TECHNICAL RESEARCH REPORT

Modifications of the Euclidean Algorithm

for Isolating Periodicities from a

Sparse Set of Noisy Measurements

by S.D. Casey, B.M. Sadler

T.R. 95-105

INSTITUTE FOR SYSTEMS RESEARCH|

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Modifications of the Euclidean Algorithm
For Isolating Periodicities From a,
Sparse Set of Noisy Measurements

Stephen D. Casey'? Brian M. Sadler
Department of Mathematics Army Research Laboratory
and Statistics 2800 Powder Mill Road
The American University Adelphi, MD 20783
4400 Massachusetts Ave., N.W. e-mail: sadler@arl.mil

Washington, DC 20016-8050
e-mail: scasey@american.edu

EDICS: SP 3.6

!Research partially supported by Air Force Office of Scientific Research Grant F49620-94-1-0196
2Current address: Institute for Systems Research, University of Maryland, College Park, MD 20742-3311

Abstract

Modifications of the Euclidean algorithm are presented for determining the period from a sparse
set of noisy measurements. The elements of the set are the noisy occurrence times of a periodic
event with (perhaps very many) missing measurements. This problem arises in radar pulse repe-
tition interval (PRI) analysis, in bit synchronization in communications, and other scenarios. The
proposed algorithms are computationally straightforward and converge quickly. A robust version
is developed that is stable despite the presence of arbitrary outliers. The Euclidean algorithm
approach is justified by a theorem which shows that, for a set of randomly chosen positive integers,
the probability that they do not all share a common prime factor approaches one quickly as the
cardinality of the set increases. In the noise—free case this implies convergence with only ten data
samples, independent of the percentage of missing measurements. In the case of noisy data sim-
ulation results show, for example, good estimation of the period from one hundred data samples
with fifty percent of the measurements missing and twenty five percent of the data samples being
arbitrary outliers.

1 Introduction: Statement of the Problem

Our problem begins with a set of measurements of a periodic process. We wish to determine the
period of the process from this set, which we shall assume is (perhaps very) sparse and noisy. We

assume our data is a finite set of real numbers
S = {Sj};-‘zl , with s; = k;7+ ¢ + 1, (1)

where 7 (the period) is a fixed positive real number, the k;’s are non-repeating positive integers, ¢
(the phase) is a real random variable uniformly distributed over the interval [0, 7), and the 7;’s are
zero—mean independent identically distributed (iid) error terms. We assume that the 7,’s have a
symmetric probability density function (pdf), and that |n;| < 7 for all j. By assuming that the s;’s
are increasing, we can interpret the s;’s as occurrence times with time gaps or jumps determined
by the k;’s. (Later we will have occasion to reorder the data for analysis; this does not alter the
time—-of-occurrence interpretation). For example, letting ky = 1, ko =3, ks =5, ..., k, =2n — 1,
corresponds to missing every other occurrence of a periodic event with period 7. The period is the
unique maximum value of 7 such that the k; are all integers. Note that for any solution 7 that
fits the form of S, the numbers 7, Z,... are also possible solutions. Estimates of 7 in turn lead to
estimates of ¢ and the k;’s.

The problem of finding 7 given the set (1) arises in different ways that are often associated
with pulse train analysis. These include radar pulse repetition interval (PRI) analysis [31], bit
synchronization in communication systems [10], and neuron firing rate analysis. More generally,
the problem arises when one observes events that occur in integer multiples of some fixed, but
unknown, real number. The problem is to determine that number. For example, in communications
the elements of § may be the times of a pseudorandomly occurring change in the carrier frequency,
where the change rate is governed by a shift register output. The set S may also arise from noisy
zero—crossing times of a sinusoid.

We solve for 7 by using a modified Euclidean algorithm to find what is essentially the greatest
common divisor of the set S. Subsequent algorithms are modifications of this first procedure. The

theoretical basis for the algorithm is given in Sections 2, 3, 4, and the Appendix. The algorithm

is computationally straightforward, requires little input data, and given reasonable data, quickly
converges to the value of 7 with very high probability. A fundamental result is given by Theorem 3.1,
which states that for a set of uniformly distributed positive integers distributed over an arbitrarily
large lattice, the probability that they all do not share a common prime factor approaches one
quickly as the cardinality of the set increases.

In the noise—free case our algorithm is equivalent to the Euclidean algorithm and converges
with very high probability given only n = 10 data samples, independent of the number of missing
measurements. Simulation examples demonstrate successful estimation of 7 for n = 10 with 99.99%
of the possible measurements missing. In fact, with only 10 data samples, it is possible to have
the percentage of missing measurements arbitrarily close to 100%. There is, of course, a cost, in
that the number of iterations the algorithm needs to converge increases with the percentage of
missing measurements. The algorithm will degrade as n is reduced from 10 (see Table 2), which is
consistent with the theory (Theorem 3.1, Proposition 3.1, and Table 1).

In the presence of noise (non-zero 7;’s in (1)) and false data (or outliers), there is a tradeoff
between the number of data samples, the amount of noise, and the percentage of outliers. The
algorithm will perform well given low noise for n = 10, but will degrade as noise is increased.
However, given more data, it is possible to reduce noise effects and speed up convergence by
binning the data, and averaging across bins. Binning can be effectively implemented by using an
adaptive threshhold with a gradient operator, allowing convergence in a single iteration in many
cases.

The problem of finding 7 from S has been considered by Fogel and Gavish [9], who used
spectrum analysis of a delta—train function with impulses at the occurrence times. This approach
is equivalent to a periodogram-based method for spectral analysis of point processes as developed
by Bartlett [1]. General techniques for PRI analysis include dividing the total number of pulses
observed by the number of pulse intervals, as well as use of pulse interval histograms [31]. More
recently Gray et al. have derived the maximum likelihood estimator of 7 for the iid Gaussian noise
case [12]. In their work, missing measurements and outliers were not considered.

The more general problem of time series spectrum analysis using zero—crossings has been con-

sidered by a number of authors. Kedem uses zero—crossing counts on an interval for spectrum
analysis of random signals [18]. This method does not seem to be conducive to cases of missing
measurements. Jones [16] and Parzen [22] developed a multiplicative missing observation model
(AM model) for spectrum analysis of stationary processes with periodically missing measurements.
The resulting nonparametric estimates are based on suitably modified periodograms. This work
was extended by Bloomfield [2] and Scheinok [29] to include missing measurements where the prob-
ability of a miss is modeled by a Bernoulli process. Identification of parametric (ARMA) models
from time series with missing measurements has also been considered by a number of authors,
e.g., see Rosen and Porat [27] and references therein. Recently Dandawate [6] and Giannakis and
Zhou [11] have proposed using cyclic statistics of time series with periodically missing measure-
ments. Generally speaking, the above referenced models for missing measurements assume access
to uniformly spaced amplitude samples, and are therefore not directly applicable in our setup.

Kay and Sudhaker proposed the use of the occurrence time of zero—crossings to obtain DFT
coefficients [17]. This approach is related to a class of pulse time modulation techniques in which
sample amplitudes are suitably transformed to zero—crossing interval widths [8]. This method
requires addition of an auxiliary signal before detection of the zero—crossings and is therefore not
applicable here.

The paper is organized as follows. Section 2 gives the development of a modified Euclidean
algorithm for finding 7 that is robust to noise. Given this estimate, we then discuss estimating
¢ and the k;’s. Section 3 is a discussion of the result that for a set of randomly chosen positive
integers, the probability that they do not all share a common prime factor approaches one quickly
as the cardinality of the set increases. We then propose, in Section 4, further modifications of
the algorithm which are effective given increased noise and outliers. Section 5 contains simulation
results and discussion of performance for the various proposed algorithms. Lengthy proofs are

presented in the Appendix.

