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Salmonella enterica subsp. enterica causes over 99% of human salmonellosis. 

Salmonella Newport has ranked in the top three Salmonella serotypes associated with 

foodborne outbreaks in the United States. S. Newport is ubiquitous in the environment. S. 

Newport consisted of three lineages. It is necessary to investigate and determine the 

evolution relationship between S. Newport and to identify the genetic diversities of this 

emerging foodborne pathogen. Whole genome sequencing has played important roles in 

food safety and public health providing the most accurate information for phylogenetic 

analysis and more comprehensive picture for comparative genomics.  

Total 26 S. Newport strains from diverse sources and geographic locations were selected 

and conducted pyrosequencing to obtain 16-24 × coverage of draft genomes. More than 

140,000 SNPs were identified to construct parsimony tree. Phylogenetic analysis 

indicated that S. Newport was divided into two major groups, lineages II and III. Lineage 

II was further grouped into three subgroups, IIA, IIB, and IIC. Lineage III strains showed 



 

close relationship to each other. Moreover, lineages II and III displayed divergent 

distance. Comparative genomics identified the region around mutS as potential 

biomarkers to distinguish these two lineages, including ste fimbrial operon, transposase, 

and cas genes.  

Salmonella pathogenicity islands (SPIs) play essential roles in virulence, metabolism, and 

host adaptations in Salmonella. Due to the significant roles of SPI-5 and SPI-6, the 

genetic diversities in these two gene clusters may contribute to the various activities in 

different strains. Both indels and mutations were identified in SPI-5, including two large 

insertions with over 40 kb encoding phage genes and 146 single nucleotide 

polymorphisms (SNPs). The phylogenetic tree of SPI-5 genes showed that lineages II and 

III contained divergent distances. SPI-6 was not identified in Asian strains in subgroup 

IIA, indicating the potential differences in virulence and host adaptations.   

S. Newport multidrug resistant strains have been clinical important issue in the United 

States. Plasmids contributed to the MDR phenotypes. The common genetic 

characterizations of these strains could be help to understand the prevalence of MDR 

strains. In the current study, all MDR strains belonging to one node in IIC and contained 

unfunctional CRISPR systems.  
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CHAPTER ONE: LITERATURE REVIEW 

Salmonella are gram-negative, facultative anaerobic bacteria belonging to the family 

Enterobacteriaceae (1) and diverged from one common ancestor with Escherichia coli 

approximately 100 million years ago (2). Salmonella consists of two different species: 

Salmonella bongori and Salmonella enterica (3) including over 2,500 serotypes based on 

somatic antigens and flagella antigens (1). Salmonella enterica subspecies enterica 

composing of over 1,500 serotypes causes most human salmonellosis. Salmonella 

enterica subspecies enterica serotype Newport (S. Newport) is one emerging and 

significant serotype associated with foodborne outbreaks in the United States.  

Classification of Salmonella 

The genus Salmonella includes two species: Salmonella bongori and Salmonella 

enterica. S. enterica composes of six subspecies including enterica, salamae, arizonae, 

diarizonae, houtenae, and indica (subspecies I, II, IIIa, IIIb, IV, and VI, respectively). 

According to the Kauffmann-White serotyping scheme, Salmonella also consists of over 

2,500 serotypes. The cell surface carbohydrate (somatic antigens or O antigens) and 

flagella antigens (H antigens) are the two components in the serotyping method (4). Over 

1,500 serotypes belong to S. enterica subspecies enterica, which causes approximate 99% 

salmonellosis in human and warm blood animals. Moreover, phage typing method 

differentiates variants in the same serotype, providing a further classification method (5, 

6). Moreover, according to host specificity, Salmonella includes three categories: 1) those 

infecting human only such as S. Typhi and S. Paratyphi A; 2) host adapted ones including 

S. Gallinarum in poultry and S. Dublin in cattle; 3) un-adapted ones like S. Typhimurium, 

S. Enteritidis and S. Newport. 
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Subtyping methods of Salmonella 

Different molecular subtyping methods have been used to differentiate close related 

Salmonella including pulse field gel electrophoresis (PFGE) (7, 8), multilocus enzyme 

electrophoresis (MLEE) (9), multilocus sequence typing (MLST) (7, 10), and clustered 

regularly interspaced short palindromic repeats (CRISPR) arrays (11, 12). However, 

these methods do not own enough sensitivity and discriminatory power to differentiate 

clonal strains (13, 14).  

Salmonellosis: an overview 

Salmonella causes approximately 1.4 million foodborne illness cases in the United States 

each year, including 500 deaths (15, 16). Pathogenic Salmonella normally enter human 

body via contaminated water and food. Pets carry Salmonella as well, such as reptiles and 

amphibians (17, 18). Salmonellosis includes typhoidal illness and gastrointestinal illness 

(19). S. Typhi or S. Paratyphi A/B causes typhoid fever, a severe systemic human 

infection (17). Gastrointestinal illnesses includes abdominal pain, vomiting and diarrhea, 

which are the common symptoms caused by non-typhoidal Salmonella (20). The most 

common four serotypes account for over 50% salmonellosis in the Unites States, 

including S. Typhimurium, S. Enteritidis, S. Newport, and S. Heidelberg (20). Salmonella 

possesses the acid tolerance response to survive in low pH condition in human stomach 

(21). Salmonella enters small intestine and traverse mucous layer to invade 

nonphagocytic enterocytes of the intestinal epithelium (17, 22, 23).  

Outbreaks caused by S. Newport 

S. Newport causes over 100,000 illness cases annually in the United States (24). S. 

Newport has been named the top three serotypes (9.3%) isolated human sources since 
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1999 (20). More importantly, infections of S. Newport have been on the rise since 1996 

(25). The frequency of S. Newport in human resource isolates increased 46% in 2009 

compared to 1999 in the United States (20). S. Newport is an emerging and rising 

serotype responsible for foodborne outbreaks originated from diverse sources (26-30). 

For example, one S. Newport strain isolated from tomato field caused two multistate 

outbreaks at 2002 and 2005, respectively. Furthermore, multidrug resistant S. Newport 

has been another emerging public health issue, for both sporadic infections and outbreaks 

(31-33).  

Salmonella pathogenicity islands 

Salmonella pathogenicity islands (SPIs) are gene clusters consisting of chromosomal 

virulence genes and identified only in pathogenic Salmonella (19). Virulence genes in 

SPIs are related to host adaptation, invasion activity, secretion of virulent factors, and 

survival. SPIs usually are identified next to tRNA with heterogeneous GC content and 

codon usage, indicating that bacteria acquired SPIs via horizontal gene transfer from 

foreign genetic sources (19). There are 22 SPIs identified to date. Various serotypes 

contained distinct distributions of SPIs (34, 35). For example, SPI-7 identified as the 

largest island to date was determined in S. Typhi, but absent in S. Typhimurium. Thus, 

the distributions of SPIs and variations in SPIs would be important indicators to 

differentiate serotypes or different lineages in the same serotype. SPI-1 to SPI-5 played 

essential parts for the pathogenicity of Salmonella.  

SPI-1 is the first identified pathogenicity island with approximate 38.8 kb (36). It was 

identified in both Salmonella species. Thus, Salmonella acquired it after the separation 

with Escherichia coli. SPI-1 encodes a type III secretion system, which was involved in 
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the invasion activity of nonphagocytic cells and proinflammatory responses (36, 37).  The 

ion uptake system (sitABCD) in SPI-1 may play important role in the stage of infection 

when Fe
2+

 and Mn
2+

 become limited. The different GC content of various parts in SPI-1 

indicated the acquisition may be one multi step process. Although SPI-1 is the essential 

one for invasion activity of pathogenic Salmonella, it was missing in one clinical strain of 

S. Senftenberg (38). mutS was located at the 3’ end of SPI-1 and possessed distinct 

evolution compared to the whole genome (39). Recombination events were not rare in the 

location around mutS (39).  

SPI-5 consisted of five genes and was identified in the S. Dublin genome first (40). It 

encodes translocated effector proteins for type III secretion systems (TTSS) in SPI-1 and 

SPI-2 (41, 42). Mutations in SPI-5 significantly reduced the pathogenicity of Salmonella 

(40).  

SPI-6 contained type VI secretion system (T6SS) with diverse functions, which was 

identified first in S. Typhimurium (43-45). The deletion of SPI-6 reduced the invasion 

activity of S. Typhimurium into Hep2 cells (43). Some serotypes carried two SPIs 

encoding T6SS (SPI-6 and SPI-19), such as S. Dublin and S. Weltevreden. However, S. 

Agona and S. Enteritidis contained only SPI-19. No T6SS was identified in S. Virchow 

and S. Paratyphi B (44). Moreover, the saf and tcf fimbrial operons were identified at 

downstream of SPI-6.  

Evolution of Salmonella Newport 

S. Newport was considered polyphyletic using MLEE (9) meaning that all strains in one 

single serotype consisting of several independent lineages in dendrogram (13). MLEE 

study identified two lineages, divisions I and II, which were related to different hosts. 
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Most of strains isolated from human belonged to division I and most of those recovered 

from animals belonged to division II. Multilocus sequence typing (MLST) method also 

determined the polyphyletic structure of S. Newport using three housekeeping genes, 

manB, fimA, and mdh (46, 47) and identified two groups, both of which related to host 

sources and multidrug resistance profile (47). Group A strains were mainly isolated from 

bovine and resistant to different antibiotics, while group B was mainly from avian and 

sensitive to antibiotics (13, 47). A later MLST study using seven housekeeping genes 

reported similar results (7). A more recent study (48) including 400 S. Newport strains 

using MLST reported three independent lineages in S. Newport population. Most strains 

from Europe belonged to S. Newport I while most of those from North America belonged 

to S. Newport II and III (48). Moreover, approximate 60% MDR strains and all the MDR-

AmpC strains belonged to S. Newport II. In contrast, 87.5% strains in S. Newport III 

were susceptible ones (48).  

The next-generation sequencing technology  

Since the first two complete Salmonella genomes published at 2001 (34, 35), a total of 36 

complete and 383 draft genomes are available in GenBank. The availability of next-

generation sequencing (NGS) platforms not only produces huge amount of data but also 

reduces the cost per genome. The entire genome sequences will provide detailed genetic 

information of foodborne pathogens and be applied in different research fields, including 

detection and typing of pathogen, optimize growth and survival strategies, host-pathogen 

interactions and epidemiology investigations (14, 49). For example, NGS could provide 

higher sensitivity and discriminatory power to differentiate close related foodborne 

pathogens belonging to same subtype in traditional molecular subgrouping methods (13, 
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14), enabling investigators to identify the possible sources of outbreaks in the traceback 

investigations.  

Compared to Sanger sequencing technology, NGS had several advantage characteristics. 

All NGS platforms do not require cloning step, avoiding biases on the genome data. In 

contrast, NGS require fragments of sequenced DNA and universal adapters to construct 

library (50). The NGS library fragments are amplified on a solid surface, one bead or flat 

glass microfluidic channel, rather than requiring sequencing reaction in microtiter plate 

wells (50). NGS allows to conduct fragments sequencing and signal detection in parallel 

with hundreds of thousands to billions of reactions simultaneously. Moreover, certain 

platform produces longer read length than Sanger technology, facilitating the following 

assembly process to produce high quality genomes.   

Project overview 

As S. Newport is the important serotype of Salmonella causing foodborne outbreaks and 

is widespread in various foods, it is necessary to investigate the evolution, genetic 

diversity, multidrug resistance, and virulence factors of S. Newport. However, traditional 

molecular methods could not provide comprehensive picture of this important pathogen. 

Whole genome sequencing data will not only report the accurate evolutionary history but 

also shed lights into the genetic diversity. S. Newport from diverse hosts and different 

geographic locations were selected. The objective of current study is to investigate 

phylogenetic relatedness, genetic diversity of important virulence factors, and possible 

genetic characteristics of multidrug resistance strains of S. Newport. Three specific 

objectives are as follows: 
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1) To determine the evolutionary relationship of S. Newport from diverse sources 

and locations.  S. Newport is widespread and could be isolated from different food 

products. All previous studies on evolutionary history of S. Newport used single gene or 

small sets of genes, which may not provide accurate information. Thus, it is important to 

determine the phylogenies among S. Newport using whole genome sequencing data. 

2) To identify the genetic diversity of Salmonella pathogenicity islands in S. 

Newport. SPIs are essential virulence factors playing important roles in invasion activity, 

survival in host cells, and causing diseases. The presence/absence and mutations in these 

gene clusters may be responsible for the differences in virulence and could be used as 

indicator of certain subgroups of S. Newport.  

3) To determine the genetic characteristics of multidrug resistance strains. Since 

multi-drug resistance (MDR) is one of the most important medical issues of S. Newport, 

several MDR strains were chosen to explore their potential common genomic background 

information, which will provide biomarkers for surveillance study and epidemiology 

investigations.  

In the following chapters, three studies are presented for each objective.  
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CHAPTER II: PHYLOGENETICS AND 

DIFFERENTIATION OF SALMONELLA NEWPORT 

LINEAGES USING WHOLE GENOME SEQUENCING 

 

Abstract 

Salmonella enterica subspecies enterica serotype Newport (S. Newport) has ranked in the 

top three Salmonella serotypes associated with foodborne outbreaks from 1995 to 2011 in 

the United States. In the current chapter, a total of 26 S. Newport strains isolated from 

diverse hosts and geographic locations were selected and conducted 454 shotgun 

pyrosequencing procedures to obtain 16-24 × coverage of high quality draft genomes. 

Comparative genomics analysis of 28 S. Newport strains (including 2 reference genomes) 

and 15 outgroup genomes identified over 140,000 informative SNPs. A resulting 

phylogenetic tree consisted of four subgroups indicating that S. Newport had a clear 

geographic structure. Strains from Asia were divergent from those from the Americas. 

Our findings demonstrated that analysis using whole genome sequencing data resulted in 

a more accurate picture of phylogeny compared to those using single genes or small sets 

of genes. I selected location around mutS in S. Newport to differentiate lineages, 

including region between invH and mutS at the 3’ end of Salmonella pathogenicity island 

1 (SPI-1), ste fimbrial operon, and clustered regularly interspaced short palindromic 

repeats (CRISPR) associated-proteins (cas). These genes in the outgroup genomes held 

high similarities with either S. Newport lineage II or III at the same locus. S. Newport 

lineages II and III owned different evolutionary histories in this region. Our data 
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demonstrated genetic flow and homologous recombination events around mutS. S. 

Newport lineages II and III diverged early in the serotype evolution and have evolved 

largely independently. Moreover, genes that could delineate subgroups within the 

phylogenetic tree and that could be used as potential biomarkers for trace-back 

investigations during outbreaks were determined. Thus, whole genome sequencing data 

provides better understanding of genetic background of pathogenicity and evolutionary 

history of S. Newport and also identified additional markers for epidemiological 

response. 
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Introduction 

Salmonellosis is a major contributor to global public health burden. In the United States, 

non-typhoid Salmonella cause an estimated 1.4 million gastroenteritis cases (1) and 

several billion dollars of economic loss annually (2). Non-typhoid Salmonella accounts 

for only 11% of foodborne illnesses (3), whereas causes 35% of hospitalizations and 28% 

of the deaths related to foodborne illnesses (4). Over 1,500 serotypes belong to 

Salmonella. enterica subsp. enterica (5). Salmonella enterica subspecies enterica 

serotype Newport (S. Newport) ranked in the top three Salmonella serotypes associated 

with foodborne outbreaks in the United States. (3). The number of S. Newport outbreaks 

increased markedly since 1995, causing at least 100,000 infections annually (3). S. 

Newport was responsible for several multistate outbreaks associated with tomatoes, 

ground beef, alfalfa sprouts, and other food products since 2002 (3, 6-9). S. Newport 

displayed high levels of genomic diversity and possessed polyphyletic structure 

according to multilocus enzyme electrophoresis (MLEE) (10) and multilocus sequence 

typing (MLST) (11-13). S. Newport contained three lineages according to MLST analysis 

(14). Most strains from Europe belong to S. Newport lineage I, whereas most strains from 

North America belong to lineages II and III (14).  

Recombination events played a key role in the evolution of Salmonella (15, 16). Brown et 

al. (17) indicated that evolution of mutS was distinct from the whole genome, and 

recombination events were not rare at the loci around mutS including 3’ end region of 

SPI-1, ste fimbrial operon and cas gene cluster. SPI-1 is a 40 kb gene cluster encoding 

type III secretion system (T3SS) (18). It was identified in both Salmonella enterica and 
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Salmonella bongori, although one study reported that an S. Senftenberg clinical strain did 

not possess SPI-1 (19).  

Clustered regularly interspaced short palindromic repeats (CRISPR)/cas systems are 

present in 90% archaea and approximately 40% of bacteria (20, 21) and considered 

important immune system to protect bacteria against foreign genetic elements as well as 

to help microbes to survive phage predation; the CRISPR/cas system also facilitated the 

microbes to adapt to specific niche (22-24). The diversity of CRISPR/cas system in E. 

coli and Salmonella revealed phylogeny of the cas protein family in different serotypes 

(25).  

Since the first two Salmonella whole genome sequences were available in 2001 (26, 27), 

a total of 36 complete and 383 draft genomes were released in GenBank, including S. 

Newport SL254 and SL317 besides our data. Whole genome sequencing has been 

increasingly used as a tool for evolutionary studies and epidemiological investigations (9, 

28-32). In the current chapter, we performed pyrosequencing to obtain 16-24 × coverage 

high quality draft genomes of 26 S. Newport strains from diverse sources and geographic 

locations. Our data demonstrated the phylogenetic relationship among S. Newport strains 

and revealed variations around mutS gene, providing genetic evidence of recombination 

events. Moreover, genes delineating major lineages and subgroups were identified and 

could be used as biomarkers to develop tools for trace-back studies for epidemiology and 

outbreak investigations. This chapter was published (33).  
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Materials and Methods 

Bacterial strains 

A total of 26 S. Newport strains isolated from diverse hosts and geographic locations 

were selected (TABLE II-1). S. Newport SL254 (ABEN01000000) and S. Newport 

SL317 (ABEW00000000) were downloaded from GenBank as reference genomes. Other 

15 Salmonella genomes of different serotypes were chosen to be outgroups according to 

pervious study (34, 35). They are S. I 4,[5],12:i- SL474 (ABAO00000000), S. Kentucky 

CDC191 (ABEI00000000), S. Kentucky CVM29188 (ABAK00000000), S. Dublin 

CT_02021853 (CP001144), S. Gallinarum 287/91 (AM933171), S. Tennessee CDC07-

0191 (ACBF00000000), S. Typhimurium 14028S (NC_016856.1), S. Typhimurium LT2 

(NC_003197.1), S. Typhimurium SL1344 (NC_016810.1), S. Typhimurium D23580 

(NC_016854), S. Choleraesuis SC-B67 (AE017220), S. Paratyphi C RKS4594 

(CP000857), S. Virchow SL491 (ABFH00000000), S. Saintpaul SARA29 

(ABAN00000000) and S. Hadar RI_05P066 (ABFG00000000). 

