.4.4 Lower Bound by Sampling from Courant-Fischer

We will first review the Courant-Fischer variational formulation of the singular

values, and will transform this formulation into a polynomial program by rewriting

some of the constraints. To this end, given a Hermitian matrix M , and a non-

zero vector v with compatible dimension, define the Rayleigh quotient , denoted
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by R (M, v), as:

R (M, v) ,
v∗Mv

v∗v
.

The next theorem reviews the Courant-Fischer formulation of the singular

values, and is adopted to the notation used in this chapter.

Theorem 95 (Courant-Fischer). Given a matrix X ∈ Cm×n the following relations

hold:

σ2
k(X) = min

v1,v2,··· ,vk−1∈Cn
max

v 6=0,v∈Cn,
v⊥v1,··· ,vk−1

R (X∗X, v) (4.9)

σ2
k(X) = max

v1,v2,··· ,vn−k∈Cn
min

v 6=0,v∈Cn,
v⊥v1,··· ,vn−k

R (X∗X, v) . (4.10)

Proof. The proof is a direct consequence of [61, Theorem, 4.2.11, p. 179] when

considering that X∗X is an n×n Hermitian matrix (and thus with real eigenvalues),

for which we have that λk(X
∗X) = σ2

k(X).

Remark 96 (Rayleigh-Ritz). This theorem extends Rayleigh-Ritz theorem on the

largest and smallest eigenvalues of a Hermitian matrix [61, Theorem 4.2.2, p. 176],

which states that for a Hermitian matrix M ∈ Cn×n, with eigenvalues λ1(M) ≥

· · · ≥ λn(M), we have that:

λmax(M) = λ1(M) = max
v∈Cn

R (M, v) ,

λmin(M) = λn(M) = min
v∈Cn

R (M, v) .

We can equivalently write (4.9) and (4.10) using rank constraints on the con-

sidered subspaces:
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Corollary 97. Given a matrix X ∈ Cm×n we have:

σ2
k(X) = min

V ∈C(k−1)×n,
rank(V )=k−1

max
v∈Cn,
V v=0
v∗v=1

v∗X∗Xv (4.11)

σ2
k(X) = max

V ∈C(n−k)×n,
rank(V )=n−k

min
v∈Cn,
V v=0
v∗v=1

v∗X∗Xv. (4.12)

Proof. It is straightforward to replace the Rayleigh quotient with only its numerator,

while enforcing the denominator to be equal to one, as any non-zero v can be scaled

to have unit norm. For the min-max formulation of (4.9), we can gather v1, · · · , vk−1

in a (k − 1) × n matrix as V =

[
v1 · · · vk−1

]T
. Then, the minimum would be

achieved when all the v1, · · · , vk−1 are independent of one another so as to make the

feasible set for the v in the max part as small as possible, which is equivalent to the

constraint rank(V ) = k − 1. Similar reasoning applies to the max-min formulation.

We would further relax (4.11) and (4.12) by considering finite samples of the

rank-constrained subspaces in those equations, and show that this would lead to

upper and lower bounds on the singular values. This is illustrated in the following

corollary:

Corollary 98. Suppose that a matrix X ∈ Cm×n is given, Let q ∈ N be the desired

number of the samples from the rank constrained subspaces, i.e., let V̄1, · · · , V̄q be

matrices that are sampled from the subspace specified by the rank constraint in (4.11),

i.e., they are all in C(k−1)×n and have rank k− 1. Then we have the following upper
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bound:

σ2
k(X) ≤ max κ

s.t. κ ≤ v̄∗iX
∗Xv̄i for i = 1, · · · , q

V̄iv̄i = 0 for i = 1, · · · , q

v̄∗i v̄i = 1 for i = 1, · · · , q,

(4.13)

with variables κ ∈ R, and v̄1, · · · , v̄q ∈ Cn. Similarly let V 1, · · · , V q be matrices that

are sampled from the rank constraint in (4.12), that are all in C(n−k)×n and have

rank n− k. Then we have the following lower bound:

σ2
k(X) ≥ min κ

s.t. κ ≥ v∗iX
∗Xvi for i = 1, · · · , q

V ivi = 0 for i = 1, · · · , q

v∗i vi = 1 for i = 1, · · · , q,

(4.14)

with variables κ ∈ R and v1, · · · , vq ∈ Cn.

Proof. The upper-bound in (4.13) is achieved due to the fact that by finite sampling

we are minimizing over a smaller set rather than the rank constrained subspace

in (4.11), and hence the minimum value would increase. Similarly, in (4.14) we are

only considering finite numbers of V 1, · · · , V q, rather than the original subspace

specified by the rank constraint in (4.12), and hence the maximum value would

decrease and we would have a lower bound for σk(X).

We will next utilize this lower bound for the optimization problem (4.1).

Corollary 99. Given a finite number q ∈ N, let V 1, · · · , V q be q rank n−k samples
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from C(n−k)×n, then a lower bound for the optimization problem (4.1) can be obtained

by taking
√
κ from the following polynomial optimization problem:

minimize κ

subject to fi(X) ≤ 0 for i = 1, · · · , ī

hj(X) = 0 for j = 1, · · · , j̄

κ ≥ v∗iX
∗Xvi for i = 1, · · · , q

V ivi = 0 for i = 1, · · · , q

v∗i vi = 1 for i = 1, · · · , q,

with variables κ ∈ R, X ∈ Cm×n, and v1, · · · , vq ∈ Cn.

Remark 100. The tightness of this lower bound would be dependent on the count (q)

and choices of the samples. However, the advantage of this approach compared to the

ones in the previous sections is that the required resources (memory and computation

time) can be implicitly controlled by choosing a moderate q.

4.5 An Equivalent Bilinear Matrix Inequality

We will derive an equivalent BMI to (4.1) in this section, which would be

based on the min-max form in the Courant-Fischer formulation. This BMI is further

subjected to have an orthonormal constraint on one of its variable. To this end we

will equivalently write (4.9) as:

σ2
k(X) = min

Vn−k+1⊆Cn

dim(Vn−k+1)=n−k+1

max
v∈Vn−k+1

v∗v=1

v∗X∗Xv (4.15)
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Which is further equivalent to the form stated in the following corollary:

Corollary 101. Given a matrix X ∈ Cm×n we have:

σ2
k(X) = min

R∈Cn×(n−k+1)

R∗R=I

max
v∈Cn,x∈Cn−k+1

v∗v≤1
v=Rx

v∗X∗Xv (4.16)

Proof. We can represent the n−k+1 dimensional subspaces Vn−k+1 in Cn via range-

spaces of full column rank matrices R ∈ Cn×(n−k+1). Since we are only interested

in the directions specified by this full column rank R, without loss of generality it

can also be assumed that R is orthonormal. It is also straightforward to check that

given any direction v ∈ Cn, the inner maximum would occur at the boundary of the

unit circle, and thus we can replace the v∗v = 1 constraint with v∗v ≤ 1.

We will further insert v = Rx for v in (4.16) to have:

σ2
k(X) = min

R∈Cn×(n−k+1)

R∗R=I

max
x∈Cn−k+1

x∗x≤1

x∗R∗X∗XRx. (4.17)

The inner maximization has a quadratic objective subject to only a single quadratic

constraint, and thus by strong duality [62, Section B.1] we have:

max
x∈Cn−k+1

x∗x≤1

x∗R∗X∗XRx = min
τ∈R, τ≥0

R∗X∗XR�τ2I

τ 2 (4.18)

By combining (4.18), (4.17) and (4.1) we would have the following theorem:
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Theorem 102. Problem (4.1) can be equivalently written as:

minimize τ

subject to fi(X) ≤ 0 for i = 1, · · · , ī

hj(X) = 0 for j = 1, · · · , j̄

R∗R = I τI XR

(XR)∗ τI

 � 0,

(4.19)

with variables τ ∈ R, X ∈ Cm×n, and R ∈ Cn×(n−k+1).

Proof. Insert (4.18) into (4.17). We are interested in σk(X) and not σ2
k(X), hence

noting that τ 2 is a monotonic function of τ , we can replace the objective with τ .

We will further insert this for σk(X) in (4.1) which would give us (4.19).
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Chapter 5: Enhanced ADMM-based Heuristics for Mixed Integer Non-

Linear Programs

We consider problems that are convex except for a vector of discrete variables

in this chapter. One main motivation behind the suggested methods in this chapter

is in regard to the MINLP part involved in the approximation of the decentralized

assignability measure in Chapter 6.

MINLPs are hard problems in general with much interest in finding bounds or

approximate solutions for them. These include linear program (LP) and Semidefi-

nite relaxations (SDP). The LP methods consider a linear relaxation of the integer

variable to obtain a lower bound, and its projection to the discrete space for an

upper-bound, whereas SDP relaxations consider the trace of a rank 1 matrix in-

stead of the terms that involve products of the integer variables [63, 64]. Tighter

relaxations can be obtained by lift-and-project methods, that introduce new auxil-

iary variables to transform the nonlinear integer constraints into a form with linear

constraints in a higher dimension, and then solve the convex problem in the higher

dimension to obtain a lower-bound [65,66]. When there would also be higher degree

non-convex objectives functions or constraints other than the integer constraint,

one can also consider using polynomial optimization methods to obtain such lower-
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bounds [57,67,68]. We are interested in upper-bounds for MINLP problems in this

chapter and refer the reader to the above works for certificates of the optimality.

The so-called relax-and-round algorithm replaces the discrete variable with its

continuous counterpart and solve the obtained convex program to obtain a lower-

bound on the exact optimal value. Projection of this optimal solution onto the

discrete set will then give an upper-bound when the projection satisfies the feasibility

constraints. This projection would simply be a rounding step toward the closest

discrete value in each dimension. It has been suggested in [69] that one can use

the information from the dual problem through Alternating Direction Method of

Multipliers (ADMM) to do several passes of such steps, which will result in a better

upper-bound, which will re-visit in Section 5.2. Although ADMM has been originally

developed for convex problems [70], there has been much recent interest in applying

it to the non-convex problems, with some analysis of convergence available in some

cases [71]. This has led to a broad class of heuristics with great flexibility for

problems that were originally very hard to solve. In particular, the binary quadratic

problems (BQP) has attracted much attention and authors of [69] have demonstrated

their algorithm for this class of problems, which can simply be extended to a more

generalized setting as in [72].

We derive a new class of methods in Section 5.3 as was first done in [73],

whereby the introduction of an auxiliary equality constraint that captures the inner

part of the objective would be the base for the suggested ADMM-based algorithm.

The algorithm finds the best discrete variable in each step by checking the captured

part values at the discrete values (rather than rounding). When the effect of the
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discrete variable can be decoupled in the inner function, the best discrete value at

each step can be obtained through a linear number of function evaluations in the

dimension of the discrete variable, versus an exponential number that corresponds

to the exhaustive search. This has shown significant improvements when the ob-

jective is not necessarily symmetrical around its optimal point, and when a certain

separability condition is met. We will discuss when and how this could capture the

effect of the discrete variables better in Section 5.3.1.

It is still possible to capture these improvements even when this separability

condition is not met and the discrete variable enters through a coupling matrix.

We will explore various hybrid methods that decouple the discrete variables approx-

imately while preserving the same linear per-iteration complexity for the discrete

variable update in Section 5.4. Numerical comparisons have indicated that one class

of such hybrid algorithms that only linearizes the effect of the non-dominant part

of the coupling matrix exhibits clear improvements in performance.

5.1 Problem Formulation

We formulate the problem of interest of this chapter in this section. We con-

sider objectives that have mixed discrete and continuous parts and then discuss the

generalizations and constraints wherever applicable.

Consider the following optimization problem:

minimize f(g(x, z)), (5.1)
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with variables x ∈ Rn and z ∈ Z(m). Throughout the rest of this chapter, the inner

function g(·, ·) is from Rn×Z(m) to Rp. The extended function f(·) is from Rp to R̄

and is assumed to be convex in its variable.

Even without any further constraints, and even if f ◦ g is convex, this would

typically be a hard problem due to the presence of the discrete variable z.

Assumption 103. We will assume that g(·, ·) is affine in its variables, i.e.,:

g(x, z) = Az +Bx+ b. (5.2)

Remark 104 (affine g). It is important to mentioned that this assumption does not

have to be this restrictives, and could be extended to include a more generalized class

of functions.

Remark 105 (constraints). All the methods that we will develop, with exception of

the Direct Evaluation method (Method 6), allow incorporating equality and inequal-

ity constraints in a modestly straightforward fashion. However, in order to avoid

illustrating the main concepts with heavy notations, we will not include them in this

chapter.

5.2 A Round-off Based Algorithm

We will reformulate a class of relax-and-round heuristics for mixed integer non-

linear programs in this section. We will then discuss how introduction a new axillary

variable could result in a set of different ADMM-based algorithms that could show
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significant improvements later.

We can rewrite the optimization problem (5.1) with an extra constraint such

that instead of having the discrete variable in the objective, we will have it in the

constraints:

minimize f(g(x, y))

subject to y = z,

(5.3)

with variables x ∈ Rn, y ∈ Rm and z ∈ Z(m).

The augmented Lagrangian for this problem, for any parameter ρ > 0, can be

written as:

LR
ρ (x, y, z, ν) = f(g(x, y)) + νT (y − z) +

ρ

2
‖y − z‖2

2,

which with some basic rearrangement of the term and a change of variable µ = (1/ρ)ν

can be equivalently written as:

LR
ρ (x, y, z, µ) = f(g(x, y)) +

ρ

2
‖y − z + µ‖2

2 −
ρ

2
‖µ‖2

2.