2 A Modified Euclidean Algorithm for Finding 7

Given the set S as in (1), we modify the Euclidean algorithm to develop a procedure for finding
7. This involves some basic number theory. References for this material include Hardy and Wright
[13], Ireland and Rosen [14], Knuth [19], Leveque [21], Rosen [26], and Schroeder {30].

The Euclidean algorithm is a division process for the set of integers Z. The algorithm is based
on the property that, given two positive integers a and b, a > b, there exists two positive integers
g and r such that

a=q-b+r,0<r<b.

If r = 0, we say that b divides a, and denote this by bja. This property of the set of integers,
combined with the fact that if a,b € Z\ {0} then a-b # 0 (Z has no zero divisors), make Z a unique
factorization domain. Thus in Z every non-zero element may be written as the product of powers
of irreducible integers, or primes. The Euclidean algorithm also holds in more general algebraic
structures called Euclidean domains.

The Euclidean algorithm yields the greatest common divisor of two (or more) elements of Z.
The greatest common divisor of two integers a and b, denoted by ged(a, b), is the product of the
powers of all prime factors p that divide both a and b. We may represent the algorithm applied to

a,b, a > b, as follows:

a=b-¢1+r1 : 0<r;<b

b=ri-qa+r2 : 0<ry<m

Theo =Th—1Qc+7k : 0<rp <Thp—1

Tk—1 =Tk gk -

The procedure terminates when r;41 = 0. This gives ged(a, b) = rg.
This procedure can be extended to work on S. The symbol ged(ky,...,k,) is the greatest
common divisor of the set {k;}, i.e., the product of the powers of all prime factors p that divide

each k;. Note that this is not the pairwise gcd of the set {k;}. If ged(ki1,...,kn) = 1, the set

{k;} is called mutually relatively prime. If, however, ged(ki, k;) = 1 for all 4 # 7, the set {k;} is
called pairwise relatively prime. If a set is pairwise relatively prime, it is mutually relatively prime.
However, the converse is not true (for example, consider the set {35,21,15}). The computation of
the ged of a set of more than two integers uses the following proposition. There is also a natural

extension of the gcd to multiples of a fixed 7 > 0.

Proposition 2.1

(2.) ged(kimy...,kn7) = Tged(ky, ..., kn),

(1.) ged(ki,...,kn) =ged(ky,. .., kn—2, (gcd(kn-1,kpn))) .

Proof : See Leveque [21], page 16. [

The standard Euclidean algorithm, as shown above, involves repeated division. In our problem,
we are dealing with numbers that are essentially “noisy integers.” Remainder terms could be
noise, and thus could be non-—zero numbers arbitrarily close to zero. Subsequent iterations in
the procedure may involve dividing by such small values, which would result in arbitrarily large
numbers. Thus, the standard algorithm is unstable under perturbation by noise. However, the
algorithm may be changed so that the process of subtraction replaces division by making use of the
following proposition. So that (k; — k;j41) € N, we assume that the k;’s are sorted in descending

order.
Proposition 2.2

ged(ki, ..., kn) = ged((k1 — ko), (k2 — k3)y ...y (kn—1 — kn), k) -
Proof : See the Appendix.

We will also need the following related result.

Proposition 2.3

ged((k1 — k2), (k2 — ka), .., (k1 — k) = ged((k1 — kn), (k2 = k), -, (b1 — kn)).

Proof : See the Appendix.

We are now ready to develop our modified algorithm. Here, and throughout the rest of the
paper, we will assume the s;’s are sorted in descending order, i.e., s1 > s3 > --+ > s,. This allows
a more straightforward visualization of our algorithm. We form a new set by subtracting adjacent
pairs of these numbers, given by s; — s;4+1. After this first operation, the phase information has

been subtracted out, and the resulting set has the simpler form

§' = {33' ?;11, with s;. = K;7 +77},

where K; = k; — kj;1 and 77; = 7; — 7j+1. In subsequent iterations of the algorithm, the data
will maintain this same general form. Because of the 7; perturbations we establish a threshold
no and, after the subtraction of adjacent pairs, we declare all numbers in the interval [0,70] to be
zero and eliminate them from the set. Choice of 7 is dictated by the distribution of the n;’s, with
0 < mo < % (see Section 4). We then append zero, sort, subtract adjacent pairs, and threshold. By
appending zero, we adjoin the previous non—-zero minimum to the set. The algorithm is continued
by iterating this process of appending zero, sorting, subtracting, and eliminating the elements in
[0,70]. It terminates when all but one of the elements are in [0,7], i.e.,“equal to zero.” By the
propositions above, this element is equal to gcd(K7,...,K,_1) - 7 £ error term.

We will see in the next section that gcd(Kj,...,K,_1) — 1 with probability 1 as n — oo.
Moreover, we will see that this convergence is very fast, which shows that the proposed modified
Euclidean algorithm yields 7 with a high probability for small (n =~ 10) to moderate (n =~ 100)
values of n, depending on the distribution of the n;’s and the percentage of outliers.

The algorithm for finding 7 given the set S is summarized as follows. Again, we assume that

the original data set is in descending order, i.e., s; > sj41.

Modified Euclidean Algorithm

1.) After the first iteration, append zero.

2.) Form the new set with elements s; — s;41.

3.) Sort in descending order.
4.) Eliminate elements in [0, 7] from end of the set.

5.) Algorithm is done if left with a single element. Declare 7 = s;. If not done, go to (1.).

Remarks :

1. It is easily possible to generate low noise or even noise—free data sets such that the modified
Euclidean algorithm does not converge to 7, even for an arbitrarily large number of data
points. For example, consider k; = 3,k2 = 5,k3 = 7,... with true underlying period 7 = 1.
To eliminate the phase, we do not save the first minimum. For this data, the algorithm will
give 7 = 2. However, for even 10 data points, the theory developed in the following section
shows that such data sets are extremely unlikely to occur. Another way of saying this is that
if a large set of low noise or noise-free data leads the algorithm to an incorrect solution, then

the corresponding k;’s exhibit a consistent pattern.

2. Given an estimate 7 of 7, it is then possible to estimate ¢ and the k;’s. We give a brief dis-
cussion of these estimates. Fogel and Gavish [9, 10] have addressed the problem of estimating

¢, and have produced an estimator $ for ¢, given by
T = s
o~ T 8§
$= 5 318 jzzjlexp(Qm =)¢ - (2)

For a good estimate 7 of 7, exp(27rz"—c§'rl) ~ 1 Forn « 7= 7, n/7T <1, and so

exp(2min; /T) =~ exp(0) = 1. Therefore,

=1
o~ n k
= % {Z:l exp 27rz—)exp(27rzm)exp(27rig)}
? n
N o arg Zexp(2m
J=l1
T ¢
= 5 a8 {n . exp(27rz$)}

7

o~

= % (arg {n} +arg {exp(27ri§)})

7 ¢
= 5-arg {exp(27m§)}

T 27

T T

3. We present two methods of getting an estimate on the set of k;’s. Given a good estimate <$,

the first is to form the set
o={kjT+¢+n— P},

Given the estimate 7, estimate k; by

k\jz round (ij""‘/’j'ﬂj_‘ﬁ)) (3)

T

where round(-) denotes rounding to the nearest integer.