Pulsed field gel electrophoresis (PFGE) 

PFGE was performed according to the procedure as previously described (11).  

Genome sequencing, assembling and annotation  

Bacterial cells were pelleted from one ml of pure tryptic soytone broth from overnight 

culture by centrifugation and DNA were prepared using the DNeasy Blood & Tissue Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s instructions. I sequenced 26 S. 

Newport strains using Roche 454 GS-FLX Titanium sequencer (Roche, Branford, CT) to 

obtain 16-24 × coverage of draft genomes (except strain canine_AZ_2003 with 9 × 
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coverage). This platform provides longer read lengths than other nest generation 

sequencing platforms. De novo assemblies were performed using the Roche Newbler (v 

2.3) software package. Annotation of resulting contigs was finished by NCBI according 

to Prokaryotic Genomes Automatic Annotation Pipeline (PGAAP) (36). Phylogenetically 

informative SNPs were identified using two independent alignment methods: 1) multiple 

genome alignment of whole genome sequencing contigs using Mauve (37), and 2) 

clustering of annotated open reading frames (ORFs) using reciprocal best Basic Local 

Alignment Search Tool (BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi) hits with a 70% 

sequence identity setting followed by alignment with multiple sequence comparison by 

log-expectation (MULCLE) (38).  

Phylogenetic tree construction 

Parsimony phylogenetic tree was constructed based on 147,780 concatenated informative 

SNPs using tree analysis using new technology (TNT) (39) with finding minimum tree 

length 20 times and 100,000 iterations. Seven housekeeping genes were extracted to 

perform MLST analysis. Concatenated housekeeping gene sequences were analyzed 

using TNT (39) with same parameters. Moreover, we performed multiple sequence 

alignment using MULCLE (38) in SeaView 4 (40) and identified concatenated sequences 

of cas genes (cas1, cas2, cas5, cse1, cse2, cse3 and cse4) with around 6 kb. Strains 

frog_Vietnam, fish_Hong_Kong, fish_Vietnam, canine_AZ_2003 and pig_ear_CA were 

not involved in this analysis. I performed TNT to display evolutionary relatedness of cas 

genes with the same parameters.  

Recombination analysis 
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ClonalFrame was used (41) to analyze effects of recombination events on the 

evolutionary history of S. Newport. S. DublinCT_02021853 was used as an outgroup 

genome to display the recombination events and substitutions between S. Newport 

lineages II and III, which showed close relatedness to both lineages. All 29 Salmonella 

genomes were aligned using progressiveMauve (37) with the default settings. I used the 

stripSubsetLCBs (locally collinear blocks) (http://gel.ahabs.wisc.edu/mauve/snapshots/) 

script to extract core blocks, which created core alignments longer than 500 bp that 

included all 29 genomes. I obtained total 510 LCBs. Given the computational demands 

necessary to analyze all 510 blocks simultaneously, we created three separate datasets 

each consisting of 50 randomly selected blocks. I ran ClonalFrame (41) on each of these 

three datasets with estimated parameters based on 200,000 generations of which the first 

100,000 generations served as burn-in. The thinning interval was set to 100. The Gelmin-

Rubin statistic was used to determine whether the independent runs had converged on 

similar parameter estimates, which also provided evidence that random subsets of the 

genome did not bias our results. Furthermore, Mauve (37)  was used to compare the 

genomic organizations.  

Differences of gene cluster between invH and mutS 

I performed blastp to search best match of genes between invH and mutS, including gene 

clusters 1, 2, and 3. Tblastn was employed to verify the searching results.  

Pairwise distance matrix 

MEGA 5.05 (42) was employed to calculate evolutionary distance (no. of differences) 

over sequence pairs between groups with 1,000 bootstrap iterations.  

https://exch.mail.umd.edu/owa/redir.aspx?C=AWD1fk_oWEitckImQnDPzOTB6Mh1hc8Ig8WxI6HsOLuVpcVUlPqAvo7EjLm24ck9Z9VnprLOXwI.&URL=http%3a%2f%2fgel.ahabs.wisc.edu%2fmauve%2fsnapshots%2f
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Searching for most variable genes 

Custom software was employed to look for the genes and informative SNPs defining the 

major lineages and subgroups. This was a GUI shell around open source software. In this 

analysis, a total of 29 genomes including all 28 S. Newport strains and S. Choleraesuis 

SC-B67 as an outgroup genome were selected. UCLUST algorithm (43) was employed to 

search gene families, using default settings with a 95% sequence identities cutoff. 

Maximum and minimum length of a gene cluster to search was 58,000 and 10 bp, 

respectively. MUSCLE (38) was employed to perform alignment with default settings. 

SNPs of these gene clusters were detected and were used to create phylogenetic matrix to 

construct phylogenetic tree using TNT (39) and count the informative SNPs that 

delineating major and subgroups on the nodes. Then we selected the genes containing the 

largest number of informative SNPs that defined major lineages and subgroups.  
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Results 

Phylogenetic Relationship 

Pyrosequencing was used to obtain 16-24 × coverage (except strain from 

canine_AZ_2003 with 9 × coverage) of high quality draft genomes of 26 S. Newport 

strains with genome sizes ranging from 4.6M bp to 5.0M bp (TABLE II-1). Other 15 

genomes were selected as outgroup genomes to determine evolutionary relatedness and 

test polyphyly with S. Newport according to previous studies (34, 35) and one 

unpublished study of Center for Food Safety and Applied Nutrition, FDA. The outgroup 

genomes had close relatedness with S. Newport or were able to separate S. Newport. S. 

Newport SL254 and S. Newport SL317 were selected as reference genomes of S. 

Newport lineages II and III, respectively (14). S. Newport strains farm_1_VA_2007 and 

farm_15_VA_2007 were environmental isolates from a farm on the Virginia Eastern 

Shore. Among the 26 draft genomes, the largest genome size was 5.01M bp of 

cannine_AZ_2003, while the smallest one was 4.65M bp of pepper_Vietnam. There was 

no correlation between genome size and major lineages or subgroups. 

Over 147,000 informative SNPs were identified from multiple genome alignment and 

were used to construct a parsimony phylogenetic tree (FIG II-1). All 28 S. Newport 

genomes (including S. Newport SL254 and SL317) were grouped into two major lineages 

(FIG II-1), lineages II and III (14). S. Newport lineage II was further divided into 

subgroups IIA, IIB and IIC. S. Newport displayed a clear geographic structure. For 

example, strains frog_Vietnam, fish_Hong_Kong, fish_Vietnam, shrimp_India, 

squid_Vietnam and pepper_Vietnam were placed in two subgroups (IIA and IIB) in 

lineage II, and divergent from those from the Americas (IIC). The two Vietnamese strains 
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in subgroup IIA grouped together to the exclusion of the other Asian strain and the same 

grouping of Vietnamese strains was also seen in IIB. IIC included one Mexican strain 

(cheese_Mexico) and many North American strains and defined the Americas clade. 

However, this structure was imperfect with pig_ear_CA located in IIA, an otherwise 

Asian clade. The U.S. strains from various hosts were diverse and grouped into both 

major lineages. All strains in lineage III were isolated from the United States. S. Newport 

lineages II and III were polyphyletic, namely, lineage III displayed closer evolutionary 

relationship with S. Hadar and S. Typhimurium outgroups than lineage II (FIG II-1).  

Since MLST has been used as a common analysis tool to study the phylogenetic 

relatedness and epidemiology of Salmonella, we extracted seven housekeeping genes 

(aroC, dnaN, hemD, hisD, purE, sucA, and thrA) in each genome (except strain 

canine_AZ_2003 because of sequence quality) and performed MLST analyses (FIG II-2). 

MLST indicated that lineage II was grouped into three subgroups with minor differences 

with the genome phylogenetic tree. For example, subgroup IIA showed closer relatedness 

with IIB than IIC. Additionally, lineages II and III were separated by outgroup genomes, 

although outgroups displayed different relatedness compared with the genome tree (FIG 

II-1). For example, S. Virchow, S. Paratyphi C and S. Choleraesuis showed closer 

relationship with lineage II. 

Furthermore, we listed pairwise SNP variation among these four subgroups (IIA, IIB, IIC 

and III) and five different outgroups (TABLE II-2). The inter-lineage SNP diversity was 

remarkable indicating the extensive genomic diversity in S. Newport population. For 

example, the distance between lineage III and subgroup IIB was approximately 36,800 

SNPs, which was greater than the one between lineage III and S. Hadar RI_05P066 
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(approximately 34,400). In lineage II, subgroup IIC had closer relationship with IIB than 

IIA (FIG II-1, TABLE II-2). 

I analyzed informative SNPs that define subgroups in the phylogenetic trees (TABLE II-

3). The SNPs that delineated the subgroups originated from various regions around the 

genome of S. Newport and included a variety of genes assigned to diverse functions 

including virulence, DNA replication and repair, and metabolism. For example, there 

were approximately 13,000 informative SNPs that changed only once and could 

differentiated lineages II and III. Additionally, there are 2831, 2508, 1259 informative 

SNPs that defining subgroups IIA, IIB, IIC, respectively.  

Moreover, we listed variable genes delineating various subgroups with their SNP 

changes, gene names and genome locus alignment coordinates (TABLE II-3). I selected 

informative SNPs from 20 most variable genes (with highest number of informative 

SNPs that changed once and defined all members of each major lineage and subgroup) 

defining the two major lineages subgroups in lineage II. For example, tpiA gene 

(SNSL254_A4410) could be used as a marker to differentiate lineages II and III. At 

position 91 of the alignment, nucleotides in S. Newport SL254 and SL317 were A and G, 

respectively, and amino acid changed from threonine to alanine. Variable genes found 

within subgroups IIA and IIB could be used as markers for Asian strains. Furthermore, 

the most variable genes with the largest numbers of informative SNPs could be used as 

targets of resequencing (TABLE II-3). For example, there were 78 SNPs in carB (3228 

bp) and 71 SNPs in aceE (2664 bp).  

A cluster of multidrug-resistant S. Newport strains was placed in IIC, namely, node M in 

the parsimony tree (FIG II-1). Previous studies indicated that S. Newport MDR-AmpC 
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(resistant to third generation cephalosporins containing an ampC ß–lactamase gene (44, 

45)) strains belonged to lineage II (14). I identified the 20 most variable genes containing 

informative SNPs defining this subgroup (TABLE II-3). Interestingly, acrD 

(SNSL254_A2674), encoding a multidrug efflux protein, contained 12 informative SNPs 

defining subgroup IIC with 3114 bp length. All strains of subgroup IIC had nucleotide C 

at the position 84, whereas all other S. Newport strains had T at the same position. 

Additionally, five MDR strains in subgroup IIC were grouped together, including 

cattle_AZ_2003, S. Newport SL254, cattle_NC_2003, cannine_AZ_2003, 

ground_beef_GA_2004 (FIG II-1, TABLE II-1). The one exception was swine_IL_2001, 

which was MDR but separated from the other MDR strains by ground_turkey_NM_2008 

that was only resistant to Tetracycline. Furthermore, we analyzed the informative SNPs 

that delineating the node M (FIG II-1) and determined 33 informative SNPs (TABLE II-

3). It is notable that 17 of the informative SNPs were non-synonymous. For example, in 

ksgA encoding RNA dimethyltransferase associated with antibiotic resistance (46), the 

node M carried A at the position of 689, whereas the other S. Newport strains possessed 

G at the same position (TABLE II-3), resulting in an amino acid change from asparagine 

to glycine. 

I compared the genomic organization of S. Newport in distinct subgroups (FIG II-3). I 

used S. Newport SL254 as reference genome, which was complete genome in IIC, to 

compare with S. Newport SL317, pig_ear_CA and fish_Vietnam belonging to lineage III, 

subgroups IIA and IIB, respectively. Our data indicated that large indels and 

rearrangement events could be found, although the general genomic organizations are 

same.  
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Because of the importance of recombination events in the evolution of S. Newport, we 

performed ClonalFrame (41) analyses to reveal the effects of recombination events on the 

evolutionary history of S. Newport (FIG II-4). Our data indicated that the r/m (FIG II-4A: 

r/m equals the ratio of possibilities that a given site is altered through recombination 

event and substitution) and ρ/θ (FIG II-4B: ρ/θ equals the ratio of rates of recombination 

event and substitution occur at a locus) ratios were 1.68 and 0.1, respectively. Moreover, 

the genomic representation mode was selected to display the recombination events (red 

line) and substitution (green triangle) on the nodes of II vs. III and IIA vs. IIB&C (FIG 

II-4 C and D). Our data indicated that recombination events in lineage II happened more 

frequently than those between lineages II and III. 

Region between invH and mutS  

Genes between invH and mutS in both lineages displayed distinct contents and were 

defined as gene clusters 1 and 2, respectively (TABLE II-4). Because they were 

conserved in each lineage, S. Newport strains SL254 and chicken_MO were selected for 

further analysis of these gene clusters. All 15 outgroup genomes possessed gene cluster 1 

at the same location with minor differences were identified.  

Gene cluster 1 contained six genes ranging from 282 to 669 bp and encoding ABC 

transport system protein, transposase, phosphatase and membrane protein (TABLE II-4). 

The GC content ranged from 41.7 to 55.9%. The best hits of blastp against these genes 

belonged to various serotypes. For example, the best blast match of pphB gene in gene 

cluster 1 was S. Typhimurium LT2; and the best blastp match of tnp gene encoding a 

transposase in S. Newport SL254 was Enterobacter cloacae with 84% identities and 95% 

coverage. S. Typhimurium and S. Bardo had 62% identities and 95% coverage of tnp 
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with S. Newport SL254. Blast matches of other genes in gene cluster 1 were distributed 

broadly across Salmonella serotypes. Additionally, one large insertion (gene cluster 3) 

was identified at the 3’ end of gene cluster 1 in strain fish_Hong_Kong (FIG II-1, 

TABLE II-5), including genes encoding transposase, integrase, phage related proteins 

and proteins of type I restriction modification system in Vibrio. For example, according 

to blastp search hsdS gene showed 61% identities and 79% positives to gene in Vibrio 

splendidus; hsdM gene showed 84% identities and 92% positives to gene in Vibrio 

metschnikovii. These findings suggested that region between invH and mutS was hot spot 

for horizontal gene transfer or recombination events and could facilitate acquisitions of 

new genetic elements. 

A total of six genes ranging from 90 to 738 bp (46.7 to 55% GC contents) were identified 

in gene cluster 2 in strain chicken_MO (TABLE II-4). The best blastp hits of the genes, 

except tnpA gene, were S. Newport SL317; and the best blastp match of tnpA was S. 

Dublin CT_02021853. The best blastp hit of insF in chicken_MO was a transposase of S. 

Newport SL317 with 100% identities and 100% coverage, and insF was also found in S. 

arizonae 62:z4,z23 with 88% identities and 68% coverage and in S. Hadar RI_05P066 

with 93% identities and 100% coverage, but not in other Salmonella serotypes. The other 

four genes in gene cluster 2 had a broader distribution among different serotypes of 

Salmonella. The best blastp hits of these four genes were proteins from S. Newport 

SL317 and S. Dublin CT_02021853 with at least 93% identities and with 100% coverage. 

Additionally, tnpA gene in chicken_MO was absent in S. Newport lineage II and S. 

Virchow SL491 but present in all other genomes in the current study.  

Gene cluster encoding fimbrial operon and cas genes 
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Similar to those between invH and mutS, genes at the 3’ end of mutS displayed significant 

variations between lineages II and III, and genes of lineage II showed high similarity with 

those of the outgroup genomes (TABLE II-6). steABCDEF fimbrial operon located 

between relA and mazG was identified in lineage II and all outgroup genomes, but not 

lineage III. Blastp results demonstrated that this fimbrial operon was present in certain 

Salmonella serotypes. Lineage III strains had only two genes at the same locus, encoding 

RelE/ParE family plasmid stabilization system protein (SNSL317_A4074) and putative 

addiction module antidote protein (SNSL317_A4073). Interestingly, steF in S. Newport 

SL254 and genes between relA and mazG in S. Newport SL317 were found adjoining 

each other in S. Typhi CT18. 

I defined cas genes located at the 3’ end of mutS in lineages II and III as cas sequence 1 

and 2, respectively. Sequence alignment showed significant variations between these two 

sequences. Moreover, there are four collapsing groups in the parsimony tree because the 

sequence identities were almost 100% in each group, respectively. For example, there 

was only one substitution found at position 333 of strain from ground_turkey_MD_2003 

in total 5,781 bp compared with other four sequences in the group (data not shown). A 

parsimony tree was generated based on cas alignments (FIG II-5), showing that cas 

proteins in lineages II and III displayed divergent phylogenetic relatedness, and were 

separated by outgroup genomes. For example, cas genes of S. Paratyphi C and S. 

Choleraesuis displayed closer relatedness with cas sequence 2 of lineage III than lineage 

II strains (FIG II-5).  
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Discussion 

In the current chapter, whole genome sequencing data revealed that S. Newport lineages 

II and III were polyphyletic to each other and were separated by other Salmonella 

serotypes, such as S. Hadar and S. Typhimurium (FIG II-1). A phylogenetic tree  from 

previous study (16) based on whole genome sequencing data suggested similar 

relationships and illustrated that S. Virchow SL491 phylogenetically displayed closer 

relationship with S. Newport lineages than others. In Fricke’s (16) study, 28 sequenced 

genomes representing 21 serotypes of S. enterica were selected to demonstrate the 

evolutionary history of subgroups of S. enterica. Conversely, we focused on variability 

between major lineages and subgroups of S. Newport with 15 outgroup genomes. 

Although a phylogenetic tree based on whole genome sequencing data provided a more 

accurate dendrogram than traditional subtyping methods (32), sampling was a critical 

factor to accomplish study research goals. Importantly, these findings provided an 

insightful picture to reconstruct the evolutionary history of S. Newport. As more 

sequenced Salmonella genomes become available, more accurate and comprehensive 

phylogenetic information will give a better understanding of the evolution and ecology of 

Salmonella, for both subspecies and single serotypes (47).  

Conventional subtyping methods, such as MLST and PFGE, have been used to 

differentiate pathogenic strains during outbreaks and trace-back investigations and to 

study the phylogenetic organization of pathogens. MLST analyses (FIG II-2) indicated 

that S. Newport was divided into two major lineages and was separated by outgroup 

genomes. Lineage II was divided further into three subgroups; however, subgroup IIA 

displayed closer relatedness with IIC than IIB, which was different with the whole 
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genome based parsimony tree (FIG II-1). This was not unexpected as the genomic 

database was significantly larger than the MLST database. MLST indicated that these 

seven housekeeping genes were valuable to differentiate major and subgroups of S. 

