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Abstract

We present a linear-space algorithm for handling the three-dimensional dominance reporting problem: given
a set S of n three-dimensional points, design a data structure for .S so that the points in S which dominate
a given query point can be reported quickly. Under the variation of the RAM model introduced by Fredman
and Willard [8], our algorithm achieves O(logn/loglogn + f) query time, where f is the number of points

reported. Extensions to higher dimensions are also reported.

1 Introduction

Given a set 5 of d-dimensional points, we wish to store these points in a data structure so that,
given a query point ¢ € R?, the points in S that are dominated by ¢, which we will refer to as proper
points, can be reported quickly. A point p = (p1,p2,...,pq) is dominated by ¢ = (¢1,¢2,...,q4) if
and only if p; < ¢; for all ¢ = 1,...,d. Without loss of generality, we assume that no two points
in 5 have the same x-, y-, or z-coordinates. A number of geometric retrieval problems involving
iso-oriented objects can be reduced to this problem (see for example [6]). Solutions to this problem
have also been used recently in dealing with the so-called temporal range reporting queries on
time-series data [12].

We will use n to represent the input size, f to represent the output size, and ¢ to represent
an arbitrarily small positive constant. The constant ¢ is defined to be log®n. Given a set 5 of
d-dimensional points (1, 23,...,24), a point with the largest x;-coordinate smaller than or equal
to a real number « is called the z;-predecessor of a and the one with the smallest z;-coordinate
larger than or equal to a is called the z;-successor of a.

Our model of computation is the RAM model as modified by Fredman and Willard [8]. In this
model, it is assume that each word consists of & bits and that the number n of data elements never
exceeds 2°, i.e., b > logn'. In addition, arithmetic and bitwise logical operations take constant
time.
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'In this paper, we always assume that the logarithmic operations are to the base two.



In [4], Chazelle and Edelsbrunner proposed two linear-space algorithms to handle the 3-D dom-
inance reporting problem. The first achieves O(logn + flogn) query time and the second achieves
O(log? n+ f) query time. These two algorithms were later improved by Makris and Tsakalidis [10]
to yield O((loglogn)?logloglogn + floglogn) and O(logn + f) query time respectively. In [11],
we improved the query performance of the O(logn + f) time algorithm of Makris and Tsakalidis
to O(logn/loglogn + f) query time but at the expense of increasing the storage cost by a factor
of log® n.

In this paper, we show how to reduce the space to linear while maintaining the same query
performance as in [11], thus obtaining the fastest query time algorithm using linear space. In
Section 2, we provide some previously known results that will be heavily used in this paper. We
briefly review the non-linear space algorithm (that appeared in [11]) in Section 3 and describe the
new linear-space algorithm in Section 4.

2 Preliminaries

2.1 Q-heaps and Fusion Trees

)-heap and fusion trees achieve sublogarithmic search time on one-dimensional data. The following
two lemmas are shown in [7] and [8] respectively.

Lemma 2.1. Assume that in a database of n elements, we have available the use of precomputed
tables of size o(n). Then it is possible to construct a fusion tree data structure of size O(n) space,
which has a worst-case O(logn/loglogn) time for performing member, predecessor and rank oper-
ations.

Lemma 2.2. Suppose () is a subset with cardinality m < 10g1/5n lying in a larger database S
consisting of n elements. Then three exists a Q-heap data structure of size O(m) that enables
insertion, deletion, member, and predecessor queries on ) to run in constant worst-case time,
provided access is available to a precomputed table of size o(n).

Note that in Lemma 2.2, the look-up table of size o(n) is shared among all the Q-heaps built
on subsets of 5.

2.2 Fast Fractional Cascading

Let T be a tree rooted at w and having a maximum degree of ¢ at each node. A node v in T
contains a sorted list L(v) of elements. The total number of elements in all the lists is n. Such a
tree is called a catalog tree [3]. An iterative search on T is defined as follows.

Given a query item z, and an embedded tree F of T, which is rooted at w and has p
nodes, find the predecessor of x in each of the lists associated with the nodes of F.

The fractional cascading technique [5] can be used to organize 7" and its associated lists so that
an iterative search can be performed in O(¢(n) + ploge) time, in which #(n) is the time it takes to
identify the predecessor of  in L(w) and log ¢ is the cost of finding the predecessor of x in each of
the remaining p — 1 lists. This technique uses O(n) space. Note that when ¢ is not a constant, the
time spent at each node is not a constant either.

In [11], we combined the Q-heap technique and the fractional cascading to achieve constant
search time at each node when the maximum degree of T is polylogarithmic in n. The storage cost,
however, is increased to nlog®n. This result was improved in [13] by reducing the storage cost to



linear while maintaining the same query performance. This result is summarized in the following
lemma.