We could also work with the set
o' = {K;m +n;};2 U{kaT + ¢+ 10 — 8},

where K; = k; ~ k; 1 and 7);- =1 — nj+1. Given the estimate 7, estimate k, by

kn7'+¢+77n—$)

kn = round (
7

KT+ 7]9

f{\j = round ().

~ o~ —

Then, k\n—l = f{\n—l +kny kn_2=Kpn_2+ En—la and so on.

3 Relatively Prime Numbers and the Zeta Function

In this section, we present Theorem 3.1, which says that ged(ky,...,k,) — 1 with probability 1

as n — oo. Moreover, this convergence is very quick. We use this to show that

ged(Ky7y ..., Kp17) — 7, (4)

with probability 1 as n — 0o. We show that the proposed modified Euclidean algorithm yields
7 with a high probability for small (n ~ 10) to moderate (n = 100) values of n, depending on the
distribution of the 7;’s and the percentage of outliers. In the noise—free case, the theory tells us
that the algorithm will almost certainly yield 7 given only 10 data samples.

The proof is relatively long, and is presented in the Appendix. The development of the theorem
involves techniques and results from analytic number theory. Two functions, Riemann’s Zeta
function ((n) and the Mobius function u(m), play key roles. The result is classical for the case
n = 2, and was proven by Dirichlet in 1849 (see Knuth [19], pp. 324, 337, 595, and Schroeder [30],
pp- 48-50). An elegant formulation for n = 2 is given in Hardy and Wright [13].

Riemann’s Zeta function is defined on the complex half space {z € C: R(z) > 1} by

o0
((2) =) n*. (8)
n=1
Euler demonstrated the connection of { with number theory by showing, in 1736, that
a 1
(@) =]] 7——F== Rz >1 (6)
jl;ll 1 - (pj)~* ’

where P = {p1,p2,p3,...} = {2,3,5,...} is the set of all prime numbers (see Conway [5]). In the
following P{-} denotes probability.

Theorem 3.1 Given n (n > 2) randomly chosen positive integers {ki,...,kn},
P{ged(ki, .-, kn) = 1} = ()] " .

The proof of Theorem 3.1 follows directly from the following theorem. We let card{-} de-
note cardinality of the set {-}, and let {1,...,£}™ denote the sublattice of positive integers in R®
with coordinates ¢ such that 1 < ¢ < £. Therefore, N,(£) = card{(ki1,...,ks) € {L1,...,£}" :

ged(ky, ..., k) = 1} is the number of relatively prime elements in {1,...,£}".
Theorem 3.2 Let

N, () = card{(k1,...,kn) € {1,...,£}" : ged(ky, ..., kn) = 1},
For n > 2, we have that

lim —Nn (6)

too0 UM

=[¢(m)] ™.

Proof : See the Appendix.

Our original data set contains phase information. We eliminate this by the subtraction of
adjacent elements in the set. But then, rather than working with {k,...,k,}, we are working with

{(k1 — k2), ..., (kn—1 — kn)}. Therefore, we need the following.

Corollary 3.1 Let {ki,...,kn} be n (n > 3) randomly chosen positive integers, with k;j > kji1,
and let K; = kj —kjq1 forj=1,...,n—1. Then

P{gcd(Ky,...,Kn_1) =1} =[¢(n—-1)] .

Proof : See the Appendix.

Various techniques, e.g., Cauchy residue theory, allow us to get a closed form solution of {(n)

for the even natural numbers. This is (see Ireland and Rosen [14] and Conway [5])

(27r)2k

2¢(2k) = (-1)**+! @h]

(2k** Bernoulli Number) . (7

(“The result is due to Euler and constitutes one of his most remarkable computations.” Ireland and
Rosen [14], page 231.) The values ((2k + 1) can be estimated numerically (see the CRC tables [3]).
Some representative values are shown in Table 1. We can see from these values that [¢(n)]™} — 1

quickly as n increases. In fact, we can show that this rate of convergence is at least exponential.
Proposition 3.1 Let w € (1,00). Then

Jim [C@)] =1, ®)
converging to 1 from below faster than 1/(1 — 21~%).
Proof : See the Appendix.

Combining Corollary 3.1 with Propositions 2.1 — 3.1 gives the theoretical underpinnings of the

algorithm.

10

Theorem 3.3 Let {ki1,...,kn} be n (n > 3) randomly chosen positive integers, with k; > kji1,
and let Kj = kj — kji1 forj=1,...,n—1. Then

ng(KlT,...,Kn_lT) — T,

with probability 1 as n — oo.

We close this section with a heuristic argument for the validity of Theorem 3.1. The argument,
although not rigorous, does provide insight into the result. In this discussion, we have not carefully
defined what it means for the integers to be chosen at random, and we do not present the estimates
needed to justify convergence. These are presented in the proof of Theorem 3.2 in the Appendix.

Given randomly distributed positive integers, by the Law of Large Numbers, about 1/2 of them
are even, 1/3 of them are multiples of three, and 1/p are a multiple of some prime p. Thus, given

n independently chosen positive integers,
P{plk1,plks,...,and plkn} =
P{plk1} - P{plks} - ... P{plkn} =
/() -1/()-...-1/(p) =
1/(p)™.
Therefore,
P{p fk1,p fka,...,orp fkn} =1-1/(p)". (9)
By the Fundamental Theorem of Arithmetic, every integer has a unique representation as a product

of primes. Combining that theorem with the definition of gcd, we get

o0
P{ged(k,... kn) =1} = [[1 - 1/(p;)™ (10)
Jj=1
where p; is the j** prime. But, by Euler’s formula,
> 1
z) = — R(2) > 1. 11
@ =11 =5 #02) (1)
Therefore,
P{ged(ky, ..., kn) = 1} = 1/({(n)) - (12)

This completes our heuristic argument.

11

4 Further Modifications

In this section we consider the effects of noise and outliers on the modified Euclidean algorithm
described in Section 2. The modified algorithm replaces division, as required in the standard
Euclidean algorithm, with repeated subtraction in order to gain stability with respect to noise.
Error analysis of this approach is complicated by the facts that the algorithm is iterative and that
the algorithm sorts the data. Therefore, this analysis involves order statistics.

Suppose the pdf of the 7;’s is given by f;(n), and consider the set of differences obtained in the

first iteration, given by

Yj = 85 — 8541 = (kj — kjr1)7 + (05 — nj+1)- (13)

Invoking the zero—mean iid assumption on the 7;’s, the pdf of (n; —7;1) is given by the convolution
fn(n) * fo(n). So, for example, if f,(n) ~U [—%, % (n is uniformly distributed with parameter A)
then f, (y) = trily—(k;—k;+1)7], the triangle function centered at (k;—k;+1)7. Two points can now
be made. First, after the first iteration, the differencing operation has removed the independence of
the error terms. Second, the ordering operation makes the nature of the dependence in subsequent
iterations difficult to determine. Analysis of order statistics very often rests on an iid assumption,
e.g., see Sarhan and Greenberg [28] and Reiss [25]. Without the iid assumption, this analysis leads
into many open questions (see Reiss [25]).

In general, beyond the first iteration the pdf of the subsequent error terms becomes asymmetric,
even when starting with iid 7;’s with symmetric pdf f, (). This occurs due to the reordering before
differencing at each iteration, and because after the first iteration the errors are no longer iid. The
result is that using the modified Euclidean algorithm can lead to negatively biased estimates of 7
after the first iteration due to the skewness of the pdf of the errors. As we will see this can be
corrected for by averaging.