The resulting ADMM algorithm based on this augmented Lagrangian would then

consist of joint optimization over the variables (x, y), projecting onto the discrete

set Z(m), and the dual update:
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Method 5 (Relax-and-Round).

(x(k+1), y(k+1)) = arg min
x∈Rn

y∈Rm

LR
ρ (x, y, z(k), µ(k))

z(k+1) = ΠZ(m)

(
y(k+1) + µ(k)

)
µ(k+1) = µ(k) + y(k+1) − z(k+1).

The second and third steps of the ADMM are straightforward, and the first

step requires convexity of f(g(x, y)) in (x, y), which in turn could be guaranteed by

the Assumption 103.

This heuristic was considered for the binary quadratic problems in [69], and

generalized to allow for some other kinds of mixed integer non-linear programs

in [72]. The objective of [69] has the form:

f(v) = 1/2 vTPv + qTv, (5.4)

with positive semidefinite P . This can be matched to (5.3) by choosing:

g(x, z) = z, (5.5)

which indicates that there is no continuous variable. Also it is noteworthy that

considering another affine function for g(x, z) other than the one mentioned above,

such as g(x, z) = Az + b, would be in effect the same as a new quadratic function

with P being changed to ATPA, and q to AT q+ATPb, while still having g(x, z) = z.
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Although this suggests that considering the composition of functions in (5.3) might

not be fundamentally different in the quadratic case as it would yield another similar

quadratic function, this is not what one would generally observe in non-quadratic

cases. We will describe this aspect in the next section.

5.3 Separable Binary Variables

We will describe the auxiliary variable introduction in this section. We will

first lay out the modification to the ADMM algorithm when the A matrix has only

one non-zero element in each of its rows and describe its advantages for this special

case in Section 5.3.1, and then consider different generalizations and compare them

in later sections.

We will begin by putting a different assumption on the function g(·, ·). This

assumption is more restrictive than Assumption 103 in the sense that it requires

partial separability over the discrete variable, Particularly we will require that each

element of g would depend on at most one discrete variable:

Assumption 106. Throughout the rest of this section (and only this section) we

will assume that g satisfies Assumption 103 and is such that each gi depend only

on a single discrete variable, i.e., for all i ∈ {1, · · · , p} there exists a single `i ∈

{1, · · · ,m} such that gi(x, z) = g̃i(x, z`i), for some g̃i : Rn × Z`i 7→ R, and for

all x ∈ Rn and z ∈ Z(m).

Remark 107. In matrix form, Assumption 106 can be equivalently written as
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g(x, z) = Dz +Bx+ b, where D ∈ Rp×m is such that:

Dij 6= 0 =⇒ j = `i. (5.6)

With this assumption in place, we will consider the ADMM algorithm that

will be based on the following equivalent form of (5.1):

minimize f(v)

subject to v = g(x, z),

(5.7)

with variables x ∈ Rn, v ∈ Rp and z ∈ Z(m).

The augmented Lagrangian for this problem can be written as:

LD
ρ (x, v, z, µ) = f(v) +

ρ

2
‖v − g(x, z) + µ‖2

2 −
ρ

2
‖µ‖2

2,

for which the ADMM algorithm would be:

Method 6 (Direct Evaluation).

(x(k+1), v(k+1)) = arg min
x∈Rn

v∈Rp

LD
ρ (x, v, z(k), µ(k))

z(k+1) = arg min
z∈Z(m)

‖v(k+1) − g(x(k+1), z) + µ(k)‖2
2

µ(k+1) =µ(k) + v(k+1) − g(x(k+1), z(k+1)).

The first step of this algorithm would be a convex minimization step due to

the convexity of f(·) and Assumption 103. The second step is the origin of the
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difference from the Relax-and-Round Method 5. In particular, this step would not

correspond to a similar projection as in the Relax-and-Round method, yet it would

remain computationally tractable due to the dependency of g on a single discrete

variable (Assumption 106). This is explicitly stated in the following theorem:

Theorem 108. Given a function g that satisfies Assumption 106, the optimal z in

Method 6 (Direct Evaluation) can be equivalently obtained by independently solving

for each of the discrete variables, i.e., for all j ∈ {1, · · · ,m} we have that:

zj
(k+1) = arg min

zj∈Zj

∑
{i | `i=j}

(
vi

(k+1) − g̃i(x(k+1), zj) + µi
(k)
)2

. (5.8)

Proof. We have that:

z(k+1) = arg min
z∈Z(m)

LD
ρ (x(k+1), v(k+1), z, µ(k))

= arg min
z∈Z(m)

‖v(k+1) − g(x(k+1), z) + µ(k)‖2
2

= arg min
z∈Z(m)

p∑
i=1

(
vi

(k+1) − gi(x(k+1), z) + µi
(k)
)2

= arg min
z∈Z(m)

p∑
i=1

(
vi

(k+1) − g̃i(x(k+1), z`i) + µi
(k)
)2

= arg min
z∈Z(m)

m∑
j=1

∑
{i | `i=j}

(
vi

(k+1) − g̃i(x(k+1), z`i) + µi
(k)
)2

=⇒

zj
(k+1) = arg min

zj∈Zj

∑
{i | `i=j}

(
vi

(k+1) − g̃i(x(k+1), zj) + µi
(k)
)2

,

where the second equality follows because that is the only term involving the discrete

variable z, the third is due to the fact that ‖·‖2
2 also separates in its elements, the
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forth is due to Assumption 106, and the fifth is an equivalent representation of the

sum from i = 1 to p.

This alternative approach makes the computation of z-update minimization

a tractable one whenever Assumption 106 is in place. This is described in more

details in the following remark:

Remark 109 (Per-iteration complexity). The z-update in the Direct Evaluation

method (Method 6) requires |Z(m)| = |Z1| × · · · × |Zm| function evaluations (for

instance, 2m in the binary case), whereas when Assumption 106 is satisfied, solving

for z by (5.8) only requires
∑m

j=1|Zj| function evaluations (for instance, 2m in

the binary case). This alternative step has linear complexity, and is comparable in

complexity to the projection step in Method 5.

Remark 110 (Matrix variables). This can be easily generalized to handle matrix

variables by replacing the 2-norm with the Frobenius norm, which corresponds to the

standard inner product in the matrix spaces.

5.3.1 Discussions

We will provide more intuitions on the suggested modifications to the ADMM-

based algorithm described above in this section.

In the Relax-and-Round method (Method 5), the discrete variable is replaced

by a continuous one, and the solution of the primal optimization step that is solved

with these continuous variables is then projected onto the discrete set in the hope

that this projection would still minimize f(g(x(k+1), z)) for the discrete variable z,
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which might be not the case in general. The quadratic objective (5.4) is symmetrical

around its optimal point in each of the directions, and thus the projection would

be a best choice when one requires separability in the z-update. In other words, as

illustrated in Figure 5.1(a), when we keep all the variables fixed except for a single

one-dimensional discrete variable, the discrete value (0 or 1 in here) that minimizes

a quadratic function is indeed the one closest to its critical point (0.4 here).

0 0.4 0.5 1

•

•

•

(a) Quadratic

0 0.4 0.5 1

•
•

•

(b) Logarithmic

Figure 5.1: Comparing relax-and-round and Direct Evaluation in a single dimension
for different convex functions

However, as illustrated in Figure 5.1(b), this special property might not be

in place for a wide variety of convex functions such as piecewise linear, sum of

logarithmics or sum of exponential functions. The proposed ADMM-based method

also separates in the z-update, and compared to rounding the solution of the relaxed

problem, it will actually plug in the binary values and picks the best among them,

making it more likely that it would be a better choice for non-quadratic functions.

This would be further investigated through numerical examples in the next section.

5.3.2 Numerical Examples

We will investigate the Relax-and-Round (Method 5) and Direct Evaluation

(Method 6) for random instances of a problem with fixed dimensions, and compare
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the run-time and the value that each algorithm obtains in our the following example:

Example 111. Consider the optimization problem (5.1) with a single continuous

variable (n = 1) and where the discrete variables are all in the binary space (Zi = B,

for i = 1. · · · ,m), i.e., x ∈ R and z ∈ Bm. Let g(·, ·) be given as:

g(x, z) = Dz + b+ 1x, (5.9)

where D is a diagonal matrix in Rm×m, b ∈ Rm and 1 is a vector of all ones of

compatible dimension. Let p = m and also take f(·) as:

f(v) =
m∑
i=1

−a1 log(a0vi + c1)− a2 log(−a0vi + c2), (5.10)

where a0, a1, a2, c1, and c2 are all positive real numbers, and c1 and c2 are such

that [0, 1] is in the domain. This function is convex in its domain and resembles

the one illustrated in Figure 5.1(b). In this example we consider two cases of m =

10 and m = 100, for each we generate 20 instances of (5.9) with random b and

diagonal D of compatible dimension, and solve the optimization problem (5.1) by

Methods 5 and 6, with ρ being fixed to 0.5.

Figure 5.2 shows the optimal value obtained from the Relax-and-Round method

versus the Direct Evaluation for m = 10 and 100. The x-axis corresponds to the

Relax-and-Round method and the y-axis is for the Direct Evaluation. The blue dots

indicate when Direct Evaluation was faster and the red dots indicate when the Relax-

and-Round was faster. Each dot below the y = x solid line means that the Di-
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rect Evaluation has obtained a lesser value. This means that the Direct Evaluation

method has shown better performance in the 20 considered samples when m = 100,

and mostly when m = 10.
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Figure 5.2: Comparison of the optimal values

Next, we plot the computation time required to get to these values in Figure 5.3.

Similar to the previous figure, every point below the y = x line indicates that the

Direct Evaluation has taken less time. Iteration counts that each of the methods take

to get to these points are also illustrated in Figure 5.4.
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(b) For m = 100

Figure 5.3: Comparison of the computational time (in seconds)

We will now inspect how these two methods compare to the exact solution.
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Figure 5.4: Iterations to the optimal point

When m = 10, the problem is small enough that we can find the exact solution by

exhaustive search over 210 instances of (5.1) with fixed z in each instance. Name

the optimal binary solution that corresponds to the exact exhaustive search by z(ex),

the one that corresponds to the Relax-and-Round method by z(round), and the one

that corresponds to the Direct Evaluation method by z(direct). How much these bi-

nary values differ is illustrated in Figure 5.5, where the x-axis denotes the sam-

ple index, the blue dots show on how many elements z(ex) and z(direct) are differ-

ent (‖z(direct) − z(ex)‖1), and the red dots show the same for z(round), i.e., ‖z(round)−

z(ex)‖1. As illustrated in Figure 5.5, Direct Evaluation Method 6 has recovered closer

discrete variables to the exact solution in most cases, although it might happen that

in a few cases Relax-and-Round would be better (as in sample 2).

In the next example we will vary the problem size and inspect how the two

methods compare.

Sum-of-Logs f : We consider the optimization problem (5.1) again, and
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Figure 5.5: Comparison to the exact solution when m = 10

take f(·) and g(·, ·) as (5.10) and (5.9). In this example, we will vary m from 5

to 100. For each m, we will generate 20 instances of (5.9) with random b and di-

agonal D of compatible dimension, and then plot the optimal value, computational

time, and the iterations to the optimal point.

Figure 5.6 plots the the difference of the optimal value obtained by Relax-

and-Round Method 5 from the Direct Evaluation Method 6. The minimum of this

difference (purple line) is almost always positive, except for 39 times out of all 1920

simulations (2%). This indicates that the Direct Evaluation has mostly performed

better for the considered functions, which satisfy Assumption 106. The black line

denotes the average, the solid green denotes the median, whereas the dashed greens

denote the 5% and 95% percentiles for this difference.

Figures 5.7(a) and 5.7(b) compare the computational time and iteration count

required for each of these methods to reach the optimal point. As shown in these

figures, the Direct Evaluation exhibits better performance on average. Also, the

number of iterations required to get to a local solution decreases for the Direct

Evaluation as the problem size gets bigger. This could be the case as the effect of
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Figure 5.6: Various statistics for the difference of the optimal values

the single continuous variable x decreases as the dimension of the problem increases,

and hence the initial iterations that directly solve for the binary variables would be

more crucial as m increases.
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Figure 5.7: Time and iterations required to obtain a local solution

Finally we compare the exact solution to the these two methods. This was

only an option when the problem size was small enough (m < 15). We see that, as

illustrated in Figure 5.8, Direct Evaluation solutions are closer to the exact value.
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Figure 5.8: Comparison to the exact solution for 5 ≤ m ≤ 14

5.4 Presence of a Mixing Matrix

We will discuss generalization of the Direct Evaluation Method 6 for cases

when Assumption 106 is not met in this section. It is obvious that mixing the discrete

variables as in Az for a general A does not allow one to separately solve the z−update

for different discrete variables. Similar scenario arises even in the convex cases where

one already has a proximal operator that finds the argmin of h(w) + ρ
2
‖y−w‖2

2 with

continuous variable w for some convex function h, and wants to approximate the

proximal operator to find the argmin of h(w) + ρ
2
‖y − Aw‖2

2. We will benefit from

existing suggested ideas [74, 75] that address approximation of proximal operators

in presence of a mixing matrix, and adopt them to our problem in Section 5.4.1.