Newport, though MLST may not accurately show the relationships in different 

subgroups. Therefore, whole genome sequencing data was able to provide more accurate 

phylogenetic relationship than small sets of genes. However, PFGE often may not be able 

to differentiate highly clonal strains (29, 32). A combination of whole genome 

sequencing and phylogenetic analysis has been proven to provide enough accuracy and 

sensitivity for epidemiological investigations (29, 32). In the current study, PFGE was 

not able to delineate the major lineages correctly, as expected (FIG II-1 and II-6). For 

example, according to the PFGE profile (FIG II-6), subgroup IIB strains were located 

with strains of lineage III to form a lineage unsupported by sequence analysis. Bell et al. 

(9) demonstrated that whole genome sequencing and phylogenetic analysis were able to 

differentiate S. Newport strains with an identical PFGE pattern during an outbreak case 

study, providing detailed information about S. Newport’s complex ecology to the 

investigators. 

The parsimony tree had a clear geographic structure, which appears to be a common 

characteristic of Salmonella (29, 32). S. Newport strains isolated from Asia were grouped 

together and divergent from those from the Americas (FIG II-1). Lineages II and III 

displayed extensive genomic diversity. For example, lineage II strains from North 

America had closer evolutionary relatedness with those of lineage II from Asia than ones 

of lineage III from North America, suggesting that the geographic structure could be 

observed only among highly clonal lineages, but may not be apparent among the major 
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lineages. Moreover, there was a diverse phylogenetic structure with strain cheese_Mexico 

genetically unique to other strains of North America (subgroup IIC in FIG II-1), 

suggesting that S. Newport strains isolated from different states in the United States and 

in the Americas may have finer geographic structure. S. Newport strains from Asia 

showed diverse geographic structure. Strains from Vietnam in subgroups IIA and IIB 

displayed closer relationship than with another Asian strain within the same subgroup 

(FIG II-1). In addition, strains from Vietnam originated from different subgroups of 

lineage II, such as frog_Vietnam and squid_Vietnam. However, pig_ear_CA was located 

in subgroup IIA, which was otherwise composed of Asian strains (FIG II-1). This result 

indicated that S. Newport strains from Asia or this subgroup may have extensive genomic 

diversity and that geographic structure may be better identified among the most highly 

clonal lineages. I hypothesized that strain pig_ear_CA may be related to a food import or 

export from the Pacific Rim. Analysis of more isolates is needed to confirm the pig-ear 

subgroup. 

The SNPs that delineating each subgroup (TABLE II-3) were the most valuable for both 

targeted resequencing efforts and rapid subtyping methods for trace-back of future S. 

Newport outbreak investigations and diagnosis, including the SNPs defining MDR 

strains, though plasmids likely play a critical role for antibiotic resistance of S. Newport 

(48, 49). Sangal et al. (14) indicated that most of lineage III strains were pan-susceptible 

and all MDR-AmpC strains were exclusively associated with two sequence types (STs) in 

lineage II. Similarly, all MDR strains in the present study were grouped together in 

subgroup IIC. I hypothesized that the plasmids of MDR strains in the present study had 

the same backbone as Y. pestis plP1202 and S. Newport pSN254, which could be broadly 



35 

 

disseminated among MDR pathogens via horizontal or vertical gene transfer (48). Genes 

associated with antibiotic resistance, acrD and ksgA, delineated subgroup IIC and node M 

(FIG II-1), respectively. Matsumura et al. (50) suggested that acrD contributed 

significantly to the formation of biofilm of E coli K-12. AcrD also played a major role in 

the intrinsic and elevated resistance of S. Typhimurium to a wide range of compounds 

(51). Lama et al. (52) indicated that a nonsense mutation of ksgA caused resistance to 

amicoumacin A in methicillin-resistant Staphylococcus aureus (MRSA).  

The region around mutS was thought to be an old region in the genome because it was 

part of the DNA mismatch repair system and SPI-1, which was acquired after Salmonella 

and E. coli separated from their common ancestor 100 million years ago (53). Diversities 

around conserved regions of the genome were identified and provided an insightful 

understanding of the evolutionary process. Region around mutS was hot spot for 

horizontal gene transfer and recombination events because this region was associated 

with pathogenicity and positive selection (54-56). For example, gene cluster 1 between 

invH and mutS included genes encoding ABC transport system protein. Recent studies 

reported that an ABC transporter gene was associated with the ability of Salmonella to 

acquire nutrients for survival during host infection (57) and drug resistance (58). Gene 

cluster 1 existed in lineage II and all outgroup genomes, but not in lineage III, suggesting 

the potential different pathogenic capability between two lineages. Moreover, the 

presence of transposable elements also could facilitate further genetic exchange in gene 

cluster 1. For example, gene cluster 3 in strain fish_Hong_Kong (TABLE II-5) was 

inserted at the 3’ end of gene cluster 1, illustrating that the evolution of this region is an 
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ongoing process. Additionally, our data suggested that genes encoding restriction 

modification subunits of Vibrio were homologous to ORFs in gene cluster 3.  

The limit of serological classification is that some unrelated strains were considered to be 

the same serotype (10, 59). As more data is available, distinct lineages of the same 

serotype are commonly found (32). S. Newport displays extensive genomic variation 

between lineages II and III, which are separated by other serotypes. Our data showed 

approximately 13,000 informative SNPs differences (SNPs that change once and define 

all members of these two major lineages) between these two lineages. Moreover, the 

pairwise distance matrix (TABLE II-2) suggested that the number of SNP differences 

between lineage III and any subgroup of lineage II was larger than that between lineage 

III and S. Hadar RI_05P066.  

S. Newport has been proposed to be paraphyletic or polyphyletic (10-14) with distinct 

clonal lineages and it acted as a frequent donor or recipient of recombination events (47). 

According to the cross-link analysis, Sangal et al. (14) hypothesized that lineages II and 

III had arisen from a single lineage then differentiated or that recombination events 

frequently happened after lineages II and III shared a niche and then would merge in the 

future. However, our data indicated that the recombination events between lineages II and 

III were less frequent than those in lineage II. Lineages II and III were polyphyletic and 

were divergent from each other by other Salmonella serotypes. The remarkable inter-

lineage distance (TABLE II-2) suggested that lineages II and III diverged early on in the 

serotype evolution of S. Newport and that they have evolved largely independently. 

Horizontal gene transfer and recombination events have been the major force for 

evolution of S. Newport (14) and our data supported that this pathogenic serotype has 
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extensive genomic diversity. It is likely that geographic and ecological structure provided 

physical proximity to facilitate the recombination events among bacteria, which may 

form subgroups of pathogen populations (60).  

Additionally, a study of the pan-genome family tree indicated that S. Newport SL254 was 

separated from S. Newport SL317 in some single gene trees by another serotype, S. 

Hadar RI_05P066 (35), which showed close relatedness with lineage III in the present 

study (FIG II-1, TABLE II-2). This separation was confirmed by both the parsimony tree 

(FIG II-1) and phylogenetic dendrogram of cas genes (FIG II-5). In the current study, 

both of the MLST and cas genes could differentiate lineages II and III; however, they 

could not delineate strains within lineage II accurately. Therefore, full genome 

information or an improved MLST panel is needed to improve our understanding of the 

evolution of Salmonella (34, 47). Lineages II and III may have acquired the cas gene 

cluster from various sources. Although we do not fully understand the process of this 

genetic exchange, horizontal gene transfer also occasionally happened to housekeeping 

genes and this supports the hypothesis that the loci around mutS are hot spots for 

horizontal gene transfer. 

Lineage II and the outgroup genomes possessed ste fimbrial operon between loci relA 

and mazG genes (TABLE II-6). The existence of the ste fimbrial operon may facilitate 

lineage II strains differing in their adhesion abilities and competing within various 

ecological environments (34, 61). den Bakker et al. (34) reported that genes enriched in 

different bacterial subpopulations could reveal various selective pressures acting on 

different subpopulations. Because genes between loci relA and mazG of these two 

lineages were both adjoining in S. Typhi CT18, this fimbrial operon may exist in lineage 
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III before it was lost. Thus, loci around mutS (62, 63) displayed mosaic structure because 

of recombination events. 
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TABLE II-1. General information of Salmonella Newport strains in this chapter. 

 

Strain ID Tree Label PFGE Pattern 

Number 

Antimicrobial Resistance 

Profile* 

WGS Accession 

Number 

Draft 

Genome 

Size 

(Mbp) 

Number 

of Contigs 

CVM 35185 bison_TN_2004 JJPX01.0218 SUL AHTJ00000000 4.71 95 

CVM 35199 caprine_TN_2004 JJPX01.0381 SUL AHTK00000000 4.75 72 

CVM 21539 chicken_MO JJPX01.0030 NA AHTL00000000 4.71 71 

CVM 33953 ground_turkey_MD_

2003 

JJPX01.0502 NA AHTM00000000 4.80 88 

CVM 35188 equine_TN_2004_1 JJPX01.0025 SUL AHTN00000000 4.71 66 

CVM 21559 turkey_CO NA NA AHTO00000000 4.74 64 

CVM 19447 frog_Vietnam JJPX01.3333 NA AHTP00000000 4.67 59 

CVM 19449 fish_Hong_Kong JJPX01.0327 TET AHTQ00000000 4.70 76 

CVM 19567 fish_Vietnam JJPX01.1947 NA AHTR00000000 4.67 53 

CVM 35202 equine_TN_2004_2 NA SUL AHTS00000000 4.96 72 

CVM 21550 swine_TX NA NA AHTT00000000 4.92 73 

CVM 22513 cattle_NC_2003 JJPX01.0042 AMC,AMP,FOX,CHL, 

KAN,STR,SUL,TET,TIO 

AHTU00000000 4.90 72 

CVM 21538 chicken_GA JJPX01.0238 NA AHTV00000000 4.93 70 

CVM 22425 cattle_AZ_2003 JJPX01.0014 AMC,AMP,FOX,CHL, 

STR,SUL,TET,TIO 

AHTW00000000 4.93 69 
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CVM 22462 canine_AZ_2003 JJPX01.0014 AMC,AMP,FOX,CHL, 

STR,SUL,TET,TIO 

AHTX00000000 5.02 384 

CVM 

N18486 

ground_turkey_NM_

2008 

JJPX01.0238 TET AHTY00000000 4.93 85 

CVM N1543 ground_beef_GA_20

04 

JJPX01.0042 AMC,AMP,FOX,AXO, 

CHL,STR,SUL,TET,TIO 

AHTZ00000000 4.89 77 

CVM 21554 swine_IL_2001 NA AMC,AMP,FOX,CHL, 

GEN,KAN,STR,SUL, 

TET,TIO 

AHUA00000000 4.69 44 

CVM 19443 shrimp_India NA NA AHUB00000000 4.81 70 

CVM 37978 spinach_CO_2008 JJPX01.0538 NA AHUC00000000 4.80 49 

CVM 19593 cheese_Mexico JJPX01.0372 NA AHUD00000000 4.65 74 

CVM 19470 squid_Vietnam NA NA AHUE00000000 4.73 84 

CVM 19536 pepper_Vietnam NA NA AHUF00000000 4.65 70 

CVM 4176 pig_ear_CA NA NA AHUG00000000 4.73 62 

FDA 117 farm_1_VA_2007
#
 NA NA AJMN00000000 4.81 91 

FDA 118 farm_15_VA_2007
#
 NA NA AJMO00000000 4.81 75 

NA S. Newport SL254 NA AMP, CHL, GEN, 

STR,AXO,SUL,TET 

ABEN01000000 4.83 0 

NA S. Newport SL317 NA NA ABEW00000000 4.95 63 
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*AMC = Amoxicillin/Clavulanic Acid, AMP = Ampicillin, FOX = Cefoxitin, AXO = Ceftriaxone, CHL = Chloramphenicol, 

GEN = Gentamicin, KAN = Kanamycin, STR = Streptomycin, SUL = Sulfamethoxazole or Sulfisoxazole , TET = 

Tetracycline, TIO = Ceftiofur. 
#
 These two samples were received from Eastern Shore of Virginia in 2007. Isolates may have 

been collected earlier than 2007.  
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TABLE II-2. Average pairwise distance (no. of nucleotide difference) for the major groups and outgroup genomes. 

 

 subgroup III Hadar Typhimurium subgroup IIC subgroup IIA subgroup IIB Dublin Gallinarum 

Hadar 34418 (93)        

Typhimurium 36094 (90) 35900 (105)       

subgroup IIC 35048 (128) 37133 (147) 38640 (144)      

subgroup IIA 35627 (108) 37320 (152) 38893 (154) 17497 (95)     

subgroup IIB 36812 (106) 38529 (122) 38752 (131) 15605 (91) 25768 (85)    

Dublin 39879 (118) 40575 (133) 39275 (154) 40314 (175) 40878 (130) 41749 (136)   

Gallinarum 43027 (100) 43758 (159) 42824 (151) 43453 (158) 42666 (133) 44822 (124) 22070 (144)  

Kentucky 49260 (106) 49409 (80) 48612 (90) 50194 (96) 50694 (128) 48236 (146) 50955 (98) 53464 (96) 

 

The valve refers to number of SNPs differences (standard deviation) between different selected groups and strains. The 

numbers of base differences per sequence from averaging over all sequence pairs between groups were shown. 
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TABLE II-3. Most variable genes that defining major lineages and subgroups 

 

Gene Locus A Locus B Nuc AA Position # of 

SNPs 

Group Description 

Genes define S. Newport Lineages II and III 

pduS SNSL254_A2230 SNSL317_A3497 G->A A/T 7 59  polyhedral body protein 

thiC SNSL254_A4496 SNSL317_A2323 C->G G 72 59  thiamine biosynthesis protein 

nrdA SNSL254_A2462 SNSL317_A3257 C->T I 186 51  ribonucleoside-diphosphate reductase 

dmsA SNSL254_A4651 SNSL317_A1619 T->C R 315 51  anaerobic dimethyl sulfoxide reductase 

ilvD SNSL254_A4186 SNSL317_A2593 G->A L 1275 47  dihydroxy-acid dehydratase 

yacH SNSL254_A0171 SNSL317_A1794 T->G S 240 40  putative outer membrane protein 

pduQ SNSL254_A2229 SNSL317_A3498 G->T A 111 38  propanediol utilization: propanol 

dehydrogenase 

putA SNSL254_A1218 SNSL317_A1473 G->A A 873 38  trifunctional transcriptional regulator 

rpoC SNSL254_A4487 SNSL317_A2332 C->T L 919 35  DNA-directed RNA polymerase subunit 

gntR SNSL254_A3810 SNSL317_A4927 T->C S 255 34  putative GntR-family regulatory protein 

hmt SNSL254_A0021 SNSL317_A1949 C->T T/G 1190 34  putative hydroxymethyltransferase 

ytfN SNSL254_A4775 SNSL317_A2173 C->T A/V 59 33  putative periplasmic protein 

norR SNSL254_A3041 SNSL317_A4199 G->T V 105 30  anaerobic nitric oxide reductase 

transcription regulator 

yegQ SNSL254_A2321 SNSL317_A3397 T->C G 72 30  peptidase U32 family protein 

tpiA SNSL254_A4410 SNSL317_A2457 A->G T/A 91 30  triosephosphate isomerase 

araA SNSL254_A0109 SNSL317_A1857 T->C I 348 29  L-arabinose isomerase 

hrpA SNSL254_A1758 SNSL317_A0497 C->T L 841 28  ATP-dependent helicase 

hypF SNSL254_A3044 SNSL317_A4196 C->T F 264 28  hydrogenase maturation protein 
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infB SNSL254_A3544 SNSL317_A3703 C->T G 1026 27  translation initiation factor IF-2 

sucA SNSL254_A0795 SNSL317_A0018 A->G E 843 27  2-oxoglutarate dehydrogenase E1 

component 

Genes defines subgroup IIA 

recG SNSL254_A4024 SEEN443_05060 C->G L 858 36 IIA ATP-dependent DNA helicase 

parC SNSL254_A3430 SEEN443_22651 G->C S/T 170 30 IIA DNA topoisomerase IV subunit A 

nirC SNSL254_A3748 SEEN443_16780 G->T A/S 658 28 IIA nitrite transporter 

cysM SNSL254_A2634 SEEN443_21787 G->A A 480 25 IIA cysteine synthase B 

sgrR SNSL254_A4141 SEEN443_14367 C->T P 96 23 IIA HTH-type transcriptional regulator 

carB SNSL254_A0071 SEEN443_13940 T->C C 294 22 IIA carbamoyl phosphate synthase large subunit 

glmS SNSL254_A4142 SEEN443_14372 C->T R 222 20 IIA glucosamine--fructose-6-

phosphateaminotransferase 

polB SNSL254_A0103 SEEN443_13795 C->T G 1080 20 IIA DNA polymerase II 

tktA SNSL254_A3322 SEEN443_22146 T->G P 294 19 IIA transketolase 

ligA SNSL254_A4019 SEEN443_05035 A->G T/A 103 19 IIA NAD-dependent DNA ligase 

pucJ SNSL254_A3907 SEEN443_06684 A->G Q 9 19 IIA xanthine permease 

cpdB SNSL254_A4766 SEEN443_00595 C->T A 780 18 IIA 3'-cyclic-nucleotide 2'-phosphodiesterase 

