
An O(n)-Space O(log n= log log n + f )-Query Time Algorithm for3-D Dominance Reporting �(Technical Report CS-TR-4508 and UMIACS-TR-2003-77)Qingmin Shi and Joseph JaJaInstitute for Advanced Computer Studies,Department of Electrical and Computer Engineering,University of Maryland, College Park, MD 20742fqshi,joseph@umiacs.umd.edugAbstractWe present a linear-space algorithm for handling the three-dimensional dominance reporting problem: givena set S of n three-dimensional points, design a data structure for S so that the points in S which dominatea given query point can be reported quickly. Under the variation of the RAM model introduced by Fredmanand Willard [8], our algorithm achieves O(logn= log logn + f) query time, where f is the number of pointsreported. Extensions to higher dimensions are also reported.1 IntroductionGiven a set S of d-dimensional points, we wish to store these points in a data structure so that,given a query point q 2 <d, the points in S that are dominated by q, which we will refer to as properpoints, can be reported quickly. A point p = (p1; p2; : : : ; pd) is dominated by q = (q1; q2; : : : ; qd) ifand only if pi � qi for all i = 1; : : : ; d. Without loss of generality, we assume that no two pointsin S have the same x-, y-, or z-coordinates. A number of geometric retrieval problems involvingiso-oriented objects can be reduced to this problem (see for example [6]). Solutions to this problemhave also been used recently in dealing with the so-called temporal range reporting queries ontime-series data [12].We will use n to represent the input size, f to represent the output size, and � to representan arbitrarily small positive constant. The constant c is de�ned to be log� n. Given a set S ofd-dimensional points (x1; x2; : : : ; xd), a point with the largest xi-coordinate smaller than or equalto a real number � is called the xi-predecessor of � and the one with the smallest xi-coordinatelarger than or equal to � is called the xi-successor of �.Our model of computation is the RAM model as modi�ed by Fredman and Willard [8]. In thismodel, it is assume that each word consists of b bits and that the number n of data elements neverexceeds 2b, i.e., b � log n1. In addition, arithmetic and bitwise logical operations take constanttime.�Supported in part by the National Science Foundation through the National Partnership for Advanced Computa-tional Infrastructure (NPACI), DoD-MD Procurement under contract MDA90402C0428, and NASA under the ESIPProgram NCC5300.1In this paper, we always assume that the logarithmic operations are to the base two.1



In [4], Chazelle and Edelsbrunner proposed two linear-space algorithms to handle the 3-D dom-inance reporting problem. The �rst achieves O(logn+ f logn) query time and the second achievesO(log2 n+ f) query time. These two algorithms were later improved by Makris and Tsakalidis [10]to yield O((log log n)2 log log logn + f log log n) and O(logn + f) query time respectively. In [11],we improved the query performance of the O(logn + f) time algorithm of Makris and Tsakalidisto O(logn= log log n + f) query time but at the expense of increasing the storage cost by a factorof log� n.In this paper, we show how to reduce the space to linear while maintaining the same queryperformance as in [11], thus obtaining the fastest query time algorithm using linear space. InSection 2, we provide some previously known results that will be heavily used in this paper. Webrie
y review the non-linear space algorithm (that appeared in [11]) in Section 3 and describe thenew linear-space algorithm in Section 4.2 Preliminaries2.1 Q-heaps and Fusion TreesQ-heap and fusion trees achieve sublogarithmic search time on one-dimensional data. The followingtwo lemmas are shown in [7] and [8] respectively.Lemma 2.1. Assume that in a database of n elements, we have available the use of precomputedtables of size o(n). Then it is possible to construct a fusion tree data structure of size O(n) space,which has a worst-case O(logn= log logn) time for performing member, predecessor and rank oper-ations.Lemma 2.2. Suppose Q is a subset with cardinality m < log1=5n lying in a larger database Sconsisting of n elements. Then three exists a Q-heap data structure of size O(m) that enablesinsertion, deletion, member, and predecessor queries on Q to run in constant worst-case time,provided access is available to a precomputed table of size o(n).Note that in Lemma 2.2, the look-up table of size o(n) is shared among all the Q-heaps builton subsets of S.2.2 Fast Fractional CascadingLet T be a tree rooted at w and having a maximum degree of c at each node. A node v in Tcontains a sorted list L(v) of elements. The total number of elements in all the lists is n. Such atree is called a catalog tree [3]. An iterative search on T is de�ned as follows.Given a query item x, and an embedded tree F of T , which is rooted at w and has pnodes, �nd the predecessor of x in each of the lists associated with the nodes of F .The fractional cascading technique [5] can be used to organize T and its associated lists so thatan iterative search can be performed in O(t(n) + p log c) time, in which t(n) is the time it takes toidentify the predecessor of x in L(w) and log c is the cost of �nding the predecessor of x in each ofthe remaining p� 1 lists. This technique uses O(n) space. Note that when c is not a constant, thetime spent at each node is not a constant either.In [11], we combined the Q-heap technique and the fractional cascading to achieve constantsearch time at each node when the maximum degree of T is polylogarithmic in n. The storage cost,however, is increased to n log� n. This result was improved in [13] by reducing the storage cost to2