Lemma 2.3. Let T be a catalog tree rooted at w with a total number n of items in its associated
lists, and let ¢ = log®n be the maxzimum degree of a node in T'. There exists a O(n)-space data
structure derived from T such that an iterative search operation specified by a query item x and an
embedded tree I with p nodes can be performed in O(t(n)+ p) time, where t(n) is the time it takes
to identify the predecessor of x in L(w).

We call this data structure the fast fractional cascading structure.

2.3 Handling 3-Sided 2-D Reporting Queries Using Cartesian Trees

A Cartesian tree [14] C' is a binary tree defined on a finite set of 2-D points, say pi,p2,. .., P,
sorted by their x-coordinates. The root of this tree is associated with the point p; with the largest
y-coordinate. Its left child is the root of the Cartesian tree built on py,...,p;—1, and its right child
is the root of the Cartesian tree built on p;y1,...,Ps.

In [11], we explained how the Cartesian trees can be modified to efficiently handle the 3-sided
2-D reporting queries?, i.e. to identify the points (z,y) that satisfy « < 2 < b and y > d, where
a, b, and d are three numbers provided by the query. We doubly link all the nodes in C' according
to an in-order traversal of C'. Given a query (a,b,d), we first identify the two nodes @ and 3 in C
that correspond respectively to the x-successor p; of @ and the x-predecessor p; of b. Then we find
in constant time the nearest common ancestor v of a and 3 using one of the algorithms provided
in [9, 2]. If the y-coordinate of the point pj stored at ~ is greater than or equal to d, then we report
that point and recursively search the subsequences p;,...,pr—1 and pr41,...,p;. Note that the two
nodes corresponding to pr—1 and pgyq1 can be reached in constant time using the doubly linked list.
If p does not satisfy the query, then we stop searching the subtree rooted at v. Thus we have the
following lemma.

Lemma 2.4. Let C' be the Cartesian tree for a set of n 2-D points and augmented with a doubly
linked list. A 3-sided 2-D range query given as (a,b,d) can be handled in O(t(n) + f) time using
D(C) of size O(n), where t(n) is the time to identify the nodes corresponding to the successor of
a and the predecessor of b, and D(C') is a transformation of C to support the nearest common
ancestor search in constant time.

Without causing confusion, in the rest of this paper, whenever we refer to a Cartesian tree C',
we mean its transformation that is suitable for 3-sided 2-D range reporting queries. We can also use
the Cartesian tree to index a set of d-dimensional points (z1,22,...,24) based on any two of their
dimensions. If the points are first sorted by the z;-dimension and are recursively picked during
the construction of the tree according to their x;-coordinates, then the resulting Cartesian tree is
called (z;,z;)-Cartesian tree.

3 An O(nlog n)-Space O(log /loglogn + f)-Query Time Algorithm

In this section, we briefly review the data structure proposed in [11], upon which our new algorithm
is based. The skeleton of our data structure is a balanced search tree of degree ¢ = log®n (thus of
height O(log n/ loglog n)) on the decreasing z-coordinates. A Q-heap K (v)is used to index the keys

2A similar idea is used by Alstrup et al. [1] in handling a special case of the 3-sided 2-D reporting queries when
the points are taken from [N] x .



stored at each internal node v. Let M(v) be the maxzimal set of points stored in the subtree rooted
at v, excluding the points that are already associated with the ancestors of v (a maximal set of a
point set R consists of the points in B whose projections onto the xy-plane are not dominated by
any other projections). In addition to the Q-heap, each node v is associated with several Cartesian
trees: an (x,z)-Cartesian tree D(v) and ¢ (x,y)-Cartesian trees Dq(v), Da(v), ..., D.(v). The (x,z)-
Cartesian tree D(v) stores the mazimal set of points associated with v; and D;(v) stores the union
of the maximal sets associated with the leftmost ¢ children of ». It is easy to realize that the storage
cost of this data structure is O(nlog® n), since the tree 7" and the associated Q-heaps requires O(n)
space, and each point is stored in at most one (z, z)-Cartesian tree and ¢ (z, y)-Cartesian trees.