In order to illustrate the behavior of the algorithm consider the following example. Let the set
S of equation (1) be generated as follows. Let 7 = 1, n = 100 data samples, the jumps in the k,’s
be randomly selected from a discrete uniform distribution on the interval [1,10], and the noise be

iid and uniformly distributed as f,(n) ~ U[-0.1,0.1]. A data set S was generated according to

12

these parameters and used as input to our algorithm. Consider the results after one iteration, in
which the data has been differenced and sorted into descending order, as plotted in Figure 1. The
data are clustered into “steps” around integer multiples of 7 = 1, as we expect from (13). That the
steps are all of the same approximate length is due to the uniform distribution in the jumps of the
k;’s in the original data set S. Other distributions will result in different proportions. From (13)
and the assumptions on the noise we know that the data has a mean that is an integer multiple
of 7 given by (k; — kj;1)7, with noise symmetrically distributed around this mean. This suggests
isolating each step and averaging the data within each step to reduce noise effects.

A straightforward method for clustering the data is to employ a gradient operator to determine
when a step has occurred. After the first iteration (as in Figure 1) the gradient is estimated, with
large gradient values indicating a step or “edge” in the data. We have employed a simple estimator
by convolving with an impulse response given by [—1,0,1]. This operator is well known in signal
and image processing, e.g., see Jain [15]. A data—adaptive gradient threshold g is selected as 10%
of the maximum gradient value, and data points above this threshold are assumed to correspond
to the step edges. After the steps have been isolated the step heights are easily found, and the
minimum step height, call it 7, is taken as a coarse estimate of 7. Referring to Figure 1, all of
the step heights are approximately equal to 7, again due to the original distribution of the jumps
in the k;’s used in generating S. We then use 7 to set two thresholds. The first is no = 0.357,
used to define the neighborhood of zero in which data will be eliminated during each iteration (see
Section 2). The second we take to be yo = 0.67, used to segment the steps at each iteration. The
segmentation proceeds by searching for jumps in height greater than yo, and averaging over each
segment. The choices of 0.35 and 0.6 are based on extensive simulation experience (see Section 5),
and can be more rigorously justified in specific cases. However, performance is reasonably robust to
changes in these weights under the various scenarios considered. The averaging produces significant
data reduction, and therefore greatly increases the speed of convergence. The gradient operator is
applied only as part of the first iteration, the data reduces rapidly with each iteration and precludes
use of the gradient operator except as part of the first iteration.

We summarize the foregoing in the following algorithm statement. Again we assume the data

13

is initially sorted in descending order. Recall that appending zero in the first step appends the

previous minimum.

Modified Euclidean Algorithm (With Averaging)

1.) After the first iteration, append zero.
2.) Form the new set with elements s; — s;41.
3.) Sort in descending order.

4.) On the first iteration, apply gradient and obtain 7, yielding ny = 0.357 and yo = 0.67 (see
text).

5.) Average the data over each step, with steps determined by jumps of height .
6.) Eliminate elements in [0, 7] from end of the set.

7.) Algorithm is done if left with a single element. Declare 7 = s;. If not done, go to (1.).

If the data is such that, after the first iteration, there is a relatively large cluster around the step
nearest to zero, then we can readily estimate 7 by finding this step, averaging only over these data
points, and declaring this to be 7. This is the rightmost or lowest step after the first iteration (see
Figure 1). Under our assumptions this mean is an unbiased estimate of 7. Accurate estimation of 7
from a single iteration assumes that n is large enough, and the span of the original data set S small
enough, to yield sufficient data in the neighborhood of 7. This is a function of the distribution of
the k;’s.

In our example above the missing observations were modeled by taking the jumps in the k;’s
as uniformly distributed on the discrete interval {1, M], with M = 10. Thus, for large n, after the
first iteration the data will cluster in M steps with an expected value of n/M samples in each step,
as in Figure 1. As another model for missing observations we can employ an iid Bernoulli process

to determine if an observation is missing or not, where

P(missing observation) = A

P(observation occurring) = 1—A. (14)

14

For example, with A = 0.6, we expect 60% of the observations to be missing. Given an element of
S, sj = kjT + nj + ¢, then the probability that s;41 = kj 1T+ +¢ = (kj + 1)7 + nj41 + ¢
is an element of the set S is given by 1 — A. It follows that, after the first iteration, we expect
(1 - A)(n — 1) data samples to be in the lowest step clustered around the true value of 7. Thus, if
n =101 and A = 0.6, then after the first iteration we expect (1 — 0.6)100 = 40 data samples to be
clustered in the lowest step around 7; the average over these 40 data samples may then be taken
as an estimate of 7.

The single iteration algorithm is a simple modification of the preceding multi-iteration version.
After the (first) difference and sort operations the gradient is applied and the lowest step isolated.
The average over this step is then taken as our estimate of 7. We summarize the single iteration

form of the algorithm as follows.

Modified Euclidean Algorithm (Single Iteration)

1.) Given the set S, form the new set with elements s; — s;541.
2.) Sort the new set in descending order.
3.) Apply gradient operator and obtain 7, with yp = 0.67.

4.) Obtain 7 by averaging the data over the lowest step, isolating this step based on the lowest
two jumps of height yq.

Next we consider the effect of arbitrary outliers. These are, in general, quite harmful to the
estimation of the gcd. This is easily seen in the noise-free case because the ged of a contaminated
set may be arbitrarily different from the gcd of the uncontaminated set. Testing of the algorithms
presented thus far shows sensitivity to the presence of even a single outlier. This is because the
outliers will not necessarily fall into the step-like clusters we expect.

A more robust version of the algorithm can be obtained with the introduction of a step—width
threshold, z¢. Let us concentrate on the single iteration approach. After application of the gradient
operator as before, we avoid false edges and clusters occurring below the true lowest step by

requiring the step-width (the number of data samples in a particular step) to be greater than z;.

15

The choice of z(is dictated by two considerations, the distribution of the outliers and the
expected number of data samples in the lowest step after the first iteration. This represents a
tradeoff. For example, consider again the Bernoulli model for missing observations. Suppose
A = 0.25 and n = 101. We therefore expect 75 data samples in the lowest step, allowing us to
choose z¢ = 50, say. The single iteration algorithm employing ¢ will therefore search for the lowest
step in the data that contains at least zp = 50 data samples. Depending on the distribution and
number of outliers it may be extremely unlikely that a step will occur that simultaneously has a
mean less than 7 and has more than zy = 50 data values. The drawback to employing z¢ is that
setting its value requires some a priori knowledge or guesswork and is not easily set adaptively. The
advantage is that for reasonable scenarios its use makes the algorithm very robust to the presence
of even large percentages of outliers, as illustrated in the simulation results of the next section.

This robust single iteration algorithm is summarized as follows.

Robust Single Iteration Algorithm

1.) Given the set S, form the new set with elements s; — s;41.
2.) Sort the new set in descending order.
3.) Apply gradient operator and obtain 7, with yo = 0.67.

4.) Obtain 7 by averaging the data over the lowest step, isolating the step based on the lowest
two jumps of height 1, with step—width greater than x.

Further discussion of the various algorithms and their performance is presented at the end of the

next section.
Remarks :

1. The computational load of the robust single iteration algorithm can be approximated as
follows. The differencing operation of 1.) requires n — 1 additions, a fast sort can be accom-
plished in about nlogn operations [20], and convolution with the gradient operator [—1,0, 1]

can be accomplished with n additions and requires no multiplies. Finally, 4.) requires a few

16

differences and comparisons. Thus, the total computational load is roughly 2n additions plus

n logn operations for the sort.