 SNSL254_A3270 SEEN443_21941 G->A A/T 55 18 IIA putative inner membrane protein 

levR SNSL254_A4052 SEEN443_05190 G->C Q/H 75 18 IIA sigma-54 dependent transcription regulator 

ybbP SNSL254_A0562 SEEN443_07996 G->A L 90 18 IIA efflux ABC transporter permease protein 

yggW SNSL254_A3351 SEEN443_22286 C->T D 183 17 IIA putative oxidase 

sgbU SNSL254_A3954 SEEN443_06894 C->A P/T 58 16 IIA putative L-xylulose 5-phosphate 3-

epimerase 

phoU SNSL254_A4134 SEEN443_14332 C->T A 126 16 IIA phosphate transport system regulatory 

protein 

pepN SNSL254_A1098 SEEN443_05597 C->A P/Q 341 16 IIA aminopeptidase N 

metL SNSL254_A4432 SEEN443_16720 G->A T 816 16 IIA bifunctional aspartate kinase II 
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Genes define subgroup IIB 

hemL SNSL254_A0223 SEEN447_13367 G->C T 357 29 IIB glutamate-1-semialdehyde aminotransferase 

truB SNSL254_A3542 SEEN447_18807 C->T T 132 24 IIB tRNA pseudouridine synthase B 

gyrB SNSL254_A4120 SEEN447_13058 C->T Y 726 23 IIB DNA gyrase subunit B 

dho SNSL254_A4791 SEEN447_14077 C->T H/Y 199 22 IIB dihydroorotase 

purL SNSL254_A2768 SEEN447_07165 C->T L 175 22 IIB phosphoribosylformylglycinamidine 

synthase 

carA SNSL254_A0070 SEEN447_20096 G->A E/T 757 20 IIB carbamoyl phosphate synthase small 

subunit 

aceK SNSL254_A4522 SEEN447_15307 C->T S 741 19 IIB bifunctional isocitrate dehydrogenase 

kinase 

mgtA SNSL254_A4804 SEEN447_14022 C->A R 297 18 IIB magnesium-translocating P-type ATPase 

cyaA SNSL254_A4221 SEEN447_11432 C->T L 802 17 IIB adenylate cyclase 

uvrD SNSL254_A4231 SEEN447_11487 C->T L 1603 17 IIB DNA-dependent helicase II 

mtlA SNSL254_A3963 SEEN447_08000 A->T S 1222 16 IIB pts system mannitol-specific eiicba 

component 

creC SNSL254_A4947 SEEN447_19716 T->C L 199 14 IIB sensory histidine kinase 

glnS SNSL254_A0745 SEEN447_07959 T->C Y 576 14 IIB glutaminyl-tRNA synthetase 

trmE SNSL254_A4127 SEEN447_13018 C->T R 129 13 IIB tRNA modification GTPase 

mac SNSL254_A4603 SEEN447_14967 T->C F/S 65 13 IIB putative integral membrane protein 

yebU SNSL254_A1989 SEEN447_10361 T->C Y/H 7 13 IIB paral putative rRNA methyltransferase 

yniC SNSL254_A1436 SEEN447_20726 G->A S/N 203 12 IIB phosphatase 

treC SNSL254_A4800 SEEN447_14037 G->A V/I 1018 12 IIB alpha phosphotrehalase 

thiI SNSL254_A0472 SEEN447_06040 C->T S 1320 12 IIB thiamine biosynthesis protein 

barA SNSL254_A3180 SEEN447_06891 C->T N 1011 11 IIB hybrid sensory histidine kinase 

Genes define subgroup IIC 

carB SNSL317_A1896 SNSL254_A0071 T->C V 132 36 IIC carbamoyl phosphate synthase large subunit 
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yicL SNSL317_A4701 SNSL254_A4029 A->G I/V 100 26 IIC alpha-xylosidase 

ypfI SNSL317_A1096 SNSL254_A2678 A->C R 343 21 IIC acetyltransferase 

carA SNSL317_A1897 SNSL254_A0070 A->T I 60 18 IIC carbamoyl phosphate synthase small 

subunit 

yicH SNSL317_A4702 SNSL254_A4028 C->A P 453 17 IIC AsmA family protein 

speC SNSL317_A3890 SNSL254_A3363 T->G V/G 278 17 IIC ornithine decarboxylase isozyme 

guaA SNSL317_A1071 SNSL254_A2703 T->C L 346 15 IIC GMP synthase 

kdpD SNSL317_A0049 SNSL254_A0764 T->C L 1432 15 IIC sensor protein KdpD 

malP SNSL317_A4954 SNSL254_A3788 G->A V/M 1288 15 IIC maltodextrin phosphorylase 

malQ SNSL317_A4955 SNSL254_A3787 G->A A/T 646 15 IIC 4-alpha-glucanotransferase 

torS SNSL317_A4630 SNSL254_A4109 C->T R/C 97 14 IIC hybrid sensory histidine kinase 

cysW SNSL317_A1139 SNSL254_A2636 C->T L 367 13 IIC sulfate/thiosulfate transporter permease 

subunit 

sgbU SNSL317_A4778 SNSL254_A3954 C->G Q/E 271 13 IIC putative L-xylulose 5-phosphate 3-

epimerase 

dbpA SNSL317_A0479 SNSL254_A1775 C->G T/S 203 13 IIC ATP-dependent RNA helicase 

acrD SNSL317_A1100 SNSL254_A2674 T->C F 84 12 IIC aminoglycoside/multidrug efflux system 

nrfC SNSL317_A1591 SNSL254_A4624 G->A V/I 52 12 IIC cytochrome c-type biogenesis protein 

guaB SNSL317_A1070 SNSL254_A2704 C->T S 411 12 IIC inosine-5'-monophosphate dehydrogenase 

torA SNSL317_A4634 SNSL254_A4105 T->C G 60 12 IIC trimethylamine-N-oxide reductase 

kdpB SNSL317_A0047 SNSL254_A0766 G->A G/D 200 11 IIC potassium-transporting ATPase subunit B 

malZ SNSL317_A2775 SNSL254_A0446 T->C H 258 10 IIC maltodextrin glucosidase 

Genes define node M 

rfaD SNSL317_A4743 SNSL254_A3990 G->T A/S 928 1 MDR ADP-L-glycero-D-manno-heptose-6-

epimerase 

 SNSL317_A0618 SNSL254_A1638 G->A V 222 1 MDR glutaminase 

 SNSL317_A2697 SNSL254_A0373 T->G S/A 892 1 MDR haloacetate dehalogenase H-1 
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fadH SNSL317_A3774 SNSL254_A3480 T->C C 1062 1 MDR FAD/FMN-binding/pyridine nucleotide-

disulphide oxidoreductase family protein 

pstA SNSL317_A4598 SNSL254_A4136 C->T I 429 1 MDR phosphate transporter permease subunit 

yebZ SNSL317_A0217 SNSL254_A2033 G->A V/I 604 1 MDR copper resistance protein D 

ksgA SNSL317_A1870 SNSL254_A0095 G->A G/D 689 1 MDR dimethyladenosine transferase 

yedP SNSL317_A0096 SNSL254_A2149 G->A R/H 752 1 MDR mannosyl-3-phosphoglycerate phosphatase 

suhB SNSL317_A1027 SNSL254_A2746 G->C G/R 448 1 MDR inositol monophosphatase 

ydiY SNSL317_A0820 SNSL254_A1441 A->T S 165 1 MDR outer membrane protein 

hmt SNSL317_A1949 SNSL254_A0021 T->C L 2301 1 MDR putative hydroxymethyltransferase 

hycC SNSL317_A4186 SNSL254_A3054 T->G L/V 724 1 MDR formate hydrogenlyase subunit 3 

proQ SNSL317_A0270 SNSL254_A1985 C->T P/S 259 1 MDR putative solute/DNA competence effector 

uvrY SNSL317_A0135 SNSL254_A2110 A->T Q/L 284 1 MDR response regulator 

argO SNSL317_A3941 SNSL254_A3305 A->G A 317 1 MDR arginine exporter protein 

atpI SNSL317_A4581 SNSL254_A4153 T->C P 153 1 MDR ATP synthase F0, I subunit 

nuoG SNSL317_A3209 SNSL254_A2507 C->T T 231 1 MDR NADH dehydrogenase subunit G 

tppB SNSL317_A0697 SNSL254_A1562 G->A V 612 1 MDR tripeptide transporter permease 

yhjJ SNSL317_A4850 SNSL254_A3885 G->A A 870 1 MDR  

infB SNSL317_A3703 SNSL254_A3544 C->T L 307 1 MDR translation initiation factor IF-2 

ptsG SNSL317_A4398 SNSL254_A1302 T->G S/A 43 1 MDR glucose-specific PTS system IIBC 

components 

ulaA SNSL317_A2201 SNSL254_A4744 C->T T/I 83 1 MDR ascorbate-specific PTS system enzyme IIC 

ybfM SNSL317_A0067 SNSL254_A0746 C->T T 1167 1 MDR outer membrane porin, OprD family 

mac SNSL317_A1571 SNSL254_A4603 C->T Y 21 1 MDR integral membrane protein 

ygdH SNSL317_A4058 SNSL254_A3192 C->T C 555 1 MDR lysine decarboxylase family protein 

ynfM SNSL317_A2693 SNSL254_A0369 T->G F/V 286 1 MDR permease 

adiA SNSL317_A1610 SNSL254_A4642 T->A I 459 1 MDR biodegradative arginine decarboxylase 

wzzE SNSL317_A2580 SNSL254_A4199 T->C I/T 314 1 MDR lipopolysaccharide biosynthesis protein 
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aroH SNSL317_A0802 SNSL254_A1458 A->C Q/P 449 1 MDR phospho-2-dehydro-3-deoxyheptonate 

aldolase 

speC SNSL317_A3890 SNSL254_A3363 T->G V/G 980 1 MDR ornithine decarboxylase 

yrbG SNSL317_A3673 SNSL254_A3575 C->G L/V 772 1 MDR calcium/sodium:proton antiporter 

fcl SNSL317_A3437 SNSL254_A2290 G->A V/M 94 1 MDR GDP-L-fucose synthetase 

cobD SNSL317_A3518 SNSL254_A2210 C->A G 555 1 MDR cobalamin biosynthesis protein 

The 20 most variable genes 

carB SNSL317_A1896 SNSL254_A0071    78  carbamoyl phosphate synthase large subunit 

aceE SNSL317_A1800 SNSL254_A0165    71  pyruvate dehydrogenase subunit E1 

hrpA SNSL317_A0497 SNSL254_A1758    69  ATP-dependent RNA helicase 

putA SNSL317_A1473 SNSL254_A1218    66  trifunctional transcriptional regulator 

prpD SNSL317_A2737 SNSL254_A0410    64  2-methylcitrate dehydratase 

acnB SNSL317_A1793 SNSL254_A0172    62  bifunctional aconitate hydratase 2 

opdA SNSL317_A4871 SNSL254_A3864    60  oligopeptidase A 

thiC SNSL317_A2323 SNSL254_A4496    59  thiamine biosynthesis protein 

pduS SNSL317_A3497 SNSL254_A2230    59  polyhedral body protein 

dho SNSL317_A2157 SNSL254_A4791    58  dihydroorotase 

dmsA SNSL317_A1619 SNSL254_A4651    55  anaerobic dimethyl sulfoxide reductase 

chain A 

carA SNSL317_A1897 SNSL254_A0070    54  carbamoyl phosphate synthase small 

subunit 

thrA SNSL317_A1968 SNSL254_A0002    54  bifunctional aspartokinase I/homoserine 

dehydrogenase I 

yhiQ SNSL317_A4872 SNSL254_A3863    53  methyltransferase 

fadH SNSL317_A3774 SNSL254_A3480    53  FAD/FMN-binding/pyridine nucleotide-

disulfide oxidoreductase family protein 

recG SNSL317_A4706 SNSL254_A4024    53  ATP-dependent DNA helicase 



59 

 

yicJ SNSL317_A2440 SNSL254_A4394    53  sugar (Glycoside-Pentoside-Hexuronide) 

transporter 

yacH SNSL317_A1794 SNSL254_A0171    52  putative outer membrane protein 

nrdA SNSL317_A3257 SNSL254_A2462    52  ribonucleotide-diphosphate reductase 

subunit alpha 

ypfI SNSL317_A1096 SNSL254_A2678    51  acetyltransferase 

 

Variable genes were listed by their GenBank abbreviation and function description and by the locus to S. Newport SL254, 

SL317 and two Asian strains (strains from shrimp_India and frog_Vietnam). A representative nucleotide change observed 

within each gene is listed as well as whether this caused an amino acid change and to which phylogenetic group it was 

associated with from Figure 1. These genes and SNPs were the most valuable for the targeted resequencing and rapid 

subtyping methods for outbreak investigations. I listed 20 most variable genes that defining major and sub lineages.  Moreover, 

we listed 33 informative SNPs that defining the MDR clade. # of SNPs means that the SNPs that changing once and defining 

members of major and subgroups. 
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TABLE II-4.  Characteristics of genes/open reading frames (ORFs) between invH and mutS in gene cluster 1 of S. 

Newport SL254 and gene cluster 2 of strain chicken_MO.  

 

 

 

 

 

 

ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

Gene Cluster 1 in S. Newport SL254 

A3107  282 49.3 Putative ABC-type transport 

system 

S. Typhi CT18 2e-45 NP_457295.1 DUF1778 

A3108  528 47.2 Acetyltransferase, gnat 

family 

S. Typhi CT18 7e-99 NP_457296.1 NA 

A3109 tnp 438 55.9 Transposase Enterobacter cloacae 1e-81 AAV66983.1 NA 

A3110 pphB 657 41.7 Serine/threonine-specific 

protein phosphatase 2 

S. Typhimurium LT2 1e-125 AAL21787.1 MPP 

A3111  495 48.7 Membrane protein S. Dublin CT_02021853 7e-92 ACH74700.1 NA 

A3112  669 54.1 Hypothetical protein S. Saintpaul SARA29 1e-125 EDZ12689.1 NA 
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Differences between Gene Cluster 1 and 2 demonstrated the mosaic genomic structure around mutS gene. Transposase and 

integrase were found in both sequences, indicating that both of them could be the hot spots for recombination events. The 

genes in both S. Newport SL254 and strain from chicken_MO are ordered top to bottom as their synteny on bacterial 

chromosome from 5’ to 3’.  

 

ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

Gene Cluster 1 in S. Newport SL254 

11075 insF 738 52.3 Transposase InsF for 

insertion sequence 

IS3A/B/C/D/E/fA 

S. Newport SL317 0 EDX51569.1 rve 

11080 insF 171 55 Transposase InsF for 

insertion sequence 

IS3A/B/C/D/E/fA 

S. Newport SL317 0 EDX51569.1 rve 

11085  402 50.5 ISPsy11, transposase OrfA S. Newport SL317 2e-92 EDX52090.1 NA 

11090 yis 684 50.1 Integrase, catalytic region 

(ISPsy11, transposase OrfB) 

S. Newport SL317 2e-170 EDX51974.1 rve 

11095  258 47.3 ISEhe3 OrfA S. Newport SL317 9e-57 EDX52144.1 HTH_Hin 

11100 tnpA 90 46.7 Hypothetical protein S. Dublin CT_02021853 6e-21 ACH75076.1 NA 



62 

 

TABLE II-5. Characteristics of genes/open reading frames (ORFs) in gene cluster 3 of strain fish_Hong_Kong. 

 

 

ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

18800 fic 618 49 FIC domain-containing 

protein (cell filamentation) 

Klebsiella pneumoniae 

KCTC 2242 

7e-129 AEJ99567.1 Fic 

18795  171 45.6 hypothetical protein Klebsiella pneumoniae 

KCTC 2242 

1e-28 AEJ99568.1 NA 

18790  810 44.4 hypothetical protein Acinetobacter baumannii 

SDF 

8e-160 CAP02803.1 HNHc 

18785  2002 43.2 hypothetical protein Shewanella sp. ANA-3 0 ABK49185.1 P-loop NTPase 

18780  237 42.6 hypothetical protein Acinetobacter baumannii 

SDF 

7e-37 CAP02818.1 NA 

18775 hsdS 1230 38.6 type I restriction enzyme 

specificity protein 

Vibrio splendidus 

12B01 

0 EAP93672.1 Methylase_S 

18770 hsdM 1536 41.3 type I restriction-

modification system DNA-

methyltransferase 

subunit M 

Vibrio metschnikovii CIP 

69.14 

0 EEX37915.1 HsdM_N; 

AdoMet_MTases 

18765  1473 45.8 hypothetical protein Yersinia intermedia ATCC 

29909 

0 EEQ20934.1 NA 
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ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

05488 tnpR 126 47.6 IS10 transposase S. Kentucky 1e-22 ADK62113.1 NA 

05493  453 45.3 hypothetical protein Yersinia intermedia ATCC 29909 2e-108 EEQ20933.1 NA 

05498  1692 44.3 hypothetical protein Yersinia intermedia ATCC 29909 0 EEQ20932.1 DUF927 

05503  879 41.3 hypothetical protein Yersinia intermedia ATCC 29909 7e-137 EEQ20931.1 NA 

05508  528 49.6 hypothetical protein Yersinia intermedia ATCC 29909 6e-05 EEQ20929.1 NA 

05513  558 35.3 acyltransferase Thermoanaerobacterium 

thermosaccharolyticum DSM 571 

6e-04 NC_014410.1 NA 

05518 int 930 57.6 integrase/recombinase 

(Phage related) 

E.  coli WV_060327 0 EFW70420.1 DNA_B

RE_C 

05523 radC 453 53.9 putative phage DNA 

repair protein 

E. coli SE15 6e-106 BAI54704.1 MPN 
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ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

05528  470 53.4 hypothetical protein E. coli SE15 5e-111 BAI54703.1 NA 

05533  423 42.6 hypothetical protein E. coli SE15 8e-98 BAI54702.1 DUF2787 

05538  489 50.5 hypothetical phage protein E. coli SE15 8e-107 BAI54701.1 NA 

05543 nlp 270 50.7 phage DNA-binding protein E. coli SE15 7e-57 BAI54700.1 Nlp 

05548  528 46.6 hypothetical protein E. coli SE15 4e-127 BAI54699.1 NA 

05553  360 49.7 hypothetical protein E. coli SE15 7e-74 BAI54698.1 NA 

05558  336 42.3 hypothetical protein E. coli WV_060327 4e-72 EFW70428.1 NA 

05563  1188 30.3 hypothetical protein Pseudomonas fluorescens 

WH6 

6e-54 EFQ66029.1 NA 

05568 int 1287 47.1 Phage integrase Yersinia intermedia ATCC 

29909 

0 EEQ20915.1 DNA_BRE_C 
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TABLE II-6.  Characteristics of genes/open reading frames (ORFs) between relA and mazG of S. Newport SL254 and 

SL317. 

ORF Gene 

Name 

Size 

(bps) 

GC% Best Blastp Hit Super Family 

    Description Source E Value Locus Tag  

S. Newport SL254 

A3171 steA 588 49.3 putative fimbrial 

subunit 

S. Newport 

SL254 

3e-136 ACF63661.1 Fimbrial 

A3172 steB 2646 55.5 fimbrial usher protein S. Newport 

SL254 

0 ACF64468.1 PRK15223 

A3173 steC 774 55 chaperone protein PapD S. Newport 

SL254 

0 ACF62389.1 Pili_assembly 

A3174 steD 507 56.6 fimbrial subunit S. Newport 

SL254 

2e-118 ACF63171.1 Fimbrial 

A3175 steE 471 50.7 fimbrial subunit S. Newport 

SL254 

1e-110 ACF62527.1 Fimbrial 

A3176 steF 537 52.3 fimbrial subunit S. Newport 

SL254 

1e-128 ACF62131.1 Fimbrial 

S. Newport SL317 

A4073  288 48.3 putative addiction 

module antidote protein 

S. Typhi CT18 

 

2e-47 NP_457351.1 RHH_2 

A4074  297 38.7 plasmid stabilization 

system protein, 

RelE/ParE family 

S. Newport 

SL317 

2e-51 ZP_02697812.2 Plasmid_stabil 
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I listed the detailed information of genes between relA and mazG genes. S. Newport SL254 and SL317 were selected. Our data 

indicated the genomic diversity of this region between Lineages II and III. Interestingly, ORF SNSL254_A3176 and 

SNSL317_A4073 were found adjoining together in S. Typhi CT18. The existence of ste fimbrial operon might enable Lineage 

II strains to infect variable hosts. The genes in both S. Newport SL254 and SL317 are ordered top to bottom as their synteny on 

bacterial chromosome from 5’ to 3’.   
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FIG II-1. Parsimony phylogenetic tree of S. Newport and outgroup genomes. 