This full linearization decouples the effect of the discrete variable even more than

what we actually need to preserve the linear per-iteration complexity. Hence, we

decompose the coupling matrix into its dominant and non-dominant part and only

partially linearize the non-dominant part using a less conservative hybrid approach

up to the extent that the linear per-iteration complexity would still be achievable
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in Section 5.4.2. This method has shown significant improvements in comparison

to the other approaches, and to the Relax-and-Round Method 5 in presence of a

mixing matrix when the mixing matrix exhibits a mild degree of diagonal dominance.

Finally, we will also consider another hybrid approach that applies the relax-and-

round algorithm only to the non-dominant part of the coupling matrix, while directly

solves the dominant part in Section 5.4.3.

5.4.1 Full Linearization

We will focus on linearizing the effect of the mixing matrix in this section.

This approach was first suggested to facilitate approximation of the proximal op-

erators where one wants to obtain the proximal of h(w) + ρ
2
‖y − Aw‖2

2 when A is

not necessarily the identity matrix. More precisely, we will linearize the augmented

Lagrangian around the most recent point [75]. This method, also known as Breg-

manized Operator Splitting (BOS) [74,76], decouples the effect of the A matrix and

allows that the same proximal operator (in absence of A) be applied to obtain an

approximate solution in presence of a general A.

Through the rest of this chapter we will assume that g only satisfies As-

sumption 103, i.e., g(x, z) = Az + Bx + b with a general A. We will adopt the

same idea to linearize the augmented Lagrangian LD
ρ (x(k+1), v(k+1), z, µ(k)) for prob-

lem (5.7) around the point z(k) to facilitate obtaining an approximate solution for

the z−update that will have the same desirable separability property (as in Re-
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mark 109). To this end, for a parameter α > 0 define:

LFL,z(k)

ρ (x(k+1), v(k+1), z, µ(k)) ,

−ρ
(
AT
(
v(k+1) − g(x(k+1), z(k)) + µ(k)

))T
z + α

2
‖z − z(k)‖2

2 + c1,

where the quadratic term (α
2
‖z − z(k)‖2

2) has been added to preserve the strong

convexity, and c1 captures all the constant terms that do not depend on the opti-

mization variable z. With addition of some constants, this could be equivalently

written as:

LFL,z(k)

ρ (x(k+1), v(k+1), z, µ(k)) = c2 +

α
2
‖z − z(k) − ρ

α
AT
(
v(k+1) − g(x(k+1), z(k)) + µ(k)

)
‖2

2,

(5.11)

where c2 captures all the constant terms that do not depend on the optimization

variable z.

It is important to note that this linearized version only replaces the aug-

mented Lagrangian in the z-update, and the first step uses a standard augmented

Lagrangian, this is illustrated in the following method.

Method 7 (Fully Linearized).

(x(k+1), v(k+1)) = arg min
x∈Rn

v∈Rp

LD
ρ (x, v, z(k), µ(k))

z(k+1) = arg min
z∈Z(m)

LFL,z(k)

ρ

(
x(k+1), v(k+1), z, µ(k)

)
µ(k+1) = µ(k) + v(k+1) − g(x(k+1), z(k+1)).

It is clear that the z-update step in Method 7 also separated for different
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discrete variables, i.e.:

z
(k+1)
j = ΠZj

(
z

(k)
j +

ρ

α

[
AT
(
v(k+1) − g(x(k+1), z(k)) + µ(k)

)]
j

)
,

for j ∈ {1, · · · ,m}. This has the same per-iteration complexity as the Direct Eval-

uation (Method 6).

The full linearizion of the augmented Lagrangian, in summary, yields a quadratic

term of the form ‖z−z̄‖2
2, where the z̄ denotes the constant terms that do not depen-

dent on z. This is more conservative than what we can actually solve, and as illus-

trated in Section 6, we can solve the z-update while preserving linear per-iteration

complexity even in presence of a more generalized quadratic term as in ‖Dz − z̄‖2
2,

where D satisfies Assumption 106. Thus we consider a less conservative approach

that will exploit this capability in the next two section.

5.4.2 Partial Linearization

We want to approximate the augmented Lagrangian for the z-update up to

the extent that we can actually solve the resulting form with linear per-iteration

complexity. We will consider a hybrid approach between the Direct Evaluation

(Method 6) and Full Linearization (Method 7), for a general A in this section.

We want to separate the effect of the A matrix by decomposing it into two

components, where the first component captures the most dominant element in each

row, and the second component captures the rest. To this end, let A = UΣV T be

a singular value decomposition for A with UTU = V TV = I, and define S , ΣV T .
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For each row i ∈ {1, · · · , p}, let

`i = arg max
j∈{1,··· ,m}

|Sij|

denote the index of the maximum-size element in i-th row of S. With a slight abuse

of notation, we will assume that `i remains a singleton set for each i, i.e., whenever

multiple elements in a row correspond to the maximum size in that row, we will

pick and fix `i to point to a single one of them. Let D ∈ Rp×m denote the dominant

part of S and define it as:

Dij ,


Sij j = `i

0 otherwise,

and let D̃ = S −D. Similarly, let AD , UD and AD̃ , UD̃ = A− AD.

The following theorem will utilize this decomposition to rewrite the augmented

Lagrangian (when only Assumption 103 is in place) in a form that allows us to

perform partial linearization only for needed part.

Theorem 112. The augmented Lagrangian LD
ρ (x(k+1), v(k+1), z, µ(k)) for problem (5.7)

can be equivalently written as:

LD
ρ (x(k+1), v(k+1), z, µ(k))=ρ

2

(
‖q̄(k)

PL −Dz‖2
2 − 2(D̃T q̄

(k)
PL)T z + zT D̃T (D̃ + 2D)z

)
+ c4,

(5.12)

where q̄
(k)
PL , UT

(
v(k+1) − (Bx(k+1) + b) + µ(k)

)
, and c4 captures the terms that do
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not depend on the variable z.

Proof. We can write:

LD
ρ (x(k+1), v(k+1), z, µ(k)) = ρ

2
‖v(k+1) − g(x(k+1), z) + µ(k)‖2

2 + c3

= ρ
2
‖v(k+1) − (Az +Bx(k+1) + b) + µ(k)‖2

2 + c3

= ρ
2
‖w̄(k)

PL − Az‖2
2 + c3

= ρ
2
‖w̄(k)

PL − ADz − AD̃z‖2
2 + c3

= ρ
2
‖q̄(k)

PL −Dz − D̃z‖2
2 + c3

where the first and second equalities follow due to the definition. The third follows

by rearranging the terms and defining w̄
(k)
PL , v(k+1)− (Bx(k+1) + b) +µ(k), the forth

follows as A = AD + AD̃, and the fifth follows due to the invariance of the 2-norm

under unitary multiplications ( ‖UTx‖2 = ‖x‖2 for unitary UTU = I). Then, (5.12)

follows by expansion of the terms of the last line.

We only want to linearize the part of the augmented Lagrangian that in-

volves the non-dominant component of A, i.e., linearizing the second line of (5.12)

around z(k) to have:

LPL,z(k)

ρ (x(k+1), v(k+1), z, µ(k)) = ρ
2
‖q̄(k)

PL −Dz‖2
2 + (r̄(k))T z + c5,

(5.13)

where r̄(k) , 2
(
D̃T (D̃+ 2D)z(k) − D̃T q̄

(k)
PL

)
represents the gradient of the linearized

part, and c5 captures the constant terms that do not depend on z. This would result

in the following method:
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Method 8 (Partially Linearized).

(x(k+1), v(k+1)) = arg min
x∈Rn

v∈Rp

LD
ρ (x, v, z(k), µ(k))

z(k+1) = arg min
z∈Z(m)

LPL,z(k)

ρ

(
x(k+1), v(k+1), z, µ(k)

)
µ(k+1) = µ(k) + v(k+1) − g(x(k+1), z(k+1)).

Corollary 113. The z-update in Method 8 can be solved separately for each of the

discrete variables, i.e., for each j ∈ {1, · · · ,m} we have that:

zj
(k+1) =


arg min

zj∈Zj

r̄
(k)
j zj +

∑
{i | `j=i}

(
(q̄

(k)
PL)i −Dijzj

)2
if {i | `j = i} 6= ∅,

arg min
zj∈Zj

r̄
(k)
j zj if {i | `j = i} = ∅.

Proof. Proof is very similar to that of Theorem 108.

Remark 114 (zero row of D). It follows that if Di`i = 0, then the ith row of D

(and consequently the ith row of D̃) would be zero too, meaning that there would

be no discrete variable present in the i-element of the vector q̄
(k)
PL − Dz − D̃z. As

this element would be an extra constant term, we can drop that row and equivalently

assume that Di`i 6= 0 for all i ∈ {1, · · · , p}.

Remark 115. When A has only one non-zero element in each of its rows, Partial

Linearization (Method 8) recovers the Direct Evaluation (Method 6).
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5.4.3 Partial Rounding

We will also consider a second hybrid algorithm between the full relax-and-

rounding (Method 5) and the Direct Evaluation (Method 6) for a general A in this

section.

We will decompose the A matrix as in Section 5.4.2 and then introduce a

new variable to capture the discrete variable that enters through non-dominant

component of A. To this end we will write the optimization problem (5.1) as:

minimize f(v)

subject to v = ADz + AD̃y +Bx+ b,

y = z,

(5.14)

with variables x ∈ Rn, v ∈ Rp, y ∈ Rm, and z ∈ Z(m).

The augmented Lagrangian with ρ > 0 for this problem can be written as:

LPR
ρ (x, v, y, z, µ, η) = f(v) + ρ

2
‖y − z + η‖2

2 + ρ
2
‖v − (ADz + AD̃y +Bx+ b) + µ‖2

2

−ρ
2
‖η‖2

2 − ρ
2
‖µ‖2

2

which would result in the following partial rounding method:
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Method 9 (Partial Rounding).

(x, v, y)(k+1) = arg min
x∈Rn

v∈Rp

y∈Rm

LPR
ρ

(
x, v, y, z(k), µ(k), η(k)

)

z(k+1) = arg min
z∈Z(m)

LPR
ρ

(
x(k+1), v(k+1), y(k+1), z, µ(k), η(k)

)
µ(k+1) = µ(k) + v(k+1) −

(
ADz

(k+1) + AD̃y
(k+1) +Bx(k+1) + b

)
η(k+1) = η(k) + y(k+1) − z(k+1).

Corollary 116. The z-update in Method 9 could be separately solved for each of the

discrete variables, i.e, we have that:

zj
(k+1) =



arg min
zj∈Zj

(
y

(k+1)
j − zj + η

(k)
j

)2
+

∑
{i | `j=i}

(
(q̄

(k)
PR)i −Dijzj

)2

if {i | `j = i} 6= ∅,

arg min
zj∈Zj

(
y

(k+1)
j − zj + η

(k)
j

)2
if {i | `j = i} = ∅,

where

q̄
(k)
PR , UT

(
v(k+1) − (AD̃y

(k+1) +Bx(k+1) + b) + µ(k)
)
.

Proof. Define

w̄
(k)
PR , v(k+1) − (AD̃y

(k+1) +Bx(k+1) + b) + µ(k),
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then

2
ρ
LPR
ρ (x(k+1), v(k+1), y(k+1), z, µ(k), η(k))

= ‖y(k+1) − z + η(k)‖2
2 + ‖w̄(k)

PR − ADz‖2
2 + c6

= ‖y(k+1) − z + η(k)‖2
2 + ‖q̄(k)

PR −Dz‖2
2 + c6

= ‖y(k+1) − z + η(k)‖2
2 +

p∑
i=1

(
(q̄

(k)
PR)i +Di`iz`i

)2
+ c6

=
m∑
j=1

(
(y

(k+1)
j − zj + η

(k)
j )2 +

∑
{i | `i=j}

(
(q̄

(k)
PR)i +Dijzj

)2
)

+ c6,

where c6 represents the terms that do not depend on z. The first equality follows

as we rearrange the terms, and the second equality follows due to invariance of the

2-norm under multiplication by a unitary matrix, the third follows as it is assumed

that Di`i is the only non-zero term in i-th row of D. The forth would be obtained

by rearranging the summation, from which the corollary follows.

5.4.4 Numerical Examples

We will investigate the performance of the suggested algorithms in this section.

Early simulations in Section 5.3.2 have indicated that when Assumption 106 is

met, the Direct Evaluation method has performed strongly better than the Relax-

and-Round method. We will consider cases when g only satisfies Assumption 103

and apply Full Linearization (FL), Partial Linearization (PL), Partial Rounding

(PR), and compare them with the Relax-and-Round (RR) algorithm.

Piece-wise linear f : We consider a mixed binary problem (Zj = B for all j)

and a synthetic f that is the sum of piecewise linear functions, where each is such
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that its optimal point is closer to the boundary point with greater value (as in

Figure 5.1(b)). We fix n = 5, take p = m, and generate random instances of A, B,

and b to obtain g. We generate A through a parameter τ > 0 that controls how

much diagonal-dominant S would be, with τ = 0 meaning that each row of S has

only a single non-zero element. As τ gets further away form zero, the structure

of S would become more random. For each m and τ , we have generated 20 random

sample problems and report the results based on the average of those samples.