. Fogel and Gavish have proposed the following estimate for 7 [9],

1
T= , —. (15)
arg maxy ‘z;;l e2mifs,

The denominator arises from spectrum analysis of a delta-train function with unit impulses
at the occurrence times (see also Bartlett [1]). This algorithm has a simple program state-
ment and requires no tuning parameters other than choice of f. In our tests this algorithm
performed well given that the percentage of missing observations was not too large and given
some a priori knowledge of a range of f over which to search. The algorithm requires fine steps
in f when searching due to the convergence properties of the sum of exponentials. Without
this fine search it is possible to miss f = 1/7 altogether. This is an important issue because

the number of frequency bins in the search affects the computational load.

Ignoring computation of the exponential function, directly computing the denominator of (15)
requires 2nF complex multiplies, where F is the number of frequency bins. Given that a fine
frequency sampling is required, the computational load can grow significantly without some a
priori knowledge of where to search. It is possible to compute the denominator using an FFT.
However, the input to the FFT is a delta—train (of mostly zeros) with length determined by
the time span of the set S and the system clock rate. Thus, the FFT is not of length n, but

rather some significantly larger value.

Use of (15) can be contrasted with the proposed modified Euclidean algorithms that are
independent of choice of 7. As shown above in Remark 1, the robust single iteration algorithm
has a relatively small computational load. In addition, our algorithms can yield estimates of
7 despite a very high percentage of missing observations. These remarks suggest that one
possible approach to estimation of 7 is to use the modified Euclidean algorithm to obtain an

estimate and then fine tune this estimate using another algorithm, e.g., (15).

17

5 Simulation Results and Discussion

5.1 Simulation Results

In this section we present simulation results and discuss performance of the proposed algorithms.
All estimates and their standard deviations are based on averaging over 100 Monte—Carlo runs.
The number of data samples is given by n (see equation (1)). Estimates of 7 are labeled 7, with
experimental standard deviations in parentheses. Without loss of generality, we take 7 = 1 in
all experiments. This choice is arbitrary, and any real positive number will yield similar results.
Choice of initial phase ¢ is also arbitrary as the algorithms are independent of its choice due to
the ordering and differencing operations. The noise values n; are modeled as uniformly distributed
with pdf f,(n) ~U [—%, %] So, for example, A = 10! implies random phase jitter that is £5%

of the period 7 = 1.

(1) Noise—free estimation.

In this example we examine the effects of changing n and the percentage of missing observations
on the modified Euclidean algorithm of Section 2. The data are noise—free, i.e., 7, = 0 for all j.
In this case the algorithm converges to the exact value of 7 = 1 with standard deviation equal to
zero, or in some cases for small n to some multiple of 7. The jumps in the k;’s were modeled as
uniformly distributed on the (discrete) interval [1, M]. Results are shown in Table 2 where %miss
denotes the experimentally determined average percentage of missing observations, and ifer is the
average number of iterations required to converge.

The top half of Table 2 illustrates the effect of changing M, and therefore changing the percent-
age of missing observations. Given insufficient data the algorithm will converge to a multiple of 7.
Columns labeled 7, 27, etc., indicate the percentage of runs that converged to these values. The
algorithm is able to choose 7 correctly based on n = 10 data samples, even with 99.998% of the
possible observations missing. Convergence in the noise—free case depends on n but is independent
of M, as implied by the analysis of Section 3. The bottom half of Table 2 illustrates the effect of

changing n for M fixed. Reliable results are achieved for n > 10.

(2) Noisy data and the multiple—iteration algorithm.

18

In this example we implement the modified Euclidean algorithm (with averaging) of Section 4.
Results are shown in Table 3. The missing observations were modeled using a Bernoulli process
with parameter A, A is the noise parameter, and iter is the mean number of iterations required
to converge. Note that A corresponds to the expected percentage of missing observations (see (14)
and discussion).

The top half of Table 3 shows that estimates of 7 degrade as the noise increases, as we would
reasonably expect. The bottom half of Table 3 shows the effects of increasing A, hence increasing the
percentage of missing observations. The performance is essentially unchanged with 0.6 < X < 0.9.
The last entry in Table 3 shows accurate estimation of 7 from 100 data samples with £5% phase
jitter and 90% of the observations missing. It is possible to select A > 0.9. However, estimation of
T becomes less reliable. For example, with A = 0.95, 3 out of 100 trials resulted in poor estimates
of 7 that in turn resulted in poor estimates of 7, while the other 97 trials produced estimates close

tor =1.

(3) Noisy data and the single iteration algorithm.

Next we repeat Example 2 but now employ the single iteration algorithm of Section 4. Results
are shown in Table 4. Here, stepwidth is the number of data samples isolated in the lowest step
and whose mean resulted in 7. The top half of the table shows the effect of increasing the noise.
As we expect the estimate 7 degrades for higher noise. Note that the value of stepwidth reveals
that the algorithm is able to capture the approximately 50 data samples expected in the lowest
step (due to A = 0.5).

The bottom half of Table 4 depicts the effects of increasing A. Here, estimates of 7 degrade
slightly as X increases. The degradation is due to the decreasing value of stepwidth. As) increases
toward 1.0 fewer data samples are available in the lowest step, hence the mean of these samples
becomes a less accurate estimate of 7. This effect can be counterbalanced by increasing n since the

value of stepwidth is approximately (1 — A\)n data samples.

(4) Noisy data with outliers.

Next we test the robust single iteration algorithm of Section 4 by adding outliers, with results

19

shown in Table 5. Here, %outliers indicates the percentage of the n = 100 data samples that
are outliers. These were generated by choosing them to be uniformly distributed over the span of
the set S. So, e.g., with n = 100 and %outliers = .15, the data set was generated with 85 data
samples and then 15 outliers were inserted for each Monte Carlo run, maintaining the total number
of samples at n = 100.

Also shown in Table 5 is the step—width threshold zy. The last column, labeled %runs, indicates
the number of Monte Carlo runs out of 100 that yielded estimates of 7. Failure of the algorithm to
produce an estimate occurs when there is no step that exceeds the step—width threshold zy. Note
the last entry in Table 5 indicating successful estimation of 7 from n = 100 data samples with 80%
missing observations and 10 of the 100 data samples being arbitrary outliers.

The results of Table 5 are somewhat distorted by our method of generating outliers. For small
A (fewer missing observations) the total time span of the original data set S is considerably smaller
than for larger values of A. Thus, for small A, the outliers are more closely spaced in time in
the original data set S, and therefore more likely to result in a false step with mean less than
7. Counterbalancing this effect requires a larger step—width threshold zj. The values for zy were
chosen to avoid selecting such false steps with mean less than the true value of 7 = 1. Hence the

relatively smaller value of %runs for small A as shown in the Table.

5.2 Discussion

Testing of the modified Euclidean algorithm of Section 2 in the noise—free case (Example 1 above)
reveals excellent performance with very few data samples, as theoretically predicted in Section
3. This performance is independent of the percentage of missing observations but the repeated
subtraction can lead to very many iterations for extreme cases.

Comparison of the results of Examples 2 and 3 reveals that, in general, the single iteration
algorithm outperforms the multi-iteration algorithm by a slight margin. This somewhat counter-
intuitive result occurs due to the averaging over each step at each iteration. Some step-widths
will be small, such that the resulting average over a particular step may have a high variance due

to the lack of data samples. Whereas, in the single iteration algorithm only a single average is

20

computed over the lowest step. Our results indicate that, if the pattern of missing observations
permits, the single iteration algorithm is likely to be preferable to the multi-iteration version. The
single iteration version requires less computation and requires only two parameters, the gradient
threshold go and the step-height threshold y. Our experiments indicate very good robustness to
choice of gy. Choice of yy depends on the coarse estimate of 7 we called 7, which depends on getting
sufficient data in the lowest step after the difference and sort operations, that in turn depends on
the distribution of the missing observations in the original data set S.