To answer a 3-D dominance query specified by the point (2o, y0,20), we first identify, in
O(logn/loglogn) time using the Q-heaps, the path Il from the root to the leaf that corresponds
to the z-successor of z5. We then search the tree recursively, starting from the root. Note that we
do not visit any node that is in a subtree rooted at the right sibling of a node on II. For each node
v visited, finding the proper points in M(v) is equivalent to a 3-sided 2-D range query due to the
properties of a maximal set (see [10] for more details) and thus can be handled in O(f(v)) time
using D(v) (assuming that we already know the leftmost and rightmost leaf nodes of D(v) that are
in the query range). Suppose the kth child of v from the left is on Il (kK = ¢+ 1 if v is not on II).
Note that we cannot afford to visit the each of the leftmost k£ — 1 child of v. Instead, we visit such
a proper child u only if there is at least one proper point in M(u). To decide which children to
visit, we search Cj_1(v) for proper points, and record in a vector of ¢ bits, each corresponding to
a child of », which children need to be visited next. This vector is then converted using a look-up
table of size O(n) to a list of indices corresponding to the proper children.

We build a fusion tree on the x-coordinates to index the points stored in each of the ¢ + 1
Cartesian trees associated with the root w. Furthermore, we connected all the Cartesian trees
using a modified fractional cascading structure of size O(nlog®n). These additional data structures
do not asymptotically increase the storage cost and allow each Cartesian tree associated with a
non-root node to be searched in constant time, plus the time it takes to retrieve proper points.

4 A Linear-Space Algorithm with O(logn/loglogn+ f) Query Time

Two factors contributed to the non-linear space requirement of the data structure in [11]. First,
the modified fractional cascading technique described there uses non-linear space. Second, with
each node v, ¢ (z,y)-Cartesian trees were needed to ensure that we can in constant time find the
proper children. The first difficulty no longer exists since we now have at hand the fast fractional
cascading structure [13]. Let m(v) be the number of proper children, we show in the rest of this
section that these children can be identified in m(v) time without the (x,y)-Cartesian trees.

Let uy,ug, ..., u; be the children of v in T and let M (w;) = {(zi1,¥i1,21), (12, Yi2, %,2)s - -
(Zimi> Yimi» Zimg)} for @ = 1,2,...,¢c. Since M(u;) is maximal, we can assume without loss of
generality that ;1 < z;0 < -+ <@y, and yi1 > ¥i2 > -+ > Yin, > Yin+1 = —00. Now consider
the projections of these points to the x-y plane. We define a set Gi(v) of vertical segments in the
x-y plane as follows: G;(v) = {(zi;;¥ij41.%i )] = 1,...,n;} and G(v) = Uz’:l,...,c Gi(v). Let
N(v) = |G(v)|. Figure 4 gives an example of such a set of segments, with segments from different
children depicted using lines of different thicknesses.

Lemma 4.1. Let s = (20, +00;y0) be a semi-infinite horizontal line. For each i € {1,...,¢c}, u
contains at least one point whose projection to the -y plane dominates (xo,yo) if and only if there
exists a vertical segment (x; ;3 Y; i+1,Yi,;) € G(v) that intersects s and furthermore, there is at most
one such vertical segment.
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Figure 1: The dominance query.

Proof. If a segment (2 ;5 +1,¥i;) € G(v) intersects s, then by definition, (2;;,¥; ;) dominates
(z0,%0). On the other hand, suppose (z;;,y; ;) dominates (zg,y0). Then either the segment
(573 Yi j+1, ¥i,;) intersects s, or yo < yj41 # —oo, which means j < n;. Therefore, the point
(25 j+1,Y;j+1) also dominates (z¢,yo). Repeating this process ensures that we can find one verti-
cal segment corresponding to w; which intersects s. Finally, since the projections of the vertical
segments corresponding to u; do not overlap, s can only intersect one of these segments. O

As a result of Lemma 4.1, identifying the proper children of v in O(m(v)) time can be achieved
if we design an indexing scheme on G(v), such that given s and an integer k, the segments from
Gi(v), with ¢ = 1,2,...,k — 1, which intersect s can be reported in O(m(v)) time. Associating v
with G/(v) dose not asymptotically increase the overall storage cost, as long as G/(v) can be indexed
in linear space, since the points in a non-root node are replicated only once at its parent.

Note that this is not simply a segment intersection reporting problem, as we cannot afford
to report every segment in ((v) that intersects s. This is the case because some of them may
come from other than the leftmost & — 1 children of v. Nevertheless, we can solve this problem
by performing a segment intersection counting query followed by a table look-up operation. This
segment intersection counting query is defined as computing the number of segments in G(v) that
intersect s (these segments do not necessarily need to come from the leftmost £ — 1 children of v).

We first discuss the table look-up operation. The list of proper children of » with respect to a
3-D dominance reporting query can be represented as a vector r = (m(v), I1, Iz, ..., I;,()), where
I;, with i = 1,...,m(v), is the index of a proper child. Obviously, the bit-cost of this vector is
O(clogc). Once we obtain such a vector, we can retrieve from it the index of the proper children
one by one in O(m(v)) time.