We have illustrated the performance of the four methods in Figure 5.9, which

indicates that the Relax-and-Round and Partial Linearization (Method 8) have per-

formed better than the other two for different τ , while PL also requires more time

to get to its optimal point. There are 20 out of 1300 samples (1.54%) where RR per-

formed better than PL in our examples.

We have compared the two methods that have performed better in closer de-

tails (PL and RR ) in Figure 5.10, where we plot the their performances versus each

other. Their colors indicate how fast the two algorithm were, with bluer meaning

that the PL was faster and redder meaning that the RR was faster. We see that

as the problem size gets bigger, PL has performed even better (further away from

the y = x line).
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Figure 5.9: Avg. Distance to the optimal value and the Avg. time to reach that
point
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Figure 5.10: Optimal values for the Relax-and-Round and Partial Linearization
methods
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When m = 10 the problem size is small enough that we can exhaustively

search the 210 different cases of the discrete variable, and compare the exact dis-

crete variable solution to the ones obtained by the four methods, as illustrated in

Figure 5.11. Similarly, Figure 5.12 compares the difference of the optimal discrete

variable obtained from the Relax-and-Round and Partial Linearization methods to

the exact solution, where the size of circles denote the frequency of that observance

in 20 samples.
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Figure 5.11: Avg. difference of the optimal discrete variable to the exact solution
when m = 10
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Figure 5.12: Difference of the optimal discrete variable to the exact solution for
Relax-and-Round and Partial Linearization methods
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Chapter 6: Robustness to Fixed Modes

We studied the a necessary and sufficient condition for stabilizability of LTI

systems with respect to LTI controllers in Chapter 2. The condition was a binary one

that provides no information on how close a system would be to losing stabilizability.

In many cases one needs to know more than just whether or not a fixed mode is

present. It could be the case that although the plant is theoretically controllable (i.e.,

there exist no fixed modes), that a large control effort is required to move the states,

and/or that a small perturbation to the plant would result in a fixed mode. These

questions have been well answered for the centralized case through controllability,

observability, and Hankel operators. In particular, Hankel singular values of a stable

plant provide a non-binary measure of how controllable and observable that plant

is, and are easy to compute.

A more direct view of such robustness measure in the centralized case is

through the notion of the controllability and observability radius. These measures

have been first introduced in [77], their connections to the numerical stability of the

resulting controller and the notions of the gramians were studied in [78, 79]. More

recently there has been progress in finding the exact optimal value of these distances

through a series of works including [80–83]. In particular, [80,83,84] find the global
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optimum of the controllability radius through polynomial time algorithms by check-

ing the objective to determine if it can become less than a pre-selected value, which

can then be used in conjunction with a bisection method to get as close as desired

to the global optimal value. These could also be used to find an upper bound on

the µ-norm of an FDLTI system [81]. Lower bounds for this special case has been

derived by formulating the problem as a polynomial optimization problem [85], and

then using SOS techniques to derive lower bounds on the global minimum.

When each actuator has access to an arbitrary set of sensor measurements,

but not the others, the problem of how far we are from losing decentralized control-

lability becomes more complex. In the decentralized case, Vaz and Davison have

defined the decentralized assignability measure based on the distance of the plant

from the set of plants that have a fixed mode [2]. They characterized and connected

the mobility of an eigenvalue of the plant, which is the change in its location when

a decentralized controller of bounded magnitude is applied, to the aforementioned

measure. They have also proven that this measure would be non-zero if and only if

there exist no fixed modes. However, this metric is hard to compute for all but the

smallest problems. This metric can be though of as an extension of the controlla-

bility radius to the decentralized settings. As an alternative strategy, the approach

taken in [86] has explored the use of the Hankel operator to develop an easily com-

putable metric which could provide information regarding proximity to a fixed mode

for decentralized control. The developed metric in [86] combines the controllability

gramian, observability gramian, and a cross-gramian that incorporates the infor-

mation structure. That metric closely tracks the one of the Vaz & Davison near
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presence of a fixed mode, for some but not all the considered classes of fixed modes.

In this chapter we study two similar approaches to this metric when one con-

siders the smallest complex or real perturbations required to render the plant to

have a fixed-mode. Such real perturbations have been considered in [87, 88] for the

centralized case, and have been extended to the decentralized case in [3, 89].

The main hurdle that prevents usage of such algorithms for large scale systems

remains to be due to the power set minimization involved therein, which is further

involved in minimizing a non-convex singular value. The real perturbation case also

corresponds to an inner non-concave maximization over a parameter that adds to

its complexity.

This perspective of putting these measures on grounds that would make their

computation tractable and to provide guarantees of optimality were first considered

in [90–92]. This chapter further clarifies and refines those ideas and puts those in a

unified framework.

We will review related concepts and original formulation of the complex and

real decentralized fixed-mode radius in Section 6.1, and address the power set min-

imization in those problems by transforming it into a MINLP form in Section 6.2.

We will prove that this form would indeed be equivalent to the original metric in

general. An approximate simpler form would then be derived that allows us to derive

scalable optimization algorithms for its computation, and prove that this approx-

imate form would be an upper bound on the original metric later in that section.

We will provide two methods based on the convex relaxation of this MINLP form in

Section 6.3 as an initial trial to approximate the complex DFM radius. We will then
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use the ADMM-based algorithm studied in Section 5.3 and apply it on our MINLP

form to derive an efficient method to address the MINLP part. In Section 6.5, we

will show that the derived algorithms would also provide an upper bound for the

original metric for the complex perturbation case, and could be used with an extra

consideration for an upper bound on the real perturbation case. We will then use

the polynomial formulation of the singular values studied in Section 4.4.4 to discuss

and derive lower bounds on these metrics in Section 6.6. We will provide numerical

examples in Section 6.7 to inspect and compare methods of this chapter.

6.1 Review

We will first review an algebraic test on detecting fixed-modes in Section 6.1.1,

which would be the basis for all the measures of the robustness in this chapter. A

useful method for transforming a problem with a non-diagonal information structure

to a new one with a diagonal information structure is reviewed in Section 6.1.2. This

method will help in deriving a scalable MINLP form for the power set minimization

involved in the original formulation of the considered measures. We will then proceed

by reviewing the original formulation of the complex and real decentralized fixed-

mode radius in Section 6.1.3.

Assumption 117. Through the rest of this chapter we will assume that G is a

strictly proper state-space system, i.e., we focus on a given minimal state-space

representation of G, for which we have D = 0.

Remark 118. We need G to be strictly proper to derive scalable computational
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algorithms for upper bounds. However the main results of Sections 6.1.2, 6.2.1,

and 6.6 would still hold for a proper state-space system.

6.1.1 An Algebraic Test for Detecting Fixed-Modes

An algebraic test to check for the existence of a fixed mode (similar to the

PBH rank test for controllability or observability) is given in [93, Theorem 4.1].

The generalized version of this test is given as follows:

Theorem 119 ( [20, Theorem 2]). Given a strictly proper plant G, and a sparsity-

induced information structure S, we have that λ ∈ C is a fixed-mode of G, i.e., λ ∈

Λ (G,S, T s), if and only if there exists a subset I ⊆ {1, · · · , nu} such that:

rank

A− λI BI

CJĪ 0

 < n, (6.1)

where n is the dimension of the state, i.e., A ∈ Rn×n.

6.1.2 Diagonalization

We will briefly review a technique called diagonalization. This technique could

be used to transform the non-diagonal sparsity-induced information structures (S 6=

Sd) into a diagonal one by arranging and repeating the columns of B (and rows of C)

in a certain manner.

Theorem 120. Given a strictly proper plant G, and an arbitrary information struc-
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ture S, let Gd be the diagonalized plant given as:

Ad = A, Bd =

[
(Bd)1 · · · (Bd)nu

]
Cd =

[
(Cd)T1 · · · (Cd)Tnu

]T
, Dd = 0,

(6.2)

where Bd ∈ Rn×a, (Bd)i ∈ Rn×|Ji|, and (Bd)i = [Bi · · ·Bi
]. Also, Cd ∈ Ra×n, and

(Cd)i =

[
· · · CT

j · · ·
]T

, for all j ∈ Ji, where Ji is defined as (1.8) on page 21.

Then, we have that:

Λ (G,S, T s) = Λ (Gd,Sd, T s) . (6.3)

Proof. The proof would closely follow the one of the [20, Theorem 1].

Here, dependence on S is implicitly through formation of Ji. Whenever this

techniques is used through this chapter, we will make it clear by subscripting the

state-space matrices by (·)d.

Remark 121. Given a state-space system G, and a diagonal sparsity-induced in-

formation structure Sd, we have that Gd = G.

6.1.3 DFM Radius

We will first state an existing metric on how far a system is from having

decentralized fixed modes, and then review some of its properties. The materials in

this section are from [2,3], and are adopted to the notation used in this chapter.

We first define the set of plants that have the same dimension as G, and have

a fixed mode with respect to S.
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Definition 122. Given the dimension of state-space matrices by dim(G), a sparsity-

induced information structure S, and a real or complex field F, define the set of

unassignable systems as:

UNA (dim (G) ,S,F) ,

{G̃ | G̃ =
(
Ã, B̃, C̃, D̃

)
, where Ã ∈ Fn×n, B̃ ∈ Fn×nu ,

C̃ ∈ Fny×n, D̃ ∈ Fny×nu , s.t. Λ
(
G̃,S, T s

)
6= ∅}, (6.4)

where dependence on G is implicitly through the dimension of its state-space matri-

ces, and the dependence on S comes from all G̃ having a fixed mode with respect

to S.

We are interested in the minimum distance between G, and the set of plants

that have fixed-mode(s) with respect to the information structure S, i.e., we in-

terested in the distance of G from UNA (dim (G) ,S,F). To this end, define the

following notion of distance:

d (G,UNA (dim (G) ,S,F)) , inf
G̃∈UNA(dim(G),S,F)

∥∥∥∥∥∥∥∥
A− Ã B − B̃

C − C̃ −D̃


∥∥∥∥∥∥∥∥

2

, (6.5)

where (Ã, B̃, C̃, D̃) is a state-space representation for G̃.

Vaz & Davison [2] have defined the decentralized assignability measure as the

above distance when F = C, and have shown that it can equivalently be written as

an another optimization problem:
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Theorem 123 ( [2, Theorem 3]). Given a strictly proper state-space system G, and

a sparsity-induced information structure S, the decentralized assignability measure

is given by:

σVD (G,S) , d (G,UNA (dim (G) ,S,C)) = min
λ∈C,

I⊆{1,··· ,nu}

σn


A− λI BI

CJĪ 0


 ,

(6.6)

where I can be any subset, and JĪ depends on S and I as in (1.8).

Remark 124. This metric is zero if and only if (6.1) is satisfied, which in turn is

a necessary and sufficient condition for having a fixed mode.

Remark 125. This metric possesses interesting properties, but it is hard to compute

due to two reasons. Firstly, minimizing over the n-th singular value is non-convex,

and secondly, minimizing over the partitions I ⊆ {1, · · · , nu} would involve integer

programming (2nu − 2 cases). This is our main motivation to approximate (6.6) by

easily computable methods.

When the field F is taken to be the reals, it can be shown that the above

metric would be equivalent to the following optimization problem.

Theorem 126 ( [3, Theorem 3.1]). Given a strictly proper state-space system G,

and a sparsity-induced information structure S, the real DFM radius is given by:

d (G,UNA (dim (G) ,S,R)) = min
λ∈C,

I⊆{1,··· ,nu}

τn


A− λI BI

CJĪ 0


 , (6.7)
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where I can be any subset, JĪ depends on S and I as stated earlier, and τn(·) is

defined as:

τn(W ) , sup
γ∈(0,1]

σ2n−1


 <(W ) −γ=(W )

γ−1=(W ) <(W )


 .

Also for ease of notation define:

ηγ(W ) ,

 <(W ) −γ=(W )

γ−1=(W ) <(W )

 .

6.2 MINLP Forms

We will transform the power-set minimization in the complex and real DFM

optimization problems in this section. We will first derive an equivalent MINLP

with a monomial combination of the integers, and show that this form would indeed

be exactly equal to the original formulation in Section 6.2.1. We will then consider

diagonalization of the plant and derive a simpler MINLP form with affine combina-

tion of the integers in Section 6.2.2. We will prove that this latter form provides an

upper bounds to the original formulations, and use it for our computational methods

in the same section.
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6.2.1 An Equivalent MINLP with Integers in Monomials

For the the ease of notation define:

G(λ, z) ,

A− λI B diag (z)

L(z) C 0

 ∈ C(n+ny)×(n+nu) (6.8)

where λ ∈ C, z ∈ Bnu , and L(z) ∈ Bny×ny is a diagonal matrix that is zero every-

where, except for the diagonals that are given by:

[L(z)]jj = 1−
∏

{i|Kbin
ij =1}

zi,

for j = 1, · · · , ny.

We note that through this chapter we always use G with no parameter at all to

refer the LTI state-space system. With a slight abuse of notation, whenever G(λ, z)

is used with two parameters it refers to a complex-valued matrix (6.8).

Remark 127. When we have a diagonal sparsity-induced information structure,

i.e., S = Sd, the L(z) matrix would be an affine function of the integer variables,

i.e., [L(z)]jj = 1− zj.