The single iteration algorithm can also be made robust with the addition of one more parameter,
the step—width threshold xo. Proper choice of xy requires some knowledge of the distribution of
the missing observations. However, proper choice can insure very robust performance with heavily
contaminated data. Obtaining robust behavior with respect to outliers requires choices that are
not likely to be optimal in all scenarios. Our experimental choices are based on experience and the
scenarios considered.

Finally we note experimentation with using the median rather than the mean when averaging
over steps, in an attempt to further combat outliers. While the median did produce slightly better

results in some cases, the level of improvement was very slight.

6 Final Remarks

We have developed modifications of the Euclidean algorithm that are based on subtraction rather
than division, and applied these algorithms to determine the period from a sparse set of noisy
measurements. These results are based on the model given by (1), assuming a single period 7.
The algorithms are computationally straightforward and require no a priori information. In the
noise—free case our algorithm is equivalent to the Euclidean algorithm. It converges with very high
probability given n = 10 or more data samples. Modifications of the original algorithm work well
even in the presence of noise and outliers.

It is natural to consider an extension to the case of multiple 7’s, say in a set {Tj};‘zl. We

ask what number 7 will be produced by the algorithm. This divides into two cases. The first

21

case considers {7;} such that the 7;’s are all rational multiples of each other. The algorithm will
produce a number 7 such that for each 7;, there exists a positive integer ¢; such that ¢;7 = 7;.
The number 7 is just ged(71,...,7,). (This more general notion of ged is consistent with Euclid’s
original algorithm, e.g., see Knuth [19], pp. 317-320. Also see Proposition 2.1.) For example, if
T = %, Ty = %, and 73 = %, then 7 = %. This result is easily seen, for it is just as if we applied the
algorithm directly to the set {7;}.

The second case considers {7;} such that at least two of the 7;’s are not rational multiples of
each other, for example, 1, = %, T2 = /2. The values of the 7;'s are incommensurable, that is,
there is no fundamental unit in which all of the 7;’s can be expressed as multiples. This follows
from the fact that given a fixed irrational v and any 1 > 0, there exists positive integers m and
n such that |m — ny| < 5. (Also see Weyl’s Equidistribution Theorem, Dym and McKean [7], pp.
54-56.) In this case, the algorithm will in theory produce 7 = 0, although this is sensitive to the
noise thresholding and truncation error.

Finally, we discuss a least squares procedure for fine tuning our estimate of 7. Given the original
data set S, estimate 7 and ¢. Given 7 and @, get the set {E]} via equation (3) (see the remark at
the end of Section 2). This last step is sensitive to the quality of the estimates 7 and <Z, and to the

distribution of the n;’s. Having estimated the set {Ej}, we then form the function

o~

F(r) =3 (sj — ¢ — k)%, (16)

for 7 > 0, and solve for 7 such that

a%F(T) = -2 "kj(s; — ¢ — kj7) = 0. (17)
J

Since 82/07%F(1) = 2 > (79})2 > 0, this value of 7 will minimize F (7).

22

7 Appendix: Proofs

Proof of Proposition 2.2 :

Let o be a positive integer such that alk; for j = 1,...,n. Then, a|(kj—kjt1) forj =1,...,n-1,
and olky,.

Conversely, assume /3 is a positive integer such that g|(k; —k;41) for j =1,...,n~1, and Glky,.
Therefore, there exists positive integers ¢ and d such that ¢8 = k, and df = (k,—1 — ky,). Thus,
dB + kn = (d + c¢)B = kn_1, and so B|k,_1. By complete induction, 8|k; for j =1,...,n.

Therefore, since the sets {k;} and {(k; — k;4+1)} U {kn} have the same divisors, their gcd’s are
equal.

Remark : A proof of ged(ki, k2) = ged((k1 — ko), k2) with an outline of the algorithm.

We may represent the Euclidean algorithm applied to ky, ko, for k; > ko, as follows.

k1=k2-q1+r1 : 0<r <k

ko=ri-g+ry : 0<ry<r

Th2=Tk—1 QG +7r : 0<ry <rp—

Th—1 =Tk Gk - (18)
The procedure terminates when 51 = 0. This gives ged(k1, k2) = k. Since g > 1,
ki—ky=ky (g —1)+r. (19)
We may replace the top line of (18) with (19), yielding the same result. Thus,

ged(k1, ko) = ged((k1 — k2), k2) - (20)

Therefore, given two positive integers k1 and ko, k1 > ko, we can reformulate the Euclidean

algorithm using subtraction rather than division. This is stated in pseudocode as follows.

23

FUNCTION gcd(ky, k2)
Begin
Do while ky # 0
ki =k — kg
If k) < kg, SWAP(kl,kz)
Enddo
ged(k1, k2) = k1
End

Proof of Proposition 2.3 :

Let o be a positive integer such that o|(k; — kj41) for j = 1,...,n—1. Therefore, a|(kn—1 — ky)
and a|(kn—2 —kn—1), and so there exist my, mg such that k,_; = mia+k, and kp—2 = moa+kn—1.
Substituting, we get that kn—o = (mg + m1)a + ky, and so a|(kn—2 — kr). By complete induction,
we get that o(k; — kp), for j=1,...,n -1

Conversely, assume [is a positive integer such that 3|(k; — k) for j = 1,...,n — 1. Thus
B|(kj — kn) and B|(kj4+1 — kn), and so there exists mj, m;1 such that k; = m;B + k, and k41 =
mj+18 + k. Thus, kj — kj1 = (mj — mj11)B, and so B|(k; — kjt1).

Therefore, since the sets {(k; — k;+1)} and {(k; — kn)} have the same divisors, their gcd’s are

equal.

Proof of Theorem 3.2 :

Let |z| denote the floor function of z, namely
lz] = max{k: ke Z}. (21)
k<z

Recall that N,(¢) = card{(k1,...,kn) € {1,...,£}" : gcd(k1,...,kn) = 1} is the number of

relatively prime elements in {1,...,£}". We claim that
mO=r-5(12)"+ ¥ (G51) = 5 () e)
7\ Pi pi<p, \ Pi"Pj pi<pi<pr \ Pi Pj Pk
This is seen as follows. Choose a prime number p;. The number of integers in {1,...,¢} such

that p; divides an element of that set is I_I%J. (Note that is is possible to have p; > £, because

I-p% | =0.) Therefore, the number of n—tuples (k1,...,k,) contained in the lattice {1,...,¢}" such

24

that p; divides every integer in the n—tuple is

(1LE)". 23

Next, if p; - p; divides an integer k, then p;|k and p;|k. Therefore, the number of n—tuples

(k1,...,kn) contained in the lattice {1,...,£}" such that p; and p; both divide every integer in the

£\" ¢ \" e \"
(1) +<Lp—jJ> —(Lpi_ij) , (249

where the last term is subtracted so that we do not count the same numbers twice (in a simple

n—-tuple is

application of the inclusion—exclusion principle).