Lemma 4.2. The vector r is uniquely defined by the y-rank g of yo in the set of endpoints of G(v),
the value of k, and the number h of segments in G(v) which intersect s.

Proof. Let y1,y2,...,Yn(v) be the list of y-coordinates of the points in G/(v) in sorted order. Con-
sider two consecutive such y-coordinates y; and y;11. It is easy to see that the list of segments in
G/(v) sorted from left to right which intersect the query segment s = (zq, +00; o), with yo varying
in the range [y;, y;41) remains the same. Among these segments, the rightmost h intersects s. And,
knowing k, we can uniquely remove those coming from the rightmost ¢ — k children of ». O

Since only one segment from G;(v) could possibly intersect s, the value of i is bounded by c.
The value of k is also bounded by ¢ and the y-rank of yo is bounded by N(v). Therefore, we can



create a look-up table containing N(v) words, each corresponding to a possible y-rank of yo. The
log n bits of each such word is sufficient to record for each possible combination of £ and h, the
vector 7 that has been uniquely determined (c®logc < log n for large enough n).

Among the three indices ¢, k, and h, g can be computed in constant time by applying the
fast fractional cascading technique on the y-coordinates of the points in |J,_; .M(w;), and k is
known using the Q-heap associated with ». Thus we only need to show that the value of h can be
computed in constant time. We first give the following lemma.

Lemma 4.3. A 3-D dominance counting query on a set R of m < log®n points can be handled in
constant time using O(m) space.

Proof. An answer to such a query is uniquely decided by the ranks of the query point in R with
respect to the x-, y-, and z-coordinates, which can computed by applying the Q-heap techniques in
constant time and O(m) space. These three ranks are used to index a m x m x m look-up table to
obtain the correct answer. Since m < 10g1/5 n, any possible answer can be represented using only
O(log log n) bits. Therefore all m? (not necessarily distinct) possible answers can be compacted
into a single word (m?loglogn < log n for large enough n). O

We now explain how to compute the value of h in constant time. We partition the endpoints
of the segments in G/(v) into n/c horizontal stripes Py,..., P, /., each containing ¢ endpoints. Let
Bq,.. .,Bn/c_l be the boundaries such that B; separates P; and P;y1. We associate with each
boundary the maximal subset S; of G(v) such that every segment in S; intersects B;, and with
each stripe P; the maximal subset T; of G(v) such that every segment in 7} crosses the entire stripe
P;. We also denote the subset of segments in G(v) that are completely inside P; as R;. Note that
a segment can belong to up to n/c — 1 subsets associated with the boundaries and up to n/e — 1
subsets associated with the stripes. However, the size of each 5; or T; is bounded by ¢. The
total size of all the subsets associated with the boundaries is equal to the number of intersections
between the segments in G/(v) and the n/c—1 boundaries. Notice that each G;(v), withi=1,...,¢,
contributes at most n/c — 1 such intersections. Thus the total size of all the subsets associated with
the boundaries is O(N(v)). Similarly, the total size of all the subsets associated with the stripes is
also O(N(v)). And finally, >°.y /. |Ri] = O(N(v)).

Given a query segment s = (2g, +00; yo), we can determine, using the fast fractional cascading
structure, the stripe P;4q within which it falls. Without loss of generality, suppose this is not the
first nor the last stripe. Therefore, the two boundaries B; and B exist. The number of segments
in G/(v) that intersect s can be computed as A+ B — C' + D, where A and B are respectively the
numbers of segments in 5; and 5;4 that intersect s, C'is the number of segments in 7; that intersect
s, and D is the number of segments in R; that intersect s. Computing A and B is equivalent to a 2-
D dominance counting query on the lower endpoints of the segments in 5; and the upper endpoints
of the segments in 541 respectively; computing C' is equivalent to a 1-D dominance counting query
on the x-coordinates of the segments in 7’4; and computing D is equivalent to a 3-D dominance
counting query on the segments (z;y1,y2) in R;4q in the form (2 > 20,11 < yo,y2 > yo). Since the
size of each of the sets involved is bounded by O(log®n), by Lemma 4.3, these computation can be
performed in O(1) time and in linear space.

Theorem 4.1. There exists a linear-space algorithm to answer the three-dimensional dominance
reporting queries in O(logn/loglogn + f) time.

Using the techniques discussed in [11], we can extend the above results to higher-dimensions,
increasing both the query and space bounds by a factor of log n/loglogn for each addition dimen-
sion.



Theorem 4.2. A d-dimensional dominance reporting query can be handled in O((log n/ loglog n)4=2+
f) time using O(n(log n/ loglogn)?=3) space, for d > 3.
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