We can then form the following optimization problems based on this binary

formulation:

σB (G,S) , min
λ∈C
z ∈Bnu

σn (G(λ, z)) , (6.9)
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for the complex DFM radius, and

ξB (G,S) , min
λ∈C
z ∈Bnu

sup
γ∈(0,1]

σ2n−1 (ηγ(G(λ, z))) , (6.10)

for the real DFM radius. The next theorem will prove that this formulation is equal

to the original forms of Vaz & Davison and Lam & Davison.

Theorem 128. Given a strictly proper state-space system G, and an arbitrary

sparsity-induced information structure S, we have that:

d (G,UNA (dim (G) ,S,C)) = σB (G,S) , (6.11)

and

d (G,UNA (dim (G) ,S,R)) = ξB (G,S) . (6.12)

Proof. Given any λ and I in (6.1), for each i ∈ {1, · · · , nu} take zi = 1 if i ∈ I,

and 0 otherwise. Then, the matrix in (6.6) (and (6.7)) would be equal to the G(λ, z)

in (6.8) except for possibly extra zero rows or columns. These extra zero rows

or columns do not affect the the n-th singular value of the (n + ny) × (n + nu)

dimensional matrix G(λ, z) in the complex case, or the 2n− 1 singular value of the

2(n+ny)× 2(n+nu) dimensional matrix ηγ(G(λ, z)) in the real case, which in turn

render the equality.
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6.2.2 An Approximate MINLP with Integers in Affine Forms

In this section we consider a simpler MINLP that allows us to have the integer

variable affinely in the G(λ, z) matrix. This comes in the price of losing the exact

equality relation that was derived in the previous section. However, we will prove

that it would still detect fixed-modes whenever they exist, and that they would

indeed be an upper bound on the original metric.

We will first use the diagonalization method of Section 6.1.2 to transform the

strictly proper plant G with an arbitrary information structure S into a diagonalized

form, denote by Gd with a diagonal information structure Sd. We will then define

the following diagonalized counterpart of G(λ, z):

Gd(λ, z) ,

 A− λI Bd diag (z)

diag (1− z)Cd 0

 , (6.13)

and

Gd,γ(λ, z) , ηγ (Gd(λ, z)) . (6.14)

We would then have the following theorem on rank deficiency ofGd(λ, z) andGd,γ(λ, z)

in presence of a fixed mode:

Theorem 129. Given a strictly proper state-space system G, and an arbitrary

sparsity-induced information structure S, let Gd denote the diagonalized plant as

in (6.2). Let λ ∈ C, and γ ∈ (0, 1] be fixed, then the followings are equivalent:

1. There exists an I ⊆ {1, · · · , nu} such that (6.1) holds.
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2. There exists an z ∈ Ba such that:

rank(Gd(λ, z)) < n. (6.15)

3. There exists an z ∈ Ba such that:

rank (ηγ(Gd(λ, z))) < n. (6.16)

i.e., λ ∈ Λ (G,S, T s) if and only if (6.15) (or (6.16)) holds for some z ∈ Ba.

Proof. We will first prove equality of Theorem 129.1 to 129.2, and then 129.2

to 129.3.

Take zi = 1 if and only if i ∈ I, and 0 otherwise. Then the matrix Gd(λ, z)

would have the exact same columns or rows as the matrix in (6.1). It may also

have some extra columns or rows, which are either zero, or already have appeared

in Gd(λ, z). Thus their rank are equal to one another.

Equality of Theorem 129.2 to 129.3 is achieved by inspecting the eigenval-

ues of a transformed version of ηγ(Gd(λ, z)). Take the similarity transformation

matrix T = 1√
2

 γI γI

−jI jI

 and observe that:

eig (Gd,γ(λ, z)) = eig
(
T−1Gd,γ(λ, z)T

)
= eig

(
blkdiag(Gd(λ, z), Gd(λ, z))

)
.
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As rank of a block diagonal matrix is equal to sum of ranks of its blocks, and

that rank(Gd(λ, z)) = rank(Gd(λ, z)), we would have rank(Gd(λ, z)) ≤ n− 1 if and

only if rank(Gd,γ(λ, z)) ≤ 2n− 2.

We then focus on the following optimization problem:

σ̄B (G,S) , min
λ∈C
z∈Ba

σn (Gd(λ, z)) , (6.17)

and its real counter part:

ξ̄B (G,S) , min
λ∈C
z∈Ba

sup
γ∈(0,1]

σ2n−1 (ηγ(Gd(λ, z))) . (6.18)

When we have a diagonal information structure (S = Sd), the diagonalization of

a plant is the initial plant itself (Remark 121), and thus matrix Gd(λ, z) would be

equal to G(λ, z), which renders (6.17) and (6.18) to be also equal to the original

form of Vaz & Davison and Lam & Davison as in (6.11) and (6.12) in Theorem 128.

Remark 130. When S 6= Sd, the equivalence between (6.6) and σ̄B (G,S), and

between (6.7) and ξ̄B (G,S) does not hold anymore. However, due to Theorem 129,

we have that:

Λ (G,S, T s) 6= ∅ ⇐⇒ d (G,UNA (dim (G) ,S,C)) = 0

⇐⇒ d (G,UNA (dim (G) ,S,R)) = 0

Thm.129.2⇐⇒ σ̄B (G,S) = 0

Thm.129.3⇐⇒ ξ̄B (G,S) = 0,
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where the first two line follow as the smallest perturbation would trivially be zero

in the presence of a fixed mode. This means that in presence of a fixed method

both σ̄B (G,S) and ξ̄B (G,S) would be zero for any sparsity-induced information

structure S.

We can now prove that these simpler forms σ̄B (G,S) and ξ̄B (G,S) would

indeed be upper bounds for complex and real DFM radius in the following theorem.

Theorem 131. Given a strictly proper state-space system G, and a sparsity-induced

information structure S, we have that:

σ̄B (G,S) ≥ d (G,UNA (dim (G) ,S,C)) , (6.19)

and

ξ̄B (G,S) ≥ d (G,UNA (dim (G) ,S,R)) . (6.20)

Proof. Given a λ ∈ C, z ∈ Ba, and γ ∈ (0, 1], if we take the set I as:

I =
{
i | zk = 1, for some k ∈

{∑i−1

l=1
|Jl|+ 1, · · · ,

∑i

l=1
|Jl|
} }

,

then we would have:

σn(Gd(λ, z)) ≥ σn


A− λI BI

CJĪ 0


 ,
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and

σ2n−1 (ηγ (Gd(λ, z))) ≥ σ2n−1

ηγ

A− λI BI

CJĪ 0



 ,

as the left hand sides would (possibly) only have extra columns and rows compared

to the matrices on their right hand sides, and adding extra columns or rows could not

decrease any of the singular values [94, Corollary 8.6.3]. The result then follows by

applying the min operator for the complex DFM radius, and sup and min operators

consecutively for the real DFM radius.

6.3 A Convex Approach

In this section, we will propose two methods to approximate the decentral-

ized assignability measure of Vaz & Davison, mainly to compare them to our main

method in Section 6.4. We have seen that the ADMM-based method in the next

section is out-performing the ones in this section even for the complex DFM radius,

and thus have not considered their extension for the real DFM radius.

Remark 132. Here in this section, and in Section 6.4 we will use the nuclear

norm convex surrogate instead of minimization over the n-th singular value for the

complex DFM radius, or for when we need to minimize the (2n−1)-th singular value

for the real DFM radius. We note that better convex heuristics as those studied in

Section 4.3 could specially be considered for large-scale systems where n is large.

We thus first consider using the following relaxation of (6.17) directly as to
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suggest it as the approximated version of the original metric:

min
λ∈C
z∈[0,1]a

‖Gd(λ, z)‖∗ , (6.21)

and then we will use the obtained solution from the first method to fix the bi-

nary variable, and then solve another convex optimization problem to find a better

continuous variable.

Method 10 (Nuc).

Let a strictly proper G and an arbitrary information structure S be given.

1. Construct the diagonalized plant Gd as in (6.2).

2. Solve the optimization problem (6.21) with variables λ ∈ C, and z ∈ [0, 1]a.

3. Name the obtained solution by λ(Nuc)? and z(Nuc)?, and let σ(Nuc)∗ denote the n-

th singular value of the optimal matrix in (6.21), i.e.:

σ(Nuc)∗ , σn
(
Gd(λ(Nuc)? , z(Nuc)?)

)
.

The optimization problem (6.21) is convex, and thus can be solved with avail-

able software packages such as cvx toolbox [26]. Although it is desirable that z

lies in its ideal binary set, i.e., z ∈ Ba, enforcing this constraint would result in a

non-convex problem that could not be readily approached. This is the motivation

to consider the following method, in which, we will use the obtained solution from
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Method 10 (Nuc), and round z(Nuc)? to the closest binary value, and will then

solve (6.21) again with fixed z ∈ Ba.

Method 11 (Nuc+Rounding).

Let a strictly proper G and an arbitrary information structure S be given.

1. Construct the diagonalized plant Gd as in (6.2).

2. Apply Method 10 (Nuc).

3. Set zF ∈ Ba as: zF ← round
(
z(Nuc)?

)
.

4. Solve the following optimization problem:

min
λ∈C

∥∥Gd(λ, zF)
∥∥
∗ . (6.22)

5. Let σ(Nuc+R)∗ denote the n-th singular value of the optimal matrix in (6.22).

The Nuc+Rounding Method 11 will ultimately result in a binary z, however,

this method would not look at any other binary vector in Ba other than the rounded

one. This could be a lot different from its optimal value, and motivated us to consider

an alternative iterative approach to directly address (6.21) with z ∈ Ba by ADMM

in the next section.
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6.4 An ADMM-Based Approach

We lay out our ADMM-based method for the complex DFM radius in Sec-

tion 6.4.1, and then discuss how to account for the real DFM radius in Section 6.4.2.

The core concepts in this section are based on the ones derived in Chapter 5, spe-

cially to those in Section 5.3, which we elaborate for the matrix case here.

6.4.1 Complex DFM Radius

In this section we develop an ADMM-based algorithm to approximate the

complex DFM radius. Specifically, we consider the following problem:

min
λ∈C
z∈Ba

‖Gd(λ, z)‖∗ , (6.23)

and use the Direct Evaluation method from Chapter 5 (Method 6 on page 156) to

directly address the binary variable.

If we take f(·) = ‖·‖∗ and g(x, z) = Gd(λ, z), then optimization problem (6.23)

could be readily written in the form of (5.7) on page 156. It can be shown that

this further satisfies Assumption 106, and hence we can apply Direct Evaluation

Method 6 on it. To see the full derivation, rewrite (6.23) as:

minimize ‖V ‖∗

subject to : V = Gd(λ, z),

with variables V ∈ C(n+a)×(n+a), λ ∈ C, and z ∈ Ba. The augmented Lagrangian
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for this problem, for ρ > 0 can be written as:

Lρ (V, λ, z, µ) = ‖V ‖∗+ 〈µ, V −Gd(λ, z)〉+ 0.5ρ ‖V −Gd(λ, z)‖2
F

where µ ∈ C(n+a)×(n+a) is the dual variable. This augmented Lagrangian can be

equivalently written as:

Lρ (V, λ, z, µ) = ‖V ‖∗ +
ρ

2

∥∥V −Gd(λ, z) + ρ−1µ
∥∥2

F
− (2ρ)−1 ‖µ‖2

F , (6.24)

which can be derived by expanding the terms. The ADMM consists of iteration over

minimizing z, the pair (V, λ), and updating the dual variable µ. We will first derive

minimization over z. To this end, partition V as:

V =



VA VB1 · · · VBa

VC1

...

VCa

VD


,

where VA ∈ Cn×n, VBi ∈ Rn×1, and VCi ∈ R1×n. Similar partitioning also applies

to µ. We have that:

z(k+1) = arg min
z∈Ba

Lρ(V
(k), λ(k), z, µ(k))

= arg min
z∈Ba

∥∥V (k) −Gd(λ(k), z) + ρ−1µ(k)
∥∥2

F

?
= arg min

z∈Ba

a∑
i=1

fi
(k)(zi) + c,
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where the second equality follows by taking the only term of (6.24) that depends

on z. For all i ∈ {1, · · · , a}, we have defined fi
(k) : B→ R as:

fi
(k)(z) ,

∥∥∥V (k)
Bi + ρ−1µ

(k)
Bi − (Bd)iz

∥∥∥2

F
+
∥∥∥V (k)

Ci + ρ−1µ
(k)
Ci − (Cd)i(1− z)

∥∥∥2

F
, (6.25)

then, the third equality (
?
=) follows since different zi appear in different rows and

columns, and the Frobenius norm can be written as the square sum of the elements.

Also c gathers all the terms that do not depend on z. Hence, the z-update separates

for the individual elements zi, and thus we can write zi
(k+1) = arg minzi∈B fi

(k)(zi),

which would give the following easily checkable condition:

zi
(k+1) =


1 if fi

(k)(1) ≤ fi
(k)(0)

0 otherwise.

(6.26)

Remark 133. Since the minimization over z separates for different elements, we

would only need to check the function value at 2a points, rather than 2a points,

where a denotes the cardinality of admissible non-zero elements in the controller as

on page 20.

Next, we formulate the minimization over the pair (V, λ):

(V (k+1), λ(k+1)) = arg min
V,λ

Lρ(V, λ, z
(k+1), µ(k))

= arg min
V,λ

‖V ‖∗ + 0.5ρ
∥∥V −Gd(λ, z(k+1)) + ρ−1µ(k)

∥∥2

F
,

(6.27)

with variables V ∈ C(n+a)×(n+a) and λ ∈ C. The minimization (6.27) is a convex
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optimization problem over the pair (V , λ).