This phylogenetic tree was reconstructed by TNT with 100,000 iterations based on 147,780 genome wide SNPs. All S. 

Newport strains were grouped into two major clusters, S. Newport Lineages II and III. Lineage II was further grouped into 

three subgroups, IIA, IIB and IIC. S. Newport displayed clear geographic structure. Asian strains were grouped together and 

divergent from ones from Americas. At the locus between invH and mutS genes, Lineage II and all outgroup genomes shared 

Gene Cluster 1; however, Lineage III strains shared Gene Cluster 2. Gene Cluster 3 was only found in strain from 

fish_Hong_Kong at the 3’ end of Gene Cluster 1. GC1=Gene Cluster 1; GC2=Gene Cluster 2; GC3=Gene Cluster 3. 

Additionally, Node M includes most MDR strains in the current study. 
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FIG II-2. MLST analysis of S. Newport and outgroup genomes.  

Seven housekeeping genes were selected and MLST dendrogram was performed by TNT with 100,000 iterations. S. Newport 

was divided into two major clusters, which were separated by outgroup genomes. Lineage II was divided into three subgroups, 

which display minor differences compared with the parsimony tree. Subgroup IIA showed closer relatedness with IIC than IIB.  
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FIG II-3. Genomic organization comparisons between subgroups. 
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FIG II-4. ClonalFrame analyses of recombination events. 
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FIG II-5. Parsimony phylogenetic tree for cas genes. 

I constructed this parsimony tree with 100,000 iterations by TNT based on concatenated sequences of the cas genes. This 

dendrogram indicated that cas genes of Lineages II and III were originated from distinct sources.  
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FIG II-6. Pulsed Field Gel Electrophoresis (PFGE) profile digested with XbaI. 

I performed PFGE analysis of 24 S. Newport strains (without two environmental farm isolates) isolated from diverse sources 

and geographic locations. PFGE profiles divided these strains into two major clusters with different groupings compared with 

the phylogenetic tree based on whole genome wide SNPs.  
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CHAPTER III: GENETIC DIVERSITY OF SALMONELLA 

PATHOGENICITY ISLANDS SPI-5 AND SPI-6 IN 

SALMONELLA NEWPORT 

Abstract 

This chapter was submitted to Microbiology. Salmonella Newport is one of common 

serovars causing foodborne salmonellosis outbreaks in the United States. It consists of 

three lineages with extensive genetic diversity. Most S. Newport strains from North 

America belong to S. Newport lineages II and III. A total of 28 strains of lineages II and 

III from diverse sources and geographic locations were analyzed using whole genome 

sequencing technology. Because of the importance of Salmonella pathogenicity islands 5 

and 6 (SPI-5 and SPI-6) in virulence activity of pathogenic Salmonella, the presence and 

genetic diversities of these two SPIs may be highly associated with S. Newport 

pathogenicity. SPI-5, encoding translocated effector proteins of SPI-1 and SPI-2, was 

identified in all S. Newport strains with variations. It contained two genomic islands 

(SPI5-GI1 and SPI5-GI2) of over 40 kb encoding bacteriophage genes between tRNA-ser 

and pipA and 146 single nucleotide polymorphisms (SNPs). SPI5-GI1 was identified in 

all S. Newport multi-drug resistant strains. There were 39 lineage-defining SNPs 

identified including 18 none-synonymous SNPs. SPI-6 was also present in all S. Newport 

strains except three Asian strains in subgroup IIA. The Asian strains shared a common 

genomic island at the same locus of SPI-6. The saf fimbrial operon downstream of SPI-6 

was present in the S. Newport strains. The phylogenetic trees of SPI-6 constructed with 

937 SNPs showed that all S. Newport showed clear geographic structure at the lineage 
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level. These findings illustrated the genetic diversity of these important SPIs and implied 

the potential differences of virulence in these S. Newport strains. 
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Introduction 

Non-typhoidal Salmonella cause 1.4 million foodborne illness cases annually in the 

United States, accounting for 11% of all foodborne infections (1). Salmonella enterica 

subspecies enterica serovar Newport (S. Newport) is one significant serovar associated 

with foodborne outbreaks and causes over 100,000 infections each year in the United 

States (2, 3). It has been responsible for several multistate foodborne outbreaks associated 

with ground beef and tomatoes since 2002 (3-5). S. Newport is polyphyletic with 

extensive genetic diversity and consists of three lineages based on multilocus sequence 

typing (MLST) analysis (6). Most S. Newport strains from Europe belong to lineage I 

whereas most strains from North America belong to lineages II and III (6). I performed 

whole genome sequencing analysis of 28 S. Newport strains from diverse sources and 

geographic locations, and grouped them into lineages II and III with clear geographic 

structure (7). The strains from Asia were decoupled from those from the Americas. S. 

Newport strains from Asia belonged to lineage II (7). No S. Newport lineage I strains 

have been sequenced. 

Pathogenicity islands are blocks of genes encoding various virulent determinants and 

usually absent in non-pathogenic strains of the same or closely related species (8). There 

have been 22 Salmonella pathogenicity islands (SPIs) identified (8). The selected S. 

Newport genomes contained conserved contents in SPI-1 through SPI-4 (unpublished 

data) and showed extensive diversities at the region around mutS downstream of SPI-1 

(7).  

SPI-5 was first identified in the S. Dublin genome between tRNA-serT and copR 

consisting of five genes (pipA, pipB, pipC, sopB and pipD) (9). These five genes 
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displayed a high similarity with genes of bacteriophages Gifsy-1 and Gifsy-2, such as 

pipA (10). SPI-5 plays an important role in pathogenicity, such as encoding effectors of 

SPI-1 and SPI-2 (8). sopB encoded a translocated effector protein of type III secretion 

systems (T3SS) in SPI-1 under control of hilA, whereas pipB encoded translocated 

effector of T3SS in SPI-2 under control of ssrAB (11, 12). Additionally, SPI-5 is thought 

to contribute to the colonization of the spleen in chickens (13). Mutations among SPI-5 

genes significantly reduced the enteropathogenicity of Salmonella (9).  

SPI-6 was located between tRNA-aspV and sinR at centisome 7 in Salmonella genomes 

containing the type six secretion system (T6SS) and the Salmonella atypical fimbriae 

(saf) fimbrial gene cluster (8). SPI-6 possesses different contents in various serovars. For 

example, it has a 47 kb island in S. Typhimurium (14) and a 59 kb island in S. Typhi (15). 

T6SS is widespread in bacteria (16) and possesses diverse functions (17, 18), such as the 

ability to encode virulence factors (19) and to mediate antagonistic interactions between 

bacteria (20). Folkesson (21) reported that the deletion of SPI-6 reduced the invasion 

activity of S. Typhimurium into Hep2 cells. Some Salmonella serovars such as S. Dublin 

and S. Weltevreden contained two T6SS-encoding SPIs (SPI-6 and SPI-19), whereas S. 

Gallinarum, S. Enteritidis and S. Agona only carried SPI-19. However, no T6SS was 

identified in certain genomes including S. Virchow, S. Paratyphi B and S. Javiana (17). 

The saf gene clusters are located downstream of SPI-6 and are present in most clinical 

isolates of S. enterica subsp. enterica (14, 22). The saf operon does not contribute to 

virulence in mouse encoding non-fimbrial adhesion elements (14).  
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The object of the current chapter is to investigate the genetic diversity of SPI-5 and SPI-6 

in S. Newport lineages II and III and to identify potential markers in these important 

islands for further subtyping and detection.  
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Materials and Methods 

Genomes 

Twenty-eight S. Newport strains from diverse sources and geographic locations (7, 23) 

and 11 outgroup genomes (7, 24, 25) were used in the current chapter, including S. 

Tennessee CDC07_0191 (ACBF00000000), S. Kentucky CVM29188 (ABAK00000000), 

S. Kentucky CDC191 (ABEI00000000), S. Gallinarum 287/91 (AM933173.1), S. Dublin 

CT02021853 (CP001144.1), S. Hadar RI_05P066 (ABFG00000000), S. Typhimurium 

LT2 (NC_003197.1), S. Typhimurium SL1344 (NC_016810.1), S. Typhimurium D23580 

(NC_016854.1), S. Typhimurium 14028S (CP001363.1) and S. 4,[5],12:i:- SL474 

(ABAO00000000). 

Phylogenetic tree construction 

Whole genome parsimony tree was reconstructed based on 131,855 informative SNPs 

using tree analysis using new technology (TNT) (26) with finding minimum tree length 

20 times and 100,000 bootstrapping iterations. Moreover, we performed multiple 

sequence alignment using MULCLE (27) and identified 146 SNPs in SPI-5, 937 SNPs in 

SPI-6 (excluding saf genes) and 355 SNPs in saf genes. Parsimony trees of SPI-5, SPI-6, 

and saf genes were reconstructed using TNT and the same parameters as above.  

Genetic characterizations of SPI-5 genomic islands 1 and 2 (SPI5-GI1 and SPI5-

GI2), and SPI-6 genomic island 1 (SPI6-GI1) 

Genetic organizations between the SPI5-GIs and between SPI-6 and SPI6-GI1 were 

determined using Mauve (28). The best match of genes in SPI5-GI1, SPI5-GI2, and SPI6-

GI1 was performed using blastp (29), followed by verification using tblastn (29). 
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Distance matrix 

MEGA 5.05 (30) was used to calculate evolutionary distances (number of differences) 

over sequence pairs with 10,000 bootstrap iterations for SPI-5, SPI-6, and saf genes. 
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Results 

Phylogenetic tree of genome data 

A whole genome phylogenetic tree was constructed with more than 130,000 SNPs (FIG 

III-1). To better display the evolutionary relationship between S. Newport strains, a total 

of 11 genomes were selected as outgroups. There were six equally most parsimonious 

trees with the same branch order at subgroup level, meaning that the distributions of taxa 

in each S. Newport subgroup were same in all resulting trees. S. Newport showed 

identical phylogenies as our previous report (7), in which 15 outgroups were chosen. 

Genetic diversity of Salmonella pathogenicity island 5 

SPI-5 was present in the 28 S. Newport and 11 outgroup genomes. SPI-5 variations 

included indels and mutations. Genomic islands encoding bacteriophage genes were 

identified between tRNA-ser and pipA in certain genomes, which were designated as 

SPI-5 genomic islands 1 and 2 (SPI5-GI1 and SPI5-GI2) (FIG III-1 and III-2). SPI5-GI1 

was present in node M strains, which contained all multi-drug resistant (MDR) strains in 

the current study. SPI5-GI2 was only found in strain shrimp_India. The SPI5-GIs were 

both more than 40 kb in length containing prophage genes (TABLE III-1 and III-2). 

A gene cluster in SPI5-GI1 (SNSL254_A1155 to SNSL254_A1177, 5’ to 3’) encoding 

bacteriophage genes was present in several Salmonella serovars, including S. Typhi 

CT18, S. Paratyphi B SPB7, S. Paratyphi C RKS4594, and S. Choleraesuis SC-B67. 

These four genomes did not contain insertions in SPI-5. SPI5-GI2 possessed genes 

showing high identities with those in S. Weltevreden (TABLE III-2). A gene cluster in 

SPI5-GI2 (SEEN443_12678 to SEEN443_12753, 5’ to 3’) was identified in S. 
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Weltevreden HI_N05-537, S. Newport SNSL317, S. Typhimurium DT104, and S. 

Saintpaul SARA29. These various serovars genomes did not contain insertions in SPI-5. 

According to the blast matches, there were 74% genes in SPI5-GI1 and 52% genes in 

SPI5-GI2 annotated as hypothetical proteins or bacteriophage genes. Based on current 

annotation, there are no genes related to virulence or antimicrobial resistance present. 

However, both SPI5-GIs harbored gene encoding lytic transglycosylase, which is a 

common bacterial enzyme acting on peptidoglycan (31).  

SPI-5 possessed 146 SNPs in five genes, which were used to construct the phylogenetic 

tree (FIG III-3). There were 227 equally most parsimonious trees with the same branch 

order at the lineage level showing that S. Newport in each lineage were clustered together 

but separated by outgroups in all resulting trees. Similar to the whole genome tree, the 

SPI-5 phylogenetic tree (FIG III-3) showed lineages II and III were separated by 

outgroup genomes. There were two differences between the genome tree and the SPI-5 

tree. First, for the SPI-5 tree, each lineage was conserved and the SNPs could not 

distinguish S. Newport at subgroup level in lineage II. Second, in the SPI-5 tree, lineage 

II showed a close relationship with S. Typhimurium and S. Hadar, but not S. Newport 

lineage III. In addition, the trees of the five individual genes in SPI-5 demonstrated the 

same phylogenies (data not shown). 

Pairwise distance matrix of SPI-5 revealed evolutionary divergence between S. Newport 

and outgroup genomes (TABLE III-3). The average differences between lineages II and 

III were 40 SNPs but only 18 SNPs between S. Typhimurium and lineage II. S. Dublin 

CT_02021853 was more closely related to lineage III (18 SNPs) than to other groups. S. 
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Gallinarum 287/91 also separated lineages II and III, with a closer phylogenetic 

relationship with lineage II. 

A total of 39 SNPs in SPI-5 defined lineages II and III, meaning that all strains in each 

lineage shared the same nucleotides (four SNPs in pipA, nine in pipB, seven in pipC, five 

in sopB and 14 in pipD) (TABLE III-4). There were 18 of 39 SNPs leading to non-

synonymous substitutions, including 4, 7, 2, 2 and 3 non-synonymous substitutions in 

pipA, pipB, pipC, sopB and pipD, respectively. Thus, 100% and 78% of these lineage-

defining SNPs in pipA and pipB lead to amino acid changes (TABLE III-4).  

Genetic diversity of Salmonella pathogenicity island 6 

SPI-6 was present in all S. Newport genomes except the Asian strains in subgroup IIA 

including shrimp_India, squid_Vietnam, and pepper_Vietnam (FIG III-1). These three 

Asian strains possessed a common gene cluster at the same location as SPI-6, which was 

termed SPI-6 genomic island 1 (SPI6-GI1). SPI6-GI1 also was identified in S. Virchow 

SL491, which did not contain SPI-6. The genetic organizations of SPI-6 and SPI6-GI1 

displayed extensive differences (FIG III-4).  

General characterizations of genes in SPI6-GI1 were listed (TABLE III-5). The best 

blastp matches for SPI6-GI1 included S. Paratyphi B SPB7 and S. Gallinarum 287/91. 

There were 9 and 13 genes in SPI6-GI11 identified in S. Paratyphi B SPB7 and S. 

Gallinarum 287/91, respectively. These genes were present between tRNA-asp and sinR 

in S. Paratyphi B SPB7 and S. Gallinarum 287/91. According to the annotation of blast 

matches, SPI6-GI1 did not carry any known genes related to virulence or antimicrobial 

resistance. 
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SPI-6 contained 937 variable SNPs (excluding the saf genes), which were used to 

construct a phylogenetic tree (FIG III-5). There were 208 equally parsimonious trees with 

the same branch orders at the subgroup level. Compared to the genome phylogenetic tree, 

SPI-6 tree showed clear geographic structure at lineage level, meaning that three Asian 

strains in subgroup IIB was decoupled with all American strains belonging to lineages II 

and III. In the American strains, lineage III and subgroup IIC were separated. There was 

672 SNPs between IIB and IIC, whereas only 222 SNPs between IIB and S. Hadar 

RI_05P066.   

All 28 S. Newport strains contained safABCD downstream of SPI-6. safA was not present 

in two S. Kentucky strains, S. Hadar RI_05P066, S. Dublin CT_02021853, and S. 

4,[5],12:i:- SL474. Pseudogenes were identified in the saf cluster, such as safB in S. 

Kentucky CVM29188 (SeKA_A4625), S. Dublin CT_02021853 (SeD_A0329) and safC 

in S. Gallinarum 287/91 (SG0310).  

Similar to the SPI-6 gene tree, the saf tree showed the six Asian strains were grouped 

together and were separated from all the American strains by S. Typhimurium group (FIG 

III-6). Subgroup IIB strains clustered together. Strain shrimp_India displayed distant 

relationship with the other five Asian strains. S. Tennessee contained 71 SNPs differences 

with IIA&B and contained only 21 SNPs with shrimp_India (FIG III-6, TABLE III-3). In 

the American group, lineage III and subgroup IIC were separated by S. Gallinarum 

287/91. Strain pig_ear_CA in IIA seemed to be an exception, showing close relationship 

with lineage III. Additionally, one gene cluster consisting of tcfABCD fimbrial operon, 

tinR, and tioA was only present in strains squid_Vietnam and pepper_Vietnam subgroup 

IIA (FIG III-4).  
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Discussion 

In the present study, we investigated the genetic diversity of SPI-5 and SPI-6 in S. 

Newport lineages II and III. The S. Newport genomes all contained SPI-5, which had two 

SPI5-GIs and 146 SNPs. SPI-6 was also present in all S. Newport genomes except the 

three Asian strains in subgroup IIA, which possessed SPI6-GI1 at the same location of 

SPI-6. Moreover, the presence of saf genes downstream of SPI-6 could distinguish 

lineage II subgroups and strains from Asia and the Americas. 

SPIs play significant roles in causing human illness (8). Because of the similarities of 

DNA sequence between bacteriophages and pathogenicity islands (PAIs), PAIs likely 

have originated from phage via horizontal gene transfer (HGT), such as SPIs (8), Vibrio 

pathogenicity island (VPI) and Staphylococcus aureus pathogenicity island 1 (SaPI1) 

(32). Knodler (11) demonstrated that SPI-5 genes may be acquired through HGT from 

lambdoid phages, including Gifsy-1 and Gifsy-2. Bacteriophages may play key roles in 

virulence activities of Salmonella, facilitating bacteria to survive in different ecological 

environments. For example, bacteriophage has been important for the genomic evolution 

of S. Montevideo and S. Enteritidis (33, 34).  

SPI5-GIs containing bacteriophage genes also may play significant roles in virulence. I 

hypothesized that SPI5-GI1 was originally introduced in the most recent common 

ancestor of node M via HGT and transmitted it vertically to the offspring strains. SPI5-

GI1 may become functionally compatible to the genomes in node M. The presence of 

SPI5-GI2 indicated that the region between tRNA-ser and pipA might be a hot spot for 

independent acquisitions of genetic elements. Since the function of genes in both SPI5-

GIs were not well annotated, functional studies of SPI-5 with and without these GIs 



87 

 

might be important to undertake. Both SPI5-GIs contained genes encoding lytic 

transglycosylases, which might be used as target for broad-spectrum antibiotics (31).  