linear while maintaining the same query performance. This result is summarized in the followinglemma.Lemma 2.3. Let T be a catalog tree rooted at w with a total number n of items in its associatedlists, and let c = log� n be the maximum degree of a node in T . There exists a O(n)-space datastructure derived from T such that an iterative search operation speci�ed by a query item x and anembedded tree F with p nodes can be performed in O(t(n) + p) time, where t(n) is the time it takesto identify the predecessor of x in L(w).We call this data structure the fast fractional cascading structure.2.3 Handling 3-Sided 2-D Reporting Queries Using Cartesian TreesA Cartesian tree [14] C is a binary tree de�ned on a �nite set of 2-D points, say p1; p2; : : : ; pn,sorted by their x-coordinates. The root of this tree is associated with the point pi with the largesty-coordinate. Its left child is the root of the Cartesian tree built on p1; : : : ; pi�1, and its right childis the root of the Cartesian tree built on pi+1; : : : ; pn.In [11], we explained how the Cartesian trees can be modi�ed to e�ciently handle the 3-sided2-D reporting queries2, i.e. to identify the points (x; y) that satisfy a � x � b and y � d, wherea, b, and d are three numbers provided by the query. We doubly link all the nodes in C accordingto an in-order traversal of C. Given a query (a; b; d), we �rst identify the two nodes � and � in Cthat correspond respectively to the x-successor pi of a and the x-predecessor pj of b. Then we �ndin constant time the nearest common ancestor 
 of � and � using one of the algorithms providedin [9, 2]. If the y-coordinate of the point pk stored at 
 is greater than or equal to d, then we reportthat point and recursively search the subsequences pi; : : : ; pk�1 and pk+1; : : : ; pj . Note that the twonodes corresponding to pk�1 and pk+1 can be reached in constant time using the doubly linked list.If pk does not satisfy the query, then we stop searching the subtree rooted at 
. Thus we have thefollowing lemma.Lemma 2.4. Let C be the Cartesian tree for a set of n 2-D points and augmented with a doublylinked list. A 3-sided 2-D range query given as (a; b; d) can be handled in O(t(n) + f) time usingD(C) of size O(n), where t(n) is the time to identify the nodes corresponding to the successor ofa and the predecessor of b, and D(C) is a transformation of C to support the nearest commonancestor search in constant time.Without causing confusion, in the rest of this paper, whenever we refer to a Cartesian tree C,we mean its transformation that is suitable for 3-sided 2-D range reporting queries. We can also usethe Cartesian tree to index a set of d-dimensional points (x1; x2; : : : ; xd) based on any two of theirdimensions. If the points are �rst sorted by the xi-dimension and are recursively picked duringthe construction of the tree according to their xj-coordinates, then the resulting Cartesian tree iscalled (xi; xj)-Cartesian tree.3 An O(n log� n)-Space O(log = log logn + f)-Query Time AlgorithmIn this section, we brie
y review the data structure proposed in [11], upon which our new algorithmis based. The skeleton of our data structure is a balanced search tree of degree c = log� n (thus ofheight O(logn= log log n)) on the decreasing z-coordinates. A Q-heap K(v) is used to index the keys2A similar idea is used by Alstrup et al. [1] in handling a special case of the 3-sided 2-D reporting queries whenthe points are taken from [N ]�<. 3



stored at each internal node v. Let M(v) be the maximal set of points stored in the subtree rootedat v, excluding the points that are already associated with the ancestors of v (a maximal set of apoint set R consists of the points in R whose projections onto the xy-plane are not dominated byany other projections). In addition to the Q-heap, each node v is associated with several Cartesiantrees: an (x,z)-Cartesian tree D(v) and c (x,y)-Cartesian trees D1(v); D2(v); : : : ; Dc(v). The (x,z)-Cartesian tree D(v) stores the maximal set of points associated with v; and Di(v) stores the unionof the maximal sets associated with the leftmost i children of v. It is easy to realize that the storagecost of this data structure is O(n log� n), since the tree T and the associated Q-heaps requires O(n)space, and each point is stored in at most one (x; z)-Cartesian tree and c (x; y)-Cartesian trees.To answer a 3-D dominance query speci�ed by the point (x0; y0; z0), we �rst identify, inO(logn= log