Lastly, the µ-update would be:

µ(k+1) = µ(k) + ρ
(
V (k+1) −Gd(λ(k+1), z(k+1))

)
. (6.28)

We will further improve the optimal point obtained from ADMM method by

applying the subgradient of the k-th singular value. This subgradient was discussed

for a matrix variable in Section 4.2, and we will use the rule of subgradient of an

affine combination to derive it for σn (Gd(λ, z)) with respect to λ when z is fixed.

Corollary 134. Given a fixed zF, let Gd(λ(k), zF) = U
(k)
F Σ

(k)
F (V

(k)
F )∗ be a SVD

decomposition for Gd(λ(k), zF), then a subgradient of σn
(
Gd(λ, zF)

)
at λ(k), denoted

by hCDFM(λ(k)), is given by:

hCDFM(λ(k)) = LTvec
(
U

(k)
F ene

T
n (V

(k)
F )∗

)
,

where L ∈ R2(n+a)2×2 is an appropriate matrix such that:

vec
(
Gd(λ, zF)

)
= L

<(λ)

=(λ)

+ d,

for some d ∈ R2(n+a)2
.

Proof. Since vec
(
Gd(λ, zF)

)
is an affine function of λ, it can be written as:

vec
(
Gd(λ, zF)

)
= L

[
<(λ) =(λ)

]T
+ d.
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Hence, we have that σn
(
Gd(λ, zF)

)
= σn

(
vec−1

(
L

[
<(λ) =(λ)

]T
+ d

))
, and

we can use the affine combination rule for deriving the subgradient in conjunction

with Theorem 68 to derive the subgradient with respect to λ.

The ADMM based algorithm for the complex DFM radius is thus given as:

Method 12 (ADMM-C).

Let a strictly proper G and an arbitrary information structure S be given.

1. Construct the diagonalized plant Gd as in (6.2).

2. We have that V ∈ C(n+a)×(n+a), λ ∈ C, z ∈ Ba, and µ ∈ C(n+a)×(n+a). Initial-

ize k ← 0, and let V (0), λ(0), z(0), µ(0) be all initialized to 0 as well.

3. Update z(k+1) as (6.26).

4. Update V (k+1) and λ(k+1) as (6.27).

5. Update µ(k+1) as (6.28).

6. Let σ
(k+1)
n = σn

(
Gd(λ(k+1), z(k+1))

)
.

7. If
∣∣∣σ(k+1)
n − σ(k)

n

∣∣∣ < ε, go to step 8, else let k ← k + 1, and go to step 3.

8. Subgradient-based fine tunning:

(a) Let k∗ = arg min
k≥1

σ
(k)
n , k ← k + 1. Fix zF = z(k∗), and set λ(k) = λ(k∗) to

the optimal values given by the ADMM algorithm. .

(b) Find a Clarke subgradient of σn
(
Gd(λ, z(k∗))

)
at λ(k) by Corollary 134.
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(c) Update λ(k+1) ← λ(k) − θhCDFM(λ(k)), and k ← k + 1.

(d) If the stopping criteria is met, report mink σn
(
Gd(λ(k), z(k∗))

)
. Else, go

to step 8b.

6.4.2 Real DFM Radius

Computation of the real DFM radius involves a minimax form (6.18) as on

page 194. This prevents us from directly applying method of previous section to

approximate this metric in the real case.

We consider the optimization problem (6.18) in this section, and modify the

ADMM-C Method 12 to account for the min-sup part in a sequential scheme. We

will first fix γ and only consider the minimization part and apply the ADMM-based

algorithm, i.e., we will use the Direct Evaluation method (Method 6 for the following

optimization problem:

min
λ∈C
z∈Ba

‖ηγ(Gd(λ, z))‖∗ , (6.29)

If we take f(·) = ‖ηγ(·)‖∗ and g(x, z) = Gd(λ, z), then optimization problem (6.29),

similar to (6.23), satisfies Assumption 106 and could be written in the form of (5.7)

as on page 156:

minimize ‖ηγ (V )‖∗

subject to : V = Gd(λ, z),

with variables V ∈ C(n+a)×(n+a), λ ∈ C, and z ∈ Ba. Hence we can apply Direct

Evaluation Method 6 on this. The z-update, (V, λ)-update, and the dual update

formulas for this method would then be exactly as to those in previous section when
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one replaces the nuclear norm ‖·‖∗ with ‖ηγ(·)‖∗ in equations (6.24) and (6.27).

The ADMM-based method would approximate the binary variable indepen-

dently of γ. Algorithms in [89] try to find the global optima of (6.7) with variables λ

and γ once one has fixed z by gridding the complex plane. We will present a local

algorithm that would not depend on gridding the complex plane through the rest

of this section.

We will fix z to be zF from the ADMM-based algorithm, and find a descent

direction for supγ∈(0,1] σ2n−1

(
ηγ(Gd(λ, zF))

)
in order to make the sup part smaller

in each step of our sequential method. We do this by computing the subgradient

of σ2n−1

(
ηγ(Gd(λ, zF))

)
with respect to λ for fixed γ and zF. This would also be

a subgradient of supγ∈(0,1] σ2n−1(ηγ(·)) if γ is such that it achieves the supremum

for the updated λ. However as the optimal γ could change as we update λ, we

iteratively adjust the step-size θ by making it smaller, and check if the updated λ

would indeed decrease supγ∈(0,1] σ2n−1(ηγ(·)). By using a continuity-based argument

it can be seen that updating λ along its subgradient direction would decrease the

sup part for for sufficiently small θ.

We will derive the subgradient of the σ2n−1

(
ηγ(Gd(λ, zF))

)
in the following

corollary.

Corollary 135. Given a fixed zF and a fixed γ, let ηγ(Gd(λ(k), zF)) = U
(k)
F Σ

(k)
F (V

(k)
F )∗

be a SVD decomposition for ηγ
(
Gd(λ(k), zF)

)
, then a subgradient of σ2n−1

(
ηγ(Gd(λ, zF))

)
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at λ(k), denoted by hRDFM(λ(k)), is given by

hRDFM(λ(k)) = LTvec
(
U

(k)
F e2n−1e

T
2n−1(V

(k)
F )∗

)
,

where L ∈ R(2(n+a))2×2 is an appropriate matrix such that

vec
(
ηγ(Gd(λ, zF))

)
= L

<(λ)

=(λ)

+ d,

for some d ∈ R(2(n+a))2
.

Proof. Proof is very similar to that of Corollary 134.

Then, our algorithm for computing the real DFM radius can be stated as:

Method 13 (ADMM-R).

1. Given a strictly proper plant G and an arbitrary information structure S,

set k ← 0, γ(k) ← 1, (V, λ)(k) ← 0.

2. Update z(k+1) as in (6.26).

3. Update (V, λ)(k+1) as in (6.27) with ‖·‖∗ replaced by
∥∥ηγ(k)(·)

∥∥
∗.

4. Update µ(k+1) as in (6.28).

5. Set t← 1, let λ̃(t) ← λ(k+1), and use a ternary search to find

γ(pre) ← arg maxγ∈(0,1] σ2n−1

(
ηγ(Gd(λ̃(t), z(k+1)))

)
, and

τ (pre) ← σ2n−1

(
ηγ(pre)(Gd(λ̃(t), z(k+1)))

)
.
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6. Compute the subgradient of σ2n−1(ηγ(pre)(Gd(λ, z(k+1))) with respect to λ at λ̃(t)

as in Corollary 135. Let θ ← θ0.

7. Take λ̃(t+1) ← λ̃(t) − θhRDFM(λ̃(t)).

8. Use a ternary search to find

γ(post) ← arg maxγ∈(0,1] σ2n−1

(
ηγ(Gd(λ̃(t+1), z(k+1)))

)
, and

τ (post) ← σ2n−1

(
ηγ(post)(Gd(λ̃(t+1), z(k+1)))

)
.

9. If τ (post) > τ (pre), then θ ← θ/2 and go to step 7.

10. Set γ(pre) ← γ(post), and τ (pre) ← τ (post). If t < tmax, then let t ← t + 1 and

go to step 6, else if k < kmax then take λ(k+1) ← λ(t+1), and τ (k+1) ← τ (post),

let k ← k + 1, and go to step 2.

11. Let k∗ ← arg mink τ
(k), and report τ (best) ← τ (k∗), λ(best) ← λ(k∗), z(best) ←

z(k∗), and γ(best) ← γ(k∗).

It is known that σ2n−1 (ηγ(Gd(λ, z))) is quasi-concave in γ [95, p. 100], and

thus we will use this property and adopt a ternary search to shrink the interval

containing the optimal γ arbitrarily small. In the above method the τ serves as

to guarantee that the computed subgradient direction would indeed be a descent

direction for supγ∈(0,1] σ2n−1(Fγ(λ̃
(t+1), z(k+1))).

6.5 Upper Bounds

We discuss upper bounds for our approximation methods in this section. In

particular, we will show how one can bound the error that arises from not solving
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the inner sup function exactly.

Theorem 136. Methods Nuc+Rounding (Method 11) and ADMM-C (Method 12)

give upper bounds for the metric d (G,UNA (dim (G) ,S,C)).

Proof. Proof is a direct consequence of Theorem 131, and the fact that each of these

methods result in a solution that satisfy any feasibility condition for the minimiza-

tion problem (6.17) on page 194 due to resulting in a binary z.

We can prove the following lemma that would be useful for deriving an upper

bound on real DFM radius when ADMM-R (Method 13) is used.

Lemma 137. Given a normed space V , points x, y ∈ V , and a set S ⊂ V ,

dist(x, S)− dist(y, S) ≤ ‖x− y‖.

Proof. Proof is done by contradiction. Let x∗ and y∗ be points in S such that dist(x, x∗) =

dist(x, S) and dist(y, y∗) = dist(y, S), and assume that the contrary holds, i.e.,:

dist(x, S) > dist(y, S) + dist(x, y).

Then we have:

dist(x, S) > dist(y, S) + dist(x, y)

= dist(y∗, y) + dist(y, x)

≥ dist(y∗, x)

=⇒ dist(x, S) > dist(x, y∗),
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where the ≥ follows due to the triangle inequality, and thus this achieves the con-

tradiction.

We can derive the following theorem:

Theorem 138. Given a strictly proper state-space system G and an arbitrary sparsity-

induced information structure S, by applying Method 13 (ADMM-R), we have the

following upper bound for the real DFM radius:

d (G,UNA (dim (G) ,S,R)) ≤ min
k

(
τ (k) + ∆(γ(k))−1 · ‖=(Gd(λ(k), z(k)))‖

)
, (6.30)

where ∆γ−1 = (γ + ∆γ)−1 − γ−1.

Proof. Use Corollary 86 and represent the singular value of interest as a distance to

a set

σk(M) = min
rank(X)=k−1

‖M −X‖2,

where the set S is taken to be the set of all matrices of appropriate dimension that
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have rank 2n− 2. We can then use Lemma 137 to write:

σ2n−1(ηγ+∆γ(Gd(λ, z)))− σ2n−1(ηγ(Gd(λ, z)))

≤ ‖ηγ+∆γ(Gd(λ, z))− ηγ(Gd(λ, z))‖2

=

∥∥∥∥∥∥∥∥
 0 −∆γ=(Gd(λ, z))

∆γ−1=(Gd(λ, z)) 0


∥∥∥∥∥∥∥∥

2

= max{∆γ,∆γ−1} · ‖=(Gd(λ, z))‖2

= ∆γ−1 · ‖=(Gd(λ, z))‖2

where we have let ∆γ−1 = (γ + ∆γ)−1 − γ−1 = γ−1[(1 + ∆γ
γ

)−1 − 1] and used the

fact that this will always be larger than ∆γ when γ ∈ (0, 1]. We further note that

to first order, ∆γ−1 ≈ ∆γ
γ2 .

Given our approximate solution λ, z, γ determined as in the previous section, λ

and z are feasible points for our minimization, and we know how far γ may be from

optimal for the given λ and z based on the experimented point in the ternary search

process, so we can then add ∆γ−1 · ‖=(Gd(λ, z))‖ to our approximately optimal

value to obtain an upper bound on the metric. Then (6.30) follows by taking the

least of these upper bounds and considering (6.20).
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6.6 Lower Bounds

We provide lower bounds for the complex and real DFM radius in this section.

Our approach is based on the Courant-Fischer variational formulation of the singular

values in Section 4.4.4 on page 141 to derive a polynomial optimization problem,

which is then used with a Sum-of-Squares technique to derive an SDP that provides

a lower bound.

We will first form a P.O. for the complex DFM radius in the following corollary:

Corollary 139. Assume that a strictly proper state-space system G, an arbitrary

sparsity-induced information structure S, and an q ∈ N are given. Then, the fol-

lowing optimization problem gives a non-trivial lower bound for the (squared of) the

complex DFM radius: (σVD (G,S))2:

min κ

s.t. κ ≥ v∗i (G(λ, z))∗G(λ, z)vi for i = 1, · · · , q

V ivi = 0 for i = 1, · · · , q

v∗i vi = 1 for i = 1, · · · , q

zi(1− zi) = 0 for i = 1, · · · , nu,

(6.31)

with variables κ ∈ R, λ ∈ C, z ∈ Rnu, v1, · · · , vq ∈ Cn+nu, and where V 1, · · · , V q

are fixed matrices in Cnu×(n+nu) that all have rank nu.