Continuing in this fashion, for three integers, say p; < p; < pi, the number of n-tuples
(k1,...,kn) contained in the lattice {1,...,£}" such that p;, p;, and pi all divide every integer
in the n—tuple is given by the inclusion-exclusion principle as

5"+ () () -[5) - (559] - ()]

(25)

We can therefore see by induction that the number of n-tuples (k,...,k;) contained in the
lattice {1,...,£}" such that p;,p;,pk,... all divide every integer in the n-tuple is given by the
inclusion—exclusion principle as

>(13)" - = (15 > (rrt) - (20

pi<p, \ Pi ' Pj p<pj<pr \ Pi Pj

But this counts the complement of Ny,(¢) in the lattice {1,...,£}". Therefore,

£\" ¢ \" ¢ "
Ny =e=3" (L—J) +) (L J) - (t—J) +.. (27)
p NP pi<p; \ Pi Pj pi<§]:<1’k PiPj Pk
Next, we observe that
1 ¢ "
2 (L——.. — J)
pi<pj<---<pk Di p] co Pk

1 l "

< — - -

I A Z (pi'pj'---'l)k)

Pi<p;<..<pp <€

1 n
Pi<p; <-..<pp<t <pi RZARE 'pk)

25

IA

h~]

ko]

=M

o

% -

SN———
b

(7).

where the last sum over j € N\ {1}. Since n > 2, this series is convergent. Therefore, each term
in the expansion of -]%9 is convergent.

We recall the Mobius function p, which is defined as follows.

p(l) = 1,
0 if mn is divisible by the square of a prime,
p(m) =
(-1)" ifm=py-pg-..."pr, wherep1,ps,...,p, are all distinct primes.
(28)
Euler showed that
1 1 1
1-— — + —_— - E—
%: } p%. (pi - ps)" ,,,.%;,,k (Pi - pj -)"

where the last sum is over m € N. Forn > 2, Jm—,,l, Y = are absolutely convergent. Thus,
the equality Zm it =[¢(n)]~! follows because for j, k,m,n € N,

S s = E =S Tu

m,j dlk

where we have used the fact that both series in the first term converge absolutely and thus can
be multiplied together by adding all possible products of terms and rearranging in any order (see
Ireland and Rosen [14] and Leveque [21]).
Let
. k
J
with sum over j € N\ {1}. Since n > 2 and the sum is over j € N \ {1},

0<§: <—2——1)<1. (30)

26

Since the k™ term in the expansion of M}‘,,Q is dominated by M}, and 3", M}, is convergent, we may
apply the Weierstrass M test, and evaluate term-by-term. We use the fact that z — 1 < |z| <z

for all z, and so lim;_, o J-%L = 1. Therefore, we have

Jim S
1 £ \" ¢ \" 4 "
= lm — | - ~ - ——
e—lfgén(;(Lpij) +p§,j (Lpi'PjJ) pi<§<pk (Lpi‘pj'PkJ) ")
1 1 1
=1-S =+ — — —
; 4 ,,Z;,j (pi - pj) pi<§<pk (pi - pj - Dx)
_ p(m)
= X
= Km,

where the last sum is over m € N. This completes the proof of the theorem.

Proof of Corollary 3.1 :

By Proposition 2.3,

gcd((k1 — kz), (kz - kg), ey (kn—l — k‘n)) = gcd((k1 — kn), (k2 — kn), ceay (kn—l — kn)) .

Thus, computing the gcd of the left hand side is the same as computing the ged of the set
{k1,ko,...,kn_1} shifted by k,. Now, since k; — kj;+1 > 1, we see that we can repeat the analysis
of Theorem 3.2 in the (n — 1)-dimensional sublattice of N™ consisting of the of (n — 1)-tuples of
the form

{(m+ks),....(m+kn)}, 1 <m <L,

In this sublattice, for sufficiently large £, the number of elements that are divisible by some given
prime p is essentially equal to the number of elements in {1,...,£}""1 divisible by p. Moreover,
if we denote the number of relatively prime (n — 1)-tuples in this shifted lattice by N,_;(£,), we

have that
lim Yooilbe) _) Nooall)

oo gl o0 gl

(Asymptotically, the fact that the sublattice is shifted by some finite fixed amount will not matter.)

27

But then, by Theorem 3.2,

m 218 -1 g

£—00

Proof of Proposition 3.1 :

Since
((w)=)Y_ n"
n=1

and w > 1,

1 1 1 1
13§(w)=1+2—5+3—w+4—w+5—w+...

< 1 1 1 1 1 1 1
< +2—w+2—w+4—w+---+4—w+8—w+---+‘8;+---
4—t‘irmes 8—t‘i'mes
= = 5 = — .
o \2¥ 1-55 1-21-v

As w — 00, (1 — 217%) — 1%, Therefore, by the Squeezing Theorem,

W)™ — 1" asw — o0. 0O

Acknowledgments : The authors would like to express their sincere thanks to Professor Lawrence
Washington of the University of Maryland, Professor David A. Joyner of the U. S. Naval Academy,
Professor Lawrence Crone of American University, and Mr. Andree N. Filipov of the Army Research

Laboratory for many insightful discussions. We also would like to thank the reviewers for several

perceptive comments that led to improvements in the paper.

28

References

[1]

[2]

(3]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

(15]

Bartlett, M. S., “The spectral analysis of point processes,” Journal of the Royal Statistical
Society B, Vol. 25, No. 2, pp. 264-280, 1970.

Bloomfield, P., “Spectral analysis with randomly missing observations,” Journal of the Royal
Statistical Society B, Vol. 32, No. 3, pp. 369-380, 1970.

Beyer, W. H., editor, CRC Standard Mathematical Tables and Formulae (29" Edition), CRC
Press, Boca Raton, Florida, 1981.

Casey, S. D., and Sadler, B. M., “A modified Euclidean algorithm for isolating periodicities
from a sparse set of noisy measurements,” IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’95), Vol. 3, pp. 1764-1767, 1995.

Conway, J. B., Functions of One Complez Variable (Second Edition), Springer-Verlag, New
York, 1978.

Dandawate, A. V., and Giannakis, G. B., “Nonparametric cyclic-polyspectral analysis of
AM signals and processes with missing observations,” IEEE Transactions on Information
Theory, Vol. 39, No. 6, pp. 1864-1876, 1993.

Dym, H., and McKean, H. P., Fourier Series and Integrals, Academic Press, Orlando,
Florida, 1972.

Edwards, P. J., “Comments on ‘A zero crossing-based spectrum analyzer’,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Vol. 37, No. 7, pp. 1143-1144, 1989.

Fogel, E., and Gavish M., “Parameter estimation of quasi—periodic sequences,” IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP ’88), Vol. 4, pp.
2348-2351, 1988.

Fogel, E., and Gavish M., “Performance evaluation of zero—crossing—-based bit synchronizers,”
IEEE Transactions on Communications, Vol. 37, No. 6, pp. 663-665, 1989.

Giannakis, G. B., and Zhou, G., “Parameter estimation of cyclostationary AM time series
with application to missing observations,” IEEE Transactions on Signal Processing, Vol. 42,
No. 9, pp. 2408-2419, 1994.

Gray, D., Slocumb, B., and Elton, S., “Parameter estimation for periodic discrete event
processes,” IEEE International Conference on Acoustics, Speech, and Signal Processing
(ICASSP ’94), Vol. 4, pp. 93-96, 1994.

Hardy, G. H., and Wright, E. M., An Introduction to the Theory of Numbers, Oxford Uni-
versity Press, New York, 1982,

Ireland, K., and Rosen, M., A Classical Introduction to Modern Number Theory, Springer—
Verlag, New York, 1982.

Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, New Jersey, 1989.

29

[16] Jones, R. H., “Spectral analysis with regularly missed observations,” Annals of Mathematical
Statistics, Vol. 33, pp. 45656-461, 1962.