logn) time using the Q-heaps, the path � from the root to the leaf that correspondsto the z-successor of z0. We then search the tree recursively, starting from the root. Note that wedo not visit any node that is in a subtree rooted at the right sibling of a node on �. For each nodev visited, �nding the proper points in M(v) is equivalent to a 3-sided 2-D range query due to theproperties of a maximal set (see [10] for more details) and thus can be handled in O(f(v)) timeusing D(v) (assuming that we already know the leftmost and rightmost leaf nodes of D(v) that arein the query range). Suppose the kth child of v from the left is on � (k = c+ 1 if v is not on �).Note that we cannot a�ord to visit the each of the leftmost k� 1 child of v. Instead, we visit sucha proper child u only if there is at least one proper point in M(u). To decide which children tovisit, we search Ck�1(v) for proper points, and record in a vector of c bits, each corresponding toa child of v, which children need to be visited next. This vector is then converted using a look-uptable of size O(n) to a list of indices corresponding to the proper children.We build a fusion tree on the x-coordinates to index the points stored in each of the c + 1Cartesian trees associated with the root w. Furthermore, we connected all the Cartesian treesusing a modi�ed fractional cascading structure of size O(n log� n). These additional data structuresdo not asymptotically increase the storage cost and allow each Cartesian tree associated with anon-root node to be searched in constant time, plus the time it takes to retrieve proper points.4 A Linear-Space Algorithm with O(logn= log log n+f) Query TimeTwo factors contributed to the non-linear space requirement of the data structure in [11]. First,the modi�ed fractional cascading technique described there uses non-linear space. Second, witheach node v, c (x; y)-Cartesian trees were needed to ensure that we can in constant time �nd theproper children. The �rst di�culty no longer exists since we now have at hand the fast fractionalcascading structure [13]. Let m(v) be the number of proper children, we show in the rest of thissection that these children can be identi�ed in m(v) time without the (x,y)-Cartesian trees.Let u1; u2; : : : ; uc be the children of v in T and let M(ui) = f(xi;1; yi;1; zi;1); (xi;2; yi;2; zi;2); : : : ;(xi;ni ; yi;ni ; zi;ni)g for i = 1; 2; : : : ; c. Since M(ui) is maximal, we can assume without loss ofgenerality that xi;1 < xi;2 < � � � < xi;ni and yi;1 > yi;2 > � � � > yi;ni > yi;ni+1 = �1. Now considerthe projections of these points to the x-y plane. We de�ne a set G(v) of vertical segments in thex-y plane as follows: Gi(v) = f(xi;j; yi;j+1; yi;j)jj = 1; : : : ; nig and G(v) = Si=1;:::;cGi(v). LetN(v) = jG(v)j. Figure 4 gives an example of such a set of segments, with segments from di�erentchildren depicted using lines of di�erent thicknesses.Lemma 4.1. Let s = (x0;+1; y0) be a semi-in�nite horizontal line. For each i 2 f1; : : : ; cg, uicontains at least one point whose projection to the x-y plane dominates (x0; y0) if and only if thereexists a vertical segment (xi;j ; yi;j+1; yi;j) 2 G(v) that intersects s and furthermore, there is at mostone such vertical segment. 4
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�Figure 1: The dominance query.Proof. If a segment (xi;j ; yi;j+1; yi;j) 2 G(v) intersects s, then by de�nition, (xi;j ; yi;j) dominates(x0; y0). On the other hand, suppose (xi;j ; yi;j) dominates (x0; y0). Then either the segment(xi;j ; yi;j+1; yi;j) intersects s, or y0 < yj+1 6= �1, which means j < ni. Therefore, the point(xi;j+1; yj+1) also dominates (x0; y0). Repeating this process ensures that we can �nd one verti-cal segment corresponding to ui which intersects s. Finally, since the projections of the verticalsegments corresponding to ui do not overlap, s can only intersect one of these segments.As a result of Lemma 4.1, identifying the proper children of v in O(m(v)) time can be achievedif we design an indexing scheme on G(v), such that given s and an integer k, the segments fromGi(v), with i = 1; 2; : : : ; k � 1, which intersect s can be reported in O(m(v)) time. Associating vwith G(v) dose not asymptotically increase the overall storage cost, as long as G(v) can be indexedin linear space, since the points in a non-root node are replicated only once at its parent.Note that this is not simply a segment intersection reporting problem, as we cannot a�ordto report every segment in G(v) that intersects s. This is the case because some of them maycome from other than the leftmost k � 1 children of v. Nevertheless, we can solve this problemby performing a segment intersection counting query followed by a table look-up operation. Thissegment intersection counting query is de�ned as computing the number of segments in G(v) thatintersect s (these segments do not necessarily need to come from the leftmost k � 1 children of v).We �rst discuss the table look-up operation. The list of proper children of v with respect to a3-D dominance reporting query can be represented as