Proof. This can be seen by using the equality in Theorem 128 (on p. 191), and then

applying (4.14) (on p. 144) with X in Corollary 98 (on p. 143) replaced by G(λ, z),
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and then enforcing z ∈ Bnu by adding the last equality constraint in (6.31) (on

p. 211) .

Similarly for the real DFM radius we have the following corollary.

Corollary 140. Assume that a strictly proper state-space system G, an arbitrary

sparsity-induced information structure S, and q1 ∈ N and q2 ∈ N are given. Then,

the following optimization problem gives a non-trivial lower bound for the (squared

of) the real DFM radius:

min κ

s.t. κ ≥ v∗i
(
ηγj(G(λ, z))

)∗
ηγj(G(λ, z))vi for i = 1, · · · , q1,

and j = 1, · · · , q2

V ivi = 0 for i = 1, · · · , q1

v∗i vi = 1 for i = 1, · · · , q1

zi(1− zi) = 0 for i = 1, · · · , nu,

(6.32)

with variables κ ∈ R, λ ∈ C, z ∈ Rnu, v1, · · · , vq1 ∈ C2(n+nu), V 1, · · · , V q1 that are

all fixed matrices in C(2nu+1)×2(n+nu) that all have rank 2nu + 1, and γ1, · · · , γq2 that

are all in (0, 1].

Proof. Proof is similar to that of Corollary 139, and with using sampling to lower
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bound the sup over γ as minimization over a finitely many samples of that:

min
λ,z

sup
γ
σ2

2n−1 (ηγ(G(λ, z))) ≥ min
λ,z

sup
γ

min κ

s.t. κ ≥ v∗i (ηγ(G(λ, z)))∗ ηγ(G(λ, z))vi,
...

= min
λ,z

min
κ,vi

κ

s.t. κ ≥ v∗i (ηγ(G(λ, z)))∗ ηγ(G(λ, z))vi,

∀ γ ∈ (0, 1]
...

≥ min
λ,z

min
κ,vi

κ

s.t. κ ≥ v∗i
(
ηγj(G(λ, z))

)∗
ηγj(G(λ, z))vi,

for j ∈ {1, · · · , q2}
...

where the first inequality follows due to the finite sampling from Courant-Fischer

subspaces, the equality is a direct reformulation of the sup, and the last inequality

also follows due to the finite sampling from γ ∈ (0, 1].

The following theorem establishes that under some mild conditions, lower

bounds for the complex and real DFM radius can be found by convex programs.

Theorem 141. Given a strictly proper state-space system G, and an arbitrary

sparsity-induced information structure S, assume that some bounds on the optimal λ,

and κ in (6.31) and (6.32) are known (i.e., ‖λ‖ ≤ λ̄, and ‖κ‖ ≤ κ̄), then non-trivial

lower bounds for (d (G,UNA (dim (G) ,S,C)))2 and (d (G,UNA (dim (G) ,S,R)))2

can be obtained by convex programs.

Proof. Optimization problems (6.31) and (6.32) are polynomial optimization prob-

lem where the objective and all the constraints are real valued. These problems
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satisfy the P.O. Definition 79 (on p. 134). Using the bounds on λ and κ, one can

apply Remark 83 (on p. 135), which ensures that Assumption 82 holds. Then, the

SOS-based SDP which provide lower bounds can be derived using Theorem 84.

6.7 Numerical Examples

In this section, we provide numerical examples to compare the proposed meth-

ods. All the systems are strictly proper LTI, and are further centrally controllable

and observable.

Example 142. Consider the following state-space system, with parameter β ∈ R:

A =

−1 0

0 −3

 , B =

1 0

0 1

 , C =

0 β

1 1

 , Kbin =

1 0

0 1

 .

This system has a fixed mode only at β = 0. We vary β and plot the n-th singular

value obtained from the Nuc, Nuc+Rounding, ADMM-C and its fine tunning by

subgradient, and the lower bound Corollary 140 in Figure 6.1. The Vaz & Davison

metric (σVD (G,S) in (6.6)) is computed for the numerical examples by evaluating

the singular values over a discrete grid in the complex plane for each of the 2nu − 2

possible subsets I, which is clearly only an option for very small problems. In this

example, the results of Nuc and Nuc+Rounding methods collide, meaning that the

z in Method 10 (on p. 197) was already very close to its binary value. We see that

both Nuc and Nuc+Rounding methods are outperformed by the ADMM-C algorithm

of Method 12 (on p. 203) . Also, they all behave similarly near the fixed mode.
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We also see that applying the subgradient fine tuning has improved the result of the

ADMM-C.

The lower bound obtained is obtained by either sampling two or three V in (6.31)

(i.e., m = 2, or 3). We have observed that when m = 1, the lower bound is

zero in the considered range. Also, it is noteworthy that the lower bound is not

only dependent on m, but also on the choice of V in (6.31), i.e., different choices

for V 1, · · · , V m may result in different lower bounds. We have randomly gener-

ated these V i in this example. We have used gloptipoly [96] to form the SDP

relaxation corresponding to the lower bound on the polynomial optimization prob-

lem (6.31) . As illustrated in Figure 6.1, as we increase the number of samples

(m) from the rank constrained subspace in (6.31), the lower bound becomes more

accurate.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Figure 6.1: Comparison of Singular Values for complex DFM radius in Example 142

215



Next, we give another example for which the result of Nuc and Nuc+Rounding

would be different, yet still similar near a fixed mode.

Example 143. Consider the following system with parameter β ∈ R:

A = diag(−1,−1,−1,−5),

B =



0 0 1 0

0 1 0 0

−1 0 1 0

−1 3 1 2


, C =



1 0 β 0

1 1 0 0

1 0 1 0

0 3 0 4


, Kbin =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

This system has a fixed mode at β = 1. We again vary β and plot the singular

value obtained from the Nuc, Nuc+Rounding, the ADMM-C and its subgradient-

based improvement, and the complex DFM radius in Figure 6.2. We see that the

Nuc method fails to detect the fixed mode, as it is non-zero at β = 1. Nuc+Rounding

would detect the fixed mode, and would be close to the ideal case of Vaz & Davison

near the fixed mode, but will give an unrealistic approximation as we get farther away

from the fixed mode. The ADMM approach of Method 12 has the same shape as the

ideal case, and closely tracks it. We also see that subgradient-based improvement has

been able to close the gap almost fully between the actual complex DFM radius (VD)

and the ADMM-based approximation.

We continue by providing two examples for computing the real DFM radius.
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Figure 6.2: Comparison of Singular Values for complex DFM radius in Example 143

Example 144. Consider the following strictly proper system:

A =

 1 −0.2

0.2 1

 , B =

 0 10

−0.2 17


C =

20 32

0.2 0

 Kbin =

1 0

0 1

 .

This system does not have a fixed mode. The complex DFM radius for this plant

is computed through the ADMM-C method and was further fine tuned through its

subgradient, which resulted in:

σ̄B (G,S) = 0.1415, λ(best) = 1 + j 0.14, z(best) =

1

0

 .
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The resulting perturbation ∆ is in the complex plane, and is such that:

‖=(∆)‖F

‖<(∆)‖F

= 0.7288.

The real DFM radius for this plant was computed to be 0.2 according to the ADMM-R

Method 13 (on p. 206), which also matches the DFM radius when one only consid-

ers λ ∈ R. Figure 6.3 depicts the σ2n−1

(
ηγ(Gd(λ(best), z(best))

)
as a function of γ for

this example, and verifies its quasi-concavity in γ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.160

0.165

0.170

0.175

0.180

0.185

0.190

0.195

0.200

Figure 6.3: Inspecting the effect of γ

Example 145. Consider the following strictly proper state-space system with pa-

rameter β ∈ R, and a sparsity-induced diagonal information structure:

A =


1 0 0

0 2 0

0 0 3

 , B =


1 0

0 1

β 1


C =

1 1 0

0 0 1

 Kbin =

1 0

0 1

 .
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This system has a fixed mode at β = 0. We have Λ (G,S, T s) = {2}, for which (6.1)

(on p. 185) drops rank when λ = 2 and I = {1}.

We will vary β and plot the real DFM radius obtained through exhaustive

search, the real and complex DFM radius obtained from ADMM-R and ADMM-C

methods, and the real DFM radius when we further restrict λ to be in the reals in

Figure 6.4. The dashed red line denotes the complex DFM radius obtained using
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Figure 6.4: Comparing various methods for obtaining the real DFM radius

the ADMM-C method and is a lower bound for the real distance, which is also what

one expects from inspecting the figure. The black line denotes exhaustive search

over all z ∈ Ba, λ ∈ C, and γ ∈ (0, 1], which is obviously only an option for very

small plants, where the search over λ and γ is by gridding. The blue line depicts

ADMM-R Method 13 (on p. 206) when one enforces λ ∈ R, and only proceeds up to

step 5 in that method, and reports τ (pre). Enforcing λ ∈ R would result in real-only
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perturbations and thus would also be an upper for the real DFM radius. The purple

line denotes the usage of ADMM-R method, which is seen to be able to find a real

perturbation of a smaller norm.
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Chapter 7: Conclusions and Future Works

We will conclude by mentioning possible future directions regarding the topics

discussed in this dissertation in this chapter.

Chapter 2 discussed stabilizability of LTI systems with respect to decentralized

LTI controllers. The algorithm developed in Section 2.1.5 could be further studied

to make it more optimized. It is interesting to know if it could be devised in a way

that results in a controller with the lowest possible McMillan order. Also, when

designing the controller, each of the subsystems in the considered framework are

assumed to be aware of the control law of the other subsystems, and it is interesting

to to study if and under what conditions one could proceed with an ad-hoc design

paradigm in absence of such knowledge.

Chapter 3 studied designing H∞-optimal decentralized controllers when the

plant is quadratically invariant. The QI allowed transformation of the decentralized

controller design problem into a decentralized mode-matching problem, and the

rest of that chapter developed algorithms assuming that this model-matching form

with a convex decentralization constraint is either given, or possible to obtain. It

is interesting to explore if and how one could extend this framework to non-QI

information structures.
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Chapter 4 considered a pure optimization problem of minimization of a non-

convex singular value of a matrix variable. We provided a family of convex heuristics,

and discussed a counter-intuitive observation regarding which is the best. It is

interesting to study this problem in more detail to be able to provide when and

under what conditions such convex heuristics would actually recover the optimal

solution, whether it be in local or global sense. Lower bounds for this metric was

also derived in latter sections of that chapter, which were based on the formulation

of the singular-values as polynomial optimization problems, then lower bounds for

these PO were considered using Sum-of-Squares techniques. The scalability of these

lower bounds depend heavily on the underlying PO problems, and it is interesting

to explore in more detail to see when and how a scalable PO for this problem could

be derived.

Chapter 5 considered a class of MINLP problems that is convex except for a

discrete variable and an ADMM-based algorithm was derived that allowed separate

update of this discrete variable for each of its elements with a linear per-iteration

complexity in the dimension of the discrete variable when the discrete variable ap-

peared in absence of a mixing matrix in an affine part of the objective. Extensions

were possible in presence of a mixing matrix that possess a mild degree of mixture

level. It is interesting to embed this algorithm in branch and bound frameworks,

and then compare it with some of the off the shelves ones that use such techniques.

It is also interesting to theoretically quantify how well this algorithm would perform

based on the mixture level, and to provide explicit extensions when g(·, ·) is not

affine in the discrete variable.
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Chapter 6 considered the problem of finding a non-binary measure of control-

lability with respect to the decentralized information structures. We considered the

complex and real decentralized fixed-mode radius and transformed them into equiv-

alent forms involving a binary vector, rather than minimization over a power-set.