[17] Kay, S. M., and Sudhaker, R., “A zero crossing—based spectrum analyzer,” IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, Vol. 34, No. 1, pp. 96-104, 1986.

[18] Kedem, B., Time Series Analysis by Higher Order Crossings, IEEE Press, New York, 1994.

[19] Knuth, D. E., The Art of Computer Programming, Volume 2: Seminumerical Algorithms
(Second Edition), Addison—-Wesley, Reading, Massachusetts, 1981.

[20] Knuth, D. E., The Art of Computer Programming, Volume 3: Sorting and Searching,
Addison—-Wesley, Reading, Massachusetts, 1973.

[21] Leveque, W. J., Topics in Number Theory, Volumes 1 and 2, Addison-Wesley, Reading,
Massachusetts, 1956.

[22] Parzen, E., “On spectral analysis with missing observations and amplitude modulation,”
Sankhya, Ser. A, Vol. 25, pp. 383-392, 1963.

[23] Papoulis, A., Signal Analysis, McGraw-Hill, New York, 1977.

[24] Pasupathy, S., “Pi, primes, and probability,” IEEE Communications Magazine (Light Traf-
fic), Vol. 24, No. 3, pp. 61-62, 1987.

[25] Reiss, R. -D., Approzimate Distributions of Order Statistics, Springer—Verlag, New York,
1989.

[26] Rosen, K. H., Elementary Number Theory and Its Applications, Addison-Wesley, Reading,
Massachusetts, 1984.

[27] Rosen, Y. and Porat, B., “Optimal ARMA parameter estimation based on the sample co-
variances for data with missing observations,” IEEFE Transactions on Information Theory,
Vol. 35, No. 2, pp. 342-349, 1989.

[28] Sarhan, A. E., and Greenberg, B. G., eds., Contributions to Order Statistics, John Wiley,
New York, 1962.

[29] Scheinok, P. A., “Spectral analysis with randomly missed observations: the binomial case,”
Annals of Mathematical Statistics, Vol. 36, pp. 971-977, 1965.

[30] Schroeder, M. R., Number Theory in Science and Communication (Second Edition),
Springer—Verlag, Berlin, 1986.

[31] Wiley, R. G., Electronic Intelligence: The Analysis of Radar Signals (Second Edition), Artech
House, Norwood, Massachusetts, 1993.

30

Figure 1

12 T 1 1 ¥ I T T T T

10F .

0 10 20 30 40 50 60 70 80 90 100

1. Plot of example data set after one iteration of the modified Euclidean algorithm of Section 2.
The data is sorted in descending order into steps centered around multiples of 7 (r = 1 in this
example). The stepwidths are a function of the distribution of the k;’s in the original data set S.
The lowest (rightmost) step is centered around the true value of 7 = 1.

31

Table 1: Some values of the Zeta function ¢(n) and 1/¢(n).

¢(n) | 1/¢(n)
1.64493 | 0.6079
1.08232 | 0.9239
1.01734 | 0.9830
1.00407 | 0.9959
1.00099 | 0.9990
1.00024 | 0.9998
16 | 1.00001 | 1.0000

— =
MOOOO!.&N:

Table 2: Results from simulation Example 1, noise-free estimation of 7 with the modified Euclidean
algorithm.

n | M | %miss | iter T 27 | 37 | > 3r
10 | 10T | 81.69 33 [100%]| 010 0
10 | 102 | 97.92 | 105 100 | 0|0 0
10 | 103 | 99.80 | 46.5 100 | 0|0 0
10 10%] 9998 | 316.2 | 100 | 0 | O 0
10 | 105 | 99.998 | 2638.7 | 100 | 0 | O 0
4 110°] 9784 | 152 | 82% |12] 4 2
6 | 102 | 97.81 14.2 97 | 310 0
8 [102 | 97.96 | 10.2 98 111 0
10 | 102 | 97.95 10.2 99 110 0
12 | 102 | 97.95 8.6 100 | 0|0 0
14 | 102 | 97.97 7.4 100 | 0|0 0

Table 3: Example 2 results, estimation of 7 from noisy measurements using the modified Euclidean
algorithm (with averaging).

n | A A T (std) iter (std)
100 | .5 | 10~ [1.0000 (.0001) | 3.5 (.6)
100 | .5 | 1072 | 1.0000 (.0014) | 3.5 (.5)
100 | .5 | 107! 1.0002 (.0169) | 3.5 (.6)
100 | .5 | 2 x 1071 | 1.0032 (.0212) | 3.5 (.5)
100 | .6 | 10~% [0.9998 (.0158) | 3.7 (.6)
100 | .7 | 107! | 0.9997 (.0200) | 4.0 (.6)
100 | .8 | 107! | 1.0002 (.0202) | 3.9 (.4)
100 |.9| 107! | 1.0038 (.0213) | 4.2 (.6)

32

Table 4: Example 3 results, estimation of 7 from noisy measurements using the single iteration
algorithm.

n | A A 7 (std) stepwidth (std)
100 [.5 | 1073 | 1.0000 (.00001) 49.0 (4.6)
100 | .5 | 1072 1.0000 (.0004) 48.3 (4.5)
100 | .5 | 1071 0.9994 (.0043) 49.2 (5.0)
100 | .5 | 2x 107 | 0.9959 (.0104) 47.1 (5.2)
100 | 6| 1071 1.0000 (.0056) 38.5 (4.9)
100 | .7 1071 1.0009 (.0061) 28.3 (5.0)
100 | .8 | 1071 0.9986 (.0089) 18.6 (3.9)
100|.9| 1071 0.9988 (.0141) 8.1 (2.7)

Table 5: Example 4 results, for noisy sparse data with outliers, using the robust single iteration
algorithm.

no| A A | %outliers 7 (std) zo | %runs
100 | .05 | 107! 0.15 0.9983 (.0035) | 35 | 93
100 | .05 | 107! 0.25 0.9973 (.0054) | 35 | 86
100 | .05 | 107! 0.35 0.9928 (.0099) | 35 | 52
100 | .10 | 1071 0.05 0.9994 (.0027) [25 | 100
100 | .10 | 107! 0.15 0.9991 (.0036) | 25 | 99
100 | .10 | 107} 0.25 0.9975 (.0062) | 25 | 98
100 | .10 | 1071 0.35 0.9958 (.0105) | 25 | 90
100 | .10 | 1071 0.45 0.9839 (.0149) | 20 16

100 [.25 [107! 0.05 1.0006 (.0032) [15[100
100 | .25 | 107! 0.15 0.9987 (.0037) | 15 | 100
100 | .25 | 107! 0.25 0.9987 (.0052) | 15 | 100
100 | .25 | 107! 0.35 0.9953 (.0095) | 15 | 93
100 | .50 | 1071 0.05 1.0014 (.0048) | 10 | 100
100 | .50 | 107! 0.15 1.0004 (.0069) | 10 | 100
100 | .50 | 107! 0.25 1.0003 (.0071) | 15 | 100
100 | .50 | 107! 0.35 1.0004 (.0110) | 15| 98
100 | .75 | 1071 0.05 1.0043 (.0092) | 5 | 100
100 | .75 | 107! 0.10 1.0036 (.0344) | 10 | 100
100 | .75 | 107! 0.15 1.0064 (.0189) | 10 | 100
100 | .75 | 107! 0.20 1.0004 (.0211) | 10 | 100
100 | .80 | 1071 0.05 1.0038 (.0103) | 5 | 100
100 | .80 | 107! 0.10 1.0061 (.0143) | 5 | 100

33