The SPI-5 genes could be the targets for resequencing and biomarkers to differentiate 

lineages II and III in rapid detection. In the lineage-defining SNPs, all mutations in pipA 

and 78% of the mutations in pipB lead to non-synonymous substitutions indicating that 

these two genes were under positive selections. Positive selection played critical roles in 

the evolution of different bacterial pathogens, as it accounts for 1.2% of Salmonella core 

genome including virulence genes (35). In one study focusing on positive selection in 

pathogenic Salmonella, three genes showed evidence of positive selection among SPI-1 

through SPI-6, including pipB (SPI-5) and safC (SPI-6) (35). Since S. Newport was not 

included, pipA may show serotype-specific positive selection in S. Newport.  

Non-synonymous substitutions in SPI-5 may have influenced the pathogenicity of the 

genomes. Two non-synonymous substitutions were identified in domain CHASE3 in 

pipA, which was associated with signal transduction pathways in bacteria (36). pipB 

encoded translocated effector of T3SS in SPI-2 (11, 12). Moreover, pipB null mutant 

caused reduced virulence activities in bovine enteric infections (9) and related to 

colonization of the cecum in chickens (35). Domain Chaperone_III in pipC contained 

non-synonymous substitutions, which was involved in the type III secretion system 

(T3SS) and in delivering virulence effector proteins from Salmonella to host cells (37). 

The genes under positive selection could be possible targets for mutational studies (35).  

Due to the important role of SPI-6 in virulence of pathogenic Salmonella (18), three 

Asian strains in IIA may have different virulence activities. S. Gallinarum 287/91, S. 

Virchow SL491, and S. Paratyphi B SPB7 did not contain SPI-6 either (17). Thus, the 
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gain or loss of SPI-6 has occurred independently in different serovars. I could not decide 

the acquisition of SPI6-GI1 was introduced independently or it replaced SPI-6 between 

tRNA-asp and sinR. Since SPI-6 was located next to tRNA-asp and contained Rhs family 

proteins, both of which are associated with rearrangement or acquisition of new genetic 

elements (19, 38) , this location is likely to be a hot spot for recombination events and 

HGT. SPI-6 and saf phylogenetic trees showed different geographic structures from the 

whole genome tree, indicating geographic location played an important role in the 

evolution of SPI-6. According to the distribution of T6SS, saf, and tcf genes, the transfer 

of these gene clusters were independent events.  

In addition, the tcf fimbrial operon, tinR, and tioA were only identified downstream of 

sinR in two strains in IIA, pepper_Vietnam and squid_Vietnam. These genes clustered 

together with putative transposase remnants at the downstream of SPI-6 in S. Typhi, but 

not in S. Typhimurium (8). Porwollik  (39) demonstrated that the Salmonella with broad 

host range always had higher numbers of fimbrial operons than those with host 

restriction, except for S. Paratyphi B with a short evolutionary history. Moreover, 

diversification of fimbrial operon in Salmonella may contribute to virulence activities 

(34, 40). Thus, the presence of tcf genes may facilitate the survival of these two strains.   
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TABLE III-1. General Characteristics of genes/open reading frames (ORFs) in SPI5-GI1 in S. Newport SL254. 

 
ORF Size 

(bp) 

GC% Best BLASTP Hit Super Family 

   Description Source E Value Locus Tag  

A1129 1020 48.1 site-specific recombinase, 

phage integrase family 

S. 4,[5],12:i:- CVM23701 0 EDZ14076.1 DNA_BRE_C 

A1130 225 48 conserved hypothetical protein 

 

S. 4,[5],12:i:- CVM23701 4e-49 EDZ14065.1  

A1131 183 48.6 conserved hypothetical protein 

 

S. 4,[5],12:i:- CVM23701 6e-37 EDZ14062.1  

A1132 555 47 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 1e-129 EDZ14071.1 Sipho_GP157 

A1133 2265 47.4 conserved hypothetical protein 

(Gifsy-1 prophage RecE; 

exodeoxyribonuclease VIII) 

S. 4,[5],12:i:- CVM23701 0 EDZ14054.1  

A1134 246 44.7 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 9e-53 EDZ14075.1  

A1135 324 46.6 hypothetical protein S. 4,[5],12:i:- CVM23701 5e-73 EDZ14073.1  

A1136 216 45.8 hypothetical protein S. 4,[5],12:i:- CVM23701 2e-44 EDZ14068.1  

A1137 348 53.2 hypothetical protein S. 4,[5],12:i:- CVM23701 2e-78 EDZ14057.1 DUF1019 

A1138 225 50.7 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 4e-49 EDZ14066.1  

A1139 981 49 Replication protein S. 4,[5],12:i:- CVM23701 0 EDZ14055.1  

A1140 1389 51.9 bacteriophage Nil2 protein P 

DnaB family protein 

Klebsiella 

pneumoniae subsp. 

rhinoscleromatis ATCC 13884 

0 EEW40180.1 DnaB, P-loop 

NTPase 

A1141 681 47.6 conserved hypothetical protein Klebsiella 

pneumoniae subsp. 

1e-54 EEW40179.1  
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rhinoscleromatis ATCC 13884 

A1142 249 56.2 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 2e-56 EDZ15124.1  

A1143 603 49.6 adenine methylase S. 4,[5],12:i:- CVM23701 1e-149 EDZ15094.1 MT-A70 

A1144 339 54 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 3e-77 EDZ15086.1  

A1145 192 40.6 hypothetical phage-related 

protein 

S. 4,[5],12:i:- CVM23701 9e-40 EDZ15059.1  

A1146 597 47.6 gifsy-2 prophage protein S. 4,[5],12:i:- CVM23701 4e-145 EDZ15117.1 DUF1367 

A1147 579 45.9 conserved hypothetical protein S. 4,[5],12:i:- CVM23701 6e-106 EDZ15075.1 DUF1133 

A1148 189 48.1 hypothetical protein S. 4,[5],12:i:- CVM23701 1e-39 EDZ15091.1  

A1149 309 48.2 phage-holin analog protein S. Heidelberg str. SL486 2e-70 EDZ23960.1  

A1150 540 55 lysozyme S. Weltevreden str. HI_N05-537 1e-128 

 

EDZ29335.1 lysozyme 

A1151 138 42 putative bacteriophage protein S. Newport SL317 6e-23 EDX48909.1  

A1152 432 56.3 bacteriophage lysis protein S. arizonae 

serovar 62:z4,z23:-- RSK2980 

2e-95 

 

ABX22264.1  

A1153 630 51.1 conserved hypothetical 

protein(phage related) 

S. 4,[5],12:i:- CVM23701 6e-148 EDZ15067.1  

A1154 1623 55.3 gp33 TerL S. Paratyphi C RKS4594 0 ACN45201.1  

A1155 1437 56.7 phage-associated protein S. Typhi str. E00-7866 0 ZP_03346749.1 COG3567 

A1156 618 57 HI1407 hypothetical protein-

like protein 

Shigella flexneri 6e-134 AAQ07463.1 Phage_Mu_F 

A1157 1233 53.6 hypothetical protein (phage 

related) 

S. Paratyphi C RKS4594 0 ACN45204.1 DUF2213 

A1158 498 55.8 hypothetical protein (phage 

related) 

S. Paratyphi B SPB7 3e-114 ABX67616.1  
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A1159 942 53 bacteriophage protein S. Paratyphi B SPB7 0 ABX67615.1 Linocin_M18 

A1160 390 51.8 bacteriophage protein S. Typhi Ty2 2e-72 AAO69505.1  

A1161 408 53.4 bacteriophage protein S. Typhi Ty2 7e-94 AAO69504.1  

A1162 555 52.4 bacteriophage protein S. Typhi Ty2 1e-129 AAO69503.1  

A1163 390 55.1 bacteriophage protein S. Typhi Ty2 4e-87 AAO69502.1  

A1164 564 56.2 bacteriophage protein S. Typhi Ty2 2e-105 AAO69501.1  

A1165 1146 54.3 bacteriophage protein S. Paratyphi C  RKS4594 0 ACN45212.1 DUF3383 

A1166 444 55.2 bacteriophage protein S. Paratyphi C  RKS4594 1e-102 ACN45213.1 DUF3277 

A1167 453 54.3 putative bacteriophage protein S. 4,[5],12:i:-   CVM23701 2e-102 EDZ15105.1  

A1168 2010 56.5 lytic transglycosylase, catalytic Enterobacter sp. 638 0 ABP59494.1 lysozyme 

A1169 576 54.9 putative bacteriophage protein Enterobacter sp. 638 2e-122 ABP59495.1  

A1170 303 54.1 bacteriophage protein S. Typhi  CT18 1e-62 NP_455541.1  

A1171 1068 55.4 putative bacteriophage protein Enterobacter sp. 638 0 ABP59497.1  

A1172 165 47.9 putative secreted protein E coli F11 4e-30 EDV66657.1  

A1173 456 41.9 hypothetical protein Erwinia sp. Ejp617 3e-83 ADP12360.1  

A1174 753 55.2 hypothetical protein(phage 

related) 

E coli IAI1 5e-169 CAQ99465.1 Phage_base_V 

A1175 354 51.1 putative bacteriophage protein S. Typhi   E01-6750 3e-72 ZP_03354527.1  

A1176 1200 52.5 bacteriophage protein S. Typhi   Ty2 0 AAO69487.1 Baseplate_J 

A1177 681 48.3 putative bacteriophage protein S. 4,[5],12:i:-   CVM23701 4e-160 EDZ15103.1 DUF2612 

A1178 1533 50.7 bacteriophage tail protein S. Typhi   Ty2 0 AAO69485.1  

A1179 528 43.2 Phage tail assembly chaperone 

gp38 

S. Choleraesuis A50 4e-114 EFZ05846.1 Caudo_TAP 

A1180 126 43.7 hypothetical protein S. Typhi E01-6750 2e-13 ZP_03350039.1  

A1181 639 47.9 hypothetical protein (phage tail) S. Paratyphi A AKU_12601 1e-83 CAR59077.1 Caudo_TAP 
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A1182 393 51.1 hypothetical protein S. Paratyphi B SPB7 5e-68 ABX66451.1 DUF1353 

A1183 420 30.7 hypothetical protein S. 4,[5],12:i:- CVM23701 1e-96 EDZ15089.1  
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TABLE III-2. General characteristics of genes/open reading frames (ORFs) of SPI5-GI2 in strain shrimp_India. 

 
ORF  Size 

  (bp) 

GC% Best BLASTP Hit  Super Family 

   Description Source E Value Locus Tag  

443_05447 1023 45.8 integrase protein Escherichia albertii 

TW07627 

0 EDS90736.1 DNA_BRE_C 

(phage integrase) 

443_05442 237 47.3 conserved hypothetical 

protein (phage integrase) 

E. coli O157:H7 

EC869 

1e-28 ZP_02812412.1  

443_05437 429 56.4 hypothetical protein S. Gallinarum 287/91 4e-100 CAR37063.1  

443_05432 2145 55.3 C-5 cytosine-specific DNA 

methylase 

S. Saintpaul SARA29 0 EDZ10721.1 AdoMet_MTa-ses 

443_05427 258 52.7 conserved hypothetical 

protein 

S. Saintpaul SARA29 9e-54 EDZ10747.1  

443_05422 180 41.1 conserved hypothetical 

protein 

S. Kentucky CDC 191 7e-36 EDZ19030.1 DUF1187 

443_05417 843 53 hypothetical protein (DNA 

adenine methyltransferase) 

Providencia alcalifaciens  

DSM 30120 

5e-130 EEB47035.1 MethyltransfD12 

443_05412 234 48.7 hypothetical protein S. Choleraesuis SC-B67 3e-67 AAX64235.1  

 frameshift 830 54.3 protein RecT S. Weltevreden  

HI_N05-537 

4e-149 EDZ29450.1 RecT 

443_05397 247 51 exodeoxyribonuclease 8 S. Saintpaul SARA29 3e-50 EDZ10745.1  

443_12533 2118 50 exodeoxyribonuclease 8 S. Newport SL317 0 EDX48971.1 Exonuc_VIII 

443_12538 336 42.9 LygB S. Newport SL317 7e-77 EDX49023.1  

443_12543 207 40.6 prophage Kil protein S. Saintpaul SARA29 9e-44 EDZ09313.1 kil 

443_12548 276 45.7 hypothetical protein S. Gallinarum 287/91 3e-57 CAR37068.1  
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443_12553 309 49.8      

443_12558 306 45.4 hypothetical protein E. coli TA280 2e-06 EGI41136.1  

443_12563 402 43.5 HTH-type transcriptional 

regulator DicA 

S. Saintpaul SARA29 8e-91 EDZ09310.1 HTH_XRE 

443_12568 219 47.5 DNA-binding transcriptional 

regulator DicC 

E. coli B185 3e-31 EFF07713.1 PRK09744 

443_12573 495 55.6 conserved hypothetical 

protein 

S. Newport SL317 1e-115 EDX48223.1 DUF1019 

443_12578 903 52.9 conserved hypothetical 

protein 

S. Kentucky CDC 191 2e-76 EDZ19051.1 DUF1376 

443_12583 753 55.9 DNA replication protein 

dnaC 

E. coli UMNF18 1e-140 AEJ55928.1 P-loop NTPase 

443_12588 396 51.8 phage encoded DNA-binding 

protein 

S. Gallinarum 287/91 1e-92 CAR37075.1 DUF977 

443_12593 273 48.4 conserved hypothetical 

protein 

S. Kentucky CDC 191 2e-59 EDZ19038.1  

443_12598 156 53.2 prophage maintenance 

protein 

E. coli O127:H6  

E2348/69 

2e-25 CAS08950.1 HOK_GEF 

443_12603 195 43.6 conserved hypothetical 

protein 

S. Saintpaul SARA29 8e-39 EDZ09306.1  

443_12608 438 51.6 NinB protein S. Saintpaul SARA29 4e-103 EDZ09302.1 NinB 

443_12613 282 52.5 conserved hypothetical 

protein 

S. Weltevreden HI_N05-537 1e-63 EDZ29331.1 DUF1364 

443_12618 537 46.4 putative bacteriophage 

protein 

S. Typhimurium 14028S 6e-111 ACY87930.1 DUF1133 
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443_12623 177 48.6 hypothetical protein Photorhabdus luminescens 

subsp.  

laumondii TTO1s 

1e-29 CAE15865.1 YcfA 

443_12628 408 49.5 conserved hypothetical 

protein 

S. Saintpaul SARA29 1e-94 EDZ09559.1 UPF0150,HTH_XRE 

443_12633 303 47.9 phage-holin analog protein S. Newport SL254 2e-69 ACF64184.1  

443_12638 540 54.6 lysozyme S. Weltevreden HI_N05-537 4e-129 EDZ29335.1 Lysozyme_like 

443_12643 99 44.4 putative bacteriophage 

protein 

S. Heidelberg SL476 2e-14 ACF68737.1  

443_12648 465 55.9 bacteriophage lysis protein S. Weltevreden HI_N05-537 3e-95 EDZ29378.1 Phage_lysis 

443_12653 183 47 conserved hypothetical 

protein 

S. Saintpaul SARA29 2e-32 EDZ10296.1 DUF826 

443_12658 630 51.3 conserved hypothetical 

protein 

S. Weltevreden HI_N05-537 4e-147 EDZ29428.1  

443_12663 1620 50.7 gp33 TerL S. Saintpaul SARA29 0  EDZ09552.1  

443_12668 

 

1521 53.5 phage-associated protein, 

HI1409 family 

S. Weltevreden HI_N05-537 0 EDZ29453.1 COG3567 

443_12673 690 56.1 gp16 S. Weltevreden HI_N05-537 1e-167 EDZ29333.1 Phage_Mu_F 

443_12678 

 

1347 56.2 conserved hypothetical 

protein 

S. Saintpaul SARA29 0 EDZ09564.1 DUF2213 

443_12683 483 59.2 conserved hypothetical 

protein (phage related) 

S. Saintpaul SARA29 1e-110 EDZ09554.1  

443_12688 

 

1029 54.5 gp12 S. Weltevreden HI_N05-537 0 EDZ29350.1  

443_12693 348 56.3 conserved hypothetical S. Saintpaul SARA29 3e-79 EDZ09565.1  
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protein 

443_12698 456 59 hypothetical protein S. Saintpaul SARA29 7e-108 EDZ09560.1  

443_12703 585 49.2 hypothetical protein S. Saintpaul SARA29 5e-139 EDZ09547.1  

443_12708 366 55.2 conserved hypothetical 

protein 

S. Saintpaul SARA29 5e-85 EDZ09551.1  

443_12713 546 53.8 conserved hypothetical 

protein 

S. Saintpaul SARA29 6e-131 EDZ09405.1  

443_12718 1485 53.4 conserved hypothetical 

protein 

S. Saintpaul SARA29 0 EDZ09406.1  

443_12723 447 51.5 conserved hypothetical 

protein 

S. Saintpaul SARA29 3e-106 

 

EDX48993.1  

443_12728 405 52.3 conserved hypothetical 

protein 

S. Newport SL317 3e-91 EDX48993.1  

443_12733 183 51.4 gp15' E' S. Weltevreden HI_N05-537 1e-36 EDZ29398.1  

443_12738 2172 55 transglycosylase SLT domain 

protein 

S. Newport SL317 0 EDX49051.1 Lysozyme_like 

443_12743 711 51.8 conserved hypothetical 

protein 

S. Saintpaul SARA29 5e-170 EDZ09522.1  

443_12748 303 53.5 conserved hypothetical 

protein 

S. Saintpaul SARA29 1e-68 EDZ09526.1  

443_12753 870 53.7 conserved hypothetical 

protein 

S. Newport SL317 0 EDX49041.1  

443_12758 678 53.7 phage P2 baseplate assembly 

protein gpV 

S. Weltevreden HI_N05-537 5e-163 EDZ29362.1 Phage_base_V 

443_12763 357 53.5 conserved hypothetical S. Newport SL317 4e-81 EDX48972.1  
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protein 

443_12768 

 

1242 52.7 conserved hypothetical 

protein 

S. Weltevreden HI_N05-537 0 EDZ29403.1 Baseplate_J 

443_12773 603 50.4 hypothetical bacteriophage 

protein 

S. Newport SL317 8e-145 EDX48931.1 DUF2612 

443_12778 1452 53.4 side tail fiber protein S. Newport SL317 0 EDX49031.1 Collar 

443_12783 825 48.7 UPF0189 protein LA_4133 S. Weltevreden 2007-60-

3289-1 

0 CBY95370.1 Macro 

443_12788 570 48.9 phage tail assembly protein S. Saintpaul SARA29 1e-123 EDZ13156.1 Caudo_TAP 

443_12793 855 39.8 conserved hypothetical 

protein 

S. Saintpaul SARA29 0 EDZ09975.1 HtrL_YibB 

443_12798 1541 35.7 putative sulfatase domain 

protein 

S. Saintpaul SARA29 0 EDZ09946.1 Sulfatase 
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TABLE III-3. Average pairwise distance (no. of nucleotide difference) of SPI-5 and saf fimbrial operon for S. Newport and 

outgroups genomes. 