We then derived simpler MINLP forms with the binary vector appearing affinely in

the objective, and showed that these forms would indeed upper bound the original

metrics. These upper bounds result from the diagonalization procedure and it is

interesting to explore this in more detail to quantify how good these upper bounds

would be. It is also interesting to consider such robustness measures based on the

stabilizability notions for other types of information structures. Furthermore, it is

also desirable to see when and how one can embed these robustness measures into a

design framework, in which one wants to find a robust and efficient decentralization

paradigm by allowing the sparsity constraints to be variable as well.
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[20] V. Pichai, M. Sezer, and D. Šiljak, “A graph-theoretic characterization of struc-
turally fixed modes,” Automatica, vol. 20, no. 2, pp. 247 – 250, 1984. 26, 185,
186

[21] R. E. Kalman, “Canonical structure of linear dynamical systems,” Proceedings
of the National Academy of Sciences of the United States of America, vol. 48,
no. 4, p. 596, 1962. 31

[22] E. J. Davison and S.-H. Wang, “Properties of linear time-invariant multivariable
systems subject to arbitrary output and state feedback,” Automatic Control,
IEEE Transactions on, vol. 18, no. 1, pp. 24–32, 1973. 31

226



[23] D. Serre, Matrices: Theory and Applications, 2nd ed. Springer, 2010. 44

[24] E. Davison and T. Chang, “Decentralized stabilization and pole assignment for
general proper systems,” Automatic Control, IEEE Transactions on, vol. 35,
no. 6, pp. 652–664, Jun 1990. 64, 65

[25] G. Halikias, A. Papageorgiou, and N. Karcanias, “Non-overshooting stabilisa-
tion via state and output feedback,” International Journal of Control, vol. 83,
no. 6, pp. 1232–1247, 2010. 65, 67, 68

[26] CVX Research, Inc., “CVX: Matlab software for disciplined convex program-
ming, version 2.1,” http://cvxr.com/cvx, Jun. 2014. 75, 102, 197

[27] P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H∞ con-
trol,” International Journal of Robust and Nonlinear Control, vol. 4, pp. 421–
448, 1994. 79, 104, 107

[28] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State-space
solutions to standard H2 and H∞ control problems,” IEEE Transactions on
Automatic Control, vol. 34, no. 8, pp. 831–847, 1989. 79, 104

[29] G. Zhai, M. Ikeda, and Y. Fujisaki, “Decentralized H∞ controller design: a
matrix inequality approach using a homotopy method,” Automatica, vol. 37,
no. 4, pp. 565 – 572, 2001. 79

[30] V. Bompart, D. Noll, and P. Apkarian, “Second-order nonsmooth optimization
for H∞ synthesis,” Numerische Mathematik, vol. 107, no. 3, pp. 433–454, 2007.
79

[31] G. Scorletti and G. Duc, “A convex approach to decentralized H∞ control,” in
Proc. American Control Conference, vol. 4, 1997, pp. 2390–2394. 79

[32] C. W. Scherer, “Structured finite-dimensional controller design by convex op-
timization,” Linear Algebra and its Applications, vol. 351-352, pp. 639 – 669,
2002. 79

[33] H. Hindi, B. Hassibi, and S. Boyd, “Multi-objective H2/H∞-optimal control via
finite dimensional Q-parametrization and linear matrix inequalities,” in Proc.
American Control Conference, 1998, pp. 3244–3249. 80, 85

[34] C. W. Scherer, “Structured H∞-optimal control for nested interconnections: A
state-space solution,” Systems and Control Letters, vol. 62, no. 12, pp. 1105 –
1113, 2013. 80

[35] Y. Wang, J. P. Lynch, and K. H. Law, “Decentralized H∞ controller
design for large-scale civil structures,” Earthquake Engineering and Structural
Dynamics, vol. 38, no. 3, pp. 377–401, 2009. [Online]. Available:
http://dx.doi.org/10.1002/eqe.862 80

227

http://cvxr.com/cvx
http://dx.doi.org/10.1002/eqe.862


[36] C. W. Scherer, “An efficient solution to multiobjective control problems with
lmi objectives,” Systems & control letters, vol. 40, no. 1, pp. 43–57, 2000. 80,
82, 94, 95

[37] A. Megretski, “H-infinity optimal decentralized matching model is not always
rational,” preprint arXiv:1305.5856, 2013. 81

[38] A. Alavian and M. C. Rotkowitz, “Q-parametrization and an SDP for H∞-
optimal decentralized control,” in Proceedings of the IFAC Workshop on Esti-
mation and Control of Networked Systems, 2013. 81

[39] ——, “On the pole selection for H∞-optimal decentralized control,” in Proc.
American Control Conference, 2015, pp. 5471–5476. 81

[40] J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part II: Con-
vex relaxation,” Signal Processing, vol. 86, no. 3, pp. 589–602, 2006. 81, 109,
111

[41] D. D. Siljak, Decentralized control of complex systems. Academic Press, Boston,
1994. 83

[42] X. Qi, M. Salapaka, P. Voulgaris, and M. Khammash, “Structured optimal and
robust control with multiple criteria: A convex solution,” IEEE Transactions
on Automatic Control, vol. 49, no. 10, pp. 1623–1640, 2004. 83

[43] D. Youla, H. Jabr, and J. B. Jr., “Modern Wiener-Hopf design of optimal
controllers: part II,” IEEE Transactions on Automatic Control, vol. 21, no. 3,
pp. 319–338, 1976. 84

[44] M. Rotkowitz and S. Lall, “Affine controller parameterization for decentralized
control over Banach spaces,” IEEE Transactions on Automatic Control, vol. 51,
no. 9, pp. 1497–1500, September 2006. 84

[45] P. Shah and P. A. Parrilo, “H2-optimal decentralized control over posets: A
state space solution for state-feedback,” in Proc. IEEE Conference on Decision
and Control, Dec. 2010, pp. 6722–6727. 85

[46] S. Boyd and C. Barratt, Linear Controller Design: Limits of Performance.
Prentice-Hall, 1991. 90

[47] P. Shah, B. N. Bhaskar, G. Tang, and B. Recht, “Linear system identification
via atomic norm regularization,” preprint arXiv:1204.0590, 2012. 111

[48] M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Dictionary learning for sparse
representation: A novel approach,” Signal Processing Letters, IEEE, vol. 20,
no. 12, pp. 1195–1198, Dec 2013. 115

[49] B. Recht, W. Xu, and B. Hassibi, “Necessary and sufficient conditions for suc-
cess of the nuclear norm heuristic for rank minimization,” in Proc. IEEE Con-
ference on Decision and Control. IEEE, 2008, pp. 3065–3070. 121

228



[50] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization,” SIAM review, vol. 52,
no. 3, pp. 471–501, 2010. 121

[51] E. J. Candès and B. Recht, “Exact matrix completion via convex optimization,”
Foundations of Computational mathematics, vol. 9, no. 6, pp. 717–772, 2009.
121

[52] A. S. Lewis and H. S. Sendov, “Nonsmooth analysis of singular values. Part I:
Theory,” Set-Valued Analysis, vol. 13, no. 3, pp. 213–241, 2005. 121, 124, 132

[53] ——, “Nonsmooth analysis of singular values. Part II: Applications,” Set-
Valued Analysis, vol. 13, no. 3, pp. 243–264, 2005. 121, 126, 132

[54] T.-H. Oh, Y.-W. Tai, J.-C. Bazin, H. Kim, and I. S. Kweon, “Partial sum
minimization of singular values in robust pca: Algorithm and applications,”
IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 4,
pp. 744–758, 2016. 121

[55] A. Alavian and M. C. Rotkowitz, “Minimization of a particular singular value,”
in Proceedings of the 54th Annual Allerton Conference on Communication Con-
trol and Computing, 2016, pp. 974–981. 122

[56] A. Ben-Tal and A. Nemirovski, “Lectures on modern convex optimization anal-
ysis, algorithms, and engineering applications. philadelphia: Siam, 2013,” URL:
http://www2.isye.gatech.edu/˜nemirovs/Lect ModConvOpt.pdf. 127

[57] J. B. Lasserre, “Global optimization with polynomials and the problem of mo-
ments,” SIAM Journal on Optimization, vol. 11, no. 3, pp. 796–817, 2001. 134,
135, 136, 150

[58] C. D. Meyer, Matrix analysis and applied linear algebra. Siam, 2000, vol. 2.
136

[59] F. R. Gantmakher, The theory of matrices. American Mathematical Soc.,
1998, vol. 131. 140

[60] G. T. Gilbert, “Positive definite matrices and sylvester’s criterion,” The Amer-
ican Mathematical Monthly, vol. 98, no. 1, pp. 44–46, 1991. 140

[61] R. Horn and C. R. Johnson, Eds., Matrix Analysis. New York, NY, USA:
Cambridge University Press, 1985. 142

[62] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004. 146

[63] ——, “Semidefinite programming relaxations of non-convex problems in control
and combinatorial optimization,” in Communications, Computation, Control,
and Signal Processing. Springer, 1997, pp. 279–287. 149

229



[64] F. Alizadeh, “Interior point methods in semidefinite programming with appli-
cations to combinatorial optimization,” SIAM Journal on Optimization, vol. 5,
no. 1, pp. 13–51, 1995. 149

[65] L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0-1 op-
timization,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190, 1991.
149

[66] S. Burer and D. Vandenbussche, “Solving lift-and-project relaxations of binary
integer programs,” SIAM Journal on Optimization, vol. 16, no. 3, pp. 726–750,
2006. 149

[67] J. B. Lasserre, “Semidefinite programming vs. LP relaxations for polynomial
programming,” Mathematics of operations research, vol. 27, no. 2, pp. 347–360,
2002. 150

[68] H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems,”
SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp. 411–430, 1990. 150

[69] R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A simple effective heuris-
tic for embedded mixed-integer quadratic programming,” in Proc. American
Control Conference, 2016, pp. 5619–5625. 150, 154

[70] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Foundations and Trends R© in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.
150

[71] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex
nonsmooth optimization,” preprint arXiv:1511.06324, 2016. 150

[72] S. Diamond, R. Takapoui, and S. Boyd, “A general system for heuristic solution
of convex problems over nonconvex sets,” arXiv preprint:1601.07277, 2016. 150,
154

[73] A. Alavian and M. C. Rotkowitz, “Improving ADMM-based optimization of
mixed integer objectives,” in Proceedings of the 51st Annual Conference on
Information Sciences and Systems, 2017. 150

[74] X. Zhang, M. Burger, and S. Osher, “A unified primal-dual algorithm frame-
work based on bregman iteration,” Journal of Scientific Computing, vol. 46,
no. 1, pp. 20–46, 2011. 165, 166

[75] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends R© in
Optimization, vol. 1, no. 3, pp. 127–239, 2014. 165, 166

230



[76] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal regular-
ization for deconvolution and sparse reconstruction,” SIAM Journal on Imaging
Sciences, vol. 3, no. 3, pp. 253–276, 2010. 166

[77] C. Paige, “Properties of numerical algorithms related to computing controlla-
bility,” IEEE Transactions on Automatic Control, vol. 26, no. 1, pp. 130–138,
1981. 181

[78] J. W. Demmel, “On condition numbers and the distance to the nearest ill-posed
problem,” Numerische Mathematik, vol. 51, no. 3, pp. 251–289, 1987. 181

[79] D. Boley and W.-S. Lu, “Measuring how far a controllable system is from an
uncontrollable one,” IEEE Transactions on Automatic Control, vol. 31, no. 3,
pp. 249–251, 1986. 181

[80] J. Sreedhar, P. V. Dooren, and A. L. Tits, “A fast algorithm to compute the real
structured stability radius,” International Series of Numerical Mathematics,
pp. 219–230, 1996. 181

[81] C. T. Lawrence, A. L. Tits, and P. V. Dooren, “A fast algorithm for the com-
putation of an upper bound on the µ-norm,” Automatica, vol. 36, no. 3, pp.
449–456, 2000. 181, 182

[82] M. Gu, “New methods for estimating the distance to uncontrollability,” SIAM
Journal on Matrix Analysis and Applications, vol. 21, no. 3, pp. 989–1003, 2000.
181

[83] M. Gu, E. Mengi, M. L. Overton, J. Xia, and J. Zhu, “Fast methods for es-
timating the distance to uncontrollability,” SIAM journal on matrix analysis
and applications, vol. 28, no. 2, pp. 477–502, 2006. 181

[84] J. V. Burke, A. S. Lewis, and M. L. Overton, “Pseudospectral components
and the distance to uncontrollability,” SIAM Journal on Matrix Analysis and
Applications, vol. 26, no. 2, pp. 350–361, 2004. 181

[85] B. Dumitrescu, B. Sicleru, and R. Stefan, “Computing the controllability ra-
dius: a semi-definite programming approach,” IET Control Theory & Applica-
tions, vol. 3, no. 6, pp. 654–660, 2009. 182

[86] A. Alavian and M. C. Rotkowitz, “On a Hankel-based measure of decentral-
ized controllability and observability,” in Proceedings of the IFAC Workshop on
Estimation and Control of Networked Systems, 2015, pp. 227 – 232. 182

[87] L. Qiu, B. Bernhardsson, A. Rantzer, E. Davison, P. Young, and J. Doyle, “A
formula for computation of the real stability radius,” Automatica, vol. 31, no. 6,
pp. 879–890, 1995. 183

231



[88] B. Bernhardsson, A. Rantzer, and L. Qiu, “Real perturbation values and real
quadratic forms in a complex vector space,” Linear Algebra and its Applications,
vol. 270, no. 1-3, pp. 131–154, 1998. 183

[89] S. Lam and E. J. Davison, “A fast algorithm to compute the controllability,
decentralized fixed-mode, and minimum-phase radius of LTI systems,” in Proc.
IEEE Conference on Decision and Control, 2008, pp. 508–513. 183, 205

[90] A. Alavian and M. C. Rotkowitz, “An optimization-based approach to decen-
tralized assignability,” in Proc. American Control Conference, 2016, pp. 5199–
5204. 183

[91] ——, “Enhanced approximation of the decentralized assignability measure by
subgradient methods,” in Proc. Mathematical Theory of Networks and Systems,
2016, pp. 511–514. 183

[92] ——, “Polynomial optimization methods for determining lower bounds on de-
centralized assignability,” in Proceedings of the 54th Annual Allerton Confer-
ence on Communication Control and Computing, 2016, pp. 1054–1059. 183

[93] B. D. Anderson and D. J. Clements, “Algebraic characterization of fixed modes
in decentralized control,” Automatica, vol. 17, no. 5, pp. 703–712, 1981. 185

[94] G. H. Golub and C. F. V. Loan, Matrix computations. The Johns Hopkins
University Press, 1996. 196

[95] M. Karow, “Geometry of spectral value sets,” Ph.D. dissertation, University of
Bremen, 2003. 207

[96] D. Henrion, J.-B. Lasserre, and J. Löfberg, “Gloptipoly 3: moments, optimiza-
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