a vector r = (m(v); I1; I2; : : : ; Im(v)), whereIi, with i = 1; : : : ; m(v), is the index of a proper child. Obviously, the bit-cost of this vector isO(c log c). Once we obtain such a vector, we can retrieve from it the index of the proper childrenone by one in O(m(v)) time.Lemma 4.2. The vector r is uniquely de�ned by the y-rank g of y0 in the set of endpoints of G(v),the value of k, and the number h of segments in G(v) which intersect s.Proof. Let y1; y2; : : : ; yN(v) be the list of y-coordinates of the points in G(v) in sorted order. Con-sider two consecutive such y-coordinates yj and yj+1. It is easy to see that the list of segments inG(v) sorted from left to right which intersect the query segment s = (x0;+1; y0), with y0 varyingin the range [yj ; yj+1) remains the same. Among these segments, the rightmost h intersects s. And,knowing k, we can uniquely remove those coming from the rightmost c� k children of v.Since only one segment from Gi(v) could possibly intersect s, the value of h is bounded by c.The value of k is also bounded by c and the y-rank of y0 is bounded by N(v). Therefore, we can5



create a look-up table containing N(v) words, each corresponding to a possible y-rank of y0. Thelogn bits of each such word is su�cient to record for each possible combination of k and h, thevector r that has been uniquely determined (c3 log c < log n for large enough n).Among the three indices g, k, and h, g can be computed in constant time by applying thefast fractional cascading technique on the y-coordinates of the points in Si=1;:::;cM(ui), and k isknown using the Q-heap associated with v. Thus we only need to show that the value of h can becomputed in constant time. We �rst give the following lemma.Lemma 4.3. A 3-D dominance counting query on a set R of m < log� n points can be handled inconstant time using O(m) space.Proof. An answer to such a query is uniquely decided by the ranks of the query point in R withrespect to the x-, y-, and z-coordinates, which can computed by applying the Q-heap techniques inconstant time and O(m) space. These three ranks are used to index a m�m�m look-up table toobtain the correct answer. Since m < log1=5 n, any possible answer can be represented using onlyO(log log n) bits. Therefore all m3 (not necessarily distinct) possible answers can be compactedinto a single word (m3 log log n < log n for large enough n).We now explain how to compute the value of h in constant time. We partition the endpointsof the segments in G(v) into n=c horizontal stripes P1; : : : ; Pn=c, each containing c endpoints. LetB1; : : : ; Bn=c�1 be the boundaries such that Bi separates Pi and Pi+1. We associate with eachboundary the maximal subset Si of G(v) such that every segment in Si intersects Bi, and witheach stripe Pi the maximal subset Ti of G(v) such that every segment in Ti crosses the entire stripePi. We also denote the subset of segments in G(v) that are completely inside Pi as Ri. Note thata segment can belong to up to n=c� 1 subsets associated with the boundaries and up to n=c � 1subsets associated with the stripes. However, the size of each Si or Ti is bounded by c. Thetotal size of all the subsets associated with the boundaries is equal to the number of intersectionsbetween the segments in G(v) and the n=c�1 boundaries. Notice that each Gi(v), with i = 1; : : : ; c,contributes at most n=c�1 such intersections. Thus the total size of all the subsets associated withthe boundaries is O(N(v)). Similarly, the total size of all the subsets associated with the stripes isalso O(N(v)). And �nally, Pi=1;:::;n=c jRij = O(N(v)).Given a query segment s = (x0;+1; y0), we can determine, using the fast fractional cascadingstructure, the stripe Pj+1 within which it falls. Without loss of generality, suppose this is not the�rst nor the last stripe. Therefore, the two boundaries Bj and Bj+1 exist. The number of segmentsin G(v) that intersect s can be computed as A+ B � C +D, where A and B are respectively thenumbers of segments in Sj and Sj+1 that intersect s, C is the number of segments in Tj that intersects, and D is the number of segments in Ri that intersect s. Computing A and B is equivalent to a 2-D dominance counting query on the lower endpoints of the segments in Sj and the upper endpointsof the segments in Sj+1 respectively; computing C is equivalent to a 1-D dominance counting queryon the x-coordinates of the segments in Tj+1; and computing D is equivalent to a 3-D dominancecounting query on the segments (x; y1; y2) in Rj+1 in the form (x � x0; y1 � y0; y2 � y0). Since thesize of each of the sets involved is bounded by O(log� n), by Lemma 4.3, these computation can beperformed in O(1) time and in linear space.Theorem 4.1. There exists a linear-space algorithm to answer the three-dimensional dominancereporting queries in O(logn= log log n+ f) time.Using the techniques discussed in [11], we can extend the above results to higher-dimensions,increasing both the query and space bounds by a factor of logn= log logn for each addition dimen-sion. 6
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