 

Average pairwise distance of SPI-5 

 Tennessee Kentucky Dublin Newport III Gallinarum Typhimurium  

Tennessee        

Kentucky 62(6)      

Dublin 

Newport III 

76(6) 73(6)     

70(6) 71(6) 18(4)    

Gallinarum 88(6) 83(6) 50(6) 50(6)   

Typhimurium 83(6) 82(6) 41(5) 31(5) 41(5)  

Newport II 81(6) 74(6) 49(6) 40(5) 35(5) 18(4)  

Average pairwise distance of saf operon 

 Newport IIA&B Shrimp_India Tennessee Pig_ear_CA Newport III Typhimurium Newport IIC 

Newport IIA&B        

Shrimp_India 79 (7)       

Tennessee 71 (7) 21 (4)      

Pig_ear_CA 210 (9) 212 (9) 217 (9)     

Newport III 210 (9) 210 (9) 215 (9) 11 (3)    

Typhimurium 137 (9) 141 (9) 144 (9) 197 (9) 197 (9)   

Newport IIC 223 (9) 221 (9) 222 (9) 108 (8) 109 (8) 194 (9)  

Gallinarum 233 (8) 236 (6) 241 (9) 105 (8) 104 (8) 193 (9) 67 (7) 
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Distances were calculated using the concatenated alignment of SNPs of SPI-5 and saf operon that estimate the diversity between two 

major lineages and outgroup genomes observed. Standard deviation was listed in parentheses.  
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TABLE III-4. Single Nucleotide Polymorphisms (SNPs) of SPI-5 genes defining S. Newport lineages II and III. 
 

Gene S. Newport SL254  (lineage II) S. Newport SL317 (lineage III) Nuc AA Position 

pipA SNSL254_A1184 SNSL317_A1439 G->A D/N 70 

pipA SNSL254_A1184 SNSL317_A1439 A->C R/P 328 

pipA SNSL254_A1184 SNSL317_A1439 G->C R/P 329 

pipA SNSL254_A1184 SNSL317_A1439 T->C V/A 485 

pipB SNSL254_A1185 SNSL317_A1440 A->G N/D 217 

pipB SNSL254_A1185 SNSL317_A1440 A->C D/A 308 

pipB SNSL254_A1185 SNSL317_A1440 T->C S 369 

pipB SNSL254_A1185 SNSL317_A1440 A->C K/Q 412 

pipB SNSL254_A1185 SNSL317_A1440 A->G K/D 517 

pipB SNSL254_A1185 SNSL317_A1440 A->C K/D 519 

pipB SNSL254_A1185 SNSL317_A1440 A->G N/D 532 

pipB SNSL254_A1185 SNSL317_A1440 C->A T/N 554 

pipB SNSL254_A1185 SNSL317_A1440 T->A L 558 

sopB SNSL254_A1187 SNSL317_A1442 A->G A 114 

sopB SNSL254_A1187 SNSL317_A1442 T->C S/P 127 

sopB SNSL254_A1187 SNSL317_A1442 T->C V/A 134 

sopB SNSL254_A1187 SNSL317_A1442 T->C D 480 

sopB SNSL254_A1187 SNSL317_A1442 T->C G 1473 

pipC SNSL254_A1186 SNSL317_A1441 A->C D/A 29 
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pipC SNSL254_A1186 SNSL317_A1441 G->A A 48 

pipC SNSL254_A1186 SNSL317_A1441 G->T L 66 

pipC SNSL254_A1186 SNSL317_A1441 T->C L 69 

pipC SNSL254_A1186 SNSL317_A1441 G->T L 186 

pipC SNSL254_A1186 SNSL317_A1441 C->T Y 192 

pipC SNSL254_A1186 SNSL317_A1441 A->G T/A 193 

pipD SNSL254_A1189 SNSL317_A1444 C->T D 189 

pipD SNSL254_A1189 SNSL317_A1444 A->G E 216 

pipD SNSL254_A1189 SNSL317_A1444 A->G I/V 259 

pipD SNSL254_A1189 SNSL317_A1444 G->A A 345 

pipD SNSL254_A1189 SNSL317_A1444 T->C Y 435 

pipD SNSL254_A1189 SNSL317_A1444 C->T A/V 509 

pipD SNSL254_A1189 SNSL317_A1444 C->T F 822 

pipD SNSL254_A1189 SNSL317_A1444 C->T A/V 920 

pipD SNSL254_A1189 SNSL317_A1444 A->G T 966 

pipD SNSL254_A1189 SNSL317_A1444 A->G K 969 

pipD SNSL254_A1189 SNSL317_A1444 T->C I 972 

pipD SNSL254_A1189 SNSL317_A1444 A->C R 1002 

pipD SNSL254_A1189 SNSL317_A1444 C->T P 1068 

pipD SNSL254_A1189 SNSL317_A1444 G->A S 1095 
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A total of 39 SNPs in five genes in SNP-5 were identified. They defined S. Newport lineages II and III. All of these informative SNPs 

could be used as potential biomarkers to differentiate strains during outbreak trace-back investigations. There are total 18 SNPs causing 

non-synonymous substitutions.  
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TABLE III-5. Characteristics of genes/open reading frames (ORFs) in SPI6-GI1 in S. Virchow SL491. 

 

 

ORF Size 

  (bp) 

GC% Best BLASTP hit Super family 

Description Source E Value Locus Tag 

SeV_A1941 1539 35.8 hypothetical protein S. Paratyphi B SPB7 0 ABX68679.1 NA 

SeV_A1942 123 43.9 hypothetical protein S. Virchow SL491 6e-22 EDZ00328.1 NA 

SeV_A1943 876 59.5 putative small GTP-binding 

domain protein 

S. Paratyphi B SPB7 0 ABX68684.1 Ras_like_GTPa

se 

SeV_A1944 189 50.3 hypothetical protein S. Virchow SL491 1e-37 EDZ00604.1 NA 

SeV_A1945 714 55.2 transcriptional regulator S. Paratyphi B SPB7 2e-173 ABX68686.1 NA 

SeV_A1946 567 55.4 conserved hypothetical protein S. Paratyphi B SPB7 5e-140 ABX68687.1 NA 

SeV_A1947 453 52.8 conserved hypothetical protein S. Gallinarum 287/91 1e-109 CAR36187.1 NA 

SeV_A1948 453 51.4 hypothetical protein S. Gallinarum 287/91 2e-109 CAR36186.1 NA 

SeV_A1949 540 56.3 conserved hypothetical protein S. Gallinarum 287/91 4e-126 CAR36185.1 NA 

SeV_A1950 414 43.5 conserved hypothetical protein S. Gallinarum 287/91 1e-97 CAR36184.1 NA 

SeV_A1951 276 49.6 YkfF protein S. Gallinarum 287/91 6e-64 CAR36183.1 DUF905 

SeV_A1952 819 56.3 protein YafZ S. Gallinarum 287/91 0 CAR36182.1 DUF932 

SeV_A1953 222 60.4 hypothetical protein S. Virchow SL491 3e-45 EDZ02031.1 NA 

SeV_A1954 384 57.3 hypothetical protein S. Gallinarum 287/91 1e-91 CAR36180.1 NA 

SeV_A1955 459 61.2 hypothetical protein S. Paratyphi B SPB7 3e-110 

 

ABX68694.1 Antirestrict 

SeV_A1956 480 57.9 DNA repair protein RadC S. Gallinarum 287/91 3e-111 CAR36178.1 MPN 

SeV_A1957 291 53.3 putative cytoplasmic protein S. Gallinarum 287/91 4e-65 CAR36177.1 NA 
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SeV_A1958 222 59.5 conserved domain protein S. Gallinarum 287/91 1e-48 CAR36176.1 DUF987 

SeV_A1959 369 57.7 YagBYeeUYfjZ family 

protein 

S. Gallinarum 287/91 2e-86 CAR36175.1 YagB_YeeU_

YfjZ 

SeV_A1960 372 58.3 Aec75 S. Gallinarum 287/91 4e-88 CAR36174.1 YagB_YeeU_

YfjZ 

SeV_A1961 645 56.4 conserved hypothetical protein S. Gallinarum 287/91 8e-159 CAR36173.1 NA 

SeV_A1962 378 57.7 conserved hypothetical protein S. Paratyphi B SPB7 1e-88 ABX68701.1 DUF1219 

SeV_A1963 423 54.8 YeeW protein S. Paratyphi B SPB7 4e-98 ABX68702.1 NA 

SeV_A1964 195 51.3 Aec78 S. Paratyphi B SPB7 7e-40 ABX68703.1 DUF957 

SeV_A1965 846 50.2 Aec79 S. Paratyphi B SPB7 0 ABX68704.1 NA 
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FIG III-1. Whole genome parsimony tree of S. Newport and 11 outgroup genomes.  

S. Newport strains showed identical phylogenies as a previous study. There are six equally most parsimonious trees identified with a 

length of 209114, consistency index (CI) of 0.616, and retention index (RI) of 0.888. Two gene clusters encoding bacteriophage genes 

were identified, named as SPI5-GI1 and SPI5-GI2.  
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FIG III-2. Genetic organizations of SPI5-GI1 and SPI5-GI2.  

S. Newport SL254 and strain shrimp_India were selected to display contents of SPI5-GI1 and SPI5-GI2. Both SPI5-GIs were inserted 

between tRNA-Ser and pipA. 
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FIG III-3. Parsimony tree of SPI-5 genes.  

There are 227 equally most parsimonious trees identified with a length of 187, and consistency index (CI) of 0.797, and retention index 

(RI) of 0.942. Lineages II and III were separated by outgroup genomes. Lineage II displayed close relationship with S. Typhimurium 

group, S. 4,[5],12:i:- SL474, S. Hadar RI_05P066, and S. Gallinarum 287/91; lineage III showed close relationship with S. Dublin 

CT_02021853. 

 

 



114 

 

FIG III-4. Genetic organizations of SPI-6 and SPI6-GI1.  

S. Newport SL317 and strain pepper_Vietnam were selected.  
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FIG III-5. Parsimony tree of SPI-6 genes.  

There were 208 equally most parsimonious trees determined with a length of 1029, consistency index (CI) of 0.914, and retention index 

(RI) of 0.984. SPI-6 tree displayed clear geographic structure. The Asian strains were decoupled from all American strains.  
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FIG III-6. Parsimony phylogenetic tree of saf gene cluster.  

There are 210 equally most parsimonious trees determined with a length of 493, consistency index (CI) of 0.840, and retention index (RI) 

of 0.970. The saf cluster had clear geographic structure, meaning that all Asian strains were decoupled from those from the Americas.  
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CHAPTER IV: COMPARATIVE GENOMICS OF MULTIDRUG 

RESISTANT STRAINS OF S. NEWPORT 

Abstract 

Salmonella enterica subspecies enterica serotype Newport (S. Newport) infections have 

increased in North America since 1996. Multidrug resistant S. Newport has been an 

emerging concern of public health. The IncA/C plasmids were thought to be responsible 

for the dissemination of MDR S. Newport strains. Therefore, it is necessary to 

characterize the S. Newport MDR strains. A total of eight S. Newport genomes were 

selected to perform comparative genomics, including seven MDR strains. Complete and 

partial sequences of plasmids were determined in compared genomes, including genes in 

plasmid pSN254. Resistance genes were identified, including floR, tetAR, strAB, and 

merABDEPRT. The study discovered that all S. Newport MDR strains harbored cas3 as 

pseudogene containing one premature stop codon. In contrast, susceptible strain carried 

intact CRISPR/cas system. The unfunctional CRISPR/cas system may facilitate the 

acquisition of IncA/C plasmids. 
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Introduction 

Prevalence of antimicrobial resistance among Salmonella has been important issue of 

food safety and clinical therapy (1). Multidrug resistant S. Newport strains are emerging 

concerns for public health in North America (2, 3). Strains known as Newport 

MDRAmpC are resistant to ampicillin (pse-1), chloramphenicol (floR), streptomycin 

(aadA2), sulfamethoxazole (sul1), and tetracycline (tet) (ACSSuT) (4, 5). S. Newport 

SL254 possessed one blaCMY-2 positive plasmid named pSN254, contributing to 

antimicrobial resistance type ACSSuT (6). The genes responsible to resistance also 

exhibited in Salmonella Genomic Island 1 (SGI-1) (7).   

Chapter II data indicated that seven MDR strains from different sources and locations 

formed node M, all of which belonged to resistance type ACSSuT with additional 

resistance to different antibiotics. Phylogenetic analysis reported that these seven strains 

showed close relationship. Therefore, it is necessary to investigate the common genetic 

traits of node M. Strain or node specific gene clusters were identified to illustrate 

different genomic contents of the compared genomes. Besides the diversity in Salmonella 

pathogenicity islands (8), different categories of genes related to virulence were 

examined, including non-coding RNAs and fimbrial operons. Non-coding RNAs are 

those non-translated nucleotides and encoded in intergenic regions, which play important 

roles in gene regulations and expression under different stress or virulence conditions (9). 

A total of 106 non-coding RNAs were selected from previous studies (10-12). Fimbriae 

in Salmonella play important roles in pathogenicity during interactions and attachment 

between bacteria and host cells (13). Variations of different fimbrial operons may 

influence the virulence of different strains (14).  
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Clustered regularly interspaced short palindromic repeats (CRISPR)/cas system was 

identified as an immune system against foreign genetic elements in 90% of archaea and 

40% of bacteria genomes (15). CRISPR/cas system consists of conserved short repeats 

that separated by distinct foreign elements called spacers, associated proteins called cas 

genes and leader sequence (16). Moreover, CRISPR/cas system was considered to 

associate with MDR characteristics of bacteria (17).  Therefore, it is meaningful to 

examine CRISPR/cas get insights into the possible association between CRISPR and 

MDR phenotypes in S. Newport.  

The objectives of the current chapter is (i) to determine the common and specific genetic 

contents of MDR strains in node M, and (ii) to investigate the distribution of plasmids in 

the target strains.  
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Materials and Methods 

Genomes 

A total of eight strains from diverse sources and locations were selected (Table IV-1). 

They are S. Newport CVM N18486 (AHTY00000000), S. Newport CVM 21538 

(AHTV00000000), S. Newport CVM 21550 (AHTT00000000), S. Newport CVM 22513 

(AHTU00000000), S. Newport CVM 22425 (AHTW00000000), S. Newport CVM 22462 

(AHTX00000000), S. Newport CVM N1543 (AHTZ00000000), and S. Newport SL254 

(ABEN01000000).  

Phylogenetic analysis 

Multiple genome alignment was performed using progressiveMauve (18). Over 5,000 

single nucleotide polymorphisms (SNPs) were identified to construct parsimonious 

phylogenetic tree using tree analysis using new technology (TNT) (19) with finding 

minimum length 20 times and 100,000 bootstrap replications. Pairwise distance matrix 

was calculated using MEGA 5.10 (20) with 1,000 bootstrap iterations.  

CRISPR/cas identification 

CRISPRFinder (21) was used to identify CRISPR spacer arrays. cas gene cluster of S. 

Newport SL254 was used as the reference (SNSL254_A3147 to SNSL254_A3154, 5’ to 

3’) and locus tags of cas gene clusters were identified using Mauve (22).  

Identification of genes associated with antimicrobial resistance and virulence 

Standalone blastn (23) (Blast 2.27+) was used to construct a local database and to search 

homologs of query genes with 90% identities as threshold.  

 

 



121 

 

Results 

Phylogenetic analysis 

Multiple genome alignment of eight genomes identified over 5,000 SNPs. Parsimonious 

phylogenetic tree (Fig IV-1) was constructed to display evolutionary relatedness (tree 

length: 5129, consistency index: 0.994, retention index: 0.616). Susceptible strain 

ground_turkey_NM_2008 was selected as the outgroup genome. The branch lengths (Fig 

IV-1, shown in brackets) indicated that strain cannine_AZ_2003 had large amount of 

changes in the branch, followed by strains ground_beef_GA_2004 and swine_TX. 

Pairwise distance matrix showed the average base differences among eight genomes 

(Table IV-2). Four strains displayed close relationship compared to each other with base 

difference at most 38 SNPs (Table IV-2). 

Although the current data could not illustrate the subtyping of plasmids or identify the 

resistance genes to different antibiotics, the phylogenetic tree and the antibiotic resistance 

profiles provided important information of the genetic flux (Fig IV-1). For example, the 

common ancestor of node M acquired genes resistant to nine antibiotics (AMC, AMP, 

FOX, TIO, AXO, CHL, STR, SUL, and TET) and four strains kept the same 

antimicrobial resistance profiles, including swine_TX, canine_AZ_2003, 

ground_beef_GA_2004, and cattle_AZ_2003. S. Newport SL254 gained genes resistant 

to CAZ and GEN and loss the genes resistant to FOX, TIO, and AXO. Similarly, 

cattle_NC_2003 acquired gene resistant to KAN; chicken_GA loss the genes resistant to 

AMC, AMP, FOX, TIO, and AXO. 

CRISPR/cas system 
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CRISPR/cas system components were examined in all compared genomes. cas gene 

cluster composing of eight genes were identified in all strains. All cas3 in node M were 

identified as pseudogenes. For example, sequence alignment between strains 

ground_turkey_NM_2008 and S. Newport SL254 indicated that one substitution (C to T 

at position 1648) caused a premature stop codon. In node M strains, cas genes remained 

conserved nucleotide sequence with exception. For example, frameshift were identified in 

cse1, cse4, and cas3 in canine_AZ_2003.  

CRISPR spacer arrays were determined and S. Newport SL254 was used as reference 

genome. Strains chicken_GA, cattle_AZ_2003, and cattle_NC_2003, and swine_TX 

shared common spacer arrays as S. Newport SL254, although some spacers were missing. 

Moreover, various spacers were identified in ground_beef_GA_2004 and 

ground_turkey_NM_2008, both of which contained common spacers in S. Newport 

SL254. However, no spacer was identified in strain canine_AZ_2003 except two 

questionable spacers.  

Plasmid sequence identification 

Complete and partial nucleotide sequences of various plasmids were identified in selected 

strains including those contributed to antimicrobial resistance. For example, plasmid 

pSN254 was identified in canine_AZ_2003 and ground_beef_GA_2004, besides S. 

Newport SL254 (Figure IV-3). A total of 166 and 131 genes in pSN254 were determined 

in these two draft genomes, respectively. Genes contributing to antimicrobial resistance 

and mercury resistance were determined, including floR, tetAR, strAB, and 

merABDEPRT. No gene in pSN254 was identified in other selected genomes based on 

draft genome data. Moreover, SGI-1 was examined because genes responsible for 
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antimicrobial resistance type ACSSuT also exhibited in Salmonella genomic island 1 

(SGI-1) (24). However, no insertion was identified between genes thdF 

(SNSL254_A4127) and yidY (SNSL254_A4128) in all eight strains.  

Moreover, additional Salmonella plasmids were identified in different isolates sequenced. 

For example, pSN254_3 was determined in cattle_AZ_2003, canine_AZ_2003, and 

swine_TX identified, which was first identified in S. Newport SL254. Plasmids from S. 

Heidelberg (pSL476_3) and S. Bardo (pSBardoKan) were identified in 

ground_beef_GA_2004 and cattle_NC_2003, respectively. No plasmid sequence was 

identified in draft genome data of chicken_GA and ground_turkey_NM_2008.  

Identification of non-coding RNA 

A total of 106 non-coding RNAs (ncRNAs) were selected to examine their presence in 

selected genomes to investigate the possible differences in virulence and gene regulation 

among different strains (Table IV-4). There were 101 ncRNAs being conserved in all 

selected strains. Other ncRNAs were identified with multiple copies or determined in 

certain strains. For example, STnc60, STnc190, and STnc290 existed in all strains but 

canine_AZ_2003 with differences. One T insertion was identified in position 132 in 

STnc190 in ground_turkey_ NM and there are A and T insertion identified in positions 

101 and 110 in STnc190 in ground_beef_GA, respectively. Similarly, point mutations 

were identified in STnc60 in five genomes (Table IV-5). Moreover, isrB1 and isrB2 were 

identified in all genomes but with two copies in five genomes, including S. Newport 

SL254, chicken_GA, swine_TX, cattle_AZ_2003, and cattle_NC_2003. All these 

genomes except chicken_GA showed close relationship according to phylogenetic 

analysis.  
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Discussion 

S. Newport is polyphyletic consisting of three lineages based on multilocus sequencing 

typing analysis (25). Previous chapters (8) showed that S. Newport harbored extensive 

genetic diversities including both indels and SNPs. S. Newport lineages II and III 

displayed divergent phylogenies and evolved largely independently since their separation. 

Therefore, lineage specific genetic traits may exist and could play important roles in 

virulence, host adaptations, or antimicrobial resistance. Moreover, lineage II showed 

more diverse structure compared to lineage III, consisting of three subgroups and 

displaying clear geographic structure (8). Interestingly, all MDR strains belonged to 

subgroup IIC and were isolated from North America. Thus, it is meaningful to investigate 

the possible common genetic characterizations shared by these clinically important 

strains.  

In the current chapter, all MDR strains showed ACSSuT phenotypes and originated from 

a common ancestor. Since Salmonella genomic island 1 was not identified in these 

genomes (7), IncA/C plasmids would contribute to the multidrug resistances. Complete 

and partial sequences of plasmids were determined in the draft genome data. Importantly, 

a total of 166 and 131 genes in plasmid pSN254 were identified in genome of 

canine_AZ_2003 and ground_beef_GA_2004, including those responsible to 

antimicrobial resistance (floR, tetAR, and strAB) and genes resistant to mercury ions 

(merABDEPRT). Thus, it is necessary to perform further genome sequencing to obtain 

plasmids sequence of these MDR strains and to improve the quality of the chromosomal 

data.  
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Plasmid pSN254 shared a common backbone with plasmid in Yersinia pestis IP275 

(pIP1202) and E. coli D7-3 (pRAx), which is distributed broadly in MDR zoonotic 

pathogens (6, 26). Because the acquisition of IncA/C plasmid in S. Newport was a recent 

event (6), the mutation in cas3 also may have happened recently. The IncA/C plasmid 

pSN254 was not transferable to the E. coli recipient strain (6, 26). Therefore, we 

hypothesized that strains in node M may acquire the resistant plasmid directly from their 

common ancestor. There is no obvious correlation between the self-transferability and 

plasmid components and certain chromosomal elements or unknown plasmid factors may 

contribute to the limitation (26).  

In addition, the phylogenetic analysis and antimicrobial resistance profile demonstrated 

the genetic flux in the node M. For example, four strains kept the same resistance profiles 

(canine_AZ_2003, ground_beef_GA_2004, swine_TX, and cattle_AZ_2003) and three 

genomes gained or loss resistance genes. Therefore, I hypothesized that the evolution of 

IncA/C plasmids has been an ongoing process.  

Moreover, certain chromosomal factors may facilitate the common ancestor of node M to 

acquire the resistant plasmid and to transfer it vertically to offspring strains. The 

CRISPR/cas system could be the most important part correlated to antibiotic resistance. 

Palmer et al. demonstrated the inverse correlation between antibiotic resistance and 

complete CRISPR loci (17). The incomplete CRISPR systems would facilitate the 

organisms ability to acquire foreign genetic elements and to increase the genome 

plasticity (16). The diverse accessory gene pools enhance the ability of bacteria to survive 

in various environments (17). Therefore, it is necessary to perform further whole genome 

sequencing of node M strains to obtain the complete IncA/C plasmid sequence, to 
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characterize the antibiotic resistance patterns, to investigate the potential factors 

facilitating to acquire the plasmids.   
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TABLE IV-1.  General information of Salmonella Newport strains.  

 

Strain Name Tree Label Antimicrobial Resistance Profile* WGS Accession Number Genome Size 

(Mbp) 

S. Newport SL254 Newport SL254 AMC, AMP, CAZ, CHL, GEN, STR, SUL, 

TET 

ABEN01000000 4.83 

CVM 22513 cattle_NC_2003 AMC, AMP, FOX, TIO, AXO, CHL, KAN, 

STR, SUL, TET 

AHTU00000000 4.90 

CVM 22425 cattle_AZ_2003 AMC, AMP, FOX, TIO, AXO, CHL, STR, 

SUL, TET 

AHTW00000000 4.93 

CVM 22462 canine_AZ_2003 AMC, AMP, FOX, TIO, AXO, CHL, STR, 

SUL, TET 

AHTX00000000 5.02 

CVM N1543 ground_beef_GA_2004 AMC, AMP, FOX, TIO, AXO, CHL, STR, 

SUL, TET 

AHTZ00000000 4.89 

CVM 21538 chicken_GA CHL, STR, SUL, TET AHTV00000000 4.93 

CVM 21550 swine_TX AMC, AMP, FOX, TIO, AXO, CHL, STR, 

SUL, TET 

AHTT00000000 4.92 

CVM N18486 ground_turkey_NM_2008 TET AHTY00000000 4.93 

 

*AMC = Amoxicillin/Clavulanic Acid, AMP = Ampicillin, FOX = Cefoxitin, AXO = Ceftriaxone, CHL = Chloramphenicol, 

GEN = Gentamicin, KAN = Kanamycin, STR = Streptomycin, SUL = Sulfamethoxazole or Sulfisoxazole , TET = 

Tetracycline, TIO = Ceftiofur.  
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TABLE IV-2. Pairwise distance matrix of selected genomes. 

 

 ground_turkey swine canine ground_beef SL254 chicken cattle_NC 

swine 4194 (20)       

canine 4910 (10) 858 (21)      

ground_beef 4233 (19) 162 (10) 823 (22)     

SL254 4186 (19) 115 (9) 784 (21) 67 (8)    

chicken 4188 (20) 117 (9) 786 (20) 69 (8) 16 (4)   

cattle_NC 4204 (19) 111 (9) 802 (21) 79 (9) 36 (5) 38 (6)  

cattle_AZ 4196 (20) 105 (8) 786 (20) 77 (9) 28 (5) 30 (6) 26 (5) 
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TABLE IV-3. Identified possible plasmids and resistance genes in selected genomes.  

Strain Identified Complete and Partial Plasmids Resistance Genes 

S. Newport SL254 pSN254, pSN254_3 floR, tetAR, strAB, sul, sugE, ampC, 

aadA, aacC, qacE, merABDEPRT 

cattle_NC_2003 pSBardoKan  

cattle_AZ_2003 pSN254_3  

canine_AZ_2003 pSN254, pSN254_3 floR, tetAR, strAB, merABDEPRT 

ground_beef_GA_2004 pSN254, pSL476_3 floR, tetAR, strAB, merABDEPRT 

chicken_GA   

swine_TX pSN254_3  

ground_turkey_NM_2008   

swine_IL_2001   
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Table IV-4. Distribution of 106 ncRNA in compared genomes 

 SL254 cattle_NC cattle_AZ canine beef chicken swine turkey 

isrA + + + + + + + + 

isrB1 ++ ++ ++ + + ++ ++ + 

isrB2 ++ ++ ++ + + ++ ++ + 

isrC + + + + + + + + 

isrD + + + + + + + + 

isrE + + + + + + + + 

isrF + + + + + + + + 

isrG + + + + + + + + 

isrH1 + + + + + + + + 

isrH2 + + + + + + + + 

isrI + + + + + + + + 

isrJ + + + + + + + + 

isrK + + + + + + + + 

isrL + + + + + + + + 

isrM + + + + + + + + 

isrN + + + + + + + + 

isrO + + + + + + + + 

isrP + + + + + + + + 

isrQ + + + + + + + + 

csrB + + + + + + + + 
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csrC + + + + + + + + 

cyaR + + + + + + + + 

dsrA + + + + + + + + 

gcvB + + + + + + + + 

glmY + + + + + + + + 

glmZ + + + + + + + + 

istR1 + + + + + + + + 

micA + + + + + + + + 

micC + + + + + + + + 

micF + + + + + + + + 

omrA + + + + + + + + 

omrB + + + + + + + + 

oxyS + + + + + + + + 

rprA + + + + + + + + 

rseX + + + + + + + + 

rybB + + + + + + + + 

rydB + + + + + + + + 

rydC + + + + + + + + 

ryeB + + + + + + + + 

ryeC + + + + + + + + 

ryfA + + + + + + + + 

rygC + + + + + + + + 
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rygD + + + + + + + + 

ryhB1 + + + + + + + + 

ryhB2 + + + + + + + + 

sgrS + + + + + + + + 

spf + + + + + + + + 

sraF + + + + + + + + 

sraH + + + + + + + + 

sraL + + + + + + + + 

sroB + + + + + + + + 

sroC + + + + + + + + 

ssrS + + + + + + + + 

STnc10 + + + + + + + + 

STnc20 + + + + + + + + 

STnc30 + + + + + + + + 

STnc40 + + + + + + + + 

STnc50 + + + + + + + + 

STnc60 + + + - + + + + 

STnc70 + + + + + + + + 

STnc80 + + + + + + + + 

STnc90 + + + + + + + + 

STnc100 + + + + + + + + 

STnc110 + + + + + + + + 
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STnc120 + + + + + + + + 

STnc130 + + + + + + + + 

STnc140 + + + + + + + + 

STnc150 + + + + + + + + 

STnc160 + + + + + + + + 

STnc170 + + + + + + + + 

STnc180 + + + + + + + + 

STnc190 + + + - + + + + 

STnc200 + + + + + + + + 

STnc210 + + + + + + + + 

STnc220 + + + + + + + + 

STnc230 + + + + + + + + 

STnc240 + + + + + + + + 

STnc250 + + + + + + + + 

STnc260 + + + + + + + + 

STnc270 + + + + + + + + 

STnc280 + + + + + + + + 

STnc290 + + + - + + + + 

STnc300 + + + + + + + + 

STnc310 + + + + + + + + 

STnc320 + + + + + + + + 

STnc330 + + + + + + + + 
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STnc340 + + + + + + + + 

STnc350 + + + + + + + + 

STnc360 + + + + + + + + 

STnc370 + + + + + + + + 

STnc380 + + + + + + + + 

STnc390 + + + + + + + + 

STnc400 + + + + + + + + 

STnc410 + + + + + + + + 

STnc420 + + + + + + + + 

STnc430 + + + + + + + + 

STnc440 + + + + + + + + 

STnc450 + + + + + + + + 

STnc460 + + + + + + + + 

STnc490 + + + + + + + + 

STnc500 + + + + + + + + 

STnc520 + + + + + + + + 

STnc540 + + + + + + + + 

STnc560 + + + + + + + + 

STnc570 + + + + + + + + 

STnc580 + + + + + + + + 

 

+: presence; ++: double copies; -: absence 
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Table IV-5. Point mutations in ncRNAs* 

 

 STnc60 STnc190 

ground_turkey_NM_2008 A at position 80, 164, 175 T at position 132 

ground_beef_GA_2004 T at position 199 and 202 A at position 101 

T at position 110 

S. Newport SL254 T at position 199  

cattle_NC_2003 T at position 200  

chicken_GA A at position 164 

T at position 200 

 

 

*All mutations in Table IV-5 are insertion 
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FIG IV-1. Phylogenetic tree of compared genomes. 
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FIG IV-2. Genes in plasmid pSN254 identified in strains canine_AZ_2003 and ground_beef_GA_2004 
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CHPTER V: SUMMARY AND FUTURE STUDY 

Salmonella enterica subspecies enterica serotype Newport (S. Newport) has been a 

significant causative agent responsible for foodborne outbreaks in the United States. S. 

Newport has become prevalence since 1996 causing multistate foodborne outbreaks and 

been isolated from diverse sources and locations. S. Newport causes approximate 100,000 

illness cases annually in the United States, ranking third most prevalent in more than 

1,500 serotypes of Salmonella enterica subspecies enterica. Moreover, multidrug 

resistance of S. Newport has become one emerging public health burden. Therefore, it is 

necessary to investigate the evolutionary history, genetic diversity, and multidrug 

resistance of this clinically important pathogen.  

Since the first two complete genomes of pathogenic Salmonella were released in 2001 

and the fast development of commercial whole genome sequencing (WGS) platforms, 

WGS has gradually become one essential and important research tool to get insights into 

the pathogenicity and evolution of Salmonella. The availability of WGS data not only 

provides more comprehensive picture of genetic information of Salmonella for research 

on virulence and host adaptations, but also enables the investigators to locate the potential 

contamination sources during trace-back epidemiology investigations. WGS has the 

higher sensitivity and discriminatory power to differentiate close related strains than 

traditional molecular methods. Moreover, WGS data could be applied in different 

research fields of food safety, including detection and typing of pathogens, optimize 

growth and survival strategies.  

Chapter II focused on phylogenetic relationship between S. Newport lineages II and III. 

Moreover, several regions in the chromosomes could differentiate the two lineages, such 
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as regions around mutS and cas gene clusters in CRISPR system. The findings in chapter 

II examined the evolutionary history of S. Newport from diverse sources and locations 

from genome-wide view, getting insights into the genetic diversity of different lineages in 

the same serotype.  

A total of 26 S. Newport strains isolated from diverse sources and geographic locations 

were performed pyrosequencing to obtain the draft genomes. Two publicly available S. 

Newport genomes were selected as reference genomes of lineages II and III, respectively. 

Another 15 genomes belonging to different serotypes were selected as outgroup genomes 

to determine the phylogenetic relationship between compared genomes. Lineages II and 

III displayed diverse relationship with each other, proving that S. Newport was 

polyphyletic with extensive diversity. Lineages II and III were separated by other 

serotypes, indicating that both two lineages evolved largely independently after they 

diverged at the early stage of S. Newport evolution. Moreover, S. Newport harbored a 

clear geographic structure, meaning that the strains from Asia were decoupled from those 

from the Americas. Lineage II showed more diversity structure than lineage III and 

consisted of three subgroups.  

The region around mutS was examined because recombination events happened 

frequently at this location, which could be used as biomarkers to differentiate lineages II 

and III. This region in lineages II or III shared common contents with different outgroup 

genomes. For example, all 15 outgroup genomes shared gene cluster 1 between invH and 

mutS with lineage II while lineage III possessed gene cluster 2 at the same location. 

Similarly, cas gene cluster also differentiate lineages II and III.  
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Therefore, S. Newport had a clear geographic structure and lineages II and III displayed 

extensive genetic diversity compared to each other. The polyphyletic structure of S. 

Newport suggested that a large gene pool of this serotype may exist. It is necessary to 

collect more S. Newport strains to identify novel subgroups of both lineages, especially 

those isolated from different geographic locations. Moreover, as more WGS data became 

available, new biomarkers could be determined to distinguish various lineages or 

subgroups of S. Newport.  

Chapter III focused on diversity of important Salmonella pathogenicity islands (SPIs). 

Because of the important roles of these gene clusters in invasion activity, interactions 

between hosts and cells, and secretion of virulent factors, the diversity of SPIs may cause 

differences in pathogenicity of different genomes. Here, SPI-5 and SPI-6 were chosen to 

investigate their genetic diversity.  

A total of 28 S. Newport from diverse sources and locations were selected. Another 11 

genomes of other serotypes were selected as outgroup genomes. A total of 146 single 

nucleotide polymorphisms of SPI-5 were identified. The phylogenetic tree of genes in 

SPI-5 indicated that lineages II and III showed divergent relationship and were separated 

by other outgroup genomes. Moreover, two different large insertions with over 40 kb 

were determined in SPI-5 in certain genomes, indicating that the evolution of SPI-5 was 

an ongoing process and horizontal gene transfer or recombination events played 

important roles. Furthermore, because insertion 1 was disseminated in different genomes 

shared common ancestor, it may be compatible to the overall chromosome and play 

important roles in virulence activities.  
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SPI-6, containing type VI secretion systems (T6SS), was identified in all genomes except 

the Asian strains in subgroup IIA. The absence of SPI-6 or T6SS in these strains 

indicated that they may have different pathogenicity capacity or host adaptations. Of 

those carrying SPI-6, the phylogenetic analysis showed that lineages II and III were 

separated by outgroup genomes. Moreover, the presence of tcf fimbrial in certain 

genomes suggested that this region could be hot spot for horizontal gene transfer and 

recombination events. Although the genetic diversity were identified in both SPI-5 and 

SPI-6, experiment work is required to prove the hypothesis that the mutations including 

indels and SNPs would result in the differences in pathogenicity of these genomes.  

In chapter IV, seven MDR S. Newport in subgroup IIC were investigated to identify their 

common and specific genetic information. The phylogenetic analysis suggested that these 

seven genomes had close relationship with each other and originated from common 

ancestor. Therefore, it is necessary to determine the possible common genomic 

background information among these genomes. 

Complete and remnant plasmid sequences were determined in the draft genomes data, 

including floR (chloramphenicols), tetAR (tetracyclines), strAB (aminoglycosides), and 

merABDEPRT (mercury ions). For example, plasmid pSN254, which was responsible for 

ACSSuT resistance type, existed in two genomes. Moreover, all genomes in this group 

contained pseudogene cas3 in CRISPR/cas system. Thus, the incomplete CRISPR/cas 

system may facilitate these strains to acquire foreign elements and to facilitate the 

survival of these strains in different environments. Further chromosomes and plasmids 

sequencing are necessary to classify resistance plasmids in these genomes and to 

investigate the potential chromosomal factors to facilitate their acquisition of foreign 
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elements.  In addition, it is necessary to investigate more MDR S. Newport strains to 

check their phylogenies and to identify the elements responsible to antimicrobial 

resistance.  
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